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Abstract 
Onshore pipeline failure caused by corrosion represents about 16% of the overall number of 
incidents during the period from 2004 to 2011 according to databases such as CONCAWE and 
PHMSA. In-Line Inspection (ILI) is one of the available inspection techniques used to determine 
overall pipeline status, highlighted because it establishes a clear perspective of inner and outer 
condition of the pipe against the failure modes and wall thickness. Furthermore, it supports 
measures to prevent risk based on standards such as ASMEB31G or API579-1/ASME FFS-1. 
However, this approximation could represent a conservative assessment of the pipeline status, 
taking into account the uncertainty associated with ILI inspection tools such as MFL and UT. 
Several researches have been conducted to analyze available inspection techniques attempting to 
reduce noise generated by their inspection tools, and determine procedures in order to establish 
correct metal loss detection, excelling pattern recognition analysis and reliability concepts. 
Therefore this work seeks to transform a set of data obtained from two ILI runs, into useful 
information to support decision making in risk analysis based on pattern recognition techniques 
and reliability concepts, in order to obtain base failure frequencies for prior analysis from 
individual and grouped flaws. Moreover, growth corrosion and remaining life models supported 
on the standards mentioned above were evaluated using a pressure failure criteria. As a result it 
was obtained that the failure probability of the grouped flaws increases 10% in comparison with 
the corresponding flaws evaluated individually. 
  

1. Introduction 
 
Onshore pipeline for hydrocarbon transportation is the safest mean to supply energy demands 
worldwide. It is highlighted due to its low accidental frequency and small amount of related 
reported incidents with affected population [1]. Likewise, it represents the mean of transportation 
most used with a 71% in comparison with other means (e.g. ships and barges with 22%) [2]. 
Even though different tools to failure prevention are available, accidental events are still 



happening as it can be evidenced in databases such as CONCAWE and PHMSA. One hazard 
identified in these databases is associated with corrosion, which represents 18% and 13% of the 
reported cases between 2004 to 2011 in PHMSA [3] and CONCAWE [4], respectively. 
 
One of the processes that address this hazard is pipeline integrity evaluation, which covers 
concepts of failure prevention, inspection-repair, among others [5]. This process implements 
non-destructive inspection techniques to inspect material defects without damaging the evaluated 
object. The Code of Federal Regulation for liquids and gases (CFR 192 and CFR 195, 
respectively) recognizes three acceptable methods to assess the mechanical integrity of a 
pipeline: i) In-Line Inspection, ii) hydrostatic tests and iii) direct assessment [6]. This last one is 
very useful for unpiggable systems, i.e. pipelines where a PIG (Pipeline Inspection Gauge) tool 
cannot be implemented. In-Line Inspection analysis (developed in guidance with NACE 
RP0102-2002 standard) is highlighted because it establishes a clear perspective of the inner and 
outer condition of the pipe against the failure type and the wall thickness. Moreover, it is the 
only inspection technique which offers a total coverage of the pipe [7], by implementing tools 
such as MFL (Magnetic Flux Leakage) or UT (Ultrasound) to determine the presence of 
corrosion and material loss.  
 
Based on information from those tools, pipeline integrity evaluation can be obtained by 
implementing different standards such as NACE SP0169 (Control of External corrosion on 
underground or submerged Metallic piping system) [8], API 1160 (Managing System Integrity 
for Hazardous Liquid Pipelines) [9], API 579-1/ASME FFS-1 (Fitness for Service) [10], 
ASMEB31G (Manual for determining the remaining strength of corroded pipelines) [11] or 
DNV RP-F-101 (Recommended practices  for corrode pipelines) [12]. However, some of these 
standards correspond to a conservative assessment of the corroded pipeline -as it can be shown 
in- given the noise associated with the analysis tools and by the fact that most of these standards 
use a deterministic rather than a probabilistic approximation [13, 14, 15]. For that reason, several 
researches have been conducted, in order to take advantage of the available information 
obtained, and establish a correct classification of the flaws or improve the metal loss detection on 
the pipe. One of the excelling tools is pattern recognition is the Support Vector Machines and 
Neural Networks, which has been used for example in leaking detection [16, 17, 18], for 
automatic flaw detection [19] or for the detection of wall thinning by the use of ultrasonic signals 
[20].  
 
This work seeks to implement pattern recognition techniques to transform a set of available ILI 
runs, taking into account the uncertainty associated with the inspection tools, into useful 
information in order to support decision making. For the learning of the pattern recognition 
technique, defects grouping criteria from the standards API 579-1/ASME FFS-1 and 
ASMEB31G were took into consideration. Moreover, since the corrosion hazard is a time 
dependent phenomenon, it was developed a growth corrosion model to determine the failure 
probability and the remaining life of the evaluated pipeline.  
 
This paper is organized as follows: Section 2 contains the inspection accuracies of the ILI tools 
and the level assessments of the corrosion flaws (Level 0, Level 1, Level 2 and Level 3) from the 
standard ASMEB31G. Section 3 presents a review of growth corrosion models; Section 4 
contains the proposed model, which includes: the growth corrosion model, failure probability, 



and remaining life assessments; case of study is presented in Section 5, and the results analysis in 
Section 6. Finally, Section 7 contains concluding remarks. 
 

2. Inspection accuracies and ASMEB31G level assessments  
 
The provided information in an ILI analysis basically consists on geometric information of the 
encountered flaws on the pipeline (e.g. the length, depth, width, the circumferential position, 
among others) that is used in mechanical integrity analysis. Two important aspects to consider 
are the obtained flaw specifications (detection and identification probability) and the confidence 
level of data (Table 1) [7].  
 
Cracks have to be found and ideally dimensioned, before they reach a certain critical size of the 
material. In Fracture Mechanics, this size is the boundary between having a subcritical crack and 
a rapid crack growth which is independent of the external load, conducted by the energy stored 
in the front of the crack tip [21]. One of the available tools to assess corrosion defects 
corresponds to the usage of Level 0, 1, 2 and 3 of ASMEB31G, which corresponds with the 
benchmark for the pipeline evaluation [22]. 
 

Table 1. In-Line Inspection corrosion tools comparison 
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circumferential extent of an anomaly [6]. MFL is 
stress sensitive, recent attention has been focused on 
using these tools to detect mechanical damage in the 
pipe caused by rocks, landslide or third party 
interference [23]. 

Metal loss on either the inside or 
outside surface is detected by a 
change in the time of flight of the 
signal. Likewise, it identifies 
other types of flaws on the 
pipeline as cracks or material 
separation [6]. 
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 Long narrow areas of metal loss or axial cracks 
cannot be detected because the flux field is parallel to 
the length of the anomaly and the flux is not pushed 
outside of the wall thickness [6]. 

This tool does not detect cracks 
with a length shorter than 30 mm. 
Moreover, must have a minimum 
depth of 2 mm [24]. 
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With a 80% of confidence, there are two types of 
tools [25]: 
• Industrial standard (high resolution): ± 10% of 

the wall thickness detection. 
• Extra high resolution: ± 5% of the wall thickness 

detection. 

With a 90% of confidence [25]: 
Industrial standard: ± 4 mm 

 
This standard has the purpose to provide guidance in the evaluation of metal loss in pressurized 
pipeline systems, for the pipelines included in the transport code of the ASMEB31G. It is 
applicable for the assessment of metal loss due to internal and external corrosion, at any depth 
respect to the wall thickness. However, it is not applicable for selective corrosion or to evaluate 
the metal loss on accessories different from pipeline elbows. The user could choose between 
Level 0, 1, 2 or 3 depending on the amount and quality of the available data, which the 
assessment are going to develop, likewise, their level of refinement should be taken into account 
[11]. 



 
Just to mention, Level 0 evaluation implements permissible length tables, while a Level 1 
evaluation use simple measurements as the maximum defect depth and the axial extent of the 
metal loss. This level is used to determine which flaws have a higher priority over all the 
identified. A Level 2 evaluation incorporates a greater level of detail than a Level 1 evaluation in 
order to produce a more accurate estimate of the failure pressure. It typically relies on detailed 
measurements of the corroded surface profile, accounting for the actual distribution of metal 
loss. An evaluation of Level 3 is a detailed analysis of a specific failure with user-defined 
methodology, generally finite elements. The latter assessment is beyond the scope of this work. 
The Level 0, Level 1 and Level 2 methodology determine if a flaw is permissible or not. It is 
worth to be mentioned, that ASMEB31G defines a flaw as permissible, if its failure stress is 
equal or higher than the hoop stress at the operating pressure multiplied by a safety factor (no 
shorter than 1.25). Moreover, it is recommended to use the ratio between the design pressure and 
MAOP (Maximum allowable operating pressure) for this safety factor [11]. 
 

3. Review of existing corrosion growth models 
 
As it was mentioned above, corrosion is a time dependent hazard so it is necessary to develop a 
model for growth corrosion considering the available information from the ILI runs. Several 
growth corrosion models are used in the oil and gas industry, e.g. the Waard model, Casandra 
model, Norsok model, Hydrocor model, KSC model, and the SwRI [26]; however, most of the 
models are deterministic and dependent of the fluid properties. For that reason, in this work the 
Hasan and the Amirat models were implemented. The Hasan model develops a probabilistic 
approach and the Amirat model implement a power law fitting of historical data. 
   

3.1. Hasan model: 
Hasan et al. (2012) made a review of different mathematical models to determine growth 
corrosion, highlighting: the Waard-Milliams equation, Waard-Lotz equation and the SwRI 
(South West Research Institute) model. The first two equations were found to provide 
comparatively higher corrosion rates with lower correlation with data. Therefore, the third 
equation, developed by SwRI, is considered for the rate estimation [Eq.1] [27].  
 
𝑑𝑎
𝑑𝑡

= 𝑘 ∗ 𝐶1 ∗ 0,0254

∗ �8.7 + 9.86𝑒−3 (𝑂2)− 1.48𝑒−7(𝑂2)21.31(𝑝𝐻)
+  4.93𝑒−2(𝑝𝐶𝑂2)�𝑝𝐻2𝑆� − 4.82𝑒−5�𝑝𝐶𝑂2�(𝑂2) − 2.37𝑒−3�𝑝𝐻2𝑆�(𝑂2)
− 1.11𝑒−3(𝑂2)(𝑝𝐻)� 

[Eq. 
1] 

Where: 
• 𝑂2, is oxygen concentration [ppm]. 
• 𝑘, is a modeling error. 
• 𝑝𝐻2𝑆, is the partial pressure of the hydrogen sulfide in the mix [bar]. 
• 𝑝𝐶𝑂2, is the partial pressure of carbon dioxide in the mix [bar]. 
• 𝐶1, is the inhibitor correction factor, given by: 𝐶1 = 1 − exp �−𝐴 𝐿

𝐿𝑜
� 

 
3.2.Amirat model: 



The second model was the proposed by Amirat et al. (2006), for uniform corrosion. It uses a 
power law regression to represent the metal loss of the wall thickness given an exposure time. If 
𝑘 and 𝑛 are constants, the general form of the corrosion power law is written as [Eq.2], where 𝑡𝑐 
is the thickness of the corroded layer (in mm) and  𝑇 is the elapsed time. To obtain the unknown 
constants fitting from historical corrosion data is necessary [28].  
 

𝑡𝑐 = 𝑘𝑇𝑛 [Eq.2] 
4. Pattern recognition-based corrosion model  

 
The proposed model was developed taking into account the available information by the ILI 
runs, the inspection tools measurement accuracy, and the review of the growth corrosion models. 
This model uses a probabilistic approximation for the corrosion growth and a pressure failure 
criterion to determine the failure probability not only for individual defects, but also for groups 
of defects (obtained by pattern recognition techniques). Furthermore, the remaining life of the 
pipeline is evaluated by the implementation of the standard API 579-1/ASME FFS-1. 
 

4.1.Probabilistic model: 
The probabilistic model to determine the growth corrosion rate was developed base on the 
available data from the two ILI runs. Changes in the depth defects between the two ILI runs were 
determined, using an uncertainty of 5% of the implemented inspection tool to locate the 
corrosion defects (MFL with extra high resolution). 
 
Once the depth changes were obtained from the corrosion flaws, it was assumed that they were 
independent between each other in order to perform Goodness for Fit Tests, and could determine 
the distribution that better fits to the available data. The tests implemented were: Kolmogorov-
Smirnov, Anderson-Darling and Chi-Square. The mathematical aspects of each of the tests could 
be review in [29] 
 

4.2.Failure criterion: 
Once the growth corrosion rate is determined, it is possible to establish if the system fulfill the 
sufficient requirements for its correct operation, or if a failure will occur at any point of their life 
cycle. In engineering design the distinction between the modes of failure are typically reached by 
categories of design criteria, which are commonly named as limit states. As is stated in [30], the 
common base for different reliability levels is the introduction of the limit state function, which 
represents a mathematical definition of an event failure in mechanical terms. With the aim to 
obtain this function, it is necessary to determine the maximum allowable loads of the structure 
(usually named as a resistance R) and the loads that the structure would be subjected (named as 
solicitation S). The reason why this general approach was applied is because the resistance and 
the solicitation usually depend on many parameters [Eq. 3], which corresponds to a reliability 
problem with high dimension [30].  
 

𝑔(𝑥1, 𝑥2, … ) = 𝑅(𝑥1, 𝑥2, … ) − 𝑆(𝑥1, 𝑥2, … ) [Eq.3] 
It is worth to be mentioned that for positive values of the limit state function the evaluate 
structure would be in a safe state, while in negative values the evaluated structure would be in a 
failure state. In case that the structure is at the boundary between the two cases mention above, it 



would be on a failure surface. Based on the mentioned above, it was implemented a pressure 
limit state function with the operating pressure as solicitation and the burst pressure (where the 
pipe wall bulges outward and reach a point of instability [31]) as the resistance. Four models 
were used to determine the burst pressure: ASMEB31G (2009) [11], DNV RP-F101 (2010) [12], 
CSA 662-07 (2007) [32] and Netto et al. (2005) [33].  
 

4.3.Grouping criterion 
Most of the researches work done in corrosion assessment has focused on learning about isolated 
defects; however, the pressure of an interacting defect will be lower than in the isolated case 
because it will interact with their neighbor’s defects. Some standards such as DNV RP-F101, BS 
7910, CSA Z184, API579-1/ASME FFS-1, and ASMEB31G provide guidance for grouping and 
assessing metal loss defects that may interact [34, 35]. The ASMEB31G criterion establishes that 
two flaws interact between each other if the distance among them (circumferentially or axially) is 
shorter than three times the wall thickness of the evaluated pipeline [11]. The API579-1/ASME 
FFS-1 grouping criterion begins with initial measurements of the maximum longitudinal and 
circumferential extents of the flaw, and then it is develop an imaginary box with twice the flaw 
size determined before. If another flaw exists within that box, the flaws are grouped and the 
imaginary box should adjust its size to include the addition area [10]. Figure 1 shows an example 
of this last grouping criterion. It is worth to be mentioned, that the implementation of the defect 
clock position (available from the ILI runs) on the pipeline is necessary for any of these 
approximations. The clock position is defined as the relative distance of an object described 
using an analogy of a 12-hour clock [36].   
 

 
Figure 1. API 579-1/ASME FFS-1 grouping criterion [10] 

 
As is well known, pattern recognition is classified as supervised or unsupervised learning. In the 
first case, it is assumed that a set of training data was available and the classifier was designed by 
exploiting this a priori known information and to design the classification region [37]. In the 
other side, training data of known class labels are not available. In this type of problem, it is 
given a set of a feature vector and the goal is to unravel the underlying similarities and join the 
similar vectors together [37]. Concerning the grouping defect criterion, pattern recognition 
techniques could be used to cluster the defects not only by a supervised learning, taking into 
account one of the standards approximation criterion explained above -as a training set-, but also 
with an unsupervised learning using the distance between them.  
 



Some of the most important supervised learning classifiers are linear classifiers (e.g. Rosenblatt 
Perceptron and Fisher or Gaussian), linear or logistic regressions, support vector machines, 
regression trees, and k-nearest neighbors. In unsupervised learning classifiers, the most important 
classifiers are PCA (Principal Component Analysis), hierarchical or fuzzy clustering, and K-
means [38].  
 

4.4.Failure probability 
The resistance and the solicitation explained above have a probabilistic -rather than a 
deterministic- approximation, taking into account the uncertainty of the mechanical parameters 
they are based on. For that reason, the failure probability is obtained integrating the join 
probability distribution on the failure region. Assuming that all the involved random variables in 
the system are given by �⃗� = (𝑥1, 𝑥2, … , 𝑥𝑛) and the limit state function is 𝑔��⃗�� = 0, it follows 
that the failure probability is calculated as [Eq. 4] [39], where 𝑓𝑋�⃗  (�⃗�) denotes the variables vector 
join probability distribution. It is worth to be mentioned, that failure probability integration has 
an analytic solution only in special cases, hence it is necessary to implement alternative methods 
such as numerical integration, Monte Carlo simulation or approximated methods such as FORM 
(First Order Reliability Method) [39]. 
 

𝑃𝑓 = 𝑃�𝑔��⃗�� ≤ 0� = �…
𝑔�𝑋�⃗ �≤0

� 𝑓𝑋�⃗  (�⃗�)𝑑�⃗� [Eq.4] 

Just to mention, the general definition of the reliability index (Hasofer and Lind), corresponds to 
the minimum distance from the origin in a normalized space, to the limit state function. The 
point where the distance is shorter is the most probable failure point or the design point [39]. 
FORM is an iterative procedure used to determine the reliability index for a nonlinear (as well as 
linear) limit state function. It is an analytical approximation in which the reliability index is 
interpreted as the minimum distance from the origin to the limit state surface in a standardized 
normal space and the design point. The construction and the relevant aspects of FORM could be 
review in [39, 40, 41]. 
 

4.5.Remaining life 
Another important tool to support decision making in pipelines, is the remaining life analysis. 
Corrosion is a time dependent process, therefore, if their damage cannot be addressed to mitigate 
it, the possible consequences of the future flaws should be evaluated in order to ensure that the 
defects do not reach its critical measure, before to the next inspection. Some standards that assess 
the remaining life are API 579-1/ASME FFS-1 and API 570 (Piping Inspector Program) [42]. 
 
The API 579-1/ASME FFS-1 fitness-for-service assessment procedures cover both the present 
integrity of the component given a current state of damage and the projected remaining life. The 
assessment techniques involved in this standard includes flaws evaluation for general and 
localized corrosion, widespread and localized pitting, blisters and hydrogen damage, crack-like 
flaws including environmental cracking, dents and gouges, and remaining life assessment 
procedures for components operating in the creep range [10]. 
 
For this standard, the remaining life of a component could be determined by two approaches: the 
maximum allowable working pressure (MAWP) and the maxim fill height (MFH) [10]. In the 
first case, it begins with the calculation of the minimum allowable thickness (𝑡𝑚𝑖𝑛), the average 



thickness at time of the inspection (𝑡𝑎𝑚), and the estimated corrosion rate (𝐶𝑟𝑎𝑡𝑒) [Eq. 5]. The 
calculation of these parameters is shown in [43]. 
 
 

𝑅𝐿 =
𝑡𝑎𝑚 − 𝐾𝑡𝑚𝑖𝑛

𝐶𝑟𝑎𝑡𝑒
 [Eq.5] 

Besides of the implementation of standards for assessing the pipeline remaining life, there are 
several deterioration models. Structural deterioration, generally is defined as any change on a 
material or geometric property, which affects their structural capacity. Assuming that a structural 
component has an initial capacity, it can be determined the structural deterioration based on the 
initial state and the cumulative deterioration in a certain time. According with the evaluated 
capacity, there are two fundamentals thresholds: 1) the system intervention is necessary and a 
preventive maintenance should be employed to obtain a new initial capacity. 2) The component 
should be replaced due to the excessive mechanical deterioration [44].  
 

5. Case of study 
 
The case of study of this work is based on two ILI runs (ILI Run-1 and ILI Run-2) of a pipeline 
named as Pipeline-A with a timespan of two years between each inspection. This pipeline is 
made of carbon steel with an alloy of grade API5LX52. Table 2 shows a summary of the 
evaluated system. 

Table 2.  Pipeline-A summary parameters 
Parameter Value Units 

Outer diameter 273.1 mm 
Nominal diameter 10 in 

Pipeline length 44 km 
MAOP (Maximum Allowable Operating 

Pressure) 
1500 psig 

SMYS (Specified Minimum Yield 
Strength) 

52000 psig 

SMTS (Specified minimum tensile 
strength) 

60000 psig 

Average wall thickness 6.35 mm 
Operating temperature range 30.4-

33.9 
℃ 

Operating velocity range 1.7-2.4 m/s 
 
An MFL tool was used to perform the ILI inspection, however, its accuracy is unknown. Hence 
it was develop a review of the available tools of the company which conducts the inspection, 
shown in Table 3.  
 
 
 
 
 



Table 3. MFL tools of ROSEN [45] 

Tool 

Circumferen
tial 

localization 
accuracy 

Depth 
accuracy[m

m] 

Length accuracy 
(Level of 

confidence) [mm] 

Width accuracy 
(Level of 

confidence) [mm] 

RoCombo MFL-A/UT 
Service 8mm 0.06 6 (95%) 8 (95%) 

ROCORR MFL-A 
SERVICE 5% 0.1 t 15 (80%) 15 (80%) 

ROCOMBO MFL-C/XT 
SERVICE NR* 0.15 t 15 (80%) 15 (80%) 

ROCORR MFL-A BIDI 
SERVICE 5% 0.1 t 15 (80%) 15 (80%) 

ROCOMBO MFL-A/XT 
SERVICE NR 0.1 t 15 (80%) 15 (80%) 

ROCORR MFL-C 
SERVICE 5% 0.15 t 15 (80%) 15 (80%) 

*NR: No reporting parameter for this tool 
 

6. Analysis 
 
A first approach to make a processing data is to classify each defect by their morphology. One of 
the industrial classification criteria corresponds to the one reported by the Pipeline Operators 
Forum (POF) (Table 4). This approximation is based on the defects measurements: length (L), 
width (W) and a parameter A which corresponds to the wall thickness (if it is greater than 10 
mm) or 10 mm otherwise [36].  

Table 4. Metal loss anomaly classification [36] 
Anomaly dimension 

class 
Definition 

General {W>=3A} y {L>=3A} 
Pitting {1A<=W<6A} , {1A<=L<6A} y 

{0,5<L/W<2}  
Axial grooving {1A<=W<3A} y {L/W>=2} 
Circumferential 
grooving 

{L/W<=0,5} y {1A<=L<3A} 

Pinhole {0<W<1A} y {0<L<1A} 
Axial slotting {0<W<1A} y {L>1A} 
Circumferential slotting {W>1A} y {0<L<1A} 

 
Nevertheless, due to the uncertainty of the pipeline inspection tools for axial defects, the 
responsible vendor company performs field comparison in order to obtain a final classification of 
the reported flaws according to their morphology. This classification is included in the ILI 
available runs. Considering the mentioned above, it was developed a metal loss distribution of 
the evaluated pipeline with the reported morphology classification, for the inner and outer wall 
of the pipeline, for the both ILI runs (Figure 2).   



 
Figure 2. Failure distribution according to their morphology for inner and outer pipeline 

wall 
 

Based on this distribution, it can be evidenced that: i) almost 50% of the defects are classified as 
pitting and the remaining are distributed mainly in circumferential slotting, and ii) the metal loss 
defects are focused in the inner wall. It is worth to be mentioned, that some of the metal loss 
anomaly classification from Table 4 are not reported in the ILI runs, as the pinhole case, which 
could correspond to the inspection tool accuracy restrictions, reported by the company vendor 
[46]. 

 
6.1. ASMEB31G Evaluation 

As it was discussed above, it was developed a Level 0, Level 1 and Level 2 evaluation of the 
reported corrosion defects from the ILI runs. These evaluations were implemented with the data 
from the inner and outer wall of the pipeline, with the aim to identify non-permissible pipeline 
section over the pipeline abscissa. For that reason, it was determined the non-permissible 
pipeline section distribution for each evaluation level, in order to identify the most critical 
pipeline sections. Table 5 shows the results obtained for the sections with more than 5% of the 
non-permissible reported defects, in each ILI run.  
 
It should be noted, that Level 2 evaluation is performed using the effective area method. It is a 
similar procedure as the Level 1 evaluation, but instead of implementing a parabolic 
approximation, it uses the real defect profile to assess the ratio of the metal loss areas [11]. 
However, the real defects profiles were not available in the ILI runs; therefore an approximation 
of the effective area was developed using the mean defect depth (available in the ILI runs).  
 
 
 
 
 
 
 
 
 
 
 



Table 5. Level 0, 1 and 2 evaluation results of the selected segments 

Abscissa 
(km) 

Level 0 Level 1 Level 2 
ILI Run-1 ILI Run-2 ILI Run-1 ILI Run-2 ILI Run-1 ILI Run-2 

Inner 
wall 
(%) 

Outer 
wall 
(%) 

Inner 
wall 
(%) 

Outer 
wall 
(%) 

Inner 
wall 
(%) 

Outer 
wall 
(%) 

Inner 
wall 
(%) 

Outer 
wall 
(%) 

Inner 
wall 
(%) 

Outer 
wall 
(%) 

Inner 
wall 
(%) 

Outer 
wall 
(%) 

1 0.00 9.52 0.00 0.00 0.00 31.60 5.82 27.11 0.00 31.60 5.76 26.95 
2 0.00 0.00 0.00 3.57 11.54 23.11 10.58 27.41 7.84 23.11 10.47 27.25 
3 0.00 0.00 0.00 0.00 30.77 9.91 16.93 15.06 20.92 9.91 16.75 14.97 
4 0.00 0.00 0.00 0.00 31.73 18.40 32.28 15.96 21.57 18.40 31.94 15.87 
5 0.00 4.76 25.00 3.57 25.96 13.21 33.86 11.45 17.65 13.21 33.51 11.38 
9 0.00 19.05 0.00 7.14 0.00 0.94 0.00 0.00 0.00 0.94 0.00 0.00 
11 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
12 0.00 4.76 0.00 10.71 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.90 
14 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.00 
28 0.00 4.76 25.00 7.14 0.00 0.47 0.00 0.30 0.00 0.00 0.52 0.30 
31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.23 0.00 0.00 0.00 
34 0.00 4.76 0.00 10.71 0.00 0.47 0.00 0.60 0.00 0.47 0.00 0.60 
35 0.00 4.76 0.00 7.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
43 0.00 14.29 25.00 17.86 0.00 0.94 0.53 0.60 3.92 0.47 0.52 0.60 
44 0.00 9.52 0.00 0.00 0.00 0.00 0.00 0.00 5.23 0.94 0.00 0.00 
45 0.00 9.52 0.00 14.29 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.60 

Note: The red color represents an increase of percentage from the ILI Run-1 and ILI Run-2 
evaluations. The green color represents a decrease of percentage from the ILI Run-1 to the ILI 
Run-2 evaluation. The yellow color represents there were no changes in the percentage from the 
ILI Run-1 to the ILI Run-2 evaluation. 
 
As it can be noted in Table 5, the Level 0 results from the ILI Run-1 (at the inner wall) shows 
that only the kilometer 11 obtained non-permissible metal losses, while at the outer wall, it was 
distributed along the pipeline abscissa, highlighting the segments from the km 5 to 9, and km 43 
to 45, which represents the 57.14% of the non-permissible segments. The results obtained 
between ILI Run-1 and ILI Run-2 were compared on the same evaluation level, obtaining that in 
ILI Run-2 ILI run does not occurs non-permissible defects in the inner wall at the kilometer 11, 
but such defects were distributed in the km 5, 14, 28 and 43. This result suggests a repair or 
maintenance over that pipe section between ILI Run-1 and ILI Run-2. In relation to the outer 
wall of the pipe, it was obtained that in the km 12, 28, 34, 43 and 45 occur the greater increases 
of the non-permissible defects in comparison to the ILI Run-1 reported data (the km 12 and 34 
segment show the greater increases with 5.95%). 
 
According to the results obtained from the Level 1 and Level 2 evaluations, there were not 
reported important non-permissible defects at the km 11 -nor km 45-, unlikely to the results 
reported in the Level 0 evaluation (with a mean of 74% from the total non-permissible defects in 
those segments). Suggesting that this last evaluation corresponds to a more conservative 
evaluation as is stated in [11]. For that reason, the selection of the segments was focused on the 
Level 1 and Level 2 evaluations. The selected pipeline segments were the km 1 to 5, since they 
represents an average of the 94% of non-permissible defects in these evaluations. 



Finally, the total failure frequencies were obtained from each evaluation level (Table 6). These 
frequencies were calculated using the ratio of all the non-permissible defects over the total 
number of defects and the length of the evaluated pipeline. It is highlighted that the results from 
the Level 0 evaluation, presents an important change between the two ILI runs (6.85e-08 - 3.12e-
05 to 2.89e-06 – 2.62e-05). 
 
The obtained failure frequencies were compared with the standard DNV RP-F101 –a 
recommended practice for corroded pipelines-, obtaining that the Level 0 results are classified 
with a high-normal safety class (because their frequencies are lower than 1e-05 and 1e-04), while 
the Level 1 and Level 2 are classified as a low safety class (their frequency is lower than 1e-03). 
DNV Safety Class High is used for sections of pipeline that are close to platforms, or in areas 
with frequent human activity. Safety Class Low can be considered, e.g. water injection pipelines 
[12]. 
 
Table 6. Total failure frequencies for each ASMEB31G evaluation level 

Evaluated 
dataset 

Failure frequency(event/km*year) 
Level 0 Level 1 Level 2 

INT ILI Run-
1 6.85E-08 2.97E-04 3.01E-04 

EXT ILI Run-
1 3.12E-05 4.46E-04 4.35E-04 

INT ILI Run-
2 2.89E-06 4.07E-04 4.07E-04 

EXT ILI Run-
2 2.62E-05 6.52E-04 6.52E-04 

 
The deepest defects were located using the clock position and the abscissa of the pipeline, 
obtaining that the km 1, km 5, km 7, km 9, km 33, km 34 and km 43, present a depth greater than 
the 50% of the wall thickness (Figure 3). These defects are all located on the outer pipeline wall.  

 
Figure 3. Corrosion defects with a depth greater than the 50% of the wall thickness.  

 
The data processing was focused on the selected pipeline segments by the ASMEB31G 
evaluation (which determined the segments with higher number of non-permissible defects) and 
the localization of the deepest defects on the pipeline (which identifies the weakest segments).  
 



It was developed a comparison between the selected segments by their number of defects and 
some basic statistics of the maximum depth in those kilometers, shown in Table 7. Based on the 
results obtained, it was identified that the km 5, 33 and 43 represents the most critical segments 
because their average depth is greater. Besides, the km 5, 7 and 33 have greater depths in the 
outer wall (85%); while the km 5, 7 and 43 in the inner wall. 
 
Table 7. Results of number of defects and depth ranges of the selected sections 

Abscissa 
 (km) 

Number of defects  Average depth/Min/Max [% wall thickness] 
Inner 
wall  
(ILI 

Run-1) 

Outer 
wall   
(ILI 

Run-1) 

Inner 
wall 
(ILI 

Run-2) 

Outer 
wall  
(ILI 

Run-2) 

Inner wall   
(ILI Run-

1) 

Outer wall   
(ILI Run-1) 

Inner wall 
(ILI Run-

2) 

Outer wall   
(ILI Run-

2) 

1 0 87 17 116 - 16.52 /10/74 10.59 
/10/12 

12.20 
/10/30 

2 12 54 21 103 11.25 
/10/20 13.35 /10/46 10.52 

/10/15 
12.32 
/10/53 

3 34 22 35 56 11.62 
/10/19 12.32 /10/20 10.60 

/10/16 
10.73 
/10/15 

4 38 48 71 65 12.18 
/10/18 14.52 /10/23 10.93 

/10/22 
13.61 
/10/25 

5 32 33 73 74 11.80 
/10/21 18.27 /10/85 11.89 

/10/22 
13.03 
/10/36 

7 771 1 1259 0 11.80 
/10/23 85 /85/85 11.54 

/10/27 - 

9 707 265 2003 215 11.71 
/10/19 19.29 /10/69 11.19 

/10/26 
19.75 
/10/52 

33 348 9 899 4 11.58 
/10/19 30/10/85 11.18 

/10/21  21 /12/24 

34 0 1829 456 2998 - 15.99 /10/26 11.12 
/10/21 

14.37 
/10/60 

43 1305 180 1764 236 11.92 
/10/31 20.35 /10/58 11.63 

/10/39 
19.64 
/10/58 

 
6.2.Growth corrosion model 

A comparison of the evaluated growth corrosion models was performed according to their 
required inputs available from the ILI runs, the external from the ILI runs, and the output of each 
model (Table 8).  
 
Table 8. Growth corrosion models summary 

Class of 
parameters 

Hasan (2012) Amirat (2006) Probabilistic model 

Input (ILI) d, t, 𝜎𝑢, 𝜎𝑦, l, L t, year 𝛥𝑑 (Depth change) 
External input 𝑃𝑜𝑝, fluid properties 𝑘,  𝑛 (fit parameters) Goodness for fit tests 

Output Corrosion rate 
[mm/year] 

Corroded wall thickness 
(𝑡𝑐) en T 

Corrosion delta per 
year [mm] 



 
Table 8 shows that the Hasan model requires the operating pressure and the fluid properties; 
which are not included in the available data from the ILI runs, and clearly they do not correspond 
to single values. Therefore, Hasan proposed to use probability density functions as the 
Lognormal for the fluid properties, and a Gumbel or maximum values distribution for the 
operation pressure [27]. On the other side, the Amirat model was fitted with the available two ILI 
runs, assuming that only two temporally spaces exists. The defects were split into two categories: 
1) the defects that appeared in the ILI Run-2, but not in the corresponding on ILI Run-1 and, 2) 
the defects that appeared in both ILI runs. 
 
Finally, for the probabilistic model was implemented the Goodness for Fit Tests, obtaining that 
the corrosion rate was fitted to 58 continuous distributions. One of the distributions that have a 
better behavior was the Gamma distribution, with a shape parameter of 1.318 and a scale 
parameter of 2.478. This result agrees with the reported in [47, 48, 49], associated with the metal 
loss evaluation by growth corrosion.  
 
The three models explained above were evaluated over the time as it is shown in Figure 4. The 
results were divided into three regions: A safe zone, a plastic strain region and a structural 
damage region. These regions were determined considering that the average wall thickness of the 
evaluated pipeline is 6.35 mm, and -as is mentioned in the DNV RP F-101 standard [12]- the 
plastic strain is reached when the defect depth reaches an 85% of the wall thickness. Moreover, 
with this figure an estimated remaining life of the pipeline can be obtained using the needed time 
to reach the plastic strain region, finding: Hasan model, 30 years; Probabilistic model, 40 years, 
and Amirat model 65 years. 

 
Figure 4. Results of the growth corrosion rate models.  

 
Based on the information of Table 8 and the results obtained in Figure 4, the Hasan and the 
Amirat models were not taken into consideration. In first place, the Hasan model requires many 
unknown parameters of the fluid properties and the operating pressure, which would generate an 
important uncertainty in the final results. In the other hand, the Amirat model was not used 
because the available ILI runs are not sufficient to establish a correct trend between the 



implemented fit with the power law growth corrosion. Consequently, this work uses the last 
model associated with a probabilistic approximation (Gamma distribution). 
 

6.3.Grouping flaws 
The grouping criterion implemented was the proposed by ASMEB31G, instead of the discussed 
above from the API 579-1/ASME FFS-1, due to the uncertainty associated with the ILI 
inspection tool to determine the axial and circumferential measurements of each flaw [50]. The 
ASMEB31G criterion establishes that two flaws interact between each other if the distance 
among them (circumferentially or axially) is shorter than three times the wall thickness of the 
evaluated pipeline. To determine whether a defect could be classified as grouped, circumferences 
around every defect with radius of three times the wall thickness were implemented, obtaining a 
potential grouping region. On the evaluated region it was determined if there exists another 
defect besides the center. Once the grouping defects were formed, it was necessary to join the 
nearest defects to obtain the equivalent dimensions of the grouped flaws (Figure 5).  
 

 
Figure 5. Grouping flaw criterion with final dimensions 

 
This grouping criterion was applied on every corrosion defect in the ILI Run-1, obtaining 2268 
groups.  Moreover, it was evidenced that the defects groups are concentrated in the last half of 
the pipeline and in most of the cases they follow a circumferential grouping. This behavior 
suggests that the joins and welds along the pipeline may be the cause in most of the cases, taking 
into account that corrosion defects are often focus on a 200 mm distance from the welded joints 
[51]. 
 
In this work a supervised and an unsupervised pattern recognition techniques were implemented 
to assess the grouping of corrosion defects. In the supervised case, it was used the groups 
obtained with the grouping classification criterion established in ASMEB31G, as a training 
sample to perform the ILI Run-2 grouping classification. In the other case, it was used an 
unsupervised pattern recognition technique to group the defects by their location using the 
groupable defects.  
 

6.3.1. Supervised classification: 
Since this classification problem corresponds to a highly nonlinear problem and it has 2268 
categories, procedures associated with a linear classifier cannot be implemented (or regression 



type). Therefore, methods such as the Fisher linear discriminant, support vector machine (SVM) 
and k-nearest neighbors should be tested to perform the classification. 
 
Just to mention, the Fisher classifier has the purpose to find a hyperplane in which the projected 
data in that direction have a maximum separation between the evaluated categories. Moreover, 
this classifier is used to address The Curse of dimensionality, because it works in a reduced 
classifying space [52]. The support vector machine obtains a description that is capable to form a 
decision boundary around the domain of the training sample, with very little knowledge of the 
data that are outside of it. This is an approximation that uses a kernel map seeking the maximum 
separation between the categories, hence when it is mapped to the original space could separate 
the different categories [53]. Finally, the k-nearest neighbor’s method begins with a new query 
which is used to determine the k nearest neighbors using a Euclidean distance. Subsequently, it is 
assigned the category corresponding to the majority of the sample of the k neighbors.   
 
To evaluate the Fisher linear discriminant, the dimension of the sample was reduced by 
projecting the data in the direction where the distance between each of the categories is 
maximized. Reduced variables were obtained by projecting on the clock position direction. Once 
the data were projected on the reduced variable, linear classifiers obtaining an important 
classification error, since many classes are overlapped and a distinction between groups is not 
feasible. Therefore this approach was not taken into account. 
 
The k-nearest neighbors (KNN) and SVM methods need certain parameters to perform their 
respective classification. The KNN method requires the number of neighbors in which the voting 
criterion is based on, in order to determine the category of the new queries, while the SVM 
requires the penalizing parameter of the constraints violation. To determine the best parameters 
to perform the classification, a Cross-Validation test was carried out for each technique. In this 
test different values of each parameter were evaluated against their mean squared error in order 
to select those who obtained the minimum error. In the case of the KNN classifier it was 
evaluated different kernels, while for the SVM classification a radial kernel was used.  

 
From the results obtained in both Cross-Validation tests, it was determined that the classifier that 
should be used is the KNN classifier (with an inverse kernel and 4-nearest neighbors) instead of 
the SVM. This selection is due to the obtained classification mean squared error, which for the 
KNN was a fourth time shorter than for the SVM classifier. The results obtained with the SVM 
classifier could be caused by the constraints associated with the sample size [54].     
 

6.3.2. Unsupervised classification: 
This work implements K-Means, one of the most widely used procedures to perform an 
unsupervised analysis. K-Means is a procedure that defines K centroids, which are called as 
prototypes or grouping centers. For each observation of the testing sample is calculated the 
distance to each centroid, hence, the observation is assigned to the cluster with the nearest 
distance to the centroid. Finally, the centroids are calculated again as a random process and the 
procedure is repeated until there are no changes [38]. 
 
The K-Means procedure was implemented on the ILI Run-2, in the free statistic software R-
Project. The method used in this software was the Harigan & Wong algorithm [55], which uses 



as input an M x N matrix (M-observations of N-dimensions), and an initial matrix K of N-
dimensions with the preliminary clusters. This method seeks to obtain a partition of the sample in 
the K clusters, in which a local optimum in the square sum in each cluster is reached by moving 
observations from one cluster to another. In order to obtain the best classification possible, it was 
implemented a sensitivity analysis of the number of centroids against the within cluster sum of 
square distances for each cluster. From this result, it was found that the number of centroids 
should be 3806. There is no sense taking a larger number of centroids, which would be 
equivalent to a smaller sum square distance for each cluster, because the number of centroids 
would exceed the half of the initial grouping categories, ensuring that there will be one or more 
centroids with only one defect.  
 
The supervised and the unsupervised classification techniques were used to obtain the equivalent 
grouping dimensions, as is shown in Figure 5, to perform a further evaluation of their failure 
probability and compare with the individual failure probability.  
 

6.4.Failure probability 
Given that the pressure failure criterion was selected to evaluate the growth corrosion, the limit 
state equation of ASMEB31G [11], DNV RP-F101 [12], CSA 662-07 [32] and Netto model [33] 
were implemented. These models calculate the burst pressure from the depth of the defects, the 
wall thickness, pipeline diameter, length of defects, and their stresses (yield and tensile).  
 
To develop the FORM method it was necessary to assume that the wall thickness, the yield stress 
(SMYS) and the tensile stress (SMTS) were constant. This is not a strong assumption 
considering that 99.9% of the reported data from the ILI runs have a yield stress value of 359 
MPa, and 98.9% have a reported wall thickness of 6.35 mm. Since the operating pressure was 
unknown, it was taken as a random variable with a Gumbel or maximum values distribution, as is 
proposed by Hasan [27]. It is worth to be mention, that this variable was adjusted with a mean 
shorter than the reported MAOP (Maximum Allowable Operating Pressure).  
 
It was used the software 2R-Soft with its packages 2RData and 2RRel. The first package was 
used to fit the data obtained in the cumulative growth corrosion model using at the beginning the 
reported defects in the ILI Run-2. In the second package the FORM method was developed 
based on the results from the first package and the assumptions mentioned above. However, the 
results obtained with this software could not be compared with the corresponding of Monte Carlo 
and the reliability index, because results after 32 years are not possible to be generated. Given 
the limitations found with FORM for the first case, it was not taken into account.  
 
From the results obtained in Figure 6, it can be noted that the failure probability of the system 
changes significantly between each of the models evaluated. For example, the failure probability 
at 20 years using Monte Carlo simulation for each model is: ASMEB31G 60%, Netto 10%, DNV 
70% and CSA 20%. These results suggest that the standards ASMEB31G and DNV RP-F101 
approximation could be a little conservative in comparison to the Netto and CSA 
approximations. This agrees with the exposed by Teixeira et al. (2008) [13], where a comparison 
was performed between ASMEB31G approximation and the Netto model.  
 



 
Figure 6. Failure probability results using Monte Carlo Simulation and the reliability index 
The results in Figure 6 corresponds to the failure probability for individual defects, regardless the 
possible groups it could be formed as it was mentioned before. Based on the parameters found by 
the Cross-validation method for the k-nearest neighbors and K-Means methods, the failure 
probability was determined for each of the evaluated models, for both of the pattern recognition 
techniques as is shown in Figure 7. However, given that the Monte Carlo results have a behavior 
very similar to the obtained by the reliability index, but the latter approximation has a 
computational time greatly lower, the only approach used for the grouping defects was the 
reliability index.  
 

 
Figure 7. Failure probability results with the reliability index including groupings  

 
It is worth to be mentioned that the failure probability of the grouping defects was calculated 
using the equivalent dimension (according to Figure 5), but those results correspond with the 
width and length of the new grouped defects. For their depth, it was used the maximum depth 
from the set of individual defects. Figure 7 shows that there is not a significant difference 
between the failure probability for the individual and grouped defects for a time shorter than 15 



years and greater than 35 years, but in the period between 15-35 years present an increase of 
10% between the individual and grouped defects. This is coherent because the grouped defects 
by the ASMEB31G criterion only represents the 13% of all the defects reported in the ILI runs.  
 

6.5.Remaining life analysis 
It should be mentioned that the pipeline safety is not necessary related to their operating time, for 
example, only the 15% of the reported events in PHMSA during the period 2002-2009 were 
associated to that parameter. However, according to Kiefner (2012) [56] this factor may be the 
driving force for occurring accidents due to other hazards such as external corrosion or 
landslides. Therefore, it can be said that this approximation is useful to support decision making 
associated with the needed time between inspections or maintenances in order to extent their 
lifetime. 
 
It was used the approximation from the standard API 579-1/ASME FFS-1 to determine the 
remaining life of the case of study. It was assumed that the pipeline has 85% of weld efficiency 
(E) and an allowable stress (S) of 72% of the yield stress, although an 80% could be used as is 
stated in [57].  
    
A Monte Carlo simulation was developed to determine the remaining life of each corrosion 
defect in the ILI runs, using the probabilistic growth corrosion model explained above. From the 
results, the maximum, minimum, and average pipeline remaining life were calculated for each 
year simulated of all corrosion defects (Figure 8). In the results obtained, it can be noted that 
there exists corrosion defects that should be treated in the next five years, and that the pipeline 
would have a maximum remaining life of 50 years, which is consistent with the results obtained 
in Figure 4 and Figure 6. 
 

 
Figure 8. Maximum, minimum and mean remaining life 

 
The remaining life results provide a perspective of the system status, projected over time. 
However, the API 579-1/ASME FFS-1 corresponds to a deterministic approximation even it is 
well known all the uncertainty associated in their evaluation. Consequently, it was developed 
two probabilistic approximations to determine the remaining life of the system (Figure 9). In the 
first place, it was used the numerator of [Eq. 5] as a limit state function, i.e. the difference 
between the minimum wall thickness and the average wall thickness in the last inspection. In 
second place, the results obtained from the maximum remaining life analysis were used to 



determine an empirical probability that the pipeline had a positive remaining life, in a given time 
t. 
 
Figure 9 shows that the first approximation (Monte Carlo) has a 30% probability of having a 
remaining life of 40 years (since the elapsed time of the ILI inspection), while the second 
approximation has a probability of 70% for the same year. Besides it could be noted that the 
system would have a remaining life greater than 30 years with a probability near of 100%. The 
difference between the results obtained in both approximation, suggests that the API 579-
1/ASME FFS-1 is a conservative approximation to assess the remaining life of a pipeline, like it 
was exposed by Jaske [43]. Therefore, other approximations should be used to address this 
analysis. Deterioration process should take into account, principally random progressive 
deterioration which it is usually a slow continuous time-dependent phenomenon, which is 
caused, for instance, by chloride ingress, corrosion, or fatigue [44]. 
 

 
Figure 9. Remaining life probability  

7. Conclusions 
 
Based on the work done, it can be concluded that pattern recognition techniques and reliability 
concepts could be used to support decision making in oil pipelines. In the case of pattern 
recognition, supervised and unsupervised techniques were used to assess grouping corrosion 
defects. While the reliability concepts, were used to calculate an approach of the failure 
probability of the system.  
 
It was implemented the k-nearest neighbors technique for a supervised learning and K-Mean for 
the unsupervised case. It was also evaluated two more supervised techniques (Fisher linear 
discriminant and Support Vector Machines) obtaining a mean squared error greater than the 
corresponding to k-nearest neighbors with 4 neighbors and an inverse kernel (parameters 
obtained by a Cross-Validation test). 
 
Reliability concepts and Monte Carlo simulation were implemented to determine an 
approximation of the failure probability, obtaining similar results in both cases with the 



difference that the computational time for the reliability index case was substantially shorter in 
comparison to a conventional method as Monte Carlo.  
 
The results obtained in the failure probability in the grouping and the individual defects 
assessment did not present a significant difference for a time shorter than 15 years and greater 
than 35 years, but in the period between 15-35 years it present an increase of 10% between the 
individual and grouped defects. 
 
The conventional models to assess the corrosion defects (the ASMEB31G and DNV RP-F101) 
correspond to conservative assessments in comparison to other models such as the Netto and 
CSA 662-07. Furthermore, one of these models should be used taking into account a grouping 
criterion such as the one from ASMEB31G, in order to not underestimate the failure probability 
or the remaining life of the pipeline.  
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