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Introduction 
Any system failure model contains at least two sources of uncertainty; modeling 
uncertainty, and parametric uncertainty. One of the main causes of parametric uncertainty 
is the underlying data evaluation uncertainty. Very often failure data for events is not 
available and engineering estimates are used. The engineering estimate (expert estimates) 
of component reliability parameters often results in extreme data uncertainty. While there 
exist importance measures to evaluate the individual contribution of component failures 
to the overall system failure, they fail to provide information about the overall uncertainty 
at the system level. 

Uncertainty quantification at the system level must be part of the final decision-making 
process. There is often significant uncertainty in the scenario frequency, and thus in the 
overall risk curve and loss profile. Knowledge of the uncertainty in the overall risk curve 
is import to the decision-maker; he/she can make more informed decisions. It is also 
important for the risk analyst; more effort can be made in reducing the uncertainty of key 
events. 

Basic Fault Tree Analysis 
Fault Tree analysis (FTA) is a system level deductive method for determining the various 
combinations of hardware failures, software failures, and human errors that could result 
in the occurrence of an undesired event (referred to as top event). The main purpose of 
fault tree analysis is to evaluate the probability or the frequency of the top event using 
quantitative information about the causal events (referred to as basic events). FTA can 
provide useful information concerning the likelihood of a failure and the means by which 
such a failure could occur. Efforts to improve system safety and reliability can be focused 
and refined using the results of the FTA. 



A basic event represents a simple failure or fault. It may be a hardware failure, a human 
error, or an adverse environment condition. Hardware failures are usually expressed in 
terms of a specific component and a failure mode, such as "Service Water Pump P-123 
fails to start on demand." Human errors can be failure to carry out a desired task (failure 
to open a valve), failure to perform a specific recovery action (failure to start a backup 
system), or execution of a wrong action that has adverse effects on the fault tree top 
event. An adverse environment condition is not necessarily a failure but in combination 
with other events can lead to failure. For example, the temperature being below freezing 
is an adverse condition necessary for the failure of flow reduction due to a frozen pipe. 

Basic events are assumed to be independent of each other. This means that the 
occurrence of one basic event does not influence the probability of occurrence of any 
other basic event. For example, suppose that there are two pumps, and the failure of 
either to start on demand is a basic event. Independence of the basic events says that if 
one pump fails to start on demand, this does not alter the probability that the second 
pump will fail to start. 

A common cause event, such as "two pumps fail to start because of loss of power" must 
be modeled as its own basic event, and be assigned its own failure probability or failure 
rate. This event is then regarded as statistically independent of all other basic events. 

A Fault Tree Example 
To guide the discussion through the paper, we will make use of an example fault tree. 
This example, while not "industrial strength", provides all the features that we need for 
our discussions. The frequencies, and probabilities used in the fault tree are merely 
representative values used for the purpose of the example. 

The system [ 1 ] in Figure 1 is designed to 1) decrease the temperature of the hot gas by a 
water quench, 2) saturate the gas with water vapor, and 3) remove solid particles 
entrained in the gas. The hot tail gas is first cooled by contacting it with water supplied 
by the Feedwater pump D. Water from the bottom of the scrubber is either recireulated by 
pumps E or F, or removed as a purge stream. Mesh filter pad G removes the particulates 
from the gases that flow to an absorber. A simplified fault tree is shown in Figure 2. 
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Figure 2" Fault tree for the process shown in Figure 1 



Quantifying Fault Trees 
Quantifying fault trees involves the following: (1) quantification of basic events, (2) 
decomposition of the fault tree into cut sets, (3) calculation of individual cut set 
probabilities, and (4) quantification of the top event based on the individual cut set 
probabilities. 

1. Quantification of the basic events 

The basic event probabilities or frequencies can be estimated from available literature 
data, and/or plant specific data. Some common sources of information are provided in the 
reference section. 

2. Decomposition of the fault tree into cut sets 

The logic for each gate starting with the top event is recursively replaced with its inputs 
until the resulting logic is expressed in terms of basic events only. This results in a list of 
cut sets of the fault tree. A cut set identifies a set of events that will cause the top event to 
occur. The list of cut sets identifies all such logical combinations of events. Once the 
minimal cut sets have been determined; individual cut set probabilities can be calculated. 

3. Calculation of individual cut set probabilities (or frequencies) 

The individual cut set probabilities are determined by multiplying the probabilities of the 
applicable basic events. This assumes statistical independence of the basic events. 

4. Calculation of  top event probabilities (or frequencies) 

The exact top event probability of the union of the cut sets can be found, in principle, by 
combining the probabilities of each cut set. For large fault trees, this exact method can be 
too time consuming. Two approximations -- the rare event approximation and the 
minimal cut set upper bound are often used to reduce the computational burden. 

Rare Event Approximation 

A common approach to calculate the probability for a top event is to add together the 
probabilities for the individual cut sets. The rare event approximation is good when the 
cut set probabilities are small. 

m 

P-ZCi 
i=o 

where, 

P = rare event approximation for system unavailability, 
Ci = probability of the i th cut set, and 
m = number of minimal cut sets in the fault tree. 



Minimal Cut Set Upper Bound 

The minimal cut set upper bound is calculated using the following equation 

m 

1 -  S = 1--[(1- C/) 
i=1 

where 

S = minimal cut set upper bound for the system unavailability, 
Ci = probability of the i th cut set, and 
m = number of minimal cut sets in the fault tree. 

Using fault trees to make decisions 
It is often difficult to make decisions based just on the top event probability or frequency 
without understanding the important contributory events, or the uncertainty in the 
estimate. Several measures exist for determining the importance of individual basic 
events on the top events. These measures are detailed in the next section. 

Measuring the Importance 
There are several different basic event importance measures. These importance measures 
are calculated for each basic event in a fault tree. The main importance measures are: 

• Fussell-Vesely importance, an indication of the percentage of the minimal cut set 
upper bound contributed by the cut sets containing the basic event 

• Risk reduction, an indication of how much the minimal cut set upper bound 
would decrease if the basic event never occurred (typically, if the corresponding 
component never failed) 

• Risk increase, an indication of how much the minimal cut set upper bound would 
go up if the basic event always occurred (typically, if the corresponding 
component always failed) 

• Structural importance, the number of cut sets that contain the basic event. 

The importance measures can be defined as ratios or as differences. The ratio importance 
measures are dimensionless, and are appropriate for purely relative evaluations. The 
difference definitions account for the actual risk levels that exist and are more appropriate 
when actual risk levels are of concem. Let us define the following: 

F(x) = minimal cut set upper bound probability (frequency) evaluated with the 
basic event probability(frequency) at its mean value. 

F(O) = minimal cut set upper bound probability (frequency) evaluated with the 
basic event probability set to 0.0. 



F(1) = minimal cut set upper bound probability (frequency) evaluated with the 
basic event failure probability set to 1.0. 

Fussell-Vesely Importance 
The Fussell-Vesely importance is an indication of the fraction of the minimal cut set 
upper bound (or frequency) that involves the cut sets containing the basic event of 
concern. It is calculated by finding the minimal cut set upper bound of those cut sets 
containing the basic event of concern and dividing it by the minimal cut set upper bound 
of the top event. This calculation can be performed by determining the minimal cut set 
upper bound with the basic event failure probability at its mean value and again with the 
basic event failure probability set to zero. The Fussell-Vesely importance FV can then be 
calculated as: 

F V  = [ F ( x )  - F ( O ) ] / F ( x )  

Risk Reduction 
The risk reduction importance measure is an indication of how much the results would be 
reduced if the specific event probability equaled zero, normally corresponding to a totally 
reliable piece of equipment. The risk reduction ratio is determined by evaluating the fault 
tree minimal cut set upper bound (or the frequency) with the basic event probability set to 
its true value and dividing it by the minimal cut set upper bound (frequency) calculated 
with the basic event probability set to zero. The risk reduction ratio RRR is: 

= F ( x ) / F ( 0 )  

The risk reduction difference indicates the same characteristic as the risk reduction ratio, 
but it reflects the actual minimal cut set upper bound levels instead of a ratio. This is the 
amount by which the failure probability or sequence frequency would be reduced if the 
basic event never failed. 

The risk reduction difference (RRD) is calculated by taking the difference between the 
mean value and the function evaluated at 0. The risk reduction difference RRD is: 

RRD = F(x)- F(O) 

Risk Increase 
The risk increase ratio is an indication of how much the top event probability (frequency) 
would go up if the specific event had probability equal to 1.0, normally corresponding to 
totally unreliable equipment. The risk increase ratio is determined by evaluating the 
minimal cut set upper bound (sequence frequency) with the basic event probability set to 
1.0 and dividing it by the minimal cut set upper bound evaluated with the basic event 
probability set to its true value. The risk increase ratio RIR is: 

Rm = F(1)/F(x). 



The risk increase difference RID is calculated by taking the difference between the 
function evaluated at 1.0 and the nominal value. The risk increase difference RID is: 

RID = F(1)- F(x) . 

Bimbaum Importance 
The Bimbaum importance measure is similar to the FussellVesely importance measure 
except that it deals with differences instead of ratios. The Birnbaum importance is an 
indication of the sensitivity of the minimal cut set upper bound (or frequency) with 
respect to the basic event of concem. It is calculated by determining the minimal cut set 
upper bound (or frequency) with the basic event probability of concem set to 1.0 and 
again with the basic event probability set to 0.0. The difference between these two values 
is the Bimbaum importance. In equation form, the Bimbaum importance B is 
B = F(a)- F(0). 

Measuring the uncertainty 
The uncertainty analysis allows the user to calculate the uncertainty in the top event 
probability (or frequency) resulting from uncertainties in the basic event probabilities (or 
frequencies). To use this option, the user must have the component reliability information 
and distribution data. 

Before performing the uncertainty analysis, the top event is often expressed in terms of 
minimal cut sets. These cut sets depend on many basic events, each of which has a 
probability described in terms of some parameter(s). Suppose that a basic event 
probability is p. The value of p for each basic event is not known exactly, but is 
estimated based on data or on expert opinion. The uncertainty in p is quantified by a 
probability distribution: the mean of the distribution is the best estimate of p, and the 
dispersion of the distribution measures the uncertainty in p, with a large or small 
dispersion reflecting large or small uncertainty, respectively, in the true value of p. This 
distribution is the uncertainty distribution of p. 

For all the basic events, random samples of the probability are taken based on the 
uncertainty distributions. These sampled probability values are then used to calculate the 
probability of the top event. These sampling and top event calculations are repeated 
many times, and the uncertainty distribution for the probability of the top event is thus 
found empirically. The mean of the distribution is the best estimate of the probability of 
the top event, and the dispersion quantifies the uncertainty in this probability. The term 
Monte Carlo is used to describe this analysis by repeated random sampling. 

Overview of Simple Monte Carlo Sampling 
The Monte Carlo approach is the most fundamental approach to uncertainty analysis. 
Simple Monte Carlo simulation consists of making repeated quantifications of the top 
event value using values selected at random from the uncertainty distributions of the 
basic events. In every iteration of the Monte Carlo run, each basic event uncertainty 
distribution is sampled using a random number generator to select the failure probability 



of the basic event. The top event probability or accident sequence frequency is 
calculated, and the uncertainty distribution is also generated. 

To illustrate the Monte Carlo technique, consider a system with two components in 
series. Let A denote failure of the first component and B failure of the second. The cut 
sets for the system are A and B, so the equation for the top event (system) is 

S = A + B  

Let A and B have mean failure probabilities of 0.001 and 0.005, respectively. Also 
assume that the uncertainty distribution for A is uniform from 0 to 0.002 and the 
distribution for B is normal with standard deviation of 0.001. 

The point estimate for S is 0.006. The probability distributions for A, B, and S are shown 
in Figure 3. 

A B 

0.0000 0.0005 0.0010 0.0015 0.0020 0.0020 0.0035 0.0050 0.0065 0.0080 

.Z" 
= m  
m 
, . = . .  

0 

10,000 Trials Frequency Chart 9,961 Displayed 
.021 

.016 

.010 

.005 

0.004 0.005 

.000 

Forecast: S 

0.006 

209 

156.7 

"I"1 
, , , 11  

¢1D 
104.5 

C 
t~  

52.25 ~-u 

0 
' 1 

0.007 0.008 

Figure 3" Input and output distributions for S-A+B 



In addition to the graphical representation, we also get a detailed statistical picture, as 
shown in Table 1 

Table 1: Statistical parameters for S=A+B 

Statistic Value 
Trials 10000 
Mean 0.005996486 
Median 0.005995968 
Standard Deviation 0.000757095 
Variance 5.73192 E-07 
Skewness 0.00 
Kurtosis 2.58 

Input Data Distributions 
For uncertainty analysis, the basic event data needs to be provided as a probability 
distribution. The most common distribution used for uncertainty analysis is the lognormal 
distribution. Other distributions that are sometimes used are normal, beta, gamma, chi- 
squared, exponential, and uniform distributions. 

Most distributions can be defined with two statistical parameters, although some take 
more. The first parameter is the mean failure probability and the second parameter is 
specific to the particular uncertainty distribution. Table 2 summarizes this information for 
some common distributions. 

Table 2: Common data distributions 

Distribution Parameter 
lognormal 95% error factor 
normal Standard deviation 
beta b in beta(a, b) 
gamma r in gamma(r) 
chi-squared Degrees of freedom 
Exponential 
Uniform Upper end point 

Applying Monte Carlo method to our sample example 

Let us now apply Monte Carlo analysis techniques to the fault tree shown in Figure 2. We 
will assume that all the basic events are probabilities (or have been reduced to 
probabilities). The distributions for the basic events are shown in Figure 4. The results of 
Monte Carlo simulation are shown in Figure 5 and Figure 6. Note that the top event 
estimate is calculated using the minimal cut set upper bound assumption for simplicity. 

As can be seen from the results, we get the probability of the top event and a visual 
representation of the uncertainty. The tornado chart provides the relative significance of 



the individual basic events. This can provide confidence (or lack thereof) in the analysis 
and point out deficiencies in the data. While not apparent in this simple example, the top 
event distribution may have several peaks, and a visual representation is needed to get a 
feel for the results. 



Basic Event Models 

Filter Failure 

Lognormal distribution with parameters: 
Mean 0.03 
Standard Dev. 0.01 

Selected range is from 0.00 to +Infinity 

Pump F failure 

Lognormal distribution with parameters: 
Mean 0.04 
Standard Dev. 0.01 

Selected range is from 0.00 to +Infinity 

Pump E failure 

Lognormal distribution with parameters: 
Mean 0.05 
Standard Dev. 0.01 

Selected range is from 0.00 to +Infinity 

Feedwater Pump D Failure 

Lognormal distribution with parameters: 
Mean 0.06 
Standard Dev. 0.01 

Selected range is from 0.00 to +Infinity 

Pump C failure 

Lognormal distribution with parameters: 
Mean 0.07 
Standard Dev. 0.01 

Selected range is from 0.00 to +Infinity 

Pump B failure 

Lognormal distribution with parameters: 
Mean 0.08 
Standard Dev. 0.01 

Selected range is from 0.00 to +Infinity 

Booster Fan Failure 

Normal distribution with parameters: 
Mean 0.09 
Standard Dev. 0.00 

Selected range is from -Infinity to +Infinity 

Figure  4: Bas ic  event  m o d e l s  for  e x a m p l e  



Forecast: SCRUBBER FAILS TO PERFORM 

Summary: 
Display Range is from 0.15033647646488 to 0.202031216793538 
Entire Range is from 0.145040841869696 to 0.232119569296944 
After 10,000 Trials, the Std. Error of the Mean is 0.00010089543440364 

Statistics: Value 
Trials 10000 
Mean 0.17656 1115 
Median 0.175482762 
Mode --- 
Standard Deviation 0.010089543 
Variance 0.000101799 
Skewness 0.67 
Kurtosis 3.99 
Coeff. of Variability 0.06 
Range Minimum 0.145040842 
Range Maximum 0.232119569 
Range Width 0.087078727 
Mean Std. Error 0.000100895 
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Forecast: SCRUBBER FAILS TO PERFORM (cont'd) 

Percentiles: 

Percentile Value 
0% 0.145040842 

10% 0.164717042 
20% 0.168140393 
30% 0.17083702 
40% 0.173226312 
50% 0.175482762 
60% 0.178016594 
70% 0.180943869 
80% 0.184283921 
90% 0.189560178 

100% 0.232119569 

Figure 5: Top event probability for Scrubber fails to perform 



Sensitivity Chart 
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Figure 6: Sensitivity of top event to basic events 

Conclusion 
Uncertainty quantification at the system level must be part of the final decision-making 
process. Knowledge of the uncertainty in the overall risk curve is import to the decision- 
maker; he/she can make more informed decisions. It is also important for the risk analyst; 
he/she can allocate more effort to better quantify basic events that contribute more to the 
top event. 
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