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Abstract 
Ethylene treaters are widely used in the petrochemical industry to remove impurities from 
ethylene feedstock imported from pipeline networks or storage caverns.  The safety concerns of 
dense phase ethylene treaters due to the reactive and highly flammable nature of ethylene are 
well known and studied.  Under certain conditions, ethylene may self-polymerize and decompose 
violently with heat release.  If vented too fast, ethylene will auto-refrigerate generating cold 
liquids that may cause potential brittle fracture hazards.  Due to these safety concerns, it is a 
challenge to select the appropriate engineering design options for dense phase ethylene treaters 
and the associated regeneration facilities. Totally automated treater regeneration systems add 
complexity and instrument maintenance requirements and manually operated systems rely 
heavily on operator training and procedures.  This paper presents a risk assessment method to 
evaluate the engineering design and safe operation options for dense phase ethylene treaters.  
The proposed risk assessment method integrates human factor analysis into the traditional 
HAZOP, LOPA and fault tree analysis to allow evaluation of automated, manual and hybrid 
approaches with a goal of selecting and optimizing design options to ensure plant safety. 
 

Introduction 

Ethylene treaters or purification beds are widely used in the petrochemical industry to remove 
trace impurities such as water, oxygenates, nitrogen compounds and acid gases (CO2, H2S, COS) 
from ethylene feedstock.  Ethylene is an inherently unstable molecule and in particular, under 
dense phase operating conditions, presents special hazards.  Under the right conditions, ethylene 
can decompose with significant heat release causing temperature increases above 1500ºF.  Many 
serious incidents have occurred in industry due to ethylene decomposition resulting from a 
variety of causes (e.g., catalytic molecular sieves, uncontrolled adsorption in purification beds, 
sudden compression involving nitrogen, oxygen contamination, excess heating in stagnant 
systems) [1].   
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Many ethylene treaters are operated under dense phase ethylene conditions at high pressures and 
ambient temperatures associated with cavern storage and pipeline delivery.  Besides the highly 
flammable and reactive nature of ethylene, dense phase ethylene presents two special challenges:  

1. Pressure is well within the region where self-polymerization and decomposition is 
possible if temperatures are elevated, which can lead to equipment failure due to 
excessive heating.   

a. Where high pressure treaters are connected to low pressure regeneration systems, 
hazardous conditions can occur during operating transitions, where introduction 
of the high pressure dense phase stream into the low pressure piping system can 
cause heat-up due to vapor compression. 

b. Some adsorbents exhibit moderate reactivity with olefin streams, such as 
ethylene, and also may require special pre-loading procedures to limit temperature 
rise due to heat of adsorption upon introduction of the feed stream after 
regeneration.  If feed is introduced prior to pre-loading or into a hot bed, 
exothermic polymerization can cause further heat-up and potentially trigger 
ethylene decomposition.  (It should be noted that proper selection of adsorbent 
type is an important design consideration which can reduce this risk, however, 
this topic is not specifically addressed in this paper.) 

2. As ethylene pressure is reduced, a frequent occurrence in cyclic services such as treaters, 
ethylene enters the two-phase envelope resulting in liquid formation and auto-
refrigeration.  Uncontrolled depressurization can lead to shock chilling and brittle fracture 
concerns. 

Due to these unique safety concerns, selection of appropriate engineering design options for 
cyclic regeneration of dense phase ethylene treaters is a challenge.  Common options have 
significant advantages and disadvantages: 

• Totally automated treater regeneration systems reduce operator error likelihood, but add 
complexity and instrument maintenance requirements; 

• Manually operated systems are simpler, but rely heavily on operator training and 
procedures and usually cannot meet typical risk acceptance criteria;   

• Hybrid approaches require detailed risk and cost benefit analysis to justify modifications 
from conventional systems. 

In this paper, a risk assessment method is proposed to evaluate the engineering design and safe 
operation options for dense phase ethylene treaters by integrating human factors analysis into the 
traditional HAZOP, LOPA and fault tree analysis.  The objective is to allow evaluation of 
automated, manual and hybrid approaches with a goal of selecting and optimizing design options 
to ensure plant safety. 

Figure 1 provides a basic illustration of a dense phase ethylene treater with process and 
regeneration system connections.  Ethylene supply from the process flows downwards in the 
treater during the purification/drying cycle, which typically lasts about one month.  At the 
completion of the purification/drying cycle, treaters are switched, the spent treater is drained and 
depressured, and then heated regeneration nitrogen flows upwards through the treater bed in a 



purge, heating and cooling sequence.  Once the regenerated treater is cooled, it is placed in 
standby or back in service by slowly pressurizing and filling.  As noted earlier, this may involve 
a pre-loading step, however, for clarity pre-loading facilities are not shown in the figure.  The 
valve manifolds illustrated in the figure are critical to providing positive isolation between the 
process and the regeneration systems. 

 

Ethylene Treater

Regen Outlet

TI-1

TI-3

TI-2

TI-4

PT-1

Regen Inlet Process Outlet Process Inlet

To Regen System

PT-3

PT-2

TI-5

TI-6

TI-7

Heated
Nitrogen

 

Figure 1:  Schematic of Ethylene Treater 

 

Risk Assessment Results 

A risk assessment approach incorporating human factors task analysis and fault tree analysis was 
conducted following the traditional HAZOP/LOPA analysis.  This approach allowed for a more 
complete evaluation of the engineering design and safe operation options for dense phase 
ethylene treaters.  While the HAZOP method, conducted with experienced process engineers, 
design engineers and operators, is a good tool for team identification and evaluation of potential 
ethylene treater regeneration system hazard scenarios, use of LOPA alone can lead to complex 
solutions to meet the relatively conservative requirements for independent protection layers.  
This is especially true for routine operations with a high degree of human/machine interface.   

To illustrate the risk assessment process, six representative ethylene treater HAZOP scenarios 
were selected and are shown in Table 1, along with the associated LOPA analysis results.  The 
plan was to evaluate these scenarios using three proposed industrial practices - automated, 
manual and hybrid approaches, with the goal of selecting and optimizing design options to 
ensure plant safety. 



Table 1: Ethylene Treater HAZOP Scenarios and LOPA Analysis 

HAZOP/L
OPA 
Guide 
Word 

Cause 

Fre
q. 

(/yr
) 

Consequence Severity 

Targ
et 
Freq.
(3) (/y
r) 

IPL
s 
Req
’d 

Safeguards 
(Independent 
Protection Layers) 

IPL 
Type 

IP
Ls 

Tot
al 
IPL
s 

Comment 

1. 
Misdirect
ed Flow 

1.1 
Inadverten
t opening 
of the 
block 
valves on 
the 
ethylene 
treater 
regenerati
on inlet or 
outlet line 
on the 
online 
treater. 

0.1 (
1) 

1.1.1 Ethylene flows 
into the regeneration 
system resulting in 
compression of 
nitrogen with potential 
for decomposition, 
leading to overheating 
of the piping and loss 
of containment. 

Fire, 
explosion 
with 
potential 
loss of life 

Less 
than 
1E-
04 

4 

1. Blinding 
procedure 

Proced
ure 1 

 4-5 

Required 
risk 
reduction is 
achieved. 
. 

2. Trapped key 
interlock system on 
treater process and 
regeneration valves. 

Mechan
ical 
Interloc
k 

2(2) 

3. Double check 
valves on 
regeneration inlet 
line and rupture disk 
on regeneration 
outlet line. 

Other 
IPL 1-2 

1.1.2 Ethylene flows 
into the low pressure 
regeneration system 
with potential for 
overchilling of piping 
and equipment leading 
to brittle fracture and 
loss of containment. 

Fire, 
explosion 
with 
potential 
loss of life 

Less 
than 
1E-
04 

4 

1. Blinding 
procedure 

Proced
ure 1 

4 

2. Trapped key 
interlock system on 
treater process and 
regeneration valves. 

Mechan
ical 
Interloc
k 

2(2) 

4. Low temperature 
alarm 

DCS 
Alarm 1 

2.  Missed 
Step 

2.1 
Ethylene 
treater is 
not 
drained 
and 

0.1(

1) 

2.1.1 Ethylene flows 
into the regeneration 
system resulting in 
compression of 
nitrogen with potential 
for decomposition, 

Fire, 
explosion 
with 
potential 
loss of life 

Less 
than 
1E-
04 

4 

3. Double check 
valves on 
regeneration inlet 
line and rupture disk 
on regeneration 
outlet line. 

Other 
IPL 1-2  4-5 

Required 
risk 
reduction is 
achieved.   



HAZOP/L
OPA 
Guide 
Word 

Cause 

Fre
q. 

(/yr
) 

Consequence Severity 

Targ
et 
Freq.
(3) (/y
r) 

IPL
s 
Req
’d 

Safeguards 
(Independent 
Protection Layers) 

IPL 
Type 

IP
Ls 

Tot
al 
IPL
s 

Comment 

depressure
d before 
the 
regenerati
on inlet or 
outlet line 
is opened.  
(This step 
is done 
after 
blinding/u
n-
blinding.) 

leading to overheating 
of the piping and loss 
of containment. 

5. DCS Treater 
Regeneration 
Sequence 

DCS 
Control 1 

6. Automatic SIL-2 
isolation valves on 
the treater 
regeneration lines 
with permissives for 
opening based on 
treater pressure. 

SIF 2 

2.1.2 Ethylene flows 
into the low pressure 
regeneration system 
with potential for 
overchilling of piping 
and equipment leading 
to brittle fracture and 
loss of containment. 

Fire, 
explosion 
with 
potential 
loss of life 

Less 
than 
1E-
04 

4 

4. Low temperature 
alarm 

DCS 
Alarm 1 

4 

5. DCS Treater 
Regeneration 
Sequence 

DCS 
Control 1 

6. Automatic SIL-2 
isolation valves on 
the treater 
regeneration lines 
with permissives for 
opening based on 
treater pressure. 

SIF 2 

2.  Missed 
Step 

2.2 After 
regenerati
on, 

0.1(

1) 

2.2.1 Ethylene 
polymerization on the 
hot bed which causes 

Fire, 
explosion 
with 

Less 
than 
1E-

4 
5. DCS Treater 
Regeneration 
Sequence 

DCS 
Control 1 4 

Required 
risk 
reduction is 



HAZOP/L
OPA 
Guide 
Word 

Cause 

Fre
q. 

(/yr
) 

Consequence Severity 

Targ
et 
Freq.
(3) (/y
r) 

IPL
s 
Req
’d 

Safeguards 
(Independent 
Protection Layers) 

IPL 
Type 

IP
Ls 

Tot
al 
IPL
s 

Comment 

ethylene 
feed is re-
introduced 
into the 
treater 
prior to 
cool-
down. 

further heating and 
triggers 
decomposition, 
leading to overheating 
and loss of 
containment. 

potential 
loss of life 

04 
7.  Automatic SIL-3 
isolation valves on 
the treater process 
lines which close on 
high treater 
temperature.  

SIF 3 

achieved.  
However, 
SIL-3 
protection 
with 
automatic 
valves and 
permissives 
will be very 
expensive 
and may not 
be practical 
to achieve 
over the 
plant life 
cycle.  
Additional 
analysis is 
warranted. 

2.3 After 
regenerati
on, 
ethylene 
feed is re-
introduced 
into the 
treater 
prior to 
pre-
loading. 

0.1(

1) 

2.3.1 Heat-up of 
treater bed due to heat 
of adsorption resulting 
in ethylene 
polymerization which 
causes further heating 
and triggers 
decomposition, 
leading to overheating 
and loss of 
containment. 

Fire, 
explosion 
with 
potential 
loss of life 

Less 
than 
1E-
04 

4 

5. DCS Treater 
Regeneration 
Sequence 

DCS 
Control 1 

4 
7.  Automatic SIL-3 
isolation valves on 
the treater process 
lines which close on 
high treater 
temperature.  

SIF 3 

HAZOP/LOPA notes: 

1) Operator failure rate is based on treater regenerations once per month. [2] 

2) 2 IPLs are taken for a trapped key interlock system that requires that both process inlet and outlet valves are closed prior to 
allowing opening of the regeneration valves, and vice versa. [2] 

3) Target frequency is based on a typical industry risk matrix, which requires the likelihood of any scenario with potential loss of life 
to be reduced to less than once in 10,000 years. 



Discussion: 
 
HAZOP Scenarios: 

Ethylene treaters in dense phase service that are connected to low pressure nitrogen regeneration 
systems present a unique challenge.  Low pressure closed loop or once through regeneration 
systems are commonly used in industry and are often connected to multiple treater systems in a 
plant or unit.  Design of these systems for high pressure and brittle fracture resistance (e.g., 
stainless steel) is cost prohibitive; and therefore, protection schemes are employed to prevent 
inadvertent cross-connection of the process and regeneration streams.  The hazardous nature of 
this arrangement is captured in multiple HAZOP scenarios involving mis-lineups during treater 
switching operations.  Scenarios are often complicated by the fact that plants or units often have 
multiple sets of treaters that may be located next to each other in an effort to optimize the 
regeneration system piping layout.  Operator confusion, or shift-to-shift mis-communication, can 
result in opening the wrong valves and/or missed steps in the sequence of isolation, draining and 
depressuring a treater in preparation for regeneration. 

Table 1 includes a description of four such scenarios and the potential consequences.  In the 
event of a regeneration or process valve mis-alignment or skipped steps allowing ethylene into 
the regeneration system, one of two consequences can occur: 

1. If the regeneration outlet is closed, sudden compression of nitrogen in the regeneration 
piping system can trigger ethylene decomposition, leading to overheating of the piping. 
(Scenarios 1.1.1 and 2.1.1) 

2. If the regeneration outlet is open (typically through a back pressure control valve to a 
flare or VOC destruction device), then auto-refrigeration of the dense phase ethylene, 
which becomes flashing liquid as pressure is reduced, can result in brittle fracture of the 
carbon steel regeneration system. (Scenarios 1.1.2 and 2.1.2) 

Both consequences can result in loss of containment with a fire, explosion and potential impact 
to plant personnel. 

Table 1 also includes two scenarios (2.2.1 and 2.3.1), which involve a missed step during the 
sequence of placing a treater back in service following a regeneration.  Once again, this could be 
caused by operator confusion, or shift-to-shift mis-communication, especially in the case where 
the plant has multiple sets of treaters, some of which require a pre-loading procedure and others 
that do not.   

For some adsorbent types, skipping the treater cool-down step following a regeneration in 
Scenario 2.2.1 could lead to exothermic polymerization when ethylene feed is re-introduced onto 
the hot bed, causing further bed heat-up and triggering decomposition as the treater pressure 
increases.   Similarly in Scenario 2.3.1, for some adsorbent types, skipping the pre-load step, 
where a small flow of ethylene diluted with nitrogen is slowly added to the bed to control heat of 
adsorption, could result in a sharp bed temperature rise when ethylene feed is re-introduced.  
This could lead to the same consequence with exothermic polymerization causing further heat-up 
and triggering ethylene decomposition, ultimately leading to vessel over-temperature and failure 
with loss of containment. 

 



Layers of Protection Analysis (LOPA) Discussion: 

As shown in Table 1, LOPA analysis for scenarios 1.1.1 and 1.1.2 indicates the need for both a 
blinding procedure (for 1 IPL) and a mechanical interlock system (such as a trapped key 
interlock, for 2 IPLs) to prevent inadvertent valve mis-alignments.  In scenarios 2.1.1 and 2.1.2, a 
SIL-2 protective system involving automatic valves on the regeneration lines, with permissives 
for opening based on treater pressure, is suggested.  This is required to supplement the 1 IPL that 
can be taken for the treater regeneration sequence logic, which is implemented in the DCS.  SIL-
2 integrity is required since the large treater vessel contains enough mass to cause decomposition 
or brittle fracture if it is not drained and depressurized before either one of the regeneration 
valves is opened.  In these scenarios, the blinding procedure and mechanical interlock system do 
not provide protection since the process valves are already closed and blinding/un-blinding of 
appropriate lines in preparation for a regeneration would be completed prior to the draining 
operation.   

In the LOPA analysis for the last two scenarios, 2.2.1 and 2.3.1, a SIL-3 protective system with 
automated valves is suggested to prevent the operator from inadvertently placing the treater back 
in service prior to completing the cool-down or pre-load steps.  This system would supplement 
the single IPL taken for the DCS sequence logic.  The protective system would either prevent 
opening or would re-close the process inlet and outlet valves in the event of high bed temperature 
in order to stop the flow of the ethylene reactant and thereby limit the exothermic heating of the 
bed to below the point at which decomposition could be triggered.  SIL-3 integrity is required 
since the temperature rise in either scenario would be too fast to allow alarms and operator 
response to be used as an effective IPL.   

Together these results suggest that an automatic SIL-3 protective system may be the best solution 
since both the regeneration and process valves require automated action to cover all six 
scenarios.  However, a SIL-3 system would be expensive, and as with any high integrity system, 
it would be a challenge to maintain this level of performance over the life cycle of the treater 
system.  Total automation of the regeneration sequence may provide some advantages, however, 
since two valves are required on each process and regeneration line for isolation purposes, total 
automation would involve even more cost and complexity and would not typically be justified 
for a monthly operation.   

Finally, LOPA is a conservative analysis tool often used for screening purposes, and therefore it 
is prudent to conduct additional analysis when LOPA is driving the user towards a complex 
solution.  For this case, a human factors analysis of the treater regeneration procedure was 
conducted and incorporated into a fault tree analysis for the safeguards identified in the HAZOP. 

Fault Tree Analysis Discussion:  

Fault tree analysis was conducted for the six identified HAZOP/LOPA scenarios: 

− Scenarios 1.1.1 and 1.1.2 - Mis-alignment of the regeneration valve on the on-line treater, as 
shown in Figure 2. 

− Scenarios 2.1.1 and 2.1.2 - Opening the regeneration valve before the treater is drained and 
depressurized, as shown in Figure 3. 

− Scenario 2.2.1 - Re-introducing feed into a treater prior to cool-down, as shown in Figure 4. 



− Scenario 2.3.1 - Re-introducing feed into a treater prior to pre-loading, as shown in Figure 5. 
The following data and assumptions were utilized for this analysis: 

• The design ethylene treater regeneration frequency is once per month.   

• Tables 14.15 and 14.16 in Lee’s Loss Prevention Handbook [3] were used as the basis for the 
human error rates.  Error multiplication factors of 3 to 5 were used to account for the upper 
limit of data uncertainty.   

• Based on the human factors task analysis, credit was taken for immediate operator 
recognition and correction of the regeneration valve mis-alignment on an on-line treater in 3 
out of 4 instances.  This was based on the fact that opening the valve with excessive pressure 
drop would be more difficult, and the vibration and noise associated with sudden flow would 
be noticeable.  

• For the trapped key interlock mechanism, which would be attached to the manual block 
valves, a generic failure rate of 750 cycles with 10% failure probability was used based on 
the mechanical failure of the spring inside the interlock.  Using the regeneration frequency of 
the treaters (one regeneration involving 2 cycles/month/valve), the mean time to failure 
(MTTF) was estimated to be 300 years. [4]   

• Supplemental safeguards, such as DCS sequence logic, alarms, double dissimilar check 
valves and pressure relief devices are included in the fault trees with nominal IPL failure 
rates assigned, consistent with those used in the LOPA analysis. 

• In order to maintain a reasonable level of conservatism, the top event was assumed to be the 
process condition (high or low temperature) that could lead to piping or vessel failure.  No 
credit was taken for probability of failure, or for post-release conditional modifiers, such as 
likelihood of ignition, presence of the operator or likelihood of injury. 

 
Fault tree analysis for Scenarios 1.1.1 and 1.1.2 indicated that the trapped key interlock and the 
supplemental safeguard reduced the loss of containment frequency to an acceptable level, 3.7E-
5/yr.  This was achieved even without the use of the blinding safeguard.  As such, for these 
scenarios, blinding would not be a required step in the regeneration procedure and this has the 
advantage of eliminating the need to opening up equipment to install or remove blinds.   

Given the risk reduction achieved by the trapped key interlock in Scenarios 1.1.1 and 1.1.2, use 
of this safeguard in a hybrid approach to address the other scenarios was suggested.  This will 
maintain a simpler system utilizing manual block valves for the process and regeneration system 
isolation.  A fault tree analysis was developed for utilizing the trapped key interlock with a 
pressure and/or temperature permissive for Scenarios 2.1.1, 2.1.2, 2.2.1 and 2.3.1 in lieu of the 
SIL-2 or SIL-3 automated isolation valves.  The concept was to design the trapped key interlock 
system with appropriate process variable inputs to create a permissive using a key release 
solenoid.   

For example, in Scenarios 2.1.1 and 2.1.2, the key utilized to open the first regeneration valve 
can be trapped in a key exchange box, until the closed process valve keys are inserted and the 
treater pressure input meets a pre-determined low setpoint.  The key required to open the first 
regeneration valve cannot be obtained, until both conditions are satisfied.  If this hybrid 



arrangement achieves the required risk reduction factor, it would greatly simplify the overall 
design and avoid the need for a complex and costly SIL-3 instrumented system. 

Similarly for Scenario 2.2.1, the key utilized to open the first process valve can be trapped in a 
key exchange box, until both closed regeneration valve keys are inserted and the treater 
temperature meets a pre-determined low setpoint (confirming completion of the cool-down step).  
For Scenario 2.3.1, the key utilized to open the first process valve can be trapped in a key 
exchange box, until both closed regeneration valve keys are inserted and the treater pressure 
meets a pre-determined high setpoint (confirming that pre-loading has been completed).  

For the fault tree analysis of Scenarios 2.1.1, 2.1.2, 2.2.1 and 2.3.1, the following additional data 
and assumptions for utilizing the trapped key interlock with a pressure and/or temperature 
permissive were utilized: 

• Generic equipment data from SERH (Safety Equipment Reliability Handbook) was used for 
failure rates of the pressure and temperature sensors a logic solver and the key release 
solenoid to be utilized as part of the pressure and temperature permissives.   

• Each ethylene treater will require multiple independent pressure and temperature 
transmitters, with one set providing input to a DCS treater regeneration sequence, another 
providing alarm inputs and a third providing input to an SIS as part of the key release 
solenoid pressure and temperature permissives. 

Fault tree analysis for Scenarios 2.1.1 and 2.1.2 confirmed that the trapped key interlock with the 
integrated low pressure permissive provides the required risk reduction, with a loss of 
containment frequency of 8.1E-5/yr.  Likewise for Scenario 2.2.1 the trapped key interlock with 
the low temperature permissive reduced the loss of containment frequency to 9.3E-5/yr and for 
Scenario 2.3.1 the trapped key interlock with the high pressure permissive reduced the frequency 
to 8.1E-5/yr.  Fault tree analysis results for all six scenarios are summarized in Table 2. 

Table 2: Ethylene Treater Scenario Fault Tree Analysis Results 

Scenario Top Event Description 
Top Event 
Frequency 
(/yr) 

1.1.1, 
1.1.2 

Mis-alignment of the regeneration valve on the on-line treater resulting 
in gross flow of ethylene into the regeneration system with potential 
loss of containment due to decomposition or brittle fracture 

3.7 E-5 

2.1.1, 
2.1.2 

Opening the regeneration valve before the ethylene treater is drained 
and depressurized resulting in sudden emptying of the treater contents 
into the regeneration system with potential loss of containment due to 
decomposition or brittle fracture 

8.1 E-5 

2.2.1 
Lining up ethylene feed to the treater before the cool-down step is 
completed after a regeneration with potential loss of containment due 
to overheating from polymerization and decomposition 

9.3 E-5 

2.3.1 Lining up ethylene feed to the treater before the pre-loading step is 8.1 E-5 



completed after a regeneration with potential loss of containment due 
to overheating from heat of adsorption, polymerization and 
decomposition 

 

Conclusions: 

Using a combination of HAZOP scenario identification, LOPA, human factors task analysis and 
fault tree analysis, a cost effective design solution was developed to manage the unique risks 
associated with dense phase ethylene treater and regeneration systems.  The hybrid solution 
maintained a simpler system utilizing manual block valves for process and regeneration system 
isolation.  A trapped key interlock system on the block valves, with treater vessel pressure and 
temperature permissives, provided fit-for-purpose risk reduction.  These techniques not only 
avoided the cost and complexity of implementing a SIL-3 instrumented safety system, they also 
identified that the risks associated with routine opening of process equipment for blinding and 
un-blinding could be avoided as well. 
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Figure 2: Fault Tree Diagram – Scenarios 1.1.1 and 1.1.2 
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Figure 3: Fault Tree Diagram – Scenarios 2.1.1 and 2.1.2 
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Pressure
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Treater
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Console operator
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Incorrect setup

Q=0.001 w=0
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Pressure
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Mechanical Key
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Demand estimated as
12/year due to 1 regen
/month.

Lees table 14.15
Procedure w/o checklist provision
>10 items = 0.01
Error Factor = 3
1 repressurization per regeneration

Based on typical device
information: MTTF = 300
years
MTTR = 3 days
Testing interval = 2 years

Lees table 14.16
2nd operator misses active
verification = 0.01
Error Factor = 4
Shift change miscommunication
factor = 3

Generic Pressure Transmitter
SERH 1.6.2
Failure Rate = 600 FIT =
5.26E-3/yr
MTTR=72 Hours = 0.0082 years
Testing interval = 2 years

Generic two-way solenoid
SERH 3.1.1
Failure Rate = 580 FIT =
0.0051 /year
MTTR=3 days
Testing interval = 2 years

Generic exSILentia logic solver
Failure Rate = 8.76E-5 /year
MTTR=3 days
Testing interval = 2 years

Generic Pressure Transmitter
SERH 1.6.2
Failure Rate = 600 FIT =
5.26E-3/yr
MTTR=72 Hours = 0.0082 years
Testing interval = 2 years

Based on typical device
information: MTTF = 300
years
MTTR = 3 days
Testing interval = 2 years



Figure 4: Fault Tree Diagram – Scenario 2.2.1 
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Demand estimated as
12/year due to 1 regen
/month.

Lees table 14.15
Procedure w/o checklist provision
>10 items = 0.01
Error Factor = 3
1 repressurization per regeneration

Based on typical device
information: MTTF = 300
years
MTTR = 3 days
Testing interval = 2 years

Lees table 14.16
2nd operator misses active
verification = 0.01
Error Factor = 4
Shift change miscommunication
factor = 3

Generic two-way solenoid
SERH 3.1.1
Failure Rate = 580 FIT =
0.0051 /year
MTTR=3 days
Testing interval = 2 years

Generic exSILentia logic solver
Failure Rate = 8.76E-5 /year
MTTR=3 days
Testing interval = 2 years

Based on typical device
information: MTTF = 300
years
MTTR = 3 days
Testing interval = 2 years

Generic Temperature Sensor
and Transmitter, SERH 1.8.2
Failure Rate = 309 FIT =
2.7E-3/yr
MTTR=72 Hours
Testing interval = 1 year



Figure 5: Fault Tree Diagram – Scenario 2.3.1 
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Demand estimated as
12/year due to 1 regen
/month.

Lees table 14.15
Procedure w/o checklist
provision >10 items = 0.01
Error Factor = 3

Based on typical device
information: MTTF = 300
years
MTTR = 3 days
Testing interval = 2 years

Lees table 14.16
2nd operator misses active
verification = 0.01
Error Factor = 4
Shift change miscommunication
factor = 3

Generic Pressure Transmitter
SERH 1.6.2
Failure Rate = 600 FIT =
5.26E-3/yr
MTTR=72 Hours = 0.0082 years
Testing interval = 2 years

Generic two-way solenoid
SERH 3.1.1
Failure Rate = 580 FIT =
0.0051 /year
MTTR=3 days
Testing interval = 2 years

Generic exSILentia logic solver
Failure Rate = 8.76E-5 /year
MTTR=3 days
Testing interval = 2 years

Generic Pressure Transmitter
SERH 1.6.2
Failure Rate = 600 FIT =
5.26E-3/yr
MTTR=72 Hours = 0.0082 years
Testing interval = 2 years

Based on typical device
information: MTTF = 300
years
MTTR = 3 days
Testing interval = 2 years
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