
 
 

22nd Annual International Symposium 
October 22-24, 2019 | College Station, Texas 

 

Develop a Hazard Index Using Machine Learning Approach for the 

Hazard Identification of Chemical Logistic Warehouses 
 

Qingsheng Wang, Mengxi Yu, Shuai Yuan, and Zhuoran Zhang* 

Mary Kay O’Connor Process Safety Center 

Artie McFerrin Department of Chemical Engineering 

Texas A&M University 

College Station, Texas 77843-3122 

*Presenter E-mail: zhuoranzhang@tamu.edu 
 

Abstract 

 

With the rapid development of chemical process plants, the safe storage of hazardous chemicals 

become an essential topic. Several chemical warehouse incidents related to fire and explosion have 

been reported recently. Therefore, an accurate hazard identification method for the logistic 

warehouse is needed not only for the facility to develop a proper emergency response plan but also 

for the residents who live near the facility to have an effective hazard communication. 

Furthermore, the government can better allocate the resources for first responders to make fire 

protection strategies, and the stakeholders can lead to improved risk management. Hazard index is 

a helpful tool to identify and quantify the hazard in a facility or a process unit. The challenge for 

this research is to improve the current method with the novel technique to implement our purpose. 

 

The first objective of this research is to develop a “Storage Hazard Factor” (SHF) to evaluate and 

rank the inherent hazards of chemicals stored in logistic warehouses. In the factor calculation, the 

inherent hazard of chemicals is determined by various parameters (e.g., the NFPA rating, the 

flammability limit, and the protective action criteria values, etc.) and validated by the comparison 

with other indices. The current criteria for flammable hazard ratings are based on flash point, which 

is proved to be insufficient. Two machine learning based methods will be used for the classification 

of liquid flammability considering aerosolization based on DIPPR 801 database. Subsequently, 

SHF and other warehouse safety penalty factors (e.g., the quantity of the chemicals, the distance 

to the nearest fire department, etc.) are utilized to identify the Logistic Warehouse Hazard Index 

(LWHI) of the facilities. In the last chapter, this method is applied to real-time data from Houston 

Chronicle, and several statistical analyses are used to prove the hazard index is helpful for hazard 

identification to emergency responders and hazard communication to the public. 
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1. Introduction  

Since entering the 21st century, people enjoy the benefits of the rapid development of the industry. 

With the innovations of the new chemical process, process safety must also be up to date and 

accommodate the new chemical process. 

Many industrial cities around the world are facing a dilemma between economic growth and 

population growth. With the blooming development of chemical process plants, the safe storage 

of hazardous chemicals become an essential topic. People should understand that some inherent 

properties of a chemical which makes it profitable to our society may be hazardous in the 

meantime. The researcher lived in Tianjin for five years, which is one of the economic centers in 

the north of  China. Tianjin has developed a sub-provincial district named Binhai New Area, which 

is near the largest port in northern China, and where more than 1800 facilities are related to the 

storage of hazardous chemicals [1]. This thesis is focused on hazard identification for chemical 

logistics warehouses, which is inspired by the Tianjin explosion that happened on August 12, 2015 

[2]. 

Based on the investigation reports of the storage facilities related to safety incidents, some 

hazardous chemicals are mentioned more than one time, such as ammonium nitrate. Former 

researchers in Mary Kay O’Connor Process Safety Center (MKOPSC) have investigated the 

thermal decomposition and runaway reaction characteristics of some hazardous chemicals [3-5] 

while few studies have explored the hazard identification applications. 

The storage of hazardous chemicals in a warehouse is a complex problem. The potential hazards 

include flammability, reactivity, and interaction among different types of hazardous chemicals. 

Hazard index is a helpful tool to identify and quantify the hazard in a facility or a process unit. 

Various hazard indices are developed in history. Dow’s Fire and Explosion Index is the most 

famous and widely used one, and others like Mond Index, Dow’s Chemical Exposure Index, IFAL 

Index, Weighted Average Risk Rating Index, etc. are developed or modified based on different 

scopes and purposes [6]. The first edition of Dow’s F&EI was issued in 1964 and used within Dow 

Chemical Company. After the development over half a century, F&EI has been widely used in 

Dow and outside Dow and becoming the leading hazard index recognized by the chemical 

industries. 

The first objective of this research is to develop a “Storage Hazard Factor” (SHF) to evaluate and 

rank the inherent hazards of chemicals stored in logistic warehouses. In the factor calculation, the 

inherent hazard of chemicals is determined by various parameters (e.g., the NFPA rating, the 

flammability limit, and the protective action criteria values, etc.) and validated by the comparison 

with other indices. Machine learning attracts much attention in recent years and has been applied 

in process safety in several aspects. Numerous works applied supervised learning to predict lower 

flammable limit (LFL), upper flammable limit (UFL), minimum ignition energy (MIE), and 

autoignition temperature [7-12]. Mage et al. utilized unsupervised learning to cluster the thermal 

stability of organic compounds into seven groups [13]. Therefore, with the lack of study in liquid 

flammability considering aerosolization and the tendency of the machine learning approach, it is 

worthful to implement machine learning algorithms to liquid flammability rating. Two machine 

learning based methods will be used for the classification of flammability. Subsequently, SHF and 



other warehouse safety penalty factors (e.g., the quantity of the chemicals, the distance to the 

nearest fire department, etc.) are utilized to identify the hazard index of the facilities. 

The index can be used not only for the facility to develop a proper emergency response plan but 

also for the residents who live near the facility to have an effective hazard communication. 

Furthermore, the government can better allocate the resources for first responders to make fire 

protection strategies, and the stakeholders can lead to improved risk management. 

 

2. Methodology 

2.1. Data collection 

The Design Institute for Physical Properties (DIPPR) 801 is a project sponsored by AIChE, which 

provides more than 30 constant properties and nearly 50 thermophysical properties as well as 

molecular structure, hazard properties, physical constants for more than 2000 compounds. This 

database is widely used in chemical properties classification and prediction [7, 8]. After data 

cleaning, 823 organic compounds will be used in this research.  

2.2. Storage hazard factor (SHF) 

Based on the literature reviews, various hazard indices are developed or modified based on 

different scopes and purposes. Considering that the index will be applied to the chemical logistic 

warehouse, the overall index function can be represented as follows in Equation 1. 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝐻𝑎𝑧𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 (𝐿𝑊𝐻𝐼) =  ∑ 𝐹𝑖 × 𝑆𝐻𝐹                (𝐸𝑞𝑛. 1) 

where 𝐹𝑖 represents different penalty factors such as quantity, population density, SHF represent 

the inherent hazard of the chemicals stored in the warehouse. 

Based on the MKOPSC’s PCHP project, the formula for calculating the SHF can be modified as 

follows in Equation 2. 

𝑆𝐻𝐹 = 2𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑁𝐹 + 2𝑁𝑅 + 2𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑁𝐻                                  (𝐸𝑞𝑛. 2) 

where NR represents the degree of reactivity, which will be determined by the original NFPA 

rating; NH represents the degree of health hazard, which will be modified by PAC-3 value; NF 

represents the degree of flammability, which will be modified by two machine learning methods 

using DIPPR 801 database. 

2.2.1. Modified NH 

Protective Action Criteria (PACs) values are an exposure limit system, and this system is 

commonly used as the guideline for an emergency response to the concentration of the accidental 

release of the hazardous chemicals.  

NH represents the degree of health hazard. The original NFPA rating criteria are based on LC50 

and LD50, which is more focus on emergency conditions for the working area. Since PAC-3 is the 

maximum airborne exposure resulting in the most severe consequence, which is life-threatening 

effects, PAC-3 will be used to modify the NH value for our purpose. 



The Department of Energy 's (DOE) current PAC dataset is Revision 29, published in May 2016 

[14]. It provides chemical exposure limit values for 3146 chemicals. 

2.2.2. Modified NF 

The most widely used chemical classification method is NFPA 704, GHS, and OSHA (29 CFR 

1910.106). However, both of these criteria are based on flash points only [15]. (Table 1) Evidence 

shows that liquid can be ignited below its flash point if it is in some particular condition, such as 

aerosol form [16, 17]. In this research, flash point, autoignition temperature, surface tension, and 

viscosity are selected to modify the classification, using K-Mean and hierarchical clustering with 

PCA. 

Table 1. Current standards for liquid flammability rating and classification 

Standard Flammability rating 

and classification 

Criteria 

 0 Materials will not burn in air when exposed to a 

temperature of 1500°F for a period of 5 minutes 

1 Flash point at or above 200°F 

2 Flash point between 100 and 200 °F 

3 Flash point between 73 and 100°F 

4 Flash point below 73°F 

 

GHS classification 

and labeling of 

chemicals 

1 Flash point < 23°C and boiling point ≤ 35°C 

2 Flash point < 23°C and boiling point > 35°C 

3 Flash point ≥ 23°C and ≤ 60°C 

4 Flash point > 60°C and ≤ 93°C 

 

 

 

 

OSHA (29 CFR 

1910.106) 

1 Flash point < 73.4°F and boiling point ≤ 95°F 

2 Flash point < 73.4°F and boiling point > 95°F 

3 Flash point ≥ 73.4°F and ≤ 140°F. When a 

category 3 liquid with a flash point ≥ 100°F is 

heated for use to within 30°F of its flashpoint, it 

shall be handled in accordance with the 

requirements for a Category 3 liquid with a flash 

point < 100°F. 

4 Flash point > 140°F and ≤ 199.4°F. When a 

category 4 liquid is heated for use to within 30°F 

of its flashpoint, it shall be handled in 

accordance with the requirements for a Category 

3 liquid with a flash point < 100°F. 

5 When a liquid with a flash point > 199.4°F is 

heated for use to within 30°F of its flashpoint, it 

shall be handled in accordance with the 

requirements for a Category 4 flammable liquid. 

 

In this study, the KC and HC algorithm is implemented through the Python package, Scikit-Learn 

[18]. The number of clusters is determined by the elbow method, which plots the within-cluster 

sum of square (WCSS) with respect to the number of clusters [19]. Figure 1 shows the example of 

the elbow plot when implementing the KC algorithm on liquid flammability clustering based on 

flash point and autoignition temperature. The number of clusters is 5 in this thesis. 

  



 

Figure 1. Within-cluster sum of square (WCSS) and the number of clusters 

 

This modification method is reliant on the availability of the data. Despite the lack of data, the 

original NFPA rating with simple update (if UFL – LFL > 10%, then NF + 1 with a maximum of 

4) can be used for SHF calculations. 

2.3 Penalty factors 

The other important part of Equation 1 is ∑ 𝐹𝑖, which represents different penalty factors. In this 

study, quantity, population density, and distance to the nearest fire station are selected to be the 

penalty factors. The determination guides for each factor are described in this section. 

2.3.1. Quantity 

Quantity is an important factor that should be considered first when designing a hazard index. 

Besides the inherent hazard of a hazardous chemical, the amount of chemicals stored in the facility 

also reveals the level of hazardous. 

The following table shows the determination guide of the quantity penalty value. (Table 2) 

2.3.2. Population density 

Besides the inherent hazards of a chemical and the quantity of the facility stored, another important 

factor is the safety impact to the public. Given the coordinate of a facility, we defined the 

population in a radius of two miles near the facility that can be used to represent the population 

density factor in Equation 1. 

Population density information is retrieved on LandView 6.0, a geographic information system 

software. The following table shows the determination guide of population density penalty value. 

(Table 3) 



Table 2. Penalty value of quantity determination guide 

Original code Min (Pounds) Max (Pounds) Penalty value 

1 0 99 1.2 

2 100 499 1.4 

3 500 999 1.4 

4 1,000 4,999 1.6 

5 5,000 9,999 1.6 

6 10,000 24,999 1.8 

7 25,000 49,999 1.8 

8 50,000 74,999 1.8 

9 75,000 99,999 1.8 

10 100,000 499,999 2 

11 500,000 999,999 2 

12 1,000,000 9,999,999 2 

13 10,000,000 … 2 

 

Table 3. Penalty value of population density determination guide 

(in a radius of two miles near the facility) 

Min Max Penalty value 

10 100 1.2 

100 1000 1.4 

1000 10000 1.6 

10000 100000 1.8 

100000 … 2 

 

2.3.3. Distance to the nearest fire station 

In the previous sections, we considered the inherent hazard, quantity, and the potential impact to 

the public. And last but not least, we choose a factor that can reflect the mitigation process, which 

is an essential point for a storage facility. 

Distance to the nearest fire station (FS) is retrieved from HazardHub, a provider of property-level 

hazard risk database [20]. The following table shows the determination guide of distance to the FS 

penalty value. (Table 4.) 

Table 4. Penalty value of distance to FS determination Guide 

Min (Miles) Max (Miles) Penalty value 

0 1 1.2 

1 2 1.4 

2 3 1.6 

3 4 1.8 

4 … 2 



3. Results and discussions 

3.1 NF modification 

3.1.1 Database visualization 

Before conducting the liquid flammability rating with the inclusion of aerosolization, we would 

like to investigate the distribution of observations for each liquid property, and the scatter plots of 

each pair of liquid properties. The figure 2 shows the aggregated scatter plots, distribution plots, 

and heatmap of liquid properties. The diagonal of figure 2 shows the distribution of observations 

for each liquid property. For example, Figure 3 shows the distributions of flash point and surface 

tension are normally distributed. However, the distributions of autoignition temperature and 

viscosity are right-skewed. 

 

Figure 2. Scatter plots, distribution plots, and heatmap of liquid properties 

 

The left part of figure 2 is the scatter plot of each pair of liquid properties. For example, a positive 

slope is plotted for the relationship between flash point and molecular weight, shown in the 5th 

plot from the top in the first column on the left part of figure 2, and the magnified plot in Figure 

4. 



 

 

Figure 3. Distributions of liquid properties: (a) flash points; (b) surface tension; 

(c) autoignition temperature; (d) viscosity 

 

Figure 4. Scatter plot for flash point and molecular weight 

 

The right part of figure 2 shows the statistical correlation between each pair of liquid properties, 

including Pearson coefficient (ρ), Kendal coefficient (τ), Spearman coefficient (r), and the P-value 

for Pearson coefficient (p). For example, the statistical correlation between flash point and vapor 

pressure is found in the upper rightmost location. The Pearson coefficient between flash point and 

vapor pressure is -0.99, which means a completely negative correlation. 

 

3.1.2. KC and HC algorithm 

As discussed before, the number of clusters determined by the elbow method is 5 in this thesis. 

Thus, the 823 organic compounds from DIPPR 801 are split into five groups and rated from 0 to 

4 as in the NFPA rating. The KC clustering is based on flash point and autoignition temperature, 

which is different from the NFPA rating. The compounds in the group with a rating of 4 are the 

compounds with the highest flammability. On the other hand, compounds with a rating of 0 have 

the lowest flammability. Figure 5 shows the data distribution. 



 

 

 

Figure 5. Clusters of liquid flammability using KC algorithm 

 

In Figure 5,  some data points labeled black have a medium flash point and medium autoignition 

temperature comparing to the neighbor points labeled red and cyan. Those points either have a 

high flash point and low autoignition temperature, or have a low flash point and high autoignition 

temperature. However, the black label means NF = 4, which is higher than the red (NF = 3) and 

cyan (NF = 2) label. Similar results and doubts show at the boundary of different clusters in the 

circled area. 

Similarly, Figure 6 displays the dendrogram of clustering through the HC algorithm. Also, 823 

organic compounds from DIPPR 801 are split into five groups and rated from 0 to 4 as the same 

criteria with the HC algorithm. The agglomerative clustering result will assign to each data point. 

Figure 7 shows the visualized plot in Cartesian coordinates. 

In Figure 7, the results located in the controversial boundary between the black (NF = 4) and the 

red (NF = 3) regions are more reasonable. But this time, a misclassification may happen in the 

circled area. With a similar flash point, the black labeled data points have the medium autoignition 

temperature comparing to the red and magenta labeled data points. However, these data points are 

classified as NF = 4, which is the most hazardous material among all. On the other hand, some 



points with the lower autoignition temperature are classified as NF = 3, which is less dangerous 

than black labeled points. 

 

 

Figure 6. Truncated dendrogram of clustering of liquid flammability 

 

Figure 7. Clusters of liquid flammability using HC algorithm 



Comparing the KC and HC algorithms, there are 653 out of 823 compounds with the same rating 

for liquid flammability in both algorithms. Table 5 shows the liquids with significantly different 

ratings between the two algorithms. Those liquids in Table 5 require more attention when 

conducting a risk assessment with inherent flammability. 

Table 5. Liquids with significant different ratings between KC and HC algorithm 

Substance name Flammability rating (KC) Flammability rating (HC) 

o-ethylaniline 2 0 

hexylene glycol 0 4 

cetyl methacrylate 3 0 

3-methyl-1-pentene 4 2 

1-dodecanol 3 4 

4-methyl-1-octanol 0 4 

 

As a result, the KC algorithm has a more reasonable rating for the clustering of liquid flammability, 

because the circled area is smaller in Figure 5 compared with Figure 7. Another reason is that the 

misclassification in the KC algorithm is more likely to happen on the boundary of two clusters, 

whereas the misclassification in HC algorithm is more likely to happen in an area. These results 

are considering the flash point and autoignition temperature in two dimensions. Therefore, the 

results are highly interpretable since the X and Y axis both have physical meaning. 

But if we want to consider liquid aerosolization probability at the same time, we need to reduce 

the features for visualization and easier calculation. The PCA method will be applied in the next 

section. 

 

3.1.3. PCA with KC and HC algorithm 

The main purpose of NF modification is to consider aerosolization. In the previous chapter, we 

conclude that viscosity and surface tension can be used as two indicators of aerosolization. To 

reduce the flash point, autoignition temperature, viscosity, and surface tension into two principal 

components (PCA1 and PCA2), we applied the RBF kernel function when reducing four features. 

Another advantage is that PCA does not need to specify the weight of contributions of liquid 

aerosolization and flammability. Figure 8 shows the clustering results by the KC and HC algorithm 

based on PCA1 and PCA2. Besides the advantages of PCA, one thing that needs to keep in mind 

is that both X and Y axes in Figure 11 have no physical meaning. This is the main disadvantage 

of the PCA method. 

  



 

Figure 8. Principal component (PCA1 and PCA2) clusters using 

(a) KC algorithm (b) HC algorithm. 

 

 

 



4. Case study 

4.1 Data collection 

Houston Chronicle has published a series of articles [21], aiming at exploring fatal mistakes that 

could have the largest consequences and probes that put the citizen in jeopardy. Houston Chronicle 

has collected 2581 facilities and over 18000 chemical records in the greater Houston area. The raw 

data is in EPA Tier II standard and shared with MKOPSC. After data cleaning, at least 33 

warehouses that have more than 400 records and over 170 kinds of  hazardous chemicals will be 

used in this research. The raw database includes company information, location information, 

chemical information, and storage quantity. 

4.2 Sample calculation 

Table 6 is the sample hazard review for 2-Butoxyethanol from DIPPR 801, DOE’s PAC, and 

NFPA database. 

Table 6. Hazard review: 2-Butoxyethanol 

Parameter Data 

CAS No. 111-76-2 

NFPA NR 0 

NFPA NH 2 

PAC-3 3400 mg/m3 

NFPA NF 2 

Flash point 334.15 K 

Autoignition temperature 511.15 K 

LFL/UFL 1.1% / 12.7% 

Viscosity 2.9 cP at 25°C 

Surface tension 26.1 mN/m at 25 °C 

 

Based on the data above, the SHF should be: 

1. The original NFPA NR rating is 0, in our calculation, keep the original value. 

2. The original NFPA NH rating is 2, and the PAC-3 value is 3400 mg/m3. Based on the 

previous discusstion, the modified NH value is still 2. 

3. The original NFPA NF rating is 2, the flash point is 334.15 K, autoignition temperature is 

511.15 K, LFL / UFL are 1.1% / 12.7%, viscosity is 2.9 cP, and surface tension is 26.1 

mN/m. The result of the machine learning method using KC algorithm is 3, but the result 

become 4 when using HC algorithm. As we discussed in the previous section, result with 

KC algorithm is more reasonable. So the modified NF value is 3. 

4. 𝑆𝐻𝐹 = 23 + 20 + 22 = 13 

 

With the chemical information, we can get the SHF value using the method discussed above. Then 

the storage quantity information allowed us to convert it into units in pounds. Finally, the location 



information will help us extract information about population density and distance to FS. Continue 

the 2-Butoxyethanol example and calculate the LWHI. (Table 7) 

Table 7. Tier II information for 2-Butoxyethanol in facility #33 

Parameter Data 

CAS No. 111-76-2 

SHF 13 

Quantity 4 (original code) 

Population density 4154 (in a radius of two miles) 

Distance to FS  1.62 miles 

 

Based on the data above, the LWHI should be: 

1. SHF for 2-Butoxyethanol is 13, based on the calculation from last example. 

2. For facility #33, the quantity indicator of 2-Butoxyethanol is 4, which means in 

(1000,5000) pounds range, and the penalty value is 1.6 based on Table 3. 

3. For facility #33, the population density in a radius of two miles is 4154, and the penalty 

value is also 1.6 based on Table 4. 

4. For facility #33, the distance to the nearest fire station is 1.62 miles, and the penalty value 

is 1.4 based on Table 5. 

5. Therefore, the LWHI for 2-Butoxyethanol in facility #33 is: 13 × 1.6 × 1.6 × 1.4 = 46.592. 

 

5. Conclusions 

In this thesis, a hazard index for the hazard identification of chemical logistic warehouses was 

created and named LWHI. The aim of this index is to numerically calculate the potential hazards 

in a logistic facility. And the manager or the emergency reponder can use those results to develop 

their hazard chemicals management plan. 

To reach the goal mentioned above, the SHF was introduced to the index. First, two machine 

learning based methods for liquid flammability rating with the consideration of aerosolization have 

been proposed. The first method applies KC and HC algorithms in machine learning to chemical 

classification. The 823 organic compounds in DIPPR 801 are clustered into 5 groups based on 

their flash point and autoignition temperature. Then the 5 groups regarding liquid flammability are 

rated from 0 to 4 based on 4 is the most hazardous rating. The advantage of the KC and HC 

clustering method is its high interpretability. With the analysis mention in previous, the KC 

algorithm has a more reasonable rating on liquid flammability clustering.  

The second method presented uses PCA to reduce the four features (i.e., flash point, autoignition 

temperature, viscosity, and surface tension) into two principal components (PCA1 and PCA2). The 

advantage of the PCA rating method is that the weight of contribution of the four features is 

automatically considered. Admittedly, the lack of interpretability is a disadvantage of the PCA 

method as the principal components do not have physical significance but only statistical 

significance. However, compared with traditional flammability classification methods which only 



rely on flash point and boiling point, the two proposed methods have shown a statistical correlation 

with liquid flammability. Additionally, one obvious disadvantage of traditional flammability 

classification methods is the threshold values are determined by humans, which invariably has 

bias. While machine learning based methods partly eliminate this bias. Also, the boundary of 

traditional flammability classification methods is linear. But the boundary of the proposed machine 

learning based methods can be nonlinear to eliminate some misclassification cause by the linear 

boundary. 

After the modified classification metheds and the SHF was developed, LWHI can be calculated 

with the proposed equation. In chapter 5, we applied real-time data from Houston Chronicle to test 

and verify LWHI. The results shows high level of reliability, and the distribution of LWHI is left-

skewed normal distribution. With this reliable result, the LWHI can serves as a simple and 

effective hazard identification method that can be included in the overall PHA (Process Hazard 

Analysis) process of the facility. 
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