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Abstract 

 

The ignition of a hydrogen-air mixture that has engulfed a typical set of ambient vaporizers (i.e., 

an array of finned tubes) may result in a deflagration-to-detonation transition (DDT).  Simplified 

curve-based vapor cloud explosion (VCE) blast load prediction methods, such as the Baker-

Strehlow-Tang (BST) method, would predict a DDT given that typical ambient vaporizers would 

be rated as medium or high congestion and hydrogen is a high reactivity fuel (i.e., high laminar 

burning velocity). Computational fluid dynamic (CFD) analysis of a single vaporizer of typical 

construction was carried out using the FLACS code to evaluate the potential for a DDT with a 

vaporizer engulfed by a hydrogen-air mixture at the worst-case concentration.  This analysis 

showed that while significant flame acceleration occurs within the vaporizer, as expected, a DDT 

is not predicted.  However, the analysis did indicate that a DDT may occur for two or more closely 

spaced vaporizers.  This is relevant since multiple vaporizers are frequently present at industrial 

installations and are typically placed closely together to limit the required area.  Spacing adjacent 

vaporizers further apart could preclude a DDT.  However, specification of the spacing to preclude 

a DDT would require refined CFD analysis and/or testing, neither of which has been performed at 

this time. 
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This paper also discusses the application of simplified VCE blast load methods to ambient 

vaporizers engulfed in a flammable hydrogen-air cloud in order to illustrate the impact of a DDT. 

 

Introduction 

Vaporizers are employed on industrial sites to convert cryogenic liquids (e.g., hydrogen, nitrogen, 

etc.) into vapor for use in a process.  The vaporizers of interest are finned tubes.  Typically, a 

vaporizer consists of a number of vertically oriented finned tubes placed in close proximity in 

order to limit the vaporizer footprint.  The vaporizer dimensions and the number and size of the 

finned tubes employed in a vaporizer depends on its service (i.e., gas vaporized, required flow rate, 

etc.)  Multiple vaporizers are frequently utilized, with individual vaporizers typically separated by 

no more than several feet in order to limit the footprint of the vaporizer set. 

 

An accidental hydrogen release could potentially interact with or engulf a vaporizer or set of 

vaporizers; a release could occur either from the liquid hydrogen supply or from downstream 

pressurized gas.  The vaporizer structure (i.e., array of finned tubes) represents a congested 

volume, which could trigger a vapor cloud explosion (VCE) if filled with a flammable gas and 

subsequently ignited.  If a hydrogen release near a congested volume is credible for a given 

operation, then a hydrogen VCE should be considered as a credible event when performing 

explosion consequence and risk assessments [1].  An approach to predict the resulting VCE blast 

loads is therefore needed in order to carry out such assessments at industrial sites employing 

vaporizers. 

 

A typical vaporizer represents significant congestion level in terms of area blockage ratio (ABR), 

volume blockage ratio (VBR) or surface area to volume ratio (SA/V) due to the arrangement of 

finned tubes.  The congestion level for a typical vaporizer would be classified as either medium or 

high under the Baker-Strehlow-Tang (BST) VCE blast load prediction method [2].  The BST 

method predicts a deflagration-to-detonation transition (DDT) at medium or high congestion levels 

for a high reactivity fuel (e.g., hydrogen) [3], and hence a vaporizer hydrogen-air VCE would be 

treated as a detonation.  The prediction of a DDT for a medium congestion level with a high 

reactivity fuel under the BST method is based on testing performed by BakerRisk with ethylene 

and lean hydrogen mixtures [4, 5, 6].  The test rig used in these tests had dimensions of 48 feet 

(14.6 m) by 12 feet (3.7 m) by 6 feet (1.8 m) tall rig.  The congestion employed in these tests was 

formed by a uniform array of 2-inch (5 cm) vertical pipes (pitch-to-diameter ratio of 4.1, area and 

volume blockage ratios of 23% and 4.2%, respectively); this would be classified as medium with 

the context of the BST method.  Hydrogen-air mixtures were ignited at the rig center near grade 

level.  Deflagrations resulted for hydrogen concentrations of 18% or less, a very fast deflagration 

was achieved at a concentration of 20%, and a DDT occurred with a concentration of 22%.  Others 

have observed similar behaviour in hydrogen VCE tests.  For example, Shirvill and Roberts [7] 

tested hydrogen in a congested 3 m by 3 m by 2 m high rig with congestion formed by 1-inch (2.54 

cm) diameter pipes.  A vertical array was placed in the bottom half of the rig, and a horizontal 

array in the top half.  The mixture was ignited by a spark near the rig center.  A near-stoichiometric 

H2-air mixture underwent DDT near the edge of the rig. 

 

 

If the flammable hydrogen-air mixture was restricted to the congested volume associated with a 

vaporizer or vaporizer set, the assumption of whether the VCE progressed as a high-speed 



deflagration or a detonation would have little impact on the VCE blast loads at moderate distances 

from the vaporizer (i.e., at most building locations).  However, a detonation wave, once triggered 

by a DDT, can propagate through the remaining (i.e., unburned) flammable cloud [8, 9].  It is 

recognized that the detonation wave may fail before the edge of a flammable hydrogen-air cloud 

(i.e., at a higher concentration than the lower flammability limit), if the flammable cloud is too 

thin, or the concentration gradients are too large.  A DDT that triggers a sustained detonation can 

therefore dramatically increase the VCE explosion energy for a hydrogen-air cloud which is much 

larger than a vaporizer, which would be the case for most postulated design-basis hydrogen release 

scenarios. 

 

The lateral dimensions of a typical vaporizer (i.e., several meters) are less than rig length employed 

in the BakerRisk hydrogen DDT tests (i.e., 15 m).  Hence, although the congestion level associated 

with a typical vaporizer is more severe than that of this test rig, it is possible that a DDT may not 

occur due to the decreased congested volume dimensions.  Of course, the use of multiple closely 

spaced vaporizers increases the effective dimensions of the congested volume.  A DDT evaluation 

for a typical vaporizer and vaporizer set was therefore carried out using the FLACS computational 

fluid dynamics (CFD) code.  In order to illustrate the impact of whether or not a DDT occurs, a 

VCE blast load assessment was performed using the BST method for a hydrogen-air cloud 

resulting from a moderate liquid hydrogen release. 

 

Effect on DDT on Predicted Blast Load 

A ½-inch release of liquid hydrogen at a pressure and temperature of 150 psig and -410°F, 

respectively, was considered for the purposes of illustration.  The postulated release was assessed 

using SafeSite3G
©, BakerRisk’s consequence assessment and facility siting code.  A Pasquill 

stability class B and a wind speed of 2 m/s was assumed for the dispersion.  Figure 1 shows the 

upper flammability limit (UFL), lower flammability limit (LFL) and LFL/2 contours on a vertical 

cut plane through the center of the resulting hydrogen-air cloud.  The corresponding flammable 

cloud volume is 130,000 ft3.  It should be clearly noted that larger releases and more severe weather 

conditions giving larger flammable cloud volumes are likely credible and would typically be 

considered in a risk analysis; that is, this flammable cloud volume should be viewed as moderate 

within the context of this illustration. 

 



 

Figure 1.  Flammable Hydrogen-Air Cloud for Example Release Scenario 

 

For the purposes of the illustrative blast load evaluation, consider the flammable cloud and 

vaporizer arrangement shown in Figure 2.  The flammable cloud is much larger than the vaporizer 

and engulfs it, with the vaporizer being the only congested volume within the flammable cloud.  

The ignition location is near the center of the flammable cloud and well outside the vaporizer.  A 

low flame velocity flash fire (i.e., combustion without the generation of significant overpressure) 

would propagate out from the ignition location until the flame reached the vaporizer, at which 

point the flame would accelerate within the vaporizer due to the congestion presented by the finned 

tube array.  If a DDT did not occur, then the flame would decelerate rapidly as it left the vaporizer 

(i.e., due to the absence of congestion outside the vaporizer), and the remainder of the flammable 

cloud would be consumed as a flash fire.  However, if a DDT occurred within the vaporizer, then 

the resulting detonation wave would propagate outward from the vaporizer and consume the 

remaining flammable cloud (i.e., through the portion of the cloud capable of supporting a 

detonation, down to the leanest hydrogen concentration that supports detonation propagation). 

 



 

Figure 2.  Illustrative Flammable Hydrogen-Air Cloud and Vaporizer Arrangement 

 

A single vaporizer with lateral dimensions of 5 feet by 6 feet is considered for the purposes of the 

VCE blast load evaluation, with the flammable cloud within the vaporizer extending to a height of 

9 feet (i.e., only fills a portion of the vaporizer).  The volume of the congested volume filled with 

a hydrogen air mixture would therefore be 270 ft3 (7.6 m3).  A flammable cloud with a length of 

100 feet, a width of 50 feet, and a height of 10 feet is assumed, which gives a flammable volume 

of 50,000 ft3 (1,400 m3).  This flammable cloud volume is roughly 40% that from the release 

scenario discussed above (i.e., this should be viewed as a relatively small cloud within the context 

of a typical facility explosion consequence assessment or risk analysis).   

 

VCE blast loads (pressure and duration) were predicted using the BST method assuming a very 

high-speed deflagration (flame speed of Mach 1) of the flammable volume within the vaporizer 

(i.e., 270 ft3) and the detonation of one-half of the flammable cloud volume (i.e., 50,000 ft3); only 

one-half of the flammable cloud volume was assumed to detonate to account for a portion of the 

cloud being consumed as a flash fire and a portion of the cloud not participating in the detonation 

(i.e., due to failure of the detonation wave).  The predicted VCE blast loads are shown in Figure 

3.  At a standoff distance greater than 100 feet (30 m), the detonation gives about 7 times the 

pressure and three times the duration of the deflagration, with larger blast pressure differences 

closer in to the vaporizer.  

 



 

Figure 3.  Blast Loads for Deflagration and Detonation of Illustrative Flammable Cloud 

 

The resulting damage to a building can be considered to put the difference in the predicted blast 

loads for a deflagration and a detonation in context.  The building considered for this purpose is a 

typical reinforced load-bearing CMU building, with the damage level predicted using BakerRisk’s 

BEAST analysis tool [10].  Major damage and/or collapse is predicted for the detonation at a 

standoff distance of 150 feet, whereas only minor damage (cosmetic) is predicted for the 

deflagration. 

 

This comparison illustrates the significant impact of determining whether a deflagration or a 

detonation occurs during a VCE involving a flammable hydrogen-air cloud engulfing an ambient 

vaporizer on the predicted blast loads and resulting building damage.  The flammable cloud 

considered in this illustration is comparatively small.  Larger differences between the predicted 

deflagration and detonation blast loads and building damage would result for a larger flammable 

cloud. 

  



Vaporizer Selected for Evaluation 

A “typical” vaporizer was selected for this evaluation based on field observations from range of 

refining and chemical processing sites.  The vaporizer finned tubes have an outer diameter (OD) 

of 1.22 inches (3.1 cm), a fin width of 7 inches (18 cm), and a tube spacing of 12 inches (30 cm); 

the resulting element spacing (tip-to-tip distance) is 5.0 inches (12.7 cm).  An 8×8 array was 

considered, giving lateral vaporizer dimensions of approximately 2.5 m.  A vaporizer height of 

7 m was assumed.  A section of the vaporizer layout drawing is provided as Figure 4.  Schematics 

of the vaporizer elements and element array, including key dimensions, are shown in Figure 5 and 

Figure 6, respectively.  Example photos of a vaporizer with these design parameters are shown in 

Figure 7, with a close-up photo of the elements provided as Figure 8.  A vaporizer based on a 6×6 

array with same fin size and outer dimensions (i.e., larger tube spacing) was also evaluated in this 

work. 

 

 

Figure 4.  Vaporizer Cross Section  



 

 

Figure 5.  Vaporizer Element Schematic 

 

 

 

Figure 6.  Vaporizer Element Array Schematic 



 

 

 

 

Figure 7.  Vaporizer Photographs 

 

 

Figure 8.  Photograph of Vaporizer Elements 

 



Vaporizers are often employed in sets, with multiple vaporizers located adjacent to one another.  

Both a single and two-vaporizer set were evaluated in this work.  A separation distance of 3 feet 

(1 m) was assumed, which is typical of that seen in actual installations.  A separation distance of 

zero (i.e., a “double width” vaporizer) was also evaluated.  An attempt was made to evaluate 

greater separation distances, but, as discussed in the results section, issues associated with the 

current version of FLACS precluded obtaining reliable results for vaporizer sets separated by 

larger distances. 

 

FLACS Simulations 

The FLACS (Flame Acceleration Simulator) CFD code was used to perform an assessment of 

whether a DDT would occur within a single vaporizer or a set of two adjacent vaporizers.  FLACS 

is commonly used in industry for CFD-based dispersion and VCE simulations.  FLACS solves 

conservation equations for mass, momentum, enthalpy, turbulence and species/combustion on a 

3D Cartesian grid.  Obstacles such as structural supports and pipes are represented as area 

porosities on control volume (CV) faces and volume porosities within a CV, with the porosity 

defined as the fraction of the area/volume that is available for fluid flow.  The resulting porosity 

model is used to calculate flow resistance and turbulence source terms from objects smaller than 

the computational grid (i.e., subgrid), as well as the flame speed enhancement arising from flame 

folding.   

 

As assessment of whether a DDT is predicted can be made using FLACS based on a combination 

of the dimensionless pressure gradient and normalized flame speed.  The use of the dimensionless 

pressure gradient for this purpose was originally suggested by GexCon [11].  BakerRisk has 

developed both dimensionless pressure gradient and normalized flame speed criteria for FLACS 

assessments based on comparisons with VCE tests yielding both deflagrations and detonations. 

 

The vaporizer design evaluated was described in the previous section.  Figure 9 shows the FLACS 

geometry created for the simulation of a two vaporizer set.  Figure 10 shows the vaporizer set 

engulfed in the flammable cloud along with the ignition point location.  The flammable cloud was 

extended 2.5 m beyond the vaporizers in the short-axis direction and above the vaporizers, 5 m 

beyond the vaporizer nearest to the ignition source, and 0.5 m from the rear of the vaporizer 

opposite the ignition source.  The flammable cloud was taken to be a hydrogen-air mixture at a 

uniform stoichiometric mixture; it should be noted that the worst-case hydrogen concentration 

(i.e., that most prone to a DDT) is slightly hyperstoichiometric.  The ignition source was placed 

1 m (3.3 ft) outside the vaporizers near grade level, such that a developed flame would propagate 

into the nearest vaporizer.  Figure 11 shows the monitor points placed within the FLACS model to 

record the predicted blast pressure, pressure gradient and gas temperature history.  Flame speeds 

were determined based on the gas temperature history (i.e., flame arrival times at monitor points). 

 

The computational mesh was created following the guidelines in the FLACS user’s manual [12], 

which states that, for unconfined gas clouds, that there should be a minimum of 13 grid cells across 

the cloud.  For the smallest dimension of the vaporizer (2.5 m), this requires a computational cell 

size of 19 cm (i.e., 250 cm / 13).  A sensitivity study was performed using a computational cell 

size of 15 cm, and similar results were obtained. 

 



 

Figure 9.  FLACS Solid Model of Vaporizer Pair (8×8 Array) 

 

 

Figure 10.  FLACS Model with Flammable Cloud and Ignition Point  

(8×8 Array, 3-foot Separation Distance) 



 
Figure 11.  Target Distribution within FLACS Model  

 

Results and Discussion 

The predicted maximum dimensionless pressure gradient contour for two vaporizers with a 3-foot 

(1 m) separation distance between the two vaporizers is shown in Figure 12.  The maximum 

dimensionless pressure gradient exceeds 3 over a large portion of the upper section of the second 

vaporizer.  Dimensionless pressure gradient and normalized flame speed values along a 45-degree 

target line (see Figure 11) are shown in Figure 13.  A DDT would be predicted based on the 

combination of the dimensionless pressure gradient and normalized flame speed along this target 

line just inside the second vaporizer.  The dimensionless pressure gradient and normalized flame 

speed values along a 45-degree target for a set of vaporizers with no separation distance (i.e., a 

“double wide” vaporizer) are shown in Figure 14; a DDT would once again be predicted along this 

target line just inside the second vaporizer. 

 

Analyses were also performed at lean (23%H2, 0.71 ER) and rich (35%H2, 1.28 ER) fuel 

concentrations.  Both 8×8 and 6×6 vaporizer arrays were evaluated, assuming no separation 

distance between two adjacent vaporizers.  The results are shown in Table 1.  For the 8×8 array 

set, DDTs were predicted for all three fuel concentrations examined, with the flame travel distance 

required for a DDT decreasing slightly with the rich fuel concentration.  For the 6×6 array, a DDT 

was not predicted for the lean fuel concentration, and the flame travel distance required for a DDT 

decreasing slightly with the rich fuel concentration. 

 

  



 

 
Figure 12.  Maximum Dimensionless Pressure Gradient Contour (1 m separation distance) 

 

 
Figure 13.  Maximum Dimensionless Pressure Gradient and Normalized Flame Speed 

(45-degree target line, 1 m separation distance between vaporizers) 

 

Predicted 
Onset of 

DDT 



 
Figure 14.  Maximum Dimensionless Pressure Gradient and Normalized Flame Speed 

(45-degree target line, no separation between vaporizers) 

 

 

Table 1.  Horizontal Distance for DDT with Adjoined Vaporizer Arrays  

Vaporizer Array 

(two adjacent 

vaporizers) 

Separation 

Distance 

(feet) 

DDT Location (m) for Specified Hydrogen 

Concentration (equivalence ratio / % hydrogen) 

0.7 (23%) 1 (30%) 1.3 (35%) 

8×8 0 3.5 m 3.5 m 3.2 m 

6×6 0 - 3.5 m 3.2 m 

 

Issues with the ability of FLACS to accurately predict flame acceleration in a second congested 

volume (i.e., where two adjacent congested volumes are separated by some distance) has been 

reported in the literature [13], where the underlying issue was identified to be the turbulent length 

scale assigned by FLACS; it was determined that this issue would impact FLACS simulations 

where the second congested volume was separated by one to times the size of the congested 

volumes (i.e., by approximately 8 feet or more for the vaporizers considered in this work).  

A potential approach (i.e., “data dump technique”) was identified [13], but this approach was not 

deemed to be applicable to the current analysis.  Furthermore, the data dump technique was “only 

a suggestion for others working in this area” rather than an approach which had been thoroughly 

tested or which was ready for incorporation into FLACS.  The FLACS developer (i.e., GexCon) 

is aware of this issue and is actively working to resolve it.  A joint industry project (MEASURE) 

may develop information which could help address this issue. 

 

Predicted 
Onset of 

DDT 



Conclusions and Recommendations for Future Work 

The results of this analysis indicate that a DDT would not occur for a single vaporizer of the type 

evaluated, even for worst-case hydrogen-air mixtures.  It should be noted that this analysis 

implicitly assumes that a single vaporizer would be located well away from other congested 

volumes.  A single vaporizer with significantly larger dimensions and/or tighter element spacing 

could potentially result in the prediction of a DDT. 

 

A DDT would be expected based on the results of this analysis for a pair of closely-spaced (i.e., 3 

foot separation distance) 8×8 vaporizers for all hydrogen concentrations evaluated (i.e., 23%H2 to 

35%H2).  The DDT was predicted to occur approximately ½ meter inside the second vaporizer 

(i.e., shortly after the flame enters the second vaporizer).  As discussed earlier, a detonation, once 

triggered by a DDT within a vaporizer, could propagate through a significant portion of the 

remaining flammable cloud, which could extend well beyond the vaporizer set.  A DDT would not 

be expected for smaller vaporizers at lean hydrogen concentrations (e.g., a 6×6 array at 23%H2).  

It should be recognized that a flammable hydrogen-air cloud engulfing a set of vaporizers from an 

actual release may not trigger a DDT due to the hydrogen concentration at the vaporizer set (i.e., 

may be too lean or too rich). 

 

It is recommended that this CFD analysis be revisited when a version of FLACS is released that 

addresses the issues associated with predicting the flame acceleration in a second congested 

volume.  As discussed earlier, this is a known issue that is currently being addressed by the code 

developer.  The extended CFD analysis should include an evaluation of the impact of vaporizer 

design parameters (array size, element spacing, etc.), as well as vaporizer separation distance.  

Air Liquide has performed additional analyses which indicate the effect of the hydrogen-air 

mixture temperature is relevant, with lower temperatures expected to give slightly less flame 

acceleration and decrease the potential for a DDT. 

 

It is also recommended that explosion tests be performed with hydrogen-air mixtures engulfing 

both single vaporizers and vaporizer sets in order to provide definitive benchmark data.  

Benchmark data for this type of congested volume is important to validate the CFD predictions, 

particularly for establishing the separation distance required to preclude a DDT.  Such tests could 

include the effect of an actual release versus a premixed hydrogen-air cloud. 
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