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Abstract 

 

To be acceptably safe one must identify the risks one is exposed to. It is uncertain whether the 

threat really will materialize, but determining the size and probability of the risk is also full of 

uncertainty. When performing an analysis and preparing for decision making under uncertainty, 

quite frequently failure rate data, information on consequence severity or on a probability value, 

yes, even on the possibility an event can or cannot occur is lacking. In those cases, the only way 

to proceed is to revert to expert judgment. Even in case historical data are available, but one 

should like to know whether these data still hold in the current situation, an expert can be asked 

about their reliability. 

Anyhow, expert elicitation comes with an uncertainty depending on the expert’s reliability, 

which becomes very visible when two or more experts give different answers or even 

conflicting ones. This is not a new problem, and very bright minds have thought how to tackle 

it. But so far, however, the topic has not been given much attention in process safety and risk 

assessment. The paper has a review character and will present various approaches with detailed 

explanation and examples.  

Keywords: Probability, imprecision, expert elicitation, Dempster-Shafer theory, Fuzzy sets, 

and logic 

1. Introduction 

It seems so easy: once in case in an analysis, e.g., a LOPA, the complexity of the problem 

structure has been solved, as a next and final step data must be filled in, such as the probability 

of failure on demand of a critical component, e.g., a pressure relief valve. However, one knows 

that manufacturer data are too optimistic, while the OREDA data base [1] may provide an 

answer not valid under the conditions the valve is applied in an actual process. In the best case, 

there is in the plant some historical data available on similar valves, but those are of a different 

brand creating another uncertainty. As a last resort, a few people familiar with the installation 

and employed already a considerable number of years at the plant may be asked to provide an 

estimate. This reverting to expert judgment can have different forms. Easiest for the expert may 
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be to give a linguistic grading term (‘high’ or ‘low’) or just a single figure, but knowing there 

will be uncertainty the interviewer may invite the experts to specify an interval with both a 

lower and a higher bound. Even more sophisticated is to ask for an estimate of a mean value 

and a confidence or credibility interval. Experts may also be asked about different information, 

e.g., whether a run-away in case of a certain batch-process is thought possible or plausible under 

the expected condition ranges.  

In a wider context, questioning experts serves to support optimum decision making. There are 

many methods developed for that purpose, for example Saaty’s [2] method of Analytical 

Hierarchy Process (AHP) developed in the 1970s, in which participants must make pairwise 

selection between alternatives on the basis of a number of criteria. More sophisticated is multi-

attribute utility theory to make a decision based on value judgments of multiple, competing 

objectives. However, this paper will treat the use of expert judgment in risk assessment 

questions.  

Already decades ago, statisticians engaged in intense deliberations on how to deal with 

uncertainty. It all starts with deep thoughts about the concept of probability. Oldest is the so-

called frequentist idea in which an experiment is performed of which the outcome can take 

different forms or values. A classic case is the throw of a dice, or determining a sample of a 

large population of red and white balls in an urn and predicting the fraction of red. The objective 

is to determine a distribution of outcomes enabling prediction of future action outcomes or 

composition of the population without counting them all. This developed to a collection of 

distribution functions in which results could be fitted and to significance levels with confidence 

limits dependent on the variability of draws and the size of the sample. Later, the Bayesian 

approach gained strength, in which all previous information/knowledge can be cast into a prior 

distribution, while new evidence is represented by a likelihood function, and the result is an 

update of the prior to a posterior distribution based on the normalized co-occurence of the prior 

and the likelihood. The Bayesian model provides many more possibilities in solving problems 

than frequentist statistics and has become the leading approach for evidence-based testing of a 

hypothesis or an event. 

In many situations, though, when asked in human dialogue to make an estimate or a prediction 

of the probability of an event occurrence, a person can produce such a probability value based 

on intuition supported by experience. Such a probability estimate is called a subjective or 

imprecise probability value. It fits well with the Bayesian approach, which works with 

information of all uncertainty levels and propagates the uncertainties. With new evidence in the 

likelihood, the prior is updated to a posterior result with lower uncertainty than the prior. 

Besides a development of a strict probabilistic approach by Cooke [3] in the 1980s that we shall 

consider later, in the 1960s and 70s, two different less strict theories evolved dealing with 

uncertainty: 

 Dempster-Shafer theory of evidence, developed by Dempster [4] and later Shafer [5] on 

belief and plausibility. Also with the Dempster rule, replies from different responders 

can be combined. Strict probability theory requires that the probability an event will 

occur and the probability it will not occur, sum to unity, 1. A human making an estimate 

will often not guarantee, though, that the complement of the answer given, fulfills that 

requirement. He/she may not know, hence is ignorant, or at least he/she is unsure it will. 



 

 

 Fuzzy set and logic by Zadeh [6, 7] in which an interviewer will obtain an imprecise, 

hence fuzzy, answer represented by a membership function with the value 1 at the given 

estimate and with value zero at a minimum below which and a maximum value above 

which the estimate value is believed to be not possible. The membership function can 

have any shape between 0 and 1. 

Over the years, these theories have been further developed and applied for various purposes, 

such as Dempster-Shafer in sensor fusion for target identification in a cluttered environment 

and Fuzzy set and logic in classification problems. Fuzzy logic enables solving the problem of 

combining unsharp values of characteristic properties of related items or kinds to a desired final 

result, such as the known example of food quality wasn’t bad, service was perfect, price is okay, 

hence tip can be decent. Different values of characteristics will infer different outcomes. Both 

Dempster-Shafer theory and Zadeh’s fuzzy set and logic are widely applied to facilitate decision 

making in uncertain situations. 

Uncertainty is usually categorized by two types, although distinction is not always very clear 

and a variable can contain both types of uncertainty at the same time:  

 Aleatory uncertainty, by which due to lack of accuracy/precision of observational 

means, in general random variability from ranges of conditions, an outcome cannot be 

established accurately, and, 

 Epistemic uncertainty, which is a consequence of lack of knowledge about the subject 

due to the amount and quality of the data. 

In particular, the epistemic uncertainty will be addressed here.  

By the end of 1980s, Klir [8] in the Cambridge Debate on Uncertainty, wrote a clear 

synthesizing paper against the claim that probability, as traditionally defined, the standard 

approach, is the only concept to describe uncertainty. He did this with a counterclaim that one 

must go beyond only probability. Klir starts off with distinguishing two types of uncertainty: 

 Vagueness, encompassing: fuzziness, haziness, cloudiness, unclearness, 

indistinctiveness, sharplessness and indefiniteness, and, 

 Ambiguity, comprising of: non-specificity, variety, generality, diversity, divergence, 

equivocation, incongruity, discrepancy, dissonance, disagreement.   

He continues by mentioning that imprecision can relate to both vagueness and ambiguity, while 

in the latter non-specificity and disagreement are again different. After analyzing the matter in 

much detail, Klir [8] concludes that probability conceptualizes “uncertainty strictly in terms of 

conflict among degrees of belief allocated to mutually exclusive alternatives”; in other words, 

a probability 𝑃 of an event or quantity intrinsically holds the contrast that the probability the 

event will not occur or the quantity will be different, will be the complement 1 − 𝑃.  Hence, 

the standard approach to probability covers only part of uncertainty. 

Uncertainty is also related to less precise information and in that context Zadeh [9], after having 

launched in 1965 the fuzzy set theory mentioned above, published in1977 the possibility theory. 

The latter states that where imprecision is inherent to natural language, in case the meaning of 

information is the objective and not its measure, one can speak of “possibilistics”, rather than 

probabilistics, and even of a possibility distribution as a counterpart to the probability one. All 

of this found its way to Artificial Intelligence techniques. 



 

 

More recently in 2011, Helton and Johnson [10] summarized the alternative representations of 

epistemic uncertainty at increasing structure and quantification as follows: (1) Interval analysis, 

just providing a low and high boundary with no information in between (uniform distribution 

with all values equally likely); (2) Possibility theory, consisting of a set of possible elements to 

each of which a likelihood value can be attached together forming a possibility distribution, 

which is related to the Fuzzy set approach; (3) Evidence theory (Dempster-Shafer), which 

specifies a limited number of focal elements, while each element is given a measure of 

credibility (basic assignments or basic belief assignments summing to 1, confusingly also called  

basic probability assignment); (4) Probability theory, involving element probabilities in a fully 

developed structure embodied by a probability density function.  

At this probability end of the spectrum, Cooke developed so-called structured expert judgment 

attempting to make the process of interrogating experts on a probability value, in which there 

will be always disagreement among experts, as transparent as possible. This is realized by 

introducing a set of strict methodological rules. These rules lead among others to calibration of 

the experts and to the individually scoring of performance-based weights. 

In the remainder of the paper, we shall restrict ourselves to the more practical aspects of expert 

estimation. In Section 2 we shall describe the Dempster-Shafer approach in more detail, and in 

Section 3 the Fuzzy set and logic one, both with some examples. In Section 4 Cooke’s method 

will be described, and in Section 5 similarities and differences, also in required effort, will be 

summarized, followed by Section 6 with conclusions. 

2. Dempster Shafer Theory (DST) of evidence 

In various publications Shafer [5, 11] explains the original idea of belief functions and 

evidential reasoning in case a human makes a statement about an event, fact, or value. It 

encompasses belief, doubt, plausibility, disbelief, and ignorance, all associated with 

uncertainty. For example, if a person asserts that a certain event took place or is going to take 

place, it does not mean that there is no space to believe it did not occur or is not going to occur. 

The statement can gain strength, hence support, by evidence – a Bayesian element1 -, while the 

reliability of the person making the statement can be estimated by a different person knowing 

the one making the statement (where reliability and unreliability sum to 1). This reliability is 

called weight of rather mass, 𝑚. Generalizing and following the practical application to 

reliability engineering by Rakowsky [13], hypotheses or information pieces of a data source, 

e.g., experts’ estimates on states or events, may constitute a set of elements, 𝐴 (a frame, formally 

called a frame of discernment or of disjoint states). For example, suppose the set 𝐴 contains 

three of each other independent pieces of evidence or elements 𝐴1, 𝐴2, and 𝐴3, then, the power 

set2  of 𝐴 ={{∅},{𝐴1},{𝐴2},{𝐴3},{𝐴1, 𝐴2},{𝐴1, 𝐴3},{𝐴2, 𝐴3},{𝐴1, 𝐴2, 𝐴3}}. Hence, with 𝑛 

elements the number of sub-sets is 2𝑛, or with three information pieces or so-called focal 

                                                           
1 Dempster and Shafer asserted compatibility of their approach with the Bayesian updating of existing information 

with new evidence, and Shafer even called their theory a “generalization of the Bayesian theory of subjective 

probability judgment”, evoking interesting and very clear comments by Judea Pearl [12]. The latter was in 2011 

awarded with the ACM Turing award in computer science for introducing probabilistics in artificial intelligence 

and because of his foundational work on causality and on Bayesian networks. 

2 Power set  is the set of all sub-sets, mathematically formulated as 𝐴   . The number of subsets is 2 . 



 

 

elements, 23 = 8. Each subset can be assigned a mass, called basic assignment3 or basic belief 

assignment, depending on judgment of its trustworthiness. Pearl [12] called the assignment the 

“probability of provability”. The sum of masses must be 1 (mathematically, 𝑚 : 2 → [0,1]). 

The ∅ null set represents the uncertainty whether any more information on the subject exists; if 

it is thought certain there is no more, 𝑚(∅) = 0.  

Due to subjectivity, it is uncertain which piece of evidence has the highest reality value. Also, 

because of multi-value statements and other complications, the explanatory wording by 

different scholars of the Dempster-Shafer Theory (DST) implied relations that can slightly 

differ and may confuse. At this stage, the belief function or belief structure shall be introduced. 

In this, belief represents the lower bound of mass associated with a focal element or a collection 

of those, supporting the expert claim or trustworthiness of the source, and plausibility represents 

the upper bound. In contrast to many papers, we shall start with disbelief in a subset 𝐴𝑖 out of 

set A, or belief in not �̅�𝑖. It is easy to see that this is the complement of the sum of all supporting 

mass or evidence 𝑚(𝐴𝑗) of any focal element 𝐴𝑗 intersecting with 𝐴𝑖 including 𝐴𝑖 itself, hence 

contributing to the plausibility of 𝐴𝑖, while excluding null sets: 𝑏𝑒𝑙(�̅�𝑖) = 1 − ∑ 𝑚(𝐴𝑗)𝐴𝑗∩𝐴𝑖≠0  

(to be clear 𝑗 includes 𝑖). Thus, plausibility of 𝐴𝑖 can be defined as 𝑝𝑙(𝐴𝑖) = 1 − 𝑏𝑒𝑙(�̅�𝑖). Next 

will be the definition of belief, or the degree in which 𝐴𝑖 is believable: 𝑏𝑒𝑙(𝐴𝑖) =
∑ 𝑚(𝐴𝑗)𝐴𝑗𝐴𝑖; 𝐴𝑗≠∅ , hence the mass of focal elements 𝐴𝑗, which are subsets of 𝐴𝑖 and 𝐴𝑖 itself. 

Its complement is doubt as represented in Figure 1. It always holds that 𝑏𝑒𝑙(𝐴𝑖) ≤ 𝑝𝑙(𝐴𝑖), while 

the two are not additive nor add to 1. 

 

Figure 1. Representation of the various qualifying functions given evidence or data and the margin of 

uncertainty or ignorance according to Rakowsky [13]. 

Summarizing, 𝑚(𝐴) measures the degree of belief in claim 𝐴; 𝑏𝑒𝑙(𝐴) measures the total degree 

of evidence support by the non-null focal element subsets of the set of interest 𝐴 and that of 𝐴 

itself, so it represents a minimum of support, while 𝑝𝑙(𝐴) measures the total support of all 

elements intersecting with 𝐴, and not null, hence a maximum of support. The difference 

represents the uncertainty. In continuation of the example above with 𝑗 = 1 to 3: 

𝑏𝑒𝑙(𝐴) = ∑ 𝑚(𝐴𝑗)𝐴𝑗𝐴; 𝐴𝑗≠∅ , e.g., 𝑏𝑒𝑙(𝐴1, 𝐴2) = 𝑚(𝐴1) + 𝑚(𝐴2) + 𝑚(𝐴1, 𝐴2)   (1) 

𝑝𝑙(𝐴) =  ∑ 𝑚(𝐴𝑗)𝐴𝑗∩𝐴≠0 ,      e.g., 𝑝𝑙(𝐴1, 𝐴2) =  𝑚(𝐴1) + 𝑚(𝐴2) + 𝑚(𝐴1, 𝐴2) +𝑚(𝐴1, 𝐴3)  

        + 𝑚(𝐴2, 𝐴3) + 𝑚(𝐴1, 𝐴2, 𝐴3) (2) 

                                                           
3 Shafer [5,11] and others called 𝑚 basic probability assignment or bpa, but later, e.g., Rakowsky [13] warned 

that actually it should not be confused with a probability value, so it is preferable to speak of basic assignment.  



 

 

If a second person confirms the statement made but the reliability of this person is estimated 

differently, Dempster’s combination rule (intersection, AND, joint) to be considered as 

updating just as in the Bayes theorem, calculates the final weight:  

𝑚12(𝐴|𝐴 ≠ ∅) =
1

1 − 𝑘
∑ 𝑚1(𝐵)𝑚2(𝐶);  𝑚12(∅) = 0;   𝑘 =  ∑ 𝑚1(𝐵)𝑚2(𝐶)

𝐵⋂𝐶=∅
  

𝐵⋂𝐶=𝐴
 

where 𝑚12(𝐴) is the combined reliability of common focal elements 𝐴, 𝑚1(𝐵) is the reliability 

of focal elements 𝐵 of the first person and 𝑚2(𝐶) are those of 𝐶 of the second, while 𝑘 

represents the effect of conflicting elements, hence, those that do not intersect, 𝐵⋂𝐶 = ∅. 

Summing intersecting elements, 𝐵⋂𝐶 ≠ 0, though, is often an easier way to derive 𝑘 via its 

complement.  

Example 1: asking experts about a possibility of event occurrence 

Applying the rule is not in every case straightforward. The following is an example inspired by 

one of Shafer [10] applied to the process safety area of interest. When asking two experts 

independently of each other whether for a certain batch process a run-away is possible or not, 

both respond positively. So, in the combination there are two focal elements with a runaway 

possibility. There is no conflict, but the older expert is estimated to have a reliability 𝑚1 = 0.8 

and the younger one 𝑚2 only 0.6. When the joint unreliability (1 – 0.8)(1 – 0.6) = 0.08 is 

calculated, 𝑘 = 0, as there is no intersection with a null element. Hence, the reliability of the 

joint opinion 𝑚12 increases to 1 – 0.08 = 0.92. If conflicting opinions appear and the younger 

states that runaway is not possible, in the combination will be an intersection with a null set, 

hence 𝑘 = 0.80.6 = 0.48. The unreliability of the younger person, (1 – 0.6), leaves the 

possibility of runaway still open, so that the extent of belief 𝑚12  of the statement runaway is 

possible decreases to 0.8⸱(1 – 0.6)/(1 – 0.48) = 0.62, and in analogy, that of runaway will not 

be possible 0.23. If, for example, probabilities of an event are estimated and two fully reliable 

experts differ strongly of opinion but coincidentally agree with low probability on the same 

alternative possibility, the rule no longer provides a correct answer as the rule yields mass = 1 

for that low probability; later Yager [14] and others suggested improvements, see for more 

details also Sentz and Ferson [15]. 

The above example was on an event possibility, but DST can be applied also to failure rates. 

We shall follow Rakowsky [13], Simon et al. [16] and Khakzad [17] to see how we can apply 

DST in daily life of risk assessment to objectivize expert estimates of state probability and 

belief mass values and using those in fault and event trees, formally modeled in evidential 

network representing belief and plausibility but solved by Bayesian network algorithms. More 

reading and applications can be found in [15], [18] and [19]. Although the DST allows 

analyzing relatively complex situations, as examples the simplest scenarios will be considered 

here. 

Example 2: an expert estimating probability of successful functioning and failure 

Assume a component that will have one failure mode, so it has only two states it can be in: 

functioning successfully (S) or failed (F). The frame of discernment is: {{∅},{𝑆},{𝐹},{𝑆, 𝐹}}. 

The component is either in S or F -state (mutual exclusiveness), so the first and last term can 

be eliminated as the knowledge with the two middle elements about which state the component 

is in, is complete; however, if the latter is not the case, the set {𝑆, 𝐹} will express the epistemic 

uncertainty or ignorance about the state the component is in. Anyhow, given the expert is fully 

trusted, the probabilities provided can be taken equal to the masses, because these probabilities 



 

 

represent the best extent of belief. For example, when asked, an expert estimates the successful 

functioning probability over the next year to be 0.7, and the failure probability in that same year 

to be 0.2 (two in ten). The sum of masses over the singletons must equal 1, so the mass of {𝑆, 𝐹} 

= 0.1. In this case, 𝑏𝑒𝑙(𝑆) and 𝑝𝑙(𝑆) are equal to 0.7 and 0.8, whereas 𝑏𝑒𝑙(𝐹) and 𝑝𝑙(𝐹) will 

be 0.2 and 0.3. Simon et al. [16] and Khakzad [17] show how epistemic uncertainty can be 

propagated as a separate ‘state’ using the Bayesian network (BN) infrastructure. In Figure 2 an 

example is presented of a fault tree modeled as a BN.  

 

Figure 2. Evidential network showing the result of estimates of functional success probability{𝑆} over 

one year, failure  probability{𝐹} (for demonstration assumed high) and remaining epistemic 

uncertainty{𝑆, 𝐹} of two parallel components in AND and two in OR position solved by Bayesian 

network (GeNie, BayesFusion LLC), following the reasoning of Simon et al. [16] and Khakzad [17]. 

Example 3: two (or more) experts are asked to estimate probability values 

Alternatively, two experts A and B can be asked to provide probability values. Fusing the values 

they give, shall be performed using the combination rule as shown by Rakowsky [13]. A simple 

example is worked out in the following Tables 1-3: 

Table 1. Expert focal element input data  

 Expert A m Expert B m 

{𝑆} A1 0.7 B1 0.8 

{𝐹} A2 0.2 B2 0.15 

{𝑆, 𝐹} A3 0.1 B3 0.05 

 

Table 2. Combination table of singleton intersections  

 A1 A2 A3 

B1 {𝑆} 0 {𝑆} 

B2 0 {𝐹} {𝐹} 

B3 {𝑆} {𝐹} {𝑆, 𝐹} 

 

Table 3. Support results for the combined singletons;  

 {𝑆}  

R1 A1B1 0.560 

R2 A1B3 0.035 

R3 A3B1 0.080 

  0.675 
 

 {𝐹}  

R4 A2B2 0.030 

R5 A2B3 0.010 

R6 A3B2 0.015 

  0.055 
 

 
{𝑆, 𝐹}  

R7 A3B3 0.005 
   
   

 = 0.735 
 

     𝑚{𝑆} = 0.675/0.735 = 0.918     𝑚{𝐹} = 0.055/0.735 = 0.075   𝑚{𝑆, 𝐹} = 0.005/0.735 = 0.007 

 



 

 

The belief and plausibility of the resulting focal elements is: 𝑏𝑒𝑙({𝑆}) = 0.675; 𝑝𝑙({𝑆}) = 0.925; 

𝑏𝑒𝑙({𝐹}) = 0.075; 𝑝𝑙({𝐹}) = 0.082; 𝑏𝑒𝑙({𝑆, 𝐹}) = 0.005; 𝑝𝑙({𝑆, 𝐹}) = 1. This procedure can be 

applied also if one expert provides interval values instead of point values. 

From the above reasoning for a binary system, use can be made to solve more complex 

situations with multiple modes of failure, such as ternary (Rakowsky [13]) and quaternary 

systems (Khakzad [17]). 

 

Example 4: different ways to interview experts  

DST can also be applied in a slightly different sense. Curcurù et al. [20] describe two examples, 

both used with respect to failure rates in a fault tree:  

 Example 4.1: an analyst sets a basic assignment value for an upper and a lower bound 

of trustworthiness, whereas experts produce an interval of failure probability values that 

to their opinion corresponds to the basic assignment bounds.  

 Example 4.2 is the other way around: if there are historical data available, the analyst 

proposes an upper and lower bound value and (two) experts may judge trustworthiness 

by providing a basic assignment value for applying the data in an actual, concrete case.  

Because both cases will be developed similarly, we shall consider example 2 more closely, and 

select for that the fault tree of two basic components A and B in parallel, connected by an AND 

gate. In Table 4 the input data of basic assignment values 𝑚 and corresponding failure 

probability values for the two components and the two experts are presented. For the failure 

probabilities Curcurù et al. [20] did not define a time span, which could, e.g., be one year.  

In Table 5 the basic assignments of the two experts are aggregated; in Table 6 the AND 

intersection is realized by solving the interval multiplication. The results of Table 6 are plotted 

in Figure 3. 

Table 4. Input data according to the example given by Curcurù et al. [20], arranged differently. 

  Expert 1     Expert 2    

 Lower bound Upper bound   Lower bound Upper bound 

m 0.9 0.1 0.9 0.1  m 0.7 0.3 0.7 0.3 

Comp. A 2E-03 0 4E-03 1  Comp. A 2E-03 0 4E-03 1 

m 0.9 0.1 0.9 0.1  m 0.6 0.4 0.6 0.4 

Comp. B 3E-03 0 5E-03 1  Comp. B 3E-03 0 5E-03 1 
           

0 = component will never fail        
 1 = it will always fail 

Table 5. Application of the combination rule on the m-values: (1 − (1 − 𝑚1)(1 − 𝑚2)). 

  Expert 1 + 2  
                    Lower bound          Upper bound  

m 0.97 0.03 0.97 0.03 

Comp. A 2E-03 0 4E-03 1 

m 0.96 0.04 0.96 0.04 

Comp. B 3E-03 0 5E-03 1 

 

Table 6. AND intersection resulting in probability of failure of the top event 

AND gate => Comp. A  Comp. B = interval multiplication: 
  

       



 

 

 Lower bound Upper bound   
m 0.931 0.001 0.931 0.001   

𝑥1𝑦1, 𝑥2𝑦2 6E-06 0 2E-05 1   
m 0.039 0.029 0.039 0.029   

𝑥1𝑦2 , 𝑥2𝑦1 0 0 4E-03 5E-03 
  

 

Figure 3. Belief (lower bound) and plausibility (upper) as by Curcurù et al. [20], applying 𝑏𝑒𝑙 

and 𝑝𝑙 definitions (here only plausibility values had to be summed, from the smallest up).  

In case of OR-gate failure Component A and B probabilities must be added and their  

co-occurrence subtracted from the sum. Example 4.1 can be evaluated similarly as example 4.2. 

3. Fuzzy sets and logic, type 1 and type 2 

Type-1 fuzzy sets 

Zadeh’s 1965 fuzzy sets and logic [6] for dealing with uncertainty have become quite known, 

while mid-1990s Klir and Yuan [21] showed their applicability. In the late 1990s and in this 

century Mendel [22] broadened and deepened the concept. Application is relatively 

straightforward and wide-spread, and it is used in risk assessment to estimate values or to 

express even linguistic grades of consequence severity or event frequency. Oldest is what in 

hindsight is called Type-1 fuzzy set, which originated in classifying types where it is not always 

possible to sharply describe characteristics or criteria. To use the words of Zadeh: due to 

imprecision the class will have a “continuum of grades of membership”. In other words, the 

class or fuzzy set 𝐴 is characterized by a membership function associating each point of 𝐴 on 

the real line (𝑋) on which the set extends from the extremes 𝑥𝑎 to 𝑥𝑏, with a membership value 

(𝜇) in the interval [0, 1]. At 𝑥0, 𝜇 = 1, while at 𝑥𝑎 and 𝑥𝑏, 𝜇 = 0. The membership function 

can have any shape, but this is often assumed to be a triangle, trapezoid, or Gaussian, see Figure 

4. Hence, 𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑋} or in words: 𝐴 is a function of 𝑥 and 𝜇, given variable 𝑥 is 

part of the universe of discourse 𝑋, or 𝐴 = ∫ 𝜇𝐴(𝑥)/𝑥
𝑥∈𝑋

, where the quotient symbol or slash 

means group associating all elements in 𝑋 with 𝜇𝐴(𝑥) > 0, and the integral  can be replaced 

by a summation  in case values are discrete. A horizontal cross-section is called an -cut, as 

shown in Figure 4, and is defined as a crisp set (not a fuzzy set) of all membership grades larger 

than alpha: 𝐴 = {𝑥|𝜇𝐴(𝑥) ≥ }. 
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Figure 4. Fuzzy set shapes 

It turned out that the approach could be applied to a large variety of problems in which a value, 

a type of object, a characteristic, or property could not be sharply defined but yet could be 

expressed as a fuzzy set, called fuzzy number, and processed mathematically. For example, in 

case of consequence severity and event frequency yielding risk or when the result of failing 

basic components in a parallel or series configurations must be determined, arithmetic 

operations on the fuzzy numbers shall be performed. Taking again the fault tree as in the 

previous section on DST, and calculating the failure probability of the system of two parallel 

basic components (AND-gate) the fuzzy numbers of experts 1 and 2 (Table 7) must first be 

averaged (Table 8) and then multiplied (Table 9). In principle, the latter means multiplying the 

membership values at all -cut levels, which boils down to multiplying the values of 𝑥𝑎, 𝑥0, 

and 𝑥𝑏 of the respective input fuzzy sets, if these have similar, e.g., triangular shape. Results 

are depicted in Figures 5a and b. In case of an OR-gate both fuzzy numbers must be added and 

their product subtracted. 

Table 7. Input values of two experts of estimated failure probabilities of components A and B 

  Expert 1   Expert 2  

 xa x0 xb xa x0 xb 

Comp. A 2E-03 3.00E-03 5E-03 1E-03 3.00E-03 4E-03 

Comp. B 3E-03 3.50E-03 4E-03 2E-03 4.00E-03 5E-03 

 

Table 8. Averaged input of failure probabilities 

 xa x0 xb 

Comp. A 1.50E-03 3.00E-03 4.50E-03 

Comp. B 2.50E-03 3.75E-03 4.50E-03 

 

Table 9. Resulting fuzzy number failure probability top-event in AND-gate configuration of 

components A and B 

xa x0 xb 

3.75E-06 1.13E-05 2.03E-05 

 



 

 

  
 

Figure 5a and b. Left, the averaged fuzzy sets of the two components A and B, and right, the 

resulting top event fuzzy number in case of AND-gate configuration of the two. 

If in contrast inference is required of one or more fuzzy sets on the same or on different 

universes, rule-based logic must be applied to derive the resulting shape of the inferred fuzzy 

system or function, e.g., in its simplest form:  

IF 𝑥 = 𝐴  THEN  𝑧 = 𝐶; or more extended: IF 𝑥 = 𝐴  AND  𝑦 = 𝐵  THEN  𝑧 = 𝐷,  

where the first is a single-antecedent−single-consequent rule, and the more common second is 

a two-antecedent−single-consequent rule. The AND connection can also be OR or NOT. 

Antecedents and consequent can be numeric or also frequently linguistic. If antecedent or their 

combination is numeric, a numeric consequent can be implied if the result cannot be determined 

arithmetically. Obviously, the arguments have a conditional relation. If the consequent will be 

a fuzzy set, the inference procedure has been developed by Mamdani [23], and if it is a function 

of 𝑥 and 𝑦, or a constant, Sugeno, or more precisely Takagi, Sugeno and Kang [24, 25] inference 

shall be applied. The Sugeno inference operation increased the applicability of fuzzy sets 

greatly, e.g., by enabling improved control systems (robots).  

Given two AND related antecedent fuzzy sets at the same universe, their 

intersection/conjunction produces the minimum area they have in common; if their relation is 

an OR union/disjunction yields the area they have not in common, hence the complement. It 

shows the min and max principle. Of practical use, e.g., in control, is the case of antecedents 

not necessarily at the same universe. If a value of both antecedents must be combined to infer 

a consequent value being a fuzzy set (Mamdani), the smallest antecedent membership grade is 

implemented as the membership grade of the given consequent (so called t-norm operator) 

producing the firing level of the rule. The result is the remains of the consequent set below the 

-cut at the firing level and the sought value is the centroid of the remaining part, obtained by 

defuzzification. By defuzzification of the resulting fuzzy set the arithmetic mean position of all 

the points, the centroid, or any other central measure is computed. In case two rules apply the 

result can consist of an amalgam of different consequents of which a centroid can be calculated 

(see Figure 6). Looping through the whole of antecedents in discrete steps is also possible and 

will construct a complete consequent. Often, inputs are provided in linguistic terms, such as 

high medium low or good medium bad, or a more extended range of terms. This kind of input 

but also numeric ones can lead to arrays of fuzzy sets to cover a range (see for an example 

Figure 7); the finer the higher the ‘granulation’. In contrast, for Sugeno inference the consequent 

in the form of a function or constant is multiplied with the firing level and no defuzzification is 

needed. In case of an OR-relation the maximum (t-conorm) shall be obtained, so the largest 

membership grade is selected.  
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Figure 6. Two rule, two antecedent−single consequent in AND configuration with Mamdani 

inference as, e.g., occurs in a control situation. Indicated 𝑥 and 𝑦 set values ‘translate’ into 𝑧𝑐𝑜𝑎, 

the centroid of area, slightly modified after Castillo and Melin [29].  

The above description is a bare minimum in which mathematical equations have been avoided. 

Wierman [26] or Mendel [22] present details and derive the many equations, which for extended 

cases tend to become rather complicated. Mendel [22] also suggests software that can be used 

within Matlab®, which itself has an app for rule-based logic of Type-1 fuzzy sets. 

Applications in risk assessment are several, e.g., Markowski et al. [27, 28]. The membership 

function of values of various types of variables to be used in the assessment, such as 

consequence severity or event frequency including human factor influences; the latter in many 

situations must be estimated by experts as proper and sufficient observations are lacking.  

  
 

Figure 7a and b. Two example membership function arrays of reactor liquid level (left) and 

reactor pressure (right), both based on interviewing operators in order to obtain early warning 

of a possible run-away through an automated system applying Bayesian network, after 

Naderpour et al. [ 30]. Note the shoulder fuzzy sets at both ends. 

A limitation of Type-1 fuzzy set is that different responses of the experts must be averaged. The 

authority of or confidence in experts can be expressed by weight factors, but expert weighting 

is often not done. Due to all this, uncertainty in inputs will be smaller than when responses are 

included in full, and uncertainty in the output will be lost when after defuzzification only the 

crisp value is retained. In part, these limitations can be avoided with Type-2 fuzzy sets.  

Type-2 fuzzy sets 

After his 1965 announcement of the development of fuzzy sets, Zadeh [7] also proposed in 

1975 the concept of Type-2 fuzzy sets. The essence of the concept is that the membership 

function itself is fuzzy. This opens the possibility of improvement, because the uncertainty in 



 

 

various inputs can be retained and are not in part reduced by averaging. Development of 

practical implementation of the idea took a long time, see Mendel [22] and his many IEEE 

articles. Therefore, during the last decade Type-2 fuzzy set quickly became popular as a tool to 

support multi-criteria decision making. Operations with Type-2 fuzzy sets are not simple. In 

fact, each input of a Type-1 fuzzy set contains in 2-dimensional form the uncertainty an 

estimating expert perceives about the subject. In Type-2 fuzzy set an additional uncertainty is 

added, so the aggregated uncertainty becomes 3-dimensional in representation and evaluation 

becomes rather intricate. As an in-between concept Interval Type-2 fuzzy set (IT2 FS) has been 

developed, which allows uncertainty to be modeled 2-D again, because over intervals there is 

no preference for any value, hence an interval will be covered by a uniform distribution. To 

represent this uncertainty mean and standard deviation of the uniform distribution are equated 

to those of a T1 FS triangle. Below it will be explained in more detail how that works. 

Fortunately, the IT2 FS requirement of estimates to be formulated as intervals [𝑎, 𝑏], provides 

in fact the most convenient way experts can make estimates. In Figure 8a and 8b is shown how 

individual responses as T1 FSs are wrapped in an IT2 FS upper and lower ‘membership 

function’. 

 

Figure 8a and b. IT2 FS �̃�  in case of primary triangular T1 FSs; (a) showing the footprint of 

uncertainty (FOU) area and maximum and minimum envelope borders 𝐴 and 𝐴; (b) showing a 

few embedded T1 FSs and all parameter symbols involved; 𝑀 means here the maximum 

bound on the value of 𝑥 (after Liu and Mendel, 2008). 

The way this concept can be used in risk assessments will be shown by some examples.  

Example 1. Estimating failure rate values. 

Although an estimate can be made directly in numerical values, it is often given in linguistic 

grades, such as ‘very high, high, medium, low, very low’ or even wider. Anyhow, in such case 

the expert must indicate as well on a continuous, usually logarithmic numerical scale (Figure 

9) what is meant by these terms. 

 

Figure 9. Example of a logarithmic scale of probability values per year (frequency) of an 

interval [-6.5, -5] or rather [0.32E-06, 1E-05] per year according to the expert equivalent to 

‘very low’. 

For creating interval fuzzy set the expert generated intervals [𝑎, 𝑏] must be converted first into 

symmetric triangular fuzzy sets. The principle is to equate the mean, 𝑚𝑀𝐹 = (𝑎𝑀𝐹 + 𝑏𝑀𝐹)/2, 



 

 

and standard deviation, 𝜎𝑀𝐹 = (𝑏𝑀𝐹 − 𝑎𝑀𝐹)/2√6, of a T1 FS to the mean, (𝑎 + 𝑏)/2, and 

standard deviation, (𝑏 − 𝑎)/2√3, of the uniform distribution over the interval (Liu and Mendel 

[31]). This yields: 𝑎𝑀𝐹 = ½(𝑎 + 𝑏) − (𝑏 − 𝑎)/√2  and 𝑏𝑀𝐹 = ½(𝑎 + 𝑏) + (𝑏 − 𝑎)/√2.  In 

case of left and right shoulder fuzzy sets, slightly different equations apply. 

Table 10 Responses on a pressure relief valve of three experts and the transformed values 

Per 107 hours Expert 1 Expert 2 Expert 3 

a, min b, max 2.0 7.0 5.0 10.0 3.0 8.0 

aMF bMF 1.0 8.0 4.0 11.0 2.0 9.0 

mMF sMF 4.5 1.4 7.5 1.4 2.0 9.0 

[a, b] in fits 200 700 500 1000 300 800 

 

Suppose we interview three experts about the failure rate of a particular pressure relief valve. 

Their responses of failure per 107 hours (in fits 100) are summarized in Table 10 together with 

the transformation and aggregation to obtain the FOU. For the aggregation, the maximum and 

minimum 𝑎𝑀𝐹 and 𝑏𝑀𝐹-values of the three experts are selected. Referring to Figure 8b for the 

symbols, the 𝐶𝑀𝐹-values are obtained as 𝐶𝑀𝐹 = (𝑎𝑀𝐹 + 𝑏𝑀𝐹)/2 and 𝐶𝑀𝐹 = (𝑎𝑀𝐹 + 𝑏𝑀𝐹)/2, 

while 𝑝 and 𝜇𝑝 follow from:   𝑝 =
𝑏𝑀𝐹(�̅�𝑀𝐹−�̅�𝑀𝐹)+�̅�𝑀𝐹(𝑏𝑀𝐹−𝐶𝑀𝐹)

(�̅�𝑀𝐹−�̅�𝑀𝐹)+(𝑏𝑀𝐹−𝐶𝑀𝐹)
   and   𝜇𝑝 =

𝑏𝑀𝐹−𝑝

𝑏𝑀𝐹−𝐶𝑀𝐹
. This way 

the full uncertainty implied by the responses is embodied in the FOU. It means that the broader 

the base of the IT 2FS and the smaller the lower FOU envelope the larger the uncertainty. 

Applying the procedure to construct the IT2 FS yields Figure 10. The centroid bounds have 

been computed according to the Karnik-Mendel method (Mendel [22]) and are 𝑐𝑙 = 3.6 and 

 𝑐𝑟 = 8.2 with a mean 𝐶 of 5.88. 

 

Figure 10. IT2 FS constructed based on the responses of three experts.  

Just for comparison, if by means of a Bayesian network the three uniform distributions of the 

data are convoluted a mean of 5.83 is found with a standard deviation 𝜎 of 0.823 (hence 6𝜎, 

which covers 99.7% of a normal distribution, would have as bounds 3.4 and 8.3)  

Tables 11a and b. Mock-up response values of three experts  

 log10 scale Expert 1 Interval Expert 2 Interval Expert 3 Interval 

Consequence [$] a, min b, max a, min b, max a, min b, max 

Negligible        (I)   5.00 5.50 4.00 5.00 4.50 5.20 

Low                 (II)  5.50 6.50 5.00 6.00 5.25 6.50 

Moderate        (III) 6.50 7.50 6.00 6.50 6.50 7.50 

High               (IV)  7.50 9.00 6.50 7.50 7.50 8.50 

Catastrophic   (V)   9.00 9.50 7.50 8.50 8.50 9.20 
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 log10 scale Expert 1 Interval Expert 2 Interval Expert 3 Interval 

Frequency    [/yr] a, min b, max a, min b, max a, min b, max 

Remote           (A)    -8.00 -6.50 -8.00 -7.00 -7.00 -6.00 

Unlikely          (B) -6.50 -5.50 -7.00 -6.00 -6.00 -5.00 

Very Low       (C) -5.50 -4.50 -6.00 -5.00 -5.00 -4.00 

Low                (D) -4.50 -3.50 -5.00 -4.00 -4.00 -3.00 

Medium          (E) -3.50 -2.50 -4.00 -3.00 -3.00 -2.00 

High                (F) -2.50 -1.50 -3.00 -2.00 -2.00 -1.00 

Very High      (G) -1.50 1.00 -2.00 -1.00 -1.00 1.00 

 

Example 2. Converting a linguistic risk matrix into a quantitative one 

Interval Type-2 fuzzy set (IT2 FS) can also be used to convert linguistically graded consequence 

severity or event occurrence frequency into numerical risk. To that end experts must be asked 

to give estimates of linguistic terms as intervals on a continuous scale, which due to the wide 

range covered will be logarithmic. Another more complex case is the conversion of a linguistic 

risk matrix with given acceptance criteria (acceptable, tolerable acceptable, tolerable not 

acceptable, not acceptable) into a quantitative one4. The procedure creates an array of severity 

and frequency IT2 FSs, which form the antecedents for a Sugeno inference mentioned earlier. 

We shall not go into details. For the inference special software has been developed. The inputs 

are collected in Tables 11a and b, the arrays of IT2 FSs are presented in Figures 11a and b, the 

original and converted three-dimensional matrix of this example is shown in Figures 12a and b 

and a projection of the 3-D on the ground plane in Table 12. 

 

Figures 11a and b. IT2 FSs of consequence severity and event frequency of the three experts. 

 
 

Figures 12a and b. The original linguistic matrix and the converted three-dimensional one. 

Table 12. Projection of the converted 3-D matrix on the X-Y plane 

log10 Consequence [$] 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 

                                                           
4 This example has been part of a paper submitted to Process Safety and Environmental Protection journal.  
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log10 Frequency [/yr]    Risk Acceptance Level:     1 = A; 2 = TA; 3 = TNA; 4 = NA   
-7.50 1.00 1.00 0.95 0.86 1.15 2.00 2.00 2.00 2.00 2.00 3.00 
-6.80 1.00 1.00 1.00 1.72 2.00 2.00 2.00 3.00 3.00 3.00 3.00 
-6.10 1.00 1.00 1.29 1.72 2.00 2.00 2.00 3.00 3.00 3.00 3.00 
-5.40 1.00 1.15 1.74 1.72 2.00 3.00 2.99 3.00 3.00 3.00 3.00 
-4.70 2.00 2.00 2.00 2.58 3.00 3.00 3.00 4.00 4.00 4.00 2.75 
-4.00 2.00 2.00 2.36 2.58 3.00 3.15 3.15 4.00 4.00 4.00 2.45 
-3.30 2.00 2.00 2.62 2.58 3.00 4.00 3.99 4.00 4.00 4.00 2.15 
-2.60 3.00 3.00 3.00 3.43 4.00 4.00 4.00 4.00 4.00 4.00 2.00 
-1.90 3.00 3.00 3.72 3.43 4.00 4.00 4.00 4.00 4.00 4.00 2.00 
-1.20 3.00 3.00 3.81 3.43 4.00 4.00 4.00 4.00 4.00 4.00 2.00 
-0.50 0.00 0.00 0.00 1.00 1.00 0.96 1.53 1.77 1.73 1.75 1.99 

Because the experts provided intervals also at the ends of the ranges, judging the range beyond 

as unrealistic, there are no shoulder sets. Therefore, the risk acceptance level figures decrease 

at the edges.  

4. Probabilistic approach of expert estimation 

Expert elicitation applying a probabilistic approach has a long history. It had already started in 

the 1970s with trying to solve problems in nuclear risk assessment (Rasmussen [32]). Perhaps 

the latest is applying it in the field of climate change (Oppenheimer et al. [33]) claiming that 

structured expert judgement is applied “in order to facilitate characterization of uncertainty in 

a reproducible, consistent and transparent fashion.” That is “experts quantify their uncertainty 

on potentially observable variables of interest”, “and on calibration variables from their field 

whose true values are known post hoc” (seed variables). Hence, the elicitation is on numeric 

values. The example given is on atmospheric dispersion modeling.  One of the co-authors of 

[33] is Cooke, [3], who is an expert in probabilistic approach to expert elicitation. Cooke calls 

his method the “classical model”, because it is based on calibration measurement and classical 

statistical testing [34]. The principle is that the experts provide numerical answers at 50% and 

5% probability. Oppenheimer et al. [33] summarize characteristics of expert elicitation as 

follows:  

“(i) experts’ statistical accuracy and informativeness (the ability to concentrate high probability 

in small regions) is very uneven, ranging from informative and statistically accurate to very 

overconfident;  

(ii) both equal-weight and performance-based combinations of individual experts’ distributions 

generally result in improved statistical accuracy, and for equal weighting this improved 

accuracy is often purchased at the expense of very wide confidence bands;  

(iii) statistical accuracy and informativeness are often antagonistic - the most informative 

experts are also the least accurate - although many expert panels contain accurate and 

informative individuals; and 

 (iv) performance weighting yields better performance, both in- and out of- sample, than 

weighting schemes not based on performance.” 

The procedure described by Cooke and Goossens [35], here summarized and maybe 

oversimplified, is that experts are asked to provide estimates of ≤5%, >5% and ≤50%, >50% 

and ≤95%, and >95%, forming 4 inter-quantile intervals (or bins) as an impression of the 

perceived width of the distribution of answers. If desired, elicitation can be refined by asking 

more quantile fractions. Each expert will answer 𝑁 questions. He/she will also be considered 

as a statistical hypothesis, so that the 𝑁 realizations will produce for each expert a sample 

distribution 𝑠(𝑒), or rather for each interval, 𝑠𝑖(𝑒). If there is a distribution where 𝑠𝑖(𝑒) can 



 

 

occur with probability 𝑝𝑖, the amount of conditional information5 received is 𝑁𝐼(𝑠𝑖(𝑒)|𝑝𝑖) = 

−𝑁𝑠𝑖(𝑒)ln(𝑠𝑖(𝑒)/𝑝𝑖), or the total amount is 𝑁𝐼(𝑠(𝑒)|𝑝) = −𝑁 ∑ 𝑠𝑖(𝑒)ln(𝑠𝑖(𝑒)/𝑝𝑖)
4
𝑖=1 .  

With large 𝑁, 2𝑁𝐼(𝑠(𝑒)|𝑝) becomes chi square (2) distributed with 3 degrees of freedom. This 

can be seen when expanding the natural logarithm in the relation in a Taylor series and focusing 

on the dominant terms. The operation results in the 2-statistic, based on the summed squared 

differences of predicted and observed values, for goodness of fit of 𝑠 to 𝑝 holding for a ‘well-

calibrated’ expert. If the statistic is low, the probability that the fit is good, is high. This 

probability provides an expert’s calibration score. When the expert is asked to produce 

quantiles instead of numbers in a bin, a transformation of the answer is needed to allow for the 

non-equal masses, but the method remains basically the same. 

Besides a calibration score of each expert, an information score is determined. Information 

scores measure the width of the distribution the expert presents. An expert’s information score 

is the average relative information with respect to the background [34], e.g., a uniform 

distribution of which a relevant so-called intrinsic range is considered. This range is taken such 

that it spans all quantile answers plus an overshoot. It is selected by the analyst, because it holds 

for all experts. Information score of expert 𝑒 is: (1/𝑁) ∑ 𝐼(𝑓𝑒,𝑖|𝑔𝑖)
𝑁
1 , in which 𝑁 is as before, 

𝑓𝑒,𝑖 is the density of expert 𝑒 for item 𝑖, and 𝑔𝑖 is the background density for item 𝑖, all under 

the assumption that variables are independent. Information scores increase when the quantiles 

become narrower, as an expert can be supposed to be surer of his/her answer. However, if 

quantiles come very close it may indicate overconfidence.  

The ‘decision maker’ (DM) combines the calibration and the information scores in linear 

pooling. To do this the best way causes again a number of intricacies, because experts can try 

to manipulate their quantile distances. The challenge is to find a set of weights, each weight 

being an expert’s product of calibration and information score, such that the linear pool under 

these weights maximizes the product of calibration and information scores and optimizes 

performance. The best expert gets weight of 1. The choice is between a global weight decision 

maker (scores global over all seed variables) (GWDM) and an item weight (IWDM) 

discriminating per seed variable, which both should be better than the equal weight one 

(EWDM), which consists of simple averaging. GWDM is proportional to the product of the 

calibration and the information scores, given that the calibration exceeds a “significance level” 

cut-off , below which the expert weight is set to zero. The significance cut-off  is determined 

by where it maximizes the product scores. In other words, good answers are rewarded and bad 

ones are eliminated. IWDM does the same but per questioning the item/seed variable. The 

performance optimized combination DMs often turned out to be better than EWDM [34].  

The data base in [34] contains 45 panel runs on different topics and reports the DM 

performances. The results are obtained using the software EXCALIBUR (which appears not to 

                                                           
5 This is according to the Shannon entropy theory. Information content 𝐼 on randomness of random variable 𝑥𝑗 

representing an observable event 𝑗 occurring with probability 𝑝𝑗 is: 𝐼(𝑝𝑗) = −log𝑏(𝑝𝑗), or if 𝑏 is taken as the 

mathematical constant e, base of the natural logarithm,  −ln(𝑝𝑗) = ln (1/𝑝𝑗). If base is e, information quantity is 

measured in the unit nats (but when 𝑏 = 2 in bits). Derivation is by considering if two independent events occur, 

the information on the joint probability: 𝐼(𝑝1𝑝2) = 𝐼(𝑝1) + 𝐼(𝑝2), hence in general, 𝐼(𝑝𝑎) = 𝑎𝐼(𝑝) analogous to 

log(𝑝𝑎) = 𝑎 log(𝑝). In 𝑁 repeats, event 𝑗 will on average occur 𝑁𝑝𝑗 times, so total 𝑁𝐼(𝑝𝑗) = − ∑ 𝑁𝑝𝑗 ln(𝑝𝑗)𝑛
1 . 

In case of conditional 𝐼(𝑠|𝑝) to be understood as amount of randomness in 𝑠 given 𝑝, so that 𝐼(𝑠|𝑝) = −𝑠 ln(𝑠/𝑝). 

If 𝑠 = 𝑝, then 𝐼 = 0, in other words the sample is exactly the value of the true distribution. 



 

 

be downloadable anymore). Each study takes quite an effort (1 – 3 months). Further cases are 

described in [35]. Hanea [36] gives a detailed account of applying the method to the problem 

of escape time from a burning building applying Bayesian network to relate parameters and 

interviewing four experts each from a different domain: fire prevention, fire development, fire 

safety of buildings, and people behavior in evacuation. For calibration, 7 questions were asked 

on fire statistics and 10 on parameter values of interest, such as alarming system reliability, 

people flow through exits, waiting time, number of exits and distance to exits in public 

buildings. EWDM appeared to be slightly lower and less informative than the other two DMs. 

Hanea reports details, achievements, but also encountered problems of various nature. Bolger 

and Rowe [37] criticize the unequal weighting of the classical model for several reasons, e.g., 

because of the influence on experts from a psychological behavior point of view and the usual 

limited set of seed variables, and they would prefer equal weighting. On the other hand, if bias 

by group think, polarization, failure to share information, dominance, and dogmatism can be 

reduced by experienced leadership, group discussions (behavioral aggregation) can also help to 

resolve the problem. This evoked commentary by Cooke  [37] and a response by Bolger and 

Rowe [37], which altogether sharpens the contours of the problem area of applying expert 

elicitation.  

The mentioned climate change study [33, 33A] focuses on Gaussian dispersion modeling and 

on the uncertainty induced by crosswind dispersion. Eleven experts have been interviewed on 

36 calibration variables; the EWDM appeared in this case to be slightly higher than the 

performance-based ones, though. The combined uncertainty by the experts turned out to deviate 

significantly from those implied by 5 different choices of crosswind dispersion model 

parameters, and it therefore gained credibility. The result was used for probabilistic inversion 

to improve the model. 

5. Similarities and differences in methods 

The probabilistic approach again shows that when less uncertainty is desired, efforts to delimit 

uncertainty increase strongly. One does not get more value cheap! In the probabilistic approach 

with the attempts to ‘calibrate’ experts, the afore mentioned expert elicitation complexities 

appear quite pronounced. However, intrinsically in the Dempster-Shafer and fuzzy set 

approaches of expert judgment, the above observed problems of expert weighting will be 

present as well. In DST it is the analyst who by assigning mass gives experts a weight, but that 

weight also is subjective, while in fuzzy set expert weighting is hardly used.  It all increases the 

uncertainty of the results produced by the methods . 

It is not easy to make a choice between Dempster-Shafer method and fuzzy set, although for 

simpler questions regarding reliability and other observable data the more rigid mathematical 

treatment of information in the Dempster-Shafer approach makes it attractive and preferential 

over fuzzy set. In case of bowtie causal structure, thanks to the rigor, DST failure data can be 

propagated in an Evidential network, similar to a Bayesian network. For that, the epistemic 

uncertainty term is treated as an additional mode. Of course, fuzzy set Type-2 is a substantial 

improvement over Type-1, so it is worth the additional effort, but it remains approximative. 

Ferdous et al. in [39] and earlier papers compared for bowtie analysis the lack of failure data 

by having experts cast their subjective linguistic estimates in a Type-1 fuzzy set and in addition 

in a DST format showing inconsistency among experts and their fractions of ignorance.  



 

 

Apart from the methods described, there are other less known ones. Much like DST, Credal sets 

and Credal networks try to accommodate imprecise and incomplete probability, see Cozman 

[40], or more recently Piatti et al. [41]. A credal set concerns a closed convex set6 of probability 

measures that must sum to 1, but which can vary within that constraint. In a finitely generated 

credal set a number of probability value combination sets (each set summing to 1) exist that can 

be represented graphically by a polytope reflecting the sets of values by its vertices. Credal sets 

are often applied to binary variables because it can define upper and lower probability set 

functions, 𝑃(𝐴) and 𝑃(𝐴). It can be modeled by networks that are similar to Bayesian networks 

and Evidential ones but due to the constraint differ on a few fundamental aspects. In a given 

credal network, there are several credal sets called extensions that meet the constraints set by 

the network. Inference is possible. Only to a strong extension being still a joint credal set, which 

forms a joint density distribution over the variables 𝑋𝑖 given parents 𝑝𝑎 as in a Bayesian 

network, 𝑃(𝑋) = ∑ 𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖))𝑖 , allowing directional separation (so called d-separation), the 

Bayesian network mathematical infrastructure can be applied. Natural extension is the largest 

set complying with the network and must be solved in a different way (for which also software 

is available [42]).  

In the fuzzy set Type-2 examples the expert was always asked to indicate on a continuous 

quantitative scale an interval what he/she thought the grading term covered, enabling the fusing 

with others. Herrera and Martinez [38] developed a method where the linguistic term can be 

retained and in which by adding a value between -0.5 and +0.5 in a fusing process loss or gain 

can be accounted for. It offers a solution in highly complex situations of interdependence, 

cascading, and indirect causation in which even an indication on a quantitative scale is not 

possible. The extent to which the grading term holds, appears from the value added. 

Zadeh [43] is also pioneer of possibility theory. A quotation from [43] is: “A thesis advanced 

in this paper is that the imprecision that is intrinsic in natural languages is, in the main, 

possibilistic rather than probabilistic in nature”; and later “when our main concern is with the 

meaning of information-rather than with its measure-the proper framework for information 

analysis is possibilistic rather than probabilistic in nature”. If something is possible it does not 

need to be probable. Possibility theory forms an interface with probability theory, DST, and 

fuzzy set. It all has been formulated mathematically (Zadeh [43] and Klir [8], [44]). A state of 

affairs and applications are presented by Dubois and Prade [45]. An application in risk 

assessment is to find bounds on probability predicted by possibilistic considerations. So far, the 

approach did not result in convincing applications offering more than we have seen earlier with 

DST and IT2 FS. The same is true for the 2011 Zadeh introduction of the Z-number [46]. This 

number consists of two elements, in which the first informs about the constraint of a real 

variable in terms of ‘about’, ‘close-to’, etc., and the second on the reliability of the first in terms 

of ‘sure’, ‘likely’ and such like. Thus, a typical expression is: ‘the driving time of College 

Station to Houston downtown is about 2 hrs, usually’. Mathematically, the constraint can be 

expressed as a fuzzy number and the reliability as a probability value. One recent fault tree 

application has been published by Yadi et al. [47] in case of elicitationof experts unsure of exact 

failure rate values as an alternative to methods mentioned before in this paper. 

                                                           
6 A convex set is a set of elements from a vector space such that all the points on the straight line between any 
two points of the set are also contained in the set: 𝑥 =  𝜆𝑎 +  (1 − 𝜆)𝑏 for all 𝜆 from 0 to 1 (Watkins Th., 
www.sjsu.edu/faculty/watkins/convex.htm). 



 

 

All the methods described in this paper have found their way into Artificial Intelligence. 

6. Conclusions 

Methods are available to objectivize imprecise and subjective estimates of mostly binary 

variable values that in principle are observable, but because of long observation lead times or 

other reasons of inaccessibility, must be obtained by interviewing experts and eliciting their 

opinions. 

Most forceful on the experts and at the same time using most of statistical background 

knowledge is the so-called structured expert judgment using the “classical model”. However, 

the traditional method is effort intensive and therefore costly.   

The Dempster-Shafer approach seems for the type of failure data or consequence model 

parameter value questions we encounter in risk assessment the best option, because epistemic 

uncertainty thereby obtains as a separate focal element its own more realistic place and can be 

included in bowtie and other analyses making use of Bayesian network. 

In case values of consequences and rates are given in linguistic terms of natural language, fuzzy 

set is most suitable. When the effect of linguistic graded variables shall be combined through 

inference of fuzzy sets (type-1 or type-2), it is possible to derive a concluding linguistic graded 

result (“Computing with words or perceptions” [48]). The same is true if variables are expressed 

as index values. In contrast to type-1 fuzzy set where expert opinion differences, whether or not 

weighted, must be averaged, type-2 can retain the uncertainty introduced by the response 

differences. Processng is effort intensive, though. Additionally, when the variable can be 

expressed on a continuous numeric scale, such as for consequence severity or event frequency, 

experts can be asked to indicate an interval (interval type-2) facilitating processing. The result 

by inference or arithmetic operation will then be numerical 

A few other, less often or maybe not yet often applied methods are mentioned, which in specific 

complex cases can increase considerably the quality of a solution to a problem. 
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