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ABSTRACT

Precise localization is a fundamental part of vehicular autonomy. Current implementations

rely on expensive sensor arrays and favorable conditions to accurately localize a vehicle. As au-

tonomous vehicles progress toward production models, these expensive sensors will be replaced

by low-cost alternatives. Additionally, production autonomous vehicles will need to operate reli-

ably in a range of conditions. Localization algorithms will need to accurately perform despite the

increased noise due to these factors. This thesis examines mathematical improvements to existing

localization techniques in an effort to increase their reliability in adverse conditions. The effec-

tiveness of these improvements is evaluated using numerical simulations as well as testing with

real-world data.
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NOMENCLATURE

AV Autonomous Vehicle

MI Mutual Information

NMI Normalized Mutual Information

SLAM Simultaneous Localization and Mapping

GPS Global Positioning System

SNR Signal-to-Noise Ratio

ML Maximum Likelihood

EKF extended Kalman filter

PMF Probability Mass Function

CDF Cumulative Distribution Function

IMU Inertial Measurement Unit

RMSE Root Mean Squared Error

LiDAR Light Detection and Ranging
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1. INTRODUCTION AND LITERATURE REVIEW

Autonomous vehicle research receives generous amounts of attention and funding. The promise

of cars that drive themselves and the convenience they would provide have led to the field’s high

valuation. Convenience, however, is not the only benefit of autonomous vehicles. According to the

National Highway Traffic Safety Administration, over 35,000 people died in the US in 2018 alone

due to motor vehicle crashes [1]. Though the technology has not yet matured, autonomous vehi-

cles could significantly reduce such deaths because computer agents are not susceptible to many

leading causes of traffic fatalities such as alcohol, distracted driving, and speeding [2].

Production autonomous vehicles, widely available to consumers, are critical in realizing these

benefits. Current research ventures rely on expensive prototypes with sophisticated sensor arrays

that provide data with high accuracy, but are prohibitively costly for production vehicles. Cost-

effective solutions will need to be developed in order to bring autonomous vehicles to a broad

consumer market. Relatively inexpensive sensors are necessary for wide-scale adoption and, there-

fore, engineering solutions must be robust to noisy data. This thesis focuses on improving existing

localization algorithms to create more reliable solutions for future production autonomous vehicles

equipped with affordable sensing units.

1.1 Localization

Localization is the process by which an autonomous vehicle determines its location within

its surroundings. Reliable localization with centimeter-scale accuracy is critical to autonomous

vehicles. Systems based on satellites and cellular infrastructures alone are inadequate for this ap-

plication because they provide coarse location information and are unreliable in urban settings with

limited sky clearance. Recognizing this need, researchers and engineers have developed enhanced

methods of localization, often turning to LIDAR technologies. In this broad context, there are two

main localization strategies: simultaneous localization and mapping (SLAM) and localization with

a prior map. Since autonomous vehicles in early deployment are confined to known geographical
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areas, we focus on the latter scenario. Nevertheless, we review both approaches briefly to better

contextualize our contribution.

1.1.1 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) dominates much of the existing research in

the autonomous vehicle (AV) space. Over the past two decades many implementations have been

explored. For instance, Dissanayake et al. used an estimation-theoretic or Kalman filter based

strategy to solve the SLAM problem [3]. We note that multiple competing implementations such

as DP-SLAM [4], Atlas [5], and Graph SLAM [6], are available in the literature. One of the most

successful SLAM algorithms, a variant of Graph SLAM, achieves “reliable real-time localization

with accuracy in the 10-cm range” [7]. This algorithm was subsequently improved by using prob-

abilistic maps as a representation of the surroundings that “increased robustness to environmental

changes and dynamic obstacles,” while maintaining comparable accuracy [8]. We implicitly uti-

lize some aspects of the SLAM framework in our localization strategy, especially while performing

analysis of overall systems; yet these aspects are ancillary to our research and its focus on reliable

data acquisition. Thus, SLAM lies outside the scope of the thesis.

It is worth mentioning that previous publications explore how to perform SLAM using inexpen-

sive cameras (visual SLAM). However, existing solutions struggle in challenging conditions [9]. It

is likely that improving image acquisition would help the reliability of localization techniques un-

der such conditions within SLAM; but our work focuses on a different type of localization strategy,

as described below.

1.1.2 Localization with a Prior Map

In this thesis, we are primarily concerned with localization strategies that make use of prior

maps. Such a map is built over multiple passes and thus is assumed to be an accurate (essentially

noiseless) top-down view of the environment. Given such a prior map, the localization process

reduces to matching the current sensor input from the vehicle with a section of the map and in-

ferring the vehicle’s position. In practice, techniques such as extended Kalman filtering (EKF)
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are used to reduce the search space of possible map sections. An EKF is used in localization to

estimate vehicle position based on previous state information [10]. This estimate is then used as a

starting location in the prior map to begin searching for the map section that matches the current

sensor input. In this context, we center our efforts on improvements in the image matching task

for localization.

1.2 Mutual Information

An information measure that plays an important role in our impending discussion is mutual

information (MI). Loosely speaking, MI quantifies the amount of shared information between two

random variables. This criterion can also be extended to empirical measurements, using the empir-

ical joint distribution of two groups of data. In practice, MI can be employed to determine whether

two images match, and it features some robustness to illumination and noise. Much of the current

research on MI applications focuses on its use for medical image registration [11]. In this field,

researchers seek to match images or features within an image with a computer model or physical

locations [12]. The use of MI for image registration was spearheaded by Collingnon, Maes, Viola,

and Wells [13, 14, 15, 16]. Their work made the technique popular, as it performed rigid reg-

istration of multi-modality images with notable success. Rigid registration assumes images only

need to be rotated and translated to find their correct matches, while non-rigid registration requires

“some localized stretching of the images” [17]. Our work more closely relates to rigid registration

because we assume the transformation needed to match the vehicle’s current sensor input with

a section of map is calculated during calibration. Multi-modality images are images generated

by different means such as “computed tomography (CT), magnetic resonance (MR), and photon

emission tomography (PET)” [14]. These images are inherently different due to the properties of

each modality and thus present a challenge for image registration. Robustness to image modality is

an attractive characteristic of MI in regards to localization because the vehicle’s sensor input will

likely vary greatly from the prior map due to differing conditions. Normalized mutual information

(NMI), a normalized version of MI, was later proposed by Studholme et al. [18]. This measure

shows increased robustness to outliers and differences in image overlap. We use this formulation

3



of NMI in our work.

1.2.1 NMI and Localization

The characteristics of NMI that make it an effective technique for medical image registration

also make it suitable for localization. It has shown robustness to obstructions, lighting [19], out-

liers, and image overlap [18]. Because of this, NMI has entered into localization research. Walcott

and Eustice used NMI and a monocular camera to perform localization with a 3D map [20]. In

their implementation, they transformed sections of the map into the perspective of the camera and

matched them with camera images using NMI. We examine the reverse approach in our work by

transforming camera images into the perspective of the map and matching them. Another imple-

mentation of NMI-based localization was proposed by Castorena and Agarwal [21]. They used a

map of LiDAR reflectivity edges that removed the need for post-factory laser reflectivity calibra-

tions and slightly outperformed the state of the art in localization performance.

The NMI measure does not account for noise levels, though it is somewhat robust to noise [19].

In fact, using NMI as an image matching technique for localization makes the assumption (intrin-

sically) that all information in both the map and current sensor input is of equal quality. We will

examine the validity and impact of this assumption in later sections.
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2. IMAGE ACQUISITION IN AUTONOMOUS VEHICLES

2.1 Pinhole Camera Model

We begin our exposition with the description of a simplified image acquisition model for au-

tonomous vehicles. It worth noting that industry and academic prototypes make use of many

different sensors to perform localization. Nevertheless, our rudimentary model serves as a base

upon which to develop our understanding of image acquisition in autonomous vehicles. One of the

simplified aspects of the model is the sensing device. Indeed, we adopt an ideal pinhole camera

because it affords a straightforward approach to describing the behavior of image acquisition and

its impact on localization. A standard, non-pinhole camera with a lens exhibits similar behavior,

but is more complicated to describe mathematically. The pinhole camera we adopt for our model

consists of a cube with an infinitesimally small hole in the center of one of the faces. The face op-

posite the hole is the focal plane of camera. The distance between the center of the focal plane and

the hole is the focal length. Figure 2.1 shows the pinhole camera and illustrates how an image is

projected onto the focal plane. This corresponds to the special case where the object is positioned

Pinhole Camera

Focal Plane

f

Figure 2.1: This drawing depicts a pinhole camera with focal length f . It illustrates some basic
principles behind image acquisition, as they pertain to image quality.

parallel to the focal plane. We emphasize that the image is an inverted and scaled representation of

the object. To simplify treatment, images on the focal plane will be described using the coordinate
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system in Figure 2.2. An additional coordinate system will be defined to describe objects in view

of the camera in the following section.

Focal Plane

ỹ

x̃

Figure 2.2: This drawing shows the coordinate system we will use to describe images on the focal
plane of the camera.

f d

hh′

Object
Image

Figure 2.3: This drawing provides variable labels with which we can define the relationship be-
tween the height of the image and the height of the object.

We derive the relationship between the height of the image on the focal plane and the height

of the object using similar triangles. Figure 2.3 shows the image and object from Fig. 2.1 with the

body of the camera removed. The height of the object h′ is shown to be

h′

f
=
h

d

h′ =
fh

d
.
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For a specific pinhole camera and object, f and h are fixed and thus h′ is dependent on d, the

distance between the object and the pinhole. If we take two objects with height h and place them

at different distances from the pinhole, the image of the closer object will have a greater height as

illustrated in Fig. 2.4. The scaling that occurs as a function of distance will be discussed further in

later sections.

Pinhole Camera

d1

d2

h

Object 1 Object 2

Figure 2.4: The image of Object 1 is larger than the image of Object 2 even though the objects are
of equal height h.

An ideal pinhole camera is useful in our model because it does not suffer from linear distortion

and has a near-infinite depth of field [22]. This allows us to simply and accurately describe the

image acquisition process which in turn keeps the derivations in later sections concise.

2.1.1 Mounted Pinhole Camera on Frame Structure

With our sensing device selected, we can now build our model for image acquisition in au-

tonomous vehicles. The information necessary for a vehicle to navigate is contained on the road

surface, which we assume is planar. We place the pinhole camera on the roof of the vehicle such

that both near and far sections of the road are in view. More specifically, the model contains a

single pinhole camera at height h above the road surface as shown in Fig. 2.5. The camera is

directed at an angle θ below the horizon line. Note the focal plane of the camera is not parallel

with the road, the surface that contains the information being captured. This aspect of the data

acquisition system is a differentiating characteristic of autonomous vehicles, and it has effects on
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signal reliability, which we will discuss in later sections.

Road Surface

h
θ

x

y

z

Horizon Line

Figure 2.5: This drawing shows the pinhole camera, external coordinate system, and their orienta-
tion in relation with the planar road surface.

The model relies on two coordinate systems: one external to the camera and one internal. The

external coordinate system is oriented as shown in Fig. 2.5 with its origin located at the pinhole of

the camera. It is described by variables x, y, and z. Figure 2.6 depicts the orientation of the internal

coordinate system relative to x, y, and z. The internal coordinate system lies on the focal plane

of the camera with its origin located at (0, 0,−f) in external coordinates. Its two axes, described

by x̃ and ỹ, are oriented such that x̃ = −x and ỹ = −y. This allows us to circumvent the image

inversion shown in Fig. 2.1 in our impending derivations.

Focal Plane

ỹ

x̃z

y

x

Figure 2.6: The external (left) and internal (right) coordinate axes are oriented so image inversion
may be ignored in our derivations.
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2.1.2 Perspective Transformation

Perspective transformations describe how different perspectives affect the way objects ap-

pear [23]. The effects of such a transformation are clearly seen in Fig. 2.7. Objects that are

closer to the camera appear larger. Lines that are parallel to the focal plane of the camera are not

distorted while all others are. One of the most recognizable aspects of the transformation is that

parallel lines traveling away from the camera appear to converge in the distance. These effects

should be very familiar to the reader as similar processes occur in human vision. The perspective

transformation that objects in our model undergo when captured by the camera is described by

x̃ =
fx

z
ỹ =

fy

z
. (2.1)

Figure 2.7: This image illustrates the affects of the perspective transformation. For example, the
edges of the walkway, though parallel, appear to converge in the distance.
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2.2 Focal Plane Area

In this section, we examine how features on the road are distorted as they are projected onto

the focal plane of the camera. Specifically, we seek to quantify the relationship between the area

of a feature on the road and its area within a captured image. To facilitate this process, we turn

to a Riemann-style analysis and restrict our attention to square features obtained by placing a

grid pattern on the road. Every square possesses the same area and an arbitrary grayscale value.

Figure 2.8 illustrates the distortion that occurs when capturing a section of grid road. The distortion

of the grid squares is not uniform throughout the image, with squares farther from the camera being

projected onto smaller portions of the focal plane. This behavior has significant impacts on signal

quality.

Figure 2.8: The drawing on the left is an example section of grid patterned road in front of an
autonomous vehicle. When captured by the vehicle’s camera its image is distorted as it is projected
onto the focal plane. The image of this section of road is shown in the right drawing. Note all
squares on the road have the same area but their images on the focal plane do not.

We now begin our derivation of the relationship between the area of a square feature on the

road and the area of its image. We start by simplifying (2.1). The planar road in Fig. 2.5 can be

described with two variables: x and z. The third component for points on the road surface becomes

y = z
sin θ

cos θ
− h

cos θ
= z tan θ − h sec θ,

where θ is the angle between the horizon line and the z axis, as shown in Fig. 2.5. Using this
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equation we can rewrite (2.1) as functions of x and z,

x̃ =
fx

z
(2.2)

ỹ =
fy

z
=
f(z tan θ − h sec θ)

z
= f tan θ − fh

z
sec θ. (2.3)

It is also necessary to solve (2.3) for z for later use. This is found to be

z =
fh sec θ

(f tan θ − ỹ)
=

fh

f sin θ − ỹ cos θ
. (2.4)

Recall from calculus that the absolute value of the Jacobian determinant of a transformation

describes how the area around a point grows or shrinks as it undergoes the transformation. With

our simplified expressions in (2.2) and (2.3), we find the Jacobian of the perspective transformation

to be

J =

∂x̃
∂x

∂ỹ
∂x

∂x̃
∂z

∂ỹ
∂z

 =

 f
z

0

−fx
z2
−fh

z2
sec θ

 . (2.5)

The determinant of (2.5) is

det(J) =

∣∣∣∣∣∣∣
f
z

0

−fx
z2
−fh

z2
sec θ

∣∣∣∣∣∣∣ = −f
2h sec θ

z3
. (2.6)

Based on this analysis, we obtain a straightforward, yet pertinent result related to road features.

Specifically, this enables us to compute the area corresponding to the projection of a square on the

road onto the camera’s focal plane. This is accomplished in Lemma 1.

Lemma 1. Consider rectangular region R = [xl, xu] × [zl, zu] residing on the road ahead of an

autonomous vehicle. The area of the projection ofR onto the focal plane of the camera is

Ã = f 2h sec θ
(xu − xl)

2

(
1

z2l
− 1

z2u

)
. (2.7)
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Proof. The area of R̃ can be expressed as a double integral in the internal coordinate system

associated with the focal plane of the camera. However, the actual computations are easier to carry

using the external coordinate system. We therefore use a change of variables and leverage (2.6) to

get

Ã =

∫∫
R̃
dx̃dỹ =

∫∫
R
| det(J)|dxdz

=

∫ zu

zl

∫ xu

xl

f 2h sec θ

z3
dxdz

= f 2h sec θ
(xu − xl)

2

(
1

z2l
− 1

z2u

)
.

This is the desired equation, which appears in (2.7). We emphasize that area Ã is proportional to

the width of the rectangle. However, the distance of R from the autonomous vehicle is crucial in

determining the effects of the transformation onto the focal plane. The footprint of the road feature

decreases considerably as a function of z.

While Lemma 1 examines rectangular features, the methodology outlined in the proof applies

broadly to different shapes. Furthermore, for a small rectangular region, the infinitesimal projec-

tion onto the focal plane is well approximated by

Ã ≈ | det(J)|∆x∆z ∝
∆x∆z

z3
=
A
z3
, (2.8)

where z is the distance of the rectangular region, along the z axis, with respect to the camera.

2.3 Non-Uniform Signal Quality

We will use the area relationship given in (2.7) to examine the signal quality in images acquired

by autonomous vehicles. Not surprisingly, the nonuniform distortion of area over an image results

in nonuniform signal quality. We derive a mathematical expression for the signal quality in this

section.

Suppose there is a function b(x, z) which, at a moment in time, acquires the amplitude present
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at point (x, z) on the road. Then, there is a similar function b̃(x̃, ỹ) that represents the amplitude at

point (x̃, ỹ) at the same moment in time, where (x̃, ỹ) is the projection of (x, z) on the focal plane.

We use (2.2) and (2.4) to express this function as

b̃(x̃, ỹ) = b

(
hx̃

f sin θ − ỹ cos θ
,

fh

f sin θ − ỹ cos θ

)
.

The camera sensor, located on the focal plane, acquires a signal at point (x̃, ỹ) which is a combina-

tion of amplitude and noise. This is represented by b̃(x̃, ỹ) +N(x̃, ỹ), where N has power spectral

density N0. Thus, the signal acquired over a region R̃ of the sensor is found to be

S =

∫∫
R̃
b̃(x̃, ỹ)dx̃dỹ︸ ︷︷ ︸
amplitude

+

∫∫
R̃
N(x̃, ỹ)dx̃dỹ︸ ︷︷ ︸

noise

.

We model the noise introduced by the camera sensor using an additive zero-mean, white Gaussian

random process. This is appropriate assuming the sensor is working in its linear or non-saturation

region. Within region R̃ the variance of the noise is proportional to Ã, the area of region R̃ on the

focal plane. The power spectral density N0 is unknown as it depends on many factors, but constant

over the entire sensor. Thus, σ2 = ÃN0.

2.3.1 Regions of Uniform Amplitude

Suppose all points in a rectangular region on the road surface have the same amplitude. De-

scribed mathematically, b(x, z) = a for all (x, z) ∈ R, where R = [xl, xu]× [zl, zu]. This restric-

tion is made without much loss of generality as the regions can be made arbitrarily small. We can

compute the effective SNR of R̃, the image of regionR on the focal plane, by the following steps.

The energy associated with the signal component over R̃ is

(∫∫
R̃
b̃(x̃, ỹ)dx̃dỹ

)2

=

(∫∫
R̃
adx̃dỹ

)2

= a2Ã2, (2.9)

where Ã is given in (2.7). As described above, the noise introduced by the camera sensor is zero-
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mean Gaussian with variance ÃN0. We assume this noise is independent of b̃(x̃, ỹ). Thus, the

effective SNR corresponding to regionR on the road becomes

SNR =
a2Ã2

ÃN0

=
a2Ã
N0

=
a2

N0

f 2h

cos θ

(xu − xl)
2

(
1

z2l
− 1

z2u

)
. (2.10)

Moreover, owing to (2.8), we gather that, for a small regionR, the SNR is well-approximated by

SNR ≈ a2f 2h

N0 cos θ

∆x∆z

z3
,

where z is any point in [zl, zu].

The SNR depends on several factors, but most importantly, it decreases heavily as a function of

z. As such, road features far from a vehicle provide less reliable data than features up close. This

behavior, not currently accounted for in existing autonomous systems, represents an opportunity

to improve localization algorithms.

2.3.2 Examining a Grid Patterned Road

Suppose there is a grid road, as shown in Fig. 2.8, where each square has a uniform, randomly

assigned amplitude that is independent of all other squares. As an autonomous vehicle drives

along, it captures sections of the road with a pinhole camera. We examine the localization task for

a single captured section of the road.

As discussed in Section 1.1, we restrict the localization task to matching the current captured

image with a piece of the pre-built map. The section of road captured by the camera is a collection

of distorted squares with SNR values as defined by (2.10). We represent these squares as a vector

of amplitudes a = (a1, . . . , am). Thus, the observation of these squares becomes

v = a + n,

where n = (n1, . . . , nm) is a Gaussian noise vector. Element ak is the amplitude corresponding

to region Rk on the road surface. Nk is the noise introduced by the camera sensor over the region
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R̃k, the projection ofRk onto the focal plane. The elements of n are independent because none of

the R̃k regions overlap. Thus, element Nk has zero mean and variance

σ2
k =

N0

Ãk

, (2.11)

and the effective SNR corresponding to regionRk is

SNRk =
a2kÃk

N0

. (2.12)

This formulation is the same as (2.10).

2.3.3 Localization Using an Inner Product

Following directly from the previous section we examine utilizing an inner product to perform

localization. The task is to match our observation vector v with a section of the global map denoted

by û. The global map is assumed to be a perfect representation of the environment, in this case

a grid road. Thus, each section of the map û is a vector of amplitudes with length m, that is, the

length of v. The section of map that matches with v is clearly û = a. However, since a is obscured

by noise the solution is not that simple. To localize v we must select multiple candidate sections

of the map and find the most likely match among our choices. This becomes a standard Gaussian

classification problem.

The likelihood for candidate map section û is found to be

L (û|v) =
1√

(2π)m
∏

k σ
2
k

exp

(
−1

2

∑
k

(ûk − vk)2

σ2
k

)

=
1√

(2π)m
∏

k σ
2
k

exp

(
− 1

2N0

∑
k

Ãk (ûk − vk)2
)

=
1√

(2π)m
∏

k σ
2
k

exp

(
−f

2h sec θ

N0

∑
k

(xu,k − xl,k)

2

(
1

z2l,k
− 1

z2u,k

)
(ûk − vk)2

)

=
1√

(2π)m
∏

k σ
2
k

exp

(
−f

2h sec θ

2N0

∑
k

Gk,k (ûk − vk)2
)
.
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The Gramian matrix G is positive-definite and diagonal. Its entries, as seen above, are given by

Gk,k =
(xu,k − xl,k)

2

(
1

z2l,k
− 1

z2u,k

)
=

Ãk

f 2h sec θ
. (2.13)

The maximum likelihood (ML) decision rule for this classification task can be expressed as

u∗ML (v) = arg min
û
‖v − û‖G , (2.14)

where “‖ · ‖G is the norm induced by the generalized inner product 〈w1|w2〉G = wT
2 Gw1” [24].

This can be viewed as an instance of maximal ratio combining.

In our grid road model with uniform amplitude squares the Gramian matrix does not depend

on the camera height h, camera angle θ, focal length f , power spectral density N0, or even the

amplitude values of the squares. Changing these parameters may impact localization performance,

but will not change the structure of the ML classifier in (2.14). In practice, a Bayesian approach

is often used for localization where prior information of the vehicle is used to estimate its current

position. This can be done using an extended Kalman filter (EKF), for example. The location

estimate is then confirmed or altered based on where the current image matches with the global

map. Even in this instance, the structure of the Gramian matrix and ML classifier remains the

same. Though the location estimate may decrease the search space within the global map, it does

not change the image matching task or the nonuniform noise we account for in our classifier.

For finely quantized images, the diagonal weights of the Gramian matrix approach values pro-

portional to the absolute value of the Jacobian determinant evaluated at the corresponding coor-

dinate points. Mathematically, suppose that we center intervals [xl,k, xu,k] and [zl,k, zu,k] around
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(xk, zk). Then, we get

Gk,k =
(xu,k − xl,k)

2

(
1

z2l,k
− 1

z2u,k

)
=

(xu,k − xl,k)

2

(
z2u,k

z2l,kz
2
u,k

−
z2l,k

z2l,kz
2
u,k

)

=
(xu,k − xl,k)

2

(
z2u,k − zl,kzu,k + zl,kzu,k − z2l,k

z2l,kz
2
u,k

)

=
(xu,k − xl,k) (zu,k − zl,k)

2

(
zu,k + zl,k
z2l,kz

2
u,k

)

=
∆x∆z

2

(
zu,k + zl,k
z2l,kz

2
u,k

)
≈ ∆x∆z

z3k
∝ | det(J(zk))|∆x∆z.

(2.15)

Thus, for finely quantized images, the collected pixel values should be weighted by the Jacobian

determinant | det(J)| evaluated at distance z.

The key point of this section is that the ML classifier in (2.14) should be used for image match-

ing in AV localization. Using the Euclidean norm or standard inner product implicitly assumes

uniform noise over the entire image. We have shown through our derivations that this assumption

is not valid. Our classifier, due to its use of ‖ · ‖G, accounts for the unequal noise distribution

introduced by the camera and its orientation on the vehicle.

2.3.4 Localization Using Normalized Mutual Information

We now turn to normalized mutual information (NMI) as a technique for localization. Again we

must match an observation vector v with a section of the global map û. For a particular observation

v, we select multiple candidate sections of the map, denoted by (û1, . . . , ût). The candidate section

that results in the highest NMI value with v is declared a match. Mathematically, this decision rule

is expressed as

u∗NMI (v) = arg max
û

[NMI (û,v)] . (2.16)

NMI has advantageous properties that make it an effective technique for localization. However,

it does not account for the unequal distribution of noise present in our images. We look to modify

NMI to account for this property and start by examining the distribution of the observation vector.
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The joint PDF of v is

fv(v|a) =
1√

(2π)m
∏

k σ
2
k

exp

(
−1

2

∑
k

(vk − ak)2

σ2
k

)
.

Thus, the likelihood function for a is shown to be

L (a|v) =
1√

(2π)m
∏

k σ
2
k

exp

(
−1

2

∑
k

(ak − vk)2

σ2
k

)
.

The likelihood for the kth grid square reduces to

L(ak|vk) =
1√

2πσ2
k

exp

(
−(ak − vk)2

2σ2
k

)
, (2.17)

where σ2
k is given by (2.11).

We can account for the uncertainty in v through modifications to NMI. For each value in v

we spread its contribution to the joint distribution over possible amplitude values in accordance

with (2.17). We call our technique enhanced normalized mutual information (ENMI) and will

describe it in the following chapter. Our decision rule is slightly modified to include this

u∗ENMI (v) = arg max
û

[ENMI (û,v)] . (2.18)

2.3.4.1 An Overview of Mutual Information

We provide a mathematical description of mutual information (MI) to complete our discussion

on NMI for localization. As described in Section 1.2, MI measures the quantity of shared informa-

tion between two random variables. Given the random variables A and B defined over A and B,

respectively, the MI between them, denoted by I, is given by

I(A;B) =
∑
A∈A

∑
B∈B

p(A,B)(a, b)log

(
p(A,B)(a, b)

pA(a)pB(b)

)
. (2.19)
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Note pA and pB are the marginal probability mass functions of A and B; p(A,B) is the joint proba-

bility mass function of A and B. Alternatively, MI can be expressed as

I(A;B) = H[A] +H[B]−H[A,B], (2.20)

where H[A] and H[B] are the (information) entropy of A and B, respectively, and H[A,B] is

their joint entropy. Entropy quantifies the average amount of information contained in a random

variable. The entropy of random variable A defined over A is given by

H[A] = −
∑
A∈A

pA(a)log (pA(a)) .

The joint entropy of random variables A and B defined over A and B, respectively, is given by

H[A,B] = −
∑
A∈A

∑
B∈B

p(A,B)(a, b)log(p(A,B)(a, b)).

The equivalence between 2.19 and 2.20 is shown by

I(A;B) = H[A] +H[B]−H[A,B]

= −
∑
A∈A

pA(a)log(pA(a))−
∑
B∈B

pB(b)log(pB(b)) +
∑
A∈A

∑
B∈B

p(A,B)(a, b)log(p(A,B)(a, b))

= −
∑
A∈A

∑
B∈B

p(A,B)(a, b) [log(pA(b)) + log(pB(b))] +
∑
A∈A

∑
B∈B

p(A,B)(a, b)log(p(A,B)(a, b))

= −
∑
A∈A

∑
B∈B

p(A,B)(a, b)log(pA(b)pB(b)) +
∑
A∈A

∑
B∈B

p(A,B)(a, b)log(p(A,B)(a, b))

=
∑
A∈A

∑
B∈B

p(A,B)(a, b)log

(
p(A,B)(a, b)

pA(a)pB(b)

)
.

In this paper, we use a normalized measure of MI proposed by Studholme et al. [18] to calculate
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NMI values. This measure is defined as

NMI[A,B] =
H[A] +H[B]

H[A,B]
(2.21)

and is a normalized version of 2.20 equivalent to

NMI[A,B] =
H[A] +H[B]

H[A,B]

=
H[A] +H[B]

H[A,B]
− H[A,B]

H[A,B]
+ 1

=
H[A] +H[B]−H[A,B]

H[A,B]
+ 1

=
I(A;B)

H[A,B]
+ 1.
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3. LOCALIZATION IMPROVEMENTS

3.1 Weighted Inner Product

An inner product provides a clear entry point for our noise model. This technique, though not

used for localization in practice, is easily described and evaluated mathematically.

3.1.1 Performance Assessment

Below, we evaluate the performance of our classifier in (2.14). For simplicity, our treatment

assumes a grid road with uniform amplitude squares as presented above. Additionally, we restrict

the amplitude of the road squares to ±a to allow a straightforward assessment of the technique.

Though this restriction is only a first-order approximation, it has similarities with how roads are

designed today, using dark pavement and light road markings. The amplitude values acquired from

these parts of the road will have a gap, and when this gap is centered on the value 0, the road should

generally follow the ±a structure. With these assumptions in place, we can assess the classifier

mathematically.

Using (2.14) we know the true location, denoted by u∗, is selected as a match whenever

‖v − u∗‖2G ≤ ‖v − û‖2G ∀ û 6= u∗. (3.1)

Given a known true location and an alternative location, we can rewrite this condition as

‖v − u∗‖2G − ‖v − û‖2G < 0. (3.2)

Recall the square of the induced norm of v − u can be expanded as follows,

‖v − u‖2G = 〈v − u|v − u〉G = ‖v‖2G − 2 〈u|v〉G + ‖u‖2G .
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Thus, the condition in (3.2) reduces to

0 > ‖v‖2G − 2 〈u∗|v〉G + ‖u∗‖2G − ‖v‖
2
G + 2 〈û|v〉G − ‖û‖

2
G

= 2 〈û|v〉G − 2 〈u∗|v〉G

or, equivalently,

0 < 〈u∗ − û|v〉G = 〈u∗ − û|u∗〉G + 〈u∗ − û|n〉G .

We emphasize that ‖u∗‖2G = ‖û‖2G due to our ±a amplitude restriction. The first component is a

known constant and can be expressed as

〈u∗ − û|u∗〉G = ‖u∗‖2G − 〈û|u
∗〉G = ma2 − 〈û|u∗〉G ,

where m is the length of the true location vector. The second component, later referred to as the

noise component, is a zero-mean Gaussian random variable [24]. It can be expressed as

〈u∗ − û|n〉G =
∑
k

(u∗k − ûk)Gk,knk.

Using (2.13) we find the variance of the noise component to be

∑
k

(u∗k − ûk)2G2
k,kσ

2
k =

∑
k

(u∗k − ûk)2G2
k,kN0

Ãk

=
N0

f 2h sec θ

∑
k

(u∗k − ûk)2Gk,k.

Given this, we can show the probability of error given one alternative to be

1−Φ

(√
f 2h sec θ

N0

〈u∗ − û|u∗〉G
‖u∗ − û‖G

)
, (3.3)

where Φ(·) is the CDF of the normal Gaussian distribution. In comparison, if we use the standard

inner product for classification, performance deteriorates and the probability of error given one
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alternative becomes

1−Φ

(√
f 2h sec θ

N0

〈u∗ − û|u∗〉
‖u∗ − û‖G−1

)
. (3.4)

3.1.2 Simulated Performance

We evaluate the performance of the standard and generalized inner product using numerical

simulations. Performance is measured using the probability of error as defined in the previous

section. We randomly generate true and alternative location vectors, u∗ and û, with amplitudes

±a. These vectors simulate captured images similar to Fig. 3.1.

Figure 3.1: This is a sample image of part of a grid road.

The listed parameters yield images of 66 whole squares. Once rectified, these images can be

represented as vectors of ±a amplitude squares and used in our simulations. Figure 3.2 shows

a rectified representation of the example image in Fig. 3.1. Note the squares collectively form a

trapezoid once rectified.

We vary the amplitude a from 10 to 0.1 which decreases the SNR in accordance with (2.10).
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Parameters
f = 0.0367 cm
θ = 35.9020◦

h = 58.3095 cm
Side Length = 20 cm
Vertical View: 39.3◦

Horizontal View: 70.5◦

10,000 trials per point

Figure 3.2: This grid shows an example rectified
observation of 66 whole squares. The dark and
light squares represent amplitudes of−a and +a,
respectively.

Ten thousand u∗ and û vectors are randomly generated for each a value. The probabilities of error

are calculated using (3.3) and (3.4). Figure 3.3 shows the results of the simulation.
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Figure 3.3: This figure showcases the performance gains of the generalized inner product. Note
SNR is proportional to a2.

3.2 Enhanced Normalized Mutual Information

Before we can describe our modifications to NMI, we must review the technique and its use in

localization. The task is to match an observation v with a section of the global map û. We select a

matching section of the global map, denoted by u∗, using the classifier in (2.16). The location of

the vehicle is determined based on the metadata of u∗.
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3.2.1 Calculating NMI

Before we introduce modifications we must examine how the NMI of two images is calculated.

We refer to a captured image as the current image taken by an AV. This image is represented as

an observation vector v. Additionally, we refer to a map section as a part of the global map of the

same size and scale as the captured image. We represent each map section as a candidate vector

û. As an illustration, let a captured image and map section be 3 by 3 images as shown in Fig. 3.4.

These can represent sections of 9 squares from a grid road, or perhaps more realistically, images

of 3 pixels by 3 pixels. The values in the images can be thought of as gray-scale, amplitude, or

intensity values. They are kept small simply to keep the joint distribution small as its size depends

on the range of possible values and the bin size. In Fig. 3.4, the joint distribution has bins for each

value or a bin size of 1. This would not be the case in practice, but it is done to make the figure

simple and clear.
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Figure 3.4: This diagram shows how the top-right pair of values adds to the empirical joint distri-
bution. A corresponds to the values in the captured image; B corresponds to the values in the map
section. The range of possible values is limited for simplicity.

To compute the NMI between these two images we first couple their values based on position.

Next, we bin each pair of values to create a joint distribution. Fig. 3.4 illustrates this process for

the top-right position in the images. After the joint distribution is complete, we can calculate the

NMI value between the captured image and map section. Let (A,B) be a random vector drawn

from the empirical joint PMF of the image values. A is drawn from the distribution of values in
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the captured image; B is drawn from the distribution of values in the map section. We then use

(2.21) to calculate the NMI value. We repeat this process for multiple map sections and localize

the captured image using (2.16).

3.2.2 Likelihood-Based Joint Distribution

We modify the procedure described above to account for uncertainty and the unequal noise

distribution present in captured images. The process begins the same by coupling values based

on their position in the images. However, instead of binning each pair as before, we employ

the likelihood function detailed in (2.17) to generate a maximum a posteriori probability over

possible captured image values [25]. This effectively generates multiple value pairs over which

the contribution of the original pair is distributed. The weight of a single value pair could be

spread over multiple bins in the joint distribution depending on its effective SNR and the bin size.

An example of this is shown in Fig. 3.5. Note that we only spread the weight of a value pair over

the axis in the joint distribution corresponding to the captured image. A similar operation can

be performed on the map section values, but since we assume a noiseless global map, this is not

necessary in the current context. Once the modified joint distribution is generated, we calculate the

ENMI value using the standard equation given in (2.21). We repeat this process for multiple map

sections and localize the captured image using (2.18).
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Figure 3.5: This diagram illustrates how the contribution of the top-right pair of values is dis-
tributed between multiple bins to reflect the uncertainty in the captured image value. The extent to
which the contribution is spread depends on the effective SNR, calculated using (2.10), present at
the top-right position in the captured image. Note the weight is spread over the A axis only.
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3.2.3 Simulated Performance

We evaluate the performance of ENMI and NMI for image matching using numerical simula-

tions. Our performance metric is the probability of error. We follow a similar procedure to the one

employed to evaluate the generalized inner product in Section 3.1.2. We generate images of 66

squares using the same camera parameters as before. However, the squares in these images have

amplitude values drawn from a Gaussian distribution with µ = 128 and σ = 32. Our evaluation of

ENMI and NMI does not require a ±a amplitude restriction. An example rectified image is shown

in Fig. 3.6.

Figure 3.6: This grid of 66 squares is an example rectified image.

We change N0, the power spectral density, to demonstrate the behavior of each technique as

the noise increases. Ten thousand trials are performed per N0 value. For each trial, we generate a

true location vector u∗ and alternate location vector û. Then a noisy image vector v is calculated

using

v = a + n = u∗ + n,

where n is additive zero-mean Gaussian noise with variance N0/Ãk. This gives each square in v

an effective SNR equal to (2.12). An error is recorded when an alternate location vector is selected
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as a match. This occurs for NMI when

NMI[v, û] ≥ NMI[v,u∗]

and ENMI when

ENMI[v, û] ≥ ENMI[v,u∗].

Figure 3.7 shows the results of our simulations. As the effective SNR decreases the probability of

error increases for both techniques, however, ENMI is more resilient to increased noise.
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Figure 3.7: This figure illustrates the increased robustness to noise ENMI provides over the stan-
dard NMI technique.

3.3 ENMI Performance Evaluation

We evaluate the performance of ENMI due to its practical application in state of the art au-

tonomous platforms. Our first test is done in the Unity game engine followed by offline localization

testing on real-world AV data provided by Ford Autonomous Vehicles LLC.
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3.3.1 Unity Simulation

Unity is a popular game development tool that allows users to build games easily and with a

high level of flexibility. The karting microgame from Unity provides a reasonable starting point

for localization testing. This game includes a character on a cart that the user drives around an

oval track. The Unity development hub provides the location of the kart which we will use as our

ground truth. We built a simple track and patterned it with a global map similar to the grid road in

Fig. 3.6. Each square’s color is drawn from a Gaussian distribution with µ = 128 and σ = 32. The

user’s viewpoint of the game is through a simulated camera positioned above the cart, 1.25 meters

above the planar road. The camera is directed at the horizon. Table 3.1 includes the parameters

used in the Unity simulation.

Unity Parameters
f = 8.097338 mm
θ = 0◦

h = 1.25 m
Side Length = 1.67 m
Vertical View = 60◦

Horizontal View = 107.16◦

N0 = 5× 10−8 m−2

Number of Bins = 16

Table 3.1: This table states the parameters used in the Unity simulation.

A screenshot of the Unity development hub is included in Fig. 3.8. We collected 100 images

driving along the track with which to compare the performance of NMI and ENMI. The localization

process for one image is as follows. First, a portion of the game view is cropped and transformed

into the top-down perspective of the global map. This portion is a 6.67 meter wide and 35 meter

tall section of road. Figure 3.9 shows the cropped portion taken from the image in Fig. 3.8 and

its transformation. Next, the ground truth position is taken from Unity and used to generate a 0.5

meter by 0.5 meter search space that includes the true position. This is done in the absence of an
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EKF to reduce the search space. Finally, the NMI and ENMI scores are calculated for each map

section in the search space, the matches for each technique are determined, and the longitudinal

and lateral errors are recorded. This process is repeated for each of the 100 images.

Figure 3.8: This is a sample image of the Unity Hub and our grid road track.

Figure 3.9: The left image shows the cropped portion of the game view from Fig. 3.8. The right
image shows the same section transformed into the perspective of the map. Note that this is simply
the reverse of Fig. 2.8.
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We add Gaussian noise to the game view portion (before transformation) of the images to

see how it affects the performance of NMI and ENMI. Figure 3.10 shows the longitudinal and

lateral localization RMSE values plotted against the σ of added Gaussian noise. These RMSE

plots resemble the right end of Fig. 3.7. This likely means the level of inherent noise in our

Unity simulation is comparable to the noise when N0 ≈ 1 in Fig. 3.7. The game rendering, screen

resolution, and image transformation are all possible contributors to the inherent noise. Both curves

in the longitudinal plot have a fairly consistent bias of approximately +5.5 cm across the sigma

values; the curves in the lateral plot have a more variable bias ranging from approximately -2 cm

to -0.6 cm. Our map resolution is approximately 8 cm per pixel. These biases are likely due to the

conversion between pixel position in the map and coordinates in the Unity game.
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Figure 3.10: This figure shows the longitudinal and lateral localization performance of NMI and
ENMI from the Unity simulation.

3.3.2 Ford Image Analysis

We now turn to actual road images to connect our findings with practical AV systems. Both

techniques described in this thesis are motivated by the nonuniform noise profile developed in

Section 2.3. Though we developed the noise profile based on the physics of our image acquisition
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model, it is unclear whether it exists in practice. We examine processed LiDAR images supplied

by Ford Autonomous Vehicles LLC to discover the noise profile present in an existing AV system.

Figure 3.11 shows a local image capture and its matching prior map image. The local image

(left) is generated by combining the point clouds of “four Velodyne HDL-32E 3D-LIDAR scan-

ners” and collapsing them into a top down view of the vehicle and its surroundings [21]. All images

have the middle of the vehicle’s rear axle at their center. We compute the empirical variance of the

pixel values at position [i, j] using

Var[i, j] =
1

n− 1

n∑
k=1

(
a
(k)
ij − ã

(k)
ij

)2
,

where a and ã are matching pairs of local and prior map images [25].

Figure 3.11: The local image (left) is the current sensor input to the vehicle (after processing). The
prior map image (right) is the map section that matches with the local image.

We process over 10,000 images to generate the variance mask illustrated in Fig. 3.12. The

variance increases radially as you move away from the vehicle; however, it does not behave as

described in Section 2.3. The disconnect is expected because the derivations in this thesis are

based on an idealized model. Still, the distribution of noise is clearly nonuniform. This validates
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our assertion that, during localization, one should not give equal confidence to all regions of an

image. We can integrate empirical masks, such as Fig. 3.12, into localization algorithms along

with ENMI to improve performance.

Figure 3.12: This figure illustrates how the empirical variance of the pixel values fluctuates de-
pending on the location relative to the vehicle. Note the front of the vehicle is facing the top of the
image. The black region bordering the image is out of range.

3.3.3 Localization Testing with Ford Data

In this section, we evaluate the effectiveness of our proposed ENMI technique using real-world

data. Ford Autonomous Vehicles LLC has software to evaluate localization performance offline

using LiDAR data captured by their vehicles. Our ENMI technique is integrated into Ford’s exist-

ing NMI-based localization software by altering the creation of the joint distributions as described

in Section 3.2.2. The variance mask shown in Fig. 3.12 is integrated as a 481 by 481 array. We

convert the mask to standard deviation values and store it as an array of 8-bit unsigned integers.
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We tested our ENMI technique on an approximately 13 minute log of LiDAR data from the

Mcity Test Facility in Ann Arbor, Michigan. The data was collected by Ford Fusion testing vehi-

cles equipped “with four Velodyne HDL-32E 3D-LIDAR scanners and an Applanix POS-LV 420

(IMU)” [21]. The ground truth for the vehicle was created by Ford using the raw pose from the

Applanix IMU corrected with acquired LiDAR data. The localization software is written in C and

run on a Dell Precision 7710. Ford’s software, integrated with our ENMI technique, performed

offline localization on vehicle pose in 3 degrees of freedom: longitudinal (x), lateral (y), and yaw

angle. The longitudinal variable (x) defines the forward and backward position of the vehicle, the

lateral variable (y) defines the position of the vehicle left and right, and the yaw angle defines the

left-right rotation of the vehicle. The measured errors in these variables are evaluated indepen-

dently. Figure 3.13 shows the vehicle’s calculated trajectory. Table 3.2 shows the longitudinal,

lateral, and yaw angle RMSE values resulting from our ENMI-based localization algorithm. The

errors over time for each variable are graphed in Fig. 3.14.

Figure 3.13: This figure shows the vehicle’s trajectory as calculated by our localization algorithm.
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We do not seek to compare the localization performance of our ENMI technique with Ford’s

standard NMI-based algorithm because it is currently unclear how well the mathematics of the

noise distribution described in previous sections extend to LiDAR data. The purpose of this section

is to show that our ENMI technique can be implemented in a state of the art localization platform.

It also shows that our technique performs reasonably well on LiDAR data even though it is not

completely applicable in this case. The positive results included in this section indicate that our

general findings extend to Ford’s Fusion AV platform.

Longitudinal Lateral Yaw Angle
(cm) (cm) (rad)
4.99 4.31 0.00196

Table 3.2: This table states the RMSE values for each variable.
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Figure 3.14: This figure shows the localization error over time for each variable.
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4. SUMMARY AND CONCLUSIONS

The localization task is integral to a successful autonomous vehicle. In this thesis, we described

a noise profile unique to autonomous vehicles that is not currently accounted for in localization

strategies. We then proposed two techniques for localization that account for such noise: the

weighted inner product and enhanced NMI. The performance of each technique was evaluated

through numerical simulations. ENMI was further evaluated through Unity simulations and testing

with real-world data provided by Ford Autonomous Vehicles LLC.

Our localization techniques performed well in numerical simulations, outperforming their coun-

terparts especially in the presence of noise. The results of the Unity simulation were also positive

with ENMI outperforming NMI in both the longitudinal and lateral directions. Additionally, ENMI

integrated successfully into Ford’s localization software and performed well, though slightly worse

than the state of the art. This is likely due to mismatch between our pinhole camera model and the

array of LiDAR sensors on Ford’s vehicles.

4.1 Challenges

The main challenge in this work was integrating the ENMI technique into Ford’s localization

software. Due to its proprietary nature we only had access to the portion of the code we were

editing. Additionally, we did not have access to the localization testing environment in which the

software runs. Changes to the code were made locally then tested at Ford Autonomous Vehicles

LLC. We worked closely with Siddharth Agarwal in this effort and are very grateful for his time

and contribution to this work.

Other challenges included building the Unity simulation environment and running numerical

simulations in a timely manner. The Unity development platform is not regularly used for localiza-

tion testing. We had some difficulty building the grid road track and getting a consistent response

from the driving controls. Some of the numerical simulations included in this thesis were too com-

putationally intensive to run on a personal computer. These simulations were run with the help of
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Texas A&M High Performance Research Computing.

4.2 Future Work

There are many potential projects either branching off from or directly following our work. Op-

timizing camera position and orientation for localization performance was suggested by a reviewer

of our inner product paper [24]. We have discussed some interesting ways to makes roads more

feature-rich and thus better suited for precise localization. Both of these projects could produce

interesting and impactful results.

Following directly from our work it would be beneficial to develop a better testing platform,

either physical or simulated, to more precisely evaluate ENMI. Most state of the art AV platforms

rely on LiDAR sensors which make them an imperfect application for ENMI. A clear next step for

our research that circumvents this problem is to derive a noise characterization for LiDAR point

clouds and adjust ENMI accordingly. This would allow us to compare our localization performance

with the state of the art in an applicable setting.

We would also like to explore solutions to the dirty lens problem. This is when the lens of a

LiDAR sensor or camera becomes dirty during operation and partially blocks the vehicle’s view

of its surroundings. It would be very interesting to apply our variance mask from Section 3.3.2 to

this problem. One possible solution is a dynamic variance mask that updates its values to account

for sections of the current sensor input blocked by debris on the lens.
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