
STATIC RACE DETECTION TOOL FOR GOLANG

An Undergraduate Research Scholars Thesis

by

LORNA SANDERS

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Jeff Huang

May 2021

Major: Computer Science

Copyright © 2021. Lorna Sanders.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I , Lorna Sanders, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 3

NOMENCLATURE ... 4

1. INTRODUCTION .. 5

1.1 Data Races .. 5
1.2 Previous Work .. 7

2. METHODS ... 9

2.1 Methods .. 9
2.2 Inherent Issues .. 15

3. RESULTS ... 18

3.1 The Static Race Detection Tool .. 18

4. CONCLUSION ... 21

4.1 Future Work .. 21

REFERENCES ... 24

1

ABSTRACT

Static Race Detection Tool For Golang

Lorna Sanders
Department of Computer Science

Texas A&M University
Research Faculty Advisor: Jeff Huang

Department of Computer Science
Texas A&M University

The built-in race detection tool works dynamically, so it finds races at runtime which can

lead to false negatives. The static race detection tool on the other hand analyzes all code

regardless of what happens on one particular runtime allowing it to find the races that the

dynamic tool cannot.

The tool converts the code to SSA code for more easily analyzable data that does not

need to be run dynamically. Then, the tool establishes an understanding of what instructions are

read or write instructions, and analyzes what instructions have a happens before relation,

meaning that one always happens before the other. If a happens before relation is found or the

instructions are not either a write and a read instruction or a write and a write instruction, a data

race between those two instructions is impossible and can be eliminated. With those baseline

conditions, the tool could then be tested on real world data races to progressively make the tool

more accurate.

In this real-world data race testing, the tool has been quite accurate in ensuring no false

negatives occur. The goal of the tool is to have any misreported races be false positives rather

than false negatives to improve on the dynamic tool. That goal has been ensured as testing has

2

gone on by reconfiguring the tool to meet that goal. The static tool is, as expected, slower than

the dynamic tool due to the nature of static analysis compared to dynamic analysis. However, it

brings a new benefit to the race detection tool world by having any errors be false positives while

the dynamic tool in contrast gives false negatives. Programmers in Go can now use those two

endpoints from the tools to more accurately and thoroughly find races knowing the respective

benefits each tool can give separately and in conjunction with each other.

3

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. Jeff Huang, and my fellow students working

on this tool Yiqing Zhao, Yahui Sun, Bozhen Liu, and Boren Zang for their guidance, support,

and hard work throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

The static race detection tool described was also created, worked on, and improved upon

with the work of Yiqing Zhao, Yahui Sun, Bozhen Liu, and Boren Zang.

 All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by the Software & Hardware Foundation Program

in the National Science Foundation with a Grant under Grant Number 1552935. Its contents are

solely the responsibility of the author and do not necessarily represent the official views of the

National Science Foundation

4

NOMENCLATURE

Concurrency When a program is able to have 2 different things happen at once

Goroutine A structure in the go language that allows concurrency(AKA a thread)

Data Race 2+ Goroutines race to modify or access a variable(type of Race Condition)

Race Condition A general term for unfavorable results of concurrency

Runtime When a program is actually used(or run)

Dynamic When something is done at Runtime

Static When something is done not at Runtime but could be done anytime

5

1. INTRODUCTION

1.1 Data Races

A data race is a very common problem in modern computer science. A data race occurs

in a program that has concurrent threads which means at least two things are happening at one

time. This practice allows programmers to make code that can be executed and run much faster

since multiple things happen at once rather than one after the other. However, that benefit comes

at a cost. When you are making multiple things happen at one time, there can be unexpected

effects that would never happen in a sequential program (i.e., one that executes one after the

other). When these undesirable and unexpected effects occur, they are called race conditions.

These effects are very diverse and are collectively referred to as race conditions. Data races

which are the focus of the current tool being discussed is a subset of that broad race condition

category. As a subset of race conditions, data races are naturally also undesirable and unexpected

effects from concurrency in a program. In Go, which is the language the tool analyzes,

concurrency is achieved when at least two threads are happening at one time. This is much the

same as other languages, but in Go, the structure to have threads is known as a Goroutine.

Goroutines are the parts of the program that happen at one time. When a Goroutine is declared

the program basically creates a split at that point to begin running anything in that new Goroutine

at the same time as the Goroutine that originally created it and any other Goroutines that happen

to have also been declared. From that first split point on we have concurrency. Data races

become an issue when two Goroutines that are executing at the same time try to access the same

variable and at least one of those Goroutines tries to change that variable [1]. This is a problem

when left unhandled. Because the two Goroutines happen at the same time, no one can be sure

6

which of those two accesses will be executed first. Because of this, we cannot not know whether

the variable we are accessing is still the original value or if it has already been changed by

another Goroutine happening at the same time. The goal of concurrency is a faster program, but

not at the cost of unexpected results that could jeopardize the entire program. It does not matter

how fast a program is if it does not always give the result that you were expecting or hoping for.

Much like if you were web browsing and clicked on a new website. You will not care how fast

the website loads if it is not the website you wanted to see. Instead, we want those instances of

bad possible outcomes to be prevented and only have the parts of Goroutines happening together

that won’t hurt the final product. The simplest solution would be to just not have Goroutines if

this could be an issue and so just have the program execute sequentially. However, this is

unrealistic for how large, extensive, and time costing real world programs are already with

Goroutines. Small programs that already don’t take much time often don’t show much of a

difference in how long a program operates synchronously or concurrently at least to the user who

probably won’t be terribly concerned about a fraction of a second. But in real world programs

that must accomplish massive amounts of code in a timely enough manner so as not to annoy the

user, this can be much more difficult. Where before in those tiny programs the difference is

miniscule, in a real program that time difference can be quite massive due to the size of the

program. If the program is taking too long, it often does not matter how useful it is, because

many users won’t want to wait that long. Instead, rather than not use concurrency in problem

programs, many programmers use different practices to ensure that the Goroutines happen

concurrently, but the part of the Goroutine that accesses the variable is secure and must happen

in a certain order with other Goroutine variable accesses for those affected programs. There are

many structures, methods, and guidance’s on how best to protect those vulnerable pieces, and

7

they can be very effective when implemented properly. The problem is that often they are not

implemented and even more often not implemented properly. Aside from inexperienced

programmers, either for programming in general or Go specifically, who would obviously be

expected to not yet have the experience to accurately protect vulnerable areas there is a less

expected group of people that often experience this problem. Many people writing code today

are experienced, but they work in groups of people writing massive programs many thousands of

lines of code long if not more that is being continuously changed and updated by other people,

who clearly did not write all of the original code, to keep the program functional. Because of

this, real-world programs are extremely complex and simply impossible for any one person to

accurately predict and find data races manually. Therefore, programmers will resort to using

tools that can go above and beyond manually searching the code for data races, because these

data race detection tools can analyze these massive complex programs automatically.

1.2 Previous Work

Prior to this static race detection tool, there was another tool in Golang that was used to

detect data races. This tool is built into the Go language and works dynamically. It will

henceforth be referred to as the dynamic or built-in tool. This tool works by analyzing for data

races as the program is run, so it detects data races that occur at runtime [2]. The issue with this

previous work is that it can only detect data races that occur at runtime.

In a programming language like Go, it is often the case that what happens at runtime is

not necessarily what will happen the next time the tool is run. If-statements and their associated

extensions, switches, and other structures in the language are so commonplace in Go that a real-

world program is extremely likely to have them and often the result depends on conditions that

are set at runtime as user input or data. Therefore, the path taken in the code that the dynamic

8

tool is analyzing is not necessarily the path that will always occur. Because of that, it is entirely

possible that another path in the code that was not chosen at the current runtime will be taken on

a different run and contain data races. This would lead to a false negative. The program does

contain a data race, but due to that race not presenting in this particular run of the code the

dynamic tool cannot find it. This means that despite the dynamic tool being quite accurate in

ensuring that races reported to the user are actually races it is still limited by the fact that those

reported races are not all of the possible races.

This limitation presents an opportunity for an different tool that can ensure that all

possible races are reported. This would allow programmers using the tool to know about any

possible data race issues in their code. This is not possible using dynamic analysis, because

dynamic analysis finds data races as the tested program runs and so can only find the data races

in the current path in the code being executed at runtime. To truly improve a tool in such a way

that this fault does not occur, a new tool cannot be solely based on dynamic analysis. Instead,

static analysis allows a tool to analyze all possible paths rather than only the one executed at

runtime. This attempt at a new perspective in data race detection tools in Go is the focus of this

research and serves as a contrast to the dynamic tools limitations and benefits.

9

2. METHODS

2.1 Methods

This tool is meant to statically analyze Go programs for data races. That means that it

needs a way to know what the individual instructions in the program are meant to do without

actually running the program which would be dynamic analysis. That would defeat the purpose

of using static analysis to finding data races, because the point is to use static analysis which

allows for the entire program to be searched rather than the part run for this particular runtime.

This knowledge can be achieved by using a helpful tool in Go that already exists called SSA.

The static tool takes the program that will be analyzed and converts it into SSA code that can be

easily parsed and analyzed. This is thanks to helpful structures in SSA that categorize each

instruction based on what they are to give the most useful information about it. This allows the

tool to know what type of instruction is being used and other helpful information without having

to manually parse the original extremely complex code with only the base text to go on trying to

replicate what SSA does in categorizing and cataloging the program into structures that can be

analyzed.

Once the SSA code has been built, the static tool can analyze that code for data races. A

data race can only happen when a read and a write operation or a write and a write operation

occur concurrently and the order in which they happen is fluid. This is because as mentioned

they must happen concurrently to be a data race since a data race is a race condition which is a

result of concurrency. Also, although two read accesses could still access the variable, it

wouldn’t really matter if they do in two different Goroutines. Because a read access would not

change the variable, the second Goroutine could perform the access unaffected. A data race must

10

include at least one write instruction in the two accesses for this reason since otherwise no ill

effects would actually occur. Therefore, to search for data races the tool must ensure that a

prospective race would have two accesses and at least one of those accesses is a write

instruction. First the tool must know which instructions are write operations, which instructions

are read operations, and which instructions are neither. This is firstly helped by the SSA code

that was built. By knowing what types of instructions are being used and observing what types of

instruction will result in a read, write, or neither as well as the conditions that might make one

type of instruction more likely to be a certain group, the tool can be calibrated to categorize

instructions based on those groups. These conditions that make instructions read or write

instructions have been found by manually examining real world programs for instructions that

would be read or write instructions and finding what information the SSA provides about that

instruction that differentiate between when the instruction could be a write or read instruction

and when it could not. For instance, a write could be a change to an int variable, but the first

declaration of that variable is not a write instruction even though a value is assigned because the

variable did not exist beforehand and so would not race. Therefore, the tool looks at those

instructions and will not classify the first declaration as a write instruction. For an actual race to

occur, both instructions must be either read or write instructions and at least one must be a write

instruction. Therefore, some instructions that are neither read nor write instructions and are not

necessary for other purposes can be left out of certain costly analyses like checking if the

instructions are going to execute sequentially. These later checks are necessary to check if two

instructions will be a data race, but for instructions that have already eliminated for not being the

right accesses to lead to that, they can be skipped.

11

Just because two instructions are read and write instructions and at least one is a write,

does not mean that those two instructions automatically qualify to possibly be racing with each

other. There are more checks that must be done to ensure that the two instructions are even able

to race, before checking if they actually are. The next necessary condition for a data race is

concurrency. The two instructions must have been called in two different goroutines or they have

no possibility of happening in different orders due to the goroutines happening concurrently, and

so would not race. For this reason, the tool must keep track of what goroutine resulted in each of

the instructions of note (e.g., the read or write instructions), so that it can ensure that all pairs of

instructions being analyzed for a data race come from different goroutines. Additionally, for a

data race to be possible, the variable being read or written to by the instructions must be the same

for both instructions. That is essential for a race to occur, because otherwise the order that the

two instructions happen in would not matter. Therefore, for a race to happen both instructions

must affect the same value and occur in different goroutines, because that is what would lead to

uncertain outcomes from a data race.

However, even after going through those checks, the tool still has to confirm if those

instructions would actually race against each other. For that to occur, there must be some

concurrency in the program that could lead to the two instructions happening in either order thus

causing a data race as mentioned with needing two goroutines. However, there is another check

that must occur to ensure that those instructions are actually running concurrently even if they

are in different goroutines. Certain structures in Go will protect those sections that could cause a

data race when done properly. They do this by ensuring that although the pair of instructions are

in different goroutines, the actual pair of instructions have a definite order for which will happen

first. Therefore, the tool needs to establish some information about what order the instructions

12

could or definitely will happen. This is done by keeping track of certain instructions that may not

be read or write instructions, but could affect the order of those read or write instructions. This is

stored in a graph called the Happens Before graph that has stored a unique node for each

instruction in the program of relevance. Then if one instruction is always going to happen before

another like due to them being sequential instructions that occur in one single goroutine than an

edge is made that shows that order. The simplest order of instructions is one after the other, but

this is not always and even rarely the case. For one, certain structures in Go mean that not all

instructions happen, but rather one group of instructions in a set of groups of instructions such as

if-statements and its derivatives, switches, and selects is chosen among other sets of instructions

to be executed based on some condition. These determinations are not possible to statically

determine, so the tool cannot know which of those sets is actually executed, because it would

defeat the purpose of static analysis. When the tool is making happens before relations, these

structures must be handled differently. The beginning of each set of instructions must happen

after the instructions before the structure begins. At the same time all instructions in the set

would happen before the instructions after the structure ends, but none of the sets can be

connected to each other since only one in any path would occur. Also we cannot know for sure

which of the sets is chosen, so any instructions in those sets cannot be counted as definitely there

or definitely not much like Schrodinger’s cat. Instead, the tool must handle either case, because

both are possible. The tool works by specifying in the Happens Before graph only those

instructions that are guaranteed to always be in that order. Any instructions that have some

uncertainty to order or sets of instructions that, like mentioned, either one or the other happen but

not both are excluded. Therefore, if two instructions are not connected in this happens before

relation, the tool can conclude that there is uncertainty in what order the instructions occur. In

13

addition, if the two instructions originate from two separate goroutines, the tool can know that

that uncertainty could be due to a data race. That in conjunction to the previous checks as well as

checking for any structures in Go that correctly prevent a race allow the tool to determine if a

data race is present.

Such structures like channel operations, waitgroups, and other safeguards are also

analyzed to check not only if they are present, but if they actually prevent a race. The correctness

of these safeguards is essential to check, because an ineffective safeguard will not actually

prevent a data race. Oftentimes, a program will have a structure there, but may not have a

properly implemented structure. Data races due to ineffective race preventing structures is fairly

common, because most reasonable programmers in Go are aware of what causes races. So, these

programmers often make an attempt to protect their program with race prevention structures but

use those structures incorrectly in some way. These structures are not typical read or write

instructions, but they are important to determining if a data race is present and must be analyzed.

All of these necessary checks that are made in the process of determining if a race is

present are depicted in the flow chart below. If all of these checks are true, then the tool can

report a data race. The process of these checks is depicted in Figure 2.1 shown below.

Figure 2.1: Flow Chart for Data Race Potential

both
instructions
are either

read or
write

instructions

at least one
of the

instructions
is a write

instruction

the
instructions

are
affecting
the same
variable
but in

different
goroutines

neither
instruction

is
guaranteed
to always
happen

first

no structure
for

preventing
data races

like
waitgroups
or channels

has been
correctly

implemented

14

Aside from practical methodology in terms of the actual process the tool uses for

determining data races, there is also a methodology to testing and improving the tool as the

research progressed. Initially when the tool was in the early stages, it was designed with simple

test programs as a first model, and was simple as many first models are. The tool was initially

tested on two sets of bench tests for real world programs that mimic real-world races in smaller

programs that were called GoBench and Godel [3], [4], [5]. These were initially made by the

original programmers to help debug the data races in the actual program in a smaller yet accurate

portrayal that would be simpler to fix and/or to keep categories of common real world races

along with their respective fixes for research and education purposes. These cases were ideal for

initial testing, because they were both small in size and simple in complexity yet were based on

real programming behavior and actual data races that occurred. These cases were used to analyze

how different structures and their behaviors affect whether a data race occurs and develop an

algorithm to detect these differences. However, these cases although helpful were not extensive

enough to represent every possible scenario. A different set of test cases were manually created

based on observation of different structures and experimentation to determine what could and

couldn’t cause a data race in situations that were not covered in the previous test sets. These edge

cases allowed for shifting the testing model from not just reactive testing to races that have

already been recorded to predictive testing of races that we had not yet encountered but needed

to be considered. Together these test cases allowed the tool to better encompass any possible

situations that could occur based on those proposed scenarios. After many smaller test cases as

possible were used to implement and test initial functionality of the data race detector, the tool

was ready for full real-world programs. Various popular open-source programs like Hugo,

GRPC, TIDB, and others were incorporated into testing to find more scenarios that were

15

previously unconsidered as well as transition the tool to analyzing the larger more complex

programs. This was also done to allow more efficiency and speed focused improvements to be

tested on programs large enough to find a significant difference in the tool’s runtime.

2.2 Inherent Issues

Although this tool is meant to be an improvement on the previous dynamic tool that

through using a different approach can resolve its key limitations, that by nature introduces some

limitations that are inherent in this different approach. Just as the dynamic strategy has

advantages and disadvantages, the static tool must also naturally have some advantages and

disadvantages. Although the two tools are meant to have advantages and disadvantages that

complement each other so as to provide a separate but worthwhile perspective, there are some

key issues in the static approach regardless of the complementary nature of the two tools.

The dynamic tool has the advantage and disadvantage of being used as the program being

tested is run. We have discussed the problems with this of other possible paths being ignored, but

there is the distinct advantage of determinacy. Because the tool executes as the program runs, it

can know what certain values are and not have to guestimate. A static tool does not have this

advantage. Because the static tool is not run as the program executes, there is no way to know

what values variables may have. The only way to account for this in analysis is to be over

conservative in expecting data races. Many structures in Go that prevent data races in a program

take variables as input such as waitgroups that takes in how many other Goroutines to wait to

finish before continuing with the current Goroutine or channel buffers that take in how much can

be in the channel before the current Goroutine is blocked to wait for some channel action in

another Goroutine. For example, if a structure to prevent a data race such as a wait group or

channel buffer has some value, the static tool has no way of knowing what that value is due to it

16

not being run dynamically. As a result, the tool can only assume that that value is such that the

structure cannot actually prevent a data race regardless of whether it actually will or not. This

leads to false positives in the data races that are reported. Knowing whether protective structures

are used properly is a key component of checking for data races, but it is hindered by this

limitation of static analysis. There are possible methods to minimize this fault such as gathering

context clues from the rest of the program as to whether that structure is working or not or if

some other aspect prevents the possible data race which the tool does, but it cannot be

completely eliminated.

The unpredictability of outcomes also has more subtle effects that the immediately

obvious data race prevention structures. Yes, values are difficult or impossible to know for sure,

but due to how static analysis works there is also the issue of not knowing what paths are taken.

This is an advantage over the dynamic analysis for ensuring completeness of what is analyzed,

but there are more unfortunate implications as well. Because we don’t have a guarantee what

path occurs, we also have no guarantee that what happens in any one path actually happens. For

example, a simple structure like an if else that is common in many languages including Go is

affected. Either one path happens or the other, but not both and not neither. Either the if path or

the else path happens, but with static analysis we have no way of knowing which it was.

Therefore, not only is the code within the if else section indeterminate, but often times

everything after those sections is also indeterminate, because we have no idea what is actually

executed before it that might have affected those later instructions. One common issue is having

Lock and Unlock operations within those indeterminate if else sections, and when that is the case

it can be difficult to determine what the state is after those sections are passed. Those lock

operations are a common structure used to prevent data races, and they often happen in those

17

indeterminate sections. Again, the only solution is to be overly conservative in assuming what

happens in such a way that we will report races whether that may actually happen or not. Like

previously stated, context clues and patterns can help to narrow down possibilities and minimize

false positives, but this weakness is inevitable.

Another problem with static analysis is speed. The dynamic tool runs with the tested

program and only has one possible path to worry about, and while that leaves some possible

pieces out, it also ensures that the tool can run faster. To put it simply the dynamic tool does not

have to analyze as much of the code as a static tool does. The larger a program gets the more

stark that difference will be. Like the other problem there are certain possible fixes to try to make

this better such as finding information in the analysis to allow the tool to take shortcuts because

we know a data race could not happen or just in general making the tool run as fast and

efficiently as possible as it analyzes the program. However, the magnitude of what and how the

program is analyzed is inherently different which means the static tool will be inherently slower

than the dynamic. That tradeoff for finding more possible data races is inevitable, but as long as

the difference in time is close enough, that tradeoff can be considered a valuable asset. That is

especially true for programs with data races in paths difficult or even impossible to have reported

with the dynamic tool since speed does not matter if the race isn’t actually found.

18

3. RESULTS

3.1 The Static Race Detection Tool

Unlike the built-in tool which needs a file for an entry point to be given, the static tool is

run in the root of the project and will give a list of options for possible entry files to take that the

user can choose and specify from. This is to allow the user a better ability to know what exactly

is being checked and to systematically check their programs. If there is only one possible entry

file, then it is run automatically.

Aside from that the tool will give you some information to tell you what step in the

process it is on, as well as some information about the program itself. That information is how

many Goroutines there where in the program as well as how many instructions of interest there

were. Instructions of interest refers to instructions that are reading or writing to a variable which

as pointed out is one of the first requirements for having a data race. Then it will either say 0 data

races detected or it will tell you how many data races there were and will in sections for each

data race give you information about that section’s data race to help you debug your program.

There will be two parts to each data race section that will represent each of the two instructions

that are racing with each other. Each part will start with either ‘Read of’ or ‘Write of’ to show

which type of instruction it was, then the variable name and the function it was in. Those can be

tokens that are not easily decipherable in certain situations, but the last part of the line will be the

file line number and character that the race occurred. On the following lines it will give the same

information about the functions that called it and then tell you what Goroutine it was in.

Below in Figure 3.1, there is the output of running the tool on a test case from GoBench

[3], [4]. GoBench as mentioned is a set of test cases extracted from real world programs that

19

contain real world data races [3], [4]. This is the result of test case Cockroach/27659. As shown,

for the read instruction which is the first one presented, you can see it gives information about

the instruction like that it occurs in the filepath of the main.go file on line forty-two at the ninth

character of that line. Below that is the function and location that called it, and the Goroutine

which is zero. This gives the user the ability to accurately find the instructions that cause the race

and modify the code around the instructions to prevent it.

Figure 3.1: Result of running the tool on a program

The user can also run the tool with a -debug flag that will further help the user debug

their program by showing them a stack trace of the functions in the program to see what exactly

led to the data race. Those lines that begin with the ‘level = info’ are always shown as seen in the

figure above, but those with ‘level = debug’ are only added when the debug flag is used as

shown in the figure below. This allows the user to easily distinguish between the two types of

information. Figure 3.2 depicted below shows the beginning of the results, where the debug

information is shown, with the end omitted from the figure due to being identical to the output

shown in Figure 3.1.

20

Figure 3.2: Result of running the tool on a program with the debug flag

21

4. CONCLUSION

4.1 Future Work

Although the tool can already detect data races on real world programs using static

analysis, as was the goal, there do remain some aspects of the tool that could be improved as is

true with all such things.

For one, the tool could be made faster. The static tool uses static analysis meaning it must

analyze all possible branches in a program being checked for data races unlike the dynamic tool

which can only check the current branch. In contrast, the dynamic tool works by running the

program and dynamically detecting data races. These factors ensure that the static tool is likely to

remain somewhat slower than the dynamic, built-in tool due to the nature of how the two tools

work. However, there is still room for faster analysis within this limitation. Ways of attempting

this feat in the future could include simple code changes to order of analysis that would ensure

that fewer instructions that take up time are executed, using greater amounts of pointer analysis

with fewer unnecessary frills that would take up time, finding shortcuts to not have to execute

certain commands or conduct analysis when conditions ensure the tool knows the outcome, and

many more. The tool is a large program, and as such has a fair bit of room for increasing speed.

For the initial implementation of the tool, accuracy was placed over speed, but now that accuracy

is being achieved, speed has been reprioritized.

Aside from time for the tool to execute, improvements could be made on what can be

analyzed. The built-in data race detection tool runs dynamically while the program itself runs.

This means that the built-in tool can only check programs that can be run themselves. It cannot

check libraries or other Go programs that do not run. This is a limitation that cannot be solved

22

with dynamic analysis. Currently the static tool is designed to match the functionality of the

built-in tool in terms of needing a main package to focus on in order to speed the process of

finding the program to analyze within the project. This is part of the tool’s process of finding the

go files in a project. However, in static analysis it could be possible to solve the previous

limitation of the built in tool and be able to analyze programs the built-in tool could not like the

mentioned libraries that do not have a main package. To do this the tool would have to have

further methods that would look for possible Go programs that are not the main package or

called by it. This may cause a kind of clutter for users that do not want or need programs

analyzed that aren’t part of the main package, but it could also give users that do need this

feature options that the dynamic tool could not.

Aside from those improvements, there is a rather obvious improvement that is doubtful to

ever truly be complete. In making a tool such as this, to be more accurate means to better predict

what could happen in the programs analyzed. This is monumentally difficult, because of the

sheer number, diversity, and size of the programs being analyzed. Predicting edge cases that

could occur in those programs that could affect how we report races is especially difficult due to

the magnitude of possible situations. Accounting for all of those situations would be difficult to

accomplish, and if done inefficiently could make the tool unrealistically slow. Speed and

accuracy are a tradeoff ultimately, but that does not mean accuracy is not worth pursuing further.

It only means that such pursuit’s rewards must be weighed against the requisite time cost. All of

this will of course be made easier as more and more programs are used with the tool, because

that will introduce many edge cases as well as allow for a broader array of examples to analyze

and categorize for making more efficient analysis.

23

As the tool is meant to analyze and work with real world programs that are continuously

growing and evolving, the tool must naturally grow and evolve to accommodate the programs

being analyzed. However, there are more ways for the tool to adapt than just to the programs. A

real-world program being used by real people as the tool is meant to be will encounter many new

situations and revelations. These will allow for growth not only from the programs being

analyzed but also for growth in the scope within which the tool can be used as well as how

effective the tool is in doing its job.

24

REFERENCES

[1] J. Regehr, “Race Condition vs. Data Race,” Embedded in Academia, 13-Mar-2011.
[Online]. Available: https://blog.regehr.org/archives/490. [Accessed: 02-Feb-2021].

[2] D. Vyukov and A. Gerrand, “Introducing the Go Race Detector,” The Go Blog, 26-Jun-
2013. [Online]. Available: https://blog.golang.org/race-detector. [Accessed: 25-Jan-
2021].

[3] T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue, GoBench: A Benchmark Suite of Real-
World Go Concurrency Bugs. [Online]. Available:
http://lujie.ac.cn/files/papers/GoBench.pdf. [Accessed: 11-Apr-2021].

[4] Timmyyuan, “GoBench,” GitHub, 10-Dec-2020. [Online]. Available:
https://github.com/timmyyuan/gobench. [Accessed: 11-Apr-2021].

[5] JujuYuki, “Godel2,” GitHub, 20-Apr-2020. [Online]. Available:
https://github.com/JujuYuki/godel2-benchmark. [Accessed: 11-Apr-2021].

