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ABSTRACT 

 

Cells defend against bacteria and viruses’ invasion through their immune system. 

Innate immunity employs a wide spectrum of germ-line encoded pattern-recognition 

receptors (PRRs) to sense microbial infection and initiate a protective immune response. 

The detection of foreign nucleic acids is a central strategy in the innate immune system. 

The innate immune system has evolved to distinguish pathogenic RNA by secondary 

structure or specific modifications. However, self and non-self DNA are very similar in 

structure and therefore DNA recognition has more complicated systems. Because the 

cellular DNA normally presents in the nuclei and mitochondria, the accumulation of 

cytosolic DNA is a danger signal, either from pathogens or from the host itself.  

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that catalyzes the 

synthesis of a cyclic dinucleotide second messenger, c[G(2',5')pA(3',5')p] cGAMP. 2’3’-

cGAMP binds to the adaptor STING (Stimulator of interferon genes protein), which forms 

puncta on the ER membrane and mediates the recruitment and activation of the protein 

kinase TBK1 and transcription factor IRF-3. Phosphorylated IRF-3 translocates to the 

nucleus and induces the expression of type I interferons.  

Recently studies also identify that endogenous cGAS is predominantly a nuclear 

protein. cGAS locating inside the nuclei tethers tightly with chromatin and maintains the 

inactive state. In this work, a mechanism of cGAS being inhibited by nucleosomes is 

studied. A hybrid structure model of mouse cGAS in complex with human nucleosome is 

established. The binding of cGAS to the acidic patch on the nucleosome is discovered and 
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several key residues are identified for both cGAS and nucleosome for the interaction. This 

study determines that although in the existence of nucleosome DNA, the cGAS in the 

complex is in its inactive state and the complex clashes in space for binding extra dsDNA.  

Another part of this thesis is dedicated to understanding the molecular mechanisms 

governing how cGAMP activates STING at the ER membrane. The N-terminal 

transmembrane domain of STING is essential for STING oligomerization and signaling. 

Moreover, cGAMP binding induces the oligomerization of full-length STING both in vitro 

and in vivo. The central hypothesis is that cGAMP binding makes the conformational 

changes of STING dimer which is located discretely on the ER membrane. cGAMP also 

increases the affinity of STING dimers to form oligomer, which facilitates the activation 

of kinase TBK1. These comprehensive structural and functional studies provide new 

insights into the mechanism of STING activation. 

Taken together, this work presents an advanced understanding of the cGAS-

STING pathway. These findings provide a structural basis for the development of cGAS 

and STING agonists and antagonists for the treatment of cancer and autoimmune 

disorders. 
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CHAPTER I  

INTRODUCTION 

Innate immunity system 

The immune system contains innate immunity and adaptive immunity. The 

adaptive immunity system generates a random and highly diverse repertoire of antigen 

receptors, followed by clonal selection and expansion of receptors with relevant 

specificities. Therefore, it generates immunological memory. The limitations of adaptive 

immunity are that it cannot tell the sources of the antigen and it usually takes more than 4 

days to function [1-4]. The basic strategy of innate immunity recognition is to detect the 

constitutive and conserved products of microbes [1]. These products are usually the 

metabolic outputs that are unique to bacteria or viruses. For example, lipopolysaccharide 

(LPS) is a molecule from bacteria but not from eukaryotic cells. Therefore, the host 

eukaryotic cells consider the LPS as a signal from microbial invaders and initiate the 

response after sense it. Usually, the innate immunity responds to the common structure of 

the microbial product. The lipid-A portion of LPS is a quite conserved part for LPS from 

different species in bacteria. And the lipid-A is sufficient to activate the LPS sensitive 

pathway. The targets of the innate immunity recognition are conserved, which are called 

pathogen-associated molecular patterns (PAMPs). And the receptors of the innate immune 

system that recognizes PAMPs are called pattern-recognition receptors (PRR).  

The innate immunity dates back to at least the 1908 Nobel Prize for Ilya 

Mechnikov and it undergoes rapid development in this century. Innate immunity is 

performed by both hematopoietic and nonhematopoietic origin [5]. It includes 
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macrophages, dendritic cells, mast cells, neutrophils, eosinophils, natural killer (NK) cells 

and NK T cells. At least three strategies of innate immunity are used, which contains 

detecting microbial non-self PAMPs, detecting common metabolic consequences of cell 

infection or injury, and detecting the missing self-components. Detecting microbial PAMP 

contains the receptors family-like Toll-like receptors (TLRs), NOD-like receptors, and 

collection family. The consequences of cell infections or injuries are detected by NOD-

like receptors like NLRP3 and Receptor of advanced glycation and product (RAGE) 

family. The damage-associated molecular patterns (DAMPs) are an immunologic danger 

signal, including high mobility group box 1 protein and other endogenous alarmins, heat 

shock protein, and uric acid. The last one, to detect the missing self, MHC class I-specific 

inhibitory receptors are responsible for ensuring NK cells to attack infected cells. Some 

molecular is only expressed in normal healthy cells. Cells expressing these molecules will 

be marked as healthy and have an inhibited signal to immune response. Upon detecting 

the missing molecule, the inhibitory effect will diminish and NK cells would be recruited. 

KIR and CD94-NKG2A heterodimer are two examples for self MHC class I inhibitory 

signal [5-10]. 

Pattern recognition receptors 

The pattern recognition receptors (PRR) mediates the initial sensing of the 

infection. The PRR includes Toll-like receptors, NOD-like receptors, RIG-I-like 

receptors, and C-type lectin receptors. After the sensing of the PAMP ligands, the PRRs 

initiate the cascade of the intracellular signaling to start the transcription of 
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proinflammatory cytokines, type I interferons (IFN), chemokines, and antimicrobial 

proteins to eliminate the invaded pathogens [11].  

The TLRs are a class of the PRRs that senses a broad range of PAMPs [12]. The 

typical TLRs are type I transmembrane protein and contain three domains: a leucine-rich 

repeats (LRRs) motif, a single helix transmembrane domain, and a cytoplasmic Toll/IL-1 

receptor (TIR) domain [12]. The LRRs are responsible for detecting the PAMPs, and the 

TIR domain works for interacting with the signaling adaptors to initiate the immunity. 

There are 10 TLRs been identified in human (TLR1-TLR10) and 13 in mouse (TLR1-

TLR13). Different TLRs have specific ligand for detecting, for example, the TLR1/TLR2 

forming a heterodimer which detects the triacylated lipopeptides, while the TLR6/TLR2 

forming a heterodimer to detect the diacylated lipopeptides. The TLR5 homodimers sense 

the flagellin, and TLR4 homodimer, together with CD14 and MD2, senses the LPS (Figure 

1). Other than the mentioned TLRs located on cytoplasm, there are some TLRs located on 

endosome membranes. The TLR3/7/8/9 detects nucleic acids and initiate the cascade to 

type I IFNs. After the TLRs sense the ligands, they form the activated dimer and recruit 

the adaptors such as MyD88 or TRIF. The MyD88 dependent response is shared by almost 
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all TLRs as signaling cascade, except for the TLR3, which utilizes the TRIF-dependent 

pathway. 

 

Figure 1. Schematic of TLRs 

 

 

Nucleic acids sensors 

Toll-like receptors 

Among all the TLRs, TLR3, TLR7, TLR8, and TLR9 recognize nucleic acids from 

the bacteria and virus [11]. These TLRs activate the expression of type I interferons and 

cytokines. TLR3 detects the viral dsRNA in the endolysosome. It also detects the 
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polyinosinic polycytidylic acid (poly I: C), which is an analogy of dsRNA. The TLR7/8 

recognizes ssRNA. TLR9 recognizes the unmethylated DNA with CpG motifs. CpG 

motifs are considered pathogenic products because they are abundant in the microbial 

genome but rare in the vertebrate genome [13-17]. The TLR7 and TLR9 are highly 

expressed in plasmacytoid DCs, producing type I IFNs in response to infection. 

AIM2 and NOD-like receptors 

The NOD-like receptors (NLR) are a large family consisting of 23 reported 

members in human. NLRs contain a C-terminal leucine-rich repeat, a nucleotide-binding 

oligomerization (NOD) domain, and various N-terminal protein binding motifs such as 

caspase activation and recruitment domain (CARD), Pyrin domain (PYD), or baculoviral 

IAP repeat (BIR) domain [18, 19]. The well-studied NLRs includes NOD1, NOD2, and 

NLR containing inflammasome. NOD1 detects the component of bacterial wall 

peptidoglycan and NOD2 senses muramyl dipeptide in both Gram-positive and Gram-

negative strains of bacteria [20-24].  

The inflammasome is cytosolic protein complexes formed by NLR with adaptor 

protein apoptosis-associated speck-like (ASC) protein containing CARD and procaspase-

1. The NLR in inflammasome contains NLRP1, NLRP3, NLRP6, and NLRC4. When the 

stimuli or partner molecules are recognized and bound by the LRR domain, it induces a 

conformational change to release the autoinhibition of the NOD domain. The active 

NLRPs contain the clustered PYD that directs the filament formation of ASC through 

ASC’s PYD. The ASC filament then recruits pro-caspase-1 through CARD/CARD 

interaction to form the active inflammasome. The formation of caspase-1 filaments 
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initiates proximity-driven dimerization and auto-proteolysis, and hence caspase 

activation. The mature and active caspase-1 has cysteine-aspartic proteases activity and 

cleaves pro-interleukin (IL) -1β and pro-IL-18, which secrets out of the cell [18]. NLRP1b 

and NLRC4 are two examples that do not have PYD and do not depend on ASC to form 

an inflammasome. They have CARD on the N-terminus and could recruit caspase-1 

directly to form the inflammasome (Figure 2). 

The inflammasome detects multiple kinds of danger and promotes the secretion of 

interleukin (IL) -1β and IL-18. A spectrum of seemingly unrelated stimuli via induction 

of K+ efflux appears to be the checkpoint to assemble the NLR inflammasome[25-30]. 

The NLPR3 is a well-studied NLR protein. NLRP3 inflammasome can be activated by 

nigericin, uric acid crystals, amyloid-β fibrils, and extracellular ATP (Figure 3). The 

mitotic kinase NEK7 licenses the assembly and activation of the NLRP3 inflammasome. 

The cryo-EM structure of the NLRP3 inflammasome with NEK7 is reported [31]. 

 



 

 7 

 

Figure 2. Inflammasome formation. 
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Figure 3. Mechanism of NLRP3 inflammasome. 

 

 

A non-NLR PRR, absent in melanoma-2 (AIM2) is also identified as a component 

in inflammasome. AIM2 recognizes dsDNA in the cytosol and activates caspase-1. AIM2 

is one of the hematopoietic nuclear PYHIN protein families [32-38]. AIM2 contains an N-

terminal PYD and C-terminal NIH domain to recognize dsDNA in the cytosol. For long 

dsDNA in the cytosol, AIM2 binds it with the NIH domain and clusters the PYD. The 

PYD also recruits ASC’s PYD and induces the filament formation of ASC. Analogously, 

the ASC filament recruits and pro-caspase-1 and facilitates the self-activation of caspase-

1. 
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IFI16, an AIM2 like receptor, has a similar structure as AIM2 with PYD and NIH 

domain. It shuttles between the cytosol and the nucleus and functions as a nuclear 

pathogen sensor.  

RIG-I-like receptors 

RIG-I-like receptors (retinoic acid-inducible gene-I-like receptors, RLRs) are a 

type of PRRs that detect viral RNA in the cytoplasm. RLRs include the best-characterized 

receptor RIG-I and melanoma differentiation-associated 5 (MDA5), together with the 

laboratory of genetics and physiology 2 (LGP2). Unmodified, uncapped, full base-paired 

5’-di/triohosphorylated ended RNA with a short blunt-ended double-stranded portion 

could activate RNA helicase RIG-I. These two features identify the viral RNA from self 

RNAs. The MDA5’s physiological ligand has not been fully characterized. Unlike RIG-I 

prefers the short RNAs as ligands, the MDA5 selectively binds the long dsRNA[39-42]. 

OAS proteins 

2'-5'-oligoadenylate synthetase is the enzyme that is encoded by the OAS gene. 

The OAS proteins are template-independent nucleotidyltransferases. OAS proteins sense 

A-form dsRNA in the cytosol and produces 2’-5’ linked oligoadenylates as the second 

messenger. The 2’-5’ linked oligoadenylates activate the enzyme RNase L to degrade host 

and viral RNA to limit viral propagation and induce apoptosis [43]. 
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Figure 4. OAS protein and cGAS 

 

Interferon and IFN-β 

Interferon (IFN) mainly includes three classes: Type I IFN, Type II IFN, and Type 

III IFN. Type I IFN consists of many types, including IFN-α, IFN-β, and IFN-ω. Type I 

IFN all binds to a common receptor on the cell surface. Type II IFN has only one type, 

IFN-γ, which binds to a distinct cell surface receptor, type II IFN receptor. Type III IFN, 

which includes four members, IFN-λ1, IFN-λ2, IFN-λ3 and IFN-λ4, all bind to the type 

III receptor  [44, 45]. The type I IFN receptor has two subunits, IFNAR1 and IFNAR2. 

The Janus activated kinases (JAKs) tyrosine kinase 2 (TYK2) and JAK1 are in the signal 
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cascade. TYK2 and JAK1 both bind to the IFN I receptor. Activation of the JAKs that are 

associated with the type I IFN receptor results in tyrosine phosphorylation of STAT2 

(signal transducer and activator of transcription 2) and STAT1. It results in the formation 

of STAT1–STAT2–IRF9 (IFN-regulatory factor 9) complexes, which are known as 

ISGF3 (IFN-stimulated gene (ISG) factor 3) complexes. These complexes translocate to 

the nucleus, and bind IFN-stimulated response elements (ISREs) in DNA in order to 

initiate gene transcription. Both type I and type II IFNs also induce the formation of 

STAT1–STAT1 homodimers that translocate to the nucleus and bind GAS (IFN-γ-

activated site) elements that are present in the promoter of certain ISGs, thereby initiating 

the transcription of these genes [46-51]. 

Under healthy conditions, a limited number of IFNs are produced [52]. Upon the 

viral infection, IFN-β is upregulated through TLR, RIG-I, and cGAS-STING pathway. 

This leads to the secretion of IFN-β out of the cell and binds to the IFN receptor, initiating 

the immune pathway for the infected and neighboring cells [53]. 

cGAS-STING pathway 

Cells can defend against bacteria and virus’s invasion through their immune 

system [11, 54-62]. Innate immunity employs a wide spectrum of germ-line encoded 

pattern-recognition receptors (PRRs) to sense microbial infection and initiate protective 

immune response[63-66]. Previous studies identified cyclic GMP-AMP synthase (cGAS) 

is a key dsDNA sensor in the cytosol [67-69]. cGAS is activated by dsDNA and catalyzes 

the synthesis of a noncanonical cyclic dinucleotide cGAMP containing mixed 2′,5′ and 

3′,5′ phosphodiester linkages [70-75].  Unlike bacterial cyclic dinucleotides (CDNs) with 
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canonical 3’-5’ linkages, 2’3’-cGAMP is a unique metazoan CDN that comprises both 3’-

5’and a non-canonical 2’-5’ phosphodiester linkages connecting adenosine with guanosine 

and guanosine with adenosine, respectively. 

cGAMP, behaving as a second messenger, stimulates the induction of type I 

interferons (IFNs), such as IFN-α and β, through the adaptor STING located on the ER 

membrane [64, 68, 71, 76-78].  cGAMP binding induces conformational change and 

oligomerization of STING, leading to the recruitment and activation of TBK1 [68, 69, 74, 

79]. The transcription factor IRF-3 is then recruited to the signaling complex and activated 

by TBK1 [80-82]. Mechanistically, STING employs a conserved pLxIS (p, hydrophilic 

residue, x, any residue, S, phosphorylation site) motif to recruit IRF-3 upon 

phosphorylation [83]. Phosphorylated IRF-3 oligomerizes, translocates to the nucleus [84, 

85], and initiates the expression of type I IFNs [86-89]. The transcription factor NF-κB is 

also activated upon the stimulation of STING and is likely involved in the transcriptional 

regulation of IFN-β expression together with IRF-3 [54, 78, 90, 91]. Aberrant activation 

of innate immune responses by self nucleic acids causes autoimmune disorders such as 

systemic lupus erythematosus (SLE) and polyarthritis [92-99]. Several mutations of 

human STING cause autoimmune disorders [100, 101].  In addition to its roles in innate 

immunity, cGAMP and its phosphorothioate derivatives have potent antitumor activity 

and have applications in cancer immunotherapy [97, 102-104].  

MAVS, STING, and TRIF as adaptors for IRF3 

TBK1 is activated by multiple pathways. However, IRF3 phosphorylation is only 

observed in the IFN producing pathways including RIG-I-MAVS, cGAS-STING, and 
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TLR3/4-TRIF. It indicates the specificity of the mechanism of IRF3 phosphorylation, 

where the STING, MAVS, and TRIF work as adaptor proteins to recruit both IRF3 and 

TBK1 [83]. STING recruits IRF3 with the motif pLxIS (p, hydrophilic residue; x, any 

residue; S, phosphorylation site). Strikingly, the pLxIS motif is also involved in IRF-3 

recruitment by MAVS and TRIF in the RIG-I like receptor (RLR) and Toll-like receptor 

(TLR) signaling pathways that sense viral RNA and bacterial lipopolysaccharides (LPS), 

respectively [11, 42, 83, 105]. The molecular mechanisms by which these adaptors recruit 

IRF3 upon phosphorylation are determined by structural biology [106].  The pLxIS motif 

of phosphorylated STING, MAVS, and TRIF binds to IRF3 in a similar manner, whereas 

residues upstream of the motif confer specificity. 

Structure basis of cGAS-STING pathway 

Recent structural and functional studies provide an overall picture and some 

molecular details of the cGAS-STING pathway [27, 30, 31, 34-38]. The determination of 

the structures of STING ligand-binding domain in isolation and in complex with c-di-

GMP and cGAMP show that cGAMP binding induces a conformational change of the 

STING dimer. These comprehensive structural studies significantly advanced the 

understanding of DNA sensing through the cGAS-STING pathway. However, there are 

still a number of major gaps in our understanding of the cGAS-STING pathway [23, 24]. 

For example, the exact mechanism of how cGAMP activates STING at the ER membrane 

remains poorly understood. The recently reported structure of chicken STING in its 

activated form reaches 7Å, which is still not high resolution enough to validate the STING 

activation mechanism. It is also not clear how cGAMP binding by STING mediates the 
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recruitment and activation of TBK1. The mutagenesis study has found that several mutants 

on transmembrane domain block the IFN signaling but have no effect on cGAMP binding, 

indicating the N-terminal transmembrane is also vital for STING function. We will 

address these problems through comprehensive structural and functional studies. To 

elucidate the molecular basis of STING activation by cGAMP, we will determine the 

structures of cGAMP bound to full-length human STING (FL-STING) by a hybrid 

approach of X-ray crystallography and cryo-electron microscopy (cryo-EM). The long-

term goal of this research is to elucidate how cGAMP and STING mediate the activation 

of TBK1 and IRF-3 in the cGAS-STING pathway. These rigorous and comprehensive 

structural and functional studies will enlighten the molecular mechanism of STING 

activation by cGAMP and also significantly advance our understanding of the mechanisms 

of innate immunity towards viral infection, providing a structural framework for 

conceptually new approaches to block undesired immune responses in autoimmune 

disorders or manipulate the innate immune responses to fight against cancer. 
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CHAPTER II  

THE STRUCTURAL BASIS OF TIGHT NUCLEOSOME TETHERING AND 

INACTIVATION OF CGAS1 

Introduction 

The presence of billions of DNA in the mammalian genome raises the question of 

how the cGAS activity is inhibited to self-DNA. The prevalent explanation of this is that 

the cGAS localizes in the cytosol and have no access to the self-genome DNA in normal 

and healthy cells [58, 67, 107].  

 

 

 

 

 

 

 

  

 

1 Material from: Baoyu Zhao, Pengbiao Xu, Chesley M Rowlett, Tao Jing, Omkar Shinde, Yuanjiu Lei, 

A Phillip West, Wenshe Ray Liu, Pingwei Li. The molecular basis of tight nuclear tethering and 

inactivation of cGAS, Nature, published 2020. 
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Figure 5. Schematic of the cGAS-STING pathway. 

 

This idea is challenged by the recent studies that identified the overexpressed 

cGAS is located in micronuclei [108-112]. And further research supported that 

endogenous cGAS is also predominate the main nucleus protein [107, 113]. cGAS locating 

inside the nuclei tethers tightly with chromatin and maintains in the inactive state. The 

cGAS-chromatin tight interaction prevents cGAS autoreactivity against self-DNA. 

Further study also determines that cGAS has direct interaction with H2A&H2B dimer in 

vitro [114]. And the interaction between cGAS with nucleosomes is much higher than that 

of cGAS to free double-strand DNA. All of the experiments indicate that rather than 
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directly binding to nucleosomal DNA, there is a novel interaction for cGAS binding to 

nucleosomes.   

cGAS binds tightly to individual nucleosomes 

 

Figure 6. cGAS localizes in the nucleus of HeLa and MEF cells.  

a. Western blot analyses of cGAS expression in 1% SDS whole cell lysates 

(WCL), 0.2% NP-40 cytosolic fractions, 0.5 M NaCl nuclear extracts, and 1% SDS 

nuclear lysates of HeLa and cGAS-/- MEF SV40I + mcGAS-HA cells. b. 

Immunofluorescence microscopy images of HeLa and cGAS-/- MEF SV40I + 

mcGAS-HA cells stained with anti-cGAS or –HA, and -𝛼-tubulin antibodies and 

DAPI. The scale bars denote 50 μm. c. The percentage of nuclear- to whole cell-cGAS 

ratio quantified by microscopy. All data are presented as mean ± SEM. 

 

 

 



 

 18 

 

 

Nucleosome binding inhibits the activity of cGAS 

 

Figure 7. Nucleosome tethering inactivates cGAS.  

a. Surface plasmon resonance (SPR) shows that full-length human cGAS 

binds to in vitro reconstituted human nucleosome with nanomolar affinity. The 

binding affinity (Kd) was determined by fitting the binding data to a simple one-to-

one binding model. b. Enzyme activity assays by ion-exchange chromatography show 

that nucleosome binding potently inhibits the catalytic activity of cGAS. 
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According to the published results and our data, it was convinced that cGAS 

actually located in the nucleus as well as in the cytoplasm. Postdoc Dr. Baoyu Zhao did 

the preliminary work to test if cGAS binds to the nucleosome, which is the basic module 

of chromatin. Mono nucleosome was purified from HEK293T cells. And indeed, human 

full-length cGAS bound to nucleosome with a rather high, 8.6 nM, affinity. It was also 

interesting whether this tight binding would have any effects on the enzymatic activities 

of cGAS. Using ion-exchange chromatography, the binding of nucleosome was found to 

inactivate cGAS enzymatic function.  

In the activity assay, different combinations of cGAS, dsDNA and nucleosomes 

were tested. The cGAS/nucleosome complex had no activities any more. Adding more 

free cGAS to the complex did not activate the synthase of cGAMP, indicating the cGAS 

cannot be activated by the dsDNA which wrapped around the nucleosome. In addition, 

adding more free dsDNA would not activate cGAS, indicating the cGAS in the complex 

is not able to bind dsDNA or to induce conformational changes to activate itself after 

binding (Figure 7). 
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Figure 8. cGAS binds to mono-nucleosome in-vitro.  

a. Size Exclusion Chromatography of Nucleosome, mouse cGAS catalytic 

domain, and the nucleosome-cGAS complex. b. The SDS-PAGE analyses of 

Nucleosome, mouse cGAS catalytic domain, and the nucleosome-cGAS complex. 

 

 

After that cGAS binding tightly with nucleosome in vitro was validated, Size 

Exclusion Chromatography was used to purify the complex. By adding extra cGAS, the 

peak of the nucleosome left-shifted. The peak of the complex was collected and analyzed 

by SDS-PAGE, confirming it was the peak of the cGAS/Nucleosome complex. The 

complex was approximately 300kD on the SEC (Figure 8). The symmetric peak indicated 

a homogenous specimen, which was good to do structural study. 

Structure determination of cGAS-nucleosome by cryo-EM 

The preliminary study of the nucleosome by negative stain 

The nucleosomes purified from HEK293T were tested by Electron Microscope 

with negative stain. When the specimen was diluted to 0.0045mg/ml, the white dots in the 
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figure was predicted to be the intact nucleosome. The black extended lines in the image 

might be the dissociated dsDNA from nucleosomes. When the specimen was diluted the 

0.045mg/ml, the intact nucleosome was increased a lot. This was a good sign of good 

specimen in cryo-EM (Figure 9, Figure 10). 

 

 

 

Figure 9. The negative stain representative micrographs of mono-nucleosome 

purified from HEK293T cells.  

a. The negative stain representative micrographs of mono-nucleosome 

purified from HEK293T cells at a concentration of 0.0045mg/ml. b. The negative 

stain representative micrographs of mono-nucleosome purified from HEK293T cells 

at a concentration of 0.045mg/ml. 
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Figure 10. The Size Exclusion Chromatography of mono-nucleosome purified 

from HEK293T cells. The peak is analyzed by SDS-PAGE. 

 

 

 

The cryo-EM study with a local TF20 microscope 

After testing the nucleosome specimen, I tried cryo-EM data collection of 

cGAS/nucleosome complex with TF20 microscope in the campus. The particles in the 

cryo-EM had lower contrast than those in negative stain, but there were no aggregates or 

dissociation (Figure 11). 

 Around 400 micrographs were collected for the mcGAS/nucleosome complex 

specimen. Here, the nucleosome was still purified from HEK293T cells. Then Relion, 

cryosparc, and cisTEM were used individually to process the data. The picked particles 
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were around 80k for each software. All of the software produced 2D classifications with 

extra densities on the top of the nucleosome, which were directed by the blue arrows 

(Figure 12). 

 

 

 

Figure 11. The Cryo-EM representative micrographs of mono-nucleosome 

purified from HEK293T cells with mouse cGAS at the complex concentration at 0.4 

mg/ml.  

a. and b. are images taken from a different position in the same grid. 
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Figure 12. The representative 2D classification from different image 

processing software.  

a. 2D classification of the nucleosome-cGAS complex from cryosparc. b. 2D 

classification of the nucleosome-cGAS complex from relion. c. 2D classification of the 

nucleosome-cGAS complex from cisTEM. 
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Figure 13. The 3D reconstruction of the nucleosome-cGAS complex from 

cisTEM. 

a. and b. Two different orientations of the reconstructed structure. b. 

Nucleosome with the natural handedness. d. The back-projection of the 

reconstructed structure. 

 

 

 

In generating a 3D reconstruction, Relion and cryosparc failed due to the low 

signal-to-noise ratio and limited particle amounts. cisTEM produced a 10Å resolution 

structure, reflecting there were some densities on the protein surface of nucleosomes. The 

3D reconstruction actually had a wrong handedness compared with the real nucleosome. 

It was common in 3D reconstruction and could be easily post-processed to the correct 

handedness. The back-projection of this reconstruction also fitted well with the 2D 

averages, indicating a reasonable data processing (Figure 13). 
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At that stage, we were worried about the natural nucleosomes which may have 

different modifications and result in small conformational changes. It might be a problem 

for high resolution reconstruction. We found a collaboration with Prof. Wenshe Liu. 

Chesley in the Liu group produced reconstituted nucleosomes with histones purified from 

E. coli and 601 Widom DNA. This kind of nucleosomes have no modifications and should 

be more homogeneous (Figure 14). 

 

Figure 14. The Size Exclusion Chromatography of the reconstituted 

nucleosome. 
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Figure 15. The Cryo-EM representative micrographs of reconstituted mono-

nucleosome with mouse cGAS at the complex concentration at 0.4 mg/ml.  

a. and b. are images taken from a different position in the same grid. 

 

 

 

Thereafter, I made the cGAS/nucleosome complex via the same method on SEC 

for the reconstituted nucleosome. About 400 micrographs were collected for this specimen 

with our local microscope (Figure 15). 
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Figure 16. Data process of the reconstituted nucleosome with mcGAS from 

cisTEM.  

a. The representative 2D class averages of the specimen. b. The overall 2D 

class average in the data process. c and d. The reconstructed structure in two 

different orientations. 
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Figure 17. Data process of the reconstituted nucleosome with mcGAS from 

relion.  

a. The particle distribution of the final particles used in the reconstruction. b. 

The representative 2D averages of the specimen. c. The reconstructed structure 

docked with the nucleosome and mouse cGAS domain. 

 

 

For the reconstituted nucleosome/cGAS complex in cryo-EM, it contained more 

particles with side views, compared with the natural complex which preferred to be shown 

as top view. More side views benefited the data analyses. Both cisTEM (Figure 16) and 

Relion (Figure 17) could do a successful reconstruction this time. Typical 2D averages of 

the complex presented very clear protein densities on the nucleosome. It indicated the 

cGAS had a fixed binding site on the nucleosome. I could dock the cGAS monomer model 

into both the 3D reconstructions. The model fitted very well to the map. The angular 
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distribution of particles from Relion processing also delineated around six major particles’ 

views, indicating that this specimen did not suffer from the preferred orientation. 

The cryo-EM data collection and processing of Titan Krios microscope 

 

 

 

Figure 18. The representative micrographs of nucleosome-cGAS specimens 

were used for data collection with Titan Krios.  

a. The representative micrograph of the nucleosome-mcGAS complex. The 

nucleosome is purified from HEK293T cells. b. The representative micrograph of the 

nucleosome-mcGAS complex. The nucleosome is reconstituted with Histones 

expressed in E. coli. c. The representative micrograph of the nucleosome-mcGAS 

complex. The nucleosome is reconstituted with Histones expressed in E. coli. The 

complex is kept on ice for 14 hours before vitrification.  

 

 

To reconstruct the map to high resolution, a higher-end microscope is required. I 

applied for the data collection session at UT health center in Houston. 12 grids were 

prepared with HEK293T-purified nucleosome/mcGAS specimen. I also made 8 grids in 
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two boxes with the reconstituted nucleosome/mcGAS specimen. The next day, after 14 

hours, I made another 12 grids in three boxes, considering that grids might not enough for 

the reconstituted one. All of the grid groups were tested by selected one to two grids with 

our local microscope (Figure 18). The particle distribution and ice thickness optimization 

were verified. All grids showed a monodispersed particle distribution and good ice 

thickness to make sure enough area can be collected. 

 

 

 

Figure 19. The data collection of the reconstituted nucleosome-mcGAS 

complex.  

a. Representative micrograph of the mcGAS-nucleosome complex in vitrified 

ice. The scale bar denotes 50 nm. b. 2D class averages of mcGAS-nucleosome complex 

particles. The scale bar denotes 10 nm. 

 

 

With the help of UT Health center in Houston, we collected 5354 movies with 

Titan Krios operated at 300kV and equipped with a K2 direct electron camera (Figure 19). 
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Figure 20. Flowchart of data processing; see Methods for details. 
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The collected stack movies were aligned by Motioncor2. After CTF estimation by 

GCTF, the micrographs were screened by max signal resolution higher than 5Å, leaving 

4959 good micrographs. Particle picking was performed by Relion auto-picking with 

templates. The templates were generated with 100 manually picked particles from the 

same datasets in advance. After several rounds of 2D classification to remove the false 

picked particles, crystalline ice, and grid edges, the particles were submitted to 3D 

classification to identify all the nucleosome/cGAS complexes (Figure 20). 

From the collected datasets, the nucleosome/cGAS (1:1) was reconstructed to 

2.96Å. The generated map presented clearly that the one cGAS bound to the acidic patch 

of the nucleosome. The question raised that why there was no cGAS on the other side of 

the nucleosome. It might because the cGAS binding changed the conformation for the 

nucleosome so that it closed the opposite binding site. However, when I flipped and 

aligned the map to compare the empty acidic patch and the cGAS bound acidic patch, the 

two acidic patches were exactly the same. 

This comparison presented the idea that cGAS binding did not make conformation 

changes on the nucleosome. And it also indicated that the other nucleosome acidic patch 

could bind another cGAS. 

One more iteration of 3D classification was done and succeeded to produce a class 

showing two cGAS bound to the nucleosome. This class contained around 10k particles 

and was refined to 6.79Å. The helices of both cGAS could be determined in the map 

(Figure 21). 
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Figure 21. The corrected FSC curve of the data process.  

a. The corrected FSC for the structure of nucleosome-cGAS (1:1). b. The 

corrected FSC for the structure of nucleosome-cGAS (1:2). 

 

 

 

The structural have relatively good particle distributions with more than 6 major 

particle views and almost no missing views. And overall speaking, the resolution is high 

in the core part of nucleosome and cGAS/nucleosome interaction regions, but it goes lower 



 

 35 

to the outer side, mainly because the cGAS itself has some flexibilities in structure (Figure 

22, Figure 23, Figure 24, Figure 25). 

 

 

 

Figure 22. The angular distribution of the particles finally used in the 

reconstruction nucleosome-cGAS (1:1). 

 

Figure 23. The local resolution of the reconstructed structure nucleosome-

cGAS (1:1). 
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Figure 24. The angular distribution of the particles finally used in the 

reconstruction nucleosome-cGAS (1:2). 

 

 

Figure 25. The local resolution of the reconstructed structure nucleosome-

cGAS (1:2). 

 

 

For the 1:1 map, as the reconstruction went high to 2.96Å, this atomic resolution 

helped to build a precise model by docking the crystal structure into the map and manually 

checking and adjusting the residuals. For the 2:1 map, due to the low resolution of about 

7Å, I used the real-space refinement to dock the 1:1 structure model into it without any 

more adjusting (Figure 26, Figure 27). 
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Figure 26. Cryo-EM structure of mouse cGAS catalytic domain bound to 

human nucleosome (1:1).  

a. Cryo-EM density map of the mcGAS-nucleosome complex at 2.96 Å 

resolution in two different orientations contoured at 3σ. b. Ribbon representation of 

the mcGAS-nucleosome complex structure.  

 

 

Figure 27. Cryo-EM structure of mouse cGAS catalytic domain bound to 

human nucleosome (1:2). 

a. Cryo-EM density map of the mcGAS-nucleosome complex at 6.79 Å 

resolution in two different orientations contoured at 3σ. b. Ribbon representation of 

the mcGAS-nucleosome complex structure docked into the map.  
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Figure 28. Density maps and structural models of cGAS-nucleosome 

(reconstituted, 1:1) complex.  

a - f. The density maps (grey mesh) of histones H2A, H2B, H3, H4, part of 

mouse cGAS catalytic domain, and the Widom 601 nucleosome positioning sequence 

DNA contoured at 3σ. The protein and DNA structures fitted into the density map 

are shown by the stick models. 

 

 

 

The cGAS was colored with purple, Histone H2A with yellow, H2B with red, H3 

with green, H4 with blue, and dsDNA with grey respectively (Figure 28). By adjusting the 

transparency, the figures presented that both the 1:1 and 2:1 model fitted the map densities 

very well. 
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Figure 29. Cryo-EM analysis of mcGAS domain in complex with nucleosome 

purified from HEK 293T cells.  

a. Representative micrograph of the mcGAS-nucleosome complex in vitrified 

ice. The scale bar denotes 50 nm. b. 2D class averages of mcGAS-nucleosome complex 

particles. The scale bar denotes 10 nm. 

 

 

 

We also collected 2979 movie stacks for the 293T nucleosome/cGAS specimen. 

The data processing was very similar to that of the reconstituted specimen (Figure 29). 



 

 40 

 

Figure 30. Flowchart of data processing; see Methods for details. 
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The representative 2D averages showed a clear cGAS density on the nucleosome. 

After several rounds of 2D classification and 3D classification, I reconstructed the 

structure to 4.36Å. Due to a heterogeneous DNA sequence, the DNA resolution was low 

to 5Å. The overall resolution was not high enough to build an atomic model, however, the 

cGAS can be unambiguously docked into the map. The interaction region had a resolution 

around 4Å, which was enough for us to conclude that cGAS bound to the natural 

nucleosome with the same residues and types as the reconstituted complex with higher 

resolution (Figure 30, Figure 31, Figure 32, Figure 33, Figure 34). 

 

 

 

Figure 31. The corrected FSC curve of the data process. 
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Figure 32. The angular distribution of the particles finally used in the 

reconstruction nucleosome-cGAS. 

 

 

Figure 33. The local resolution of the reconstructed structure nucleosome-

cGAS. 
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Figure 34. Cryo-EM structure of mouse cGAS catalytic domain bound to the 

human nucleosome.  

a. map of the mcGAS-nucleosome complex at 4.36 Å resolution in two 

different orientations contoured at 3σ. b. Ribbon representation of the mcGAS-

nucleosome complex structure docked into the map.  

 

 

 

I reconstructed the mouse cGAS domain with the recombinant human nucleosome, 

or the human nucleosome directly purified from HEK 293T cells respectively. The two 

maps share the same binding profile that cGAS binds to the acidic patch on the nucleosome 

core particle (NCP) with its relatively distinct basic residues. The recombinant 

nucleosome-cGAS complex (~250kD) was reconstructed to a higher resolution as 3Å 

overall, making it possible to determine the interaction residues. 
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Figure 35. Histone proteins are colored by electrostatic. 

 

 

 

The mcGAS lies on the acidic surface of H2A and H2B on NCP. By generating 

the electrostatic map of the histone proteins, the acidic patch is clearly presented as the 

red region in the figure (Figure 35). Its three loops (residues 220 to 223, 239 to 247, 314 

to 345) parallelly attach to the nucleosome. mcGAS R222, K240, R241, K323, R341, and 

R342 have clear residual density reaching out to the H2B surface. On the NCP, E61, D90, 

and E92 have direct electrostatic interaction with mcGAS R241. NCP E61 and E64 

interact with mcGAS R222. E64 also interacts with K240. Around nucleosomal DNA, 

NCP R71 reaches out to the mcGAS and interacts with the main chain of mcGAS G316 

and R341. mcGAS R342 reaches out to the NCP and interacts with mcGAS T76 and K57. 
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The mcGAS binds to dsDNA in a 2:2 ratio and it has two surfaces for dsDNA 

binding, referred to as site A and site B. The crystal structure of mcGAS/DNA (pdb:4LEY) 

provided that site A includes K151, R158, K160, R161, S165, R180, K184, K372, and 

K395, while site B contains residues of K315, K323, K335, R222, K240, and R342. The 

mcGAS interacted residue to the NCP acidic patch overlaps with site B, including R222, 

K335, and R342. And the interaction is also facilitated by mcGAS R241, G316, R341, 

and R342 (Figure 36). 

 

 

 

Figure 36. The interaction between cGAS and nucleosome. 

a. The interaction region map is contoured by 3σ. K240, R222, and R241 of 

cGAS insert into the acidic patch of the nucleosome. b. Two different views of the 

interaction region. 
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The mutagenesis and in-vitro study of cGAS-nucleosome complex 

The binding of cGAS to nucleosomes blocks the activation of cGAS. The 

activation of cGAS requires the complex formation of cGAS and dsDNA in 2:2 ratios. In 

the cGAS/dsDNA complex, cGAS binds to two dsDNA at both its A site and B site and 

undergoes the conformation in the catalytic area. However, the interaction of NCP to the 

cGAS B site does not activate cGAS. From the cGAS nucleosome complex EM structure, 

the NCP bound cGAS is in its inactive conformation. Binding to NCP also prevents the 

activation of cGAS. The alignment of cGAS between dsDNA bound complex and NCP 

bound complex clearly presents that, after cGAS binds to the nucleosome, either A site or 

B site of cGAS cannot bind to dsDNA because of clashes in space. 
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Figure 37. The pulldown assay of the H2A/H2B dimer mutants with mouse 

cGAS. 

 

Moreover, some mutagenesis assays were done to validate our cryo-EM structure. 

After mutating the acidic patch on H2A/H2B from acidic amino acids Glu and Asp to 

neutral amino acid Ala or basic amino acid Lys, I did the Histidine tagged pull-down assay. 

The 6x His tagged wild type H2A/H2B or its 6A (H2A: E61A, E64A, D90A, E91A, E92A; 

H2B: D51A) and 6K (H2A: E61K, E64K, D90K, E91K, E92K; H2B: D51K) mutants 

were incubated with Ni-NTA resins. After washing the resins with extra buffer, mcGAS 

were incubated with the H2A/H2B dimers and washed with running buffer. The protein 

remaining on the beads were analyzed by SDS-PAGE. The pull-down assay indicated that 

WT H2A/H2B containing the acidic patch could bind with the mcGAS, while after 

mutating the acidic patch to alanine or to lysine, the interaction between H2A/H2B to 

mcGAS was weakened or diminished (Figure 37). 
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Figure 38. The native gel shift assay of nucleosome variant with mouse cGAS.  

a. The sequence alignment of wild type H2A and H2A variant H2A.Bbd. The 

acidic patch is colored red. b. The native gel shift assay of nucleosome variant with 

mouse cGAS. SDS-PAGE analyses of the same specimen are on the right. 

 

 

 

To test if the acidic patch was required for the binding by another method, I also 

found a nucleosome formed by H2A variant call H2A.Bbd. By aligning the sequence 

between H2A and H2A.Bbd, it showed H2A.Bbd did not have a conserved acidic patch. 

There were two basic amino acids (K66, R96) in the acidic patch of H2A.Bbd. The native 

gel shift assay gave the result that nucleosome formed by H2A.Bbd did not have a shift 
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on gels after mixing with mcGAS, which supported that the acidic patch on nucleosome 

were the key residues to bind with cGAS. Furthermore, this experiment also supported 

that Histone H3, H4, and dsDNA on nucleosomes were not the binding partner for 

mcGAS. The sample using for native gel shift assay was analyzed by SDS-PAGE. The 

H2A.Bbd has a lower band compared with WT H2A, while all the other bands were the 

same (Figure 38). 

 

 

 

Figure 39. The sequence and structure alignment of the mouse and human 

cGAS.  

a. Sequence alignment of human and mouse cGAS around the nucleosome 

binding site. The conserved basic residues around the nucleosome binding site are 

colored red. Residues that abolish nucleosome binding when mutated are highlighted 

yellow. b. Superposition for the structures of ligand-free human cGAS (PDB, 4LEV), 

ligand-free mouse cGAS (PDB, 4K8V), and mouse cGAS bound to the nucleosome. 

 

 

 

After validating that the acidic patch was important binding region on the 

nucleosome, I worked on the cGAS side by mutagenesis assay. We did the sequence and 
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structural alignments of mouse cGAS and human cGAS on the binding region revealed by 

the cryo-EM map. The alignments showed that both the amino acid sequence and three-

dimensional structure of mouse cGAS and human cGAS were very conserved. From the 

structure of mcGAS/nucleosome, we found four key interaction residues on cGAS and 

colored them orange. mcGAS R222, K240, R241, and R341 were conserved to hcGAS 

R236, K254, R255, and R353 (Figure 39). 

We proposed the mutation of these basic residues to acidic ones would break the 

interaction. I also mutated the neighboring basic residues to work as controls or to test if 

they could have any effects on the binding.   

All of the mcGAS and hcGAS mutants were generated by site-directed 

mutagenesis and confirmed by DNA sequencing. mcGAS mutants included R222E, 

K238E, K240E, R241E, R244E, K315E, K323E, K335E, R337E, R341E, R342E, and 

K382E. The protein was individually transfected to E. coli BL21 competent cells and 

induced by 0.4M IPTG in pET28a vector modified with an additional HIS-SUMO tag.  

The mcGAS protein was purified by the Ni-NTA column. After the HIS-SUMO 

tag was cleaved by the Ulp1 enzyme, the protein runs through the Ni-NTA column again 

to remove the tags, and the flow-through was fractionated by Superdex 200 size exclusion 

column. The resulting mcGAS proteins were analyzed by SDS-PAGE (Figure 40). The 

single band on the SDS-PAGE indicated a very pure product and made it possible for me 

to do Circular Dichroism (CD). The CD spectra indicated the mutations on mcGAS did 

not change the protein folding. (Figure 41)  
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Figure 40. SDS-PAGE analysis of mouse cGAS catalytic domain mutants used 

for the gel shift assays and enzyme activity assays. 

 

Figure 41. Circular dichroism of mouse cGAS catalytic domain and its 

mutants used for gel shift assays and enzyme activity assays.  

cGAS mutants that have strong binding to nucleosomes are shown by the 

spectra on the left. cGAS mutants that have weak or no binding to nucleosomes are 

shown by the spectra on the right. 
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Figure 42. Polyacrylamide gel electrophoretic mobility shift assay (EMSA) 

shows that mutations at the cGAS-nucleosome interface affect nucleosome binding 

by cGAS.  

In this assay, the mcGAS catalytic domain was mixed with the nucleosome at 

a molar ratio of 3:1. 

 

 

 

Dr. Baoyu Zhao in our lab did the gel shift assay after we purified all the mcGAS 

mutants. The cryo-EM revealed that the four key residues were indeed very important for 

the binding. After the four key residues were mutated to acidic Glutamic acid, the native 

gel shift assay could no more show the complex formation (Figure 42).   

I also purified the 13 human mutants (R236E, R246E, K252E, K254E, R255E, 

K258E, K327E, K347E, R349E, K350E, R353E, K355E, K394E) with biotin label. The 

biotinylated full-length cGAS and its mutants were good candidates for surface plasmon 

resonance (SPR) to detect the binding affinity. Because the biotinylated site was on the N-

terminal to His-SUMO tag, the FL hcGAS was not cleaved. The product after the Ni-NTA 
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column was submitted to the Size Exclusion Column directly. The peak of the non-

degraded protein was collected and concentrated.  

The SDS-PAGE analyses of the FL cGAS also presented a relative pure band 

(Figure 43). 

 

 

 

Figure 43. SDS-PAGE analysis of biotin-labeled full-length human cGAS 

mutants used for the SPR binding studies. 
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Figure 44. SPR binding studies of full-length human cGAS mutants with 

nucleosomes. 
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To do the SPR assay to determine the binding affinity, I immobilized the individual 

biotinylated FL hcGAS on the chip by streptavidin (CAP chip). Nucleosomes from 0.25 

nM to 8 nM were injected automatically. The SPR validated that the mutations on four 

key residues diminished the signal, indicating no detectable binding existed. The other 

mutations on the neighboring basic residues did not change the interaction much when 

they compared with WT FL hcGAS (Figure 44). 

The SPR study validated that the key residues identified from the cryo-EM 

structure indeed participated in the interaction. And the FL human cGAS actually had a 

very similar binding profile as the mouse cGAS catalytic domain. We also did SPR for FL 

hcGAS, FL mcGAS, hcGAS catalytic domain, and mcGAS catalytic domain. The results 

were very similar for these four kinds of proteins, indicating the catalytic domain of cGAS 

was the major part to bind nucleosome. In addition, we did SPR of FL hcGAS to both the 

reconstituted nucleosome and the natural nucleosome purified from 293T cells. No 

obvious affinity differences were found, indicating the modification on nucleosome did 

not affect much of nucleosome/cGAS binding (Figure 45). 
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Figure 45. SDS-PAGE analyses of biotin-Avi-His6-SUMO fusion of human 

and mouse. 

 

 

 

cGAS full length and catalytic domain proteins were individually used for 

nucleosome binding studies.  

The binding of the cGAS to nucleosome core particles also potentially blocked the 

binding of other factors. Other than cGAS, the acidic patch on H2A&H2B also bound to 

RCC1 (regulator of chromosome condensation) protein, Snf5 (chromatin-remodeling 

complex SWI/SNF), Dot1L (Methyltransferase), PRC1 (Polycomb repressive complex 1). 

The cGAS was discovered to inhibit DNA repair in the nucleus and be independent of its 

DNA-binding ability or enzymatic activity. It is a possible reason that cGAS on 
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nucleosome blocks the binding of the nucleosome to chromatin-remodeling complex 

SWI/SNF. 
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Table 1. Cryo-EM data collection, refinement, and validation statistics 
 mcGAS/nucleosome 

(reconstituted, 1:1) 
(EMDB-22046) 
(PDB 6X59) 

mcGAS/nucleosome 

(reconstituted, 2:1) 
(EMDB-22206) 
(PDB 6XJD) 

mcGAS/nucleosome 

(HEK 293T, 1:1) 
(EMDB-22047) 
(PDB 6X5A) 

Data collection and processing    

Magnification    130,000 130,000 130,000 
Voltage (kV) 300 300 300 
Electron exposure (e–/Å2) 42 42 42 
Defocus range (μm) -1.8 ~ -0.7 -1.8 ~ -0.7 -2.0 ~ -0.8 
Pixel size (Å) 1.07 1.07 1.07 
Symmetry imposed C1 C1 C1 
Initial particle images (no.) 2,202,680 2,202,680 578,302 
Final  particle images (no.) 165,092 9,454 23,463 
Map resolution (Å) 
    FSC threshold 0.143 

2.96 6.79 4.36 

Map resolution range (Å) 6.0 ~ 2.8 10.7 ~ 4.1 9.1 ~ 3.9 
    

Refinement    

Initial model used (PDB code) 3AFA 4K8V 3AFA 4K8V 3AFA 4K8V 
Model resolution (Å) 
    FSC threshold 0.5 

3.00 7.16 4.54 

Model resolution range (Å) 32.5 ~ 2.8 39.8 ~ 6.8 35.3 ~ 4.4 
Map sharpening B factor (Å2) -15 -48 N/A 
Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Nucleotide 
    Ligands 

 

14,963 
1,123 
290 
1 

 

17,957 
1,485 
290 
2 

 

14,963 
1,123 
290 
1 

B factors (Å2) 
    Protein 
    Nucleotide 
    Ligand 

 

83.69 
74.19 
194.81 

 

104.67 
74.19 
194.81 

 

405.53 
278.45 
997.41 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 

0.006 
0.834 

 

0.008 
1.533 

 

0.007 
0.887 

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

 

2.64 
10.75 
7.57 

 

2.73 
10.82 
8.16 

 

2.23 
13.71 
1.66 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 

93.67 
6.15 
0.18 

 

91.95 
8.05 
0 

 

93.67 
6.15 
0.18 
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Discussion and future studies 

Together with my paper published in Nature [115], there are another 4 papers 

published back-to-back in Nature and Science for the similar mechanism of cGAS 

inhibition by nucleosome [116-119]. Among all the papers, my structure is determined to 

the highest resolution and is the only one that has better resolution than 3Å. It allows us 

to investigate the most of the cGAS inhibition.  

The structures determined by human cGAS in complex with nucleosomes are 

different from the mouse complex, in that the human cGAS has a site C which binds to 

the nucleosomal DNA. For this additional binding site C, human cGAS would have two 

sites for nucleosome binding. And it contributes to a sandwich like structure for human 

cGAS with nucleosome. Due to one nucleosome binds to two cGAS and one cGAS also 

binds to two nucleosomes, the complex will form an elongated filament like structure. The 

elongated filament is kind of not homogenous and not a good sample for single particle 

reconstruction, so that the groups using human cGAS for structural study all stuck at ~4Å 

overall resolution and the cGAS densities are beyond 10 Å. In our studies, other than using 

the mouse cGAS for structural study, we also use FL human cGAS for binding studies. 

We claim that the human and mouse cGAS shares the similar binding site, which is site B 

to bind nucleosome. The site C of human cGAS only has a weak binding to nucleosome 

because after we mutated site B in the FL human cGAS, we no longer detected the binding 

of cGAS to nucleosome any more.  

The future study of this field will be focused on the N-terminal part of cGAS. 

Because right now, all the structural based mechanism studies are focused on the cGAS 



 

 60 

domain around amino acids 155-522.  However, the FL human cGAS, FL mouse cGAS 

and human cGAS domain all form aggregates with nucleosome, while the mouse cGAS 

domain only forms the ~300kD complex with nucleosome. From the inspiration of human 

cGAS domain with nucleosome, I speculate that cGAS must have more than two binding 

site for nucleosome, then they would form filament complex. From sequencing analyses, 

we found that the N-terminal parts of cGAS also contains multiple basic residues, like K 

and R. These basic residues also have high possibilities to bind nucleosomal acidic patch 

or DNA. In summary, mouse cGAS domain only has one site (site B) to bind nucleosome. 

Human cGAS domain has site B and site C to bind nucleosome. And FL mouse cGAS has 

site B and N-terminal parts to bind nucleosome, while FL human cGAS has site B, site C 

and N-terminal domain to bind nucleosome. This is a claim that requires more 

experimental support. 

On the other hand, due to the potency of cGAS binding to nucleosome, the role of 

cGAS on nucleosome is very interesting. I speculate that, when the cell is dividing, the 

nuclear membrane is not intact, such strong binding will inactivate the cGAS in the cytosol 

and protect the cell from self-activation by genome DNA. However, what the real role of 

cGAS in the nucleus is still unknown. And how the cGAS is released from nucleosome or 

chromatin is also a challenge topic for such nanomolar binding. The role of N-terminal 

part of cGAS in the nuclear translocation of cGAS is another rising question. 
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Materials and Methods in detail 

Protein expression and purification 

The cDNA of cGAS full length and catalytic domain were cloned into a modified 

pET-28a vector with an N-terminal Avi-His6-SUMO tag. Mouse cGAS catalytic domain 

(residues 142 – 507) was expressed in E.coli BL21 (DE3) with 0.4 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) induction overnight at 16°C and purified as described 

previously[120]. Biotin-Avi-His6-SUMO human and mouse cGAS full length and 

catalytic domains (human cGAS domain residues 157 – 522) were expressed in E.coli 

BL21 (DE3) cells co-transformed with the plasmids coding for cGAS and the pBirAcm 

plasmid coding for BirA. Protein expression was induced with 0.4 mM IPTG in the 

presence of 5 μg/ml biotin (Sigma-Aldrich, B4501). The proteins were first purified using 

a Ni2+-NTA column (Qiagen) and were further purified over a Superdex200 column (GE 

Healthcare Life Sciences). Biotin-Avi-His6-SUMO human and mouse cGAS full length 

and human cGAS catalytic domain were eluted with the buffer containing 20 mM Tris, 

500 mM NaCl, pH 7.5. Biotin-Avi-His6-SUMO mouse cGAS catalytic domain was eluted 

with the buffer containing 20 mM Tris, 150 mM NaCl, pH 7.5. All mutants were generated 

using a PCR-based technique with appropriate primers and confirmed by DNA 

sequencing. The cGAS mutant proteins were expressed and purified the same way as the 

wild-type cGAS.  
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Nucleosome purification from HEK 293T cells 

Nucleosomes were extracted and purified from HEK 293T cells using the 

nucleosome preparation kit (Active motif, 53504) according to the manual. Briefly, HEK 

293T cells were cultured in a 10 cm tissue culture dish to 70-80% confluency and were 

harvested with a cell scraper. 2 × 107 cells were washed with 10 ml 1 × PBS buffer twice. 

Then the cells were resuspended in 1 ml ice-cold lysis buffer supplemented with 5 μl 

protease inhibitor cocktail and 5 μl 100 mM PMSF. After incubation on ice for 30 mins, 

the lysed cells were centrifuged at 2400 g for 10 mins at 4 °C to pellet the nuclei. The 

nuclei pellet was resuspended in 350 μl digestion buffer supplemented with 1.75 μl 

protease inhibitor cocktail and 1.75 μl 100 mM PMSF. After incubation at 37 °C for 5 

mins, the resuspended nuclei were mixed with 17 μl diluted enzymatic shearing cocktail 

and incubated at 37 °C for 50 mins. To generate oligonucleosomes, the mixture was 

incubated at 37 °C for 15 mins. During the incubation, the mixture was vortexed 

approximately every 2 mins. To stop the reaction, 7 μl ice-cold 0.5 M EDTA was added 

into the mixture for 10 mins on ice. Then, the mixture was centrifuged at 21000 g for 10 

mins. Nucleosomes or oligonucleosomes in the supernatant were purified using a Superose 

6 increase 10/300 GL column (GE Healthcare Life Sciences) with the running buffer 20 

mM Tris, 150 mM NaCl, pH 7.5. The purified nucleosomes and oligonucleosomes were 

concentrated and stored at 4 °C. 
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Reconstitution and purification of human nucleosome 

Human histone H2A, H2B, H3-C110A, and H4 with TEV tags were cloned into a 

pETDuet vector and expressed in E. coli BL21 (DE3) at 37 ˚C. The cell pellets were 

resuspended in 50 mM Tris, 100 mM NaCl, 0.1% Triton-X100, pH 8.0 buffer and lysed 

by sonication. Inclusion bodies were collected and washed three times with additional 

lysis buffer and three times with 50 mM Tris, 100 mM NaCl, pH 8.0 buffer. Inclusion 

bodies were then dissolved in 6 M guanidine hydrochloride, 20 mM Tris, 250 mM NaCl, 

pH 8.0 buffer and purified under denatured conditions using a Ni-NTA column. The 

histone proteins were eluted with 6 M urea, 20 mM Tris, 500 mM NaCl, 250 mM 

imidazole, pH 7.8 buffer, dialyzed against 5% acetic acid, flash-frozen, and lyophilized. 

A plasmid containing the original Widom 601 sequence cloned in a pUR19 vector was 

used as a template for PCR amplification. Purified 601 DNA was diluted to 200-300 ng/μL 

in 20 mM Tris, 1 mM EDTA, pH 7.8 buffer, and solid NaCl was added to a final 

concentration of 2 M. The histone pellets were dissolved in 6 M guanidine hydrochloride, 

20 mM Tris, 500 mM NaCl, pH 7.8 buffer. To prepare the H2A/H2B dimer, H2A and 

H2B were mixed in an equimolar ratio and diluted with 6 M guanidine hydrochloride to 

adjust the total protein concentration to 4 mg/mL. The denatured H2A/H2B solution was 

then dialyzed sequentially at 4 ˚C against a 20 mM Tris, 1 mM EDTA, pH 7.8 buffer 

containing 2 M, 1 M, and 0.5 M NaCl. H2A/H2B 6A and 6K dimer mutants were prepared 

as the wild-type H2A/H2B dimer. Refolding of the H3/H4 tetramer was done in the same 

manner. The refolded H2A/H2B dimer and H3/H4 tetramer were mixed in a 2:1 molar 

ratio and solid NaCl was added to a final concentration of 2 M to form histone octamers. 
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Purified 601 DNA in 2 M TE buffer was added to the histone octamer solution in a molar 

ratio of 0.9:1 and dialyzed against 2 M TE buffer. While stirred at room temperature, a 20 

mM Tris buffer at pH 7.8 was slowly added to the 2 M salt buffer with the DNA/histone 

mixture until the salt concentration was reduced to below 200 mM. The reconstituted 

nucleosome was then dialyzed against 20 mM Tris, 20 mM NaCl, 1 mM EDTA, pH 7.8 

buffer. TEV protease was then added to the nucleosome solution (TEV: nucleosome 1:30, 

w:w) to cleave the His-TEV tags. The reconstituted nucleosome was purified using a 

Superdex 200 column eluted with 20 mM Tris, 150 mM NaCl at pH 7.5. 

 

Surface plasmon resonance (SPR) 

All SPR binding studies were performed with a Biacore X100 instrument (GE 

Healthcare Life Sciences). The Biotin CAPture kit (GE healthcare life science, 28920233) 

was used to detect the binding between human cGAS and nucleosome according to the 

manual. Briefly, Biotin-Avi-His6-SUMO cGAS was captured on the sensor chip CAP. 

Serial dilutions of nucleosome were flowed through the chip at 30 µl/min in 1× HBS-EP 

buffer supplemented with 5 mM MgCl2. The multi-cycle kinetic/affinity protocol was 

used in all studies. In each cycle, the nucleosome was injected for 100 s. The sensor chip 

was regenerated with a buffer containing 6 M guanidine hydrochloride and 0.25 M NaOH 

at the end of each cycle. For full-length mouse cGAS, the sensor chip SA (GE healthcare 

life science, BR-1000-32) was used for the binding study, and the chip was regenerated 

with 2 M MgCl2 at the end of each cycle.  The Biotin CAPture kit was used for the binding 

study of mouse cGAS catalytic domain and nucleosome with the running buffer 20 mM 
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Tris, 150 mM NaCl, pH 7.5. All data were analyzed using Biacore X100 evaluation 

software version 2.0 (GE Healthcare Life Science) and the binding affinities (Kd) were 

determined by fitting the data to a steady-state 1:1 binding model. 

 

cGAS activity assay 

All cGAS activity assays were performed in 20 mM HEPES, 5 mM MgCl2, 5 mM 

DTT, 150 mM NaCl, 2 mM ATP (Sigma Aldrich, A2383) and 2 mM GTP (Sigma Aldrich, 

G8877), pH 7.5. For the mouse cGAS catalytic domain, 2.5 µM protein was incubated 

with 0.2 mg/ml salmon sperm DNA (Invitrogen, 15632-011) for 1 h at 37 °C. For mcGAS-

nucleosome complex or mcGAS-oligonucleosome complex, nucleosomes or 

oligonucleosomes purified from HEK 293T cells were incubated with excess mouse cGAS 

catalytic domain (In the mixture, the molar ratio of mcGAS: nucleosome is 10:1 and 

mcGAS: oligonucleosome is 20:1) for 1 h on ice. The complexes were purified by 

Superdex 200 10/300 GL column (GE Healthcare Life Sciences) with the running buffer 

20 mM Tris, 150 mM NaCl, pH 7.5. 2.5 µM mcGAS-nucleosome complex or 1.25 μM 

mcGAS-oligonucleosome complex was incubated with or without 2.5 µM mcGAS 

catalytic domain, 0.2 mg/ml 45bp interferon stimulatory dsDNA (ISD) or 0.2 mg/ml 

salmon sperm DNA for 1 h at 37 °C. For human cGAS full length, 2.5 μM protein was 

incubated with 0.2 mg/ml salmon sperm DNA for 4 h at 37 °C. The product in the 

supernatant was separated from cGAS, DNA, and nucleosome by ultrafiltration and was 

analyzed on a Mono Q 5/50GL ion exchange column (GE Healthcare Life Sciences). The 

relative enzymatic activities of the mouse and human cGAS mutants were calculated by 
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dividing the cGAMP peak height of the cGAS mutants by the cGAMP peak height of WT 

cGAS.  

Electrophoretic mobility shift assay (EMSA) 

For nucleosome binding studies by cGAS, 500 nM nucleosome or 250 nM 

oligonucleosome was mixed with mouse cGAS catalytic domain at indicated molar ratios 

in the buffer containing 20 mM Tris, 150 mM NaCl, 5 mM DTT, pH 7.5. After incubation 

on ice for 1 h, the mixtures were analyzed on 4-20% precast polyacrylamide gel (Bio-rad) 

at a constant voltage of 100 V. After Coomassie blue staining and destaining, the gels were 

imaged using a ChemiDoc MP Imager (Bio-Rad). The binding study of nucleosome 

variant H2A.Bbd (Active motif, 31556) with the mcGAS catalytic domain was also 

performed as the wild-type nucleosome. For cGAS and dsDNA binding studies, 1 μM 45 

bp interferon stimulatory dsDNA was mixed with WT and mutants of mouse cGAS 

catalytic domain at a molar ratio of 1:20. For human cGAS full-length proteins, the molar 

ratio of DNA and protein is 1:4. The mixtures were incubated on ice for 30 mins and then 

analyzed using 1% agarose gel.  

 

Negative stain 

Nucleosome was diluted to a certain concentration and was added a 5 uL droplet 

to the glow-discharged Carbon coated Cu grids for 10 seconds. The droplet was removed 

by a filter paper. Then 20 uL buffer was added to the grid to wash for 20 seconds and 

removed by a filter paper again. 20 uL of 0.75% Uranyl Formate was added to the grid to 

stain the protein. After 10 seconds, the Uranyl Formate was removed by filter paper. The 
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staining process was repeated twice. The grid was dried in air for 30 minutes and screened 

by TF-20 microscope operated at 200kV and equipped with a K2 Summit direct electron 

camera. 

 

Cryo-EM data acquisition 

Reconstituted nucleosomes or nucleosomes purified from HEK 293T cells were 

incubated with excess mouse cGAS catalytic domain for 1 h on ice. Excess cGAS was 

removed by Superdex 200 10/300 GL column (GE Healthcare Life Sciences). The cGAS-

nucleosome complex fraction was collected and concentrated to 0.4 mg/ml. Aliquots of 3 

μl nucleosome-cGAS complexes were loaded onto glow-discharged holey carbon grids 

(Electron Microscopy Sciences, CF312-50, CFlat, Cu, R 2/1, 300 mesh). Grids were 

blotted for 8 s and plunged frozen in liquid ethane using a Vitrobot at 4 °C and with 100% 

humidity. Grids were transferred to a Titan Krios electron microscope (Thermo fisher) 

operating at 300 kV equipped with a Gatan Gif Quantum energy filter (Slit width 20 eV). 

Micrographs were recorded by EPU through a Gatan K2 Summit detector in counting 

mode at a nominal magnification of ×130000 (yielding a pixel size of 1.07 Å). The dose 

rate on the camera was set to be 6 electrons per physical pixel per second. Exposure of 8 

s was dose-fractionated into 40 moves frames, leading to a total accumulated dose of 42 

electrons per Å2 on the specimen. Sample for the reconstituted nucleosome bound to 

mcGAS was recorded with a defocus in the range from 0.7 to 1.8 μm for a total of 4,959 

micrographs. Nucleosomes purified from HEK 293T cells bound to cGAS were recorded 

with a defocus in the range from 0.8 to 2.0 μm for a total of 2,979 micrographs. 
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Cryo-EM data processing 

The imaging processing is identical for the two datasets of in-vitro reconstituted 

and HEK 293T cells purified nucleosomes in complex with cGAS by Relion-3.023. The 

collected movies were subjected to MotionCor2 for whole-frame dose-weighted motion 

correction. 2,202,680 and 578,382 particles were auto picked by Relion for reconstituted 

and HEK 293T cells purified nucleosome-cGAS complexes, respectively. Multiple rounds 

of reference-free 2D classification were run to remove aggregates, ice contamination, and 

carbon edges by Relion, yielding 1,563,321 and 502,961 particles for reconstituted and 

HEK 293T cells purified nucleosome-cGAS complexes, respectively. Particles were 

processed with Relion 3D classification with ab-initio models generated in Relion. 3D 

class with cGAS densities were selected, yielding 1,162,012 and 90,398 particles for the 

reconstituted and HEK 293T cells purified nucleosome-cGAS complexes, respectively. 

The particles were subjected to 3D auto refinement in Relion, followed by additional 

cGAS focused skip-align 3D classification. 3D classes with clear cGAS densities were 

selected again, yielding 182,358 and 23,463 particles for reconstituted and HEK 293T 

cells purified nucleosome-cGAS complexes, respectively. The particles were then re-

centered and re-extracted to 3D auto refinement in Relion. The HEK 293T cells purified 

nucleosome-cGAS complex was reconstructed to 4.36 Å. The reconstituted nucleosome-

cGAS complex was reconstructed to 3.21 Å and further subjected to skip-align 3D 

classification. The class of two cGAS bound nucleosome contained 9,454 particles and 

was refined to 6.79Å. The EM map of one cGAS bound nucleosome was refined to 2.96 
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Å by CTF refinement and Bayesian Polishing. The reported resolutions are based on the 

gold-standard Fourier shell correlation (FSC) 0.143 criterion. Local resolution variations 

were estimated using Relion. 

 

Cryo-EM model building and refinement  

Human nucleosome model containing the 601 DNA was generated using a 

published nucleosome structure (PDB 3AFA). The nucleosome and mcGAS (PDB 4K8V) 

models were docked in the EM map in Chimera and fine-tuned by manual adjustment with 

Coot[121]. This model was refined against the EM map in Phenix[122]. Several loop 

regions of mcGAS, tails of the histone proteins, and the 601 dsDNA were manually 

adjusted to fit into the map using Coot. The model was refined again in Phenix and the 

crystal structure of mcGAS was used as a reference. This refined model was docked into 

the EM map derived from nucleosome purified from HEK 293T cells bound to mcGAS 

and the model was refined in Phenix to improve the fitting without further remodeling due 

to the lower resolution of the map.  

 

Ni-NTA Pull-down assay 

The H2A/H2B acidic patch residues were mutated to alanine (H2A: E61A, E64A, 

D90A, E91A, E92A; H2B: D51A; referred to as H2A/H2B 6A) or Lysine (H2A: E61K, 

E64K, D90K, E91K, E92K; H2B: D51K; referred as H2A/H2B 6K). 40 μg 6 × His tagged 

WT H2A/H2B, H2A/H2B 6A or H2A/H2B 6K dimer was incubated with 20 μg Ni-NTA 

beads in pull-down buffer (20 mM Tris, 150 mM NaCl, 5 mM DTT, pH 7.5) for 5 mins at 
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4°C. Beads were washed by pull-down buffer three times and mixed with 60 μg mouse 

cGAS domain, then incubated for 5 mins at 4°C. Excess proteins were washed off the 

beads using 300 uL pull-down buffer six times. 20 μl of 5  SDS loading buffer was added 

to the resin and boiled for 5 mins, thereafter, the samples were centrifuged briefly. 5 μl of 

supernatant was analyzed by SDS-PAGE. The protein bands were visualized by 

Coomassie blue staining. 

 

Circular dichroism spectroscopy 

Wild type mouse cGAS catalytic domain and its mutants were buffer exchanged 

into 10 mM phosphate buffer containing 50 mM K2SO4 at pH 7.5. The CD spectra were 

measured using a Chirascan spectrometer with each protein sample at 3 M concentration. 

The spectra from 280 nm to 190 nm wavelength were recorded at room temperature using 

a 2 mm path length quartz cuvette. 
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CHAPTER III  

STRUCTURAL BASIS OF STING ACTIVATION BY CGAMP2 

Introduction 

Cells can defend against bacteria and virus’s invasion through their immune 

system [11, 54-62]. Innate immunity employs a wide spectrum of germ-line encoded 

pattern-recognition receptors (PRRs) to sense microbial infection and initiate protective 

immune response[63-66]. Previous studies identified cyclic GMP-AMP synthase (cGAS) 

is a key dsDNA sensor in the cytosol [67-69]. cGAS is activated by dsDNA and catalyzes 

the synthesis of a noncanonical cyclic dinucleotide cGAMP containing mixed 2′,5′ and 

3′,5′ phosphodiester linkages [70-75].  Unlike bacterial cyclic dinucleotides (CDNs) with 

canonical 3’-5’ linkages, 2’3’-cGAMP is a unique metazoan CDN that comprises both 3’-

5’and a non-canonical 2’-5’ phosphodiester linkages connecting adenosine with guanosine 

and guanosine with adenosine, respectively. 

cGAMP, behaving as a second messenger, stimulates the induction of type I 

interferons (IFNs), such as IFN-α and β, through the adaptor STING located on the ER 

membrane [64, 68, 71, 76-78].  cGAMP binding induces conformational change and 

oligomerization of STING, leading to the recruitment and activation of TBK1 [68, 69, 74, 

79]. The transcription factor IRF-3 is then recruited to the signaling complex and activated 

 

2 Material from: Baoyu Zhao, Fenglei Du, Pengbiao Xu, Chang Shu, Banumathi Sankaran, Samantha L 

Bell, Mengmeng Liu, Yuanjiu Lei, Xinsheng Gao, Xiaofeng Fu, Fanxiu Zhu, Yang Liu, Arthur 

Laganowsky, Xueyun Zheng, Jun-Yuan Ji, A Phillip West, Robert O Watson, Pingwei Li. A conserved 

PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1 

, Nature, published 2019. 
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by TBK1 [80-82]. Mechanistically, STING employs a conserved pLxIS (p, hydrophilic 

residue, x, any residue, S, phosphorylation site) motif to recruit IRF-3 upon 

phosphorylation [83]. Phosphorylated IRF-3 oligomerizes, translocates to the nucleus [84, 

85], and initiates the expression of type I IFNs [86-89]. The transcription factor NF-κB is 

also activated upon the stimulation of STING and is likely involved in the transcriptional 

regulation of IFN-β expression together with IRF-3 [54, 78, 90, 91]. Aberrant activation 

of innate immune responses by self nucleic acids causes autoimmune disorders such as 

systemic lupus erythematosus (SLE) and polyarthritis [92-99]. Several mutations of 

human STING cause autoimmune disorders [100, 101].  In addition to its roles in innate 

immunity, cGAMP and its phosphorothioate derivatives have potent antitumor activity 

and have applications in cancer immunotherapy [97, 102-104].  

The detection of foreign nucleic acids is a central strategy in the innate immune 

system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that catalyzes the 

synthesis of a cyclic dinucleotide second messenger, cGAMP, that binds to the adaptor 

STING (Stimulator of interferon genes protein), which forms puncta on the ER membrane 

and mediates the recruitment and activation of the protein kinase TBK1 and transcription 

factor IRF-3. Phosphorylated IRF-3 translocates to the nucleus and induces the expression 

of type I interferons. However, the molecular mechanisms governing how cGAMP 

activates STING at the ER membrane remain poorly understood. Here, we report that cells 

have no STING mediated signaling if STING is truncated on either the N-terminal 

transmembrane domain or C-terminal TBK1/IRF3 binding region. Furthermore, the N-

terminal transmembrane domain of STING is essential for STING oligomerization and 
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signaling. Moreover, cGAMP binding induces the oligomerization of full-length STING 

both in vitro and in vivo. The central hypothesis is that cGAMP binding makes the 

conformational changes of STING dimer located discretely on the ER membrane, and 

increases the affinity of STING dimers to form oligomer, which facilitates the activation 

of kinase TBK1. These comprehensive structural and functional studies provide new 

insights into the mechanism of STING activation. 

One-step purification of GFP fusion protein with GFP-Nanobody coated 

streptavidin resins 

Introduction of the method 

The purification of target protein from the expression system is always critical 

before structural determination, including X-Ray crystallization and Cryo-Electron 

Microscopy (Cryo-EM). Purification based on conventional affinity tags is not generally 

satisfying for its specificity, especially when macromolecules are low-level expressed 

from the mammalians system. Here we have developed a new protein expression and 

purification tracking system, with green fluorescence protein (GFP) tag fusion and GFP-

Nanobody coated streptavidin beads (GNB). This system has an advantage especially for 

the low-level expressed macromolecular in mammalian cells. GNB has high specificity 

and extremely tight affinity to the GFP tag at 8.7 picomolar. Fusing GFP tag to target 

protein not only provides affinity tags for GNB but also facilitates the solubility and gives 

easy track of the protein expression and purification by fluorescence. After GFP tagged 

protein is captured and purified by GNB, the GFP tag can be cleaved at the pre-inserted 

thrombin site and removed by size exclusion chromatography, leaving the tag-free 
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recombinant protein. By such a method, we purify full-length integral membrane protein 

STING from HEK293 Freestyle cells and its soluble truncation from E. coils BL21 

individually. Thus, GNB offers an efficient and general method to obtain highly purified 

tag-free recombinant protein and is therefore suitable for the subsequent structural 

determination. The biotin-labeled GFP-Nanobody also works in coating the SPR chip, 

making it possible to immobilize GFP tagged protein for direct binding detection.  

Studies of protein structure and functions typically require the purification of the 

target protein[123, 124]. The conventional affinity-tag purification is generally the first 

step. This includes but is not limited to polyhistidine tags, Glutathione S-Transferase 

(GST) tags, Maltose Binding Protein (MBP) tags, Streptavidin/Biotin based tags[125]. 

Polyhistidine tags have an advantage over other tags for their small size, which helps 

maintain the native function of overexpressed target proteins. The challenge to use 

polyhistidine tags is the nonspecific binding of the untagged protein. Even though 

histidine contributes to only 2% of all protein residues, some cellular proteins have two or 

more adjacent histidine residues, especially in mammalian expression system [126]. These 

proteins will have an affinity to Ni NTA resin and co-elute with the tagged protein, 

resulting in contamination.  

 The antibody is made use of to overcome the nonspecific binding in protein 

purification from mammalian cells. Using antibody also enhances the yield purity by 

higher affinity in comparison to conventional affinity tags. Such antibody systems include 

Flag tag (DYKDDDK), Myc tag (EQKLISEEDL), KT3 epitope (KPPTPPPEPET), V5 tag 

(GKPIPNPLLGLDST), and HA tag (YPYDVPDYA)[127, 128]. The antibody-based 
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purification is limited to a small scale, such as immunoprecipitation because the yield of 

antibody is low and the resins’ price is accordingly high. The nanobody, also known as a 

single-domain antibody, is a better choice for large scale yield[129]. Nanobody has a 

heavy chain only and their variable region (VHH) is the smallest antigen-binding fragment 

found in a natural antibody[129]. With the same or even higher affinity to antigens, the 

expression of 12-15 kD nanobody does not require difficult refolding and secretion steps 

as the 150-160 kD multi-fragment antibodies[130, 131]. 

  Here, we establish a novel one-step purification system with GFP fusion protein 

and GFP-Nanobody coated streptavidin beads (Figure 46). GFP tag fused to the target 

protein not only functions as affinity tags for GFP-Nanobody resins but also works as a 

fluorescence marker to track the protein expression and purification[132, 133]. The in-

house prepared GFP-Nanobody is high level expressed in E. coil with avi-polyhistidine-

SUMO fusion, making it easy to purify and store. GNB is prepared freshly by incubating 

the purified GFP-Nanobody with streptavidin resins and followed by a proper wash. The 

fresh-made GNB is ready to pull down the GFP fusion protein from the cell supernatant. 

The pull-down procedure usually takes half an hour and can be tracked by green 

fluorescence. With a proper wash of the GNB, SUMO protease is added to cleave out GFP 

fusion protein together with GFP-Nanobody from resins and additional thrombin protease 

would cleave off the GFP/GFP-Nanobody. The untagged target protein is fractionated on 

size exclusion chromatography.  
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Figure 46. Schematic of the GFP-Nanobody assisted purification. 

 

 

Expression and purification of biotin-labeled GFP-Nanobody 

The GFP-Nanobody is fused in frame with upstream AviTag, Polyhistidine tag and 

SUMO tag in pET-28a vector. AviTag is for biotin label, where biotin ligase catalyzes 

amide linkage between the biotin and the specific lysine of the 15-aa AviTag peptide[134]. 

Polyhistidine tag is fused to purify the GFP-Nanobody from E. coli expression system 

with Ni NTA resins. The SUMO fusion is to enhance the expression and make it possible 

to be cleaved off the Nanobody from resins.  
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Figure 47. The purification of GFP-Nanobody and binding study. 

 

 

The Avi-Polyhistidine-SUMO tagged GFP-Nanobody is highly expressed in E. 

coli BL21 strains. The GFP-Nanobody is purified by Ni-NTA affinity column, with 

subsequent size exclusion chromatography (Figure 47). The yield is high for 30 mg protein 

per Liter medium.  

In SPR characterization, the GFP-Nanobody has an extremely high affinity to bind 

GFP (8.7 pM) (Figure 47). The measured Kon is 1.0x109 M-1s-1 and koff is 8.7x10-3 s-1. It is 

considered that GFP Nanobody works as a bridge for SPR chip and GFP protein. It binds 
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to streptavidin SPR chip with its biotin label and binds to GFP with Nanobody. The SPR 

response is stable and horizontal with the wash, indicating the GFP-Nanobody works great 

to pull-down GFP proteins and maintain this tight affinity. 

Purification of GFP tagged STING by GNB 

Here, we test the purification of GFP fused integral membrane protein STING and 

its soluble truncation residues 155-379. STING155-379 does not have transmembrane 

regions. We fuse STING155-379 with an N-terminal GFP tag and express it in the E.coli 

system. STINGFL is a transmembrane protein and we express it in 293F cells with a C-

terminal GFP tag. The purification of GFP tagged protein can be tracked by green 

fluorescence. Photos of the purification of STING155-379 are recorded (Figure 48). 
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Figure 48. Purification of GFP-STING 

 

 

In GFP-STING155-379 purification, after incubating GNB with cell supernatant for 

30 mins, GFP fusion protein goes to resins and leaves no green fluorescence in the 

supernatant, indicating all GFP fusion protein is captured by GNB. The GFP fusion 

protein-coupled resins are washed with Running Buffer to remove background proteins 

and the supernatant goes to clear. After adding SUMO protease to resins, SUMO protease 

cleaves after the C terminal of the SUMO tag. Leaving the SUMO tag with resins, the 



 

 80 

GFP fusion protein coupled with GFP-Nanobody returns back to supernatant again. The 

GNB purified GFP STING155-379 together with GFP-Nanobody is analyzed by SDS-PAGE 

(Figure 48). 

In STINGFL-GFP purification, lysis buffer including 1% DDM detergent is added 

to cell lysate to extract full-length STING from cell membranes. After ultracentrifugation 

to remove cell debris, GNB is mixed with cell supernatant and standard purification 

protocol is followed with SUMO protease. GNB purification works effectively to produce 

a high-purity yield, as analyzed by SDS-PAGE (Figure 48). 

Purification of untagged STINGFL 

Because SUMO protease cleaves at the C-terminal of SUMO tag, GFP-Nanobody 

together with the GFP fusion protein is eluted from beads. As in plasmid constructs, the 

thrombin site is pre-inserted between the target protein and GFP tag. To purify the 

untagged protein, the thrombin enzyme is added to cleave between the target protein and 

GFP/GFP-Nanobody. In full-length STING purification, as STING is activated by 

cGAMP, it forms oligomers in ~400kD complex, which is much larger than 40kD 

GFP/GFP-Nanobody. The STING oligomers are cleaved off the GFP/GFP-Nanobody 

with thrombin and separate with GFP/GFP-Nanobody in a superose 6 size exclusion 

column (Figure 49). The purity of untagged STING is also analyzed by SDS-PAGE 

(Figure 49). 
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Figure 49. Purification of untagged STING 

 

 

On-Chip purification and binding detection for GFP tagged protein 

As for the conventional SPR experiment, immobilized protein is crosslinked to 

chip by amine groups. It requires the purification of this immobilized protein prior to 

detecting binding, or cellular protein will make contamination and interfere with the 

affinity detection. The purification step limits the usage of SPR because many proteins are 

difficult to high-level expressed or purified. On the other hand, the usage amount of the 

immobilized protein in SPR is very small. It only requires about 1 ug protein to coat the 

chip. Here we use GFP-Nanobody coated SPR chip to immobilize GFP fusion protein in 

cell supernatant, which does not require the purification step. The STING155-379EFEEMW is 
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a mutant of STING, which has a high affinity to TBK1S172A as reported[135]. We express 

the GFP fusion STING155-379EFEEMW in E. coli and flow through the cell supernatant to the 

GFP-Nanobody coated chip. The chip works to immobilize enough GFP-STING with only 

100uL cell lysate. After washing out the background protein and getting a stable baseline, 

the sequentially diluted TBK1 is flowed through to detect affinity. The readout Kd of GFP-

STING155-379EFEEMW to TBK1S172A is 0.5 uM (Figure 50), which is in the same order as the 

reported Kd 1.4 uM[135]. 

 

Figure 50. SPR of GFP-STING with TBK1 
 

 

Discussion 

The GFP-Nanobody is small (13kD) and stable[133]. With avi-polyhistidine-

SUMO fusion, we purified 200mg GFP-Nanobody from 6L LB medium. At 4 mg/ml, 

purified GFP-Nanobody is stored in a -80°C refrigerator. To make GNB freshly, we mix 

the thawed GFP-Nanobody with streptavidin resins every time before purifying GFP 
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fusion protein. It avoids the frequent freeze and thaws for GFP-Nanobody coated 

streptavidin resins.  

  The GFP-Nanobody is biotin labeled to immobilize on the streptavidin resins. 

The biotin-streptavidin interaction system is the strongest noncovalent biological 

interaction known, having a dissociation constant, Kd, in the order of 4 x 10-14 M[136, 

137]. This affinity pair is widely used due to its stability in large pH and temperature 

ranges.  The streptavidin resin has a biotin-binding capacity of  >120 nmol/ml of gel, 

which is calculated to bind 3 mg avi-polyhistidine-SUMO GFP-Nanobody per milliliter 

of resins. The extra GFP-Nanobody, which exceeds the capacity of resins, must be washed 

off before adding GFP fusion proteins. This washing usually takes 5 times with 5-fold 

volume. Washing the resins also gets rid of the contaminated proteins in GFP-Nanobody 

due to the defect of Ni NTA affinity purification. 

  The purification method is suitable when the target protein is above 150kD. For 

protein around 40kD, as the size is similar to the GFP/GFP-Nanobody complex, it is 

difficult to separate the target protein from GFP/GFP-Nanobody on size exclusion 

chromatography after thrombin cleavage. For such cases, when GFP fusion protein is 

bound to GNB, thrombin can be added directly. Thrombin does not work as efficiently as 

SUMO protease to cleave the protein from resins. But in difficult circumstances like this, 

we make use of the advantage that thrombin elutes the tag-free target protein in one step. 

As green fluorescence does not go together with the target protein, the time course 

experiment for the thrombin cleavage should be evaluated by SDS-PAGE. 
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  In conclusion, we have developed a cleavable GFP-Nanobody system for GFP- 

fusion protein purification. By combining GNB with the HEK293F mammalian 

expression system, we have successfully expressed and purified the integral membrane 

protein STING-cGAMP complex. The whole expression and purification procedure are 

tracked by green fluorescence. The highly efficient GFP-Nanobody coated streptavidin 

beads preparation and simple, quick, and easy-tracking purification process will make this 

system generally applicable to other low-level expressed macromolecular purification. 

Biophysically characterize the full-length STING-cGAMP complex 

 The formation of STING oligomer upon cGAMP binding is identified in cell 

research. Here we purify full-length STING protein out of HEK293F mammalian cells 

and characterize the properties of full-length STING before and after cGAMP activation.  

 

 

Figure 51. Schematic of the purification process of full-length STING 
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According to the current model of STING activation, cGAMP binding induces the 

oligomerization of STING, releasing its C-terminal tail (CTT) to mediate the recruitment 

and activation of TBK1. Next, phosphorylated STING recruits IRF-3 to the signaling 

complex. The crystal structures of the human STING C-terminal domain (CTD) in 

isolation and in complex with cGAMP have been determined. These structures reveal that 

STING forms a dimer and the cGAMP binding site is located at the dimer interface. 

Ligand binding induces a pronounced conformational change of the STING dimer. 

However, STING CTD will not oligomerize upon cGAMP binding in vitro and cannot be 

phosphorylated by TBK1 in vivo. Luciferase assay indicates that cells have no STING 

mediated signaling if STING is truncated on the N-terminal transmembrane domain. Here, 

we establish the HEK293F mammalian cell expression system, which successfully 

expressed the full-length STING at ~1mg per liter cells. Biophysically characterizing the 

cGAMP-STING complex will provide insights into how cGAMP binding induces the 

oligomerization of STING and activates STING mediated signaling. Other than the 

structural characterization of size and shape, as it is the first time that we obtained the full-

length STING in vitro, we also aim to test the interaction between full-length STING and 

kinase TBK1 with or without cGAMP activation, which will give insights into how 

cGAMP activates the STING-TBK1 pathway. 

Purify full-length STING with detergent  

To investigate how ligand binding induces the activation of STING, we have 

recently established a protocol to express GFP fusion of full-length human STING in 293F 

cells. To purify the STING-GFP fusion, we generated biotin-labeled SUMO fusion of a 
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GFP nanobody (nAb) that binds GFP with high affinity (KD ~10 pM by SPR). The GFP-

nAb was immobilized on streptavidin agarose beads and used for affinity purification of 

the STING-GFP fusion from the cell lysate. The STING-GFP fusion was cleaved from the 

agarose beads with SUMO protease and purified using a Superose 6 column. The yield of 

the purified STING-GFP is ~1.0 mg/L of cell culture. Next, the GFP tag was cleaved with 

thrombin and full-length STING was purified using a Superose 6 column with 1 μM 

cGAMP and 0.1% DDM in the running buffer. STING oligomer elutes on chromatography 

at a single peak around ~400 kD (Fig. 2.2A). After DDM is exchanged to another 

membrane-stabilizing reagent Amphipol A8-35, it elutes at the same position, suggesting 

that cGAMP binding induces the formation of a stable STING oligomer. 
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Figure 52. The crosslinking and detergent substitution of STING oligomer 

with cGAMP.  

a. Chromatography profile of STING oligomer in different detergents b. 

Cross-linked STING oligomer presents a high molecular weight on SDS-PAGE. 

 

 

Estimate the size of full-length STING oligomer through Crosslinking  

Crosslinking reagent glutaraldehyde covalently binds amine groups in the side-

chain of lysine residues, making it possible to maintain the intact structure of complex in 

different conditions. Due to the fact that the spacer length of glutaraldehyde is around 5Å, 

it usually will not make artifacts by crosslinking non-specific binding regions. Here we 
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use the “on-column” cross-linking strategy to stabilize the full-length STING oligomers 

on a Superose 6 column [55]. This method facilitated near-complete cross-linking of the 

preformed complexes at relatively high concentrations and simultaneously enabled the 

isolation of samples of different sizes. After loading the cross-linked STING oligomer to 

SDS-PAGE using a 4-20% gradient gel, the main protein band with a molecular mass of 

~360kD was observed, (Figure 52) which agreed with the results from gel filtration 

chromatography. Based on these results, we estimate that there are 4~5 STING dimers 

present in the oligomers of the STING-cGAMP complex. 

Determine the structure of the STING-cGAMP complex 

Although the cytosolic domain of STING has been solved by X-ray 

crystallography, the truncated STING cannot form an oligomer and it cannot function to 

mediate TBK1 activation in cells. Since we successfully purified full-length STING, we 

aim to determine the oligomer structure either by Crystallography or Cryo-electron 

microscopy. To stabilize the transmembrane domain of STING, multiple detergents such 

as N-Dedecyl-beta-Maltoside (DDM) or amphipol A8-35 would be optimized in the 

purification and structural determination process. Basically, TEM FEI Tecnai F20 were 

used to collect micrographs and the data was analyzed by Relion 3.0 software to eventually 

generate the three-dimensional model. 

Estimate homogeneity by negative stained electron microscopy  

To confirm whether the full-length STING oligomer is suitable for an electron 

microscopy study, a negative stain screen is necessary beforehand. The full-length STING 

oligomer is diluted to 0.01 mg/ml and stained with 0.75% Uranyl Formate. Negative 
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stained specimen indicates that STING dimers likely stack against each other side by side 

to form oligomer. STING oligomer also presents a homogeneous formation after staining, 

which supports the subsequent cryo-EM study. 

 

Figure 53. Negative Stain of human FL STING. 

a. The raw micrograph of human FL STING oligomer with cGAMP. b. 2D 

averages of the particles. 

 

 

Reconstruct the STING oligomer by Cryo-electron microscopy   

Cryo-EM is a form of transmission electron microscopy (TEM). By averaging 

millions of particles from diverse orientations, the single-particle reconstruction could 

reach an atomic resolution, revealing protein-protein interactions in the physiological 

state. To increase specimen homogeneity, I applied the “on column” crosslinking of 

STING oligomer. Then I changed detergent DDM to amphipol A8-35, which gives better 

particle distribution in Cryo-EM. The final protein at a concentration around 0.6 mg/ml is 

applied to glow discharged C-flat carbon grids and frozen by Vitrobot in liquid ethane. 

The raw image presents mono-dispersed layer stack particles. The subsequent 2D 
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classification analysis outputs a projection around 7Å resolution, indicating the particles 

are quite homogeneous and suitable for EM study. However, in cryo-EM 3D structure 

reconstruction, we encounter a preferred orientation issue, where the transmembrane 

domain prefers to stay in the air-water interface. In such circumstances, we cannot get 

structural information from other directions and the structural model is less accurate 

accordingly. The 3D reconstruction is reasonable because the structure of the cytosolic 

domain fits the bottom part and the map contains extra density where the transmembrane 

domain may exist. The 3D map is ~17Å, which requires improvement by solving the 

preferred orientation issue. 

Optimize the particle distribution targeting preferred orientation 

To overcome the preferred orientation issue, we need to deal with the hydrophobic 

property of the transmembrane domain of the STING oligomer. One of the methods is to 

add the detergent back to the oligomer. I try to add 0.01% DDM or Amphipol A8-35 back 

to change the physical properties of the water solution. In theory, DDM containing buffer 

will weaken hydrogen bonds that make water molecules stick to each other and decrease 

the surface tension of water. 0.01% DDM is below the critical micelle concentration 

(CMC) so that it will not form micelles that affect the cryo-EM image collection. 
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Figure 54. The cryo-EM study of STING oligomer with cGAMP. 

a. Raw micrographs of STING-cGAMP complex. b. Class 2D average analysis 

of the particles. c. Refined 3D model at 11Å 
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However, adding back detergent does not critically affect the specimen property. 

Finally, I choose to tilt the grids in data collection, which is also a method targeting the 

preferred orientation. The dataset was manually collected with a TF20 microscope at 0 o, 

15 o, 30 o, and 45 o tilting degrees. The data process of the tilted data indicates a significant 

improvement in the angular distribution of particles. 

We set up the collaboration with the EM facility at Florida State University, which 

runs a 300kV Titan Krios microscope equipped with the K3 camera. The whole dataset 

collected includes 3956 micrographs with 15 o and 30 o tilting, and 880,703 particles are 

picked (Fig. 3A).  

 

Structural determination of STING by Relion 

After we solve the preferred orientation problem, I use Relion 3.0 to solve the EM 

structure. Specifically, the micrograph stack is subjected to software MotionCor2 for 

whole-frame motion correction. Particle picking is first performed manually on the 

summed images in EMAN2.2 to generate a reference for auto-picking. Gautomatch and 

Gctf are used to pick particles and estimate local CTF relatively. The generated particles 

are subjected to Relion 3.0 to analyze 2D classification and 3D classification. The 3D auto 

refinement is also run in Relion 3.0, which generates the high-resolution map. The 3D 

reconstruction increases resolution from 17Å to 11Å with a much-improved angular 

distribution (Fig. 3C).  
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Discussion and future studies 

After we determine the structures of full-length STING, we can uncover the 

mystery of STING oligomerization via its N-terminal transmembrane domain. Then we 

aim to do mutagenesis studies on the newly found interactions to probe if we could block 

or manipulate the formation of full-length STING oligomer. Based on the structure, we 

are able to investigate how reported mutations of STING, such as V147L, N154S, and 

V155M, cause autoimmune disorders. The atomic resolution model coupled with a 

mutagenesis study will propose potential drug sites for subsequent research. 

To elucidate the mechanism of STING activation, we determine the structure of 

full-length STING bound to cGAMP by cryo-EM. These structural studies provide critical 

insights into the mechanism of STING activation by cGAMP, which is essential for the 

cGAS-STING signaling pathway. As it is in biophysical characterization, the purified full-

length STING with cGAMP exists as a stable oligomer of ~360 kD. The homogeneous 

transmembrane complex is suitable for structural determination. For cryo-EM data 

collection, the grids of the STING complex are first screened to optimize the sample 

condition. We conduct large-scale data collection from an optimized specimen on our FEI 

Tecnai F20 cryo-electron microscope equipped with a Gatan K2-summit electron counting 

direct detection camera. The cryo-EM images are analyzed using Relion 3.0 on our 

campus supercomputer cluster to generate the three-dimensional density map. We will 

dock the STING CTD model into the map and build a molecular model of transmembrane 

helixes using Chimera or Coot. 
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The innate immune response mediated by the cGAS-STING pathway is critical in 

host defense against viral infection. Our  research represents a rigorous and comprehensive 

investigation into the molecular bases of key steps of the cGAS-STING pathway, 

especially the STING activation progress.  

It’s worth it to investigate how full-length STING functions to oligomerize and 

mediate TBK1 activation in cells. Considering the truncated cytosolic domain cannot 

either oligomerize or mediate pathways downstream, the transmembrane domain 

interaction might be the key step after cGAMP activation. After we determine the structure 

of the full-length STING oligomer, we build an atomic model and determine the 

interactions. We aim to explain the conformational changes of STING after cGAMP 

activation. Based on the newly found interactions, several mutations could be made 

accordingly. The subsequent in vivo and in vitro functional studies will help validate the 

structure. This structure will have more importance than that has been solved, because it 

is the first full-length structure contains the oligomerized transmembrane domain and it is 

solved by Cryo-EM, which determines a structure in physiological status. As the 

interferon-β is reported to repress cancer stem cells, all the proteins involved in the cGAS-

STING-IRF3 pathway may work as a drug target against cancer. The structural model of 

full-length oligomer will give insights into the mechanism of STING activation by 

cGAMP, revealing the possibility to interfere with this pathway by drug development. 

It’s been reported that the combination of point mutations on the trans-membrane 

domain of STING, including the combination of E68A, E69A, Q74A, S75A, and R76A, 

will completely abolish IFN induction but not cGAMP binding. These residues locate 
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inside the transmembrane domain and are predicted to be on loops outside the membrane. 

We propose these mutations may affect the formation of STING oligomer. Here we split 

up the combination of these mutations into single point mutation, including E68A, E69A, 

S75A, R76A, S80A, R83A, R86A, E143A, S145A, and E149A. Each of the STING 

mutants is transfected into HEK293T cells, which does not express STING. After 

transfection, the cells are stimulated with cGAMP. The expression of the IFN-β reporter 

is analyzed by luciferase assay. The reporter assay indicates that some of the single point 

mutants (E68A, E69A) abolish IFN induction, while R76A, R83A, R86A, E143A, S145A, 

and E149A weaken the STING function. We will couple this result with the structural 

model to explain the functions of these residues. 

Our studies will dramatically advance our understanding of the molecular basis of 

innate immunity against viral DNA. In addition, we will provide the structural basis for 

conceptually new approaches to treat viral diseases, cancer, and autoimmune disorders.  

Materials and Methods in detail 

Restriction enzymes were obtained from New England Biolabs. Bacterial 

expression vector pET28(a) was purchased from Novagen (EMD Millipore). Mammalian 

cell expression vector pEGFP-N1 was purchased from Clontech (Takara). Biotin Ligase 

plasmid pBirAcm was purchased from Avidity. Avi-SUMO tag sequence and GFP-

Nanobody sequence were synthesized by GenScript. Human STING cDNA was 

purchased from Open Biosystems. pAcGHLTc baculovirus transfer vectors and Baculo-

Gold bright linearized baculovirus DNA were purchased from BD Bioscience. 

Streptavidin agarose resin was purchased from Goldbio. 
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Protein expression and purification 

Saccharomyces cerevisiae Ulp1 fragment Ulp1403-621 has been shown capable to 

cleave a SUMO tag at its C-terminal in vitro[138, 139]. The open reading frame of Ulp1403-

621 SUMO Protease was subcloned to the pET28a vector to express a 6xHis-Ulp1403-621 

fusion protein.  

pET-28(a) 6xHis-Ulp1403-621 was transformed into Escherichia coli strain 

Bl21(DE3) on 50 ug/mL Kanamycin LB agar plates overnight. Several colonies from 

transformation plates were inoculated into 50 mL LB medium with 50 ug/mL Kanamycin 

and shaken at 37 °C for 4 hours. Subsequently, all of the 50 mL LB was distributed evenly 

into 6-liter LB medium with 50 ug/mL kanamycin, and shaken at 37 °C until the OD600 

reached about 1.0. LB medium was cooled down by ice to 15 °C. and 0.4 mM isopropyl 

β-D-thiogalactoside (IPTG) was added to the medium. Cells were harvested at 16 hours 

post-induction and stored at -80°C refrigerator. 

SUMO protease was purified through Ni NTA and Superdex 200 gel filtration 

columns as described[101, 140, 141]. Briefly, cell pellets were resuspended by 200 mL 

lysis buffer (50 mM Tris, 300mM NaCl, 1mM PMSF, pH 7.8) and applied to sonication 

until the lysate become non-viscous. The non-viscous lysate was centrifuged at 16000g, 4 

°C for 30 min to remove the cell debris from the supernatant. The supernatant was loaded 

to 20 mL packed Ni NTA resin and washed with 200 mL washing buffer (50 mM Tris, 

500mM NaCl, 20 mM imidazole, pH 8.0). The target protein was eluted with elution 

buffer (50 mM Tris, 300mM NaCl, 250 mM imidazole, pH 7.4) and concentrated to 2 mL 
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to Superdex 200 gel filtration column. The peak fractionation was collected and analyzed 

by SDS-PAGE. Pure fractionation was concentrated, freshly frozen by liquid nitrogen, 

and stored in a -80°C refrigerator. 

 

pET-28(a) Avi-6xHis-SUMO GFP-Nanobody 

Avi-His6-SUMO tag was cloned into the protein expression vector pET28a 

between NdeI and BamHI. The open reading frame of GFP nanobody was cloned into this 

modified avi-His6-SUMO pET28(a) at BamHI and XhoI. 

pET-28(a) Avi-6xHis-SUMO GFP-Nanobody was co-transformed with pBirAcm 

plasmid into Escherichia coli strain Bl21(DE3) on 50 ug/mL Kanamycin, 50 ug/mL 

Chloramphenicol LB agar plates overnight. Several colonies from transformation plates 

were inoculated into 50 mL LB medium with 50 ug/mL Kanamycin, 50 ug/mL 

Chloramphenicol, and shaken at 37 °C for 4 hours. Subsequently, all of the 50 mL LB was 

distributed evenly into 6-liter LB medium with 50 ug/mL kanamycin, 50 ug/mL 

Chloramphenicol, and shaken at 37 °C until the OD600 reached about 1.0. LB medium was 

cooled down by ice to 15 °C. 5 mM Biotin and 0.4 mM isopropyl β-D-thiogalactoside 

(IPTG) was added to the medium. Cells were harvested at 16 hours post-induction and 

stored at -80°C refrigerator. 

Biotin-labeled SUMO GFP-Nanobody was purified through Ni NTA and 

Superdex 200 gel filtration columns. Briefly, cell pellets were resuspended by 200 mL 

lysis buffer (50 mM Tris, 300mM NaCl, 1mM PMSF, pH 7.8) and applied to sonication 

until the lysate become non-viscous. The non-viscous lysate was centrifuged at 16000g, 4 
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°C for 30 min to remove the cell debris from the supernatant. The supernatant was loaded 

to 20 mL packed Ni NTA resin and washed with 200 mL washing buffer (50 mM Tris, 

500mM NaCl, 20 mM imidazole, pH 8.0). The target protein was eluted with elution 

buffer (50 mM Tris, 300mM NaCl, 250 mM imidazole, pH 7.4) and concentrated to 2 mL 

to Superdex 200 gel filtration column. The peak fractionation was collected and analyzed 

by SDS-PAGE. Pure fractionation was concentrated, freshly frozen by liquid nitrogen, 

and stored in a -80°C refrigerator. 

 

GFP-Nanobody coated streptavidin beads preparation 

2 mL Streptavidin resin was washed with 5 mL running buffer (20 mM Tris, 

150mM NaCl, pH 7.4) 5 times and incubated with 6 mg purified biotin-labeled SUMO 

GFP-Nanobody on ice for 20 min. The resin was then washed with 5 mL running buffer 

another 5 times and ready to use. 

 

pET-28(a) GFP STING155-379 

GFP tag was cloned into protein expression vector pET28a between NdeI and 

BamHI. The open reading frame of human STING155-379 was cloned into the modified GFP 

pET28(a) at BamHI and XhoI. Human STING155-379 Q359E, P361F, S366E, T376E, 

F378M, and S379W mutation was generated by site-directed mutagenesis. 

The expression of GFP STING155-379 and its mutant is the same as the SUMO 

protease in BL21. In purification, 10 mL cell pellets of GFP-STING155-341 were 

resuspended by 200 mL lysis buffer (50 mM Tris, 300mM NaCl, 1mM PMSF, pH 7.8) 
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and applied to sonication until the lysate become non-viscous. The non-viscous lysate was 

centrifuged at 16000g, 4 °C for 30 min to remove the cell debris from the supernatant. The 

supernatant was incubated with the 2 mL prepared GNB for 2 hours at 4°C with slight 

shaking. The beads were pelleted and washed with 30 mL running buffer for 5 times. After 

the final round of washing, 5 mL running buffer together with 0.1 mg SUMO protease 

was added to GNB to cleave the target protein from the beads. GFP-STING155-379 was 

eluted after a 1-hour incubation at 4 °C. 

 

 

pEGFP-N1 human STINGFL 

Full-length human STING was cloned into a pEGFP-N1 plasmid with a GFP tag 

attached to the C terminus of STING. A thrombin cleavage site was inserted between 

STING and GFP.[135] 

Full-length STING was expressed in FreeStyle 293-F cells. Cells were seeded into 

fresh FreeStyle 293 expression media with a final density of 1.0 × 106 cells ml−1 and 

incubated at 37 °C, 8% CO2, 130 r.p.m. After 24 h, 1 mg pEGFP-N1-STING plasmids, 2 

mg of linear PEI25000 were mixed into 100 ml 1 × PBS and incubated at room 

temperature for 20 min. Then, the mixture was added into 1-liter FreeStyle 293-F cells. 

After 2 days, the cells were pelleted at 3000 rpm for 5 min and stored at -80°C refrigerator. 

The pellets were resuspended in 40 ml pre-chilled lysis buffer (20 mM Tris pH 

7.5, 150 mM NaCl, 1% n-dodecyl-β-d-maltoside (DDM)) containing the protease cocktail 

inhibitors, sonicated for 3 cycles, and shaken gently at 4°C for 2 h. After centrifugation at 



 

 100 

16000 rpm for 30 min, the supernatant was mixed with 500 uL prepared GNB. After 

shaking at 4°C for another 2 h, the beads were pelleted and washed 5 times with pre-

chilled washing buffer (20 mM Tris pH 7.5, 150 mM NaCl, 0.1% DDM). Finally, the 

beads were resuspended in 500 μl washing buffer and SUMO protease was added to cleave 

the target protein from the beads. The eluted STINGFL-GFP protein was incubated with 

thrombin at 4 °C overnight and further purified using a Superose 6 increase 10/300 GL 

column (GE Healthcare). 

 

pAcGHLTc hTBK1(residues 1-657S172A) 

C terminal truncated (residues 1-657) human TBK1 was cloned into the 

pAcGHLTc baculovirus transfer vectors[140]. The vector contains a GST tag and a 6xHis 

tag upstream of the multiple cloning sites. The plasmids were transfected with Baculo-

Gold bright linearized baculovirus DNA into SF9 insect cells to generate recombinant 

baculovirus. The recombinant virus was amplified for 2 rounds before being used for 

large-scale expression. The insect SF9 cells were infected with the P3 virus and harvested 

72 hr after infection. The cells were lysed in the lysis buffer (0.2M Tris, 150 mM NaCl, 1 

mM PMSF, 1% NP-40, pH 8.0). The recombinant protein was purified by Ni NTA affinity 

chromatography followed by gel filtration chromatography.  

Protein expression and purification 

Constructs of human STING were cloned into a modified pET28(a) vector with an 

N-terminal Avi-His6-SUMO tag. For protein quantification, the mutation Val343Trp was 

introduced into the human STING C-terminal tail (residue 342–379). All the proteins were 
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expressed in BL21 (DE3) cells in M9 medium. The cDNA encoding human IRF-3 (residue 

189–427) was cloned into another modified pET28(a) vector with an N-terminal His6-

SUMO tag. IRF-3 was also expressed in BL21 (DE3) cells in regular LB medium (BD). 

When OD600 reached 1.0, the cells were induced with 0.4 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and cultured overnight at 16 °C. The proteins were purified 

using the protocol described previously24. In brief, the proteins were first purified using 

a nickel-NTA column. The SUMO tag was then cleaved using SUMO protease and 

removed using a nickel-NTA column. The proteins were further purified by gel filtration 

chromatography using Superdex75 or 200 (16/60 GL) columns (GE Healthcare). The Se-

methionine substituted human STING was expressed in M9 medium supplemented with 

selenomethionine (Acros Organics) and purified as described for the wild type protein. 

Human and mouse TBK1 (residue 1–657) were expressed in sf9 insect cells after infection 

with recombinant baculovirus and purified as described previously25. Biotin-labeled-Avi-

His6-SUMO proteins and peptides were also expressed in BL21 (DE3) cells in M9 

medium, with the exception of the biotin-labeled Avi-His6-SUMO-GFP nanobody, which 

was expressed in regular LB medium. The cells were co-transformed with the pET28(a) 

plasmid coding for the target proteins and the pBirAcm plasmid coding for BirA and 

induced with 0.4 mM IPTG in the presence of 5 μg ml−1 biotin and cultured at 16 °C 

overnight. The SUMO fusion proteins and peptides were first purified using a nickel-NTA 

column and further purified on a Superdex75 or 200 columns (GE Healthcare). 

Full-length human STING was cloned into pEGFP-N1 plasmid with a green 

fluorescent protein (GFP) tag attached to the C terminus of STING. A thrombin cleavage 

https://www.nature.com/articles/s41586-019-1228-x#ref-CR24
https://www.nature.com/articles/s41586-019-1228-x#ref-CR25
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site was inserted between STING and GFP. FreeStyle 293-F cells were seeded into fresh 

FreeStyle 293 expression media with a final density of 1.0 × 106 cells ml−1 and incubated 

at 37 °C, 8% CO2, 130 r.p.m. After 24 h, 1 mg pEGFP-N1-STING plasmids, 2 mg of 

linear PEI25000 (Polysciences, Inc.) were mixed into 100 ml 1 × PBS and incubated at 

room temperature for 20 min. Then, the mixture was added into 1L FreeStyle 293-F cells. 

After 2 days, the cells were pelleted at 3000 rpm for 5 min. The pellets were resuspended 

in 40 ml pre-chilled lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1% n-dodecyl-β-D-

maltoside (DDM)) containing the protease cocktail inhibitors (Roche), sonicated for 3 

cycles, and shook gently at 4°C for 2 h. After centrifugation at 16000 rpm for 30 min, the 

supernatant was mixed with 500 μl streptavidin agarose beads (EMD Millipore), which 

have been coupled with biotin-labeled Avi-SUMO-GFP nanobody. After shaking at 4°C 

for another 2 h, the beads were pelleted and washed with pre-chilled washing buffer (20 

mM Tris pH 7.5, 150 mM NaCl, 0.1% DDM). Finally, the beads were resuspended in 500 

μl washing buffer and SUMO protease was added to cleave the target protein from the 

beads. The eluted protein was incubated with thrombin at 4 °C overnight and further 

purified using a Superose 6 increase 10/300 GL column (GE Healthcare). All mutants of 

STING and TBK1 were generated using the QuikChange site-directed mutagenesis kit 

(Agilent) or a PCR-based technique with appropriate primers. The sequences of the 

plasmids were confirmed by plasmid DNA sequencing. 

Electron microscopy 

Before cryo-EM imaging, the full-length STING sample in 0.1% DDM was 

exchanged into Amphipol A8-35. In brief, STING at approximately 1 mg ml−1 was 
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incubated for around 8 h with threefold excess by mass of A8-35. DDM was removed by 

incubation with Bio-Beads SM-2 (Bio-Rad) overnight at 15 mg Bio-Beads per milliliter 

of solution. The sample was filtered to remove Bio-Beads and purified using a Superose 

6 increase 10/300 GL column eluted with a buffer containing 20 mM Tris, 150 mM NaCl 

and 5 μM cGAMP at pH 7.5. For cryo-EM imaging, 3 μl of STING at a concentration of 

0.6 mg ml−1 stabilized with A8-35 was applied to glow-discharged C-flat holey carbon 

grids (1.2/1.3, 400 mesh). Girds were blotted for 8 s and plunge frozen in liquid ethane 

using a Vitrobot. Images were recorded by Latitude on a Titan Krios Transmission 

Electron Microscope operating at 300 kV. A Gatan K3 detector was used in counting mode 

at a nominal magnification of ×64,000 (yielding a pixel size of 1.42 Å). The dose rate on 

the camera was set to be 23.8 electrons per physical pixel per second. Exposure of 8.4 s 

was dose-fractionated into 84 movie frames, leading to a total accumulated dose of 100 

electrons per Å2 on the specimen. Images were recorded with a defocus in the range from 

1.0 to 4.0 μm. Movies were collected with 15° and 30° tilt to address the preferred 

orientation of particle distribution. A total of 3,956 movies were recorded. The cryo-EM 

images were subjected to MotionCor2 for whole-frame dose-weighted motion correction. 

Particle picking was performed automatically on the summed images in Gautomatch. A 

total of 880,703 particles were picked. Per-particle local CTFs were estimated by GCTF. 

Two rounds of 2D classification were then performed. After discarding bad class averages, 

352,286 particles were re-centered and re-extracted to Relion 3D classification. Initial 

models for reconstruction were generated from scratch by the EMAN2 ‘e2initialmodel.py’ 

program using selected unsupervised 2D averages of good quality based on visual 
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comparison without applying any symmetry. A stack of 47,474 particles was selected to 

Relion 3D refinement using a 40 Å low-pass filtered reconstruction from the initial model. 

The final 3D reconstruction of STING oligomer with cGAMP has an overall resolution of 

11.6 Å, using gold-standard Fourier shell correlation (FSC) = 0.143 criteria. The cryo-EM 

maps of STING oligomer were segmented using Segger. We took advantage of the 

availability of crystal structure of hSTING cytosolic region with cGAMP to guide the 

decision on the final segmentation choice. After applying the smoothing procedure for 

four steps to the original electron microscopy map, four regions were obtained. STING 

CTD structures were docked to the segmentation map using Chimera. 
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CHAPTER IV  

SUMMARY OF STRUCTURAL INSIGHTS INTO THE MECHANISM OF 

HUMAN CASPASE-4 DETECTING INTRACELLULAR LPS AND FORMING 

ACTIVE INFLAMMASOME 

Introduction 

The innate immune system detects the pathogen-associated molecular patterns 

(PAMPs), such as nucleic acids and LPS, through pattern recognition receptors (PRRs), 

which triggers the induction of a variety of cytokines including type-I interferons (IFN-I) 
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to initiate host defense against pathogens [63, 142]. A set of TLRs (Toll-like receptor) 

have been characterized as PRRs for bacterial and viral products [143]. 

 

 

 

Figure 55. Schematic of the caspase4 inflammasome pathway 

 

 

 

LPS (lipopolysaccharide) is one of the most studied immunostimulatory 

components of bacteria and can induce strong systemic inflammation and sepsis. LPS is 

an essential and abundant component of the outer membrane of Gram-negative bacteria 

and some Gram-positive bacteria. LPS contains three parts, the lipidA, core 
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polysaccharide and O-antigen. LipidA is the innermost of the three regions and its 

hydrophobic nature allows it to anchor the LPS to the outer membrane. LipidA consists of 

two phosphorylated glucosamines and six acyl chains [142, 143].  

LPS in the extracellular area is detected through a series of interactions with 

proteins including LPS binding protein (LBP), CD14, MD-2 and TLR-4 [144-147]. After 

LPS recognition, plasma membrane located TLR-4 undergoes oligomerization and 

recruits its downstream adaptors including TRIF (TIR domain-containing adaptor 

inducing IFN-β), which mediates the recruitment and activation of TBK1 (TANK-Binding 

Kinase 1) and IRF-3 [148, 149]. IRF-3 is activated upon phosphorylation by TBK1, and 

translocated to the nucleus and initiates the transcription of IFN-β [83]. Thereafter, IFN-β 

induces the expression of a large set of anti-bacterial proteins, including IRGB10 and 

GBPs [150, 151]. 

The intracellular recognition of LPS features the binding of caspase-4 to LPS 

[152]. Recent structural and functional studies provide an overall picture and some 

molecular details of the caspase-4 mediated pyroptosis. The apo caspase-4 firstly 

oligomerizes with intracellular LPS with its CARD, resulting in autocatalysis, self-

cleavage and activation to the matured inflammasomes. The matured inflammasome in 

turn cleaves the substrate GSDMD between the C-terminal (CTD) and N-terminal (NTD) 

[153, 154]. Full-length apo GSDMD has been revealed autoinhibition that a hydrophobic 

pocket in the CTD binds to NTD, as shown in the crystal structure [155]. After the linker 

is cleaved by active inflammasome, the NTD of GSDMD is released and forms pores on 

the membrane by its hydrophobic nature. The pore contains a 27-28 folds of single 
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GSDMD NTD and has an inner diameter of 18 nm [156-158]. The LipidA region of LPS 

is required and sufficient to bind Caspase-4 to form the active inflammasome. The 

mutagenesis study of caspase-4 reveals the N-terminal CARD 59 amino acids are required 

for the binding to LPS or LipidA. The substitution of repeated lysine blocks this binding, 

which might explain the binding is related to the acidic phosphorylated glucosamine on 

LipidA. These studies have significantly advanced our understanding of intracellular 

sensing of LPS. However, the structures of the apo caspase-4 CARD or LPS bound 

caspase-4 CARD have not been determined, neither has the active caspase-4 LPS oligo 

inflammasome.  

To elucidate exactly the binding profile of CARD to LPS and shed light on the 

mechanism of the prerequisite of LPS binding and oligomer formation for capase4 self-

cleavage to activation, the structure of the human hcaspase4 LPS complex should be 

determined in a hybrid approach of X-ray crystallography and cryo-electron microscopy. 

The structural studies are needed to confirm the model and define the features, such as 

size, number of monomers and conformational changes that induce caspase-4 

autoactivation. To this end, we have expressed full length caspase-4 or CARD with 

cleavable SUMO tag. Our size-exclusion chromatography and analytical 

ultracentrifugation reveal that the purified caspase-4 binds to and disaggregates LPS or 

LipidA in vitro.  

In addition, with more caspase-4 added to the mixture system, the caspase-4 LPS 

complex goes to smaller size and becomes more homogeneous. To determine the 

molecular mechanism of caspase-4 autocatalysis and self-activation, it is a good idea to 
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crystalize the catalytical domain of caspase-4 for both states of inactivate and active. The 

long-term goal of this research is to elucidate the detailed molecular basis of intracellular 

LPS recognition by caspase-4. These results will significantly advance our understanding 

of the molecular mechanism of innate immunity towards microbial infection and provide 

a structural framework for conceptual new approaches to block undesired innate immune 

response. Furthermore, Chemotherapeutic and immunotherapeutic agonists can be 

developed by mediating the caspase-4 GSDMD related pryoptosis in the absence of LPS. 

Determine the structural basis of caspase-4 attaching to LPS through CARD 

domain 

Expression, purification and characterization of human caspase4  

The WT caspase4 autocatalyzes the cleavage at Asp289 of itself and induces 

autoactivation, killing the E. coli strains. We have made a SUMO-fused full-length human 

caspase4 (C258A) with a thrombin site downstream of CARD domain. This mutated 

protein expressed in E. coli lacks autocatalysis. The fusion protein was firstly purified 

using Ni-NTA agarose, followed by the cleavage of the SUMO tag. The caspase-4 protein 

was then purified by gel filtration chromatography. The resultant protein was further 

cleaved through the thrombin site to generate CARD which was purified through gel 

filtration chromatography. It is clearly observed that caspase-4 with the SUMO fusion can 

be highly expressed in E. coli as a monomer which was not affected by LPS present in E. 

coli.  
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Figure 56. The purification of full-length casp4 and CARD domain 

 

 

 

Figure 57. Size Exclusion Chromatography study of caspase4-LPS complex. 
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The binding profile of caspase-4 to LPS 

The tag-cleaved caspase-4 or its CARD domain binds with LPS to form larger 

complexes. We have mixed the purified caspase-4 with LPS in different molar ratios, 

incubated them for 1 hour and purified by superose 6 size exclusion chromatography. In 

the experiment, constant LPS concentration was used. When increasing concentration of 

apo caspase-4 was added, the complex peak was shifted right, indicating the complex 

became smaller in size (Figure 57). This trend was also observed in the complex of 

caspase-4 CARD binding with LPS or LipidA. When excess caspase-4 was added, the 
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peak of the complex in SEC became sharper, suggesting the complex was more 

homogeneous. 

 

 

Figure 58. SEC study of the caspase4-LipidA complex. 

 

 

Cryo-Electron microscopy of CARD/LPS complex  

To elucidate the structural basis of caspase-4 oligomer induced by LPS, we have 

purified SUMO fused full-length caspase-4 with a thrombin site inserted downstream of 

CARD. The full-length protein was cleaved with SUMO and thrombin proteases followed 

by gel filtration chromatography to generate CARD domain. The purified CARD was 

incubated with LPS at a 1:3 molar ratio. In Cryo-EM single particle reconstruction, the 
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CARD/LPS complex presents a football-like structure, with a bunch of spikes inserted. 

Due to the heterogeneity of this complex, the structure determination is stuck at a low 

resolution. 

 

 

 

Figure 59. Cryo-EM study of the caspase4-LPS complex. 

 

 

 

 To examine how heterogeneous the specimen is, the caspase-4/LPS complex was 

analyzed by analytical ultracentrifugation. The AUC experiment demonstrated that the 

peak of the complex CARD/LPS was broad and expanding in x-axis at a 1:8 molar ratio. 
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By increasing CARD protein concentration, the peak shifted to the left and became sharper 

and more symmetric in AUC, indicating the complex was smaller and more homogenous. 

 

 

Figure 60. AUC study of the caspase4-LPS complex 

 

Since the excess caspase-4 protein added to the complex continuously reduces the 

complex size, the addition of excess LPS to the complex has also been investigated. 

Compared to the continuously sharper and constantly more right shifted peak due to 

addition of CARD protein, the peak was not significantly shifted to the left or became 

broader with LPS added to the formed complex. It indicates that the caspase-4 does not 



 

 115 

dissociate from the formed complex to bind with other LPS molecular.

 

Figure 61. The addition of excess caspase4 reduces the complex size. 
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Figure 62. The addition of excess LPS does not affect the complex size. 

 

 

 

Homogenization of the caspase-4/LPS complex  

Obtaining a stably homogenous oligomer of caspase-4/LPS complex is critical for 

the single particle studies in Cryo-EM. Even though much effort has been contributed to 

make the caspase-4/LPS complex homogenous, the specimen cannot be resolved to high 

resolution yet. When excessive CARD protein was mixed with LPS at a total molar ratio 

of 1:1, generating the sharpest peak of the mixture in SEC , we collected the complex peak 

and applied it to the Liquid chromatography coupled Small-angle X-ray scattering(SEC-

SAXS), which showed that the radius of gyration reflected a sloping trend within the SEC 
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peak, indicating the SEC peak contained multiple species. To make the complex 

homogeneous, we substituted LPS with kdo2-LipidA, which has a more defined structure. 

The overnight incubation of caspase-4 with LipidA at 37°C also produced more 

homogeneous complex compared to ice incubation, possibly due to the high viscosity of 

lipid at low temperatures. The caspase-4/LipidA complex, or the CARD/LipidA complex, 

with excess proteins in the mixture to minimize the component heterogeneity, will be used 

in cryoEM. 

 

Figure 63. SAXS study of the caspase4-LPS complex. 
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Figure 64. The on-column crosslinking of casp4-LPS complex. 

 

Figure 65. SDS-PAGE of the crosslinked and non-crosslinked specimen. 
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Crosslinking study of caspase4-LPS complex 

To understand and evaluate heterogeneity of the complex, on-column crosslinking 

method is used. The glutaraldehyde crosslinking does not affect the complex size in SEC. 

The crosslinked specimen in the SDS-PAGE analyses showed a single band higher than 

250kD, indicating a large complex is formed.  

The homogenized and crosslinked caspase-4/LPS complex is used to collect data 

in cryo-EM. 1,676 movies with 50 frames each are collected at magnification of 130,000. 

Due to the smaller particle size, the physical apix size is chosen to be 0.64 Å. The 

homogenized complex is mono dispersed in the vitrified ice (Figure 66). 

However, the homogenized and crosslinked specimen in cryo-EM does not 

improve the 3D reconstruction (Figure 67). 
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Figure 66. Raw image of homogenized caspase-4/LPS complex. 

 

 

Figure 67. The 2D average of homogenized specimen. 

 

 

 

Cryo-EM study of caspase4-Lipid A complex 

To investigate how the caspase4-LipidA complex is formed, cryo-EM 

micrographs for the caspase-4 CARD domain in complex with LipidA are also collected 

and evaluated. In order to homogenize the specimen, the molar ratio of CARD protein to 
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LipidA was chosen to be 2:1. The LipidA/CARD complex shows similar particle 

distribution to LPS/CARD complex. Even though the LipidA/CARD particles show the 

similar shape as the LPS complex specimen, the 2D averages of the LipidA specimen still 

do not present a clear feature (Figure 68). Neither the caspase-4/LPS nor caspase-4/LipidA 

complex provides promising high-resolution 3D reconstruction no matter how we 

optimize the specimen preparation, indicating the complex is endogenously 

heterogeneous.   

 

Figure 68. Raw image and 2D averages of caspase-4/LipidA complex. 

 

 

 

Determine the structural basis of caspase-4 autocatalysis 

Expression, purification and characterization of human/mouse caspase4 ∆CARD  

When caspase-4 oligomerizes with LPS, it autocatalyzes the cleavage at Asp289 

and induces autoactivation. The transformation of WT human caspase-4 into E. coli BL21 

strains is lethal to cells, possibly due to the activity of caspase-4 inflammasome induced 

by cellular LPS. To harvest the active caspase-4 for functional study, CARD is truncated 
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off and a thrombin site is used to replace the cleavage loop at Asp289. The caspase-4 

containing amino acids 100-377 was purified similar to full-length caspase-4(C258A) 

with SUMO fusion system. Before use, thrombin protease is added to caspase-4 100-377 

to mimic the cleavage of the Asp289-containing loop and activate the caspase-4.Cryo-

Electron Microscopy reconstruction of full-length caspase-4.  

Cryo-Electron Microscopy reconstruction of full-length caspase-4  

Even though the catalytic domain structure of caspase-4 has been determined by 

us with X-Ray crystallography, the full-length caspase-4 protein has not provided a 

promising crystal for now. To determine the structure of full-length caspase-4, Cryo EM 

single particle reconstruction is worth a try. The full-length human caspase-4 contains 377 

amino acids and is calculated to be 43kD in size. This particular small size goes beyond 

the size limit of conventional cryo-EM single particle reconstruction, given that only a 

few 50kD proteins have been determined up to now, including streptavidin and 

hemoglobin dimer. However, this challenge can be overcome by those commercially 

available monoclonal antibodies, such as OTI4A2, 17D9 or 4B9. The antibodies are 

digested into Fab fragments using an IgG1 Fab preparation kit and then mixed with full-

length caspase-4. The Fab fragment is believed to make the target size significantly bigger, 

up to 100kD. By applying the phase plate in cryo-EM, the full-length caspase-4/Fab 

complex will be much less challenging for single particle study. The Fab fragment might 

also fix the caspase-4 protein to one conformation and therefore improve the structure 

resolution. 
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Discussion and future studies 

After my exhaustive optimization on complex formation of caspase-4/LPS, I still 

cannot determine a good sample for cryo-EM single particle reconstruction. My optimal 

condition right now is to use LipidA to avoid the heterogeneity of O-antigen of LPS from 

different sources, to use caspase-4 CARD domain instead of FL caspase-4 to avoid the 

heterogeneity induced by the FL caspase-4 linker, to use extremely high ratio of protein 

to LipidA in the mixture for homogeneity which is indicated by SEC and AUC, to use 

overnight incubation at 37C and to use crosslinking reagent to fix the complex. 

Due to the componential or structural heterogeneity, Cryo electron tomography is  

an alternative for relatively low-resolution but reasonable 3D structure. In sub-tomo 

average, multiple frames will be recorded for the caspase-4/LipidA complex particles that 

are vitrified in ice. Because the frames are collected with different tilting angles, structural 

information from different views will be recorded and processed to a structural model. 

The cryo-ET structure of caspase-4 LipidA structure will give a conceptual framework of 

how caspase-4 forms a complex with LPS to activate itself.  

Another future study will focus on how the complex is formed. One method is to 

use the density marker in the EM analyses to identify the arrangement of caspase4/LPS 

complex. Mtn tag can be added to the caspase-4 protein and we can follow a newly 

developed method to generate gold particles on protein [159]. The other method is to 

generate antibody Fab of caspase-4. The Fab bound to caspase-4 in the complex will 

indicate the location of caspase-4 CARD domain in the EM analyses and provide 

information on the complex arrangement. 
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Materials and Methods in detail 

Purification of Caspase-4 FL C258A 

pET-28(a) Avi-6xHis-SUMO Caspase-4 FL was transformed into Escherichia coli 

strain Bl21(DE3) on 50 ug/mL Kanamycin LB agar plates overnight. Several colonies 

from transformation plates were inoculated into 50 mL LB medium with 50 ug/mL 

Kanamycin, and shaken at 37 °C for 4 hours. Subsequently, all of the 50 mL LB was 

distributed evenly into 6-liter LB medium with 50 ug/mL kanamycin, and shaken at 37 °C 

until the OD600 reached about 1.0. LB medium was cooled down by ice to 15 °C. 5 mM 

Biotin and 0.4 mM isopropyl β-D-thiogalactoside (IPTG) was added to the medium. Cells 

were harvested at 16 hours post-induction and stored at -80°C refrigerator. 

SUMO Caspase-4 FL was purified through Ni NTA and Superdex 200 gel 

filtration columns. Briefly, cell pellets were resuspended by 200 mL lysis buffer (50 mM 

Tris, 300mM NaCl, 1mM PMSF, pH 7.8) and applied to sonication until the lysate become 

non-viscous. The non-viscous lysate was centrifuged at 16000g, 4 °C for 30 min to remove 

the cell debris from the supernatant. The supernatant was loaded to 20 mL packed Ni NTA 

resin and washed with 200 mL washing buffer (50 mM Tris, 500mM NaCl, 20 mM 

imidazole, pH 8.0). The target protein was eluted with elution buffer (50 mM Tris, 300mM 

NaCl, 250 mM imidazole, pH 7.4) and concentrated to 2 mL to Superdex 200 gel filtration 

column. The peak fractionation was collected and analyzed by SDS-PAGE. Pure 

fractionation was concentrated, freshly frozen by liquid nitrogen, and stored in a -80°C 

refrigerator. 
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Purification of Caspase-4 FL CARD 

To generate the CARD domain of caspase-4, a thrombin site was inserted after 

CARD domain in the caspase-4 FL plasmid. After this thrombin site inserted FL caspase-

4 is purified with the same method as the original one. Thrombin enzyme was added at a 

ratio of 1:100 with 2mM CaCl2. After overnight cleavage, the caspase-4 CARD domain 

is purified by SEC Superdex 200 gel filtration column. 
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