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Abstract 
 

Sponsored by the Chemical Security Analysis Center (CSAC) of the U.S. Department of 

Homeland Security, the Defense Threat Reduction Agency (DTRA) of the U.S. Department of 

Defense, and Transport Canada, the Jack Rabbit II tests were designed to release liquid chlorine 

at ambient temperature in quantities of 5 to 20 T for the purpose of quantifying the behavior and 

hazards of catastrophic chlorine releases at scales represented by rail and truck transport vessels.  

Phase 1 of the two-year testing campaign was conducted at Dugway Proving Ground, Utah, in 

August and September of 2015.  Five successful field trials were conducted in which chlorine was 

released in quantities of 5 to 10 tons through a 6-inch circular breach in the tank and directed 

vertically downward at 1 m elevation over a concrete pad.  In 2016, four trials were conducted 

with three releases of nominally 10 T at different orientations and a single release of 20 T vertically 

downward. Data from the 2015 tests are available.  This paper summarizes preliminary analysis of 

the available data from the concrete pad including analysis of the temperature measurements below 

and grade in the concrete pad.   

 

 

Introduction 

Initiated by the U.S. Department of Homeland Security (DHS) Transportation Security 

Administration (TSA) Freight Rail HAZMAT division, the Department of Homeland Security 

(DHS) Chemical Security Analysis Center (CSAC) planned and conducted the Jack Rabbit (I) 

test series, a series of mid-sized field tests on the two highest priority toxic inhalation hazard 

(TIH) materials, chlorine and anhydrous ammonia (Fox and Storwold, 2011).  The one and two 

(short) ton releases were conducted at the Dugway Proving Grounds (DPG) in April and May of 

2010 for the overall goal of improving the understanding of the consequences of large scale TIH 

releases.  Key findings of the tests were the significant persistence of the denser-than-air clouds 

formed during the release (more prevalent with increased release size) (Hanna et al., 2012) and 

the extent to which chlorine removal could mitigate the impact of a release (Hearn et al., 2012). 



 

As a continuation of the previous tests, the Jack Rabbit II (JRII) test program was started in 2014 

to focus on large scale, controlled chlorine field experiments representative of releases from 

railcars and tank-trucks (5 to 20 tons).  The broad scientific goals of the test program are to 

collect data on the release source, cloud transport and dispersion, chemical reactions with the 

environment (including potential mitigation effects), exposure effects on equipment and 

infrastructure, and effect of releases within a mock urban test environment including indoor 

infiltration.  In addition, the program will provide data, training materials, and guidance for 

improved emergency response efforts and support the Homeland Security Enterprise by 

providing quality-assured data and scientifically-based guidance to partners and stakeholders to 

address assessment of TIH hazards. 

 

Preparations for the tests were organized using a series of working groups to handle specific 

aspects of the program including: 

 Data Quality Working Group 

 Instrumentation Working Group 

 Mock Urban and Indoor Environment Working Group 

 Modeling Working Group 

 Dissemination and Near Source Working Group 

Oversight and coordination of activities of the working groups is through the program’s 

Scientific Advisory Group (SAG) with final approval by CSAC. 

 

The dissemination system consisted of a custom-built vessel (disseminator) and support system 

including load cells for continuous force (mass) measurement during the release.  The system 

was centered on a 25 m diameter concrete pad approximately 6 in deep designed to collect liquid 

rainout and to protect the gravel pad constructed on the playa at DPG from the chlorine aerosol 

jet anticipated during the tests.  The intention was for the concrete pad to be level and flat, but 

the process of pouring the large pad at the remote testing location resulted in imperfections such 

as low or high areas on the pad.  The process was also made more difficult because of the desire 

to not have cracks or expansion joints were chlorine could seep below the pad creating 

operational issues.  A 1 in lip was installed at the edge of the pad to keep liquid from flowing 

onto the gravel pad.  Details of the vessel, support system, and vessel instrumentation are 

reported elsewhere (Spicer et al, 2016). 

 

At this point, the tests conducted in 2015 and 2016 have been completed, but data from the 2016 

tests has yet to be released.  Table 1 summarizes the tests conducted during the 2015 season.  All 

times are local times (MST).  The release time is taken to be the time in the data acquisition 

system when the load cells reflect a significant change.  In Table 1, the chlorine mass released 

was calculated from the difference between the four vertical load cells before and after the 

release.  In Trial 5, the data acquisition system failed during the release, so the final (tare) mass 

was taken to be the average of the final mass in the previous four tests. 

 

 

 

 

 



Table 1.  Jack Rabbit II Test Summary for 2015 Trials 

 

Trial Date 
Release 

Time 

Mass 

Released 

(T) 

Wind 

Direction 

Wind 

Speed 

(m/s) 

Air 

Temperature 

(°C) 

Pressure 

(Pa) 

Relative 

Humidity 

(%) 

1 8/24 7:35:45.50 5.01 147° 2.0 17.7 87400 39.2 

2 8/28 9:24:20.00 9.03 158° 4.2 22.7 87500 32.8 

3 8/29 7:56:55.31 5.03 169° 3.9 22.7 87100 30.2 

4 9/1 8:38:47.05 7.73 183° 2.3 22.6 86900 26.8 

5 9/3 7:28:17.26 9.20 182° 2.7 22.2 86700 26.5 

In the 2015 and 2016 tests, measurements were made in an attempt to quantify the rainout on the 

concrete pad at three measurement stations (Figure 1).  Locations labeled Pad 1 and 2 included 

thermocouples (Type K, 24 AWG) above grade and embedded in the concrete pad along with 

Guided Wave Radar (GWR) instruments.  This was a nonstandard use of the GWR in an attempt 

to quantify the anticipated rainout, but the liquid rainout was insufficient to be measured by the 

GWR.  Preliminary calculations had indicated that a significant amount of rainout was predicted 

by several models, which prompted the addition of the GWR in the event that rainout was 

significant.  At Pad 3, only thermocouples were deployed.  Planning for the 2016 tests included 

the addition of an inner ring (28 ft diameter, 12 in high) on a single test in an attempt to trap the 

rainout so that it could be measured with the GWR at Pad 2, but this test was unable to be 

conducted because of weather and scheduling issues.  This paper discusses the temperature 

measurements made in the concrete pad during the 2015 tests. 

 

 
 

 

Figure 1.  Overhead view of Disseminator on concrete pad showing measurement locations 

 

 



Temperature Measurements in the Concrete Pad during 2015 Testing 
 

At all three pad locations, thermocouples were placed below grade by making vertical cuts in the 

concrete pad, placing the thermocouple at the specified depth, and (re-)filling with concrete.  To 

reduce the potential impact of thermal conduction along the length of the wire, the thermocouple 

wire was placed below grade in the vertical cut for approximately 10 cm so that the wire lead 

was (roughly) horizontal in the vertical cut.  One wire was placed in each vertical cut, and 

vertical cuts were spaced roughly 10 cm apart in parallel.  In addition to a thermocouple 

similarly placed at the concrete surface (so that the wire lead was below grade), thermocouples 

were placed at depths of 0.03, 0.06, 0.09, 0.15, and 0.22 mm.  (Thermocouples above grade were 

at elevations of 0.5, 1, 2.5, 10, 40, 100, 200, and 300 cm.) 

 

Figure 2 shows the surface temperature measured at all three Pad locations in Trial 2.  (Trial 2 

was chosen as an example because it was the largest mass released in 2015 testing with data 

collection; the data acquisition system failed during Trial 5 shortly after the release started.)  

Figure 2 shows that the temperatures dropped rapidly after the start of the release and quickly fell 

to the boiling point at ambient pressure (-37.2 °C).  Although data was intended to be collected at 

100 Hz, data acquisition issues caused data to be recorded at roughly 0.5 Hz (once every 2 s). 

 

 

 
 

Figure 2.  Surface temperature measurements at all Pad locations as a function of time in Trial 2. 

 

 

Figure 3 shows the measured temperature as a function of depth and time at Pad 1.  The 

temperatures are initially ordered as would be expected with coldest temperatures near the 

surface.  Note that the release duration for Trial 2 was roughly 53 s (based on load cell 

measurements), and the surface temperature at Pad 1 was near the boiling point until roughly 200 
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s indicating liquid likely present until the ground surface temperature starts to increase.  All of 

the measurements (except at 6 mm) also show the effect of continuing to cool after the cold 

surface temperature starts to warm to ambient temperature.  A plausible explanation of these 

measurements would be that the 6 mm thermocouple was at a local high spot in the concrete so 

that surface liquid evaporated away from this location before the area where the other 

thermocouples were placed.  Consequently, the measurements at 6 mm will be excluded from 

further analysis at Pad 1. 

 

 

 
 

Figure 3.  Measured temperature as a function of depth in the concrete pad at Pad 1. 

 

 

Figure 4 shows the measured temperature as a function of depth and time at Pad 2.  The 

measurements at 6 and 22 mm show the temperature dropping to the boiling point almost 

immediately indicating that there was likely liquid infiltration to the thermocouple along the 

length of the wire.  The 6 mm measurements are consistent with the surface temperature 

measurements during the release indicating this thermocouple was essentially recording 

temperatures at the concrete surface.  Although it is difficult to determine from the plot, the 

measurements at 3 and 9 mm are essentially identical likely indicating an issue with 

thermocouple placement.  Also, the measurement at 15 mm shows a lower minimum temperature 

than was recorded at 3 and 9 mm.  As at Pad 1, the measured surface temperature is near the 

boiling point for roughly 200 s longer than the release duration.  Note that the surface 

temperature drops below the boiling point while the release is ongoing.  Temperatures below the 

boiling point can be observed due to liquid phase chlorine contacting air (vapor/liquid equilibria 

causes the liquid to cool below its boiling point).  Close inspection of Figure 4 shows that the 

temperatures below the boiling point last for the duration of the release (53 s) after which time 

the temperature rises slightly above the boiling point before falling to the normal boiling point at 
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around 130 s.  Furthermore, the measurements at 22 mm show the temperature increasing from 

the boiling liquid temperature at roughly 60 s after the release started. 

 

A plausible explanation of these temperatures is that during the release, liquid chlorine is in 

contact with air around Pad 2 but the liquid is only in a thin film which changes phase shortly 

after the release is complete.  Immediately after the release stops, cold gas is present at Pad 3, but 

as time goes along, some chlorine aerosol flows back over the area due to unevenness in the 

concrete pad.  Measurements at 3, 9, and 15 mm are starting to show warmer temperatures which 

would be consistent with high heat transfer rates during the release with heat transfer rates 

significantly declining after the release stops.  Consequently, the surface temperature 

measurement seems reliable at Pad 2, and the measurements at 3, 9, and 15 mm seem plausible 

but at different locations which may not be easily determined. 

 

 

 
 

Figure 4.  Measured temperature as a function of depth in the concrete pad at Pad 2. 

 

 

Figure 5 shows the measured temperature as a function of depth and time at Pad 3.  The 

measurement at 22 mm again shows the temperature dropping to the boiling point almost 

immediately indicating that there was likely liquid infiltration to the thermocouple along the 

length of the wire.  As at Pad 2, the measurements at 22 mm show the temperature increasing 

from the boiling liquid temperature at roughly 60 s after the release started.  The measured 

surface temperature also rises above the boiling point at the end of the release, and this is 

consistent with the fact that Pad 3 is the farthest measurement location from the release point. 

The measurements at 3, 9, and 15 mm seem to be consistent with liquid being present up until 

the end of the release and quickly evaporating after the release is complete.  The measurements 
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at 6 mm seem unusually noisy and erratic.  Consequently, the measurements at 6 and 22 mm will 

be excluded from further analysis at Pad 3. 

 

 
 

Figure 5.  Measured temperature as a function of depth in the concrete pad at Pad 3. 

 

 

Table 2 summarizes the findings as considered here for Trial 2.  The consistency of the 

thermocouple readings across all tests need to also be considered, but this exercise in incomplete 

at present.  (For example, a thermocouple with questioned measurements would not be expected 

to spontaneously produce more reliable measurements in a subsequent trial.)  

 

 

Table 2.  Summary of observations taken from temperature measurements in the concrete pad 

taken during Trial 2. 

 

Measurement Location 

Valid Temperature 

Measurement Depths 

(mm) 

Liquid Chlorine Present 

Pad 1 grade, 3, 9, 15, 22 
substantial liquid puddle 

lasting 200 s 

Pad 2 grade (3, 9, 15)* 

thin liquid puddle that 

evaporates soon after the 

release is complete 

Pad 3 grade, 3, 9, 15 

thin liquid puddle that 

evaporates soon after the 

release is complete 

* large uncertainty in the depth of these measurements 
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Analysis of Temperature Measurements 
 

The theory for calculating the temperature profile in a solid is well established.  One-dimensional 

heat transfer in a solid is governed by the Fourier Equation: 
 

 𝜕T

𝜕t
=  

k

𝜌Cp
 
𝜕2T

𝜕2x
=  α 

𝜕2T

𝜕2x
 (1)  

 

where k is the thermal conductivity, Cp is the heat capacity, ρ is the density, α is the thermal 

diffusivity (k/(ρCp)), and T is a function of depth x and time t.  (For simplicity, the depth x ≥ 0.)  

As is shown in the data, the surface temperature remains constant (T(x=0) = -37.2°C) when 

liquid appears to be present, but after the liquid evaporates, a convective boundary condition 

should be applied 
 

 
q′′(t) =  −k 

𝜕T

𝜕x
|

x=0
= h(Ta-T0) (2)  

 

where q″ is the surface heat flux, h is a convective heat transfer coefficient, Ta is the ambient 

temperature, and T0 is the surface temperature.  Equation (1) can be rewritten as a system of 

ordinary differential equations on a spatial grid with temperatures Ti(t) using a second order 

approximation to the spatial derivative:   
 

 dTi

dt
=  α 

d2T

d2x

=  α (
2Ti+1

(xi+1-xi)(xi+1-xi-1)
+

2Ti

(xi+1-xi)(xi-xi-1)

+
2Ti-1

(xi+1-xi-1)(xi-xi-1)
) 

(3)  

 

for all internal locations in the solid (i = 0 to n).  At the surface after convection applies, the time 

derivative of the surface temperature is approximated as 
 

 dT0

dt
≅  
α

∆x
 (

dT

dx
|

1
- 

dT

dx
|
0

) = 
α

∆x
 (

T2-T0

2∆x
+ 

h

k
(Ta-T0)) (4)  

 

where Δx is for a uniform grid.  At the (internal) edge of the domain, an insulating boundary 

condition can be applied in a similar fashion 
 

 dTn

dt
≅  

α

∆x
 (

dT

dx
|

n
- 

dT

dx
|

n-1
) = −

α

2∆𝑥2
(Tn-Tn-2) (5)  

 

A numerical solution was developed for the system of ordinary differential equations in 

MATLAB. 

 



Using generic properties for concrete (k = 1.65 W/mK, ρ = 2300 kg/m3, Cp = 880 J/kgK, and α = 

8.2x10-7 m2/s), the equations can easily be solved on an evenly spaced 1 mm grid (so xi+1 – xi = 

+1 mm). 

 

Based on the discussion above, Pad 1 was simulated with a constant temperature boundary 

condition for 200 s.  The fact that temperatures farther into the concrete continue to drop after the 

surface temperature begins to warm can qualitatively be reproduced if the concrete pad was 

thinner in this area.  The simulation shown in Figure 6 was made assuming h = 100 W/mK (high 

to bring the surface temperature to approximate the data and a very thin concrete layer (23 mm).  

The simulation shows similar general characteristics as the data, but there seem to be 

characteristics of the data that are currently not being modeled properly. 

 
 

Figure 6.  Simulation of Pad 1 temperatures in Trial 2 for selected measurement locations. 

 

 

Based on the discussion above, Pad 3 was simulated with a constant temperature boundary 

condition for 60 s.  The simulation shown in Figure 7 was made assuming h = 10 W/mK and the 

anticipated concrete thickness of 6 in.  The simulation shows quite similar general characteristics 

as the data, but there seem to be characteristics of the data that are currently not being modeled 

properly.  Minimum temperatures and the times at which they occur are consistent with 

observations. 
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Figure 7.  Simulation of Pad 3 temperatures in Trial 2 for selected measurement locations. 

 

 

A request has been made to obtain samples of concrete from the pad so that properties (density, 

thermal diffusivity, and heat capacity) can be determined. 

 

   

Test Program Data Availability 
 

The 2015 test program data is currently available, but the 2016 test program data set is currently 

going through a verification and validation process.  At this point, all instruments have been 

subjected to a post-test calibration process for the 2015 tests, and all instruments were within 

calibration limits.  

 

There are plans to make all data from the test program available to the public via the Homeland 

Security Information Network (HSIN) web site.  HSIN access is based on a 

nomination/acceptance process into a Community of Interest (COI).  To begin the process, email 

HSIN.outreach@hq.dhs.gov with your full name and email address including the requested COI 

(Chemical) and the reason for access: “To become a member of the Jack Rabbit II community to 

have access to the information and data from the test program.” 
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Conclusions 
 

Phase I of the Jack Rabbit II test program has been completed with controlled releases of liquid 

chlorine at ambient temperature for the purpose of quantifying the behavior and hazards of 

catastrophic chlorine releases at scales represented by rail and truck transport vessels.  Five 

successful field trials were conducted in which chlorine was released in quantities of 5 to 10 tons 

through a 6-inch circular breach in the disseminator vessel and directed vertically downward at 1 

m elevation over a concrete pad in a mock urban environment. 

 

This paper summarized the measurements made to quantify liquid rainout during the 2015 tests.  

Temperature measurements support visual observations that some limited liquid rainout was 

observed.  The quantity rained out is insignificant in comparison with the total mass of chlorine 

released, but liquid rained out during the release will be sufficient to pose issues for people near 

the release point. 
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