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ABSTRACT

The Intertropical Convergence Zone (ITCZ) and Hadley and Walker circulations are primary

drivers of the hydrologic cycle in the tropics. The ITCZ controls some of the wettest regions of

the globe, while the Hadley circulation controls subtropical deserts and the Walker circulation acts

to regulate convection within the ITCZ. As convection within the ITCZ drives the Hadley circula

tion, understanding the connections between ITCZ and circulation variability is vital to improving

climate forecasts. Although longterm trends from observations and climate models indicate a nar

rowing of the ITCZ and an intensificaiton of associated precipitation in a warming climate, few

studies have examined the relationship between ITCZ width and the characteristics of convection

within the ITCZ. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation feature

(PF) database, Moderate Resolution Imaging Spectroradiometer (MODIS) level 3 data, an ITCZ

identification database, and European Centre forMediumRangeWeather Forecasts (ECMWF) Re

analysis Interim (ERAInterim) data the variability of cloud and convective populations are studied

as a function of ITCZ width.

In the Pacific basin, convection is more (less) intense, with large (small) stratiform rain frac

tions and high (low) maximum echotop heights, when the Pacific ITCZ is wide (narrow). This

apparent discrepancy with longterm changes is linked to Walker circulation and El NiñoSouthern

Oscillation (ENSO) variability, with wide (narrow) ITCZs tending to occur during El Niño (La

Niña).

Further analysis of variability within the Pacific, controlling for signals such as ENSO and

the seasonal cycle, further indicates a Walker circulation influence over variations of convective

intensity with ITCZwidth. The relationships between theHadley circulation and ENSO bothwithin

and outside of the Pacific Ocean show clear zonal variability, with a strengthening and widening

(narrowing and weakening) of the circulation within (outside) the Pacific during El Niño.

To control for zonal differences, tropical ascent area fraction is used to study global variability

in convection with changes in the area of ascent. Convection in the ascent region becomes more
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intense (i.e., higher cloudtop heights and large stratiform area fractions) when tropical ascent area

fraction is low; a relationship similar to that of longterm trends. In descent regions, variability

in clouds with respect to tropical ascent area fraction differs between cloud regions (i.e., shallow

cumulus and stratocumulus regions), but both indicate an intensification of subsidence.
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CAM Community Atmospheric Model

CCKW convectivelycoupled Kelvin wave

CMAP Climate Prediction Center Merged Analysis of Precipitation
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1. INTRODUCTION

The hydrologic cycle is vital to life on earth, transporting moisture, and heat around the globe.

In the tropics, the largest driver of the hydrologic cycle is the Hadley circulation; a thermally di

rect meridional overturning circulation with an ascending branch near the equator and descending

branches that extend to 30◦ latitude in both hemispheres (Webster 2004). Through these ascend

ing and descending branches, the circulation controls the driest and wettest regions around the

globe, with deserts found within the descending branches of the circulation and the wettest regions

within the ascending branch. The ascending branch of the circulation is typically referred to as the

Intertropical Convergence Zone (ITCZ), an area of relatively low pressure that forms where the

northern and southern hemispheric trade winds meet that is characterized by heavy precipitation

and extensive cloud cover (Riehl and Malkus 1958; Waliser and Gautier 1993; Wodzicki and Rapp

2016). As convection within the ITCZ is the driving force behind the Hadley circulation, changes

in either of these tropical features lead to changes in the other. Using a simple model Lindzen and

Hou (1988) found that the latitudinal location of heating (i.e., the location of the ITCZ) impacts

the strength of the overturning circulation. Hou and Lindzen (1992) furthered their previous work

by studying the impacts of the meridional extent of heating, finding that reducing the extent of

heating led to a strengthening of the overturning circulation. The relationship between convection

in the ITCZ and the overturning circulation has been the subject of many studies (e.g., Hack et al.

1989; Dodd and James 1997; Fierro et al. 2009), illustrating the importance of understanding how

these tropical features interact. This knowledge may help explain predicted variability in a future,

warmer climate.

Quantifying the variability of the Hadley circulation has been the subject of many studies over

the last few decades. Many of these studies used data from reanalyses or general circulation models

(GCMs) to compute the zonalmean mass meridional stream function to determine the strength and

meridional extent of the circulation. Mitas and Clement (2005) performed such an analysis of

the overturning circulation using three reanalysis datasets, a rawinsonde dataset, and model data
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from the Community Atmospheric Model (CAM). While two of the reanalyses and the CAM data

indicated a strengthening of the circulation over the past few decades, the third reanalysis and the

observational data showed no trend. More recent studies of trends in the Hadley circulation using a

wider array of reanalyses (i.e., Stachnik and Schumacher 2011; Nguyen et al. 2013) found evidence

of strengthening and poleward expansion of the overturning circulation; however, the strengthening

signal varied greatly between the reanalyses. The poleward expansion of the circulation has also

been observed in various observational datasets such as outgoing longwave radiation (OLR) and

precipitation data (Hu et al. 2011; Zhou et al. 2011). With uncertainty surrounding the change in

circulation strength, a look at changes in ITCZ characteristics may be of use.

The identification and characterization of the ascending branch of the Hadley cell, the ITCZ,

has also been the focus of many studies over the years. Waliser and Gautier (1993) analyzed the

mean latitude of the ITCZ along with the seasonal variability in ITCZ location around the globe at

monthly timescales. More recent studies of ITCZ variability have been performed using satellite

observations and statistical methods for identification in the Pacific Ocean (Bain et al. 2011) and

reanalysis data to identify convergence zones around the globe (Berry and Reeder 2014). How

ever, these studies did not attempt to quantify the intensity or extent of the zone of convection

associated with the ITCZ, which is important for quantifying changes in the hydrologic cycle and

cloud radiative forcings. To study broader variability of the ITCZ, such as convective intensity and

meridional extent, Wodzicki and Rapp (2016) developed an ITCZ characteristics database for the

Pacific Ocean using the methods of Berry and Reeder (2014) to identify the center of the ITCZ

and Global Precipitation Climatology Project (GPCP; Huffman et al. 2009) and Remote Sensing

Systems (RSS) Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; Hilburn

and Wentz 2008) rain rate (RR) data to identify ITCZ extent. The RR data were also used as a

proxy for the intensity of convection (Cheng and Houze 1979; Short et al. 1997) associated with

the ITCZ.Wodzicki and Rapp (2016) found that the Pacific ITCZ narrowed, and associated convec

tion (precipitation) intensified over the period Jan. 1979  Dec. 2014. Their findings are consistent

with studies of changes in precipitation that have shown an apparent narrowing and intensifica

2



tion of the ITCZ, with increases in precipitation near the climatological center latitude of the ITCZ

and decreases in precipitation to the north and south (Zhou et al. 2011; Gu and Adler 2013). The

changes are also in line with changes hypothesized by the “uppedante mechanism” (Chou and

Neelin 2004), wherein a warming climate raises the moisture threshold, or ante, for convection to

occur across the tropics. In the deep tropics (i.e., the ITCZ region), the increased ante is easily met

through increased evaporation and moisture convergence; however, convection at the margins of

the convective zone is suppressed as the new ante is more difficult to meet. This, ultimately, leads

to a narrowing of the ITCZ and intensification of rainfall. But, how exactly does the morphology

of convection vary with variations in ITCZ width?

Tan et al. (2015) used International Satellite Cloud Climatology Project (ISCCP) cloudtop

height and optical thickness data and GPCP RRs to determine what types of cloud systems (e.g.,

shallow cumulus, congestus, deep convection, etc.) were responsible for the observed changes in

ITCZ precipitation intensity. After identifying various cloud types using a kmeans clustering al

gorithm applied to cloudtop height and optical thickness data, and attributing RRs to the various

cloud types, they found that increases in the frequency of the regime they associated with deep,

organized convection contributed the most to changes in precipitation. As large, organized con

vective systems produce much of the rainfall observed in the tropics even though they make up

only a small percentage of all convection (Nesbitt et al. 2000; Liu et al. 2008), it makes sense that

changes in the frequency of such storms would be the most influential to changes in RR. However,

this raises the question as to whether these convective systems are just becoming more frequent,

or if their convective characteristics are changing as their frequency varies. The work of Tan et al.

(2015) was limited in this respect as they were unable to study the internal structure of convection

due to the datasets used. How the morphology of convection changes, coupled with the apparent

changes in frequency, is key to understanding how convection is linked with largescale circulation

changes in a warming climate.

Studies of climate model output indicate that the ITCZ, or ascent region of the Hadley cir

culation, will continue narrowing and intensifying as the climate warms (Lau and Kim 2015; Su
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et al. 2014, 2017, 2019). Based in these projections, and longterm observed trends, the following

hypothesis is tested:

H1. Pacific ITCZ convection is more intense (i.e., taller with larger stratiform area frac

tions) when the Pacific ITCZ is narrow.

Results are presented in Chapter 2 and reproduced from a paper published in the Journal of Cli

mate (Wodzicki and Rapp 2020). To test this hypothesis, data from the TRMMprecipitation feature

(PF) database (Nesbitt et al. 2000; Liu et al. 2008) and the Pacific ITCZ characteristics database

(Wodzicki and Rapp 2016) are used to study the morphology of convection within wide and narrow

ITCZ width regimes. As the TRMM data period is relatively short (roughly 17 years), the use of

anomalously narrow and wide ITCZ months is used to quantify differences between convective

populations at the two extremes of the ITCZ width distribution. The convective characteristics

of features, such as areal extent, maximum echotop height, and stratiform area fraction, are then

compared between the width regimes to determine how convection varies with Pacific ITCZ width.

The analysis ultimately led to a rejection of the hypothesis for the Pacific as relatively intense con

vection is more frequent under the wide ITCZ regime than the narrow. The findings are attributed

to the strong influence of El NiñoSouthern Oscillation (ENSO) in the Pacific dominating the vari

ability in convection and ITCZ width; the ITCZ tends to be wide, with more intense convection,

under El Niño and narrow, with less intense convection, under La Niña (Bain et al. 2011; Wodzicki

and Rapp 2016; Henderson et al. 2018). This result shows that a more complete understanding of

the driving forces of variability in the Pacific, and their full impacts on the previous results, is nec

essary to guide further research into the relationship between convection and variability in ITCZ

width.

Chapter 3 aims to better understand the influence of variability in the Pacific on convection

by mitigating various forms of variability that may have impacted the analysis of Chapter 2. This

is done by excluding months where double ITCZs or large ENSO events occurred and analyzing

multiple different zonal domains across the Pacific. However, similar results were obtained to

those of the previous analysis, leading to the conclusion that convection in the Pacific ITCZ is most
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influenced by changes in the Walker circulation and the associated zonal sea surface temperature

(SST) gradient. These results indicate that variability in the Pacific Ocean in the current climate

differs from that of future climates, due mainly to regional variability in the overturning circulation

(Schwendike et al. 2015; Martin et al. 2020). Thus, a different metric is needed to understand the

link between the width of the ascending region and the morphology of convection.

Su et al. (2019) used tropical ascent area fraction (Au) as a means to study changes in the over

turning circulation in climate model output. They found that as Au decreased (narrowed), pre

cipitation intensity increased, consistent with current observations and model projections of ITCZ

narrowing. They also discussed changes in the descent region of the circulation, as cloudradiative

feedbacks across the tropics are one of the largest sources of uncertainty in climate predictions

(Bony and Dufresne 2005). To further improve on the analysis of Chapter 2, Au is calculated from

reanalysis data to study how convective and cloud properties vary in tropical ascent and descent

regions as Au varies. TRMM PF data are again used to study convection within the ascent region,

whileModerate Resolution Imaging Spectroradiometer (MODIS) level 3 data (Hubanks et al. 2019)

are used to study cloud variability within both the ascent and descent regions. The use of Au as a

metric for ITCZ variability enables global analysis, reducing the influence of any one region on

the results and allowing for more consistent comparison to climate model predictions. Based on

the results from observational and modeling studies discussed above, the following hypotheses are

tested in Chapter 4:

H2. Convectionwithin ascent areaswill become stronger (weaker) when tropical ascent area

fraction is low (high).

H3. In subsidence regions, cloudtop heights will increase and cloud fraction and liquid

water path (LWP) will decrease with low tropical ascent area fraction

Strengthening of convection consists of convective feature and cloud characteristics shifting to

larger areal extents and increased stratiform area fractions, RRs, cloud fractions, LWPs, and ice

water paths (IWPs). As the strength of subsidence is hypothesized to decrease as Au decreases
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(Held and Soden 2006; Lu et al. 2007; Su et al. 2019), clouds and convection will be able to grow

out of the boundary layer, leading to the hypothesized changes in the subsidence regions (Myers

and Norris 2013; Su et al. 2014).

Convection in the ascent regions of the tropics is found to become stronger and more orga

nized, with larger stratiform area fractions and increased RRs as Au decreases. Cloud fraction also

increases, along with IWP, as Au decreases, adding more support to a strengthening of convection

with narrowing ascent. These result support theH2 hypothesis. The descent regions are a bit more

complicated, with evidence of stronger subsidence in descent regions as Au decreases. There are

also large regional variations in the relationship between cloud properties and Au across the descent

region, with stratocumulus cloud regions showing increased cloud amounts while shallow cumulus

regions show decreased cloud amounts with narrowing. While the results are similar to longterm

observationallybased studies (Su et al. 2020; Lau and Tao 2020), there seems to be differences be

tween variability in the current climate and those projected by climate models. These differences

may be the result of the aforementioned difficulty climate models have with accurately represent

ing cloud radiative feedbacks (Bony and Dufresne 2005), or that the longterm warming signal has

not yet become larger than the internal variability of the current climate; i.e., the time of emergence

has not yet occurred (Hawkins and Sutton 2012).

6



2. VARIATIONS IN PRECIPITATING CONVECTIVE FEATURE POPULATIONS WITH

ITCZ WIDTH IN THE PACIFIC OCEAN*

2.1 Introduction

The accurate prediction of changes in the hydrologic cycle is of great importance as water is

essential for life. Shifts in the locations of the world’s deserts and rain belts could spell disaster

through loss of crops, property, and even life. In the tropics and extra tropics, changes in the

hydrologic cycle can broadly be linked to changes in theHadley andWalker circulations. Numerous

studies have aimed to quantify changes in the Hadley circulation in a warming climate using data

from reanalyses (e.g., Mitas and Clement 2005; Stachnik and Schumacher 2011; Nguyen et al.

2013), general circulation models (e.g., Mitas and Clement 2006; Lu et al. 2007; Lau and Kim

2015; Su et al. 2014), and observations (e.g., Hu and Fu 2007; Seidel et al. 2008; Hu et al. 2011).

There is disagreement between studies as to how the strength of the Hadley circulation has changed

in recent decades (Hu et al. 2018); however, the general consensus is that the Hadley circulation has

expanded poleward. While studies of changes in the future climate generally agree that the Hadley

circulation will become weaker, Su et al. (2014) noted that the circulation goes through complex

structure changes as the climate warms. Similar studies of the Walker circulation also disagree on

the change of the circulation’s strength; some found weakening and westward shift (e.g., Tanaka

et al. 2004; Vecchi et al. 2006; Power and Smith 2007; Schwendike et al. 2015), while others found

strengthening (e.g., Meng et al. 2012; L’Heureux et al. 2013; Sohn et al. 2013). As the ITCZ is

the main driver of the Hadley circulation and influences the Walker circulation, changes in the

intensity of convection within the ITCZ impacts both of these circulations (Hack et al. 1989; Hou

and Lindzen 1992; Dodd and James 1997; Webster 2004). Therefore, it is important to understand

the link between broader ITCZ characteristics and the convective systems within the ITCZ.

One of the first major studies of the ITCZ’s climatological location and seasonal migration

*Reprinted with permission from “Variations in precipitating convective feature populations with ITCZ width in
the Pacific ocean” by Kyle R. Wodzicki and Anita D. Rapp, 2020. J. Climate, 33, 4391–4401, © Copyright [21 April
2020] by American Meteorology Society.
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used observations of highly reflective clouds to identify the ITCZ (Waliser and Gautier 1993),

while more recent studies have applied statistical models to observations (Bain et al. 2011) and

thresholding techniques to reanalysis data (Berry and Reeder 2014) to study the ITCZ. Building

off the methods of Berry and Reeder (2014), Wodzicki and Rapp (2016) quantified the ITCZ width

and precipitation intensity and determined that the ITCZ has been narrowing and intensifying over

the past 30+ years, possibly due to an increase in the frequency of midtropospheric dry layers

(Bartos et al. 2018). Their findings are in line with other observational studies that noted longterm

increases in tropical precipitation rate, mainly in the ITCZ region (Lau and Wu 2007; Zhou et al.

2011), and lend support to climate model predictions of further narrowing and intensification in the

future (Lau et al. 2013; Lau and Kim 2015; Su et al. 2017, 2019). While the aforementioned studies

focused on longterm trends in ITCZ characteristics, many studies have also noted a link between

convective systems and ITCZ width variations at other timescales, from synoptic to interseasonal.

At synoptic timescales, Straub and Kiladis (2002) and Serra and Houze (2002) found that as

Kelvin waves passed over a region, convection rapidly initiated and organized along the central

axis of the ITCZ. This increase in organized convection widened the ITCZ, with the increase in

ITCZ width propagating with convection associated with the Kelvin waves as they moved across

the ocean basin. Serra and Houze (2002) also noted that the passage of Kelvin waves initiated

hurricane development after which the ITCZ tends to completely break down, with deep con

vection disappearing and ITCZ width decreasing to near zero. A more recent study by Dias and

Pauluis (2011) found a relationship between ITCZ location andwidth and the speed of convectively

coupled Kelvin waves (CCKWs). They suggest that the meridional circulation associated with the

CCKWsmodulates ITCZwidth and precipitation, indicating a link between the broader ITCZwidth

and the characteristics of the convective systems within.

Dias and Pauluis (2011) also noted that the ITCZ is abnormally wide during El Niño events

in the central Pacific (180◦ − 130◦W), consistent with the observational findings of Wodzicki and

Rapp (2016, 160◦E–160◦W). Simple Walker circulation models (e.g., Bretherton and Sobel 2002)

also show a wider zone of convection when the SST gradient across the Walker circulation weak
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ens during El Niño. Insomuch as the ITCZ tends to be wide during El Niño and narrow during La

Niña, some studies have indirectly looked at variations in characteristics of convection in differ

ent ITCZ width regimes. Masunaga et al. (2005) used TRMM satellite data to show that during

El Niño events, deep stratiform and convective systems became much larger and more frequent,

taking the place of shallow convection, when compared to La Niña. Henderson et al. (2018) found

very similar changes from deep isolated systems in the La Niña phase to large, organized systems

with increased stratiform rain area during El Niño. This is further supported by Stephens et al.

(2018), who found evidence for the Bjerknes feedback in observations that show large positive

latent and radiative heating perturbations with superClausius–Clapeyron precipitation responses

in the warming, moistening ITCZ region during El Niño. However, it remains unclear how the

population and character of convective clouds within the ITCZ vary to produce the observed pre

cipitation and heating rate perturbations that feedback on these largescale circulations as similar

radiative and latent heating perturbations could come from very different cloud populations. There

are some indications that the character of convective systems in the tropics may be shifting as the

convective zones narrow at longer, decadal, timescales (Tan et al. 2015), but this has not been

specifically analyzed in the context of expansion and contraction of the ITCZ at shorter, annual or

seasonal, timescales.

The aim of the present study is to better understand the relationship between the variations in

largescale ITCZ width and characteristics of convection (e.g., RR, maximum height, and strati

form/convective partitioning). This will be done through the analysis of convective features located

within the ITCZ based on the Pacific ITCZ identifications fromWodzicki and Rapp (2016). While

previous studies have focused on longterm changes in ITCZ precipitation intensity and location,

the relatively short TRMM data record limits the present study to shorter timescales. Thus, features

in two different ITCZ width regimes (wide and narrow based on the upper and lower quartiles of

the width distribution, respectively) are compared to understand the relationship between the dis

tribution of convection characteristics and variations in ITCZ width.
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2.2 Data and Methods

Wodzicki and Rapp (2016) created an ITCZ climatology that provides information about the

location, width, and RRs within the Pacific ITCZ (160◦E–100◦W) on a monthlymean timescale.

To identify the ITCZ they used monthly 1000–850 hPa layer mean u and vwind components to

compute divergence, gradient of divergence, and Laplacian of divergence. Locations where the

gradient of divergence equaled zero were taken as the first guess ITCZ center, with the divergence

and Laplacian of divergence fields used to mask out regions of divergence and relative minima

in the divergence field, respectively. The 850hPa wetbulb potential temperature was used as a

final mask, limiting identifications to tropical regions. After the ITCZ center was identified, ITCZ

boundaries were located by iterating from the ITCZ center to the north and south to find the latitude

where RR fell below a threshold of 2.5 mm day−1. While their work focused on longterm trends

in ITCZ characteristics using long timeseries GPCP RRs (Adler et al. 2003), the present study

utilizes TMI RRs for boundary identifications. The two major benefits of using TMIbased ITCZ

identification over GPCP are 1) the TMI ITCZ climatology is already available fromWodzicki and

Rapp (2016) and 2) the TMI sensor is on the TRMM satellite with the precipitation radar (PR),

which is used to define convective features.

The TRMM satellite was launched in 1997 to further the understanding of precipitation in

the tropics (Simpson et al. 1988; Kummerow et al. 1998). As the first satellite to feature a PR,

TRMM provided invaluable information about internal precipitation structures, allowing for im

proved characterizations of precipitating convection in the tropics. However, with over 16 years of

data, studying the distributions and morphology of precipitating systems using pixellevel data can

be cumbersome. The work of Nesbitt et al. (2000) and Liu et al. (2008) greatly reduced data pro

cessing requirements through the development of a precipitation feature (PF) database. The current

study uses their radar PF definition, defined as a single or contiguous group of PR pixels that have

RRs greater than 0 mm hr−1, because the convective characteristics used here to quantify convec

tive intensity (i.e., maximum height reached by the PF, RR, area, and stratiform and convective

partitioning) are all derived from the PR. It is worth noting that the spatial and temporal resolutions
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of radar PFs are highly variable as they are limited by the presence of rain and the spatial and tem

poral resolutions of TRMM. The relatively narrow swath width (∼ 215–km) of TRMM also limits

the maximum size of PFs that can be sampled; however, Nesbitt et al. (2000) found that only 17%

of PFs are affected and noted that while this does cause some truncation in the area distribution of

PFs, other characteristics remain unbiased. As convection can be greatly influenced by its environ

ment (Derbyshire et al. 2004; Rapp et al. 2011; Hohenegger and Stevens 2013), it is advantageous

to consider changes in convective characteristics with changes in the ITCZ environment.

To do this, PFs are matched to RSS TMI version 7 (Wentz 1997; Hilburn and Wentz 2008) data

on a 0.25◦x0.25◦ grid at daily resolution. PFs are matched to the closest possible TMI time and the

nearest grid box using a nearest neighbor method based on the center latitude and longitude of an

ellipse fitted to the PF (Liu 2013). Using the monthly ITCZ center and boundary locations, each

PF and TMI grid box are assigned an ITCZ flag and a distance from the ITCZ center; PFs within

the ITCZ are hereafter referred to as ITCZ PFs. The variables of interest in the present study are

PF area, RR, stratiform fraction, and maximum height, and TMI columnar water vapor (CWV) and

SST. PF area is calculated by multiplying the number of pixels in the feature by the size of each

pixel and the RR is average RR over the entire feature. To reduce bias, PFs with fewer than four

pixels are excluded from the analysis as these very small, very frequent features can introduce noise

(Nesbitt et al. 2000).

As previously discussed, modeling studies suggest a link between the width of the ITCZ and

the characteristics of convection within the ITCZ (Chou and Neelin 2004; Neggers et al. 2007).

Thus, we partition our data into wide and narrow ITCZ regimes where a wide (narrow) ITCZ

is any ITCZ that has a deseasonalized zonalmean width anomaly (%) above (below) the 75th

(25th) percentile of the ITCZ width anomaly distribution for the 17year period from December

1997 through September 2014. All analysis is also performed across the bulk of the Pacific basin

from 160◦E100◦W. The far eastern Pacific and far western Pacific are excluded to reduce the

influence of spurious ITCZ identification in the North American monsoon region and the South

Pacific Convergence Zone (SPCZ), respectively. While continental areas may be present in the
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northern and southern regions of the domain, any PFs over such areas are excluded so that only

PFs over the ocean are considered.

Using the matched PF database, monthly zonal median values for PF area, maximum height,

and RR are computed for 2.5◦ bins centered on the ITCZ center. Median values are used as there

tends to be many small and very few large PFs, which skews the mean values. These data are then

deseasonalized to calculate percent anomalies. Using the deseasonalized anomalies from months

above the upper and below the lower quartiles of the ITCZ width distribution, the average devia

tions from the mean state of the PF characteristics are determined. The significance of anomalies

throughout the analysis are determined using a simple bootstrapping method wherein all deseason

alized anomalies are randomly resampled, with replacement, 10,000 times. A sampling size of 50

is used because that is roughly one quarter the number of months analyzed, giving a sample size

equal to the number of months above (below) the upper (lower) quartile of the ITCZ width distribu

tion. The average of each resample is computed, giving 10,000 realizations of the mean anomalies.

An anomaly is determined to be significant if it falls in the top or bottom 2.5% of the bootstrapped

distribution, giving a twotailed test at the 95% confidence level.

2.3 Results

2.3.1 PF Populations

To gain a general understanding of the changes in convection in different ITCZ width regimes,

Figure 2.1 shows the average zonal anomalies with wide ITCZmonths (above upper quartile) in red

and narrow ITCZ months (below lower quartile) in blue. Anomalies that are significantly different

from the mean at the 95% level are indicated with an ‘X’. From Figures 2.1a and b, PFs tend to

be larger and deeper when the ITCZ is wide, with maximum heights 514% higher than average

across the ITCZ. RR shows a more interesting picture (Figure 2.1c), with wide months having

below average RRs across the ITCZ region while narrow months have above average RRs. While

this seems at odds with previous studies that have shown RRs increasing as convection becomes

larger and deeper (DeMott and Rutledge 1998; Nesbitt et al. 2006), this result is due to the use of
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Figure 2.1: Means of zonal median percent anomalies for (a) PF area, (b) maximum height reached by the
PF, and (c) RR. Blue (red) lines correspond to months below the lower (above the upper) quartile of the
ITCZ width distribution. Xs indicate anomalies that are significantly different from zero at the 95% level.
Distances are relative to the center of the ITCZ (positive north) and are in units of degrees. Vertical dashed
lines show the mean location of the northern and southern ITCZ boundaries for the narrow and wide regimes.

conditional PFaveraged RR, not areaaveraged RR, in the present study. As PFs become larger

they will contain larger stratiform areas that tend to have a much lower instantaneous RR than

small cumulus dominated by convective RRs. This acts to suppress the stormaveraged RR, while

areaaveraged RR would still be above normal.

To gain a better sense of how the PF population differs between the narrow and wide ITCZ

regimes, PFs are partitioned into cumulus, congestus, and cumulonimbus regimes, based on maxi

mum height of the PF, using a slightly modified version of the definitions from Johnson et al. (1999)

with bins of 0–5 km for cumulus, 5–10 km for congestus, and 10–20 km for cumulonimbus. Figure

2.2 shows the zonal distribution of clouds by fractional occurrence for cumulus, congestus, and cu
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mulonimbus for narrow and wide months. It is worth noting that, on average, cumulus, congestus,

and cumulonimbus clouds generate roughly 7%, 27%, and 67% of all rain, respectively, across the

ITCZ. From this figure it is clear that most of the anomalies observed in Figure 2.1 are due to differ

ences in cumulus and congestus clouds, with cumulus (congestus) clouds occurringmore frequently

when the ITCZ is narrow (wide). Figure 2.2c shows that cumulonimbus are roughly 3050% more

frequent in the wide regime than the narrow across the ITCZ; however, cumulonimbus account for

a small percentage (<10%) of all clouds. What is perhaps more interesting is that there are roughly

the same number of clouds across the ITCZ during wide and narrow months (not shown), which

means that as the ITCZ narrows cumulonimbus clouds become less frequent and there is a shift

from congestus to cumulus, indicating a shift to shallow, weaker convection. Along with this shift

in cloud frequency is a shift in the percent contribution to total rain in the wide (narrow) regime to

5% (10%) for cumulus, 24% (31%) for congestus, and 71% (59%) for cumulonimbus.
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Figure 2.2: Zonal fractions of PFs by type for (a) cumulus, (b) congestus, and (c) cumulonimbus. Blue (red)
lines correspond to months below the lower (above the upper) quartile of the ITCZ width distribution. Xs
indicate anomalies that are significantly different from the mean at the 95% level. Distances are relative
to the center of the ITCZ (positive north) and are in units of degrees. Vertical dashed lines show the mean
location of the northern and southern ITCZ boundaries for the narrow and wide regimes. The sum of all
three histograms is unity.
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2.3.2 PF Convection Characteristics

To further study the changes in PF characteristics in different ITCZ width regimes, joint his

tograms of PF characteristics are used. Figures 2.3 and 2.4 show joint histograms for PF maximum

height and area, respectively. To create these figures, monthly joint histograms are generated for

the entire TRMM period (Dec. 1997 through Sep. 2014), showing the frequency of PFs with a

given characteristic (e.g., maximum height of 5 km) at a given distance from the ITCZ center (e.g.,

±1.25◦). Each monthly histogram is then scaled to show the percentage of PFs with a given at

tribute. Figure 2.3a shows the average distribution for all months where, as an example, 10–15%

of PFs that are ±1.25◦ from the ITCZ center have maximum heights of 5–5.5 km. The monthly

joint histograms are then deseasonalized and converted to percent anomalies using data from the

full TRMM period. These anomalies are then averaged for months that fall above the upper (wide)

and below the lower (narrow) quartiles of the ITCZ width distribution, with the average anomalies

shown in panels b and c, respectively, of Figures 2.3 and 2.4. Vertical gray lines show the average
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Figure 2.3: Joint histograms of PF maximum height and distance from the center of the ITCZ for (a) cli
matology, (b) mean of monthly percent anomalies in wide ITCZ months, and (c) mean of monthly percent
anomalies in narrow ITCZ months. Distances are relative to the center of the ITCZ (positive north) and are
in units of degrees. The vertical gray lines in all panels represent the location of the ITCZ boundaries for
each data subset. Stippling indicates anomalies that are significantly different from zero at the 95% level.
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Figure 2.4: As in Figure 2.3, but for PF area. Area bins are logarithmic. Note that only data before August
2001 are included in the smallest area bin (∼ 55–81 km2).

locations of the ITCZ boundaries over the respective months of each panel and stippling in panels b

and c indicate significant departures from the mean state at the 95% level. Note that in Figure 2.4,

only data before August 2001 are included in the smallest area bin (∼ 55–81 km2) when computing

means and anomalies because of the difference in pre and postboost pixel sizes.

From Figure 2.3a it is clear that the majority of PFs have heights between 2–8 km, with the

frequency of deeper storms (i.e., heights greater than 8 km) increasing slightly towards the center

of the ITCZ. On the northern edge of the ITCZ the distribution shifts to shallower PFs (i.e., heights

less than 5 km), with 20–30% of PFs having heights around 3 km at 10◦ north of the ITCZ center.

This is indicative of shallow cumulus in the subtropics; the ITCZ is typically located around 8◦N,

placing the PFs around 15–20◦N. At the southern edge of the ITCZ, the picture is similar to that

north of the ITCZ; however, PFs with heights greater than 6 km become more frequent, likely due

to the SPCZ, or double ITCZ.

Looking at the anomalies in PF maximum height distribution for wide ITCZs (Figure 2.3b) PFs

with heights less than 4 km become less frequent across the domain, with increases in PFs taller

than 4 km. Note that some of the large increases occur near the southern boundary of the ITCZ.

This suggests that when the ITCZ is wide, shallower convection is less common within the ITCZ
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and deep convection is more common, especially near the edges. For narrow ITCZs (Figure 2.3c),

PFs with heights below 4 km become much more frequent across the domain, with all PFs with

heights greater than 4 km becoming less frequent. This indicates a general shift toward shallower

convection when the ITCZ is narrow. Note that most of the bins within the ITCZ are stippled,

indicating high confidence in these changes. However, outside of the ITCZ confidence diminishes

(no stippling) suggesting a large spread in the anomalies observed.

Focusing now on variability in PF frequency based on PF area, Figure 2.4 shows the joint

histograms of PF area and distance from ITCZ center. While the orbital boost of TRMM did cause

a reduction in the frequency of very light rain detected by the PR (Liu et al. 2012), RRs greater

than 1 mm hr−1 are not significantly affected. As the current study neglects very small PFs, many

PFs with very low RRs have already been excluded. PFs with RRs less than 1 mm hr−1 actually

make up a larger percentage of PFs after the boost (∼ 20%) than before the boost (∼ 18%) and so

the impact of the orbital boost is small. With PFs that have areas greater than 1,000 km2 making

up a small portion of the total distribution (∼ 20%), small changes in the frequency of larger PFs

lead to large percent changes; e.g., if a PF of a given area appears only once in a given month’s

climatology but twice when the ITCZ is wide, a 100% increase in frequency will be observed.

Figure 2.4b shows that when the ITCZ is wide, PFs with areas greater than ∼100 km2 become

more frequent while PFs with areas less than∼100 km2 become less frequent. Note that because the

majority of PFs have areas less than 500 km2 a small percentage change in frequency can equate to

a large number of PFs. From these anomalies a shift from cumulus (small and shallow) to congestus

(moderately large and deep) and cumulonimbus (large and deep) features is apparent; however, the

increases in the frequency of PFs with areas between 100–1,000 km2 are not significant, indicating a

large amount of variability in the frequency of PFs of this size. In contrast to thewide ITCZs, narrow

ITCZs (Figure 2.4c) show a reduction in PFs with areas greater than ∼100 km2, with increases in

smaller PFs. This signifies a distinct shift toward smaller PFs in narrow ITCZs. To understand how

PFs grow in the wide ITCZ regime, joint histograms of stratiform area fraction are created.

Stratiform area fraction is defined here as the number of PR pixels within a PF that are identified

17



as stratiform rain by the 2A23 algorithm (Steiner et al. 1995; Awaka 1998) divided by the total

number of PR pixels in the feature. Figure 2.5a shows the climatology of joint histograms of

stratiform area fraction and distance from ITCZ center. PFs with very low stratiform area (< 5%)

account for over 50% of all PFs across the entire ITCZ. This is expected as congestus and cumulus

type systems (i.e., convection that has little to no stratiform component) account for nearly all PFs

(Figure 2.2). As expected based on the shifts shown in PF area under wide ITCZs (Figure 2.4b),

Figure 2.5b shows a shift toward PFs with predominantly stratiform rain when the ITCZ is wide,

with Figure 2.5c showing a shift toward predominantly convective rain when narrow. While it is

not surprising that the stratiform area increases as PFs get larger, it is not immediately obvious why

a wider ITCZ should be associated with larger, more organized individual storms.
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Figure 2.5: As in Figure 2.3, but for PF stratiform area fraction.
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2.3.3 Environmental Influences on PF Populations

Recent studies have shown a strong relationship between thermodynamics and precipitation

over the ocean, with stratiform rain intensity and area being highly sensitive to water vapor above a

critical value (Bretherton et al. 2004; Ahmed and Schumacher 2015). Therefore, it is possible that

these different ITCZ regimes correspond to different largescale thermodynamic variability associ

ated with ENSO or other largescale drivers. As SST, CWV, and convection are all interconnected

(Graham and Barnett 1987; Stephens 1990; Zhang 1993), TMI SST and CWV data are compared

across the ITCZ for anomalously wide and narrow months.

All TMI grid boxes that contain at least one PF are used to create zonal median plots of SST

and CWV for wide and narrow ITCZs (Figure 2.6). While the differences are not large, both CWV

and SST are significantly higher than average (at the 95% level) across the ITCZ region when
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Figure 2.6: Zonal median values of TMI (a) CWV and (b) SST. Blue (red) lines correspond to months below
the lower (above the upper) quartile of the width distribution. Xs indicate anomalies that are significantly
different from zero at the 95% level. Distances are relative to the center of the ITCZ (positive north) and
are in units of degrees. Vertical dashed lines show the mean location of the northern and southern ITCZ
boundaries for the narrow and wide regimes.
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the ITCZ is wide. Bretherton et al. (2004, their Figure 2a) shows that precipitation rates begin to

pickup quickly above 50 mmwater vapor path, with rapid increases occurring above 55 mm. While

Ahmed and Schumacher (2015) used column saturation fraction, a similar increase in stratiform

RR was observed for very moist columns. Ahmed and Schumacher (2015) also noted that RR

increases driven by changes in stratiform area were more pronounced than precipitation intensity

changes. Thus, the changes in the morphology of PFs under the wide ITCZ regime are likely a

result of increased moisture and SST over the tropics, either through increased evaporation locally,

or increased moisture convergence from remote sources. It is worth noting that near the northern

boundary of the ITCZ CWV decreases rapidly, falling below the 48 mm threshold defining the

moist tropics (Mapes et al. 2018) north of the ITCZ. However, at the southern boundary, CWV

does not fall below 50 mm, which we attribute to SPCZ influence in the central Pacific region.

With ENSO being a major source of both SST and CWV variability in the Pacific (Rasmusson and

Carpenter 1982; Trenberth et al. 2005), the relationship between ENSO on ITCZwidth is examined.

Using the Multivariate ENSO Index (MEI; Wolter and Timlin 1993, 1998), the influence of

ENSO on ITCZ width and PFs is determined by regressing MEI against the ITCZ width anoma

lies. As the MEI is a twomonth index, the value for a single month is computed by averaging the

two surrounding 2month values; i.e., the MEI value for December is the average of the Novem

ber/December and December/January values. Figure 2.7 indicates a strong relationship between

monthly ITCZwidth anomalies and ENSO, with a correlation coefficient of 0.63. Defining El Niño

(La Niña) events as any month where the MEI is greater than 0.5 (less than 0.5) shows that 41 of

the 50 anomalously wide ITCZ months occurred during an El Niño with 36 of the 50 anomalously

narrow ITCZ months during a La Niña. However, we note that the patterns shown above also

hold when we attempt to mitigate the ENSO influence by excluding ENSO events using the MEI

thresholds defined above; general patterns remain similar, although the magnitude and significance

of anomalies is greatly reduced.
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Figure 2.7: Deseasonalized ITCZ width anomalies plotted against MEI for the entire TRMM period of Dec.
1997 – Sep. 2014. Dark gray line is the leastsquares linear regression.

2.4 Summary and Discussion

TRMM PFs are used to study changes in the characteristics of convection within the ITCZ

in the Pacific Ocean. Using the ITCZ climatology of Wodzicki and Rapp (2016), monthly ITCZ

widths are partitioned into anomalously wide and narrow regimes, with the wide (narrow) regime

consisting of months where percent anomalies of ITCZwidth are above the upper (below the lower)

quartile of the ITCZ width distribution.

PFs tend to be larger and deeper when the ITCZ is wide, with large increases in stratiform

areas. While PF RRs are lower when the ITCZ is wide, this was determined to be a result of using

conditionalaverage PFRR because PFswith large areas consist ofmainlyweakly raining stratiform

clouds, which act to suppress stormaverage RR. The large increases in PF and stratiform area in

the wide ITCZ regime may be linked to deep convection changes associated with SST and CWV

increases based on a strong correlation between ITCZ width and the MEI and the anomalously high

(low) SSTs and CWV in the wide (narrow) ITCZwidth regime. This indicates a strong link between

ITCZ width and PF characteristics to ENSO and the Walker circulation. While this may seem to

be discrepant with model studies of the Walker circulation indicating that convection should be
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more intense during the contraction of the deep convection area (e.g., Bretherton and Sobel 2002),

this analysis composites convection across the full longitudinal extent of the Pacific ITCZ. When

the eastwest temperature gradient is strong during La Niña, the ITCZ is narrow and the deeper,

more intense convection is confined to a small portion of the averaging domain, so the composite

convection is weaker when averaged across the longitudinal ITCZ extent. When the ITCZ is wide

during El Niño as the eastwest temperature gradient breaks down, the deep convection covers a

larger fractional area of the ITCZ averaging domain. Studies of the relation between the strength

of the Hadley circulation and the phases of ENSO also lend support to the current study’s findings,

with many studies (e.g., Oort and Yienger 1996; Stachnik and Schumacher 2011; Nguyen et al.

2013; Hu et al. 2018) showing an anticorrelation between the Hadley circulation and ENSO. This

means that under El Niño (La Niña), when the ITCZ is wide (narrow), the Hadley circulation is

narrow (wide).

The observed shift from shallow to deep convection between La Niña and El Niño coupled

with the modulation of the Walker circulation also provides a mechanism for the large latent and

radiative heating perturbations shown in models and observations (Rädel et al. 2016; Stephens et al.

2018). The increase in upper level cloud is the result of the shift from congestus across the bulk of

the ITCZ in the narrow regime to larger systems with more widespread stratiform areas in the wide

ITCZ regime. The expansion of more organized systems with large stratiform rain regions across

the ITCZ during El Niño provide the large positive latent heating anomalies in the warming and

moistening regions of the tropics that can feedback on the largescale circulation.

It is clear from this analysis that variations in ITCZ width and PFs at interseasonal and inter

annual timescales may not be a good proxy for examining the relationship between convection

characteristics and longterm ITCZ width variations due to changes in the Hadley circulation. This

is likely due to the differences in the spatial and temporal scales as well as the complex balance of

net energy input, atmospheric energy transport, ENSO, and Hadley and Walker circulation influ

ences that drive changes in the Pacific ITCZ at different timescales (Adam et al. 2016).

More work is needed to unravel the connections between the convection distribution and the

22



largescale ITCZ state. Further efforts will also be focused on determining a proxy for the changes

in convective characteristics observed in the present study that can be applied to longtime series

reanalysis and model data sets to determine whether the relationship between the largescale ITCZ

characteristics and the convective systems within the ITCZ hold at longer timescales.
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3. LIMITATIONS AND IMPROVEMENTS TO PRECIPITATION FEATURE ANALYSIS

3.1 Discussion of Limitations in Previous Analysis

The analysis of differences in PF characteristics in wide and narrow Pacific ITCZwidth regimes

in Chapter 2 showed that intense convection, with higher maximum heights and larger stratiform

areas, is more frequent when the Pacific ITCZ is wide, while the opposite was found for narrow

ITCZs. This indicates that variability in Pacific ITCZ width and associated convection at the short,

seasonal to interannual, timescales studied differs from our hypothesized changes based on global,

longterm narrowing and intensification of the ITCZ and associated precipitation, both in the Pacific

and globally (Zhou et al. 2011; Wodzicki and Rapp 2016; Lau and Kim 2015; Su et al. 2017, 2019).

However, the reasons for the differences between timescales are not obvious as there are many

sources of variability included in the previous analysis that must be accounted for to determine

exactly what drives the observed variability. While not an exhaustive list, a few large sources of

Pacific variability have been identified: double ITCZs, seasonal variability, and regional effects. It

is worth noting that these three sources of variability are not necessarily independent; double ITCZs

tend to occur during boreal spring and are typically found in the eastern Pacific, making them both

a seasonal and regional phenomena. However, it is important to consider all these influences as

they all play a role in shaping the climate of the Pacific basin.

3.1.1 Double Intertropical Convergence Zones

One of the first major studies of double ITCZs in the eastern Pacific was performed by Zhang

(2001)who usedmonthlymeanClimate PredictionCenterMergedAnalysis of Precipitation (CMAP)

data to define ITCZs and double ITCZs and Tropical AtmosphereOcean (TAO)mooring array data

to study the environment of the two flavors of ITCZ. They defined a double ITCZ as the occurrence

of longitudinally elongated bands of precipitation to the north and south of the equator, with a min

imum in precipitation at the equator. From the four domains studied (Atlantic, Indian, and western

and eastern Pacific Oceans), they only found evidence of double ITCZs in the Pacific and Indian
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Oceans. In the eastern Pacific Ocean, double ITCZs can occur from February to May, but usually

occur during March and April. In the central Pacific, double ITCZs were much more common,

occurring in almost every month of the year; however, due to the subjective identification criteria,

it is not clear if the SPCZ was misidentified as a double ITCZ in the central Pacific region.

A more robust, objective analysis of ITCZ variability during boreal summer in the eastern Pa

cific was performed by Yu and Zhang (2018) wherein an asymmetric index (Ia) and double ITCZ

index (Id) were defined using GPCP RRs in three domains; the northeastern equatorial Pacific,

eastern equatorial Pacific, and southeastern equatorial Pacific. Extended Reconstructed Sea Sur

face Temperature (ERSST) and European Centre for MediumRangeWeather Forecasts (ECMWF)

Reanalysis Interim (ERAInterim) data were also used to determine sources of the observed ITCZ

variability. They found that SST gradients across the Pacific Ocean can cause remote changes in

wind convergence and precipitation in the eastern Pacific through changes to the surface pressure

distribution. From this, it is clear that there are many sources, and a large amount, of variability in

the ITCZ in the eastern Pacific during boreal spring.

The work of Huaman and Takahashi (2016) further illustrates the differences between typical

and double ITCZs. They performed a thorough analysis of the dynamics of the eastern Pacific

ITCZ using data from the TRMM satellite, the Eastern Pacific Investigation of Climate (EPIC) field

campaign, and the ERAInterim. Their Figure 4 (shown below as Figure 3.1) illustrates the very

different meridional circulations that appear in SeptemberOctober andMarchApril. In boreal fall,

there is a single ITCZ north of the equator, with meridional flow closely matching an ideal Hadley

circulation; lowlevel winds flowing into the ITCZ and upperlevel winds flowing out of the ITCZ

toward the poles. But in boreal spring when double ITCZs are common, the flow becomes much

more complex, with overturning circulations on both sides of the equator. Including instances of

both of these distinct flavors of ITCZ, which have very different dynamics, in any analysis in the

tropical eastern Pacific will introduce large sources of variability that will be difficult to account for.

One major way these differences may have impacted the study presented in Chapter 2 is through

the apparent competing influence of the northern and southern branches.
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Figure 3.1: Sketch of the climatological meridional circulation in the eastern Pacific (95◦ − 85◦W) in (a)
September–October and (b) March–April. Horizontal arrows indicate mean meridional wind (small: 0–2
m/s; medium: 2–6 m/s; large: > 6 m/s; double headed: variable), with gray arrows and shading indicating
weak observational constraint. (c and d) Horizontal convergence and divergence, respectively. Reprinted
from Huaman and Takahashi (2016, their Figure 4).

Using data from TRMM and RRs from GPCP, Gu et al. (2005) found that the total integrated

precipitation across both branches of the eastern Pacific double ITCZ does not vary much year to

year; however, the amount of precipitation in each branch can vary greatly. This means that an

anomalously strong southern branch can cause the northern branch to be anomalously weak, and

vice versa. As our previous study only analyzed the northern branch of the Pacific ITCZ when

a double ITCZ was present, large variability in the sorting of boreal spring months into the wide

and narrow regimes likely occurred due to the competition between the branches. This source of

variability is eliminated here by analyzing only boreal summer months, removing the influence of

double ITCZs in the analysis.
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3.1.2 Seasonal Variability

Many studies have shown the variability of the ITCZ at the seasonal timescale (e.g., Waliser

and Gautier 1993; Bain et al. 2011;Wodzicki and Rapp 2016), which is mainly driven by variability

in solar insolation. Figure 3.2, adapted from Wodzicki and Rapp (2016), shows the seasonal cycle

of three ITCZ metrics; latitudes of ITCZ center and boundaries, extents of the northern, southern,

and full ITCZ, and RRs across the full ITCZ width and near the center of the ITCZ. Figure 3.2a

shows that the ITCZ is farthest north in September, indicating a roughly 2 month lag behind the

change in solar insolation. The width of the ITCZ also changes with the seasons, going from its

narrowest in February (Figure 3.2b, black) to its widest in AugustOctober. These changes have

large impacts on the amount and location of rainfall in the tropics (Figure 3.2c) and the dynamics

of the Hadley circulation (Webster 2004). Thus, it is important to control for, as best as possible,

these seasonal differences. The previous analysis attempted to mitigate the seasonal variations in

ITCZ width by using percent anomalies in width when partitioning months into wide and narrow

regimes; raw anomalies would have almost certainly ensured that wide months all occurred during

boreal fall, with narrow months during boreal spring. While this approach did create a more even

sampling of months in the wide and narrow regimes, small changes in ITCZ width during clima
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Figure 3.2: Mean annual cycle of ITCZ (a) latitudes, (b) extents, and (c) precipitation rates with colors
corresponding to different locations. Solid lines represent GPCP derived values and dashed lines represent
TMI derived values. Adapted from Wodzicki and Rapp (2016, their Figure 7).

27



tologically narrow months can lead to large percent anomalies in width, potentially resulting in an

oversampling of narrow months for the anomalously wide regime and vice versa for the narrow

regime. To mitigate the seasonal influence, boreal summer is analyzed separately.

3.1.3 El NiñoSouthern Oscillation

A recent study by Henderson et al. (2018) aimed to understand differences between TMI and

PR rainfall retrievals in the warm and cool phases of ENSO. They found organized convective

systems to be more frequent during El Niño than La Niña. The convective systems were also found

to have larger areal and vertical extents with greater RRs in the warm phase. Examination of water

vapor data revealed that the atmosphere is ‘premoistened’ during El Niño compared to La Niña,

with positive anomalies in water vapor existing before the occurrence of convection. While they

suggest the increase in water vapor may be due to increased vertical transport of moisture under

El Niño, the exact cause is not clear. However, they do find that these differences in water vapor

between ENSO phases leads to deep, isolated convection under La Niña and organized convective

systems under El Niño. These differences in water vapor and convection align with the results

of Wodzicki and Rapp (2020), providing further evidence of the strong influence of ENSO on

convective populations in the Pacific.

It is clear that there are many sources of variability in the Pacific basin impacting both the

ITCZ and associated convection. While the above is not an exhaustive list of all possible sources of

variability, the largest sources have been highlighted. It is important to remember that these sources

of variability are not mutually exclusive. For example, double ITCZs have a distinct seasonality,

occurringmainly in boreal springwhen the SSTs to the north and south of the equatorial coldtongue

are roughly balanced. The impacts of ENSO are also highly seasonal as warm and cool phases of

ENSO are most pronounced from boreal late fall to early spring. As such, it is best to account for

all of the sources at the same time rather than try to determine how they impact each other as well

as their impact on ITCZ width and associated convection. To do this, analysis is limited to only

boreal summer, eliminating the influence of both the seasonal cycle in ITCZ characteristics and
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double ITCZs in the eastern Pacific. Limiting analysis to only boreal summer will also remove

most of the variability introduced by ENSO; however, to fully account for ENSO, the Multivariate

ENSO Index (MEI;Wolter and Timlin 1993, 1998) is used to further restrict analysis to only neutral

months during the season of interest. Through controlling these sources of variability, we hope to

reach a better understanding of the differences between short and longterm variability in ITCZ

width and associated convection.

3.2 Data and Methods

The TRMM PF and ITCZ characteristic databases are used to partition features into wide and

narrow ITCZ width regimes using boreal summer (JuneAugust, JJA hereafter) months above (be

low) the upper (lower) quartile of the width distribution as wide (narrow) months. Only PFs with

at least 4 raining pixels are considered as the distribution of features is dominated by these very

small objects, which can skew statistics (Liu et al. 2008). Restricting the analysis to this limited

time period reduces, or completely eliminates, the sources of variability discussed above. Multiple

domains in the Pacific are also tested to better determine regional differences in convection across

the ITCZ. These domains include 160◦E160◦W, 150◦W110◦W, and 160◦E100◦W for compari

son to previous work. Effects of ENSO are further mitigated by using the MEI (Wolter and Timlin

1993, 1998) to exclude months where the |MEI| ≥ 0.5 (Physical Sciences Laboratory 2021; Bain

et al. 2011). While such cases are not expected to be frequent during JJA, they are removed to limit

the influence of this large source of variability.

Another large difference between this analysis and that of Wodzicki and Rapp (2020) is that

PF frequency histograms are scaled by the number of pixels in each PF. This is done to counteract

the skew introduced by the plethora of very small PFs in the distribution. For example, Figure 2.3

shows the joint histogram of PFmaximum height and distance from ITCZ center. Onewould expect

features with high echo tops to become more frequent when moving from the poles to the center of

the ITCZ. However, the figure shows that there is little change in the frequency of PFs with heights

> 5 km. This is an artifact of the scaling used in the figure, where the frequencies are scaled to
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their locations, which was meant to depict local shifts in convective populations at a given distance

from ITCZ center. However, because all clouds become more frequent moving toward the ITCZ,

the relative frequency of deep convective PFs does not appear to change. To better represent the

impacts of these convective systems, the total number of pixels is now calculated for every joint

histogram bin instead of the total number of PFs before normalization to location is performed.

This produces much more intuitive histograms (i.e., high topped cloud frequency increases toward

ITCZ center) than the previous method with little to no impact on the general patterns in frequency

anomalies (see below).

Another difference between the current and previous analysis is the reference to ITCZ center.

The original reason for referencing PFs to the center of the ITCZwas to compensate for the seasonal

variations in ITCZ location. This allowed comparison of the differences in PF characteristics across

the ITCZ between seasons; 5 degrees from ITCZ center is the same distance no matter the location

of the ITCZ. However, as the current analysis focuses on just boreal summer, PFs are now simply

referenced to latitude. The meridional domain of the analysis is also expanded to 40◦S40◦N,

allowing for the study of features in the subsidence regions of the overturning circulation that can

be affected by changes in the ITCZ through the overturning circulation.

For all joint histograms, deseasonalized values are used to compute mean anomalies in all fig

ures. The statistical significance of anomalies is tested in the same manner as in Wodzicki and

Rapp (2020) using a simple bootstrapping method wherein all deseasonalized anomalies are ran

domly resampled, with replacement, 10,000 times. The sampling size for each resample is roughly

one quarter the number of months being analyzed; for JJA excluding ENSO there are 6 months in

each resample. The average of each resample is computed, giving 10,000 realizations of the mean

anomalies. An anomaly is determined to be significant if it falls in the top or bottom 2.5% of the

bootstrapped distribution, giving a twotailed test at the 95% confidence level. Unless otherwise

stated, all time series plots have been lowpass filtered using a 4th order Butterworth filter with a

cutoff frequency of one cycle per year. The lowpass filtered data are then deseasonalized removing

the mean seasonal cycle to convert to anomalies.
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3.3 Results

3.3.1 Precipitation Features across the Tropical Pacific

We again use joint histograms to show differences in the frequency of PFs across the ITCZwidth

regimes; however, a different scaling is used in this analysis. Figure 3.3 shows the joint histogram

with distance from ITCZ center and PFmaximumheight similar to that of Figure 2.3 (i.e., it contains

the same months and is over the same domain of 160◦E100◦W), except bins are scaled by PF pixel

counts before normalization is performed, and the meridional and height domains are expanded.

The new scaling in Figure 3.3a creates a more intuitive picture, with cumulonimbus more frequent

within the ITCZ relative to outside of the ITCZ. Cumulus convection appears as the dominant PF

type in the subsidence regions, with a transition to congestus moving toward ITCZ center. At the

edges of the domain (20◦N and 30◦S from the center of the ITCZ) congestus type features are most

frequent, which is attributed to the Pacific frontal zone north of the ITCZ (Nakamura and Kazmin
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Figure 3.3: Joint histograms of PF maximum height and distance from the center of the ITCZ for (a) cli
matology, (b) mean of monthly percent anomalies in wide ITCZ months, and (c) mean of monthly percent
anomalies in narrow ITCZ months with bin counts scaled by PF pixels. Data spans Dec. 1997  Sep. 2014 in
the domain 160◦E100◦W. The vertical solid and dashed lines in all panels represent the location of the ITCZ
and Hadley circulation boundaries, respectively, for each data subset. The number of months contained in
each plot is also shown in parentheses.
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2003) and the SPCZ south of the ITCZ (Vincent 1994). Note that both of these regions are located

at roughly 30◦ latitude in each hemisphere as the ITCZ is, climatologically, located at 8◦N (Waliser

and Gautier 1993; Wodzicki and Rapp 2016). The general patterns of anomalies for wide and

narrow ITCZs in Figures 3.3b and 3.3c match those of Figure 2.3, with cumulonimbus (heights ≥

10 km) more (less) frequent under the wide (narrow) regime within the ITCZ (gray ellipses), while

cumulus features (heights < 5 km) are less (more) frequent (black ellipses). However, differences

in congestus (heights between 510 km) are more variable compared to the old scaling, with no

clear increase or decrease in this cloud type in the wide or narrow regimes. While Figure 3.3 is

scaled relative to the ITCZ for comparison with Figure 2.3, the rest of this analysis is performed

relative to latitude since we are no longer comparing changes across seasons as the ITCZ moves

with solar insolation (see Section 3.1.2).

Figure 3.4 shows joint histograms of PFmaximum height during JJAwith |MEI| < 0.5 between

160◦E100◦W. The general distribution of PF pixels (Figure 3.4a) is similar to that of the full data

period, with cumulus the dominant type in the subsidence region, a transition to congestus moving

toward the ITCZ and at the ITCZ margins, and cumulonimbus dominating within the ITCZ. Note
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Figure 3.4: As in Figure 3.3, but for JJA, |MEI| < 0.5, and relative to latitude
(160◦E100◦W).
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that large pixel frequencies at the boundaries of the domain (40◦N and 40◦S) are a result of the

TRMM orbit; the satellite samples these latitudes more frequently than others. Looking at the

wide (Figure 3.4b) and narrow (Figure 3.4c) regimes, almost no discernible pattern appears in deep

convection, the result of very few samples; only 6 wide months and 7 narrowmonths. However, the

differences in the more frequent cumulustype convection do appear, with fewer (more) cumulus

within the ITCZ (subsidence region) under the wide regime and more (less) in the narrow.

A quick look at PF maximum height in the eastern Pacific (EPAC; Figure 3.5) shows similar

patterns to the full Pacific, but with added noise due to a further reduction in sample size due to the

small zonal domain. The sparse sampling in the plot is apparent as the bootstrapping begins to fail,

with regions that show, essentially, zero percent anomalies identified as significant differences.

Stratiform area fraction within the full Pacific domain (Figure 3.6a) shows PFs with high strat

iform area fractions are fairly uniformly distributed across the tropics, with fractions between 0.4

0.7 present across the entire Hadley circulation. Within the ITCZ, stratiform area fractions greater

than 0.7 occur frequently, with fractions of 0.50.7 being the most frequent. Differences in strat

iform area fraction in the wide regime (Figure 3.6b) further support shifts in cumulus convection

indicated by the analysis of PF maximum height, with low area fraction PFs (<0.3) less (more)
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Figure 3.5: As in Figure 3.4, but for 110◦150◦W.
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Figure 3.6: As in Figure 3.4, but for stratiform area fraction (160◦E100◦W).

frequent within the ITCZ (subsidence region). Congestus and cumulonimbus regimes are harder

to delineate in the stratiform area fraction framework, so they are discussed together. In the sub

sidence regions of the wide regime, reductions in the frequency of high stratiform area fractions

(>0.6) appear to be the dominant signal, but the large variability makes identification of a clear

signal impossible. A reduction in the frequency of congestus and cumulonimbus in the subsidence

regimes, however, is expected based on the increased strength of the overturning circulation in the

region. Generally, patterns opposite of the wide regime exist in the narrow regime (Figure 3.6c),

with cumulus type clouds less frequent in the subsidence regions and, albeit slightly, more frequent

within the ITCZ. While patterns in congestus and cumulonimbus PFs are noisy, there appears to

be a pattern of increased frequency in the subsidence region in the narrow regime, likely the result

of weaker overturning in the regime, allowing the development of systems with larger stratiform

areas.

In the EPAC (Figure 3.7a), PFs with stratiform area fractions greater than 0.6 are infrequent

in the Southern Hemisphere subsidence region, likely due to the lack of any SPCZ influence in

the region. Patterns are again similar to those of the larger Pacific domain in both the wide and

narrow regimes, with cumulus (area fractions less than 0.4) less (more) frequent within the ITCZ
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(subsidence region) in the wide regime and more (less) in the narrow.
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Figure 3.7: As in Figure 3.6, but for 110◦150◦W.

After accounting for double ITCZ, seasonal cycle, and ENSO variability, results show patterns

similar to those of the previous analysis inWodzicki and Rapp (2020). A comparison of the Hadley

circulation characteristics between the two regimes is also performed for a more complete under

standing of the forcings that may be leading to the observed variations. As mentioned above, under

the wide regime there is evidence of increased overturning strength, as deep convection within

the ITCZ becomes more frequent (increased ascent), while deep convection outside of the ITCZ,

namely in the subsidence regions, becomes less frequent (increased descent).

3.3.2 Hadley Circulation Variability

The Hadley circulation is a thermally direct circulation responsible for transporting energy from

the tropics toward the mid latitudes. The circulation is driven by convection associated with the

ITCZ,with the ascending branch near the equator and subsidence branches extending to roughly 30◦

latitude in both hemispheres (Webster 2004). As changes in convection within the ITCZ can lead

to changes in the overturning circulation through adjustments to the latent heating profile (Hack
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et al. 1989; Hou and Lindzen 1992; Dodd and James 1997), it is important to understand how the

Hadley circulation varies with the variations in PFs observed in the previous analyzes. An analysis

of the impact of ENSO on the Hadley circulation is also warranted as ENSO was determined to be

responsible for much of the differences observed between the wide and narrow ITCZwidth regimes

in Chapter 2 (Wodzicki and Rapp 2020).

The Hadley circulation is characterized through the zonalmean meridional stream function (Ψ;

Oort and Yienger 1996; Lu et al. 2007; Hu and Fu 2007; Stachnik and Schumacher 2011), which is
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Figure 3.8: Example of Helmholtz decomposition of ERAInterim 850 hPa monthly mean winds for Jan.
1979 with (a) mean wind field, (b) nondivergent component of the wind, and (c) divergent component of
the wind.
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computed from ERAInterim data, using the methods of Stachnik and Schumacher (2011). How

ever, it is not possible to directly apply these methods of characterization to the smaller longitudinal

domains of the current study because the assumption of mass continuity at the global scale does

not hold for regional domains. Thus, the approach of Zhang and Wang (2013) is used, wherein

a Helmholtz decomposition is performed on the horizontal wind to obtain the divergent and non

divergent u− and v−components of the wind. From these, it is possible to study vertical motion

from the divergent wind and the curl, or rotation, from the nondivergent wind. The meridional

component of the divergent wind is used to study the Hadley circulation; the zonal component can

be used to study the Walker circulation. The boundary identification method of Stachnik and Schu

macher (2011) is used to determine the poleward edges of the Hadley circulation, along with other

metrics such as the strength of the overturning. Decomposition of the wind field was done using

the windspharm Python package (Dawson 2016) and an example of the decomposition is shown in

Figure 3.8.
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Figure 3.9: Time series of (top) Hadley cell extent, (middle) northern branch circulation strength, and (bot
tom) southern branch circulation strength, with MEI plotted in red, for two longitudinal domains spanning
the (left) Pacific basin and (right) reset of the globe. The correlation coefficient between each variable and
the MEI are shown in the topleft of each panel.
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With the results from Wodzicki and Rapp (2020) indicating that ENSO is the driving force be

hind the differences in PF variability in the Pacific ITCZ width regimes and the present analysis’

aims to study cloud populations across the Hadley circulation, we first look at the relationship be

tween ENSO and the Hadley circulation. Figure 3.9a shows two metrics (extent and circulation

strength) for the Hadley circulation in the Pacific along with the MEI. The strength of the circula

tion in the northern (southern) hemisphere is the maximum (minimum) value of Ψ in the northern

(southern) hemisphere, with the latitude of of this value being the center of the circulation. To

define the extent of the circulation, the distance between the subtropical edges of the circulation is

computed where edges are the first poleward latitudes of the circulation centers where the 700400

hPa averaged value of Ψ equals zero in each hemisphere (Stachnik and Schumacher 2011). From

the top panel of Figure 3.9a it is clear that the Pacific Hadley circulation expands during El Niño

and contracts during La Niña (r = 0.48). There is an even stronger correlation between MEI and the

strength of the northern (middle) and southern (bottom) circulations (r = 0.86 and r = 0.61, respec

tively). This finding is slightly at odds with the results of Stachnik and Schumacher (2011), which

showed a narrowing and intensification of the circulation under El Niño. However, their study

was performed using the global mean circulation, not a regional domain. Thus, the same Hadley
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Figure 3.10: As in Figure 3.9, but for the entire globe.
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circulation characteristics for the counterpart of the Pacific basin (i.e., the rest of the globe) are

shown in Figure 3.9b. Outside of the Pacific, the circulation undergoes the exact opposite response

to ENSO, with the circulation extent and strength negatively correlated with MEI; i.e., contracting

and weakening during El Niño. It is worth noting that when looking at the circulation characteris

tics for the entire globe (Figure 3.10), results are similar to that of Stachnik and Schumacher (2011)

with a strengthening and contracting of the global circulation under El Niño.

To obtain a clearer picture of exactly what signals may be driving Hadley cell variability in the

Pacific, and around the world, coherency spectra between the MEI and Hadley cell characteristics

are computed. The coherency spectra are computed using Welch’s method, with Hann windowed
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Figure 3.11: As in Figure 3.9, but for coherence ofMEI andHadley circulation characteristics. The darkgray
box highlights the period range of ENSO (27 years per cycle), with the lightgray horizontal line showing
the 95% confidence level for coherence.
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Figure 3.12: As in Figure 3.11, but for the entire globe.

segments of 120 months (10 years) with 50% overlap. Data are demeaned and detrended before

computing coherence; there is no lowpass filtering or deseasonalization performed. Figure 3.11a

shows the coherence between MEI and Hadley cell characteristics in the Pacific basin (160◦E–

100◦W). The coherence spectra for the complementary portion of the globe (100◦W–160◦E) and

for the entire globe are shown in Figures 3.11b and 3.12, respectively. The gray box highlights the

typical range of ENSO frequency (27 years per cycle) and the lightgray horizontal line signifies

the 95% confidence level. It is clear that the low frequency variability in the MEI, especially at

ENSO timescales, is significantly correlated with changes in Hadley circulation width and strength

in both domains of interest. As the MEI is designed to capture the ENSO signal, the contribution

of other forcings to the index should be minimal. This fact provides a high degree of confidence

that ENSO and variability in the Hadley circulation are very closely linked, with an expansion
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and strengthening of the circulation in the Pacific basin and a contraction and weakening of the

circulation around the rest of the globe during El Niño. These competing factors balance at the

global scale resulting in a strengthening and narrowing during El Niño. This supports the decision

to exclude warm and cool ENSO phases and focus on the boreal summer months in the Pacific

analysis as a means to better understand the shortterm, interseasonal to interannual, variability of

cloud populations. More insight into changes in the Hadley circulation, such as the exact regions of

strengthening and expansion in each hemisphere, can be gleaned from the zonalmean mass stream

function over our Pacific domains.

We plot the zonalmean mass stream function for only JJA where the |MEI| < 0.5 during the

PF data period (Dec. 1997 – Sep. 2014). Figure 3.13a shows the climatological mass stream

function for this period with positive values indicating counterclockwise rotation. The Ψ = 0

contour is highlighted in thickblack, with ITCZ center and boundaries in solid and dashed gray,

respectively. It is clear that the northern branch of the circulation is much weaker than the southern
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Figure 3.13: Zonalmean mass stream function for 160◦E100◦W during JJA with |MEI| < 0.5 for (a)
climatology, (b) wide ITCZ, and (c) narrow ITCZ. Contours are solid (dashed) for positive (negative) values
of Ψ, with thick solid contours highlighting values where Ψ = 0. Contour interval is 2 × 1010 kg s−1.
Vertical gray lines show the (solid) ITCZ center and (dashed) ITCZ boundaries for the respective periods.
The number of months contained in each plot is shown in the title in parentheses. Note that positive values
of Ψ signify counterclockwise rotation.
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branch during JJA, which is to be expected as the summer hemisphere typically has the weaker

branch of the circulation (Tucker 1959; Lorenz 1967; Oort and Rasmusson 1970; Webster 2004).

The ascent region of the circulation is near 8◦N, matching the ITCZ identification very well, with

the terminus of the northern (southern) branch of the circulation at roughly 30◦N (35◦S), making

the northern branch of the circulation much narrower than the southern branch.

Figures 3.13b and 3.13c show the zonalmean mass stream function in the wide and narrow

ITCZ width regimes, respectively. Note that the contours on these plots are the climatological

contours, giving a reference for differences in the circulation between the regimes. Somewhat

surprisingly, both the northern and southern branches of the circulation are stronger in the wide

regime (relative to climatology). The opposite is true for the narrow regime, with both branches

weaker in the narrow regime. As warm and cool ENSO events are excluded from these figures,

and the other sources of variability discussed above have been mitigated as much as possible, these

differences between the width regimes still indicate a Walker circulation influence on convection

due to variability in SSTs across the Pacific Ocean.

In the EPAC (110◦150◦W), Figure 3.14a shows that the northern and southern branches of the

circulation are narrower, with terminus of roughly 25◦N and 15◦S, respectively. While not a perfect

proxy for Hadley circulation extent, this narrowing of the circulation is similar to the findings of

Martin et al. (2020), who found the tropics to be much narrower in the EPAC using a tropopause

break method to identify the tropics. The Ferrel cell is also visible in the Southern Hemisphere in

this region. We again see an intensification of the overturning circulation in the wide ITCZ regime

(Figure 3.14b) with a weakening in the narrow regime (Figure 3.14c).

The lack of a clear Ferrel cell in the larger Pacific domain is likely due to SPCZ influence, which

would act to expand the Hadley circulation through its broad area of ascent. As a check for SPCZ

influence, the circulation is plotted over the central Pacific (CPAC; 160◦E160◦W) in Figure 3.15.

The southern branch of the circulation in the CPAC is very expansive, extending beyond 50◦S,

providing clear evidence of SPCZ influence as there is no other significant feature in this region

that could cause such an expansive area of ascent and associated descent. The same intensification
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Figure 3.14: As in Figure 3.13, but for 110◦150◦W.

(a) Climatology (24)

40 20 0 −20 −40
Latitude (degrees)

1000
850

700

500

400

300

250

200

150

100

P
re

s
s
u
re

 (
h
P

a
)

−10 −8 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 8 10

Ψ (x1010 kg s−1)

(b) Wide ITCZ Months (6)

40 20 0 −20 −40
Latitude (degrees)

(b) Narrow ITCZ Months (7)

40 20 0 −20 −40
Latitude (degrees)

Figure 3.15: As in Figure 3.13, but for 160◦E160◦W.

and weakening of the circulation in the wide and narrow regimes found in the full Pacific and EPAC

domains are found in Figures 3.15b and 3.15c, respectively.

With consistent signals of intensification (weakening) of the overturning circulation in the wide

(narrow) ITCZ regime across various domains in the Pacific basin during JJA in the absence of

ENSO influence, it is clear that variability at these short, interseasonal to interannual, timescales in
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the Pacific basin do not match expected global signals of longterm changes in the Hadley cell with

increasing temperature. As partitioning the mass stream function into ITCZ width regimes shows a

Walker circulation influence even when adjusting for ENSO, the internal variability of the Pacific

system seems to be that of awide (narrow) ITCZ simply increases (decrease) the circulation strength

through, to first order, a wider area of ascent. This increased circulation strength in the wide regime

is accompanied by a reduction in convection in the subtropics (shown above) as the increased

subsidence acts to suppress convection. The opposite response is shown in the narrow regime,

wherein weaker subsidence seems to allow for more convection. Figure 3.16 further illustrates

the Walker circulation influence, showing the difference between ERAInterim vertical pressure

velocity at 500 hPa (ω500) in the wide and narrow ITCZ regimes for the same time period and a

similar domain to that of Figure 3.13. Negative values across much of the Pacific (150◦E120◦W)

mean the ascent in the wide ITCZ regime is greater than the narrow, while in the western Pacific

warm pool (120◦E150◦E), ascent is greater in the narrow ITCZ regime than in the wide. This

indicates that the Walker circulation is relatively weak (strong) in the wide (narrow) ITCZ width

regime.
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Figure 3.16: Difference in ERAInterim ω500 during JJA with |MEI| < 0.5 over the period Dec. 1997  Aug.
2014 between wide and narrow ITCZ months (widenarrow).
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3.4 Discussion and Future Work

Recent work by Wodzicki and Rapp (2020) showed that the variability of Pacific ITCZ width

and associated convection at short, interseasonal to interannual, timescales is influenced mainly

by ENSO. They concluded that regional wide and narrow ITCZ regimes in the Pacific are not

representative of longterm observed changes in the ITCZ, as tall PFs with large areal extents and

high stratiform rain fractions were more frequent in the wide ITCZ regime and less frequent in

the narrow. These differences are opposite of those expected, with observational (e.g., Zhou et al.

2011;Wodzicki and Rapp 2016) and climate model (e.g., Lau and Kim 2015; Su et al. 2017) studies

indicating a narrowing of the ITCZ with an intensification of associated convection. Through a

better understanding of the relationship between ITCZ width, tropical convection, and the Hadley

circulation in the Pacific Ocean at short timescales, the link between Pacific ITCZ width regimes

and convection populations in the current climate is better understood.

As in Chapter 2, PF data were partitioned into wide and narrow ITCZ width regimes using the

upper (lower) quartiles of the width distribution. Joint histograms of PF maximum height and strat

iform area fraction were used to determine differences in raining cloud populations between wide

and narrow ITCZs. These histograms are similar to those shown in Wodzicki and Rapp (2020);

however, PF pixel counts are used instead of raw PF counts to give a more natural look to his

tograms. While sample sizes in the width regimes were very small, in general, cumulus convection

(heights < 5 km) was less (more) frequent within the ITCZ under the wide (narrow) width regime.

The inverse is true in the subsidence regions, with cumulus convection more (less) frequent under

the wide (narrow) width regime. Differences in congestus (heights 5–10 km) and cumulonimbus

(heights> 10 km) were highly variable across the tropics, with some indication of deep convection

being more (less) frequent within the ITCZ in the wide (narrow) width regime. Stratiform area

fraction provided support to the differences shown in maximum height, with cumulus convection

(i.e., low stratiform area fractions) being less (more) frequent within the ITCZ in the wide (narrow)

width regime. The inverse is again true in the subsidence regions, with cumulus convection more

(less) frequent in the wide (narrow) width regime. Variability in deep convection (i.e., high strati
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form area fraction) was, again, unclear due mainly to the small sample size. To better understand

large scale influences on convection in the tropical Pacific, Hadley circulation characteristics were

also examined to determine how they vary with ITCZ width.

As the Hadley circulation and ITCZ are very closely linked, and ENSO is the largest source of

variability in the Pacific basin at interannual timescales, time series and coherence analyzes were

performed between theMEI and Hadley circulation characteristics. Strong, statistically significant,

correlations between the Hadley circulation characteristics and ENSO in the Pacific basin were

found, with warm (cool) phases leading to increased (decreased) circulation strength and a wider

(narrower) circulation. To mitigate variability introduced by ENSO, along with others sources

of variability such as double ITCZs and seasonal variability, only boreal summer months where

|MEI| < 0.5 were used. Differences in the mass stream function between wide and narrow ITCZ

width regimes for various regions of the Pacific showed a consistent ENSOlike response even with

the restrictions described above. With an apparent relation between ITCZ width and overturning

strength, variations in PFs were analyzed to understand how convection varies with the changes in

ITCZ width and circulation strength.

From the analysis of the Pacific Hadley circulation and its relationship to ENSO and the Pacific

ITCZ, it is very clear that the circulation is tightly linked to the Walker circulation and SST. Under

El Niño (ENSO warm phase), anomalously warm SSTs are present across the central and eastern

Pacific, leading to a decrease in the strength of the Walker circulation. The results from Chapter 2

show that this leads to increased ITCZ width, CWV, and frequency of deep, organized convection.

Henderson et al. (2018) found similar changes in CWV and convection with El Niño, wherein SST

anomalies drive CWV anomalies, aiding in the formation of organized convective systems within

the ITCZ region. Through a study of ENSO’s impact on the hydrologic cycle in the Pacific using

observational and model data, Stephens et al. (2018) found a series of feedbacks that act to enhance,

and ultimately reverse the impacts of SST anomalies associated with El Niño. The initial impacts

match those of Henderson et al. (2018), with increases in moisture and convection, as shown by

increased precipitation and latent heating in the ITCZ. These changes, through a reduction in solar
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heating at the surface due to increased cloudiness, ultimately lead to the break down of the SST

anomalies that initiated the increase in convection. The combination of all these factors clearly lead

to an increase in the strength of the Pacific Hadley circulation in response to El Niño. The opposite

is true for LaNiña, with anomalously cool SSTs leading to an increase inWalker circulation strength

acting to limit development of strong convection across the broad Pacific domain; decreases in

CWV likely also inhibit convection. As a similar, albeit weaker, signal is found when controlling

for ENSO and seasonal variations, the general impact of Walker circulation and SST variability

persists at short timescales. Changes in the analysis region across the Pacific did not show much

difference in the impact of Walker circulation and SST variability between the wide and narrow

ITCZ width regimes. The combination of all these factors helps explain why convection in the

Pacific does not vary with Pacific ITCZ width at short timescales as would be expected from long

term trends of narrowing and intensification.

Previous studies that showed a narrowing and intensification of the ITCZ analyzed changes at

the global scale, which, as shown above and discussed by Stephens et al. (2018), do not necessarily

reflect regional changes. We have shown competing regional responses in the Hadley circulation to

ENSO forcing, with the circulation in the Pacific strengthening and widening under El Niño while

the circulation outside of the Pacific weakens and narrows. As the global circulation response is a

combination of these regional responses, and is consistent with studies of longterm changes in the

Hadley circulation, a global analysis of convection and the ITCZ may be more consistent with our

hypothesis. Another possible reason for the differences between timescales is that previous studies

were focused on narrowing and intensification in response to global warming, especially in climate

model studies such as Lau and Kim (2015) and Su et al. (2017). While the above work intended to

use ITCZ width to gain a general understanding of the global changes analyzed in previous studies,

this metric is insufficient. The failure of this metric is, perhaps, due to Pacific ITCZ width being a

poor representation of global mean temperature; i.e., the ITCZ is not necessarily wide when global

temperatures are anomalously warm.

To test this, global, areaweighted, means of SST are computed using version 1.1 Hadley Cen
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tre Sea Ice and Sea Surface Temperature (HadISST; Rayner et al. 2003) data and the probability

density functions (PDFs) of global SST are plotted for the wide and narrow Pacific ITCZ width

regimes over both the longterm (Jan. 1979Aug. 2019) ERAInterim and shortterm (Dec. 1997

Sep. 2014) TRMM period. Figure 3.17a shows little difference in global mean SST between the

Pacific wide and narrow ITCZs giving a clue to the differences between changes at the differ

ent timescales. For longterm studies, the main driver of ITCZ width changes is changes in SST,

which are also related to phenomena such as the uppedante mechanism (Chou and Neelin 2004),

deeptropics squeeze (Lau and Kim 2015), and tightening of Hadley ascent (Su et al. 2017) as the

global atmosphere undergoes changes in the distribution of moisture. This warrants future anal

ysis looking at global changes in convection and cloud populations using an ascent extent metric

that more closely follows global SST. One such metric is ascent area fraction introduced by Su

et al. (2019), wherein climate model grid boxes with ω500 < 0.0 Pa s−1 are taken as ascent, with

the fractional area of ascent computed relative to all grid boxes between 30◦S30◦N. This metric

was wellcorrelated with SST and even precipitation across multiple climate models, with SST and

precipitation increasing as ascent area fraction decrease; an intensification and tightening of ascent.

Reanalysis data could be used to identify the ascent regions, with TRMMPF andMODIS data used

to study convection and clouds within the ascent and descent regions. Such analysis could provide

the insight into changes in cloud populations as the ascent region width varies that were initially

sought through the Pacific ITCZ width regime metric.
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Figure 3.17: Histogram of global mean HadISST for (blue) narrow and (red) wide ITCZ months over the (a)
ERAInterim and (b) TRMM PF time periods. Cumulative distributions shown in light colors.
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4. VARIABILITY OF TROPICAL CLOUD AND CONVECTIVE POPULATIONS WITH

VARIATIONS IN ASCENT AREA FRACTION

4.1 Introduction

The warming climate has many implications, with changes in the hydrologic cycle arguably

being one of the most consequential impacts. Changes in the location and intensity of precipitation

and convection, namely in the largescale ascent region of the tropics where the ITCZ controls the

wettest regions of the globe, can have negative impacts on crops, property, and water resources.

These changes in the tropical ascent region of the overturning circulation can also impact subtropi

cal descent regions of the circulation (Webster 2004; Hu and Fu 2007; Zhou et al. 2011), including

a drying of the subtropics through increased subsidence and shifts in the location of the world’s

deserts through an expansion of the circulation (Hu and Fu 2007; Seidel et al. 2008; Hu et al. 2011;

Zhou et al. 2011). These changes in the ascent and descent regions are accompanied by changes in

cloud cover (Myers and Norris 2013; Tan et al. 2015; Lau and Tao 2020), which can further mod

ify the location of the ITCZ through their radiative impacts (Voigt et al. 2014). However, clouds

remain one of the largest uncertainties in climate models due to inaccuracies in the simulation of

their radiative response to warming (Bony and Dufresne 2005). With all these various factors at

play, it is important to further our understanding of the relationship between clouds, convection,

and largescale ascent regions.

Recent studies by Zhou et al. (2011),Wodzicki and Rapp (2016), and Byrne et al. (2018) showed

that the ITCZ ascent regions in the Pacific and Atlantic have narrowed, and associated precipitation

intensified, over the past few decades. These changes can have major implications for the strength

of the overturning circulation (Hack et al. 1989; Hou and Lindzen 1992; Dodd and James 1997)

and modeling studies indicate that these changes will continue into the future. Using Coupled

Model Intercomparison Project Phase 5 (CMIP5) data to study the Hadley circulation in a warming

climate, Su et al. (2014) found that the ascent in the ITCZ region strengthened, while ascent at the
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margins of this region weakened indicating a narrowing and intensification of the ascending branch

of the overturning circulation consistent with the uppedante mechanism (Neelin et al. 2003). The

modeled increase in the strength of ascent was accompanied by increases in precipitation and high

cloud fraction, while descent in the subsidence regions of the circulation weakened. Su et al. (2019)

reinforced the findings of Su et al. (2014) by looking at changes in the ascent and descent regions

of the tropical overturning circulation across various CMIP5 model runs. They found subsidence

in descent regions weakened with surface temperature increases along with decreases in tropical

ascent area fraction (Au) and increases in tropical ascent strength. However, the variability in cloud

radiative effects in the ascent region between models lead to large variability in both ascent area

and intensity between the models. It is clear that improving cloud radiative feedbacks in models

is required to better forecast future changes in climate, but to do that a better understanding of

convection and cloud variability in the current climate is required. Some recent studies have begun

to further this understanding by analyzing trends in the frequency and types of clouds across the

tropics using various observational datasets.

Using ISCCP data, Tan et al. (2015) identified various cloud regimes using cloudtop pressure

and optical thickness in a kmeans clustering algorithm. A total of three convective cloud regimes

were identified, with one being linked to deep, organized convection; the other two regimes repre

sented less organized, weaker convection. They noted that the two weaker convective regimes have

become less frequent over the last few decades, with the deep, organized regime becoming more

frequent. Tan et al. (2015) then used GPCP RR data to further understand how these changes in

the frequency of convection impact precipitation by decomposing and attributing rain to the three

different convective cloud types. Using the precipitation attributed to various regimes, they deter

mined that the observed increase in precipitation rates within the ascent regions of the overturning

circulation were driven primarily by increases in the frequency of the deep, organized convective

regime. While their work provides some insight into changes in the frequency of convective pop

ulations, the use of ISCCP data inhibited the study of convective morphology as only basic cloud

characteristics (i.e., optical thickness, cloudtop height, etc.) are available.
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The work ofWodzicki and Rapp (2020) aimed to extend the results of Tan et al. (2015) by using

the TRMM PF database (Nesbitt et al. 2000; Liu et al. 2008) and the ITCZ characteristics database

(Wodzicki and Rapp 2016) to study changes in convection in different Pacific ITCZ width regimes.

The ITCZ database was used to partition data into wide and narrow ITCZ months in an attempt to

mimic the longterm ITCZ width variations, while the PF database provided information about the

internal structure of convective features based on the TRMM PR. By studying the morphology of

convection at the seasonal to interannual timescales in the Pacific basin, they hoped to infer how

convection might change at longer, decadal timescales. However, they found that under the wide

(narrow) ITCZ regime, features with large (small) areal extents and high (low) maximum echotop

heights and stratiform area fractions were more (less) frequent in the Pacific basin. These findings

were seemingly at odds with the expected differences based on the longterm trends and were

determined to be the result of the large influence of ENSO and the Walker circulation in the region,

with a weak (strong) zonal SST gradient leading to a weak (strong) Walker circulation allowing

(inhibiting) the formation of deep, organized convection across the anomalously wide (narrow)

ITCZ in the Pacific basin. With the variability of convection in the Pacific basin dominated by SST

variability in the region, it is clear a different metric is required to better understand the link between

the extent of the tropical ascent region and cloud and convective populations using relatively short

observational records.

To expand upon the work of Wodzicki and Rapp (2020), data from the TRMM PF database and

MODIS level 3 data are used to sample the full population of clouds in the tropics. The large in

fluence of regional variations is mitigated by using the tropical ascent area fraction metric defined

by Su et al. (2019) to study variations in clouds and convection across the tropics with variations

in the overturning circulation; i.e., widening and narrowing. Use of this metric also enables com

parison of these observationallybased results in the context of climate model variability shown in

Su et al. (2019). Based on results from prior observational and modeling studies discussed above,

we hypothesize that convection within tropical ascent areas will become stronger (weaker) when

ascent area fraction is low (high). With subsidence expected to become weaker with decreases in
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ascent area fraction, we expect to see increased cloudtop heights, with decreases in cloud fraction

and LWP in subsidence regions (Myers and Norris 2013; Su et al. 2014).

4.2 Data and Methods

To identify ascent regions and compute the ascent area fraction (Au), Su et al.’s (2019) methods

are applied to 500 hPa vertical pressure velocity (ω500) data from ECMWF Reanalysis Interim

(ERAInterim; Dee et al. 2011). Using monthly mean data at 1.5◦ × 1.5◦ resolution, any grid box

with ω500 < 0.0 is identified as an area of ascent; other more stringent thresholds to define ascent

area were tested and while absolute ascent area changes, there was little impact on the interpretation

of the results of the current study (see Appendix). Figure 4.1 shows the frequency of occurrence of

ascent at each grid box in the tropical domain over the full ERAInterim time period (Jan. 1979 –

Aug. 2019). As in Su et al. (2019), only data between 30◦S30◦N are considered, with Au computed

as the total weighted area of ascent relative to the total weighted area of the domain. This framework

is also used to define descent area fraction (Ad; ω500 ≥ 0.0). With ascent and descent areas defined,

the variability of cloud and convective populations in the tropics can be studied as a function of Au

variability. Two datasets are used for the study of clouds and convection: the TRMM PF database

(Nesbitt et al. 2000; Liu et al. 2008) and MODIS level 3 cloud retrieval products (Hubanks et al.

2019).
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Figure 4.1: Frequency of occurrence of ascent (ω500 < 0.0) from ERAInterim over the period Jan. 1979 –
Aug. 2019. Thin and thick contour lines highlight the 70% and 90% levels, respectively.
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Carrying the first spaceborne precipitation radar, TRMMprovided invaluable information about

precipitating clouds across the tropics; however, the 17years worth of pixellevel data produced

by TRMM created quite a data processing challenge. Through the grouping of PR pixels with RRs

greater than 0 mm hr−1 into contiguous regions, or features, and calculating statistics for various

convective characteristics of each feature, the TRMM PF database (Nesbitt et al. 2000; Liu et al.

2008) was created to enable efficient analysis of raining systems observed by the TRMM satellite.

The database spans fromDec. 1997 through Sep. 2014; however, the TRMMsatellite underwent an

orbital boost in August 2001 to extend its life. This change in orbit increased the PR’s footprint size

from 4.3 km to 5.0 km, which led to some discontinuities in parts of the current analysis, namely

the analysis of PF areal extent and related variables such as volumetric RRs. While the inclusion

of preboost data does not change the general trends shown below, only postboost data are used

to eliminate the influence of these discontinuities. The following convective characteristics are

studied to better understand how the intensity of convection varies with Au; areal extent, maximum

echotop height, volumetric rain, and convective/stratiform partitioning through area fractions and

RRs. Using data solely from the PF databases limits the analysis to only raining features detected

by the PR, so to study variability in the entire cloud population and across descent regions where

there are few deep convective systems, MODIS level 3 data are used.

The MODIS instrument is an across track scanning sensor with 36spectral bands ranging from

0.4 µm to 14.4 µm. The instantaneous fieldofview of the sensor depends on the spectral band,

with the two highest frequency bands sampled at 250 m, the next five bands at 500 m, and the

remaining 29 bands at 1000 m. The sensors has a scanning angle ±55◦ and is flown on both the

Terra and Aqua polar orbiting, sun synchronous satellites at an altitude of 705 km, giving a swath

width of 2,330 km and global coverage every one to two days.

Monthly level 3 MODIS data from both Terra and Aqua are used in the present study. The

level 3 data consists of statistics, such as mean, standard deviation, minimum, and maximum, and

histograms of pixel counts that are computed from MODIS level 2 data products that have been

gridded to a 1◦ × 1◦ equalangle grid. While the level 3 data have limitations (i.e., errors in level 2
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data propagate into level 3, limited to statistics provided, etc.), issues such as changes in pixel size

across a given scan are mitigated when considering the monthly data (Hubanks et al. 2019). As the

focus of the current study is on changes in cloud populations, the variables of interest fromMODIS

are cloud fraction, cloud height, and liquid and ice water paths (LWP and IWP, respectively). Cloud

fraction is used to get a sense of the frequency, and size, of clouds, while cloud height is used as a

proxy for convective intensity (Cheng and Houze 1979; DeMott and Rutledge 1998)

To partition the PFs into ascent and descent regions, all PFs are matched to the ERAInterim

grid using the longitude and latitude of fitted ellipses provided by the database (Liu et al. 2008).

PFs are then assigned a binary mask to signify if they are in an ascent or descent region. To quantify

changes in the intensity of convection, percentiles of convective intensity metrics for deep convec

tive features are regressed onto Au. Here, deep convection is defined by maximum echotop height

≥ 10 km based on a modified version of the Johnson et al. (1999) criteria. Variability in the 95th

percentile is shown to illustrate shifts in the distribution of the strongest convective features; lower

percentiles (e.g., 80th percentile) produce similar signed, but weaker, correlations. MODIS data

are also matched to the ERAInterim grid, using a nearest neighbor method, for separation into

ascent and descent regions. In ascent regions, the 95th percentile of MODIS grid box mean values

is used to represent intense convection. While this is not an exact measure of storm intensity as

these data are grid box means, larger grid box mean values can indicate a shift in the underlying

cloud distribution or the presence of clouds in the tails of the distribution; either of which would

lead to an increase in the grid box mean value. In descent regions, median values of MODIS grid

box mean characteristics are used to gain insight into changes in general cloud characteristics.

For computation of local correlations between cloud and convection characteristics and Au, PFs

are gridded to a 2.5◦×2.5◦ grid to increase the number of features in each grid box and reduce noise;

PFs are only sampled when the TRMM satellite is overhead and there is precipitation. Monthly

percentile values are then computed as above for each grid box. MODIS data are used at their

native, 1.0◦ × 1.0◦, resolution as MODIS can, generally, gather cloud information during every

overpass; i.e., it is not limited to only seeing raining features.
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Leastsquare linear regressions and Pearson r values are calculated to determine the relation

ships between cloud and convective characteristics and Au. The statistical significance of correla

tion coefficients is determined using a standard 2tailed ttest using the effective degrees of freedom

(Thomson and Emery 2014) to reduce the influence of autocorrelations in the time series that can

lead to type I errors. The effective degrees of freedom are also used when computing confidence

intervals for slopes.

To determine the influence of ENSO on the results of the current analysis, a method similar

to that of Bain et al. (2011) is used. Data are first converted to anomalies by removing the cli

matological mean (e.g., anomalies of PF maximum echotop height) and then months where the

Multivariate ENSO Index (MEI; Wolter and Timlin 1993, 1998) is greater (less) than 0.5 (0.5) are

regressed against their corresponding MEI values. This provides a mean anomaly for large ENSO

events, which is then removed from the raw data to reduce the ENSO signal.

4.3 Results

4.3.1 Convection and Clouds Within Ascent Regions

Figure 4.2 shows the monthly, 95th percentile values of four PF characteristics for all cumu

lonimbus PFs (maximum echotop heights≥ 10 km) within ascent regions plotted against monthly

Au. The four characteristics are convective RR, stratiform RR, area, and stratiform area frac

tion. Leastsquares linear regressions (solid black) and 95% confidence bounds on the regression

(dashedblack) are also plotted. As deep convection is sensitive to columnar water vapor (CWV;

Graham and Barnett 1987; Zhang 1993), ascent area averaged ERAInterim CWV is also indicated

by symbol color. The correlations of these variables with Au are all negative, with the 95th per

centile increasing (i.e., deep convection shifting to larger, more organized and vigorously raining

systems) as Au decreases, but only stratiform RR is statistically significant at the 95% level. Con

vective RR shows a weak negative correlation with Au (Figure 4.2a), indicating that the convective

RR of PFs within ascent regions increases as Au decreases. This is in line with previous studies

that indicate a narrowing and intensification of the ascending branch of the overturning circulation
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Figure 4.2: Monthly Au versus the 95th percentile of (a) convective rain rate, (b) stratiform rain rate, (c) area,
and (d) stratiform area fraction for cumulonimbus (maximum echotop height ≥ 10 km) PFs within ascent
regions. Correlation coefficients are shown at the top right of each panel with bold values being significantly
different than zero at the 95% level. Solid black lines show the leastsquares linear regression, with dashed
lines showing the 95% confidence bounds for the regression. Symbols are colored to show the ERAInterim
mean columnar water vapor within the ascent region.

(Zhou et al. 2011; Wodzicki and Rapp 2016; Lau and Kim 2015; Su et al. 2019). The correlation

between stratiform RR and Au (Figure 4.2b) is also negative, and is significantly different from zero

at the 95% level (bolded r value), with stratiform RRs increasing as Au decreases. The relationships

between Au and PF area (Figure 4.2c) and stratiform area faction (Figure 4.2d) are both negative,

indicating an increase in the areal extent and stratiform area of PFs as Au decreases; however, the

uncertainty in the relationship of Au and stratiform area fraction is quite large. The relation between

Au and CWV shows a negative correlation, with CWV increasing as Au decreases.

In a check of consistency between the PF and MODIS data, the 95th percentile of monthly grid
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boxmeans of cloud fraction, cloudtop height, LWP and IWP for allMODIS Terra grid boxes within

ascent regions are plotted against Au in Figure 4.3. Note that only results from Terra are shown as

the general relationships between these variables and Au are the same between Terra and Aqua data,

but the Terra dataset is longer. First, the ascent area ERAInterim mean CWV patterns are similar

to those of Figure 4.2 with larger (smaller) CWV values tending to occur when Au is low. Cloud

fraction in the ascent region (Figure 4.3a) is negatively correlated with Au indicating an increase in

general cloud cover in the ascent region as it narrows. This is in line with the increases in PF areal

extent and stratiform area fraction shown in Figures 4.2c and 4.2d, respectively, and is likely the
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Figure 4.3: Monthly Au versus the 95th percentile of (a) cloud fraction, (b) cloudtop height, (c) cloud water
path, and (d) ice water path for all MODIS Terra grid boxes within ascent regions (ω500 < 0.0). Correlation
coefficients are shown at the top right of each panel with bold values being significantly different than zero
at the 95% level. Solid black lines show the leastsquares linear regression, with dashed lines showing the
95% confidence bounds for the regression. Symbols are colored to show the ERAInterim mean columnar
water vapor within the ascent region.
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result of increased anvil cirrus as systems become larger and more organized. Cloudtop height also

shows a negative correlation with Au (Figure 4.3b), although the correlation is weaker as the 95th

percentile of cloudtop height appears more variable than cloud fraction. LWP and IWP both show

negative correlations with Au (Figures 4.3c and 4.3d, respectively), with IWP having a correlation

that is statistically different than zero at the 95% level. While the correlation is weak, increases in

IWP as Au decreases indicates an intensification of convection with narrowing of ascent, as IWP

increases as convection becomes deep and/or anvil area increases. As with the PF data there is

consistency in the sign of the relationships between MODIS data and Au, indicating robustness in

the general changes in convection and clouds as Au varies; convection within ascent regions is more

intense with larger, deeper, and more organized storms as Au decreases.

Tests of the impact of ENSO as outlined in the Data and Methods section were performed for

both the PF and MODIS data (not shown) and showed only very small changes in correlations

between the various cloud and convective characteristics and Au, indicating that ENSO does not

have a significant impact on these tropical ascent area results.

4.3.2 Clouds Within Descent Regions

Analysis in the descent regions of the tropics is aimed at understanding the general characteris

tics of clouds, both raining and nonraining, with only MODIS data analyzed as the TRMM PR has

difficulty sampling lightly raining systems and cannot sample the ubiquitous nonraining clouds in

these regions. Figure 4.4 is similar to Figure 4.3, but shows the monthly median values of all grid

box mean values within descent regions (ω500 ≥ 0.0). Symbols are colored based on the monthly

mean ERAInterim CWV in the descent region. Unlike in the ascent region, the relationships be

tween cloud characteristics and Au in the descent region are not all the same sign. While cloud

fraction (Figure 4.4a) shows a negative correlation with Au, indicating cloud fraction increases as

Au decreases, cloudtop height (Figure 4.4b) shows a positive correlation, with cloud tops reaching

higher into the atmosphere as Au increases. LWP and IWP (Figures 4.4c and d, respectively) also

show different relations, with a negative correlation between LWP and Au and a positive correlation
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Figure 4.4: Monthly Au versus the median values of (a) cloud fraction, (b) cloudtop height, (c) cloud water
path, and (d) ice water path for all MODIS Terra grid boxes within descent regions (ω500 >= 0). Correlation
coefficients are shown at the top right of each panel with bold values being significantly different than zero
at the 95% level. Solid black lines show the leastsquares linear regression, with dashed lines showing the
95% confidence bounds for the regression. Symbols are colored to show the ERAInterim mean columnar
water vapor within the descent region.

between IWP and Au. Although none of the correlations are significantly different from a zero cor

relation at the 95% level, the relationships point towards an increase in subsidence strength as Au

decreases. Myers and Norris (2013) showed that as subsidence strength increases in eastern sub

tropical ocean regions, convection is suppressed, reducing cloud height, cloud fraction and LWP.

However, they also note that the increased inversion strength that accompanies stronger subsidence

counteracts the reduction in cloud fraction and LWP.

Shifting to the link between Au and CWV, there does appear to be some correlation between

Au and CWVs in the subsidence region. Lower values of CWV (cool colors) tend to occur when
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Au is relatively small, while higher values of CWV (warm colors) tend to occur when Au is rel

atively large. This apparent drying of the subsidence region with reduced Au further indicates a

strengthening of subsidence in the descent region.

Tests of the impact of ENSO were again performed for MODIS data in the descent region (not

shown) with no significant impact on the outcomes.

4.3.3 Local Trends in Convection and Clouds

With a general understanding of how clouds and convection vary across the tropics withAu, how

do these populations vary regionally? To study this, monthly PF data are gridded to a 2.5◦×2.5◦ grid

(see Data andMethods) and then the 95th percentile of various PF characteristics is computed using

only the distribution of cumulonimbus PFs within a given grid box. These 95th percentile monthly

grid box values are then regressed onto−Au so that positive correlations correspond to changes with

narrowing; e.g., a positive correlation of PF area and −Au means that PF area increases at a given

grid box as tropical ascent area fraction decreases. Figure 4.5 shows the correlations for PF area,

stratiform area fraction, maximum echotop height, and convective RR. The lack of correlations

outside of the climatological ascent region (outlined by black contour) is due to the infrequency

of deep convection (maximum echotop heights ≥ 10.0 km) in those grid boxes. In general, the

four PF characteristics have similar trends across regions, with all characteristics showing gener

ally negative correlations over central Africa, the Amazon, and the Indian Ocean, mainly positive

correlations over the Pacific ITCZ and warm pool regions, and mixed signs in the SPCZ region and

Atlantic Ocean. Across the Pacific Ocean correlations tend to be positive, signifying increases in

PF area, echotop height, and convective RR as Au decreases. Note that these findings are oppo

site of those of Wodzicki and Rapp (2020) because they studied the intensity of convection in the

Pacific as the Pacific ITCZ varied, whereas the present results show regional variability related to

tropics wide changes. At the margins of the climatological ascent region (black contour) in the Pa

cific, namely in the SPCZ, there tends to be negative correlations, while positive correlations exist

near the center of the ascent regions. In the Atlantic Ocean a similar pattern is shown for PF area
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Figure 4.5: Correlation coefficients of the monthly 95th percentile of PF (a) area, (b) stratiform area fraction,
(c) maximum echotop height, and (d) convective rain rate for each grid box regressed onto monthly −Au
values. −Au is used so that positive correlations correspond to an increase in the 95th percentile of a variable
as Au decreases; i.e., changes with narrowing. The black contour line shows the mean location of ω500 = 0.
Black dots in grid boxes indicate that the correlation is significantly different from zero at the 95% confidence
level.

and maximum echotop height, with positive (negative) correlations near the center (edges) of the

ascent region. While the vast majority of correlations are not different from zero at the 95% level

(i.e., no stippling), the general patterns match those expected from the results of Su et al. (2020) and

Lau and Tao (2020), with strengthened (weakened) convection over ocean (land) with narrowing

ascent.

Looking at the overall cloud population, Figure 4.6 shows MODIS low, mid, and high level

cloud fractions regressed onto −Au. In general, in the ascent regions, cloud fractions at all lev
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Figure 4.6: Correlation coefficients of MODIS (a) low, (b) midlevel, and (c) high cloud fraction onto
monthly −Au values. Cloud types are defined as cloudtop pressures> 680 hPa, 680− 440 hPa, and < 440
hPa for low, mid, and high clouds, respectively. −Au is used so that positive correlations correspond to an
increase in cloud fraction as Au decreases; i.e., changes with narrowing. The black contour line shows the
mean location of ω500 = 0. Black dots in grid boxes indicate that the correlation is significantly different
from zero at the 95% confidence level.

els tend to increase as Au decreases (positive correlations), with Africa and the Amazon being the

exception showing decreases in cloud fraction as Au decreases (negative correlations). In descent

regions, mid and high cloud fractions (Figures 4.6b and 4.6c, respectively) decrease as Au decreases

(negative correlations), while low cloud fraction (Figure 4.6a) is a bit more complicated. In stra

tocumulus regions (e.g., north and southeastern Pacific and Atlantic), positive correlations between

low cloud fraction and −Au are found. Positive correlations are also found across the northern

Atlantic and southern Pacific descent regions, with negative correlations spanning much of the

northern Pacific and parts of the southern Atlantic. These opposite correlations in various regions

are likely due differences in cloud types present in the various regions (Oreopoulos and Rossow

2011) responding differently to variability in subsidence strength. Myers and Norris (2013) studied
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the influence of subsidence strength in eastern subtropical oceans and found increased subsidence

leads to higher cloud fractions; these are the same regions that show mainly positive correlations

in the present analysis.

Figure 4.7 shows the correlations for regressions of monthly mean MODIS Terra cloud prop

erties onto −Au. Generally, patterns match those of Figure 4.5, although there are some caveats.

Figure 4.7a shows overall cloud fraction and is clearly a combination of the three cloud types in

Figure 4.6. Decreases in cloud fraction are shown over central Africa, the Amazon, and parts of
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Figure 4.7: Correlation coefficients of MODIS Terra grid box means of (a) cloud fraction, (b) cloudtop
height, (c), liquid water path, and (d) ice water path regressed onto monthly −Au values. −Au is used so
that positive correlations correspond to an increase in the grid box mean as Au decreases; i.e., changes with
narrowing. The black contour line shows the mean location of ω500 = 0. Black dots in grid boxes indicate
that the correlation is significantly different from zero at the 95% confidence level.
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the descent regions of the Pacific and Atlantic Oceans as Au decreases (negative trend). Positive

correlations appear in the stratocumulus regions of the Pacific and at the northern edge of the as

cent region extending into the descent region in the Atlantic Ocean indicating that cloud fraction

increases with decreasing Au. Cloudtop height (Figure 4.7b) shows positive correlations across

much of the Pacific ITCZ region and the northern portions of the western Pacific warm pool and

the Indian and Atlantic Oceans. In all other regions (land, subsidence, and even the SPCZ), neg

ative correlations are found indicating increases in cloudtop height as Au increases. The spatial

patterns in the correlations of cloudtop height and −Au are very similar to those of high cloud

fraction (Figure 4.6c), showing consistent relationships between variables. From these two cloud

properties, a general increase in cloudiness and cloudtop height is present across the Pacific Ocean

ascent region, indicating a shift to deep organized convection, which consists of high clouds with

large areal extents, as Au decreases. The Atlantic Ocean ascent region is more complex, with pos

itive correlations present near the northern boundary of the ascent region in cloud fraction and

cloudtop height, but negative correlations across the southern half of the ascent region. In the

subsidence region of the northern tropical Atlantic, low clouds seem to drive trends, especially in

cloud fraction (Figure 4.6a), with cloud fraction increasing, and cloudtop heights decreasing, as

Au decreases. These trends in the northern tropical Atlantic match those of stratocumulus regions.

Over the Amazon and central Africa, deep convection also seems to be suppressed, with negative

correlations in those regions.

Figures 4.7c and d show LWP and IWP, respectively, with LWP showing a clear hemispheric

influence while IWP is fairly similar to the patterns in cloudtop height. The most obvious pattern

in LWP is that positive correlations are generally found in the Southern Hemisphere with nega

tive correlations in the Northern Hemisphere. Manaster et al. (2017) found similar hemispheric

asymmetry in longterm trends of LWP, which they conjectured to be related to a weakening of the

Walker circulation. Over land, namely central Africa and the Amazon, negative correlations be

tween LWP and−Au are found, with somewhat mixed correlations in the Indian Ocean and western

Pacific warm pool. In the eastern Pacific and in the northern half of the climatological ascent region
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in the Atlantic Ocean, positive correlations are found. For IWP, positive trends are found in the

western Pacific warm pool and in the northern half of the ascent region in the Atlantic. Over land,

as with LWP, negative correlations are shown between IWP and −Au. Correlations in subtropical

regions are largely negative, matching the patterns in cloudtop height well.

4.4 Discussion and Conclusions

Observational studies of the impact of climate change on the hydrologic cycle indicate that the

ascent region of the overturning circulation (the ITCZ) has been narrowing in conjunction with an

increase in the intensity of the associated precipitation (Zhou et al. 2011; Wodzicki and Rapp 2016;

Lau and Tao 2020). This trend is predicted to continue in the future climate (Lau and Kim 2015; Su

et al. 2017, 2019); however, how convective and cloud populations change along with this narrow

ing is not fully understood. Using TRMM PF, MODIS, and ERAInterim data, along with tropical

ascent area fraction (Au) defined as in Su et al. (2019), the relationship between Au variability and

convective and cloud populations was studied. TRMM PFs and MODIS level 3 grid boxes were

sorted into ascent and descent regimes and general statistics (i.e., median, 75th percentile, 95th

percentile, etc.) were computed for various convective characteristics such as convective RR for

PFs and IWP for MODIS data. In the case of PFs, only those features with maximum echotop

heights≥ 10 km within the ascent regions were included to ensure only the most vigorous convec

tion was studied as extreme precipitation has been shown to increase under global warming (Allan

and Soden 2008; O’Gorman 2015). Analysis was also limited to deep convective features as there

is evidence that organized deep convection is mainly responsible for the aforementioned longterm

trends in precipitation (Tan et al. 2015).

Based on the general relationship between Au and the various characteristics, our results sup

port the hypothesis that convection within tropical ascent areas will become stronger (weaker)

when Au is low (high), with increases in convective intensity metrics (e.g., greater RRs) when Au

is low. While many of these relationships are weak, the sign of the relationships are consistent

across multiple different intensity metrics, helping to establish a broad pattern for changes. Clouds
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and convection were found to have increased convective and stratiform RRs, areal extents, and

stratiform regions, as well as slightly higher cloudtop heights within the ascent region as it nar

rowed. CWV was also found to increase within the ascent region under narrowing, consistent with

the longterm changes noted by Lau and Tao (2020). These relationships are consistent with many

mechanisms and phenomena used to explain observed, and predicted, changes.

The richgetricher or wetgetwetter mechanisms (Chou and Neelin 2004; Chou et al. 2009)

indicate that moisture and precipitation will increase in moist, convective regions where heavy

precipitation is frequent (e.g., the ITCZ) as the climate warms, while moisture and precipitation

in subsidence regions will be suppressed. As the ascent region has been narrowing with warming

(Zhou et al. 2011; Wodzicki and Rapp 2016; Byrne et al. 2018), the present results appear similar to

expected patterns associated with the aforementioned mechanism, with CWV increasing (decreas

ing) in the ascent (descent) regions as Au decreases. Studies of climate model output have shown

similar responses in precipitation and moisture.

Analyzing CMIP5 model output, Lau and Kim (2015) noted a decrease in moisture across the

tropics, except in the ascent regions where precipitation was found to increase as the model climate

warmed. They also noted a narrowing of the ascent region. Su et al. (2017) found a similar nar

rowing of ascent with a concurrent increase in precipitation intensity in the ascent region in CMIP5

model output. Both of these studies noted that changes in cloud radiative feedbacks could play a

role in the narrowing and intensification of ascent, with Su et al. (2017) noting high correlations be

tween ascent area, high cloud fraction variability, and longwave radiative cooling. With this study

showing high cloud fraction decreasing across much of the tropics (except in the ascent region) and

cloudtop heights decreasing within subsidence region as Au decreases, longwave radiative cooling

is expected to increase as Au decreases, consistent with Su et al. (2019).

While still located in the climatological ascent regions, the Amazon and central Africa show

relationships with Au that are opposite to the rest of the ascent regions. Some of these differences

are likely due to seasonal influences (Au tends to be narrow during dry seasons); however, there are

likely other mechanisms at play. Su et al. (2020) noted a similar relationship between precipitation

67



andAu in theAmazon (i.e., reduction in convection asAu decreases) at both interannual and seasonal

timescales using observational datasets. They attributed these changes to a regional impact of

the largescale tropical circulation changes. Changes in wet season onset may also help explain

the observed relationships. Yin et al. (2014) found that a poleward displacement of extratropical

systems, and by extension cold fronts, could delay wet season onset by removing a dynamic trigger

for convection. As extra tropical storm tracks tend to move poleward as ascent area decreases

(Seidel et al. 2008; Lau and Tao 2020), decreasing Au could delay wet season onset, reducing

convection across the Amazon.

In the descent region, the relationships between Au and cloud fraction, cloudtop height, and

LWP were all opposite of the hypothesized relationships, with cloud fraction and LWP increasing

(cloudtop height decreasing) as Au decreased. This suggests the strength of subsidence actually

increases as Au decreases, as stronger subsidence acts to suppress the vertical growth of clouds and,

through increasing the strength of the boundary layer inversion, can lead to increased cloud cover

and LWP (Myers and Norris 2013). These changes fit with those in CWV, which indicates a de

crease in moisture in the descent region as Au decreases that acts to suppress the vertical growth of

convection. However, maps of regional changes provide a clearer picture of changes in subsidence

regions, highlighting the opposite changes in different cloud regimes. In regions where stratocu

mulus clouds are dominant (the north and southeastern regions of the Pacific, Atlantic, and Indian

Oceans), low cloud fractions tend to increase, whereas in regions dominated by shallow cumulus

type clouds (central regions of oceans), low cloud fraction decreases. These changes match long

term changes in OLR shown by Lau and Tao (2020), with OLR increasing in regions where this

study shows decreasing low cloud fraction. But, why is some of the relatively shortterm variabil

ity in the subsidence regions studied here, and the longterm trends of Lau and Tao (2020), that

indicate a strengthening of descent with decreased Au seemingly at odds with climate predictions

of weakening descent?

One possible reason for the apparent differences is that natural SST variability is currently

masking longterm trends in observational data in the subsidence regions; i.e., the time of emer
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gence has not yet been met in the current observational record (Hawkins and Sutton 2012). Another

is that changes in the phase of teleconnections, namely the Pacific Decadal Oscillation, are respon

sible for the observed trends across the tropics (Gu et al. 2015). Su et al. (2014) outline a completely

different mechanism by which weakened subsidence could lead to the decreases in clouds shown

in model projections. They postulate that weaker subsidence would allow clouds to deepen, lead

ing to increased mixing between the free troposphere and boundary layer. This increased mixing

would act to dry the boundary layer and, ultimately, lead to reductions in clouds in the subsidence

region.

The present study indicates that as the climate warms and ascent narrows, convection shifts

toward more organized, deep convective storms with large stratiform area fractions and increased

rain rates. Neelin et al. (2009) found that precipitation rates increase rapidly above a critical value

of CWV, with Ahmed and Schumacher (2015) finding that most of the increase can be attributed

to increased stratiform rain area not rain intensity. While the ascent area mean CWV is below the

critical values noted in the aforementioned studies (around 55 mm) because we average the entire

region not just where convection is occurring, the general trend of increasing CWV and stratiform

fraction with decreasing Au provides evidence of increased organized convection. These findings

are in line with the idea of convective aggregation (Holloway et al. 2017), wherein convection acts

to isolate itself into large, organized convective systems in relatively high CWV environments.

A modeling study by Bony et al. (2016) even indicates that convective aggregation may enhance

the narrowing of ascent regions in a warming climate through radiative and circulation feedbacks.

The findings of Tan et al. (2015) also point to possible convective aggregation influence as they

found deep, organized convection has become more frequent over recent decades as the ITCZ has

narrowed.

General relationships of convection and cloud characteristics and Au across ascent and descent

regions are consistent with those of longterm observed trends; however, regional variations are

quite significant. It is promising that some of the relationships, namely within the ascent regions,

are consistent with those of predicted future climates (i.e., increase in convective intensity with a
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narrowing of ascent), but some relationships are at odds (i.e., subsidence seems to strengthen while

models predict weakening). Su et al. (2014) noted complex meridional structures in Hadley circu

lation changes under global warming that may help explain the apparent differences in variability

between the present and future climate. Perhaps the climate has not yet reached the temperatures

where aforementioned mechanisms (e.g., uppedante) begin to have significant influence on circu

lation changes, or variability in cloud radiative feedbacks in models are leading to yet undiscovered

biases (Bony and Dufresne 2005; Ceppi et al. 2017; Kolly and Huang 2018). More work is still

required to understand the apparent differences between clouds in the current climate and projected

future climate.
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5. SUMMARY

Analysis of longterm trends in observations has shown a narrowing of the Intertropical Con

vergence Zone (ITCZ) and intensification of associated convection (Zhou et al. 2011;Wodzicki and

Rapp 2016; Byrne et al. 2018; Su et al. 2020; Lau and Tao 2020). Lau and Tao (2020) also found a

drying in the subsidence regions of the tropics, which has led to an increase in longwave cooling.

Studies of climate model output (i.e., Lau and Kim 2015; Su et al. 2014, 2019) have shown that

the ascent region of the overturning circulation, or ITCZ, will continue to narrow, and associated

precipitation intensifies, as the climate warms. However, clouds are consistently a large source

of errors in models (Bony and Dufresne 2005; Bony et al. 2015). Using various observational and

reanalysis datasets the variability of clouds and convection with respect to variations in ITCZwidth

and ascent area in the current climate have been studied with the hope of inferring how clouds and

convection may change in the future.

Based on the longterm trends of narrowing and intensification, the original hypothesis (Chapter

2) was that Pacific ITCZ convection would be more intense (i.e., greater rain rates, higher echo

top heights, and larger areal extents) when the ITCZ is narrow than when it is wide. Using data

from the Tropical RainfallMeasuringMission (TRMM) precipitation feature (PF) database (Nesbitt

et al. 2000; Liu et al. 2008), convective feature characteristics (e.g., maximum echotop height,

areal extent, and stratiform area fraction) were studied to quantify the variability in convective

intensity with variations in ITCZ width. To overcome the limitation of the relatively short data

period provided by the PF database (roughly 17 years), PFs were partitioned into wide and narrow

ITCZ width regimes using the ITCZ characteristics database from Wodzicki and Rapp (2016),

which limited the analysis of convection to the central and eastern Pacific Ocean.

Results showed that deep, organized convection with large areal extents and stratiform area

fractions is more frequent under the wide ITCZ width regime in the Pacific Ocean than the narrow,

leading to the rejection of the hypothesis. Further analysis showed that both sea surface temper

ature (SST) and columnar water vapor (CWV) increased in the wide ITCZ regime relative to the
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narrow. This, coupled with El NiñoSouthern Oscillation (ENSO)’s influence on ITCZ width and

the limited domain of study, indicated that a weakening of the Walker circulation, associated with

ENSO variability, was likely the reason for increases in deep convective frequency in the wide

ITCZ regime. However, it was possible that the ENSO signal was simply overwhelming a long

termlike signal of increased convective intensity under a narrow ITCZ width regime.

By addressing some limitations in the study presented in Chapter 2, such as removing the ENSO

signal and testing other domains in the Pacific Ocean, Chapter 3 aimed to better understand convec

tive variability in the Pacific. Although the signals became much weaker, the same increases in the

frequency of intense convection under a wide ITCZ regime was found after reducing the influence

of confounding signals. With patterns in changes similar between the two analyses, and the close

relationship between the ITCZ and the Hadley circulation, a regional analysis of the Hadley cir

culation was performed in an attempt to understand the apparent discrepancies between observed

longterm trends and the variability shown here. Through the meridional mass stream function,

clear regional variations in the Hadley circulation were found, with the Pacific portion of the circu

lation being significantly coherent with the Multivariate ENSO Index (MEI), showing an increase

in overturning strength and a widening of the circulation under El Niño. Over the reset of the

globe, the opposite signal was found, with a contraction and weakening of the circulation. When

considering the global, zonal mean circulation, these regional variations averaged out to show an

increase in circulation strength and narrowing of meridional extent under El Niño. It became clear

that further analysis of convection must consider the entire globe to reduce the influence of these

regional variations.

To expand the analysis to the global tropics, the ascent area fraction (Au) metric of Su et al.

(2019) was used in Chapter 4 to study both convection and general cloud populations across the

tropics (30◦S30◦N) as Au varies using the PF dataset and Moderate Resolution Imaging Spectro

radiometer (MODIS) level 3 data. Two new hypotheses were tested; the first was similar to the

original hypothesis in Chapter 2, with convection within ascent regions expected to become more

intense as Au decreases, while the second hypothesis stated clouds in the subsidence regions would
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become more frequent as subsidence has been predicted to decrease as ascent decreases in future

climates. Through partitioning of convective features and MODIS level 3 grid boxes into ascent

and descent regions, it was determined that, globally, convection within ascent regions becomes

more intense and organized, with increased rain rates and stratiform area as Au decreases. This

finding supports the first new hypothesis and is consistent with longterm observed changes (Su

et al. 2020; Lau and Tao 2020) and predicted future changes (Lau and Kim 2015; Su et al. 2017,

2019). However, in the subsidence regions, the signal is a bit mixed due to regional variability be

tween cloud regimes. Overall, clouds in the subsidence region were found to becomemore frequent

(increased cloud fraction) and shallower (lower cloudtop heights) as Au decreased. These changes

are indicative of increased subsidence limiting the vertical development of clouds while increasing

cloud cover as clouds are restricted to the boundary layer (Myers and Norris 2013). Analysis of

regional trends indicated that increases in cloud fraction with decreases in Au occurred primarily

in stratocumulus regions at the eastern edges of ocean basins, while cloud fractions in shallow cu

mulus regions near the middle of ocean basins decreased. While these changes are consistent with

increased subsidence, it is clear that current variability in subsidence regions does not match that

of predicted trends.

The relationship between ITCZ width and ascent area fraction and deep convection with the

ascending branch of the Hadley circulation has been thoroughly analyzed, with seasonal and inter

annual variability matching that of observed longterm trends and trends predicted by models as

the climate continues to warm. As convective populations shift toward more intense convective

systems with high cloudtop heights and large areal extents longwave radiative cooling in ascent

regions of the overturning circulation is expected to decrease. However, some studies of convec

tive aggregation indicate that longwave cooling may actually increase as convection organizes into

relatively small, isolated areas that are separated by large, mostly cloudfree regions (Holloway

et al. 2017, and references therein). These competing controls on longwave radiatve cooling in

the ascending regions of the tropics makes determining the exact radiative impact of these convec

tive changes extremely difficult. Arguably a larger concern is the direct impact of increased rain
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intensity with shifts to these organized convective systems.

We have shown rain rates increase within the ascent region as it narrows, with studies of model

output indicating further shifts to extreme precipitation in the future (Allan and Soden 2008; Pen

dergrass and Hartmann 2014). Coupled with more aggregated convection, it is possible that as rain

rates within ascent regions continue to increase as Au decreases, rain will become less frequent,

but more extreme. That is to say, as convection is more aggregated, the frequency in which a

given location receives rain will decrease; however, when it rains, the rain will be more intense.

Pendergrass and Hartmann (2014) studied the response in rain frequency and intensity to global

warming using Coupled Model Intercomparison Project Phase 5 (CMIP5) output and found dry

day frequency increased and heavy rain became more frequent. Such changes in the hydrologic

cycle could lead to more frequent flooding and would be detrimental to agriculture that relies on

consistent rainfall patterns, not extended periods without rain punctuated by extreme downpours.

Variability of clouds in subsidence regions is also consistent across time scales in the obser

vational record, with changes indicating an increase in the strength of subsidence acting to sup

press clouds. We found cloudtop heights decrease as Au decreases along with reductions in CWV.

These changes are further modifications to the hydrologic cycle, likely reducing rain in already

climatologically dry regions. Reductions in clouds also act to increase both longwave cooling and

shortwave warming. However, these changes are somewhat at odds with climate predictions that

indicate a weakening of subsidence as the climate continues to warm. Weaker subsidence would

imply increases in low clouds across descent regions, acting to reduce longwave cooling and short

wave warming; changes opposite of those observed. While Su et al. (2014) theorized a mechanism

through which weakened subsidence could lead to decreases in clouds in the descent region, it is

clear that cloud radiative impacts and feedbacks from subtropical clouds are still not fully under

stood, especially as the climate warms. Future work must also focus on the subsidence region to

understand feedbacks between clouds, convection, and largescale circulation across the Hadley

Cell.
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APPENDIX A

ASCENT AREA FRACTION AND THE IMPACTS OF THE ω THRESHOLD

Impacts of changes to the definition of ascent area fraction (Au) are tested to determine the

sensitivity of the results to the definition. Three pressure levels are studied (700, 500, 200 hPa),

with various percentiles based on the distribution of ω < 0.0 used to define regions of ascent. For

each pressure level, the distribution of monthly mean |ω| for all ω < 0.0 between 30◦S30◦N in a

time period of interest are used to determine the ω threshold (ωc) for ascent. Various percentiles of

the distribution of ascent (e.g., 10th percentile, 20th percentile, etc.) are used to define ωc. Using

these cutoff values, the monthly Au is computed by determining the fractional area of 30◦S30◦N

covered by grid boxes with ω < ωc.

Figure A.1a shows ωc as a function of ascent percentile for the three pressure levels, with Figure

A.1b showing Au as a function of ascent percentiles. The ωc values (Figure A.1a) for the 700 hPa

(black) and 500 hPa (dark gray) are nearly identical, with only slight differences between 10–40th

percentile of ascent. At the 200 hPa level (light gray), however, ωc is much weaker due to the lower
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Figure A.1: Comparison of (left) cutoff values of ω used to define ascent area for various percentiles and
(right) Au for various percentiles at three pressure levels using the full ERAInterim record.
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likelihood of strong ascent at this level of the atmosphere. Comparison of mean Au between the

levels (Figure A.1b) shows that Au for the 500 hPa (dark gray) and 200 hPa (light gray) levels are

essentially identical, indicating that defining Au using either level will produce very similar results.

Defining Au using the 700 hPa level (black) shows an increase in Au for all ascent percentiles; ascent

is much more frequent this low in the atmosphere.

To further understand the impact of pressure level and ωc on Au, scatter plots of monthly Au

values are created comparing Au at 200 hPa and 700 hPa to 500 hPa. Figure A.2ae shows monthly

Au at 500 hPa versus 200 hPa for various definitions of ωc; correlation coefficients are shown at

the topright of each plot with correlations that are significantly different than zero at the 95% in

boldface. While monthly Au at the two levels are clearly correlated, there is some spread, with the

500 hPa level explaining only 2040% of the variance across the different ωc values. It is worth

noting that values tend to stay close to the 1:1 line. Figure A.2fj is similar to ae, but for 500 hPa

versus 700 hPa. The main difference between the bottom and top rows in the figure is that the 700

hPa Au values almost always fall above the 1:1 line. However, the correlation coefficients are much
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Figure A.2: Scatter plots of monthly Au computed using (top) ω200 and (bottom) ω700 versus ω500. Ascent is
determined using the (a, f) Su et al. (2019) definition, (b,g) 10th percentile of ascent, (c, h) 20th percentile of
ascent, (d, i) 30th percentile of ascent, and (e, j) 40th percentile of ascent. Correlation coefficients are shown
at the topright of each plot, with bold values being significantly different from zero correlation at the 95%
level.
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better than those of 500 hPa versus 200 hPa, with 500 hPa explaining roughly 60% of the variance

in Au at 700 hPa across the different ωc values. The better correlation between 700 hPa and 500 hPa

Au compared to that of 500 hPa and 200 hPa is likely the result of increased correlation between

the spatial patterns in ascent between the two levels. To test this, contour plots of the frequency of

occurrence of ascent at each grid box are created.

Figure A.3 shows the frequency of ascent at each grid box based on ω700 for various ωc values

(Su et al. (2019), 10th percentile, 20th percentile, 30th percentile, and 40th percentile); Figures A.4

and A.5 show the 500 hPa and 200 hPa levels, respectively. ITCZ boundaries from the ITCZ char

acteristics database (Wodzicki and Rapp 2016) are also plotted on the maps for comparison. As ωc

increases moving down from panel ae in Figure A.3, the fractional occurrence of ascent decreases

everywhere, with some of the largest changes occurring over the oceans (namely the Pacific and

Atlantic ITCZs). In regions where ITCZ identifications exist (Pacific and Atlantic Oceans) in Fig

ure A.3a, there are a number of locations where ascent occurs > 30% of the time outside of the

boundaries of the ITCZ, namely in the Atlantic basin, when using the Su et al. (2019) definition

with ωc = 0. There also appears to be a double ITCZ signal in the eastern Pacific, with ascent

occurring> 10% of the time at, and just south of, the equator. Figure A.3b shows ascent frequency

if the 10th percentile of |ω700 < 0.0| is used to define ωc. Panels a and b are very similar, with

the most notable reductions in frequency occurring the Indian Ocean. Progressing through panels

c to e shows ωc defined using the 20th percentile, 30th percentile, and 40th percentile of ascent,

respectively, indicating general reductions in the frequency of ascent throughout the domain. The

influence of the double ITCZ appears at all ωc values, with the frequency of occurrence decreasing

as ωc increases. A key finding in the analysis is that until the 20th percentile of ascent is reached

for defining ωc, ascent is fairly frequent outside of the ITCZ identifications (> 30%), indicating a

broader area of ascent in European Centre for MediumRange Weather Forecasts (ECMWF) Re

analysis Interim (ERAInterim) than may be present in reality. It is not until the 40th percentile

(panel e) that frequency of ascent falls below 30% outside of the ITCZ identifications.
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Figure A.3: Frequency of ascent at each ERAInterim grid box over the entire ERAInterim period (Jan.
1979Aug. 2019) based onω700. Thin and thick contour lines highlight the 70% and 90% levels, respectively.
The vertical pressure velocity threshold (ωc) used to define ascent is determined using the (a) Su et al. (2019)
definition, (b) 10th percentile of ascent, (c) 20th percentile of ascent, (d) 30th percentile of ascent, and (e)
40th percentile of ascent. ωc and Au are shown for each definition.

At 500 hPa, Figure A.4 shows very similar patterns to that of Figure A.3, with ascent outside

of the ITCZ boundaries occurring at small |ωc| values and a clear double ITCZ. Again, frequent

ascent (occurring > 40 of the time) is not really constrained to the ITCZ until the 20th percentile

(Figure A.4c) is reached, with double ITCZ being present until the 40th percentile of the ascent

distribution is used to define ωc. Figure A.5 shows the 200 hPa level, which is fairly similar to 500
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Figure A.4: As in Figure A.3, but for ω500.

hPa but with generally wider meridional extent of ascent in the Pacific.

These findings show that tropical ascent area is not very sensitive to the pressure level cho

sen, with Au being very similar between all pressure levels for a given ωc. Sensitivity tests of the

influence of the various Au definitions on the results of this study showed little impact on the rela

tionships between Au and convective and cloud characteristics except when overly strict thresholds

were used; i.e., 40th percentile or above. However, even under the strictest threshold, the interpre

tation of the results does not change, with relationships indicating an intensification of convection
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with ascent regions with reductions in Au. Thus, the Su et al. (2019) definition (ω500 < 0.0) is used

here to define ascent for comparison with previous works.
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Figure A.5: As in Figure A.3, but for ω200.
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