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ABSTRACT

Simulation-based Methods for Investigating the Identifiability of Bayesian Networks with
Cross-sectional Observational Data

Sahil Patel
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Yang Ni
Department of Statistics
Texas A&M University

Bayesian networks are widely adopted to model complex systems by characterizing their

information into conditional independencies of 2 or more system variables. For example, Bayesian

networks have been commonly used for identifying gene regulatory networks and modeling deci-

sion networks in machine learning. While being popular, the structure of a Bayesian network is

usually unknown and has to be inferred from available data in most of the cases.

To date, learning the structure of Bayesian networks is still a very challenging and nuanced

task partly due to the non-identifiability issue of Bayesian networks, especially when the data are

cross-sectional and observational. In this thesis, we are going to use simulation-based approaches

to investigate precisely under what conditions a Bayesian network can be identifiable, and therefore

recoverable, for cross-sectional observational data. We will also explore required assumptions and

overall implications of our work.
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SECTION I

INTRODUCTION AND BACKGROUND

Bayesian Networks

Graphical models are probabilistic models for multivariate random variables whose Markov

properties (i.e., conditional independencies) are characterized by an underlying graph. Graphical

models provide a compact representation of joint distribution and allow for local computations via

Gibbs factorization. In this thesis, we are going to focus on one type of graphical models, namely,

the Bayesian networks which assume the joint distribution of the multivariate random variables

factorizes with respect to a directed acyclic graph (DAG). DAG is a directed graph G = {V,E}

with a set of vertices V = {v1, v2, ...vn} and a set of directed edges E = {e1, e2, ...em} that do not

form directed cycles. That is, starting from any node, one cannot return to itself by following the

direction of the edges. In Bayesian networks, vertices represent random variables and the directed

edges encode the conditional independence. In addition, the directed edges can be potentially in-

terpreted as causal relationships under the following assumptions [1, 2]: (i) causal Markov: the

conditional independence relationships encoded in the DAG hold in the population, (ii) faithful-

ness: the conditional independence relationships encoded in the DAG are the only ones that hold in

the population, and (iii) causal sufficiency: there is no unmeasured con-founder. Without causing

confusions, we will use the terms Bayesian network and DAG interchangeably hereafter.

A probability distribution is said to factorize with respect to a DAG if the joint distribution can

be written as a product of local distributions with each local distribution being the conditional dis-

tribution of each vertex given its parents (vertices pointing towards the given (child) vertex). There

are two immediate implications of such factorization. First, the computation of the jointly distribu-

tion is much simplified because each vertex usually only has a handful number of parent vertices

in a sparse network. Second, factorization implies all Markov properties (i.e., condition indepen-

dence assertions). For instance, each vertex is conditionally independent of its non-descendants
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given it parents. The Markov properties greatly improve the interpretation and extensibility of a

Bayesian network.

Because Bayesian networks provide a straightforward framework to define conditional in-

dependence (lack of edges) as well as causal relationships (directed edges) of a complex multivari-

ate system, they have become very popular in various research areas such as biomedical science,

chemistry, computer science, material engineering, and artificial intelligence. In these areas, re-

searchers can use the compact representation of Bayesian networks to model the complex systems

to then use statistical analysis [3, 4, 5, 6].

Sprinkler Rain Season

Wet− Floor

Figure 1: Example DAG with Practical Elements

An example of a practical DAG is shown in Figure 1 for the causal relationships among

the following variables: Rain, Sprinkler, Season and Wet-Floor. We know that ‘Rain’ and ‘Sprin-

kler’ can make the floor wet. These relationships are signified by the arrows or directed edges

from the vertices ‘Rain’ and ‘Sprinkler’ to the vertex ‘Wet-Floor’. In addition, we also know that

‘Season’ (whether it is a rainy-season or not) will cause ‘Rain’ in expecting rain when the season

permits it, which in turn causes ‘Wet-Floor’. All these relationships are concisely summarized by

the Bayesian network in Figure 1. Given the network structure, we can read off the conditional

independence from the graph, e.g., ‘Wet-Floor’ is independent of ‘season’ given ‘Sprinkler’ and
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‘Rain’. However, in many applications, these causal relationships are unknown especially for large

systems or the task is to find these relationships themselves. What we get to instead observe in

practice are often just the measurements of these variables. The general structure in this problem

is to track statistical analyses on the network using only variable data.

Therefore, the focus of this thesis is to learn the network structure based on observations of

the random variables without assuming any prior knowledge of their causal relationships. Learn-

ing this network structure can ease computations and provide researchers comfort-ability in get-

ting access to greater amount of information. In the example above, these variables may take

Boolean/binary values: 0 or 1, asserting as either existing or not. For instance, ‘Rain’ = 1 or 0

indicates whether it has or has not rained; similar interpretation applies to ‘Sprinkler’,‘Season’,

and ‘Wet-Floor’. In all, the network can provide time-dependent observational data wherein the

variables potentially form a complex joint density function. With multiple realizations of these

variables, one may be able to reverse engineer the network structure.

Depending on the applications, variables represented by the vertices can take more than

two values and they will be modeled with distinct distributions with associated density func-

tions. For example, we will use Bernoulli distribution for binary variables, Poisson distribution

for count/integer variables, Gaussian distribution for continuous variables taking values on the en-

tire real line, and gamma distribution for continuous variables taking values on the positive real

line. In addition to discrete and continuous random variables, we will also consider mixed dis-

tributions such as zero-inflated (ZI) distributions and Censored distributions. With this point of

view, we will use cross-sectional observational variable data to learn the network structure. In

this, we will need to take into account possible network graph structure that the data can take, and

recovering the correct one as the estimated resultant structure.

Markov Equivalence Class

As mentioned earlier, the conditional independence relationships are encoded in the struc-

ture of DAG. However, two distinct DAGs do not necessarily define different conditional indepen-

dence assertions. In fact, DAGs can be grouped into Markov equivalence classes (MECs): within

5



each class, all DAGs represent exactly the same conditional independence structure. Markov equiv-

alent DAGs are those with the same skeleton and v-structures [6]. These equivalence relationships

among DAGs can lead to non-identifiable issue in identifying unique DAGs given an observational

dataset. As we will discuss later, to classify a DAG with a certain distribution as identifiable, we

must show that DAGs within the same MEC have different distribution. For example, suppose

we are given data for two variables and the true data generating mechanism is given by the DAG

1 2 , i.e., vertex 1 is the cause of vertex 2. This DAG is Markov equivalent to 1 2 . To be

able to identify the true data generating graph, we will have to show that (1) the true structure is

different from the other incorrect structure(s) and (2) the true structure has the highest likelihood

compared to the other incorrect structure(s).

MECs are provided in Table 1 [6] for n = {2, 3} nodes and partially for n=4. The undirected

edges represent the existence of an edge between the two nodes, wherein either of the nodes can

be the parent or the child of the other node. Other columns in the table include Markov properties

of each class (“Markov Property"), the number distinct DAGs within each MEC discounting the

effect of labeling (“Number of Graphs"), and the total number of DAGs (“Possible DAGs") which

represents the number of DAG structures that need be accounted for when learning from data. In

our example (Figure 1), the DAG is part of MEC with n = 4 where Node ‘1’ = ‘Sprinkler’, Node

‘2’ = ‘Wet-Floor’, Node ‘3’ = ‘Rain’ and Node ‘4’ = ‘Season’. According to the column “Markov

Property", ‘Sprinkler’ is independent of ‘Rain’ and ‘Season’ and ‘Web-Floor’ is conditional in-

dependent of ‘Season’ given ‘Sprinkler’ and ‘Rain’. Unfortunately, the number of DAGs grows

super-exponentially with respect to the number n of nodes [6, 5, 7]. Therefore, for our experiment,

we will empirically investigate the identifiability properties of DAGs with up to four nodes for

various distributions; but there is no obvious reason for us to question the validity of our results for

networks with more than four nodes.
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Table 1: Markov Equivalence Classes and Graphs

Number of Variables Graph Structure Markov Property Number of Graphs Possible DAGs

2 1 2 1⊥2 1

1 2 (none) 2

3

3 1 2 3 1⊥2⊥3 1

1 2 3 (1, 2)⊥3 2

1 2 3 1⊥3|2 3

1 2 3 1⊥3 1

1

2 3 (none) 6

25

4 1 2 3 4 1⊥2⊥3⊥4 1

1 2 3 4 (1, 2)⊥3⊥4 2

1 2 3 4 (1, 2)⊥(3, 4) 4

1 2 3 4 1⊥3|2 3

(1, 2, 3) ⊥ 4

1 2 3 4 1⊥3 1

(1,2,3) ⊥ 4

1

2 3 4 (1,2,3) ⊥ 4 6

1 2 3 4 1⊥3|2 4

(1,2)⊥ 4|3

1 2 3 4 1⊥(3, 4) 2

2⊥4|1, 3

... ... ...

543
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DAG Learning

DAG learning approaches generally fall into two categories, 1) search-and-score methods

and 2) constraint-based methods. Search-and-score approaches typically involve two parts. In the

first part, the algorithm defines a metric (e.g., the likelihood) for DAGs. In the second part, the

algorithm searches the DAG space to identify the optimal DAG with the highest score. On the other

hand, constraint-based methods iteratively test for conditional independence between variables to

remove non-significant edges and orient edges when possible. Constraint-based approaches are

usually much less computationally straining since one can go through possible edges potentially in

polynomial time when DAGs are sparse, which is generally the case in real-world applications [8].

PC Algorithm

One of most popular algorithms for learning DAG structure (up to the MEC) is the constraint-

based method, Peter and Clark (PC) algorithm [9]. The algorithm starts with a complete undirected

graph. It then iteratively deletes the non-significant edges and possibly orients the undirected edges

according to conditional independence test. The pseudo-code for the PC algorithm [9, 4] can be

found in Algorithm 1. The input for the algorithm is the multivariate data and the output is an

optimal essential graph (the union of all DAGs within a MEC).
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Algorithm 1: PC Algorithm
Input: Vertex Set V

Output: Essential Graph C for V

l = -1; C = Complete Convoluted DAG for V;

do

l = l+1;

do

Select a (new) ordered pair of nodes i, j that are adjacent in C such that |adj(C, i) / {j}| ≥ l

do

Choose (new) k ⊆ adj(C, i) / {j} with |k| = l

if (i and j are conditionally independent given k)

Delete edge i, j;

Denote this new graph by C;

Save k in S(i,j) and S(j,i);

end

while (!(edge i, j is deleted or all k ⊆ adj(C, i) / {j} with |k| = l have been chosen))

while (!(all ordered pairs of adjacent variables i and j such that |adj(C, i) / {j}| ≥ l and

k ⊆ adj(C, i) / {j} with |k| = l have been tested for conditional independence))

while ( for each (!(ordered pair of adjacent nodes i,j: |adj(C, i) / {j}| < l)))

G = C;

for each (pairs of nonadjacent variables i, j with common neighbour k)

if (k /∈ S(i, j))

Replace i–k–j in Gskel by i→ k ← j;

end

end

In the resulting DAG, try to orient as many undirected edges as possible by rules:

R1: Orient j–k into j→k whenever there is an arrow i→j such that i and k are nonadjacent.

R2: Orient i–j into i→j whenever there is a chain i→k→j.

R3: Orient i–j into i→j whenever there are two chains i–k→ j | l and k | i –l→j such that k and l are

nonadjacent.
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Identifiability

The PC algorithm and many other constraint-based learning algorithms only identify the

optimal MEC represented by an essential graph. Moreover, this essential graph can be a shared

representation for multiple network structures Table 1. In other words, these algorithms do not

identify a unique Bayesian network in most of cases; which can potentially provide more rewarding

information about the networks variables.

In order to uniquely identify optimal causal DAGs, we will focus on score-and-learning

approaches which have the potential in differentiating DAGs within the same Markov Equivalence

Class. The possibility of these approaches to actually work and recover the true structure defines

identifiability of that network in question. However, as we will show later, identifiability is non-

trivial and it is the underlying distribution that determines whether we can identify the correct DAG

within the MEC.

First of all, when no distribution assumption is made (e.g., the PC algorithm), DAGs are

non-identifiable. These findings were echoed in many of the existing learning algorithms. Impos-

ing certain distribution assumptions can uniquely identify causal DAGs. However, not all distri-

butions were created equal. For example, in causal DAG with two variables, X and Y, DAG X

−→ Y and DAG X←− Y will have the exactly same likelihood if the distribution is assumed to be

normal and hence they are not identifiable. Interestingly, additional assumptions (e.g., those de-

scribed in [7]) will allow for unique identification. In [7], they assumed a simultaneous equation

model (SEM) with centered-Gaussian noises with equal variances. With this additional assump-

tion, DAGs within the same MEC have distinct likelihoods and the correct structure can be identi-

fied through the distinction. Recently, the work by Park and Raskutti [10] found Bayesian network

Models with Poisson distributions identifiable within the same Markov Equivalence Class. This re-

sult was later extended to the generalized hypergeometric distributed Bayesian networks, adding to

the identifiability classification [11]. In addition, Hoyer et al. [12] and [13] showed that nonlinear

DAGs modeled by nonlinear SEMs and linear SEMs with non-Gaussian errors are identifiable.

Despite these encouraging results, the identifiability properties of many other distributions
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(such as beta and zero-inflated distributions) are still unknown. These distributions find many

important applications in practice such as DNA methylation which takes value between 0 and

1 and scRNA-seq data which are zero-inflated counts. We aim to fill this gap in this thesis by

empirically investigating the identifiability of a broad range of distribution types as to understand

conditions that stimulate identifiablility in Bayesian networks.
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SECTION II

METHOD AND EXPERIMENT

Main Problem Statement

We will look at identifiability of graph structures for DAGs with a wide range of distribution

types. As we have mentioned above, some existing work has empirically or mathematically proved

identifiability (ability to pick the correct and specific graph structure, past learning the MEC) for

some distribution types (e.g. Poisson). However, investigation into identifiability of a broader

range of distribution types still remains lacking. We will empirically address this facet of the

identifiability problem.

We will adopt a simulation-based approach. We will simulate data from some underlying

“true DAG" and then compute the likelihoods of the true DAG and its Markov equivalent DAGs.

If the true DAG always has the highest likelihood, then we say the DAG is identifiable. As we

will see later, when a DAG is non-identifiable (e.g., a Gaussian DAG), all Markov equivalent

DAGs have exactly the same likelihoods. We will first validate this procedure for DAGs with

known theoretical results and then apply it to distributions with no prior identifiability results. In

summary, our focus is on finding which distribution allows for differentiation between true DAG

structure from other DAGs that are part of the same MEC. We will also consider differentiating

true DAG from other DAG structures with the same number of variables which are not necessarily

in the same equivalence class. We will simulate data from all DAGs with n ≤ 4 as provided in

Table 1.

We will investigate identifiability properties for DAGs with various distributions including

discrete (Poisson, Bernoulli, binomial), continuous (Gaussian, beta, gamma), zero-inflated model

(beta, gamma, negative binomial, Poisson), hurdle model (Poisson, negative binomial) and cen-

sored (Poisson) distributions. Each of these distributions finds useful applications in a broad range

of research areas. We will first simulate data based on the DAGs in Table 1. We will then check
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identifiability by computing the likelihood-based score for each DAG. Using these scores, we will

be able to say under which scenario DAGs are identifiable. We now describe the details of the

approaches for data generation and identifiability check.

DAG:
1 2 3

Markov Property:
1⊥3

Adjacency Matrix: 0 0 0
1 0 1
0 0 0


Figure 2: Mathematical Representation of DAG structure

Data Generation

In our data generating algorithm, we will mathematically represent the graph structure by

an adjacency matrix. The adjacency matrix defines which pairs of nodes are connected or discon-

nected in the graph. The adjacency matrix is an n by n square matrix of Boolean values (0 or 1).

The ith row of the adjacency matrix defines the incoming edges of vertex i as 1’s and missing in-

coming edges as 0’s, for i = 1, . . . , n. Note that the diagonal entries are always 0’s as DAGs do not

allow self-loops. These 1’s in the row represent the variable’s parents. An example of representing

a DAG as an adjacency matrix is shown in Figure 2. In the example, variables 1 and 3 do not

have any parents, as such row 1 and 3 are only 0’s. On the other hand, variable 2 has two parents,

namely 1 and 3. Therefore, the entries (2,1) and (3,1) are 1’s. This process is used to define all

DAG structures in the Markov Equivalence Class (MEC).

Given a DAG structure, we will simulate data from different probability distributions which

factorize with respect to the DAG. Using the factorization, we can first generate m realizations of

13



variables that do not have parents from the marginal distributions and then recursively simulate the

values of the child nodes given the values of their parents. We will provide the list of probabilistic

distributions in a later section. Taking Poisson DAGs [10] as an example, we incrementally move

through the variables in the for-loop and for each of them, we define a Poisson regression model

that regresses the current In variable on its parents, from which we will sample for m times. When

the variables do not have parents, they are generated from Poisson distribution.

In general, to find the vertices with no parents, one can rearrange the rows and columns of

the adjacency matrix to be a lower triangular matrix so that the first vertex in this new ordering is

guaranteed to have no parents. This ordering allows the algorithm to first generate the parents be-

fore moving to generate their child variables that require the data from those parents to define their

probability distribution functions. The psuedo-code for our data-generation algorithm is shown in

Algorithm 2.
Algorithm 2: DAG Generation Algorithm for Poisson

Given: Number of variables N, Number of sampling M, Adjacency matrix AN×N

XM×N ←− 0 : DAG Matrix with N variables as columns with M data-points each

RN×N ←− LowerTriangleRep.[A]

for k = 1 : N do
X:,v ←− P(λ = (0.3 +Rk,: × eX:,v)) where v = variable in X for kth row in R

end

Result: Data matrix X

Identifiability Check

We will now attempt to identify this original true DAG structure using only the multivariate

data. Empirically, through this process, we will try to only use observational samples of the vari-

ables to find which variables are related to each-other. In essence, we will check if it is possible to

identify the correct structure from all possible Bayesian network structures with the same number

of variables n. Moreover, this identification of the true structure has to also differentiate between

the possible structures in the same Markov Equivalence Class, going further than PC algorithm.

We know from previous research that this check of identifiability depends on the underly-
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ing distribution assumption of the variables. DAGs are indistinguishable within the same MEC

without additional assumption. Recent work has looked at different types of distributions and

proved some of them as identifiable. For example, while we know that Gaussian distributed DAG

is non-identifiable, recent look at specific types of Gaussian distributions such as those with equal

residual variances by Peters and Buhlmann have shown otherwise [7]. In our work, we will re-

peat this process for other popular distributions as well as repeat some of the already established

distributed DAG types. List and details of our implementations can be found in the next section.

Moreover, We have created a table of these recently discovered as identifiable/non-identifiable as

well as classifications from our work in the results section later.

In general, we start the Identifiability Check sub-part of our work with data from the Data

Generation sub-part as well as the Adjacency matrix of the true structure of the variables. Next, we

add this adjacency matrix into a list of other adjacency matrices that represent possible structures

with the same number of variables (this can be changed to only include those within the same MEC

for actual check of identifiability). Now, we will attempt to fit all the structures by incrementally

going through the list of adjacency matrices. We will iterate through the variables and compute

the log-likelihood (conditional on the parents). More details on this procedure for checking iden-

tifiability can be found in later section [14, 15, 16, 17, 18]. The psuedo-code for our identifiability

check can be found in Algorithm 3.
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Algorithm 3: Identifiablity Algorithm
Given: Multivariate data matrix X, Adjacency matrices A’s

XM×N ←− DAG Matrix with N variables as columns with M data-points each

AN×N ←− Adjacency Matrix representation of the True structure

TN×N×P ←− N×N Adjacency Mat. for all P graphs in a Markov Eq. Class

TN×N×g ←− A

LP×1 ←− 0 : Log Likelihood Values for each Graph in Vector form

for i = 1 : P do

for j = 1 : N do
Li += log ( maxπ Likelihood(π | X:,i ∼ (X:,j × T:,j,i))

end

end

if(Lg > L(all except g)) where Lg is the log-likelihood of the true DAG

return True

else

return False

Result: True or False for whether the specific DAG can be identified

16



Discrete Distributions

Prior work in identifiability of discrete distribution types have shown that Poisson and Bino-

mial distributed DAGs are identifiable and Bernoulli/Binary distributed DAGs are non-identifiable.

We list the discrete distributions under consideration below.

Poisson Distribution

Parameters λ = λ0 + ep1+...pk

Parents(If any) p1, p2, ..., pk

Distribution
(λ)xi e

(λ)

xi!

Binomial Distribution

Parameters v = v0 + ep1+...pk/(1 + ep1+...pk),u = v ∗m

Parents(If any) p1, p2, ..., pk

Distribution
(
m
u

)
vu(1− v)m−u

Bernoulli Distribution

Parameters v = v0 + ep1+...pk/(1 + ep1+...pk),u ∈ {0, 1}

Parents(If any) p1, p2, ..., pk

Distribution vu(1− v)1−u
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Continuous Distributions

Prior work has shown that general Gaussian/Normal distributed DAGs are non-identifiable.

We will explore the identifiability properties of Beta and Gamma distributed DAGs. We list the

continuous distributions under consideration below.

Normal Distribution

Parameters µ = µ0 + p1 + ...pk/k,x

Parents(If any) p1, p2, ..., pk

Distribution
1√
2π
e−(x−µ)

2/2

Beta Distribution

Parameters α = α0 + ep1+...pk/(1 + ep1+...pk) , β = β0 + e2∗(p1+...pk)/(1 + e2∗(p1+...pk))

Parents(If any) p1, p2, ..., pk

Distribution
xα−1(1− x)β−1

Γ(α)Γ(β)

Γ(α + β)

Gamma Distribution

Parameters α = α0 + ep1+...pk/(1 + ep1+...pk) , β = β0 + e2∗(p1+...pk)/(1 + e2∗(p1+...pk))

Parents(If any) p1, p2, ..., pk

Distribution
βα

Γ(α)
xα−1e−βx

Zero-inflated Distributions

No prior work has been developed for identifiability in zero-inflated distributions. Zero-

inflated distributions add additional probability at zero compared to standard distributions. We list
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the zero-inflated distributions under consideration below.

Zero-inflated Poisson Distribution

Parameters λ = λ0 + ep1+...pk , z = λ/(1 + λ)

Parents(If any) p1, p2, ..., pk

Distribution P (X = xi) =

 z + (1− z)PoisDist(xi = 0), xi = 0

(1− z)e−λλxi/xi!, xi = 1, 2... > 0

Zero-inflated Negative Binomial Distribution

Parameters v = v0 + ep1+...pk/(1 + ep1+...pk), λ = λ0 + ep1+...pk , z = λ/(1 + λ), r = v ∗m

Parents(If any) p1, p2, ..., pk

Distribution P (X = xi) =


z + (1− z)NegBinomDist(xi = 0), xi = 0

(1− z)
Γ(xi + 1/v)

Γ(xi)Γ(1/v)

vrxi
1 + vrxi+1/v

, xi > 0

Zero-inflated Beta Distribution

Parameters α = α0 + ep1+...pk/(1 + ep1+...pk) ,

β = β0 + e2∗(p1+...pk)/(1 + e2∗(p1+...pk)), λ = λ0 + ep1+...pk , z = λ/(1 + λ),x

Parents(If any) p1, p2, ..., pk

Distribution P (X = xi) =


z + (1− z)BetaDist(xi = 0), xi = 0

(1− z)
xα−1i (1− xi)β−1

Γ(α)Γ(β)

Γ(α + β)

, xi > 0
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Zero-inflated Gamma Distribution

Parameters α = α0 + ep1+...pk/(1 + ep1+...pk) ,

β = β0 + e2∗(p1+...pk)/(1 + e2∗(p1+...pk)), λ = λ0 + ep1+...pk , z = λ/(1 + λ),x

Parents(If any) p1, p2, ..., pk

Distribution P (X = xi) =


z + (1− z)GammaDist(xi = 0), xi = 0

(1− z)
βα

Γ(α)
xα−1i e−βxi , xi > 0

Hurdle Models

No prior work has been developed for identifiability in hurdle models. Hurdle models are

somewhat similar to zero-inflated distributions in that they have a larger amount of zeros than

possible in general distributions. Essentially, the probability function produces values similar to

the general distribution, but, it must be greater than some value (usually zero) to qualify as being

counted as part of a density. A more applicable approach to this is in using a binary response and

a zero-truncated response. We list the hurdle models under consideration below.

Poisson Hurdle Model

Parameters λ = λ0 + ep1+...pk , h = h0 + ee
−(p1+...pk)

Parents(If any) p1, p2, ..., pk

Distribution P (X = xi) =


h, xi = 0

(1− h)
eλλxi

(1− eλ)xi!
, xi > 0
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Negative Binomial Hurdle Model

Parameters v = v0 + ep1+...pk/(1 + ep1+...pk), r = p ∗m,h = h0 + ee
−(p1+...pk)

Parents(If any) p1, p2, ..., pk

Distribution P (X = xi) =


h, xi = 0

(1− h)
Γ(xi + 1/v)

Γ(xi)Γ(1/v)

vrxi
1 + vrxi+1/v

1

1−NegB(xi = 0)
, xi > 0

Censored Models

No prior work has been developed for identifiability in censored distributions. Censored

models also juggle the occurrences of zeros into the original general form of a distribution. We

define a threshold value wherein all values greater than it will be censored back. One approach is

to equate definition to that of zero-inflated Poisson with right-side direction distinction instead.

We list the censored distributions under consideration below.

Censored Poisson Model

Parameters λ = λ+ ep1+...pk , c = λ/(1 + λ)

Parents(If any) p1, p2, ..., pk

Distribution P (X = xi) =


1− (e−λ

∑c−1
i=0 λ

i/i!), xi ≥ c

eλλxi

(1− eλ)xi!
, xi < c
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SECTION III

RESULTS

Non-identifiable Distributions

The results are summarized in Table 2. We first confirmed that as predicted by the well-

known theories, Gaussian and Bernoulli DAGs are not identifiable: DAGs within the same MEC

have identical likelihood value. These two distributions serve as negative controls which demon-

strated that our simulation-based approach will not falsely flag non-identifiable DAGs as identifi-

able DAGs.

Identifiable Distributions

On the other hand, all the other models were identifiable in our simulation studies. Some

of the distributions (such as Poisson and negative binomial) are supported by the existing theories.

These distributions serve as positive controls which showed that our simulation-based approaches

will not falsely flag identifiable DAGs as non-identifiable DAGs. Confirmed by both positive

controls and negative controls, we are confident in interpreting the findings of identifiability for

distributions with unknown theoretical results.

In our new results, we have found that DAG structures with beta, gamma, zero-inflated

distributions, hurdle models, and censored Poisson are identifiable. Particularly we found the true

data generating DAG always had higher likelihood than all the other DAGs within the same MEC

(also true for DAGs outside the MEC). One key note we see in our results is that most distributions

are in fact identifiable.

In Figure 3, we demonstrate our process for the general Poisson DAGs. We used our

process for Bayesian networks with number of variables ≤ 4, with checking and processing all

possible network structures. In the figure, we first define the graphs with number of variables = 3

with their labels going from G1 to G13 (with G13 being the special v-shape). In the two matrix
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depictions, we show the negative log-likelihood values for fitting the true structure (X-Axis) on all

possible graphs (Y-Axis). The identifiability can be inferred from the fact that the correct model

in each of the columns (located in the diagonals) has the lowest negative log-likelihood (i.e. the

highest likelihood). We also use dark color to indicate large negative log-likelihood values and

hence the lowest value has no grey-scale. A similar story is shown in the heatmap representation

of the matrix. Again, the diagonal and correct identification is inferred.

Again, this classification means that in the Bayesian Network with variable data distributed

as such, it is possible to learn how the edges are oriented. It is possible to know how the variables

are related to each other and therefore be able to use other similar analysis that depend on under-

standing graph structures or even understanding dependencies of variables. Below in Table 2, we

summarize our results as well as show other classifications from other previous works.
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Table of Raw Values in Graph Checking as AIC Values (Which are Derived using Likelihood Function for the Model to the Data)

G1 =
1 2 3

G2 =
1 2 3

G3 =
1 2 3

G4 =
1 2 3

G5 =
1 2 3

G6 =
1 2 3

G7 =

1

2 3

G8 =

1

2 3
G9 =

1

2 3

G10 =

1

2 3
G11 =

1

2 3

G12 =

1

2 3
G13 =

1 2 3

Fit Structure [Y-Axis] vs True Structure [X-Axis]
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13

G1 422.9 512.6 614.1 7E + 7 1E + 7 1035.1 621.1 298.4 9E + 4 8E + 7 958.3 9E + 5 724.0

G2 424.7 503.6 589.2 7E + 5 1E + 7 1000.6 576.9 282.7 9E + 4 8E + 7 859.1 3E + 5 725.7

G3 424.7 505.2 474.0 7E + 5 5E + 6 862.6 433.3 288.1 5791.6 1052.0 844.6 9E + 5 725.9

G4 424.6 505.3 589.9 1373.5 1E + 7 805.2 578.9 284.7 9E + 4 8E + 7 818.0 3E + 5 703.4

G5 424.5 506.8 475.5 7E + 5 3E + 6 825.2 430.7 288.1 5761.3 826.40 703.6 9E + 2 553.6

G6 424.6 506.9 475.4 1636.5 3E + 6 662.3 432.3 290.1 5655.5 1015.8 803.5 9E + 5 703.6

G7 426.5 508.7 474.4 1636.0 5E + 6 667.7 430.3 292.1 5653.8 1014.1 798.8 9E + 5 705.1

G8 426.5 507.1 589.0 1375.1 1E + 7 800.7 580.9 280.7 9E + 4 9E + 7 813.2 3E + 5 704.9

G9 426.5 508.6 477.4 1601.0 3E + 6 667.0 432.3 290.1 763.3 1017.6 745.9 9E + 5 700.1

G10 426.5 508.5 477.4 6E + 5 3E + 6 820.0 434.3 288.1 869.1 824.2 645.9 869.3 550.1

G11 426.5 506.9 575.5 6E + 5 3E + 6 895.1 576.9 282.7 867.2 5E + 6 640.3 875.3 546.6

G12 426.5 507.0 587.9 5E + 5 1E + 7 890.5 578.9 284.7 9E + 4 8E + 7 770.5 732.6 546.7

G13 424.5 505.4 589.6 7E + 5 1E + 7 991.0 576.9 282.7 9E + 4 8E + 7 812.6 913.1 546.1

Values are Gray-scaled: Darker the shading in the column, the larger the value. No Shading (White) = Smallest Value.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13
G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

G13

Heat Map

Figure 3: Illustration of Poisson DAGs with n=3
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Table 2: Identifiability

Distribution Name Unidentifiable Identifiable

Gaussian X

Non-Linear Gaussian X

Non-Parametric Non-Gaussian X

Gaussian with Equal Residual Variances X

Generalized Hypergeometric X

Bernoulli X

Poisson X

Negative Binomial X

Binomial X

Beta ?

Gamma ?

Zero-Inflated Beta ?

Zero-Inflated Gamma ?

Zero-Inflated Negative Binomial ?

Zero-Inflated Poisson ?

Hurdle Poisson ?

Hurdle Negative Binomial ?

Censored Poisson ?

X Prior Work
? Our Contribution
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SECTION IV

CONCLUSION

Conclusion and Future Work

In this work, we have used simulation-based approaches to study the identifiability prop-

erties of various types of Bayesian networks. We mentioned some applications, difficulties and

approaches of solving the problem. We then reviewed one of the approaches, namely the PC Algo-

rithm, and then transitioned into exploring identifiability of specific network graph structures from

MECs, shown in Table 1 [6]. The relatively new problem was previously intractable, however,

recent approach in categorizing based on distribution types have shown otherwise [5, 10, 11, 7, 12,

19, 20]. We extend these works to other popular distributions including ones that are Gamma, Beta,

Zero-inflated Beta, Zero-inflated Gamma, Zero-inflated Negative Binomial, Zero-inflated Poisson,

Hurdle Poisson, Hurdle Negative Binomial, and Censored Poisson, all summarized in Table 2. As

negative and positive controls, we have also shown that our results are consistent with existing

theoretical results.

Our extensive look at identifiability of Bayesian networks with broad range of distributions

suggest Bayesian networks are generally identifiable. With the two exceptions (confirmed by us)

being unrestricted general Gaussian and Bernoulli, we were able to identify the correct graph

structures - and therefore learn the Bayesian network itself - for models with all the different

distribution families.

A natural step forward from our empirical approach is a theoretical investigation of identi-

fiability in Bayesian networks for which no theoretical results are available. Furthermore, we have

considered a small number of variables in our simulations. For Bayesian network with moderate

to large number of variables, exhaustive enumeration of all relevant DAGs (which was done in this

paper) and computing their respective likelihood become infeasible. Therefore, in our future work,

we will design more efficient search-and-score algorithms to explore the DAG space.
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