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Abstract While hydrological science has made great strides forward during the last 50 years with the
advance of computing power and availability of satellite images, much is unknown about the
sustainable development of water for irrigation, domestic use, and livestock consumption for millions of
households in the developing world. Specifically, quantification of shallow underground water
resources for irrigation in highland regions remains challenging. The objective is to better understand
the hydrology of highland watersheds with sloping hillside aquifers. Therefore, we present a
subsurface flow model for hillside aquifers with recharge that varied from day to day. Recharge to the
aquifer was estimated by the Thornthwaite Mather procedure. A characteristic time was identified
for travel time of water flowing from the upper part of the hillside to the river or well. Using the
method of characteristics, we found that the height of shallow groundwater level can be predicted by
determining the total recharge over the characteristic time divided by drainable porosity. We apply the
model to farmer‐dug wells in the Ethiopian highlands using observed rainfall, potential evaporation,
and a fitted travel time. We find that the model performs well with maximum water table heights being
determined by the soil surface and minimum heights by the presence or absence of volcanic dikes
downhill. Our application shows that unless the water is ponded behind a natural or artificial
barrier, hillslope aquifers are unable to provide a continuous source of water during the long, dry
season. This clearly limits any irrigation development in the highlands from shallow
sloping groundwater.

Plain Language Summary The population in the Ethiopian highlands, similar to other
developing countries, is rapidly increasing. In order to have enough food during the year, most families
grow their food crops during the rainy season. More food can be grown by irrigation during the dry season.
We mathematically tested and observed data of eight wells as to whether shallow aquifers on the sloping
lands can store sufficient water during the rainy season so it can be used for irrigation after the rains have
stopped. We found that groundwater on sloping soils is only available during the whole year when
volcanic‐derived subsurface barriers prevent flow downslope.

1. Introduction

Leonardo da Vinci claimed five centuries ago that more was known about the celestial bodies than soils
underfoot while little was known about water that was the driving force of all nature (Pfister et al., 2009).
In many ways, that is still true today. Despite recent advances in large‐scale groundwater assessments
(e.g. Frappart & Ramillien, 2018, Tapley et al., 2004), the sustainable exploitation of local‐scale phreatic
underground water resources (i.e., sloping aquifers) in terrains other than plains and deltas is still understu-
died. These aquifers are becoming increasingly important in developing countries because the population
has grown rapidly leading to deforestation, smaller landholdings, and food shortages. One of the ways to
increase production is to increase the irrigation from aquifers during the dry phase and thereby provide a
way to escape the poverty trap (Burney et al., 2013; Haider et al., 2018).
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The lack of properly calibrated analytical solutions and models for hillslope aquifer makes it difficult to rea-
lize the potential of these aquifers for small‐scale irrigation. The hydraulic theory of sloping hillslope aqui-
fers started with the formulations of Boussinesq (1877). Since then, many analytical and numerical solutions
of the Boussinesq equation have been found (Bansal, 2016; Beven, 1981; Brutsaert, 1994; Parlange et al.,
1981, 2000; Sanford et al., 1993; Stagnitti et al., 2004; Steenhuis et al., 1999). These analytical solutions to
Boussinesq's equation are very useful to understanding the dynamics of subsurface flow processes along a
hillslope (Troch et al., 2002). Only a few implementations (e.g., Kraijenhoff van de Leur, 1958) have
considered the effect of a variable recharge pattern. Hillslope response to rainfall remains one of the central
problems of catchment hydrology (Troch et al., 2003). Dralle et al. (2014) derived and used a new analytical
technique to solve the hillslope Boussinesq's equation that analyzed the impact of the heterogeneity in
recharge on water table dynamics and hillslope discharge prediction. Their results indicated that spatial dis-
tribution of recharge from a rainstorm is hydrologically significant on long, steep hillslopes. On short and
small slopes, outflow patterns are only marginally affected by recharge distribution.

Most of the theories for hillslope aquifers involve predicting base and interflow at the base of the hillslope.
Very few theories have been tested for predicting groundwater table levels on hillslopes (Rupp et al., 2004,
2009; Troch et al., 2013). The limitation of using only outflow data became apparent when subsurface flow
models of varying complexity (Basha & Maalouf, 2005; Boll et al., 2015; Sloan & Moore, 1984; Steenhuis
et al., 1999; Walker et al., 2015) fit equally well the outflow of the Coweeta hillslope published by Hewlett
and Hibbert (1963). For an assessment of sustainable usage of groundwater supply for drinking and irriga-
tion supply, accurate temporal water table heights matter. Therefore, models should be tested for whether
they accurately can predict groundwater tables throughout the catchment.

Since irrigation is one of a few ways to escape the poverty trap in developing countries, this paper examines
whether it is possible to store the water from the rain phase in the perched hillslope aquifer so that it can be
used in the long dry phase. The objective of this paper is therefore to develop a parsimonious model to pre-
dict the spatial and temporal groundwater table heights for hand‐dug wells located on hillslopes. We tested
the model for the semihumid northwestern Ethiopian highlands in the Debre Mawi watershed with a dis-
tinct wet and dry period and variable recharge.

2. Theory

The theory is developed for unconfined shallow hillside aquifers in the tropical highlands with annual rain-
fall over 1,000 mm/year. These highlands have a monsoon climate with 4 months of rain and the remainder
8 months being mostly dry. The lands that are used for agriculture on the Ethiopian highlands hillsides are
moderately sloping in the range of 3° to 16° (Akale et al., 2018) over distances of several hundred meters to
kilometers (Figure 1b). The valley bottoms, with slopes from 1% to 3%, become saturated during the rain
phase. Soils in the Ethiopian highlands are volcanic, which generally have a high matrix conductivity

Figure 1. Shallow hillslope aquifer: (a) schematic diagram of a hillslope with fluxes considered in the water balance for
soil profiles with shallow sloping aquifers; ea is the actual evaporation; p is precipitation; r is recharge; and qh is the
interflow in the hillslope aquifer. Note that this is not drawn to scale. In reality, the slope is decreasing at the downhill side.
(b) Actual hillslope in Ethiopian highlands in the Debre Mawi watershed.
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(Jimenez et al., 2006) that is enhanced by self‐organization of subsurface flow through macropores and
through subsurface erosion (Mendoza & Steenhuis, 2002; Nieber & Sidle, 2010; Wilson et al., 2017). This
can result in pipes that have been observed frequently in the Ethiopian highlands. Due to high conductivity
of the volcanic soils, infiltration rates tend to be greater than the rainfall intensity in the Ethiopian highlands
(Bayabil et al., 2010; Guzman, Tilahun, Dagnew, Zegeye, et al., 2017, Tilahun et al., 2015) and elsewhere
(Buytaert et al., 2005). Water tables are up to 15 m deep.

When surface runoff by infiltration excess can be neglected, the mass balance for a hillslope aquifer can be
written as (Figure 1a)

∂S
∂t

¼ p−ea−qu (1)

where Sis the storage of water per unit area of hillside above the bedrock (L), p is the precipitation rate (L/T),
ea is the actual evaporation rate (L/T), and qu is the base/interflow at the outlet averaged over the hillslope
aquifer (L/T). When the soil is sufficiently deep, separate mass balances can be written for the root zone and
the perched groundwater table.

2.1. Mass Balance for the Root Zone

The water balance for the storage, W,in root zone (L) is

dW
dt

¼ p−ea−r (2)

where r is the percolation from the root zone (L/T).

The actual evaporation, ea, and the percolation, r, can be calculated with the Thornthwaite Mather pro-
cedure (Thornthwaite & Mather, 1955; Steenhuis & Van der Molen, 1986). This method assumes that
the actual evaporation decreases linearly with the available water in the soils (Lyra et al., 2016)
from potential rate at field capacity to 0 at wilting point. Any water above field capacity percolates
out of the root zone. Note that we follow here the convention in the equations that the rates are given
in lower case. The daily values are given with capital letters and can be obtained by integrating the
rates over the day. Formally, the Thornthwaite Mather procedure can be written for a daily time step as

P t½ �≥Ep t½ � Ea t½ � ¼ Ep t½ � (3a)

P t½ �<Ep t½ � Ea t½ � ¼ P t½ � þW t−Δt½ �
Δt

1−exp
ðP t½ �−Ep t½ �

Wfc

� �� �
(3b)

where P[t] is the precipitation (L/T) on day t (T), Ep[t]is the potential evaporation (L/T) on day t, Ea[t] is the
actual evaporation on day t,W[t−Δt] is the available water in the root zone (L) on the previous day, andWfc

is the amount of water in root zone between field capacity and wilting point (L). The square brackets indicate
the independent variable. The potential evaporation, Ep, was estimated using the Penman‐Monteith method
(Allen et al., 1998).

The available soil moisture content in the root zone, W[t], is either equal to the maximum amount of water
that can be stored at field capacity above wilting point in the root zone, Wfc, when the sum of rain and the
previous moisture content is greater than field capacity, or otherwise it is simply the sum of the fluxes and
the previous day's moisture content. Formally this can be written as

W t½ � ¼ min W t−Δt½ � þ P t½ �−Ea t½ �ð ÞΔtð Þ;Wfc
� �

(4a)

The excess above field capacity becomes the recharge, that is,

R t½ � ¼ max W t−Δt½ � þ P t½ �−Ea t½ �ð ÞΔt−Wfc
� �

; 0
� �

(4b)

where R[t] is the excess rain water that percolates daily downward on day t andW[t] is related to the moist-
ure content asW[t] = d(θ− θwp) where θ is the averagemoisture content of the root zone, θwp is the moisture
content at wilting point, and d is the rooting depth.
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2.2. Mass Balance for Hillslope Aquifer

The mass balance per unit area for a hillslope aquifer with a height h and infinite width can be written as

μ
∂h
∂t

¼ −
∂qh
∂x

þ r (5)

where h is the height of the water table above the bedrock (L), t is the time, x is length coordinate along the
hillside with the origin at the groundwater divide (L), μ is the drainable porosity (L3/L3), qh is the flow in the
aquifer per unit width (L2/T), and r is the recharge rate as a function of time (L/T). Inherently, it is assumed
that in the mass balance in equation (5), the capillary effects can be neglected (Döll & Fiedler, 2008; Kong
et al., 2013; Pauwels et al., 2002).

The lateral flux per unit width, qh, in the aquifer according the Boussinesq's (1877) equation is

qh ¼ h Kssinα−h Kscosα
∂h
∂x

(6)

where Ks is the saturated hydraulic conductivity and α is the angle of the bedrock. For convenience, the slope
of the bedrock is often equated with the slope of the hill.

Combining equations (5) and (6) gives

μ
∂h
∂t

¼ −
∂
∂x

h Kssinαð Þ þ ∂
∂x

h Kscos α
∂h
∂x

� �
þ r (7)

Solutions to equation (7) can be found in the literature for a variety of initial and boundary conditions. In all
cases, the uphill boundary is the groundwater divide with a no‐flow condition. For the downhill boundary at
time, t = 0, the water table is dropped over some distance. Lastly, the initial condition consists of a water
table of uniform height above the bedrock (i.e., a rectangle). The numerous analytical solutions to this pro-
blem are summarized in Rupp and Selker (2006). The rectangular initial form of the water table is not very
realistic according to Van de Giesen et al. (2005). A water table configuration other than the rectangular
shape for a hillslope aquifer is given by Steenhuis et al. (1999). They assume as a consequence of a constant
rainfall rate an initial water table that is a triangular shape with zero height at the groundwater divide to a
defined constant height at the outlet. The drainage from the hillside is predicted after the steady state rain
stops and evaporation is prevented. For these conditions Steenhuis et al. (1999) show that not including
the diffusivity term will violate the water table condition only close to the outlet for long times. The diffusiv-
ity term has little effect at short times and for most of the hillslope at longer times. This is consistent with
other findings (Beven, 1981; Daly & Porporato, 2004; Dralle et al., 2014) that for long hillslopes with both
relatively high conductivity and slope, the convective term dominates the diffusivity term.

The water table configuration for hillside aquifers in the highlands (Figure 1) is similar to those in Steenhuis
et al. (1999) with one difference. The height of the water table at the downslope boundary is not constant but
varies with the flux. The aquifer reaches the surface when the profile cannot transmit the subsurface dis-
charge from the area above and some of the subsurface flow then becomes surface runoff. As a result, the
saturated area expands for wetter conditions and contracts during dry periods. Although the exact shape
of the water table is not investigated here, it is obvious that the second‐order term in equation (7) becomes
even less significant in determining the height of the water table.

Without the second‐order term, equation (7) can be written as

μ
∂h
∂t

¼ −
∂
∂x

h Kssinαð Þ þ r (8)

This is the form of the equation used by Henderson and Wooding (1964) and employed by Beven (1981) in
his kinematic wave model, tested by Sloan and Moore (1984) against the outflow of the Coweeta hillslope
experiment, applied by Daly and Porporato (2004) for finding a solution of a recharge mound on a hillslope,
and used by Steenhuis et al. (1988) in deriving a simple hillside model. Equation (8) has also been used to
calculate the groundwater flow in models such as TOP model (Beven & Kirkby, 1979), THALES (Grayson
et al., 1992), Soil Water Assessment Tool (Steenhuis et al., 2019) and the Parameter Efficient Distributed
model (Tilahun et al., 2013).
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Equation (8) can be solved for the hillslope aquifer water table with the method of characteristics. This
method avoids the problem with the point of stagnation at the top of the aquifer as identified by Stagnitti
et al. (2004). Using this method, the water table height, h[x,t], as a function of x along the hillside and time,
can be written in integral form as (details are given in section A1)

h x; t½ � ¼ 1
μ
∫
t

t−x
v
r t½ �dt for t≥0 (9)

with the velocity of the drying front, v, expressed as

v ¼ Kssinα
μ

(10)

and r[t] = 0 when t< 0. Note that in equation (9) xv is the travel time tx from the groundwater divide to a point
x downhill

tx ¼ x
v

(11)

Thus, equation (9) shows that after a pulse, if water is added, a drying front develops that starts at the
groundwater divide (supporting information Figure S1) and moves downhill with a velocity, v. Since
capillary effects are ignored, the moisture content just above the water table and behind the drying front
is (θs − μ) where θs is the saturated moisture content. Note that the conductivity in the “drained soil” is
negligible and therefore water in the unsaturated soil is stationary with regard to lateral
flow (Figure S1).
2.2.1. Multiple Recharge Events
Only daily rainfall records are available in developing countries. Using the Thornthwaite Mather procedure,
daily recharge, Ri, values are calculated. Thus, r[t] in equation (9) is a discrete set of recharge amounts, and
the integral is replaced by summation. Hence, we find that for daily recharge values with daily time steps, the
water table height in equation (9) on Day t at x can be written as (Figure 2)

h x; t½ � ¼ 1
μ

∑
i¼t

i¼t−tx
Ri (12)

where t is the day that the water table height at x is calculated and tx is the travel time of the drying front in
days from the divide to x. Both t and tx are expressed in days and therefore are integer values. Each day has a
recharge amount, Ri. The rounding off to days is warranted because the exact time of rainfall that the

Figure 2. Illustration of water table height just after the water table was recharged on Day 210 for the upper 50 m of the
soil profile. The velocity of the drying front is 10 m/day. Travel time from the top to the bottom of the slope is 5 days;
each bar represents a daily recharge event R[t]; the height at the bottom of the hill, 50 m from the top on Day 210, is
h[x = 50, t = 210].
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recharge reaches the shallow groundwater is not known. When needed, the solution for partial days and
noninteger travel times can be found with equation (9) rather easily.

Finally, the water table height has an upper and lower limit. The upper limit is the soil surface. The lower
limit is determined by volcanic dikes, artificial subsurface barriers, or a static groundwater level in the well,
hmin[x], to be added to the earlier predicted height. With these two additions, the height of the sloping aqui-
fer calculated in equation (12) can be written as

h x; t½ � ¼ min hmin x½ � þ ∑
t

i¼t−tx

Ri

μ

 !
;D x½ �

" #
(13)

where D[x] is the height of the soil surface above the bedrock and at locations where wells are installed. D[x]
is equal to the depth of the well from the surface. Although not tested in the manuscript, we can show that
flux per unit area is equal to the average recharge over tx. The details are given in the section A2.

3. Materials and Methods
3.1. Description of the Watershed

The theory for the water table height was tested in the Debre Mawi watershed in the head waters of the Blue
Nile in Ethiopia. The DebreMawi watershed is situated about 30 km south of Lake Tana (between 11°20′13″
and 11°21′58″N and 37°24′07″ and 37°25′55″E). The watershed's total area is 716 ha, and the elevation
ranges between 1,950 and 2,309 m. The watershed is characterized as mountainous, highly rugged and dis-
sected topography with steep slopes (Guzman et al., 2013). Slopes vary from 8% to 30%. The maximum day-
time temperature of 26°C occurs in March and April with the minimum temperature of 8°C in November
and December (Dagnew et al., 2015). The watershed has a unimodal rainfall regime with an average annual
rainfall of 1,238 mm/year (Zegeye et al., 2010). June, July, August, and September receive around 80% of the
annual rainfall. Potential evapotranspiration is 2–3 mm/day in the rain phase and 4–5 mm/day during the
dry phase. Seventy percent of the watershed area is cultivated land. The remaining area is brush on the steep
lands and grasslands in the periodically saturated areas in valley bottoms and areas above volcanic dikes
(Amare et al., 2014).

Figure 3. Location of hand‐dug wells monitored during the rainy season in 2016 and the dry season in 2017 in the Debre
Mawi watershed (W1–W8 represent locations of wells) and location of rain gauges that were used for daily rainfall depth
monitoring from May 2016 to December 2017 (G1–G3 represent locations of rain gauges).
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The watershed is underlain by shallow, highly weathered, and fractured basalt. The fractures are highly
interconnected with limited clay infillings but at some locations are blocked by lava dikes. The main soil
types in the watershed include vertic nitosols (locally known as Silehana) located at themajor midslope posi-
tions. It is reddish brown and commonly used for growing tef. Nitosol soils (locally, Dewel) in the upper part
of the watershed are deep, well‐drained productive red clay loams. Finally, vertisols (locally, Walka) cover
the major lower slope area in the watershed and are partially saturated during the middle and end of the
rain phase.

In 2015, during the dry season, in order to counteract water scarcity, farmers, mainly on their own initiative,
began installing hand‐dug wells in locations with acacia trees with the intent to provide water for domestic
use, irrigation of small plots of vegetables, and fattening calves for income generation.

3.2. Data Collection
3.2.1. Climatic Data
From May 2016 to December 2017, daily rainfall depth was recorded using one automatic tipping bucket
rain gauge and three manually read rain gauges (Figure 3). The automatic rain gauge and one of the three
manual rain gauges were installed at G1, while the other two manual rain gauges were installed at G2 and
G3 (Figure 3). Potential evaporation was calculated with the Penman‐Monteith method using data collected
at the National Meteorological station at Bahir Dar, located 30 km north of the watershed.

Figure 4. Precipitation and water table depth from the soil surfaces for the eight hand‐dug wells in the Debre Mawi
watershed in 2016 and 2017.

Table 1
Dimensions and Related Descriptions of Wells in the Debre Mawi Watershed

Well ID Depth (cm) Minimum water level (cm) Monitoring perioda Remarks based on field observation

W1 1,570 262 7/6/2016 to 11/15/2016 Water table reduces rapidly after rain phase
W2 1,100 42 7/6/2016 to 3/25/2017 The site dominated by rocky outcrop soil
W3 1,170 41 7/6/2016 to 4/26/2017 Similar to W2, but the soil is less rocky
W4 1,050 450 7/6/2016 to 10/31/2016 Farmer stopped monitoring before the water level reached the bottom of the

well
W5 500 148 7/19/2016 to 7/26/2017 Perennial well although water amount is minimal during dry season
W6 233 25 7/19/2016 to 12/13/

2016
Perennial, potentially good water supply. Acacia trees nearby. Depth reduced
from 11 to 2.3 m due to caving in of well

W7 920 500 7/19/2016 to 4/26/2017 Perennial, protected well with acacia trees in its immediate proximity
W8 710 62 7/19/2016 to 5/8/2017 Perennial, site looks rocky, and has green grass during dry season. Site is close

to acacia trees

aDates are formatted as month/date/year.
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3.2.2. Groundwater Table Measurements
Groundwater table heights weremeasured in eight hand‐dugwells distrib-
uted over the catchment (Figures 3 and 4). From July 2016 to May 2017,
daily water table heights of wells were determined by averaging two mea-
surements taken each morning (8:00 a.m.) and evening (6:00 p.m.). Water
levels in wells were recorded by the farmers who own them.
Measurements were stopped at the time the water levels became too low
to fetch water. In two cases, monitoring was stopped prematurely: Well
W6 collapsed, and the owner of W4 stopped monitoring (Table 1 and
Figure 4).

3.3. Prediction of the Groundwater Level

The prediction of the water level is based on equation (14) where the
recharge was calculated using the Thornthwaite Mather procedure. In
addition, five physical parameters were needed: maximum available
water in the root zone, Wfc (in equations (3) and (4)); drainable porosity,
μ; minimum water level in the well, hmin; the depth of the well, D[x];
and the maximum travel time, tx. The values of Wfc and μ are considered
uniform across the watershed. Based on initial calibration, a value of μ =
0.049 was selected. This is smaller than the value of 0.20 assumed by
Guzman, Tilahun, Dagnew, Zimale, et al. (2017) for the more porous sur-
face soil in Debre Mawi. The maximum available water in the root zone
was set to 30 mm based on Tilahun et al. (2013). The minimum water
level, hmin, and the well depth, D[x], were measured for each well
(Table 1). In cases where the water table intersects the surface (i.e., water
is seeping out of the hillside), the water table was set equal to the surface.
The flow of water in Wells W5 to W8 in the southeastern part of the
watershed were blocked by volcanic dykes and were perennial. Thus,
the only parameter that was fit for each well independently was the travel
time, tx. Finally, we fit a travel time.

4. Results and Discussion

In this section, we present first the observed water table depths.
Subsequently, we predict the water level above the bedrock based on
equation (13) using the recharge calculated with equations (3) and (4).

4.1. Observed Water Table Depths

All wells are located near acacia trees, and most have rocks at the sur-
face (see Figure S3). The water table depths in the wells are shown in
Figure 4. On 6 July 2016, water level measurements started for Wells
W1–W4 in the northwestern part of the watershed (Figure 4). Water
levels were still increasing at that time. On 19 July 2016, water level

observations commenced for Wells W5–W8 in the southeast. The water levels for three of the wells
(W5, W7, and W8) were within 50 cm of the soil surface at times and remained near the surface during
the entire rain phase and first part of the dry phase (Figure 4). Well W6 was 2 m deep on 19 July and
still rising. This well collapsed during the rain phase. The water levels in all the wells were at their
highest at the end of July or the beginning of August. Water levels in wells W1, W2, and W3 were near
the bottom around the end of 2016 (Figures 4 and 5). Observation of Well W4 ceased before the water
level reached the bottom of the well. The observed water levels in Well W3 after December fluctuated
by 3 m which might be due to taking water out for irrigation. Well W5 had only a limited supply dur-
ing the dry phase, while W7 and W8 had abundant supplies. These two wells were in an area with
volcanic outcrops.

Figure 5. Observed and predicted water table heights above the bedrock of
the eight monitored wells in the Debre Mawi watershed: (a) Wells W1 and
W6; (b) Wells W2 and W3; (c) Wells W4 and W8; (d) Wells W5 and W7.

10.1029/2019WR025050Water Resources Research

ALEMIE ET AL. 11,095



4.2. Predicted Water Table Depths
4.2.1. Simulating the Water Levels in Wells
The first step in predicting the water height is calculating the recharge to
the groundwater with the Thornthwaite Mather procedure (equations (2)
and (3) and Figure S2). The maximumwater content available to the plant
in the root zone was 30 mm. We assumed that the percolation would
arrive at the water table on the same day and no water would be needed
for wetting up the soil profile. As seen in Figure 5, this caused the model
prediction to deviate from the observed values in the beginning of the
simulation period.
4.2.2. Predicting Water Hheight Above Bedrock
The simulated water height in the wells above the bedrock are shown in
Figure 5. The input data, the fitted travel time values, and well depth,
together with the R2, are given in Table 2. For four of the eight wells
(W4,W5,W7, andW8), water table heights were restrained by the soil sur-

face, while for the four remaining wells, water levels were not affected by the soil surface. For the four wells
in the southeastern part of the watershed (W5 toW8), a minimumwater level was needed. In general, a good
fit was obtained with R2 values over 80% for six of the eight wells (Table 2 and Figure 5). Although the trend
was predicted correctly, two wells, W4 (poor data collection) and W6 (well collapsed) had a poor R2.

In the beginning of the rain phase, water levels in three of the wells (W3, W4, and W6) were overestimated
likely because the model assumed that all the water percolating from the root zone arrived at the ground-
water as recharge. However, in the beginning of the rainy season, some of this water was used to wet the soil
profile. Hence, the water levels were overestimated in the beginning. It is likely that this was the case in the
other wells as well, but as measurements started sometime after the first rains and the water levels were
already at the surface, effects of overprediction were minimal.

It is often assumed by hydrologists in watershed simulations that the groundwater and the watershed divide
coincide. In this manuscript, the travel time from the divide was fitted and calculated. As demonstrated by
W8, the divide did not coincide for the Debre Mawi watershed. The fitted travel time was 130 days (Table 2),
while, as shown in Figure 3, Well W8 is located nearly on the surface watershed divide. It is very likely that
the subsurface flow path follows the divide just south of the watershed boundary (Figure 3).

In the beginning of the rain phase, the model did not fit the well data satisfactorily because the linearization
of the Boussinesq's equation introduced errors at that stage. After 300 or 400mm of cumulative rainfall at the
end of the dry season, most rainfall in excess of potential evaporation becomes recharge, and the recharge
predictions become more robust (Liu et al., 2008; Ochoa‐Tocachi et al., 2018). More detailed subsurface data
would only partly aid in simulating the wet‐up period accurately.

It is customary to compare the results with the findings in the literature. Hillslope models are mainly vali-
dated with discharge data. Recent testing shows that the daily interflow by our model is predicted well by
averaging the recharge over the subsurface travel time as detailed in section A3. Comparison with model
results are rare in the literature. Rupp et al. (2009) fitted a slightly more complex solution to the
Boussinesq's equation to well data, and the fit was equally good for the solutions of Rupp and coworkers
and presented here.

In summary, the hillslope model developed is simple: Water table height and recharge are determined by
adding or averaging, respectively, the excess rainfall over a fixed period previous to the day of observation.
More complex approaches based on the Richards' equation are available, but as Beven (1981), Grayson
et al. (1992), and Mirus et al. (2011) all note, in actual landscapes, many of the advantages of the complex
solutions are annulled by the ambiguity of the input parameter values, the complexity of the landscape,
and the heterogeneity of subsurface flow parameters.

5. Conclusions

This paper developed a model for predicting groundwater table heights on hillsides to examine whether it is
possible to store water from the rain phase in a perched hillslope aquifer so that it can be used in the dry phase

Table 2
Summary of Hand‐Dug Well Simulations

Well
ID

Well
depth (m)

Travel time tx
(days)

Regression
coefficient (R2)

Slope
regression

W1 15.7 110 0.84 1.00
W2 11.0 75 0.94 1.00
W3 11.7 55 0.91 0.96
W4 10.5 47 0.29 1.02
W5 5.0 75 0.97 1.01
W6 2.3 16 0.46 1.17
W7 9.2 103 0.96 1.02
W8 7.1 130 0.94 1.00

Note. Travel time, tx, values were obtained such that observed and pre-
dicted values agreed best. Regression coefficient and slope are obtained
by regressing observed versus predicted values.
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for irrigation to increase agricultural production. The groundwater table was predicted as the quotient of the
sum of the recharge over the travel time from the divide to the well and the drainable porosity. Aminimumof
input data was needed consisting of the well characteristics, drainable porosity, precipitation, and potential
evaporation. The predicted and the observed water table data fit well. The travel time of the groundwater was
in the order of 3 to 4 months. This means that the wells will run out of water after this relatively short period
unless volcanic dikes downstream keep the water at aminimum level. Finding the travel timemight not be as
simple for hydrologists as envisioned in section 2 since in the volcanic landscape, the surface and subsurface
watershed boundaries do not coincide due to the presence of faults conducting water over long distances.
Geological surveys are required to find travel times a priori.

Future research should examine closely the wetting of the watershed after the dry phase and its effect on the
recharge to the water table. In addition, the theory should be tested in the future on its ability to predict both
the stream discharge and the piezometer data from watersheds where both are available. Finally, the volca-
nic landscape is highly complex and variable, and therefore the relationship of the effective parameters and
the underlying geological formations should be examined.

Appendix A: Solving for the Flux andWater Table Height for a Hillslope Aquifer
Using Method of Characteristics

A.1. Finding Solutions With the Method of Characteristics for Any
Rainfall Function

Consider the solution of equation (8) with the method of characteristics for a recharge rate, r[t]

μ
∂h
∂t

¼ −Kssinα
∂h
∂x

þ r (A1)

The initial condition is that h = 0 for all x at time t = 0 and the boundary condition is that h = 0 at x = 0 for
all times.

Using the method of characteristics, equation (A1) can be written as

dt
μ
¼ dx

Kssinα
¼ dh

r
(A2)

Integrating the first two terms gives

x ¼ vt þ x0 (A3)

where x0 is an integration constant and

v ¼ Kssinα
μ

(A4)

Integrating the first and last term in equation (A2) results in

h ¼ ∫
t

0r t½ �dt
μ

þ h0 (A5)

where h0 is an integration constant. To find the integration constant, we write h0 as a function of x0, or

μh ¼ ∫
t

0r t½ �dt þ μh0 x−vt½ � (A6)

Using the initial condition for t = 0, h = 0 for all x > 0 in equation (A6) indicates that h0[x] = 0. Thus,
h0[x − vt] in equation (A6) must be 0 for x − vt > 0; that is,
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h0 x−vt½ � ¼ 0 if x−vt>0 (A7)

Using the boundary condition that when x = 0, h = 0, we can write equation (A6) as

μh0 −vt½ � ¼ −∫
t

0r t½ �dt (A8)

Consequently, in equation (A8) for any y < 0,

μh0 y½ � ¼ −∫
−
y
v

0 r y½ �dy (A9)

If we take y = x − vt, equation (A9) can be written as

h0 x−vt½ � ¼ −∫
−x−tv

v

0 r t½ �dt
μ

if x−vt<0; (A10)

Substituting h0 = 0 from equation (A7) in equation (A5) results in

h ¼ ∫
t

0r t½ �dt
μ

if x−vt>0; (A11)

and using equation (A10) in equation (A5) gives

h x; t½ � ¼ 1
μ

∫
t

0r t½ �dt− H t−
x
v

h i� �
∫
t−x

v

0 r t½ �dt
� �

(A12)

where the Heavyside function, H, is defined as H t− x
v

� 	 ¼ 0 when t− x
v

� �
<0 and H t− x

v

� 	 ¼ 1 when t− x
v

� �
>0

Equation (A12) can be written in a compact form as

h x; t½ � ¼ 1
μ
∫
t

t−x
v
r t½ �dt (A13)

where r t½ � ¼ 0 when t<0.

Note that in equation (A13), xv is the travel time, tx, from the groundwater divide to a point, x, downhill. Thus,

equation (A13) shows that the water table height at a point, x, and time, t, can be found by the total rainfall in
the prior tx days divided by the drainable porosity where tx is the travel time of drying front from the divide to
x (as indicated above).

A.2. Equations for Interflow on a Hillslope

The flux per unit width, qh[x,t], at x and time, t, can be obtained as follows

qh x; t½ � ¼ vhμ (A14)

Then by employing equations (A13) and (A15)

qh x; t½ � ¼ v ∫
t

t−x
v
r t½ �dt (A15)

Substituting v ¼ x
tx
in equation (A16), we find that

qh x; t½ � ¼ x ∫
t

t−tx

r t½ �dt
tx

(A17)

The flux per unit width at x is, thus, equal to the average recharge over the travel time from the divide to x

(e.g., ∫
t

t−tx

r t½ �
tx

dt) multiplied by the distance to the divide.
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Rewriting equation (A17) for daily values of the recharge, Ri

qh x; t½ � ¼ x ∑
i¼t

i¼t−tx

Ri

tx
(A18)
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