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ARTICLE INFO ABSTRACT

Land Use Land Cover (LULC) change significantly affects hydrological processes. Several studies attempted to
understand the effect of LULC change on biophysical processes; however, limited studies accounted dynamic
nature of land use change. In this study, Soil and Water Assessment Tool (SWAT 2012) hydrological model and
statistical analysis were applied to assess the impacts of land use change on hydrological responses such as
surface runoff, evapotranspiration, and peak flow in Gummara watershed, Ethiopia. Moreover, the effects of
static and dynamic land use data application on the SWAT model performance were evaluated. Two model
setups, Static Land Use (SLU) and Dynamic Land Use (DLU), were studied to investigate the effects of accounting
dynamic land use on hydrological responses. Both SLU and DLU model setups used the same meteorological, soil,
and DEM data, but different land use. The SLU setup used the 1985 land use layer, whereas the DLU setup used
1985, 1995, 2005, and 2015 land use data. The calibration (validation) results showed that the model sa-
tisfactorily predicts temporal variation and peak streamflow with Nash Sutcliffe Efficiency (NSE) of 0.75 (0.71)
and 0.73 (0.71) in the DLU and SLU setups, respectively. However, the DLU model setup simulated the detailed
biophysical processes better during the calibration period. Both model setups equally predicted daily streamflow
during the validation period. Better performance was obtained while applying the DLU model setup because of
improved representation of the dynamic watershed characteristics such as curve number (CN2), overland
Manning's (OV_N), and canopy storage (CANMX). Expansion of agricultural land use by 11.1% and the reduction
of forest cover by 2.3% during the period from 1985 to 2015 increased the average annual surface runoff and
peak flow by 11.6 mm and 2.4 m®/s, respectively and decreased the evapotranspiration by 5.3 mm. On the other
hand, expansion of shrubland by 1% decreased the surface runoff by 1.2mm and increased the evapo-
transpiration by 1.1 mm. The results showed that accounting DLU into the SWAT model simulation leads to a
more realistic representation of temporal land use changes, thereby improving the accuracy of temporal and
spatial hydrological processes estimation.
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1. Introduction lead to a significant change in groundwater recharge and base flow
(Budiyanto et al., 2015), flood frequency and interval (Alexakis et al.,
2014), peak runoff (Ahn et al., 2014), and total suspended sediment and

nutrient concentration (Hwang et al., 2016). Moreover, the land use

Land Use Land Cover (LULC) change is one of the major global
environmental challenges to humanity. It significantly affected hydro-

logical response (Wagner et al., 2016; Su et al., 2015), ecosystem ser-
vices (Lawler et al., 2014), and climate processes. Memarian et al.
(2014) and Gebremicael et al. (2013) showed that the expansion of
agriculture land use causes a significant change in runoff and sediment
load. Significant variation of evapotranspiration has occurred due to
LULC and leaf area index change (Li et al., 2015). Land use change can

change affects local, regional and global climate system (Deng et al.,
2013) and degrades the health of a wetland ecosystem (Alam et al.,
2011). Land use change has been one of the main contributors to cli-
mate changes (Cao et al., 2015). On the other hand, climate change has
also been affecting the land use system through changes in agricultural
productivity and forest ecosystem (Wang et al., 2013).
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Fig. 1. Study watershed in the Lake Tana basin and Ethiopia. a) The location of the study watershed in the Amhara region (red border) and Ethiopia. b) Lake Tana
basin showing the Gummera watershed in black border, and ¢) Gummara watershed zoomed with the elevation data as background.

Remote Sensing (RS), Geographic Information System (GIS), and
hydrological modeling played a significant role in assessing the impact
of land use change on different biophysical processes. RS data have
played a major role in the watershed hydrological investigation (Ahn
et al., 2014). LULC information derived from RS data has been used in a
variety of hydrological modeling studies, especially in streamflow,
water balance, flood event and soil erosion simulations (e.g., Dang and
Kumar, 2017; Du et al., 2012). The GIS technology provided suitable
alternatives for efficient management of large and complex databases. It
also enhanced modeling efficiency and capability (Alexakis et al.,
2014). For example, integration of the Soil and Water Assessment Tool
(SWAT) with the GIS helped to understand the impacts of spatially
explicit processes such as land use change on the hydrological response
(Abbas et al., 2015; Yalew et al., 2013). Such tools have become vital
for integrated river basin planning and management.

The SWAT model has strong track-record of evaluating the impacts
of different land management practices on water budget, nutrient
quantity and transport, and soil erosion in complex watersheds with
varying soils, land uses, and management conditions over a long period
of time (Arnold et al., 2012). For example, Briones et al. (2016) cali-
brated and validated SWAT model to study the impact of land use
change on total water yields, groundwater, and base flow at sub-basin
level in the Palico watershed in Batangas, Philippines. They showed
that the combined forest and rangeland expansion by 22% increased
base flow by 1-15%, and reduced streamflow by 1-17% in the rainy
seasons. On the other hand, the reduction of forest cover by 54% de-
creased base flow between 11% and 17% in the rainy season, and in-
creased surface runoff by 4-24%. Likewise, Huang and Lo (2015) ap-
plied the SWAT model to study the impacts of land use change on water
budget and sediment losses over Yang Ming Shan National Park Wa-
tershed in northern Taiwan, and they reported that the conversion of
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forest land into agricultural land increased sediment loss.

Most SWAT model applications have been exclusively using static
land cover data to study the effects of LULC change on watershed hy-
drologic modeling. Watershed processes represented by static land use
data inadequately estimate the temporal and spatial hydrological var-
iation (Wagner et al., 2016). Perhaps, use of dynamic land use (DLU)
data may improve the spatial and temporal model simulation perfor-
mance by capturing better the LULC evolution. Moreover, the DLU
approach help to disaggregate the effects of land use change, climate
variability and land management practices on the hydrological re-
sponse (Fang et al., 2013; Chiang et al., 2010). Pai and Saraswat (2011)
highlighted that stationarity in hydrological responses might happen in
a single LULC application since such an approach simplifies the land use
changes with time. Stationarity of hydrological responses can be re-
solved by integrating Land Use Change (LUC) modules into hydro-
logical modeling approaches (Chiang et al., 2010; Saraswat et al.,
2010). For example, Wagner et al. (2016) integrated SLEUTH land use
change and the SWAT model, and they found sound seasonal and gra-
dual changes in the water balance estimates. Similarly, Pai and
Saraswat (2011), using LUC module with the SWAT model, improved
the accuracy of estimation of the spatial and temporal hydrological
fluxes such as surface runoff, groundwater, and evapotranspiration.
However, several of these integrated LUC studies have the limitation of
relying solely on model parameters derived from the calibration period,
which uses static land use data. This approach overlooks the effects of
land use changes on certain model parameters. For example, the study
conducted by Gebremicael et al. (2013) showed there is a clear high
discrepancy of calibrated model parameters between the 1973 and
2000 land use data for the 1971-1973 and 2000-2002 simulation
periods, respectively. Since Gebremicael et al. (2013) uses different
land use and climate data, the source of model parameter variation was
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unclear. In fact, limited studies assessed the isolated effect of LULC and
climate change on hydrologic response. Unlike previous studies, this
research applied the SWAT model using dynamic and static land use
data to assess the effect of land use change on the SWAT model per-
formance and hydrological processes.

2. Materials and methods
2.1. Study area

This study was conducted in Gummara watershed, in the eastern
part of the Lake Tana Basin (Fig. 1). The watershed has an area of
1269 km?, and is located in Amhara region, Ethiopia, between 37.63° to
38.18° longitude and 11.57° to 11.90° latitude. The topography of the
study area is generally flat to moderate slope where 60% of the area has
an average slope < 15%. The elevation in the basin ranges between
1794 and 3704 m above sea level, with a mean elevation of 2272 m.

The majority of the watershed area is covered by cultivated land
(92%), and the remaining area is covered by shrubs (3%), grassland
(4%), and forest (1%). The most dominant soil type is Haplic Luvisols
(64%) which is found in the midstream parts of the watershed. The
second dominant soil is Eutric Vertisols which is found in the down-
stream parts. Chromic Luvisols mainly extends to downstream and
upstream parts of the watershed. Eutric Fluvisols is the least common
soil type (< 1%) in the watershed. The climate of the watershed is
humid with a long-term average annual rainfall is 1387 mm. The long-
term average daily minimum and maximum temperatures are 9 °C and
28.5°C, respectively. The average daily streamflow ranges between
0.2m>/s and 397.5 m%/s.

2.2. Land use land cover analysis

Remotely sensed satellite data for Lake Tana Basin were reclassified
using ArcGIS 10.1 software. Satellite data included Landsat 5 TM,
Landsat 7 ETM +, and Landsat 8 OLI images with WRS Path 169 and
Row 52. Landsat 5 TM images were acquired on February 26, 1985, and
February 06, 1995. While Landsat 7 ETM+ image was acquired on
March 29, 2005, and Landsat 8 OLI on February 13, 2015. The images
of February and March were used because of the minimum cloud cover
and surface features changes during the dry months in the watershed.
The Landsat images were obtained from the United States Geological
Survey (USGS) Earth Resources Observation and Science (EROS) data
center (http://espa.cr.usgs.gov). The image data has a resolution of
30 m with standard geometric, radiometric, and atmospheric correc-
tion. The un-scanned gaps in ETM+ were filled using standardized
ordinary co-kriging method (Zhang et al., 2007). Absolute units of Top-
Of-Atmosphere (TOA) reflectance bands were used to maintain con-
sistency among the TM, ETM + and OLI images (Chander et al., 2009).

Field campaigns were conducted to observe land use conditions and
record GPS locations, which were used for supervised land use classi-
fication and accuracy test. Observations were made from 268 training
locations where 108, 47, 57 and 56 were taken from cropland, forest,
shrubland, and grassland, respectively. The majority of the field data
(192 observation points) were used for classification, and the remaining
(76) were used for the accuracy test. Of the 192 training locations, 77,
34, 42, and 39 were in the agriculture, forest, shrubs, and grassland,
respectively. Maximum likelihood classifier algorithm was used for
image classification based on data from training locations and visual
interpretation of the images. The distribution and spectral homogeneity
of the training location pixels were checked using a histogram, scat-
terplots, and spectral statistics. The pixels in the training location had a
normal distribution, and it represented well the entire area. The LULC
types were classified into four major classes such as agricultural land,
grassland, shrubland, and forest since these are the dominant land use
types in the highland parts of Ethiopia (Teferi et al., 2013). The accu-
racy of the classification was overall satisfactory with an accuracy of
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84% and a Kappa coefficient of 0.81 (Tadele et al., 2017). Kappa
coefficient measures the inter-rater agreement, where a value of > 0.80
represents almost a perfect agreement. The classified land use types
were used as LULC data in the SWAT model. The LULC data of the years
1985, 1995, 2005, and 2015 were used to represent different land use
regimes over the watershed during four periods: 1985-1989,
1990-1999, 2000-2009, and 2010-2015 (Gebrehiwot et al., 2013).

2.3. SWAT model inputs and setup

2.3.1. Input data

The SWAT model requires a Digital Elevation Model (DEM), land
use, soil, and climate data to simulate different hydrological processes.
The DEM data with a spatial resolution of 90 m was obtained from the
Shuttle Radar Topographic Mission (SRTM) (http://srtm.csi.cgiar.org/
SELECTION/inputCoord.asp). The land use maps for the year 1985,
1995, 2005, and 2015 were prepared as presented in Section 2.2. The
soil data, including its physical and chemical properties, were collected
from the Ethiopian Ministry of Water, Irrigation, and Energy (EMWIE)
and International Soil Reference and Information Center (ISRIC) with a
spatial resolution of 1km (http://www.isric.org). Daily rainfall,
minimum/maximum temperature, solar radiation and average hu-
midity data for the period from 1982 to 2015 were collected from three
Ethiopian National Meteorological Services Agency (ENMSA) stations
over the watershed (i.e., Debretabore, Dera Hamusit, and Wereta).

2.3.2. SWAT model setup

This study applied the ArcSWAT-2012 (version 586) to assess the
effect of Static Land Use (SLU) and Dynamic Land Use (DLU) data on
the performance of SWAT model simulations. The two model setups
(SLU and DLU) used similar input data, but different land use data. The
SLU setup used only the 1985 land use data for the entire simulation
period, whereas the DLU setup used 1985, 1995, 2005, and 2015 land
use data to simulate the hydrologic process for the four periods (i.e.,
1982-1989, 1990-1999, 2000-2009, and 2010-2015). These land use
data were applied using the Land Use Update (LUU) tool of the SWAT
DLU model setup. The 1985 land use data was used to define the
Hydrological Response Units (HRUs) in both model setups since it re-
presents the beginning phase of the model simulation period. Both
model setups were calibrated and validated using observed streamflow.
The calibrated model was used to study the impacts of land use change
on the hydrological response in Gummara watershed.

The model setup produced 22 sub-basins and 651 HRUs. The HRU
definition considers every parcel of land use, soil, and slope to account
full representation of watershed (Arnold et al., 2012). The detailed
procedures and algorithm of the SWAT LUU tool are presented in Pai
and Saraswat (2011).

2.3.3. SWAT model calibration and validation

The SWAT model parameters were calibrated using the Sequential
Uncertainty Fitting version 2 (SUFI-2) in the SWAT-CUP (SWAT
Calibration and Uncertainty Program, Abbaspour et al., 2007). The
SWAT SLU and DLU models were calibrated and validated using ob-
served daily streamflow data at the Gummara river gauging station
(Fig. 1). The models were calibrated for the period from 1982 to 2005
with three years of model warm up (Daggupati et al., 2015). The
models were validated for the period from 2006 to 2015. The calibra-
tion considered 18 hydrological parameters (Table 2) based on litera-
ture recommendation in the watershed (e.g., Dile et al., 2016;
Gebremicael et al., 2013; Setegn et al., 2008).

2.4. Evaluation of land use change effect on the hydrological response
The temporal and spatial impacts of land use change on the hy-

drological response such as surface runoff, peak flow, and evapo-
transpiration was studied using the SLU and DLU model setups splitting
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the time period 1985-2015 into four. The temporal variation was stu-
died using four-time frames namely 1985-1989, 1990-1999,
2000-2009, and 2010-2015, which represent different LULC regimes in
the watershed. The spatial hydrological responses at the sub-basin scale
were also assessed in the 2010-2015 period. The condition represented
between the DLU and SLU simulations were similar except the land use.
Therefore, the difference between the two model setups (i.e., DLU —
SLU) provides the difference in hydrological response because of
changes in land use representation.

2.5. SWAT model performance evaluation

Model performance evaluation is necessary to examine the re-
presentation of the modeling process to the actual biophysical condi-
tions. The Nash Sutcliffe Efficiency (NSE) and Percent Bias (PBIAS)
were used to evaluate the performance of the model simulations. The
NSE indicates how well the observed versus simulated data fit the 1:1
line (Eq. (1)). The NSE value theoretically ranges from — o to 1. The
NSE of 1 corresponds to a perfect match between observed and simu-
lated values. Moriasi et al. (2007) suggested that a model simulation
that provides the NSE value of 0.75-1, 0.65-0.75, 0.5-0.65, and < 0.5
are considered as a very good, good, satisfactory, and unsatisfactory
model performance, respectively.

N

NSE=1-— [2 Kops

i=1

N
- Xsim)z/ Z (Xobs - X)Z

i=1

@

The PBIAS (Eq. (2)) is commonly used to measure the average
tendency that the simulated data is higher or smaller than the observed
data. PBIAS value can be positive or negative, where the value of zero
represents the best model simulation performance. Positive values in-
dicate model underestimation bias, and negative values indicate model
overestimation bias. PBIAS value of < * 10%, = 10%- *+ 15%, *+
15%-— + 25%, and = + 25% indicates that the model performs very
well, good, satisfactory, and unsatisfactory, respectively (Moriasi et al.,
2007).

N N
PBIAS = (Z Kobs = Xaim)/ Y, Xobs)*loo
i=1

i=1

(2)

where, X, is the observed streamflow data, X, is the simulated
streamflow data, X is the mean of the observed streamflow data, and N
is the total number of streamflow data.

3. Results and discussion
3.1. Land use land cover (LULC) change

The spatial distribution of major LULC classes for 1985, 1995, 2005,
and 2015 are presented in Fig. 2. It can be observed that the agriculture
land use coverage was dominant in the upstream, midstream, and
downstream part of the watershed. However, the forest and shrubland
use were found dispersedly in the upstream and midstream parts. In a
visual examination of land use maps, it was evident that from 1985 to
2015, the area under forest and shrub diminished significantly in the
midstream region. The area under different LULC categories in Gum-
mara watershed for different time periods is presented in Table 1.

Agriculture was the predominant land use type in Gummara wa-
tershed, and it covered 80% in 1985 and 91% in 2015 (Table 1). The
forest coverage of the area was very small which accounted for only
0.8% in 2015 and 3.1% in 1985 (Table 1). The time series analysis of
the LULC maps in the years between 1985 and 2015 indicated expan-
sion of agriculture land use and a reduction of forest and shrubland use.

A significant expansion of agricultural land use (~8%) occurred
between 1985 and 1995, and a slight reduction (~0.2%) occurred be-
tween 1995 and 2005. On the other hand, the forest coverage
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diminished between 1985 and 2015, which accounted for 73% of the
1985 forest cover. This was equivalent to a clearing of ~45%, ~22%,
and ~6% forest in 1985-1995, 1995-2005, and 2005-2015, respec-
tively. For the period from 1985 to 2015, agricultural land use in-
creased by 11% and forest cover decreased by 2.3%. This estimate is
consistent with the previous findings in the highlands of Ethiopia (e.g.,
Biru et al., 2015; Rientjes et al., 2011; Teferi et al., 2010). The grassland
and shrubland area changed with a wavy pattern.

3.2. SWAT model calibration and validation

The ranges for SWAT model parameters and their adjusted values
for the SLU and DLU model setups are presented in Table 2. The initial
minimum and maximum values were based on a recommendation from
published literature in the basin (e.g., Dile et al., 2016; Gebremicael
etal., 2013; Arnold et al., 2012; Setegn et al., 2008). The calibrated best
model parameter values were different for the SLU and DLU model
setups (Table 2) which was mainly because of the difference in the land
use data between the two model setups. Curve number (CN2), Man-
ning's “n” value for overland flow (OV-N), and maximum canopy sto-
rage (CANMX) model parameters highly related to the land use type.
These parameters significantly affect surface runoff and evapo-
transpiration simulation in the SWAT model. CN2 model parameter
decreased from its original value by 9.1% and 9.5% in the DLU and SLU
setup, respectively. However, the OV.N and CANMAX model para-
meters in the SLU setup were large, compared to the DLU setup. The
higher value of CN2 and the lower value of OV_N and CANMAX in the
DLU setup associated with the expansion of agriculture and reduction of
forest and shrubland use in the study period. These findings are in
agreement with the work done by Gebremicael et al. (2013) in the Blue
Nile basin, and Briones et al. (2016) in the Palico watershed. The
groundwater deep percolation fraction (RCHRG_DP) value was higher
in the SLU model setup, compared to the DLU model setup; which in-
dicated that SLU setup simulated more groundwater storage. The higher
RCHRG_DP value mainly related with the higher forest and shrub
coverage in the SLU setup. The groundwater recharge depth parameter
agrees with Nejadhashemi et al. (2011) study in the agricultural region
of Michigan and Wisconsin. As a whole, the variance among these
model parameters of both model setups consistently reflects differences
in hydrological processes under different land use information.

The performance of the model was evaluated by comparing the si-
mulated daily streamflow from the DLU and SLU model setups with the
observed streamflow data. The model performance statistics for the
calibration and validation periods are presented in Table 3. The NSE
values of the DLU setup were 0.75 for the calibration period and 0.71
for the validation period, corresponding to model performance ratings
(Moriasi et al., 2007) of very good and good, respectively. However, the
model performance was good in the case of SLU setup calibration and
validation with the NSE values of 0.73 and 0.71, respectively. Likewise,
evaluation using the R for the DLU model simulation in the calibration
and validation period was 0.75 and 0.80, respectively. The SLU model
calibration and validation had similar R? values (0.74). The higher R?
for both model setups indicated a very good linear relationship between
simulated and observed streamflow data. Positive values of PBIAS for
DLU setup (5.3% for calibration and 29.1% for validation) and SLU
setup (7.1% for calibration and 24.9% for validation) indicated a ten-
dency for underestimation of daily streamflow. However, the low
magnitude of PBIAS values corresponded to a performance rating of
“very good” during the calibration period, and the high magnitude of
PBIAS values corresponded to a performance rating of “unsatisfactory”
during the validation period. The PBIAS result showed a very small
accumulation of difference in streamflow volume between the simu-
lated and observed data for the calibration period. But, the model si-
mulation in the DLU and SLU setups had a significant underestimation
tendency during the validation period. A more stringent test of model
performance was found during the validation period since parameter
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Fig. 2. Land use land cover maps of the Gummara watershed: land uses for a) 1985, b) 1995, ¢) 2005, and d) 2015.

range was fixed during this period (Saraswat et al., 2010). Therefore,
according to the model evaluation criteria recommended by Moriasi
et al. (2007), the performance of SLU and DLU SWAT model was sa-
tisfactory during the calibration period. This result agrees well with the
previous studies in Gummara watershed (Dile et al., 2016; Setegn et al.,

Table 2

Ranges for model parameter changes and best parameter values for SLU and
DLU model setup for streamflow calibration. The SLU and DLU refer to the
static land use and dynamic land use conditions, respectively.

S. N Parameter name Minimum value Maximum value DLU SLU
2008).

The P-factor and R-factor were estimated to evaluate the degree of ; r—iﬁg{‘f; 0_0'15 8'25 0_2(')091 g‘ggs
uncertainty for both model simulations. P-factor is the percentage of the 3 Z—GW DE‘LAng 15 109 2050  24.87
observed data covered by the 95% prediction of uncertainty (95PPU), 4 v_GWQMN.gw 0 10 5.75 0.45
and R-factor is the average thickness of the 95PPU band divided by the 5 v_ GWREVAP.gw 0.1 0.2 0.10 0.13
standard deviation of the observed data. The DLU model setup showed 6 V_RCHRGDP.gw 0 0.88 0.06 0.15
satisfactory model uncertainty during calibration (validation) period Z V*Egig% 8 13 2'22 ;"g
with P-factor of 0.87 (0.77) and R-factor of 0.65 (0.54). Comparable 9 Z__SOL_AWC(:?:OI —043 011 010  —0.09
uncertainty level was found in the SLU model setup with P-factor of 10 r_SOLXK(.).sol 0.02 0.2 0.04 0.08
0.87 (0.78) and R-factor of 0.64 (0.57) for calibration (validation) 11 r_ESCO.hru —-0.15 0.15 -0.04 012
periods. The uncertainty factors showed acceptable model uncertainty 12 _EPCO.hru -0.15 0.15 0.03 —-0.08

. . . 13 r_OVN.hru -0.15 0.15 -0.02  0.01
estimates. According to Abbaspour et al. (2007) recommendation, P- 14  r SISUBBSNhru  —0.15 015 012 014
factor = 0.75 and R-factor < 1.5 would be desirable for streamflow. 15 v_CANMXhru 10 50 11.80 21.00

Simulated daily streamflow from SLU and DLU model setup were 16  v_SURLAG.bsn 0 0.9 0.15 0.02
compared with observed values during the calibration and validation 17 v_CHN2.rte 0.02 0.3 0.15 0.15
period (Fig. 3). Generally, there was a good agreement between the 18 v_CHK21te 6 % 17.33 1403
observed and simulated flows in both model setups, but a few peak flow Note: "r_'": relative change to the existing parameter value, i.e. the existing

events were not adequately captured during the rainy period. DLU and
SLU simulated peak flow values were higher than observed values in
July 29/1988, August 28/1999, August 22/2005 and August 04/2010

Table 1

value is multiplied by 1 + a given value, and "v_": the existing parameter value
is to be replaced by the given value.

Land use land cover area percentage and changes for the 1985-2015 period in the Gummara watershed.

Land use type

Land use land cover (%)

Changes in land use land cover (%)

1985 1995 2005 2015 1985-1995 1995-2005 2005-2015
Agriculture 80.1 87.8 87.6 91.2 7.7 -0.2 3.6
Forest 3.1 1.7 1.0 0.8 -1.4 -0.7 -0.2
Grassland 3.6 7.8 3.2 3.6 4.2 —-4.6 0.4
Shrubs 13.2 2.7 8.2 4.4 -10.5 5.5 -3.8
Total 100 100 100 100 0 0 0
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Table 3
Goodness-of-fit evaluation statistical for the calibration and validation periods
in SLU and DLU model setups.

Model setup NSE R? PBIAS P-factor R-factor

Dynamic Land Use (DLU) Calibration 0.75 0.75 5.3 0.87 0.65
Validation 0.71 0.80 29.1 0.77 0.54

Static Land Use (SLU) Calibration 0.73 0.74 7.1 0.87 0.64
Validation 0.71 0.74 24.9 0.78 0.57

(Fig. 3a and b), which mainly caused by the higher rainfall input during
these periods. Both model setups had underestimation (61%) and
overestimation (39%) tendency for the peak event simulation. The SLU
and DLU simulated streamflow were consistently underestimated
compared to observed values, in particular during 1990 to 1992, 1995
to 1997 and 2008 to 2009 (Fig. 3a and b).

Comparable goodness-of-fit and P-factor & R-factor values indicated
that the model performance between DLU and SLU setup did not show a
significant difference. Although the DLU setup did not show pro-
nounced improvement, the calibration period DLU model setup per-
formed slightly better than the SLU model setup. The higher NSE and
R?, and lower PBIAS value revealed the slightly better performance of
the DLU model setup, which was mainly due to the better representa-
tion of the temporal land use changes in the DLU setup. During the
validation period, both model setups were noticeably worse (lower NSE
and higher PBIAS) than during the calibration period. Based on the
similar values of NSE, both model setups were equally able to predict
daily streamflow during the validation period. The PBIAS for both
model setups did not agree with other criteria, and the values of DLU
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were higher than the SLU during the validation period. Wagner et al.
(2017) and Pai and Saraswat (2011) also found improvement in model
simulation by applying dynamic land use data.

3.3. Hydrological response under static and dynamic land use

3.3.1. Temporal variation of the hydrological response

The temporal land use effects on surface runoff, evapotranspiration,
and peak flow were studied in the four periods where dynamic land use
change was implemented. The hydrological responses with agricultural
and forest land use percentage are summarized and presented in
Table 4. The simulated hydrological processes from the SLU model
setup were different between the four periods (1985-1999, 1990-1999,
2000-2009, and 2010-2015), which mainly associated with climate
(rainfall) variations (Table 4). However, the hydrological responses
difference in the DLU model setup related to climate variability and
land use change. Therefore, the difference in the hydrological compo-
nents between the SLU and DLU model setups provided the isolated
impact of land use change.

The simulated surface runoff, evapotranspiration, and peak flow in
the SLU and DLU model setups were similar in the 1985-1989 period,
which used 1985 land use data. The estimated surface runoff, peak
flow, and evapotranspiration in DLU and SLU setup were different in
1990-1999, 2000-2009, and 2010-2015 period, since the DLU model
setup dynamically replaced the 1985 land use by 1995, 2005, and 2015
land use data during respective periods. In these periods, the DLU
model setup simulated lower evapotranspiration and higher surface
runoff and peak flow. The maximum and minimum variation of these
hydrologic responses occurred in the 2010-2015 and 2000-2009
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Fig. 3. Observed and simulated (DLU and SLU) daily streamflow for Gummara watershed during: a) calibration period (2006-2015), and b) validation period

(2006-2015).
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Table 4
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The average hydrological response in the agricultural and forest land use types in the periods where static and dynamic land use was implemented.

Simulation period Agricultural landuse (%) Forest landuse (%) PRECIP (mm) SURQ (mm) ET (mm) Peak flow (m®/s)
SLU DLU SLU DLU SLU DLU SLU DLU SLU DLU SLU DLU
1985-1989 80.1 80.1 3.1 3.1 1443 1443 363.7 363.7 523.0 523.0 219.3 219.3
1990-1999 80.1 87.7 3.1 1.7 1387 1387 348.7 358.1 491.5 487.3 175.7 176.8
2000-2009 80.1 87.6 3.1 1.0 1332 1332 313.1 321.1 479.3 473.5 184.6 187.5
2010-2015 80.1 91.2 3.1 0.8 1435 1435 397.2 408.8 445.0 439.7 220.6 223.0

Note PRECIP: average annual precipitation (mm H,0), SURQ: surface runoff (mm), ET: actual evapotranspiration (mm), SLU: static land use, and DLU: dynamic land

use.

period, respectively. The maximum difference in surface runoff and
peak flow between the two model setups were 11.6 mm and 2.4 m®/s,
respectively. This variation directly related to the agricultural land use
expansion by 11.1% and forested area reduction by 2.3% in DLU model
setup. Andualem and Gebremariam (2015) showed similar findings in
Gilgal Abay watershed, Lake Tana basin. Likewise, Yin et al. (2017)
found a similar experience in a semi-humid and semi-arid transition
zone in northwest China. The simulated evapotranspiration values were
lower in the DLU model setup mainly because of the consideration of
low forest coverage, compared to SLU model setup. Higher evapo-
transpiration occurred in forested and vegetated watersheds (Alemu
et al., 2014) due to higher transpiration and evaporation from the ca-
nopy (Getahun and Haj, 2015). This result agrees well with the study
conducted by Fang et al. (2013) in Laohahe River basin, China. Their
study showed that the expansion of vegetation cover areas decreased
surface runoff and increased actual evapotranspiration.

Since the SLU model setup considered static land use data for the
entire simulation period and ignored the temporal land use dynamics,
but it can help to study the temporal climate variability. On the con-
trast, the DLU model setup captured both the land use and climatic
dynamics. Therefore, the DLU model explained very well the effects of
land use change on the temporal variation of the surface runoff, eva-
potranspiration and peak flow. The DLU setup used realistic past land
use change conditions. As also stated by Wagner et al. (2016) and
Chiang et al. (2010), the temporal components of land use change are
assessed well in the dynamic land use setup. Thus, surface runoff, peak
flow, and evapotranspiration were assumed to be more realistically
estimated. The comparison between DLU and SLU surface runoff, peak
flow and evapotranspiration in the four simulation period is shown in
Fig. 4. The increasing of the magnitude of land use changes increased
the magnitude of surface runoff, peak flow and evapotranspiration

variation (Fig. 4). The contrast between the DLU and SLU setup in-
dicated the influence of land use change between the two simulation
periods. DLU surface runoff simulation increased by 45.1 mm between
1985-1989 and 2010-2015 period while the SLU setup increased the
surface runoff simulation by 33.5mm. The isolated land use change
increased surface runoff by 11.6 mm, which accounted for 25.7% of the
total surface runoff change (45.1 mm). The contrast between
1985-1989 and 2010-2015 simulation in the SLU setup indicated the
influence of the climate variation. The climate variation increased
surface runoff by 33.5mm, which accounted for about 74.3% of the
total surface runoff increment. The above results showed that land use
change and climate variation during 1985-1989 and 2010-2015 in-
creased surface runoff, but the contribution of land use change was
smaller than that of climate variation. Between this simulation period,
combined land use change and climate variation increased peak flow by
3.7m%/s, and the percent contributions were 64.9% (2.4 m?/s) for the
land use change and 35.1% (1.3 m?/s) for the climate variability. The
integrated effect of land use change and climate variability (DLU) de-
creased evapotranspiration by 83.3 mm. The evapotranspiration de-
creased by 78 mm due to climate variability while evapotranspiration
decreased by 5.3 mm due to the land use change, accounting for 93.6%
and 6.4% of the total integrated effect (83.3 mm), respectively. From
the three hydrological response considered in this research, peak flow
variation was highly sensitive to land use change in Gummara wa-
tershed.

3.3.2. Spatial variation of the hydrological response

The effect of sub-basin level land use change on the hydrological
components was studied using simulations based on the 1985 and 2015
land use data. Sub-basin level land use change between 1985 and 2015
are presented in Fig. 5. During this period, the agricultural land use
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Fig. 5. Percentage of subbasin land use land cover change in the years between 1985 and 2015.

area increased in all sub-basins except in sub-basin 6, 9, 15, and 21
(Fig. 5), with the maximum expansion of 47.1% in sub-basin 1. The
forest coverage slightly increased in sub-basin 21, whereas insignificant
land use change was noticed in sub-basin 6.

The spatial impacts of land use change on the hydrological response
were investigated using the average of SLU and DLU simulation in the
2010-2015 period. Sub-basin surface runoff, peak flow and evapo-
transpiration change between DLU and SLU setup are presented in
Fig. 6. The magnitude and direction of the sub-basin level hydrological
response change were assessed in relations to 1985 and 2015 land use
data. Due to the expansion of agricultural land use and reduction of
forest coverage in most of the sub-basins, higher surface runoff and
peak flow were found in the DLU model setup. Sub-basin 1, 12, and 13,
had the largest change of surface runoff, with a maximum increasing of
50.1 mm surface runoff (Fig. 6a). These maximum changes of surface
runoff associated with the maximum expansion of agricultural land use
by 47.5% in sub-basin 1. The expansion of shrubs and forest lands in
sub-basin 9 and 21 resulted in the reduction of surface runoff. Shrub-
land expansion (2.5%) in sub-basin 9 decreased surface runoff
(0.5 mm). Likewise, 1.1% expansion of forest coverage in sub-basin 21
decreased the surface runoff by 1.2 mm. Similar results about surface
runoff increment due to the expansion of agricultural land use and the
reduction of forest were reported in another region (Huang and Lo,
2015). As shown in Fig. 6b, the largest peak flow variation between
DLU and SLU occurred in the downstream parts of the watershed (sub-
basin 1, 5, 7, and 8) which may be due to the higher expansion of
agricultural land use and reduction of forest land use over these sub-
basins. The highest agricultural land use expansion (47.5%) caused
higher peak flow (2.2 m?/s) variation in sub-basin 1. The SLU simula-
tion considered higher forest and shrub coverage during the 2010-2015
simulation period this caused the higher simulation of evapo-
transpiration, compared to DLU model setup. The largest change of
evapotranspiration occurred in sub-basins 1, 2, 7, and 13, with a
maximum decrease of 39.7 mm (Fig. 6¢). A slightly higher forest cov-
erage (1.1%) in the DLU model setup over sub-basin 21 caused 1.1 mm
more evapotranspiration simulation, compared to SLU model setup.
This result is consistent with Dias et al. (2015) studies where water-
sheds with an increase in forest cover tend to have higher evapo-
transpiration, and lower surface runoff and peak flow. As a result of
static land use in sub-basin 6, there was an insignificant change in
surface runoff, peak flow, and evapotranspiration.

The dynamic changes in land use and their spatial distribution were
analyzed to assess the effects of land use change on surface runoff, peak
flow, and evapotranspiration simulation in the selected sub-basins
(Table 5). The DLU and SLU model setups were compared in
2010-2015 simulation period. In this period, the DLU setup used 2015
land use data, while the SLU setup used 1985 land use. Thus, the DLU
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setup considered the realistic representation of spatial land use cov-
erage and their effects on hydrologic response. The curve number (CN2)
is the most sensitive parameter in determining the fraction of pre-
cipitation converted to surface runoff (Briones et al., 2016). The al-
teration of land use between 1985 and 2015 affected the sub-basins
CN2. The consideration of the actual expansion of agricultural land use
in DLU setup caused a higher CN2 (sub-basin 1, 7, 10, 12, and 13),
whereas the expansion of forest and shrubs resulted in a lower CN2
(sub-basin 21). The expansion of agricultural land use in sub-basin 1
caused the CN2 rise from 76.2 to 79.6, due to this the surface runoff and
peak flow simulation increased from 285 mm to 335mm and from
10.8 m%/s to 13 m%/s, respectively (Table 5). The result agrees with the
findings of Dang and Kumar (2017) who reported that the higher the
CN2 value, generated the higher the surface runoff and peak flow. The
increase in surface runoff can be attributed to reduced evapo-
transpiration. Higher surface runoff and lower evapotranspiration are
expected in agricultural land use than forest and shrubs area (Anaba
et al., 2017). The static land use coverage in sub-basin 6 resulted in
invariant CN2 and hydrological responses. Expansion of forest and
shrubs coverage would result in an increase in the interception and
infiltration opportunity time and thereby result in more water being
infiltrated into the soil and decline the surface runoff. In the afforested
sub-basin 21, high evapotranspiration was found mainly because of the
higher transpiration and interception. Generally, the results showed
that the consideration of the real land use change in the DLU setup
produced the non-stationary hydrologic response. This finding agrees
with the previous research result which indicated that land use dy-
namics causes of non-stationary hydrologic response (Ajami et al.,
2017; Guse et al., 2015).

4. Conclusions

This study evaluated the impacts of Static Land Use (SLU) and
Dynamic Land Use (DLU) on the representative hydrological processes
using SWAT hydrological model. The SWAT model evaluation showed
that the SLU and DLU setups affected the model parameters and the
SWAT model performance. The SWAT model calibration under SLU and
DLU setup provided satisfactory results during the calibration period.
The DLU setup, which represented the 30 years' land use dynamics, had
a higher curve number, and a lower canopy storage and groundwater
recharge parameters due to the conversion of forest and shrubland into
agricultural land. Statistical comparison between simulated and ob-
served streamflow showed a slight model performance improvement in
the case of dynamic land use setup.

The temporal and spatial analysis showed that implementing dy-
namic land use data affected the hydrological responses of Gummara
watershed in terms of surface runoff, peak flow, and
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DLU and SLU model setups for the simulation period 2010-2015.

Table 5

Impact of LULC changes on surface runoff, peak flow and evapotranspiration in selected subbasins distributed in the upstream, midstream, and downstream areas of

the watershed.

Sub-basin Hydrological responses

Curve number (CN2)

Land use change between 1985 and 2015

SURQ (mm) ET (mm) Peak flow (m®/s) Agriculture Forest Grassland Shrubs
SLU DLU SLU DLU SLU DLU SLU DLU
1 285 335 563 523 10.8 13.0 76.2 79.6 48 -16 -1 -31
6 347 347 544 544 116 116 80.3 80.3 0 0 0 0
7 558 569 482 471 220 223 80.7 81.1 20 0 —-14 -6
10 408 411 303 302 9 9 79.6 79.7 2 -1 0 -1
12 380 406 305 300 33 33 77.9 79.6 26 -2 2 —-26
13 314 339 540 526 83 83 78.1 79.8 22 -4 3 -21
21 527 526 477 479 12 12 79.5 79.4 -0.5 1 -0.8 0.3
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evapotranspiration. The average annual surface runoff and peak flow
increased while the evapotranspiration decreased when the forest and
shrubland area converted into agriculture land. However, the effects of
land use change on the hydrological response were non-uniform over
space and time. The DLU model setup can better represent the spatial
and temporal variability of hydrologic processes caused by the temporal
land use change. Sub-basins with an increase of agricultural land cover
tend to increase surface runoff and peak flow, and a decrease of eva-
potranspiration. On the other hand, sub-basins with an increase in
shrubs and forest land resulted in a decrease of surface runoff and an
increase of evapotranspiration. The increase in surface runoff may have
positive implications for irrigation activities since it can be harvested
using water harvesting structures and used for crop production. On the
other hand, an increase in surface runoff may also cause flooding pro-
blems for the surrounding area.

The findings from this study have shown that applying dynamic
land use in the hydrological simulation improved model performance
and thereby improve water resources estimations in watersheds. It can
also help in implementing sustainable land and water management
practices.
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