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Abstract 

The oil and gas extraction (OGE) industry continues to experience an elevated fatality rate; from 

2010-2014 fatality the rate in this industry was nearly seven times higher than that for all U.S. 

workers. OGE workers are exposed to intensive shift patterns and long work durations inherent 

in the OGE environment, which can lead to fatigue, thereby increasing risks of accidents and 

injuries. Fatigue, often defined as a physiological state of reduced mental or physical 

performance capability resulting from sleep loss, circadian phase, and workload, has been 

implicated as a critical risk in both offshore and onshore OGE operations. The aims of this study 

were to explore the effect of offshore shiftwork on physiological and subjective fatigue 

outcomes. 10 male workers (age: 31.3 (6.1) years; stature: 1.72 (0.1) m; weight: 85.24 (9.8) kg) 

were monitored throughout their daily shifts for six days using intrinsically safer physiological 

sensors (EQ02 LifeMonitor, EquivitalTM, Cambridge, UK) that recorded various physiological 

parameters at 250Hz and subjective fatigue scales were employed to obtain perceptions of 

fatigue. Results indicate that overall average ambulatory heart rate (an indicator of fatigue) were 

elevated for all participants and was highest and raised the most for those who started and ended 

their hitch on the day shift. The same measure was lowest and did not change for those who 

started on the day shift and swung to the night shift. The ambulation rates (a measure of 

movement) were higher later in the participants’ hitch and this effect was seen primarily for 

those who started their hitch in the day shift. Participants’ reports of fatigue were relatively high 

for acute fatigue and intershift recovery as well as for lack of effort and sleepiness; however, the 

physiological measures were not consistently or predictably correlated with the self-report 



measures of fatigue or activity. The study outcomes identified a critical gap in fatigue assessment 

in OGE operations; existing fatigue surveys for the general (or other) working populations are 

not comprehensive of OGE operations and are thus not applicable for OGE workers, nor are they 

validated against physiological fatigue outcomes in OGE workers. 

 

Introduction 

Worker fatigue is a critical occupational risk that has cost lives, injured workers, disrupted 

productivity, with economic losses estimated at $18 billion a year [1, 2]. This is a big problem, 

particularly in the oil and gas extraction (OGE) industry, as OGE workers are exposed to 

intensive shift patterns and long work durations, coupled with intense physical and mental 

workload inherent of the OGE environment. From 2003–2014, 1,331 OGE workers died while 

working, resulting in an annual fatality rate seven times higher than that for all U.S. workers [3]. 

Fatigue, generally defined as a physiological state of reduced mental or physical performance 

capability resulting from sleep loss, circadian phase, and workload, has been implicated as a 

serious risk factor in a majority of the cases affecting worker safety [4, 5]. Both industry and 

federal agencies have determined that “decreasing fatigue-related injuries and fatalities in the 

OGE industry” is one of their top strategic research (to practice) priorities.  

In offshore operations, fatigue is predominantly considered a consequence of two sources: 1) 

an insufficiency of sleep (or poor quality of sleep), and 2) the 24-hour circadian cycle in 

wakefulness and alertness. Fatigue, due to sleep loss and extended wakefulness, is typically 

managed through shift and time management.  Work schedules are typically 12 hours of work 

followed by 12 hours off-work, in two shifts, day and night.  Structurally, this provides the 

opportunity for rest; however, making time for rest and getting rest are not necessarily the same.  

Night shift workers report not getting enough sleep during the day, as much as two to four hours 

less than they would if working a day shift. Maintenance of peak performance is time-limited 

and is compromised at night. There is considerable evidence that incidents/accidents will be 

more likely to occur between 3 am and 6 am in the morning – corresponding with the low point 

in the circadian cycle. Additional sleep loss is reported when workers transition between shifts. 

Because ~40% fatalities in OG workers occur due to transportation crashes, particularly as 

workers return home from their offshore shifts, a recently adopted remediating fatigue 

management practice observed in offshore environments are “swing shifts”. In the swing shifts, 

workers’ shifts (either day or night) are rotated mid-way through their stay offshore [19, 20] to 

ensure that workers are adapted to day shifts their last day offshore. However, a disadvantage of 

swing shift is that the workers need to adapt to a new rhythm while on their offshore assignment; 

these changes in rhythms introduce concerns for the health and safety of the workers [19, 21]. 

Despite the 12-hours of non-work, sleep debt due to shift work and in particular swing shifts can 

adversely affect operator physiological responses and cognitive performance.  Short-term sleep 

loss is associated with diminished clinical performance, cognitive functioning, memory, and 

vigilance.  For example, the Accreditation Council on Graduate Medical Education standards 

limit resident work to 80 hours per week. Sleep deprivation ranging from 24 – 48 hours has 

shown to impair performance across many cognitive domains. This is alarming, as drill workers 

on a typical 14-day rotation will work 84 hours in a week. Another source of fatigue in offshore 

environments, particularly for drill operators, may originate from the task itself. 



One of the major barriers that currently impact the development of effective fatigue 

mitigation practices in OGE workers is the assessment of fatigue. Fatigue is a complex 

multidimensional construct, and its definition and assessment differs based on different 

occupations [6, 7]. Objective indicators of fatigue may include operational outcomes, such as 

operator performance, or physiological outcomes, such as elevated heart rate and respiration 

rates. Subjective indicators of fatigue may be obtained using surveys, interviews, sleep logs, etc. 

The selection of a valid indicator to assess fatigue in the complex, multi-component tasks of an 

offshore environment is challenging. Fatigue may be distinguished not just in relation to the 

sources, i.e., sleep loss due to shiftwork or intense workload, that aggravate the condition but 

also to the responses that indicate a fatigued state, i.e., performance decrement or elevated heart 

rate. For example, decrements in performance metrics may indicate a fatigued state but these 

performance changes alone cannot indicate the source of the fatigue and thus cannot inform 

fatigue mitigation strategies. To assess operator fatigue in offshore OGE environments, it is 

important to first distinguish the physiological consequences (or cost to maintain performance) 

of operator workload [22].  

The primary aim of this study was to determine the relationship between shiftwork and 

physiological responses in operators in offshore OGE operations. A secondary aim was to 

explore the effectiveness of subjective scales available in the literature to assess operator fatigue 

levels. Operators employed in offshore oil and gas operations were followed during one of their 

offshore work assignments for six days, and quantitative data (inventory of various fatigue scales 

and physiological monitoring) was collected. 

 

Methods 

Participants.  

Participants were recruited onboard a drillship in the Gulf of Mexico using a protocol 

approved by Texas A&M’s Internal Review Board through the ship medic. Participants’ 

recruitment was based on their ability to take time away from their post to speak to the 

researchers and, after being informed of the requirements and purposes of the study, their 

willingness to participant.  Upon consent, they completed the first set of surveys; a demographics 

data (including age, height, weight); and work history data (years in the industry and years in 

current job) (see Table 1). They then participated in a structured interviewed regarding their 

perceptions of fatigued (results not presented here) and were fitted with the sensors. The entire 

protocol was about 1 ½ hours. Shift times on the rig was categorized into Day (6 am – 6 pm and 

12 pm – 12 am) and Night (6 pm – 6 am and 12 am – 12 pm) shifts. Original shift times for each 

operator was recorded (refer to Table 2) and 6 of the 10 operators underwent swing shifts.  

 

Table 1. Descriptive Statistics of operators. N = 10 

  Mean SEM Median Min Max 

Age (yrs.) 31 2.06 29.5 23 41 

Height 67.7 0.87 67.5 63 72 

Weight (lbs.) 192.1 6.75 190 170 250 

Years in Industry (yrs.) 8.2 1.95 5.5 2 20 



Years in Current Job (yrs.) 3.2 0.55 3 1 7 

 

Table 2. Number of operators in each shift. N = 10 

Shift Time 
Earlier in 

Hitch 

Later in 

Hitch  

6am 2 3 

12pm (noon) 5 0 

6pm 1 1 

12am (midnight) 2 6 

Procedures.  

After study familiarization, various fatigue surveys and a work questionnaire was 

administered to each operator. Starting with the first day of participation, operators were 

instrumented with the physiological sensor, which consisted of a sensor belt worn across their 

chest and the sensor was attached to the belt. The sensors were instrumented at the start of each 

operator’s shift and returned back to the research team at the end of each shift.  

Measurements.  

Main study outcomes collected during the data collection phase included the inventory of 

fatigue scales, as well as the work questionnaire, collected on day 1, and physiological responses 

collected continuously for 6 days. Some of the participants completed the inventory of fatigue 

scales additional times throughout their hitch, i.e. 10 completed the first surveys, 5 participants 

completed a second set of survey, and 2 completed a third set of surveys—creating a total of 17 

complete set of surveys. Given that not all of the participants complete the surveys three times, 

these surveys were all treated as individual responses for statistical analyses. 

Inventory of fatigue scales. The operators completed several paper-based questionnaires 

available in the fatigue literature that provided subjective assessments of different aspects of 

fatigue that are commonly experienced by OGE operators. The Swedish Occupation Fatigue 

Inventory (SOFI) provided 5 fatigue sub-scale assessments (physical exertion, physical 

discomfort, sleepiness, lack of energy, and lack of motivation) [14], the Occupational fatigue 

Exhaustion Recovery (OFER) provided 3 sub-scales (acute fatigue, chronic fatigue, and inter 

shift recovery) [15], the Fatigue-Related Symptoms Questionnaire (F-RSQ) provided 2 sub-

scales (physical and mental fatigue) [16], and the Fatigue Scale (FAS) provided one 

unidimensional score of overall fatigue [17]. Additionally, a questionnaire on working 

environment, which included items specific to the physical, mental, and psychosocial demands, 

was administered to identify work risk factors. 

Physiological indicators of fatigue. Operators were instrumented with ambulatory sensors 

(EQ02 LifeMonitor, EquivitalTM, Cambridge, UK), capable of logging physiological data 

describing physiological status, such as electrocardiography, respiratory inductance 

plethysmography, posture/activity, multipoint skin temperature, and core temperature collected 

at 250 Hz. The validity, reliability, and applicability of this system for sleep [23] and ambulatory 

monitoring of multiple physiological parameters during construction and firefighting work have 

been previously demonstrated [24-26]. Based on the extant physiology literature, heart rate (HR) 

was selected as the primary fatigue indicator as it has shown to be sensitive to changes in 



physical and mental fatigue [11-13], as well as sleep and circadian issues [27-31].  

Beats per minute was obtained from the raw electrocardiogram (ECG) signals based on [36]. 

Excluding artifact readings and outliers from ambulatory ECG was followed based on [32, 33] in 

conjunction with accelerometer data obtained from the sensor [34, 35]. All physiological data 

during the operator’s 12-hour shift was primarily categorized based on activity (stationary and 

ambulatory).  For each activity classification, stable HR bouts ( 5 bpm) of at least 4 minutes 

duration were identified over the course of a work day. From the identified stable HR bouts the 

following parameters were computed per activity: the minimum, average, and maximum HR 

levels, as well as average ambulation during the ambulatory activities for each of the 6 days. 

These parameters provided greater resolution and sensitivity of overall HR patterns observed 

across each activity classification during the course of a shift.  

There were three main sets of physiological measurements necessary for statistical analysis. 

The first sets were those from the day the participants completed the surveys. To capture these 

data, the measures described above for the day the participant completed the survey were used. 

The next two were measurements from immediately before and after the participants completed a 

swing shift (for those who changed shifts). To capture these measurements—for those 

participants who had a swing shift—we took the average of the measures three days before the 

swing shift (earlier in the shift) and three days after the measure (later in the shift). For those 

who did not change shifts during their hitch, we identified the middle day of the data collection 

period and took the average of the measures three days before and three days after that middle 

day. By using this manner, it was possible to compare the physiological measures of those who 

did and did not change shift in a somewhat equitable way, albeit imperfect.  

Statistical analyses.  

To identify effects of time on hitch (Within: earlier/later in the hitch), Shift Time (Between: 

Day/Night), and Swing (Between: whether or not the person changed their shift day from day to 

night or vice versa), effects the physiological variables, separate Mixed design Repeated 

Measure ANOVA was done for each of the heart rate variables (min, max, & avg HR) for 

stationary and ambulatory activities, as well as average ambulation during the ambulatory 

activities. To identify relations between the fatigue scales and the physiological variables, 

Pearson’s correlations were done with the survey responses and the physiological measures from 

the day the person completed the survey.  

 

Results and Discussion 

Physiological profiles of operator fatigue with shiftwork.  

Descriptives of the physiological fatigue indicators are presented in Table 3. In general, 

physiological responses were higher during ambulatory activities when compared to stationary 

activities. These findings provide support to the formulation of stable HR profiles derived for 

field research, however, further validation of these profiles are warranted in controlled 

(simulated) work environments.  

Table 3. Heart rate (HR) measures for the entire period participants wore the monitors 

  Mean SEM Median Minimum Maximum 

Activity classification: Stationary 



Minimum HR (bpm) 69.4 3.4 68.6 53.2 87.8 

Average HR (bpm) 87.4 5.2 84 69.7 123 

Maximum HR (bpm) 121.9 11.4 103.3 89.4 187.6 

Activity classification: Ambulatory 

Minimum HR (bpm) 71.9 3.4 71.3 56.2 92.2 

Average HR (bpm) 108.9 7.8 107 81.4 152.7 

Maximum HR (bpm) 180.7 15.4 180.3 106.9 263.2 

Average Ambulation      

(scale 1 - 3) 1.4 0 1.3 1.2 1.6 

 

There were effects for max. ambulatory HR and Ambulation, while all other physiological 

indicators were not affected by the study variables (p’s > 0.10). The max. ambulatory HR 

generally increased over the hitch, however this effect did not reach traditional levels of 

significance (F(1, 6) = 3.55, p = 0.109, ηp
2  = 0.371). There was a significant difference between 

the max. ambulatory HR for the Day and Night early in hitch shifts (F(1, 6) = 15.9, p = 0.007, ηp
2  

= 0.73) with the Day shift having higher HR levels (MEAN = 198.5 bpm, SD = 11.2) than the 

Night shift (MEAN = 141.9 bpm, SD = 15.4). There was an interaction between shift earlier in 

hitch and swing (Non-swing/Swing) with the difference in max. ambulatory HR between Non-

swing/Swing being much higher for the Day shift earlier than for the Night shift earlier, F(1, 6) = 

7.9, p = 0.03, ηp
2= 0.57.  

 

 

Figure 1. Max. ambulatory HR by Time of first shift (Day/Night earlier in hitch), Time of 

second shift (Day/Night later in hitch), and change during the hitch (Earlier/Later). Error bars 

represent the standard error of the mean. N = 10 
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The avg. ambulation increased over the hitch (F (1, 6) =5.97 p = 0.05, ηp
2   =0.50) and there 

was an interaction between change in ambulation over the shift and Day/Night earlier in the hitch 

with there being a greater increase in ambulation over the shift for those who started their shift 

during the day than those who started at night, F (1, 6) =6.27 p = 0.05, ηp
2  =0.51. All other 

possible main effects or interactions had p’s > 0.06. 

 

 
Figure 2. Average Ambulation by Time of first shift (Day/Night earlier in hitch), Time of 

second shift (Day/Night later in hitch), and change during the hitch (Earlier/Later). Error bars 

represent the standard error. 

 

 

In general, studies have shown association between swing shifts and altered physiological 

changes, and that these alterations further depend on time of shift [19, 21]. In the present study, 

the earlier/later in the hitch differences (or lack thereof) in physiological indicators of fatigue in 

operators who underwent swing shifts were lower than those who did not. Against expectations, 

the operators who started in the day shift and remained in the day shifts showed the most 

increase in HR levels. It is likely that their job demanded greater efforts, which is moderately 

evident from the ambulation data (see Figure 2). It is also possible that environmental factors, 

such as temperature, may have influenced HR responses. Due to the small sample size in each of 

the sub-groups identified, results need to be cautiously interpreted. Finally, even though the HR 

levels of operators on swing shifts, particularly those that began on a night shift and ended on a 

day shift, remained relatively similar, on an average, most of these operators had HR levels well 

above the average resting HR range of 60-100 bpm.  

 

Operator perceptions of fatigue.  
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Descriptives of the fatigue scales are presented in Table 4. In general, operators perceived 

higher acute and inter shift fatigue (from the OFER scale), lack of effort and sleepiness (from the 

SOFI scale), and increased Work Demand, Work pace, and Repetitive Strain Injury (from the 

working environment survey).  

 

 

 

Table 4. Descriptives of surveys and subscales. The response scales are indicated with each 

survey. Higher values are indicative of higher levels of fatigue. 

  Mean SEM 

FAS (1 – 5) 1.76 0.13 

F-RSQ (0 – 8) 

Overall 2.12 0.46 

Cognitive 1.47 0.41 

Physical 0.65 0.21 

OFER (0 – 6) 

Acute Fatigue 4.14 0.41 

Inter shift Recovery 3.94 0.34 

Chronic Fatigue 2.02 0.28 

SOFI (0 – 6)   

Lack of Effort 3.45 0.49 

Sleepiness 3.31 0.46 

Physical Effort 1.82 0.41 

Lack of Motivation 1.64 0.38 

Physical Demand 1.51 0.29 

Working Environment (1– 6) 

Work Demand 5.28 0.14 

Work Pace 4.78 0.19 

Repetitive Strain Injury 4.7 0.21 

Physical Environment 2.83 0.25 

Comfort 2.23 0.11 

Pain 2.09 0.23 

Safety 1.98 0.15 

 

Comparison of physiological and survey responses.  

Pearson Correlations of physiological responses from the day the participants completed the 

surveys and their survey responses is presented in Table 4. The primary purpose of correlation 

analyses was to identify whether indicators of fatigue, across objective and subjective methods, 

measured operator fatigue similarly. Physical discomfort was positively associated with 

minimum HR during stationary activities; however significant correlations between FAS scale 



and maximum HR during ambulatory activities and inter shift recovery sub-scale from OFER 

and minimum HR were found, but opposite to what was expected. Additionally, when comparing 

perceptions of work risk factors and physiological responses, Work Demands was the only risk 

factor strongly correlated to maximum HR during stationary activities. While repetitive strain 

risk was correlated across several HR variables, the observed association was against general 

expectations.  

 

Table 4. Pearson Correlations of physiological responses from the day the participants 

completed the surveys and their survey responses. Significant correlations are highlighted in 

bold and italics and have an *. The measures on Physical Discomfort and Repetitive Strain 

Injury were the only ones to correlate with more than one physiological measure (2 and 3 

respectively).  

 
Stationary Activities Ambulatory Activities 

Ambul

ation 

 

Min 

HR 

Avg 

HR 

Max 

HR 

Min 

HR 

Avg 

HR 
Max HR  

Measures of Fatigue 

FAS (Usual fatigue) 0.14 -0.16 -0.19 -0.22 -0.22 -0.54* 0.30 

F-RSQ (Overall) -0.02 -0.47 -0.13 -0.29 -0.17 -0.12 0.34 

F-RSQ (Physical) -0.01 -0.38 -0.34 -0.33 -0.33 -0.43 0.14 

F-RSQ (Cognitive) -0.02 -0.32 0.04 -0.15 -0.02 0.09 0.30 

SOFI (Lack of Effort) 0.04 -0.34 -0.17 -0.33 -0.19 -0.11 0.23 

SOFI (Lack of 

Motivation) 
0.36 0.01 0.18 0.04 0.23 0.07 0.55* 

SOFI (Physical 

Discomfort) 
0.59* 0.12 0.14 0.13 0.25 0.10 0.60* 

SOFI (Physical Effort) 0.47 0.10 0.19 0.11 0.26 0.13 0.61* 

SOFI (Sleepiness) -0.03 -0.41 -0.05 -0.34 -0.15 -0.14 0.32 

OFER (Chronic Fatigue) 0.33 -0.04 0.08 -0.11 0.12 -0.14 0.38 

OFER (Acute Fatigue) -0.02 -0.31 -0.06 -0.32 -0.18 -0.30 0.13 

OFER (Inter shift 

Recovery) 
-0.24 -0.47 -0.10 -0.60* -0.27 -0.44 0.14 

Working Environment 

Physical Environment 0.01 -0.29 -0.47 -0.20 -0.26 0.01 0.23 

Repetitive Strain Risks 0.35 0.54* 0.40 0.32 0.56* 0.63** -0.13 

Pain 0.11 -0.18 0.11 0.12 0.02 0.29 -0.36 

Work Pace 0.00 -0.48 -0.45 -0.35 -0.35 -0.04 -0.04 

Work Demands -0.01 -0.24 
-

0.55* 
-0.23 -0.45 -0.20 0.44 

Safety -0.37 -0.10 0.11 -0.12 -0.07 -0.38 -0.11 

Comfort -0.20 -0.22 0.01 -0.39 -0.07 0.16 0.30 

** Correlation is significant at the 0.01 level (2-tailed). 



* Correlation is significant at the 0.05 level (2-tailed). 

 

It is clear from this analysis that except for the physical discomfort sub-scale from SOFI, 

none of the subjective fatigue scales, or the work risk factor survey, are significantly associated 

with any of the HR variables. This could be due to: the low sample size; that these scales are not 

associated with the attributes of fatigue associated with HR; or that the existing measures are not 

effective at capturing fatigue in the OGE environment. While the physiological profiles 

highlighted the detrimental effects of shiftwork (particularly swing shift practices) on HR 

responses, the lack of association between operator perceptions of fatigue using existing scales 

and the physiological responses is concerning. These findings, while preliminary, highlights an 

important gap that an OGE domain-specific fatigue assessment method is needed that is 

validated against physiological outcomes of fatigue, particularly given that there exist effective 

fatigue scales for other industry domains [14, 18].  

In regards to the feasibility of adopting survey-based fatigue assessments for offshore 

operations, we observed that on average, it took operators approximately 45 minutes to complete 

all of the questionnaires and a majority of the questions and wording were not clear to them. 

Future qualitative studies are warranted that determine the temporal requirements of survey 

measurements, i.e., when and how often should surveys be administered. Moreover, more 

information is needed on how the surveys need to be administered. Based on the researchers’ 

experience and informal feedback from operators, it was suggested that fatigue assessment 

methods tailored to align with existing worker behavior on safety reporting methods have better 

compliance rates and chances of sustainability than introducing new reporting behaviors. These 

initial findings clearly indicate that using fatigue questionnaires from the literature is not 

feasible, comprehensive, or sufficiently relevant for the OGE workers. This presents challenges 

in identifying high-risk workers and developing fatigue management practices that are targeted 

and effective in reducing fatigue-related incidents in the OGE industry.  

 

Implications for Fatigue Research 2 Practice 

Physiological (and wearable) fatigue monitoring systems are gaining rapid attention, 

particularly in the transportation and aviation sectors [8-10], however given the hazardous nature 

of OGE work conditions, passive or real-time monitoring of physiological indicators of fatigue 

present safety risks due to sensor materials being explosion-prone in hazardous volatile rig 

environments. As such, subjective fatigue assessment methods may in fact enable viable, safe, 

and sustainable evaluations of fatigue risks in OGE work environments. The development of a 

reliable, sensitive, and valid fatigue assessment survey that takes into consideration not only the 

various OGE-specific sources of fatigue, but also the barriers associated with effective fatigue 

assessment in OGE operations (identified in this study) are imperative. Without access to such 

methods, developing effective evidence-based controls or preventive strategies for reducing 

fatigue-related injuries and fatalities in the OGE industry will likely remain limited. 
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