
OPTIMIZATION METHODS FOR CLUSTER ANALYSIS IN NETWORK-BASED DATA

MINING

A Dissertation

by

SEYEDMOHAMMADHOSSEIN HOSSEINIAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sergiy Butenko
Committee Members, Lewis Ntaimo

Kiavash Kianfar
Jianer Chen

Head of Department, Lewis Ntaimo

May 2021

Major Subject: Industrial Engineering

Copyright 2021 Seyedmohammadhossein Hosseinian

ABSTRACT

This dissertation focuses on two optimization problems that arise in network-based data min-

ing, concerning identification of basic community structures (clusters) in graphs: the maximum

edge weight clique and maximum induced cluster subgraph problems. We propose a continuous

quadratic formulation for the maximum edge weight clique problem, and establish the correspon-

dence between its local optima and maximal cliques in the graph. Subsequently, we present a

combinatorial branch-and-bound algorithm for this problem that takes advantage of a polynomial-

time solvable nonconvex relaxation of the proposed formulation. We also introduce a linear-time-

computable analytic upper bound on the clique number of a graph, as well as a new method of

upper-bounding the maximum edge weight clique problem, which leads to another exact algorithm

for this problem. For the maximum induced cluster subgraph problem, we present the results of a

comprehensive polyhedral analysis. We derive several families of facet-defining valid inequalities

for the IUC polytope associated with a graph. We also provide a complete description of this poly-

tope for some special classes of graphs. We establish computational complexity of the separation

problems for most of the considered families of valid inequalities, and explore the effectiveness of

employing the corresponding cutting planes in an integer (linear) programming framework for the

maximum induced cluster subgraph problem.

ii

DEDICATION

To my parents.

iii

ACKNOWLEDGMENTS

I am extremely grateful to my advisor, Dr. Sergiy Butenko. I learned a lot from Sergiy and enjoyed

every day of working with him. I am also very thankful to my advisory committee members, Drs.

Lewis Ntaimo, Kiavash Kianfar, and Jianer Chen, and the Associate Department Head for Graduate

Affairs, Dr. Alfredo Garcia, for their time and support. I would also like to pay my gratitude to

Drs. Kenneth Reinschmidt, recently deceased, and Warren D. Reece, for their encouragement and

advice when I was changing my academic path. Finally, my highest appreciation goes to my wife,

Mona, without whose understanding and love completing this work would have been impossible.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Sergiy Butenko

(advisor), Lewis Ntaimo, and Kiavash Kianfar of the Department of Industrial and Systems Engi-

neering, and Professor Jianer Chen of the Department of Computer Science and Engineering.

All work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by graduate assistantship from the Department of Industrial and

Systems Engineering of Texas A&M University and Dr. Sergiy Butenko, and a graduate teaching

fellowship from the College of Engineering of Texas A&M University.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES. ix

1. INTRODUCTION. 1

1.1 Summary of Contributions. 2

2. A NONCONVEX QUADRATIC OPTIMIZATION APPROACH TO THE MAXIMUM
EDGE WEIGHT CLIQUE PROBLEM .. 4

2.1 Introduction. 4
2.2 Quadratic Programming Formulation for the MEWC Problem. 6

2.2.1 First order necessary conditions (FONC) . 7
2.2.2 Second order necessary conditions (SONC) . 8
2.2.3 Second order sufficient conditions (SOSC) . 8

2.3 Optimality Characterizations . 8
2.4 Solving the MEWC Problem . 13

2.4.1 Construction heuristic . 13
2.4.2 Quadratic relaxation bound . 16
2.4.3 Combinatorial branch-and-bound procedure . 20

2.5 Computational Experiments . 25

3. A LAGRANGIAN BOUND ON THE CLIQUE NUMBER AND AN EXACT ALGO-
RITHM FOR THE MAXIMUM EDGE WEIGHT CLIQUE PROBLEM 32

3.1 Introduction. 32
3.2 A Lagrangian Relaxation Bound on the Clique Number . 34
3.3 An Exact Solution Method for the MEWC Problem . 38

3.3.1 Upper-bounding method . 39

vi

3.3.2 Algorithm . 42
3.4 Computational Experiments . 48

4. POLYHEDRAL PROPERTIES OF THE INDUCED CLUSTER SUBGRAPHS 57

4.1 Introduction. 57
4.1.1 Terminology and notation . 60

4.2 The IUC Polytope . 61
4.3 Facet-producing Structures . 64

4.3.1 Chordless cycle and its complement. 65
4.3.2 Star and double-star . 76
4.3.3 Fan and wheel . 89

4.4 The Separation Problems . 97
4.5 Computational Experiments . 101

5. SUMMARY AND CONCLUSIONS. 110

REFERENCES . 114

APPENDIX A. THE UNIVARIATE LAGRANGIAN RELAXATION PROBLEM.. 128

APPENDIX B. SUPPLEMENTARY ALGORITHMS . 130

vii

LIST OF FIGURES

FIGURE Page

3.1 Example graph for the analytic bound on the clique number. 38

4.1 Subgraph induced by a hole H , |H| = 3q + 1. 67

4.2 Subgraph induced by an anti-hole. 71

4.3 Example graphs for lifting the hole inequality. 72

viii

LIST OF TABLES

TABLE Page

2.1 Characteristics of the test instances (CBQ algorithm). 26

2.2 Solution time.. 27

2.3 Heuristic results. 29

2.4 Quality of the quadratic relaxation bound. 31

3.1 Characteristics of the test instances (combinatorial algorithm). 49

3.2 Analytic and coloring-based bounds on the clique number. 50

3.3 CPU times (in milliseconds) for the considered bounds on the clique number. 51

3.4 Solution time for the MEWC problem. 53

3.5 Size of the search tree. 56

4.1 First set of experiments: characteristics of the test instances.. 102

4.2 First set of experiments: improvement (in solution time) for each family of the
valid inequalities.. 104

4.3 First set of experiments: results of incorporating different combinations of valid
inequalities. 106

4.4 Second set of experiments: cut-generation characteristics. 107

4.5 Second set of experiments: integer (linear) programming solution results. 109

ix

1. INTRODUCTION

Graph theory proves to be a powerful tool in analysis of complex systems with numerous applica-

tions in science and engineering. Many real-life systems can be described as a set of components

that hold pairwise relationships while complex properties of the system can be explained in terms

of these simple connections. Graphs are mathematical abstractions of such systems, where the

system components are represented by vertices (nodes) and the pairwise relationships among them

by edges (links). Graph theory provides analytical means to study properties of these systems, and

presents algorithmic solutions to the corresponding problems.

In network-based system analysis, communities are of crucial importance, and identification

of basic community structures (clusters) in a graph—constructed based on data collected from

a real-life system—is considered a fundamental task in network-based data mining. This task

gives rise to the concept of a perfect cluster, which in graph-theoretic terminology is referred to

as clique. The term clique was first used in the context of social network analysis to refer to a

group of people who are all mutual friends of one another [1]. Consider a graph whose vertices

represent individuals in a social network; two vertices of the graph are connected by an edge if the

corresponding individuals are friends. Then, a clique is a subset of pairwise-connected (adjacent)

vertices. This model finds numerous applications in a wide range of disciplines, and is regarded as

one of the most fundamental concepts of graph theory. In this regard, over the past few decades, a

great deal of research has been dedicated to clique and many problems that center around it.

In this dissertation, we study two optimization problems that stem from this model in cluster

analysis of graphs. The first problem is the maximum edge weight clique problem, which is to find

a clique with the maximum weight of the corresponding induced subgraph in an edge-weighted

graph. An edge-weighted graph is a graph whose edges are associated with numerical parameters

(weights). The weights represent additional information about the underlying system, and the

problems defined on edge-weighted graphs aim to provide a more accurate analysis of the system

by exploiting this advantage. As a case in point, consider a graph representing similarities among

1

data objects. That is, the vertices corresponding to two objects are connected by an edge if they are

considered similar. Then, a clique represents a set of objects that are all similar to one another. This

construction, however, ignores the fact that similarity is often not a binary quality but a continuum,

which is quantified by some measure; some links in the network are stronger/weaker than the

others, and the cohesion within subgroups depends on the strength of the links. Therefore, in many

applications, it is necessary to include the similarity measure as the weight of the edges in the

graph, and look for cliques that exhibit strong relationships according to the measure. Chapters 2

and 3 of this dissertation are dedicated to the maximum edge weight clique problem.

The second problem is the maximum induced cluster subgraph problem, which is also referred

to as the maximum independent union of cliques problem in the literature. This problem is to find a

maximum-cardinality subset of vertices such that every connected component of the corresponding

induced subgraph is a complete graph, i.e., its vertex set forms a clique. Such an induced subgraph

provides important information about the heterogeneous structure of the graph, including the in-

herent number of its clusters and their centroids, which are essential to graph clustering methods.

Chapter 4 of this dissertation is dedicated to the maximum induced cluster subgraph problem.

1.1 Summary of Contributions

In Chapter 2, we present a continuous quadratic formulation for the maximum edge weight clique

(MEWC) problem, and study its characteristics in terms of local and global optimality. In par-

ticular, we establish the correspondence between local optima of the proposed formulation and

maximal cliques in the graph. Based on this result, we also present an exact algorithm to solve

the MEWC problem. The algorithm is a combinatorial branch-and-bound procedure that takes ad-

vantage of an algebraic upper bound and a construction heuristic based on the proposed quadratic

formulation.

In Chapter 3, we investigate the connection between the classical maximum (cardinality) clique

and MEWC problems. We derive an analytic upper bound on the clique number of a graph from

a Lagrangian relaxation of an integer (linear) programming formulation of the MEWC problem.

Furthermore, we utilize coloring-based bounds on the clique number of a graph in a novel upper-

2

bounding scheme for the MEWC problem. This scheme is employed within a combinatorial

branch-and-bound framework, yielding another exact algorithm for this problem.

In Chapter 4, we provide a comprehensive study of the maximum induced cluster subgraph

problem from the viewpoint of polyhedral combinatorics. We present several families of facet-

inducing valid inequalities for the independent-union-of-cliques (IUC) polytope associated with

a graph. For some special classes of graphs, we provide a full description of this polytope. We

also study computational complexity of the separation problems for the identified families of valid

inequalities, and establish their effectiveness in the integer (linear) programming solution methods

of the maximum induced cluster subgraph problem.

In Chapter 5, we conclude this dissertation by a brief summary and potential directions for

future research.

3

2. A NONCONVEX QUADRATIC OPTIMIZATION APPROACH TO THE MAXIMUM

EDGE WEIGHT CLIQUE PROBLEM∗

2.1 Introduction

Given a simple, undirected graph G = (V,E), where V = {1, . . . , n} is the set of vertices and E

is the set of edges, a clique is a subset of vertices C ⊆ V inducing a complete subgraph. A clique

is called maximal if it is not a (proper) subset of a larger clique, and maximum if there is no lager

clique in the graph. The maximum clique problem is to find a clique of maximum cardinality in G.

The cardinality of a maximum clique in G is called the clique number of the graph, and is denoted

by ω(G).

The maximum edge weight clique (MEWC) problem is a generalization of the maximum clique

problem to edge-weighted graphs, which seeks a clique C with the maximum total weight of the

edges in the corresponding induced subgraph G[C]. More formally, given a weight wij associated

with each edge {i, j} ∈ E, the weight of a clique C is defined as W (C) =
∑
{i,j}∈E(C) wij , and

the MEWC problem is to find a clique C in G that maximizes W (C). If all edge weights of G

are equal to 1, finding a maximum edge weight clique is equivalent to finding a maximum clique

C∗ in G with W (C∗) =
(
ω(G)

2

)
. Therefore, the MEWC problem is at least as difficult to solve

as the maximum clique problem, which is known to be NP-hard [3]. The MEWC problem has a

wide range of applications, including computer vision and pattern recognition [4, 5], marketing [6],

bioinformatics [7, 8], and healthcare [9].

Most of the works on the edge-weighted cliques in the literature deal with complete input

graphs, and look for a maximum edge weight clique of a cardinality not exceeding a given bound.

The corresponding problem is referred to as the maximum diversity problem, and is formally stated

as follows: given a complete (undirected) edge-weighted graph G = (V,E), find a subset of

vertices of cardinality at most k ≤ |V | with the maximum total weight of the interconnecting

∗ This chapter is reprinted with permission from “A nonconvex quadratic optimization approach to the maximum
edge weight clique problem” by S. Hosseinian, D. B. M. M. Fontes, and S. Butenko [2]. Copyright © 2018, Springer
Science+Business Media, LLC, part of Springer Nature.

4

edges. An instance of the MEWC problem can be transformed into an instance of the maximum

diversity problem by adding dummy edges with sufficiently large negative weights, and then solved

for k = |V |. The exact solution methods proposed for this problem mainly involve branch-and-

cut algorithms based on integer (linear) programming formulations; see for example [10, 11, 12,

13, 14]. Several heuristic and metaheuristic methods have also been applied to the maximum

diversity problem, including tabu search [15, 16, 17], memetic search [18], scatter search [19], and

greedy randomized adaptive search procedure [20, 21]. Reviews of these methods can be found

in [17, 22, 23].

The only previous works dealing with the MEWC problem that we are aware of are [24]

and [25], as well as our recent papers [26] and [27], the first of which is a preliminary workshop

version of the present work and the second – a survey paper focusing on mathematical optimiza-

tion formulations and existing solution approaches. More specifically, Pullan [24] developed a

phased local search heuristic for this problem, and Gouveia and Martins [25] presented a set of

integer programming formulations by introducing new valid inequalities to classical formulations

based on sparseness of the graph. Here, we also present an exact method to solve this problem.

We introduce a quadratic formulation for the MEWC problem; we use a relaxation of the new

formulation to draw an upper bound for this problem, and use this bound within a combinatorial

branch-and-bound procedure. Our method also benefits from an efficient construction heuristic

algorithm, which is derived from the proposed formulation.

Our approach is based on a continuous characterization of the MEWC problem. A connec-

tion between cliques and a continuous optimization problem was first established by Motzkin and

Straus [28], who showed a correspondence between maximum cliques in a graph and optima of a

certain standard quadratic program. Pardalos and Phillips [29] were the first to use this connection

in developing a global optimization algorithm for the maximum clique problem. The Motzkin-

Straus formulation and its generalizations have been extensively studied in [30, 31, 32, 33, 34,

35, 36, 37]. In particular, Bomze [33] introduced its regularized version, which ensures one-to-

one correspondence between local maxima of the quadratic program and maximal cliques of the

5

underlying graph. In a similar manner, we introduce a quadratic programming formulation for

the MEWC problem, and present the relation between the continuous problem and the underly-

ing graph in terms of global and local optima. Unlike the Motzkin-Straus formulation, which has

the standard simplex as its feasible region, our formulation maximizes a quadratic function over

a unit hypercube. Formulations of the maximum independent set problem, which is equivalent to

the maximum clique problem in the complement graph, as a problem of maximizing a nonlinear

function over a unit hypercube have been previously considered in [38, 39, 40, 41, 42, 43].

Throughout this chapter, we assume G is a proper graph and all its edge weights are positive.

A graph G is a proper graph if it is not complete and does not have an isolated vertex. By focusing

on proper graphs, we exclude some trivial cases with respect to the MEWC problem. We denote

vectors by boldface lowercase, and matrices by boldface uppercase letters. By 0 and 1, we denote

the vectors of all zero and one, respectively. All vectors are column vectors, and ‖ · ‖ denotes the

Euclidean norm.

2.2 Quadratic Programming Formulation for the MEWC Problem

We consider a simple, undirected, and edge-weighted graph G = (V,E), where |V | = n and the

edge weights are given by wij, ∀{i, j} ∈ E. For a vertex i ∈ V , let N(i) denote the neighborhood

of i in G, defined as N(i) = {j ∈ V | {i, j} ∈ E}. The closed neighborhood of i is N [i] =

N(i) ∪ {i}. Let W ∗(G) denote the edge weight of a MEWC in G. The characteristic vector of

a subset of vertices C ⊆ V is an n-dimensional vector x ∈ Rn such that xi = 1, ∀i ∈ C, and

xi = 0, ∀i /∈ C.

Proposition 1. The MEWC problem on G can be formulated as the following quadratic program

(QP):

W ∗(G) = max
x∈[0,1]n

 ∑
{i,j}∈E

wijxixj −
∑
{i,j}/∈E

w̄ijxixj

 , (2.1)

where x = (x1, x2, . . . , xn)> is the vector of variables corresponding to the vertices of G and w̄ij

6

is defined as follows:

w̄ij = max{
∑
k∈N(i)

wik,
∑
k∈N(j)

wjk}+ ξ, ∀{i, j} /∈ E, i 6= j, (2.2)

for an arbitrarily small ξ > 0. Any global optimal solution of this QP is the characteristic vector

of a MEWC in G.

Let Q be a square matrix of order n with the following structure:

Q(i, j) =


0, i = j,

wij, {i, j} ∈ E,

−w̄ij, {i, j} /∈ E;

(2.3)

then, (2.1) is equivalent to

max
x∈[0,1]n

f(x) =
1

2
x>Q x. (P)

Note that Q is symmetric and it is always indefinite by definition of a proper graph.

Proposition 1 is easy to establish directly, but it will also follow from the results characterizing

the connection between local maxima of (P) and maximal cliques in G in the next section. First,

we present the standard optimality conditions for (P).

2.2.1 First order necessary conditions (FONC)

Let x∗ ∈ [0, 1]n be a local maximum point of (P). Then, there are two non-negative vectors µ ∈ Rn

and λ ∈ Rn such that:

Q x∗ = λ− µ (λ ≥ 0, µ ≥ 0), (2.4)

µi x
∗
i = 0 and λi (1− x∗i) = 0, ∀i ∈ {1, 2, ..., n}, (2.5)

where µi, λi and x∗i are the i-th components of vectors µ, λ and x∗, respectively. The condi-

tion (2.4) enforces dual feasibility, and (2.5) is the complementary slackness condition.

7

2.2.2 Second order necessary conditions (SONC)

Suppose x∗ is a local maximum point of (P). Let

Z(x∗,µ,λ) = {i | (x∗i = 0 and µi > 0) or (x∗i = 1 and λi > 0)}, (2.6)

then, in addition to the first order necessary conditions, x∗ also satisfies

y>Q y ≤ 0, ∀y ∈ Rn subject to yi = 0, ∀i ∈ Z(x∗,µ,λ). (2.7)

2.2.3 Second order sufficient conditions (SOSC)

If a point x∗ satisfies FONC, SONC, and

y>Q y < 0, ∀y ∈ Rn \ {0} subject to yi = 0, ∀i ∈ Z(x∗,µ,λ), (2.8)

then x∗ is a strict local maximizer of (P).

2.3 Optimality Characterizations

Lemma 2. Every local maximizer x∗ of (P) is a binary vector, i.e., x∗ ∈ {0, 1}n, with at least two

components equal to 1.

Proof. Suppose there exists i ∈ {1, 2, . . . , n} such that 0 < x∗i < 1. By (2.5), µi = λi = 0 must

hold for this solution. By (2.4), this implies that

Qi x∗ = 0, (2.9)

where Qi denotes the i-th row of matrix Q. Regarding the structure of matrix Q, equation (2.9)

can be written as ∑
j∈N(i)

wij x
∗
j −

∑
k/∈N(i)

w̄ik x
∗
k + 0 x∗i = 0. (2.10)

8

In order for x∗ to satisfy (2.10), exactly one of the following conditions must hold at this point:

x∗j = x∗k = 0, ∀j, k ∈ {1, 2, ..., n}\{i}, (2.11)

∃ j ∈ N(i) s.t. x∗j 6= 0 and ∃ k /∈ N(i) s.t. x∗k 6= 0. (2.12)

In the above notation, i, j, and k are distinct indices. Now, we show that either of the aforemen-

tioned cases leads to a contradiction, implying that such a point x∗ does not exist. Consider the

former case. Since x∗ is a local maximum point of (P), f(x∗) ≥ f(x) for all feasible points

x ∈ Bε(x
∗) , where Bε(x

∗) = {x ∈ Rn : ‖x − x∗‖ ≤ ε} denotes an ε-neighborhood of x∗ in Rn.

It is apparent that f(x∗) = 0 because f is a homogeneous quadratic function. However, increas-

ing the value of x∗j : j ∈ N(i) from 0 to ε (a single variable) results in a distinct feasible point

x̂ ∈ Bε(x
∗) with f(x̂) = wij x

∗
i ε > 0 which contradicts the local optimality of x∗. Note that by

the problem assumption, i.e., there is no isolated vertex in G, it is guaranteed that such a vertex

j ∈ N(i) exists.

In the latter case, we use SONC to draw a contradiction. Let Y denote the set of all vectors y

that are considered for SONC at the local maximum point x∗. That is,

Y = {y | y ∈ Rn : yi = 0, ∀i ∈ Z(x∗,µ,λ)}. (2.13)

Consider the vector ỹ, only two components of which, ỹi and ỹk, are non-zero. Then, ỹ ∈ Y

if x∗i , x
∗
k 6= 0 and x∗i , x

∗
k 6= 1. These conditions on x∗i are already met by assumption, i.e.,

0 < x∗i < 1. We pick vertex k /∈ N(i) such that x∗k 6= 0. Note that, existence of such a vertex k

is assumed under this case. Besides, x∗k < 1 is enforced by the magnitude of w̄ik and (2.10). We

assign ỹi = 1 and ỹk = −1. By this assignment, ỹ ∈ Y and we have

ỹ>Q ỹ = 2 (−w̄ik)(1)(−1) = 2 w̄ik > 0. (2.14)

Equation (2.14) indicates violation of SONC, which contradicts the local optimality of x∗. This

9

proves that each local maximizer is a binary vector.

Since every variable in (P) corresponds to a vertex in the graph, every local maximum point

of (P) is the characteristic vector of a subset of vertices in G. Next, we show that at least two

components are equal to 1 in any local maximizer x∗ of (P). Since f is a homogeneous quadratic

function, f(x∗) = 0 if less than two coordinates of x∗ are nonzero. For 0, as the characteristic

vector of an empty set of vertices, observe that increasing the values of two variables xi and xj

such that {i, j} ∈ E from 0 to ε/
√

2 results in a new point x̂ ∈ Bε(0) with f(x̂) = 1
2
wij ε

2 >

0. Similarly, for the characteristic vector of a single-vertex set {i}, increasing the variable of

an adjacent vertex j from 0 to ε increases the function value to wij ε > 0. This completes the

proof.

Theorem 3. x∗ is a local maximizer of (P) if and only if it is the characteristic vector of a maximal

clique in G.

Proof. First, we show that if x∗ is a local maximizer of (P), then it is the characteristic vector of a

maximal clique in G. By Lemma 2, all components of x∗ have to be 0 or 1. Let V = S ∪ T be a

partition of vertices with respect to the components of x∗ as follows:

S = {j ∈ V | x∗j = 0} and T = {i ∈ V | x∗i = 1}. (2.15)

Note that a proper graph has at least three vertices and we have already shown that cardinality of

T is at least two.

By (2.5),

µi = 0 and λi ≥ 0, ∀i ∈ T, (2.16)

λj = 0 and µj ≥ 0, ∀j ∈ S. (2.17)

Equations (2.16)-(2.17) along with (2.4) imply that

10

Qi x∗ = λi ≥ 0, ∀i ∈ T, (2.18)

Qj x∗ = −µi ≤ 0, ∀j ∈ S, (2.19)

where Qi and Qj denote rows of matrix Q corresponding to vertices i ∈ T and j ∈ S, respectively.

Taking into account the structure of matrix Q and magnitude of its components, (2.18) implies that

for every vertex i ∈ T , all vertices that are not adjacent to i must have variables equal to zero. That

is,

i ∈ T, k /∈ N [i] ⇒ k ∈ S, (2.20)

which implies that T is a clique. Similarly, (2.19) implies that for every vertex j ∈ S, there must

exist at least one vertex i with x∗i = 1 such that i and j are not adjacent in G. That is,

∀j ∈ S ∃ i ∈ T : {i, j} /∈ E, (2.21)

so T is a maximal clique.

Now, we show that if x∗ is the characteristic vector of a maximal clique C in G, then it is a

local maximizer of (P). It is obvious that x∗ is a feasible point of (P). We start by showing that x∗

satisfies FONC and SONC. Let

µi = 0 and λi = Qi x∗, ∀i ∈ C, (2.22)

λj = 0 and µj = −Qj x∗, ∀j /∈ C. (2.23)

This assignment satisfies (2.5). It also satisfies Qx∗ = λ− µ. Therefore, in order to prove x∗ is a

stationary point, it suffices to show that

λi ≥ 0, ∀i ∈ C, and µj ≥ 0, ∀j /∈ C. (2.24)

11

Given the structure of matrix Q and x∗ being the characteristic vector of C, we have

Qi x∗ =
∑

k∈C∩N(i)

wik −
∑

l∈C\N(i)

w̄il, ∀i ∈ C. (2.25)

Besides, C being a maximal clique with at least two vertices implies that

∀i ∈ C : C\N(i) = ∅ and C ∩N(i) 6= ∅. (2.26)

Equations (2.22) and (2.25)-(2.26) imply that

λi =
∑

k∈C∩N(i)

wik > 0, ∀i ∈ C. (2.27)

Similarly,

Qj x∗ =
∑

k∈C∩N(j)

wjk −
∑

l∈C\N(j)

w̄jl, ∀j /∈ C, (2.28)

and by maximality of C,

C\N(j) 6= ∅, ∀j /∈ C. (2.29)

Regarding the magnitude of w̄jl, (2.23) and (2.28)-(2.29) imply that

Qj x∗ < 0 ∴ µj = −Qj x∗ > 0, ∀j /∈ C. (2.30)

Therefore, the assignment of λ and µ according to (2.22) and (2.23) satisfies FONC, so x∗ is

a stationary point of (P). Furthermore, Z(x∗,µ,λ) = V , Y = {0}, so SONC and SOSC are

satisfied, implying that x∗ is a strict local maximum point of this problem.

Corollary 4. A clique C is an optimal solution to the MEWC problem if and only if its character-

istic vector is a global maximizer of (P).

Proof. The feasible region of (P) is a compact set, so f(x) attains its global maximum in a local

maximizer. By Theorem 3, every local maximizer of (P) is the characteristic vector of a maximal

12

clique inG. The objective value of a local maximizer xC of (P), corresponding to a maximal clique

C in G, is

f(xC) =
∑
{i,j}∈E

wijxixj −
∑
{i,j}/∈E

w̄ijxixj =
∑

{i,j}∈E(C)

wij = W (C), (2.31)

where E(C) is the set of edges of the induced subgraph G[C]. Therefore, a global maximizer

of (P) is the characteristic vector of a maximal clique in G with maximum total weight.

As stated previously, the maximum clique problem can be considered as a special case of the

MEWC problem. Hence, the aforementioned results hold for this problem too. This is presented

through the following corollary.

Corollary 5. (The Maximum Clique Problem) The clique number ω(G) of a proper, undirected,

and unweighted graphG = (V,E) can be found through solving the following quadratic program-

ming problem: (
ω(G)

2

)
= max

x∈[0,1]n

1

2
x>Q x , (2.32)

where matrix Q is constructed according to (2.3), with wij = 1, ∀{i, j} ∈ E, and w̄ij =

max {d(i) , d(j)}+ 1, ∀{i, j} /∈ E; d(v) denotes the degree of a vertex v ∈ V .

2.4 Solving the MEWC Problem

The results in the last section establish the relation between (P) and the MEWC problem in terms

of optimality characteristics. We use these results to develop a method for solving the MEWC

problem. In this section, we first present a construction heuristic that is derived from a polynomial-

time solvable approximation of (P). Then, we introduce an algebraic upper bound for this problem

based on solving a quadratic relaxation of (P). Finally, we present our solution method, which is

a combinatorial branch-and-bound (B&B) procedure that uses an initial lower bound provided by

the heuristic algorithm, and applies the algebraic upper bound to prune the search tree.

2.4.1 Construction heuristic

Problem (P) concerns maximization of a nonconvex quadratic function subject to a set of lin-

ear constraints, which is NP-hard [44]. However, quadratic optimization subject to an ellipsoid

13

constraint is polynomial-time solvable [45]. We approximate (P) by replacing its unit hypercube

constraint with a unit hypersphere and examining stationary points of the new problem. Simi-

lar approaches have been successfully exploited before by replacing the standard simplex in the

Motzkin-Straus formulation [31, 36] or the unit hypercube in a QP formulation over a box [42]

with an ellipsoid constraint to develop a heuristic algorithm for the maximum clique/independent

set problem.

The new problem is obtained as follows. Assume that a MEWC consists of k vertices. Then

1>x∗ = k, so by adding this constraint and changing the variables by dividing each variable by k,

we obtain a problem equivalent to (P),

max
x∈Rn

f(x) =
1

2
x>Q x

s.t. x ∈ [0, 1/k]n

1>x = 1.

(2.33)

Finally, the feasible region of (2.33) is approximated with a unit hypersphere:

max
x∈Rn

f(x) =
1

2
x>Q x

s.t. x>x = 1.

(2.34)

Suppose x∗ is a local optimizer of (2.34). Then, the first order optimality conditions indicate

Q x∗ = 2µx∗, (2.35)

‖x∗‖2 = 1, (2.36)

where µ is the Lagrangian multiplier of the constraint.

Equations (2.35) and (2.36) imply that every local optimizer x∗ of (2.34) is a normalized eigen-

vector of matrix Q corresponding to an eigenvalue λ = 2µ. A heuristic solution to the MEWC

problem is constructed by considering all eigenvectors of matrix Q, each treated as an approxima-

14

tion of the characteristic vector of a subset of vertices inG. Algorithm 1 presents the corresponding

procedure.

Algorithm 1 Quadratic-based Construction Heuristic (QCH)
1: function QCH(G)
2: C̃ = ∅ ; W̃ = 0
3: construct matrix Q according to (2.3)
4: for each eigenvector xe of Q do
5: Cd = EXTRACTCLIQUE(xe, decreasing)
6: if W (Cd) > W̃ then . W (Cd): weight of the clique Cd
7: C̃ ← Cd ; W̃ ← W (Cd)
8: end if
9: Ci = EXTRACTCLIQUE(xe, increasing)

10: if W (Ci) > W̃ then . W (Ci): weight of the clique Ci
11: C̃ ← Ci ; W̃ ← W (Ci)
12: end if
13: end for
14: return (C̃, W̃)
15: end function

The QCH algorithm operates as follows: first, it calculates eigenvectors of matrix Q. Each

eigenvector xe is treated as an approximation of the characteristic vector of a maximal clique.

Mapping from a real-valued vector xe to a maximal clique is done through the EXTRACTCLIQUE

function, demonstrated in Algorithm 2. This function sorts the vertices based on their values in

vector xe. A clique is initiated by including the vertex corresponding to the first element of the

sorted list, and is expanded by appending other vertices according to their orders in the list. To

make sure the mapping output is indeed a clique, a vertex is added to the clique only if it is

adjacent to all vertices that are already in the clique. Sorting components of xe in a decreasing

(non-increasing) order follows the idea that the closer a value is to 1, the higher priority its vertex

has to be included in the incumbent clique. Since xe components have signed values, an analogous

mapping can be considered by giving priority to vertices whose values in xe are close to −1. This

mapping corresponds to sorting the xe components in an increasing (non-decreasing) order. The

15

QCH algorithm examines both mappings by calling the EXTRACTCLIQUE function twice with

different ordering arguments. The algorithm outputs a clique with the highest weight among all

extracted cliques.

Algorithm 2 Clique extraction
1: function EXTRACTCLIQUE(x, order) . order: decreasing or increasing
2: sort components of x according to order . sorted array: [x(1), x(2), . . . , x(n)]
3: C = {v[x(1)]} . v[x(1)]: vertex corresponding to x(1)

4: for j = 2 to n do
5: if v[x(j)] ∈

⋂
i∈C N(i) then

6: C ← C ∪ {v[x(j)]}
7: end if
8: end for
9: return C

10: end function

The heuristic results can potentially improve when the QCH algorithm is implemented for

the closed neighborhood of each vertex. That is, if a vertex i was known to be contained in

the optimal solution, then the problem would be simplified to finding a maximum edge weight

clique in G[N [i]], the subgraph induced by i and its neighbors. While it takes longer to examine

all such subgraphs, the heuristic algorithm is likely to generate better solutions. Algorithm 3

demonstrates utilizing the QCH algorithm in this setting. The output of the QCH (or QCH-N)

algorithm provides an initial lower bound for the combinatorial B&B procedure. We show the

quality of these solutions in Section 2.5 through computational experiments.

2.4.2 Quadratic relaxation bound

As it will be shown in detail in the next section, the combinatorial B&B algorithm traverses a

search tree to find a clique with the maximum edge weight in the graph. At every node of the tree,

it considers a subgraph induced by the union of an incumbent clique C and a list of vertices L,

called candidate list. The candidate list is composed of the vertices in V \C that are adjacent to all

vertices in C, so appending each of them to C would result in a larger and heavier clique. A node

16

Algorithm 3 QCH-N, QCH used for closed neighborhoods
1: function QCH-N(G)
2: C̃ = ∅ ; W̃ = 0
3: for each vertex i ∈ V do
4: run QCH on G[N [i]] to obtain C̃i and W (C̃i)
5: if W (C̃i) > W̃ then
6: C̃ ← C̃i ; W̃ ← W (C̃i)
7: end if
8: end for
9: return (C̃, W̃)

10: end function

of the tree is pruned, i.e., the corresponding subgraph is excluded from further investigation, if an

upper bound on the maximum clique-weight in the subgraph is not greater than a known global

lower bound. In this section, we present a new method to calculate such upper bounds based on

solving a relaxation of (P).

Consider G′ = G[C ∪ L], the subgraph induced by the union of a clique C and its candidate

list L. Let Q′ be the corresponding matrix to G′ as defined in Section 2.2. We seek an upper bound

on W ∗
G′ , the maximum weight of a clique in G′. By Proposition 1,

W ∗
G′ = max

x∈[0,1]n′

1

2
x>Q′ x, (2.37)

where n′ = |C ∪ L|. As every vertex in L is adjacent to all vertices of C, any maximal clique in

G′ must contain C and by Theorem 3,

xi = 1, ∀i ∈ C, (2.38)

in an optimal solution of (2.37). Therefore, the objective function of (2.37) can be expanded as

follows:

f(x) = W (C) +
∑
i∈L

xi

(∑
j∈C

wij

)
+
∑
i∈L

∑
j∈L

Q′(i, j) xixj. (2.39)

Results of the last section also indicate that the rest of the variables in the optimal solution are at

17

their bounds. That is,

xi ∈ {0, 1}, ∀i ∈ L. (2.40)

Let q denote the vector of coefficients in the second term of (2.39), then (2.37) can be written as

W ∗
G′ = W (C) + max

x∈{0,1}|L|

(
q> x +

1

2
x>Q′L x

)
, (2.41)

where Q′L is the principal submatrix of Q′ corresponding to vertices of L. Note that Q′L is not

constructed directly from the subgraph induced by L because the negative components of this

matrix should account for the edges connecting vertices of L and C as well as interconnecting

edges of L.

We calculate an upper bound on W ∗
G′ through the following equation:

ZG′ = W (C) +

ZL = max
x∈R|L|

q> x +
1

2
x>Q′L x

s.t. (x− b)>(x− b) =
|L|
4

 , (2.42)

where b ∈ R|L| is a vector with all components equal to 1
2
. It is clear that the feasible region of the

quadratic optimization problem in (2.42) contains all 0-1 vectors of size |L|, so it is a relaxation

of (2.41) and ZG′ ≥ W ∗
G′ . Note that even if G′ is not proper, i.e., L is a clique, (2.41) remains valid

and ZG′ will be an upper bound on W ∗
G′ .

Let y = x− b and d = Q′L1 + 2q. Then,

ZL =
1

2

(
max

y>y=|L|/4
d> y + y>Q′Ly

)
+ const. (2.43)

By eigen-decomposition of matrix Q′L and a linear transformation to the eigenvector space, (2.43)

can be written as

ZL =
1

2

(
max

y′>y′=|L|/4
d′
>

y′ + y′
>
Λy′

)
+ const. (2.44)

In (2.44), Λ is a diagonal matrix composed of eigenvalues of Q′L and y′ = E>y and d′ = E>d,

18

where E is a square matrix whose columns are orthonormal eigenvectors of Q′L with the same

order as the corresponding eigenvalues in Λ. Let µ denote the Lagrangian multiplier of the sin-

gle hypersphere constraint in (2.44). Then, by the first order optimality conditions, every local

maximizer of (2.44) is a solution to the following system of equations:

2(Λ− µI)y′ + d′ = 0, (2.45)

‖y′‖2 =
|L|
4
. (2.46)

The set of all µ for which there exists a vector y′ such that (µ,y′) satisfies (2.45)-(2.46) is called

the spectrum of this system.

Forsythe and Golub [46] have studied optimization of a quadratic function subject to a single

hypersphere constraint in detail. In particular, they have shown that the global maximizer of this

problem corresponds to the greatest µ in the spectrum of (2.45)-(2.46). Let {λ1, λ2, . . . , λ|L|} be

the set of eigenvalues of Q′L (possibly with multiplicity) and λmax denote the maximum eigenvalue

of this matrix. If there exists i ∈ {1, . . . , |L|} such that λi = λmax and d′i 6= 0, then the greatest µ

in the spectrum of (2.45)-(2.46) is given by the greatest root of the following univariate function,

which we denote by µ∗, i.e., µ∗ = max{µ | Φ(µ) = 0}:

Φ(µ) =
∑
i∈I

(λi b
′
i + q′i)

2

(λi − µ)2
− |L|

4
, I = {i | λi b′i + q′i 6= 0}, (2.47)

where b′i and q′i are the i-th components of vectors b′ = E>b and q′ = E>q, respectively. It is

easy to see that d′i = λi b
′
i + q′i, and under the above condition, µ∗ always exists and belongs to the

interval (λmax,+∞). In this case, ZL can be directly calculated as follows:

ZL =

|L|∑
i=1

(µ∗ b′i + q′i) [λi(µ
∗ b′i + q′i) + 2µ∗q′i]

2(λi − µ∗)2
. (2.48)

Note that Φ(µ) is monotonically decreasing in the interval (λmax,+∞), so µ∗ can be calculated by

line search methods to a desired precision.

19

But, if d′i = 0 for all λi = λmax, then µ∗ does not necessarily have the maximum value in the

spectrum of (2.45)-(2.46). In this case, any eigenvalue λ > µ∗ that satisfies (2.49) and (2.50) will

generate a better objective value for this problem:

i ∈ Ī, ∀λi = λ, (2.49)

∑
i/∈Jλ

(λi b
′
i + q′i)

2

(λi − λ)2
<
|L|
4
, (2.50)

where Ī = {i | λib′i + q′i = 0} and Jλ = {i ∈ Ī | λi = λ}. Let λ∗ denote the largest eigenvalue of

Q′L that satisfies these conditions. Then, ZL is given by

ZL =
1

2

|L|∑
i=1

λi(yi + b′i)
2 + q′i(yi + b′i), (2.51)

where

yi =



−(λi b
′
i + q′i)

λi − λ∗
, i /∈ Jλ∗ ,

√
α, i = j for a single j ∈ Jλ∗ : α =

|L|
4
−
∑
i/∈Jλ∗

y2
i ,

0, i ∈ Jλ∗\{j}.

(2.52)

We use these results to calculate an upper bound for the MEWC problem on the subgraphs visited

throughout the combinatorial B&B process.

2.4.3 Combinatorial branch-and-bound procedure

Our algorithm utilizes a classical combinatorial method for implicit enumeration of maximal

cliques in a graph. This framework has been vastly used in the algorithms proposed for the max-

imum clique problem with different pruning criteria and implementation details; see for exam-

ple [47, 48, 49, 50, 51, 52]. We adapt this method for the MEWC problem by applying the upper

bound of the last section, and present a combinatorial B&B algorithm for this problem. Algo-

rithm 4 demonstrates the outline of our method.

20

Algorithm 4 Combinatorial B&B algorithm w/ Quadratic relaxation bound (CBQ)

1: function CBQ(G, C̃, W̃) . C̃: initial solution, W̃ : initial lower bound
2: C = ∅ ; W = 0
3: C∗ = C̃ ; W ∗ = W̃
4: L = INITIALIZATION(G)
5: BRANCH(G,L,C,C∗,W,W ∗)
6: return (C∗, W ∗)
7: end function

The CBQ algorithm starts with making a sorted array of vertices L by calling the INITIALIZA-

TION function. The order of vertices in this array determines the sequence of visiting cliques in the

graph. This initial ordering aims to keep the subproblems formed by the BRANCH function small.

BRANCH is a recursive function that examines maximal cliques in a systematic manner. All input

arguments of this function are global and updated through the search process.

The INITIALIZATION function stores the vertices in L such that L(k), the k-th vertex in L, has

the smallest degree in the subgraph induced by {L(1), L(2), . . . , L(k)}. If there are two (or more)

vertices with minimum degree in this subgraph, their relative positions in L are determined based

on degrees of their neighbors. Let Gk denote the subgraph induced by the first k vertices in L. If

more than one vertex in Gk have the minimum degree, then L(k) is the vertex with the minimum

number of neighbor-of-neighbors, denoted by σ in Algorithm 5, among them.

Algorithm 6 shows details of the BRANCH function. In every call, the inputs of this function

are an incumbent clique C and its weight W , the best-known solution C∗ and its weight W ∗, and a

list of candidate vertices to expand the incumbent clique, denoted by L. In fact, L ⊆ V \C contains

vertices that are adjacent to all vertices of C. Initially, C is an empty set with its weight equal to

zero, C∗ and W ∗ are provided by the QCH heuristic solution, and the candidate list involves all

vertices of the graph sorted according to the initial ordering.

The BRANCH function operates as follows: foremost, it calls the PRUNE function, which deter-

mines whether the subgraph induced by C ∪ L could contain a clique heavier than the best-known

solution. If the answer is negative, then the corresponding subgraph is excluded from further in-

21

Algorithm 5 Initialization
1: function INITIALIZATION(G)
2: L = an empty array of size n
3: for k = n to 1 do
4: R← the set of vertices with minimum degree in G
5: if |R| = 1 then
6: u← the vertex in R
7: else
8: for every vertex v ∈ R do
9: σ(v) =

∑
i∈N(v) degree(i)

10: end for
11: u← a vertex in R with minimum σ
12: end if
13: L(k)← u
14: G← G\{u}
15: end for
16: return L
17: end function

vestigation and the function returns. Otherwise, it picks the last vertex in L and appends it to C.

Correspondingly, a new candidate list for the expanded clique, denoted by Lv in Algorithm 6, is

formed. Then, the function calls itself on the subproblem defined by the new clique and the cor-

responding candidate list. If Lv is empty then the incumbent clique is maximal, thus its weight

is compared against the best-known weight W ∗ and the best solution is kept. Since the BRANCH

function traverses the search tree in a depth-first manner, the function returns only when it has

investigated all possible outcomes of expanding C by appending v ∈ L. In other words, all cliques

that contain C ∪ {v} have been examined upon solving the subproblem, so v is removed from the

expanded clique as well as the candidate list.

Finally, presentation of the CBQ algorithm concludes by describing the pruning process. The

PRUNE function determines whether or not a subproblem should be processed further in the

BRANCH procedure. A subproblem is pruned if an upper bound on maximum weight of the cliques

in the subgraph induced by C ∪ L is not greater than the best-known weight so far. We use the

quadratic upper bound presented in the last section to prune the search tree. Algorithm 7 demon-

22

Algorithm 6 Branch-and-bound procedure
1: function BRANCH(G,L,C,C∗,W,W ∗)
2: while L 6= ∅ do
3: p = PRUNE(G,L,C,W,W ∗)
4: if p = true then . the branch is pruned
5: return
6: else . the branch is not pruned
7: v ← last vertex in L
8: δW =

∑
i∈C wiv

9: C ← C ∪ {v}
10: W ← W + δW
11: Lv = an array of neighbors of v in L with the same relative order as in L
12: if Lv 6= ∅ then
13: BRANCH(G, Lv, C, C

∗, W, W ∗)
14: else if W > W ∗ then
15: C∗ ← C ; W ∗ ← W
16: end if
17: C ← C\{v}
18: W ← W − δW
19: end if
20: L← L\{v}
21: end while
22: return
23: end function

strates details of the pruning procedure.

Clearly, sum of all edge weights in the subgraph induced by C ∪ L, denoted by W (C ∪ L)

in Algorithm 7, is a trivial upper bound for the MEWC problem on this subgraph. Although the

algebraic bound presented in the last section could be much tighter, it cannot be guaranteed to reach

W (C ∪L) all the time. In this regard, the algorithm always compares the algebraic bound ZL with

the combinatorial bound W (C ∪ L) and uses the tighter one in the pruning process. Besides, if

λib
′
i + q′i = 0, ∀λi = λmax, we safely use W (C ∪ L) without calculating (2.51)-(2.52). We will

show later, in the computational experiments section, that the frequency of using the combinatorial

bound is negligible in comparison to that of the algebraic bound for most instances, implying

effectiveness of the algebraic bound.

23

Algorithm 7 Pruning procedure
1: function PRUNE(G,L,C,W,W ∗)
2: upper bound = W (C ∪ L)−W
3: for i = 1 to |L| do
4: qi =

∑
j∈C wij

5: end for
6: construct matrix Q′L according to (2.37)
7: for i = 1 to |L| do
8: λi = the i-th smallest eigenvalue of Q′L
9: ei = the i-th eigenvector of Q′L corresponding to λi

10: end for
11: λmax ← λ|L|
12: for i = 1 to |L| do
13: q′i =

∑|L|
j=1 e

i
j qj

14: b′i = 1
2

∑|L|
j=1 e

i
j

15: end for
16: i← |L|
17: do
18: if λib′i + q′i 6= 0 then
19: µ∗ = root of Φ(µ) according to (2.47) in the interval (λmax,+∞)

20: ZL =
∑|L|

i=1

(µ∗ b′i + q′i) [λi(µ
∗ b′i + q′i) + 2µ∗q′i]

2(λi − µ∗)2

21: upper bound← min {ZL, upper bound}
22: if upper bound ≤ W ∗ −W then
23: return true
24: else
25: return false
26: end if
27: end if
28: i← i− 1
29: while λi = λmax

30: if upper bound ≤ W ∗ −W then
31: return true
32: else
33: return false
34: end if
35: end function

24

2.5 Computational Experiments

In this section, we present computational results for the proposed approaches on 28 benchmark

instances taken from DIMACS, RTN, and SC-NIP datasets. DIMACS instances are originally

unweighted [53]. We are using an edge-weighted version of them that was first introduced in [24]

for the MEWC problem. In these graphs, a positive weight is assigned to an edge {i, j} ∈ E is

given by wij = (i+j) mod 200+1. We refer to [25] for a description of RTN and SC-NIP graphs,

and the associated edge weights. Table 2.1 presents characteristics of the test instances, where |V |,

|E| and “Density” denote the number of vertices, number of edges and edge density of the graph,

respectively.

We compare our results with the ones of Gouveia and Martins [25] as their work is the most

recent and competitive one on solving the MEWC problem using exact solution methods. They

have used sparseness of the graph to improve classic integer programming formulations of this

problem. Their work presents computational results of solving the MEWC problem through nine

different integer programming formulations, namely F1, F11, F2, F21, F5, F52, F6, F61 and F62.

We compare the performance of our algorithm with the best results among these models for each

instance. In [25], the solution time for each instance and each model has been limited to 3 hours

(10,800 seconds). We set the same upper time limit in our experiment. In the results to follow, we

have used ξ = 1 in the calculation of w̄ij according to (2.2).

Table 2.2 summarizes the main results in terms of solution time. In this table,W ∗ is the optimal

weight for each instance (if known). The column CBQ presents the total CPU time in seconds taken

by our algorithm to solve each instance on an Intelr Core i-7 CPU @2.90 GHz. The next column,

titled “Gouveia & Martins”, shows the best solution time among the nine integer programming

formulations of [25] along with the best formulation in parenthesis. These are the times reported

in [25] obtained using the ILOG/CPLEX 11.2 solver on an Intelr Core i-7 CPU @3.40 GHz.

One of the most popular integer programming formulations of the MEWC problem is the one

that was originally proposed in [11]. Gouveia and Martins have considered this formulation with

one additional constraint and presented the corresponding computational results in their paper.

25

Table 2.1: Characteristics of the test instances (CBQ algorithm).

Name |V | |E| Density Name |V | |E| Density
brock200-1 200 14,834 0.754 johnson8-2-4 28 210 0.556
brock200-2 200 9,876 0.496 johnson8-4-4 70 1,855 0.768
brock200-3 200 12,048 0.605 keller4 171 9,435 0.649
brock200-4 200 13,089 0.658 MANN-a9 45 918 0.927
C125.9 125 6,963 0.898 p-hat300-1 300 10,933 0.244
C250.9 250 27,984 0.899 p-hat300-2 300 21,928 0.489
c-fat200-1 200 1,534 0.077 p-hat300-3 300 33,390 0.744
c-fat200-2 200 3,235 0.163 d1-RTN 2,418 9,317 0.003
c-fat200-5 200 8,473 0.426 d3-RTN 4,755 26,943 0.002
hamming6-2 64 1,824 0.905 d7-RTN 6,511 44,615 0.002
hamming6-4 64 704 0.349 d15-RTN 7,965 62,136 0.002
hamming8-2 256 31,616 0.969 SC-NIP-m-t1 991 4,161 0.008
hamming8-4 256 20,864 0.639 SC-NIP-r-t1 1,393 56,276 0.058
johnson16-2-4 120 5,460 0.765 SC-NIP-r-t2 1,183 17,776 0.025

However, they have not used the automatic cut-generation option of the CPLEX solver in order

to show the strength of the improved formulations. We also consider this classic formulation and

present the corresponding solution times using the ILOG/CPLEX 12.7 package with the automatic

cut generation on. This result is shown under the column IPBASE in Table 2.2. In this table, we

use “>” as a substitute of “> 10, 800” to indicate that the process was terminated due to the upper

time limit before concluding the search.

Given that the RTN and SC-NIP instances are very sparse, we added a preprocessing step to

the algorithm and slightly modified the pruning process for these graphs. In the preprocessing step,

vertices with degree of at most two are eliminated from the graph after recording the maximum

weight of a clique that they contribute to. At the end, the result of the combinatorial B&B algorithm

on the residual graph is compared with these values and the best solution is reported. Besides,

at each node of the search tree, the pruning subroutine is called only if the edge density of the

subgraph induced by the candidate list is at least 10%. This prevents the algorithm from performing

the expensive spectral calculations on highly sparse subgraphs.

Computational results reveal the competitiveness of the CBQ algorithm. We could solve in-

26

Table 2.2: Solution time.

CPU (sec.)

Name W ∗ CBQ Gouveia & Martins IPBASE

brock200-1 21,230 3,047.565 > >
brock200-2 6,542 7.436 9,464.240 (F1) >
brock200-3 10,303 55.905 > >
brock200-4 13,967 188.031 > >
C125.9 66,248 4,558.170 > >
C250.9 - > > >
c-fat200-1 7,734 0.483 3.870 (F61) 31.296
c-fat200-2 26,389 0.890 33.260 (F2) 49.671
c-fat200-5 168,200 > 155.300 (F1) 134.578
hamming6-2 32,736 4.437 0.300 (F11) 17.000
hamming6-4 396 0.031 1.970 (F1) 6.468
hamming8-2 - > > >
hamming8-4 12,360 439.437 > >
johnson16-2-4 3,808 84.687 > >
johnson8-2-4 192 0.000 0.140 (F61) 0.421
johnson8-4-4 6,552 0.687 2.340 (F11) 65.171
keller4 6,745 42.218 > >
MANN-a9 5,460 1.906 9.390 (F1) 130.344
p-hat300-1 3,321 3.281 1,273.050 (F2) 8,489.750
p-hat300-2 31,564 171.281 > >
p-hat300-3 - > > >
d1-RTN 4,524 7.280 14.680 (F62) 1,607.980
d3-RTN 5,859 68.874 1,565.550 (F62) >
d7-RTN 7,424 193.047 799.360 (F5) >
d15-RTN 7,424 389.672 > >
SC-NIP-m-t1 343 1.374 5.770 (F62) 145.141
SC-NIP-r-t1 25,290 995.359 8.160 (F6) 5,134.550
SC-NIP-r-t2 15,188 32.312 0.700 (F6) 146.484

27

stances that all nine formulations of [25] failed to solve, and among those that were solved by

both methods we could reach much better solution times with a few exceptions. While Gouveia

and Martins could solve 16 out of 28 instances, the CBQ algorithm successfully found an optimal

solution for 24 instances. The quality of CBQ algorithm can be particularly observed through its

performance on the brock and p-hat families. In the brock family, the CBQ algorithm could

solve all four instances very fast. brock200-2 is the only instance in this family that could be

solved in [25], but with a solution time of more than 2.5 hours. The CBQ algorithm solved this

instance in less than 8 seconds. Among the instances of the p-hat family, only p-hat300-1

could be solved in [25] with a solution time of more than 20 minutes; while the CBQ algorithm

solved it in less than four seconds. Note that none of the formulations in [25] was the best uni-

formly over all solved instances. The only instance for which the CBQ algorithm failed to find an

exact solution found by the best formulation of [25] was c-fat200-5.

The results of the CBQ algorithm presented in Table 2.2 use the solutions provided by the QCH

heuristic as initial lower bounds. As it was mentioned previously, better heuristic results could be

attained by implementing the QCH algorithm for each closed neighborhood (see Algorithm 3).

Spending more time to get better initial bounds is usually preferable in large and dense graphs,

where it can result in a considerable reduction in size of the search tree. Table 2.3 compares the

quality of heuristic solutions obtained from QCH and QCH-N algorithms. In this table, W̃ denotes

weight of the heuristic solution.

We repeated the experiments with the QCH-N lower bound. Although an optimal solution

was reached in the heuristic phase for more instances, it did not lead to solving any new instance

within the time limit of the B&B algorithm. Table 2.3 shows that the heuristic solution of QCH-N

algorithm is optimal for 23 out of the 28 instances considered, while this number is only 16 for the

QCH algorithm.

Finally, we present our results explicitly about quality of the quadratic relaxation (QR) bound

in comparison with the sum of edge weights (SUM). In Table 2.4, #QR and #SUM denote the

number of times that the algebraic bound and the combinatorial bound were used in Algorithm 7,

28

Table 2.3: Heuristic results.

QCH QCH-N

Name W ∗ W̃ CPU (sec.) W̃ CPU (sec.)
brock200-1 21,230 21,230 0.015 21,230 1.984
brock200-2 6,542 6,542 0.015 6,542 0.750
brock200-3 10,303 10,303 0.015 10,303 1.250
brock200-4 13,967 9,634 0.015 13,736 1.562
C125.9 66,248 53,145 0.000 65,416 0.734
C250.9 - 69,977 0.015 83,780 7.062
c-fat200-1 7,734 7,734 0.015 7,734 0.046
c-fat200-2 26,389 26,389 0.015 26,389 0.062
c-fat200-5 168,200 168,200 0.015 168,200 0.625
hamming6-2 32,736 32,736 0.000 32,736 0.046
hamming6-4 396 396 0.000 396 0.000
hamming8-2 - 800,624 0.046 800,624 9.796
hamming8-4 12,360 12,160 0.015 12,360 2.968
johnson16-2-4 3,808 3,608 0.000 3,808 0.328
johnson8-2-4 192 192 0.000 192 0.000
johnson8-4-4 6,552 6,552 0.000 6,552 0.046
keller4 6,745 6,745 0.015 6,745 0.796
MANN-a9 5,460 5,445 0.000 5,460 0.046
p-hat300-1 3,321 3,089 0.031 3,321 0.578
p-hat300-2 31,564 25,412 0.031 31,564 3.328
p-hat300-3 - 50,995 0.031 59,425 8.218
d1-RTN 4,524 4,524 2.609 4,524 0.265
d3-RTN 5,859 5,859 24.390 5,859 2.328
d7-RTN 7,424 7,244 64.000 7,424 6.687
d15-RTN 7,424 6,735 128.828 7,424 13.578
SC-NIP-m-t1 343 343 0.609 343 0.234
SC-NIP-r-t1 25,290 25,290 2.640 25,290 14.859
SC-NIP-r-t2 15,188 15,188 0.500 15,188 2.421

29

respectively. The numbers in parentheses represent the corresponding percentage. The last column,

titled “avg. QR/SUM”, shows the average ratio of the algebraic bound (when calculated) to the

sum of edge weights over all calls of the PRUNE function for each instance. This table includes

only the instances that we could solve under the time constraint.

Table 2.4 shows that, on DIMACS instances, the QR bound was much tighter than SUM except

for c-fat200-1, c-fat200-2 and hamming6-2. Excluding these instances, the maximum

average ratio is 0.76 for MANN-a9. The ratio is as good as 0.40 and 0.44 for johnson16-2-4

and keller4, respectively. For the brock, C, johnson, keller, MANN and p-hat

families, the number of times that the algorithm applied the combinatorial bound is negligible

compared to the application of QR bound. Looseness of the QR bound on the c-fat family

could explain failure of our algorithm in solving c-fat200-5 under the time limit. On the

RTN and SC-NIP, however, the QR bound did not perform as well as on the DIMACS graphs.

While the number of times that the QR bound outperformed SUM is considerable—except for

SC-NIP-r-t1—it was never the dominant pruning method and it performed very poorly in terms

of the average ratio.

30

Table 2.4: Quality of the quadratic relaxation bound.

avg.
Name #QR #SUM QR/SUM

brock200-1 38,819,232 (99.82 %) 71,511 (0.18 %) 0.66
brock200-2 108,456 (99.82 %) 200 (0.18 %) 0.57
brock200-3 884,461 (99.82 %) 1,590 (0.18 %) 0.61
brock200-4 2,711,652 (99.85 %) 4,071 (0.15 %) 0.62
C125.9 26,539,316 (99.95 %) 13,835 (0.05 %) 0.72
c-fat200-1 5 (1.35 %) 366 (98.65 %) 1.27
c-fat200-2 0 (0.00 %) 4,861 (100.00 %) 1.30
hamming6-2 11,836 (36.68 %) 20,431 (63.32 %) 1.02
hamming6-4 790 (80.28 %) 194 (19.72 %) 0.70
hamming8-4 4,990,643 (97.13 %) 147,215 (2.87 %) 0.65
johnson16-2-4 3,076,874 (99.49 %) 15,649 (0.51 %) 0.40
johnson8-2-4 215 (89.96 %) 24 (10.04 %) 0.51
johnson8-4-4 10,863 (98.19 %) 200 (1.81 %) 0.55
keller4 704,846 (99.71 %) 2,061 (0.29 %) 0.44
MANN-a9 72,891 (90.18 %) 7,938 (9.82 %) 0.76
p-hat300-1 22,217 (98.43 %) 354 (1.57 %) 0.58
p-hat300-2 1,694,985 (99.13 %) 14,820 (0.87 %) 0.74
d1-RTN 574 (39.42 %) 882 (60.58 %) 3.87
d3-RTN 1,106 (32.22 %) 2,327 (67.78 %) 4.90
d7-RTN 1,449 (27.48 %) 3,824 (72.52 %) 5.33
d15-RTN 2,057 (21.74 %) 7,406 (78.26 %) 4.61
SC-NIP-m-t1 407 (35.42 %) 742 (64.58 %) 2.35
SC-NIP-r-t1 116 (0.04 %) 298,088 (99.96 %) 3.98
SC-NIP-r-t2 131 (12.31 %) 933 (87.69 %) 10.89

31

3. A LAGRANGIAN BOUND ON THE CLIQUE NUMBER AND AN EXACT

ALGORITHM FOR THE MAXIMUM EDGE WEIGHT CLIQUE PROBLEM∗

3.1 Introduction

Given a simple, undirected graph G = (V,E), where V = {1, . . . , n} is the set of vertices and E

is the set of edges, a clique is a subset of vertices C ⊆ V inducing a complete subgraph. A clique

is called maximal if it is not a (proper) subset of a larger clique, and maximum if there is no larger

clique in the graph. The cardinality of a maximum clique in G is called the clique number of the

graph, and is denoted by ω(G). The maximum clique (MC) problem, which is to find a maximum

clique in a graph, is one of the most popular problems of combinatorial optimization and a great

deal of research has been dedicated to its study; see, e.g., the survey papers [55] and [23].

The maximum edge weight clique (MEWC) problem is a generalization of the MC problem to

edge-weighted graphs. In an edge-weighted graph G = (V,E,wE), every edge {i, j} ∈ E has a

positive weight wij , and the edge weight of C ⊆ V is defined as W (C) =
∑
{i,j}∈E(C) wij , where

E(C) denotes the set of edges with both endpoints in C. The MEWC problem is to find a clique

with the maximum edge weight in G. If the weight of each edge is equal to 1, finding a maximum

edge weight clique is equivalent to finding a maximum cliqueC∗ withW (C∗) =
(
ω(G)

2

)
. Therefore,

the MEWC problem is at least as hard to solve as the MC problem, which is NP-hard [3]. The MC

problem is also known to be hard to approximate to within n1−ε for every ε > 0 [56]. Similar to

the MC problem, the MEWC problem finds applications in various fields, including computational

biology [7, 8], computer graphics [4, 5], marketing [6], healthcare [9], and materials science [27].

In this chapter, we investigate some close connections between the MEWC and MC problems

that lead to new results for both problems. First, we use a Lagrangian relaxation of an integer

(linear) programming formulation of the MEWC problem to derive an analytic upper bound on the

clique number of a graph. Then, upper bounds on the clique number are used in an upper-bounding

∗ This chapter is reprinted with permission from “A Lagrangian bound on the clique number and an exact algo-
rithm for the maximum edge weight clique problem” by S. Hosseinian, D. B. M. M. Fontes, and S. Butenko [54].
Copyright © 2020, INFORMS.

32

scheme for the MEWC problem, which is employed in a combinatorial branch-and-bound (B&B)

procedure for this problem. The performance of the proposed algorithm strongly depends on our

ability to quickly compute nontrivial upper bounds on the clique number.

Several analytic (closed-form) upper bounds on the clique number of a graph have been pro-

posed in the literature. The first bound of this type appeared in the work of Wilf [57], who showed

that ω(G) ≤ ρ(AG) + 1, where ρ(AG) denotes the spectral radius of the adjacency matrix AG of

G. Later, Amin and Hakimi [58] presented two bounds. They noted that ω(G) ≤ 3+
√

9−8(n−m)

2

for connected graphs, with n and m denoting the number of vertices and edges, respectively. They

also proved that ω(G) ≤ N−1(AG) + 1, where N−1(AG) is the number of eigenvalues of the

adjacency matrix of the graph not exceeding −1. Budinich [59] used complex analysis to show

that ω(G) ≤ n − rank(AḠ)

2
, where AḠ denotes the adjacency matrix of the complement graph Ḡ

of G, and rank(AḠ) is the rank of this matrix. Among these bounds, only the first one of Amin

and Hakimi [58] is computable in linear time. The others involve spectral calculations on the ad-

jacency matrix of the graph (or its complement) and require O(n3) arithmetic operations. The

upper bound derived in this chapter provides another linear-time computable alternative to the first

Amin-Hakimi bound. It should be noted that our bound was obtained as a result of an attempt of

obtaining a tight Lagrangian relaxation-based upper bound for the MEWC problem. Consequently,

coloring-based bounds proved to be superior within the proposed B&B framework for the MEWC

problem; however, the obtained analytic upper bound on the clique number is still of interest as a

nontrivial, closed-form, and easily computable bound for the classical MC problem.

A closely related problem to the MEWC problem is the maximum diversity problem, which is

to find a maximum edge weight clique of cardinality not exceeding a given bound k in a complete

edge-weighted input graph. As suggested by some authors [60, 61], an instance of the MEWC

problem can be transformed to a complete graph by adding dummy edges with sufficiently-large

negative weights and then solved as an instance of the maximum diversity problem with k = |V |.

In this regard, these two names have been used interchangeably in the literature to refer to the

maximum diversity problem. The exact solution methods proposed for the maximum diversity

33

problem include combinatorial B&B [62] and branch-and-cut algorithms based on integer (linear)

programming formulations [10, 11, 12, 14, 13]. Several heuristic and metaheuristic methods have

also been applied to this problem, including tabu search [15, 16, 17], memetic search [18], scatter

search [19], and greedy randomized adaptive search procedure [20, 21].

To the best of our knowledge, the only works that focused on the MEWC problem, i.e., with

non-complete input graphs, at the time of completion of the present work, were [24, 25, 26, 2,

63]. More specifically, Pullan [24] extended the phased local search method proposed for the

MC problem in [64] to address the MEWC problem. Gouveia and Martins [25] studied existing

integer programming formulations of the maximum diversity problem to adapt them for sparse

graphs and introduced a set of new formulations for the MEWC problem. Recently, Hosseinian et

al. [26] developed a construction heuristic algorithm based on solving a quadratically constrained

quadratic problem. In [2], the same authors introduced a quadratic programming formulation

for the MEWC problem, and showed the correspondence between local optima of the continuous

problem and special structures in the underlying graph. They also presented an exact combinatorial

B&B algorithm that uses a relaxation of the new formulation to prune the search tree. In addition,

Fontes et al. [63] proposed a biased random-key genetic algorithm for this problem. We refer

to [27] for a detailed review of these methods.

3.2 A Lagrangian Relaxation Bound on the Clique Number

A well-known integer (linear) programming formulation of the MEWC problem on a graph G =

(V,E,wE) with positive edge weights is as follows [11]:

W ∗ = max
∑
{i,j}∈E

wij yij

s.t. yij ≤ xi and yij ≤ xj, ∀{i, j} ∈ E,

xi + xj ≤ 1, ∀{i, j} /∈ E,

xi ∈ {0, 1}, ∀i ∈ V,

yij ∈ {0, 1}, ∀{i, j} ∈ E.

(3.1)

34

In this formulation, every vertex i ∈ V is represented by a variable xi and every edge {i, j} ∈ E

by a variable yij . Every feasible solution of (3.1) induces a clique C = {i ∈ V | xi = 1} with

E(C) = {{i, j} ∈ E | yij = 1}. Therefore, an optimal solution of (3.1) characterizes a clique with

the maximum total sum of edge weights in the induced subgraph.

Consider the full Lagrangian relaxation of (3.1), except for integrality of the variables, i.e.,

Z(µ1,µ2,µ3) = max
x,y

∑
{i,j}∈E

wijyij +
∑
{i,j}∈E

µ1
ij(xi − yij) +

∑
{i,j}∈E

µ2
ij(xj − yij) +

∑
{i,j}/∈E

µ3
ij(1− xi − xj)

s.t. xi ∈ {0, 1}, ∀i ∈ V,

yij ∈ {0, 1}, ∀{i, j} ∈ E,

(3.2)

where µ1, µ2, µ3 ≥ 0 denote the vectors of Lagrangian multipliers (dual variables) corresponding

to the first, second and third set of constraints in (3.1), respectively. Restricting the dual variables

in (3.2) to the line µ1
ij = µ2

ij = µ3
ij = µ, ∀i, j ∈ V , we obtain a simpler problem:

z(µ) = max
x,y

∑
{i,j}∈E

(wijyij + µ(xi + xj − 2yij)) +
∑
{i,j}/∈E

µ(1− xi − xj)

s.t. xi ∈ {0, 1}, ∀i ∈ V,

yij ∈ {0, 1}, ∀{i, j} ∈ E.

(3.3)

Let L(x,y, µ) denote the objective function of (3.3). Then,

L(x,y, µ) =
∑
{i,j}∈E

(wijyij + µ(xi + xj − 2yij)) +
∑
{i,j}/∈E

µ(1− xi − xj)

=
∑
{i,j}∈E

yij(wij − 2µ) + µ

 ∑
{i,j}∈E

(xi + xj) +
∑
{i,j}/∈E

(1− xi − xj)


=
∑
{i,j}∈E

yij(wij − 2µ) + µ

(
m̄+

∑
i∈V

xi(2di − n+ 1)

)
,

(3.4)

35

where di denotes the degree of a vertex i ∈ V , n is the number of vertices, and m̄ =
(
n
2

)
− |E|

represents the number of edges in the complement graph of G. Equation (3.4) implies that the

restricted Lagrangian relaxation problem (3.3) is separable with respect to variables corresponding

to vertices and edges of G, so it can be rewritten as follows:

z(µ) = max
y∈{0,1}|E|

∑
e∈E

ye(we − 2µ) + µ

(
m̄+ max

x∈{0,1}n

∑
v∈V

xv(2dv − n+ 1)

)
. (3.5)

Optimal solutions of both optimization problems in (3.5) are determined by the signs of the coef-

ficients of the binary decision variables. Therefore, z(µ) can be calculated according to (3.6) for

every µ ≥ 0:

z(µ) =
∑
e∈E+

(we − 2µ) + µ

(
m̄+

∑
v∈V +

(2dv − n+ 1)

)
, (3.6)

where V + ⊆ V and E+ ⊆ E are defined as follows:

V + = {v ∈ V | dv ≥ (n− 1)/2}, (3.7)

E+ = {e ∈ E | we ≥ 2µ}. (3.8)

Note that V + only depends on the structure of G, while E+ is a function of weights and the

Lagrangian multiplier µ. Minimizing z(µ) over the non-negative values of µ gives an upper bound

on the optimal value of the MEWC problem. That is,

W ∗ ≤ min
µ≥0
Z(µ) ≤ min

µ≥0

∑
e∈E+

(we − 2µ) + µ

(
m̄+

∑
v∈V +

(2dv − n+ 1)

)
, (3.9)

where µ = (µ1,µ2,µ3). In (3.9), the first inequality is the weak duality and the second one is due

to the fact that z(µ) is a restriction of Z(µ). We use this result to get an upper bound on the clique

number of the graph. The following proposition serves this purpose.

Proposition 6. Given an undirected graph G = (V,E) with |V | = n and |E| = m, let b =(
n
2

)
−m +

∑
v∈V +(2dv − n + 1), where dv denotes degree of a vertex v ∈ V and V + is defined

36

in (3.7). Then, a =
⌊

1 +
√

4b+1
2

⌋
gives an upper bound on ω(G).

Proof. Consider an edge-weighted version of G with wij = 1, ∀{i, j} ∈ E. Then, by (3.9),

W̄ = min
µ≥0

∑
e∈E+

(1− 2µ) + µb (3.10)

is an upper bound on the optimal value of the MEWC problem on G, which equals
(
ω(G)

2

)
. Note

that the parameter b depends only on the structure of the graph and is invariant of the edge weights.

Given the definition of E+, the objective function of (3.10) is increasing for µ ≥ 1
2
, so we can

restrict the optimization interval to [0, 1
2
]. Since E+ = E for all values of µ ∈ [0, 1

2
], the objective

function of (3.10) is linear and reaches its minimum at µ = 0 or µ = 1
2
. Therefore,

(
ω(G)

2

)
≤

min{|E| , b
2
} ≤ b

2
, which implies that ω(G) ≤

⌊
1 +
√

4b+1
2

⌋
.

This bound equals ω(G) if the graph can be partitioned into two cliques that are either very

densely or very sparsely connected to each other. Two extreme cases are complete graphs and

graphs whose vertex sets are independent union of two cliques, on which the proposed bound

can be easily checked to be sharp. Clearly, the bound is loose on sparse graphs due to the term

m̄ =
(
n
2

)
−m.

We illustrate Proposition 6 on the graph of Figure 3.1. This graph has n = 7 vertices and

m = 13 edges, and its clique number is ω(G) = 3.

b =

(
n

2

)
−m+

∑
v∈V +

(2dv − n+ 1) = 21− 13 + 5(8− 7 + 1) = 18 (3.11)

a =

⌊
1 +
√

4b+ 1

2

⌋
=

⌊
1 +
√

73

2

⌋
= b4.77c = 4 ≥ ω(G) (3.12)

Note that this graph has 5 vertices of degree 4, so absence of a clique of cardinality 5 is not evident

without exploring adjacency of the vertices. In particular, using the first bound by Amin and

Hakimi [58], we obtain ω(G) ≤
⌊

3+
√

9−8(7−13)

2

⌋
= 5. None of the spectral bounds, presented in

Section 3.1, will generate an upper bound better than 4 for this graph.

37

1

2

3

4 5

6

7

Figure 3.1: Example graph for the analytic bound on the clique number.

3.3 An Exact Solution Method for the MEWC Problem

Consider the univariate Lagrangian relaxation problem (3.9) presented in the previous section.

The objective function of this minimization problem is piecewise linear and convex, thus it can be

solved efficiently to get an upper bound onW ∗. Such an upper bound, however, is usually too loose

to be used in a B&B algorithm. In fact, it can be shown that the optimal value of the univariate

Lagrangian relaxation problem is no better than sum of the b
2

largest edge weights in the graph,

where b is given in Proposition 6. A formal proof for this statement is presented in Appendix A.

This result implies that a similar approach may be taken with any upper bound ω̄ ≥ ω(G) better

than a (in Proposition 6) to tighten the bound on W ∗. Evidently, given availability of such ω̄,

this approach is disadvantageous as it will not generate an upper bound better than sum of the
(
ω̄
2

)
largest edge weights in the graph. Motivated by this observation, in Section 3.3.1, we present an

upper-bounding method for the MEWC problem that takes advantage of known upper bounds on

the clique number and exploits adjacency of edges in the graph to draw a tighter bound on W ∗.

We use this upper-bounding method in the pruning subroutine of a combinatorial B&B proce-

dure. The combinatorial B&B procedure is an implicit enumeration of cliques in the graph, which

has been vastly used before in the algorithms proposed for the MC problem with different pruning

methods and implementation details; see for example [47, 48, 49, 50, 51, 52]. The procedure starts

38

with a trivial clique, i.e., a single vertex, and continues by examining all cliques in the graph until

a clique with the maximum weight is found. The systematic search is done through a tree traver-

sal. Every node of the search tree corresponds to a subgraph induced by the union of a clique C

and a list of vertices, called candidate list. The candidate list is composed of the vertices in V \C

that are adjacent to all vertices in C, so appending any of them to C would result in a larger, and

hence heavier, clique. A node is pruned, i.e., the corresponding subgraph is excluded from further

investigation, if an upper bound on the maximum clique-weight in the corresponding subgraph is

not greater than a known solution. If a node is not pruned, it branches by expanding the incumbent

clique via appending a vertex from the candidate list to it and so generating a new node of the

tree. In Section 3.3.2, we present details of the algorithm, including the pruning subroutine for the

MEWC problem.

3.3.1 Upper-bounding method

Suppose ω̄ ≥ ω(G), an upper bound on the clique number of an edge-weighted graph G =

(V,E,wE), is known. Then, sum of the
(
ω̄
2

)
largest edge weights of G gives a trivial upper bound

for the MEWC problem. This approach is disadvantageous as it ignores the structure of the graph

beyond the knowledge of ω̄. To obtain a better bound, we need to take into account the adjacency

of edges.

Suppose C∗ is a maximum edge weight clique of G. For every vertex i ∈ V , let

Γ(i) =


1
2

∑
j∈C∗\{i}wij, i ∈ C∗

0, i ∈ V \C∗.
(3.13)

Then, W ∗ = W (C∗) can be expressed in terms of attributes of the vertices rather than edges, i.e.,

W (C∗) =
∑
i∈C∗

Γ(i). (3.14)

Since |C∗| ≤ ω ≤ ω̄, the summations in (3.13) and (3.14) are over at most ω̄ − 1 and ω̄ vertices,

39

respectively. Therefore, Γ(i) and W (C∗) are bounded from above according to (3.15) and (3.16):

Γ(i) ≤ Γ̄(i) =
1

2

ω̄−1∑
k=1

w(k)
e : e ∈ δi, ∀i ∈ V, (3.15)

W (C∗) ≤
ω̄∑
k=1

Γ̄(k), (3.16)

where δi is the set of edges incident to a vertex i ∈ V and the superscript (k) denotes the k-th

largest value in the corresponding set. Note that the computational complexity of calculating this

upper bound on W (C∗) isO(m log n), which is no worse than sorting the edges according to their

weights.

We refine (3.15)-(3.16) further based on the special structure of the subgraphs visited through-

out the search procedure. Recall that each subgraph is induced by the union of an incumbent clique

C and its candidate list L, denoted by G[C ∪L]. Consider G′, the minor of G[C ∪L] generated by

merging all vertices of C into a single vertex v. In this graph, the weights of the edges connecting

v to vertices of L are defined as follows:

w′iv =
∑
j∈C

wij, ∀i ∈ L. (3.17)

Clearly, the difference between the maximum edge weights of cliques in G[C ∪L] and G′ is equal

to W (C). Hence, we may look for an upper bound on the optimal value of the MEWC problem on

G′, which we denote by W ∗
G′ . Since v is adjacent to all vertices of L in G′, we can restate (3.15) as

follows:

Γ′(i) ≤ Γ̄′(i) = w′iv +
1

2

ω̄L−1∑
k=1

w(k)
e : e ∈ δLi , ∀i ∈ L, (3.18)

where Γ′(i) is the contribution of a vertex i ∈ L toW ∗
G′ , ω̄L is an upper bound on the clique number

of G′[L] = G[L], and δLi denotes the set of edges incident on a vertex i ∈ L in G[L]. Therefore,

W ∗
G′ ≤

ω̄L∑
k=1

Γ̄′(k). (3.19)

40

This leads to the following bound which is employed in our algorithm:

W ∗
G[C∪L] ≤ W (C) +

ω̄L∑
k=1

Γ̄′(k). (3.20)

In order to calculate ω̄L in our algorithm, we consider two chromatic methods from the lit-

erature that underlie recent advancements in exact algorithms of the MC problem: the method

proposed by Tomita and Kameda [49] and the one by San Segundo et al. [52]. The computational

effort required by these methods is comparable to that of analytic bounds, while results of experi-

ments with benchmark instances have shown that they usually generate much tighter upper bounds

on the clique number. High quality upper bounds, such as Lovász number [65] and η-Bound [66],

on the other hand, require solving computationally expensive optimization problems and are not

suited for B&B methods.

The first chromatic method that we consider is a sequential vertex-coloring heuristic based on

a preordered list of vertices. It is well known that any proper coloring of vertices, i.e., assignment

of colors such that every two adjacent vertices have different colors, generates an upper bound on

the clique number of a graph. Although such upper bounds could be arbitrarily loose for special

graphs [67], several algorithms for the MC problem have successfully used this method [48, 68, 49,

50, 51]. The second method is based on a MaxSAT encoding of the MC problem that was originally

proposed by Li and Quan [69]. We use the implementation of this method presented in [52] and

refer to it as a chromatic method, as it was presented in the context of graph coloring without the

overhead of an explicit MaxSAT encoding. It has been shown in [52] that this bound could be even

better than the chromatic number, i.e., the minimum number of colors in a proper coloring, of the

graph. For the MC problem, the algorithm that employs the second method generally outperforms

the ones that use the first method and its improvements, e.g., [50] and [51]. However, this is not

the case for the MEWC problem, as our experimental results show, because of different pruning

criteria used for these two problems and the overhead of calculating pruning threshold in the latter

method.

41

3.3.2 Algorithm

The algorithm starts with building two arrays of vertices, namely U and L, in the initialization

step. The vertices are sorted according to an initial ordering and stored in array U . This ordering

aims to keep the subproblems formed during the B&B process small. The array L is a copy of U ,

in which the vertices are colored based on their positions in the array. These two arrays are then

used by the BRANCH function, which is the main procedure of the combinatorial B&B algorithm.

All input arguments of this function are global variables and are updated as the search proceeds.

Algorithm 8 outlines the main procedure.

Algorithm 8 Main method
1: function SOLVE_MEWC(G)
2: C = ∅ ; W = 0
3: C∗ = ∅ ; W ∗ = 0
4: (U,L) = INITIALIZE(G)
5: BRANCH(G,U, L, C,C∗,W,W ∗)
6: return (C∗,W ∗)
7: end function

The INITIALIZE function (see Algorithm 12 in Appendix B) stores the vertices in array U such

that the k-th vertex in U , denoted by U [k], has the smallest degree in the subgraph induced by

{U [1], U [2], . . . , U [k]}. If there are two (or more) vertices with minimum degree in that subgraph,

their relative order in U is determined based on degrees of their neighbors. Let Gk denote the

subgraph induced by the first k vertices in U . If more than one vertex in Gk have the minimum

degree, then U [k] will be the vertex with the minimum sum of neighbors’ degrees, denoted by

σ in Algorithm 12. If there is still a tie among some vertices, U [k] is chosen arbitrarily. This

method of initialization was presented as a part of the MCR algorithm [49] and has been used in

almost all succeeding combinatorial B&B algorithms for the MC problem, but its main idea was

first proposed by Carraghan and Pardalos [47]. Initial coloring of the vertices follows the fact that

the number of colors required to properly color a graph is no more than the maximum degree of

42

the vertices plus one. Therefore, the number of colors to properly color Gk will be no more than

min{k,∆(G) + 1}, where ∆(G) denotes the maximum degree of a vertex in G. The INITIALIZE

function gives distinct colors to the first ∆(G) + 1 vertices in the sorted array and repeats the last

color for all the remaining vertices. Note that the initial coloring is not necessarily proper, but the

color (natural number) assigned to the vertex L[k] for every k ∈ {1, . . . , n} is indeed an upper

bound on the clique number of Gk.

The tree search is done by the BRANCH function in a recursive manner. In every call, this

function inputs an incumbent clique C and its weight W , the best-known solution C∗ and its

weight W ∗, and two lists of candidate vertices to expand the incumbent clique, denoted by Up

and Lp. Initially, C and C∗ are empty, W and W ∗ are zero, and the candidate lists, i.e., U and L,

involve all vertices of the graph. Similar to U and L, the candidate lists at each node of the search

tree, i.e., subproblems of the BRANCH function, are comprised of the same set of vertices. Vertices

in Up are uncolored and keep the relative order of vertices in U . Vertices in Lp are colored and

reordered based on the subproblem coloring. Actually, the recursion can be implemented using a

single array of candidate vertices, but experimental results on the maximum clique problem have

shown that keeping the initial ordering would generate, on average, tighter bounds on the clique

number [50, 70]. Implementation details of this function are presented in Algorithm 9.

The BRANCH function operates as follows: first, it calls the PRUNE function to determine if

the corresponding subgraph should be processed further. If so, the last vertex in array Lp is added

to C, resulting in a larger clique. Then, a new subproblem is formed based on this new clique.

The uncolored candidate list of the new subproblem, denoted by Uv, is comprised of all vertices in

the parent candidate list Up that are connected to the newly-added vertex. Uv being empty implies

that the current clique is maximal, thus its weight is compared against W ∗ and the better solution

is kept. Otherwise, the BRANCH function calls itself on the new subproblem. Prior to this, the

colored candidate list for the new subproblem, denoted by Lv, is generated through the SUBCOLOR

function. The two chromatic methods that we consider require different implementations of the

SUBCOLOR function. That is why we used a superscript • for this function in Algorithm 9 (line 13)

43

Algorithm 9 Combinatorial B&B procedure
1: function BRANCH(G,Up, Lp, C, C∗,W,W ∗)
2: while Up 6= ∅ do
3: q = PRUNE(G,Up, Lp, C,W,W ∗)
4: if q = true then . the node is pruned
5: return
6: else . the node is not pruned
7: v ← last vertex in Lp

8: Wv =
∑

u∈C wuv
9: C ← C ∪ {v}

10: W ← W +Wv

11: Uv = an array of neighbors of v in Up with the same relative order
12: if Uv 6= ∅ then
13: Lv = SUBCOLOR•(. . .)
14: BRANCH(G,Uv, Lv, C, C

∗,W,W ∗)
15: else if W > W ∗ then
16: C∗ ← C ; W ∗ ← W
17: end if
18: C ← C\{v}
19: W ← W −Wv

20: end if
21: Lp ← Lp\{v}
22: Up ← Up\{v}
23: end while
24: return
25: end function

to indicate a template function. We represent the functions corresponding to the first and second

chromatic methods by superscripts 1 and 2, respectively.

The function SUBCOLOR1 (see Algorithm 13 in Appendix B) implements the heuristic graph

coloring method proposed by Tomita and Kameda [49]. This function inputs Uv and partitions it

into the union of K independent sets. A proper coloring of G[Uv] is attained by giving a distinct

color to each independent set Ik for every k ∈ {1, . . . , K}. The vertices are then stored in array Lv

in a non-decreasing order of their colors. As a result, the color of the i-th vertex in Lv is an upper

bound on the clique number of the subgraph induced by the first i vertices in Uv. In particular, the

color of the last vertex in Lv is an upper bound on the clique number of G[Uv].

An improvement of this method was later presented in [50] via introducing a so-called re-

44

coloring procedure. More recently, San Segundo et al. [52] proposed a novel recoloring method

based on the MaxSAT encoding of the MC problem. We will also use this method to draw an

upper bound on the clique number, and provide its details via SUBCOLOR2 function. But, we first

present the pruning subroutine of our algorithm based on the upper-bounding method presented in

Section 3.3.1.

In addition to computing the bounds on the clique number using SUBCOLOR1 and SUBCOLOR2

procedures, we also considered the sequential elimination method proposed by Gendron et al. [71].

However, the results of numerical experiments have shown that applying this method to enhance

the bound on the clique number increases the CPU time spent on execution of the proposed B&B

algorithm, and hence, are not reported here. The inferior performance can be explained by the fact

that applying the sequential elimination algorithm increases the running time taken to compute the

upper bound on the clique number by the factor of O(n2) for a graph on n vertices.

Algorithm 10 demonstrates the pruning process. The PRUNE function operates as follows: the

color of the last vertex in Lp gives an upper bound ω̄ on the clique number of the subgraph induced

by the candidate list Up. For every i ∈ Up, Γ̄′(i) is calculated according to (3.18) and is stored

in array Γ (lines 4-21 of Algorithm 10). This array is then sorted in a non-increasing order of

elements, and the sum of its first ω̄ components is taken as W ′. The corresponding subgraph is

excluded from further investigation if W + W ′ is not strictly larger than the weight of the best-

known solution, i.e., W ∗.

We conclude this section with details of the second chromatic method. A major parameter in

implementation of the method proposed in [52] is the pruning threshold, denoted by T in Algo-

rithm 11. The pruning threshold is the maximum number of colors that can be used in a proper

coloring of vertices such that the corresponding node is pruned. This method aims to exclude

some vertices from the vertex-coloring process when the number of colors exceeds the pruning

threshold. In an ideal case, the number of colors remains at the threshold and the node is pruned.

Algorithm 11 demonstrates details of calculating the pruning threshold for the MEWC problem in

our algorithm.

45

Algorithm 10 Pruning procedure
1: function PRUNE(G,Up, Lp, C,W,W ∗)
2: q = false; W ′ = 0
3: ω̄ = color of the last vertex in Lp

4: Γ = an array of size |Up| with all elements equal to zero
5: for i = 1 to |Up| do
6: v ← Up[i]
7: for j = 1 to |C| do
8: u← C[j]; Γ[i]← Γ[i] + wuv
9: end for

10: δi = an empty array of size |Up|
11: for j = 1 to |Up| do
12: u← Up[j]
13: if {u, v} ∈ E then δi[j] = 1

2
wuv

14: else δi[j] = 0
15: end if
16: end for
17: sort δi in a non-increasing order of elements
18: for k = 1 to ω̄ − 1 do
19: Γ[i]← Γ[i] + δi[k]
20: end for
21: end for
22: sort Γ in a non-increasing order of elements
23: for k = 1 to ω̄ do
24: W ′ ← W ′ + Γ[k]
25: end for
26: if W ′ ≤ W ∗ −W then q = true
27: end if
28: return q
29: end function

LetW ′
t =

∑t
k=1 Γ̄′(k), then the threshold of our pruning method is given by T = argmax{t|W ′

t ≤

W ∗−W}, whereW ∗ is the weight of the best-known solution andW is the weight of the incumbent

clique. As shown by Algorithm 11, computing T involves several iterations of a time-consuming

part of the pruning process, i.e., updating and sorting contributions of vertices. Note that we are

not replacing this part of Algorithm 10 with a simple comparison between the pruning threshold

and the color of the last vertex in the candidate list. In fact, the PRUNE function may be called

several times at every node of the search tree. The best-known solution may be updated in between

46

Algorithm 11 Pruning threshold for the MEWC problem
1: function THRESHOLD(G,Uv, C,W,W ∗)
2: Γ = an array of size |Uv| with all elements equal to zero
3: for i = 1 to |Uv| do
4: initialize Γ[i] according to lines 7-9 of Algorithm 10
5: form array δi according to lines 10-17 of Algorithm 10
6: end for
7: Wt = max{Γ[i] : 1 ≤ i ≤ |Uv|}
8: if Wt > W ∗ −W then T ← 0
9: else

10: t = 0 ; Wt = 0
11: while Wt ≤ W ∗ −W do
12: t← t+ 1
13: if t = |Uv| then go to line 28
14: else
15: for i = 1 to |Uv| do
16: Γ[i]← Γ[i] + δi[t]
17: end for
18: Γ̃← Γ
19: sort Γ̃ in a non-increasing order of elements
20: Wt ← 0
21: for k = 1 to t+ 1 do
22: Wt ← Wt + Γ̃[k]
23: end for
24: end if
25: end while
26: T ← t
27: end if
28: return T
29: end function

these calls, which can result in pruning the subsequent children of the node.

Given a pruning threshold T , the SUBCOLOR2 function (see Algorithm 14 in Appendix B)

operates as follows: consider a proper coloring of the graph, i.e., a partition of vertices into in-

dependent sets. A set of k colors is called inconsistent if there is no clique of cardinality k in

the graph with one vertex in each set. If the number of colors is greater than the clique number,

then there exists a color that forms an inconsistent set with some others. The procedure starts by

assigning at most T colors to vertices such that each color identifies an independent set. If some

47

vertices are still left, every time that a color s ≥ T + 1 is assigned to an uncolored vertex v, the

algorithm looks for two colors k1, k2 ≤ T that form an inconsistent set with s (see Algorithm 15

in Appendix B). If such a set is found, k1 and k2 are marked as forbidden and are not considered

to find more inconsistent sets. More importantly, vertex v is excluded from the assigned color set.

After all vertices are processed, the colored ones are placed in array Lp in a non-decreasing order

of colors. Note that under this coloring method, the arrays Up and Lp do not necessarily contain

the same set of vertices.

3.4 Computational Experiments

In this section, we present our computational results on 41 benchmark instances taken from the

DIMACS dataset [53]. DIMACS instances are originally unweighted; Pullan [24] proposed an

edge-weighted version of these graphs, named DIMACS-EW, which has been used in later works

on this problem. The weight of an edge {i, j} ∈ E in DIMACS-EW graphs is given by wij =

(i + j) mod 200 + 1. Table 3.1 presents characteristics of the test instances. In this table, |V |,

|E| and “Density” denote number of vertices, number of edges, and edge density of the graph,

respectively.

All algorithms proposed in this chapter were implemented in C++, compiled using Visual C++

and executed on an Intelr Core i-7 CPU @2.90 GHz, 8 GB RAM computer with Windows 8.1 OS.

The spectral upper bounds on the clique number were computed using Intelr Math Kernel Library

on the same system.

Table 3.2 provides results concerning the quality of the Lagrangian relaxation bound, i.e., a in

Proposition 6, along with other analytic bounds proposed in the literature, as well as the coloring-

based bound of [49]. In addition, Table 3.3 reports the corresponding CPU times (in milliseconds).

As it was mentioned earlier, three of these bounds require spectral calculations on the adjacency

matrix of the graph (or its complement). Given the difference in the required computational effort,

we distinguish them from the first bound of Amin and Hakimi [58] and the Lagrangian bound

proposed here. In Tables 3.2 and 3.3, “Wilf”, “A&H”, and “Budinich” refer to the bounds proposed

in [57], [58], and [59], respectively. The column “LRB” shows the results for the Lagrangian

48

Table 3.1: Characteristics of the test instances (combinatorial algorithm).

Name |V | |E| Density Name |V | |E| Density
brock200-1 200 14,834 0.75 johnson8-2-4 28 210 0.56
brock200-2 200 9,876 0.50 johnson8-4-4 70 1,855 0.77
brock200-3 200 12,048 0.61 keller4 171 9,435 0.65
brock200-4 200 13,089 0.66 MANN-a9 45 918 0.93
C125.9 125 6,963 0.90 p-hat300-1 300 10,933 0.24
C250.9 250 27,984 0.90 p-hat300-2 300 21,928 0.49
c-fat200-1 200 1,534 0.08 p-hat300-3 300 33,390 0.74
c-fat200-2 200 3,235 0.16 p-hat500-1 500 31,569 0.25
c-fat200-5 200 8,473 0.43 p-hat500-2 500 62,946 0.50
c-fat500-1 500 4,459 0.04 p-hat700-1 700 60,999 0.25
c-fat500-10 500 46,627 0.37 p-hat700-2 700 121,728 0.50
c-fat500-2 500 9,139 0.07 san200-0.7-1 200 13,930 0.70
c-fat500-5 500 23,191 0.19 san200-0.7-2 200 13,930 0.70
DSJC500-5 500 62,624 0.50 san200-0.9-1 200 17,910 0.90
gen200-p0.9-44 200 17,910 0.90 san200-0.9-2 200 17,910 0.90
gen200-p0.9-55 200 17,910 0.90 san200-0.9-3 200 17,910 0.90
hamming6-2 64 1,824 0.91 san400-0.5-1 400 39,900 0.50
hamming6-4 64 704 0.35 sanr200-0.7 200 13,868 0.70
hamming8-2 256 31,616 0.97 sanr200-0.9 200 17,863 0.90
hamming8-4 256 20,864 0.64 sanr400-0.5 400 39,984 0.50
johnson16-2-4 120 5,460 0.77

relaxation bound presented in Section 3.2. Finally, the column “T&K” reports results for the

coloring-based bounds according to Tomita and Kameda [49].

It is interesting to note that, with the exception of c-fat and p-hat families that mostly

involve sparse graphs, the Lagrangian relaxation bound is relatively close to the spectral bound

proposed by Wilf [57], i.e., ρ(AG) + 1. Aside from these two families, the Lagrangian relaxation

bound is better than the first bound of Amin and Hakimi [58] on all the other graphs, with the same

time complexity.

Next, we compare the performance of the presented algorithm for the MEWC problem with

the results reported by Gouveia and Martins [25], and Hosseinian et al. [2], as well as EW-

CLIQUE algorithm by Shimizu et al. [72]. The first two works have considered instances with

no more than 300 vertices from brock, C, c-fat, hamming, johnson, keller,

49

Table 3.2: Analytic and coloring-based bounds on the clique number.

Spectral Linear Coloring

Name ω(G) Wilf A&H Budinich A&H LRB T&K
brock200-1 21 149 98 100 172 157 56
brock200-2 12 100 95 100 140 105 35
brock200-3 15 121 98 100 155 127 43
brock200-4 17 132 96 100 162 139 48
C125.9 34 112 63 62 118 115 55
C250.9 44 224 124 125 237 230 98
c-fat200-1 12 17 88 181 53 136 15
c-fat200-2 24 33 95 192 79 129 24
c-fat200-5 58 85 87 196 130 107 84
c-fat500-1 14 20 244 428 90 347 14
c-fat500-10 126 187 221 477 305 280 126
c-fat500-2 26 38 217 449 132 340 26
c-fat500-5 64 93 222 453 214 319 64
DSJC500-5 13 251 245 250 353 259 70
gen200-p0.9-44 44 180 96 100 189 184 62
gen200-p0.9-55 55 180 97 100 189 184 72
hamming6-2 32 58 33 42 60 59 37
hamming6-4 4 22 28 32 37 36 10
hamming8-2 128 248 131 163 251 249 136
hamming8-4 16 163 121 128 204 173 34
johnson16-2-4 8 92 16 60 104 96 14
johnson8-2-4 4 15 8 14 20 16 6
johnson8-4-4 14 53 28 35 61 56 19
keller4 11 111 63 85 137 117 34
MANN-a9 16 41 20 22 43 42 21
p-hat300-1 8 80 139 150 147 184 24
p-hat300-2 25 158 145 150 209 182 46
p-hat300-3 36 225 147 150 258 235 73
p-hat500-1 9 137 238 250 250 305 36
p-hat500-2 36 272 243 250 354 308 70
p-hat700-1 11 190 335 350 348 429 44
p-hat700-2 44 377 343 350 493 430 91
san200-0.7-1 30 140 95 100 167 148 30
san200-0.7-2 18 143 77 100 167 148 18
san200-0.9-1 70 180 98 100 189 184 70
san200-0.9-2 60 180 98 100 189 184 60
san200-0.9-3 44 180 96 100 189 184 44
san400-0.5-1 13 202 176 200 282 212 13
sanr200-0.7 18 139 97 100 166 147 50
sanr200-0.9 42 179 99 100 189 184 79
sanr400-0.5 13 201 196 200 282 208 59

50

Table 3.3: CPU times (in milliseconds) for the considered bounds on the clique number.

Spectral Linear Coloring

Name Wilf A&H Budinich A&H LRB T&K
brock200-1 29.687 23.437 23.437 0.000 0.000 3.125
brock200-2 25.000 23.437 21.875 0.000 0.000 3.125
brock200-3 23.437 23.437 20.312 1.562 0.000 1.562
brock200-4 23.437 23.437 23.437 0.000 1.562 1.562
C125.9 7.812 6.250 7.812 0.000 0.000 0.000
C250.9 40.625 43.750 40.625 0.000 0.000 3.125
c-fat200-1 17.187 17.187 21.875 0.000 0.000 0.000
c-fat200-2 10.937 12.500 23.437 0.000 1.562 1.562
c-fat200-5 15.625 17.187 25.000 0.000 0.000 3.125
c-fat500-1 151.563 142.188 232.813 1.562 0.000 6.250
c-fat500-10 168.750 164.063 292.188 0.000 0.000 32.812
c-fat500-2 142.188 142.188 273.438 1.562 0.000 7.812
c-fat500-5 137.500 139.063 245.313 1.562 0.000 17.187
DSJC500-5 267.188 260.938 257.813 4.688 3.125 17.187
gen200-p0.9-44 23.437 21.875 21.875 1.562 0.000 1.562
gen200-p0.9-55 23.437 23.437 21.875 1.562 0.000 1.562
hamming6-2 1.562 1.562 1.562 0.000 0.000 0.000
hamming6-4 1.562 1.562 1.562 0.000 0.000 0.000
hamming8-2 42.187 42.187 43.750 0.000 1.562 21.875
hamming8-4 42.187 40.625 39.062 0.000 1.562 14.062
johnson16-2-4 4.687 4.687 6.250 0.000 0.000 3.125
johnson8-2-4 0.000 0.000 0.000 0.000 0.000 0.000
johnson8-4-4 1.562 1.562 1.562 0.000 0.000 0.000
keller4 17.187 18.750 20.312 0.000 0.000 3.125
MANN-a9 0.000 1.562 0.000 0.000 0.000 0.000
p-hat300-1 64.062 64.062 64.062 1.562 0.000 4.687
p-hat300-2 65.625 65.625 68.750 1.562 1.562 4.687
p-hat300-3 67.187 67.187 65.625 1.562 0.000 6.250
p-hat500-1 262.500 264.063 257.813 1.562 3.125 14.062
p-hat500-2 264.063 262.500 262.500 3.125 3.125 15.625
p-hat700-1 667.188 667.188 675.000 3.125 4.687 29.687
p-hat700-2 668.750 667.188 667.188 6.250 6.250 29.687
san200-0.7-1 20.312 23.437 23.437 0.000 1.562 3.125
san200-0.7-2 35.937 34.375 37.500 0.000 0.000 4.687
san200-0.9-1 23.437 21.875 23.437 0.000 0.000 4.687
san200-0.9-2 21.875 25.000 23.437 0.000 0.000 3.125
san200-0.9-3 23.437 23.437 25.000 0.000 0.000 3.125
san400-0.5-1 135.938 143.750 135.938 1.562 1.562 18.750
sanr200-0.7 23.437 23.437 23.437 0.000 1.562 1.562
sanr200-0.9 25.000 21.875 23.437 0.000 0.000 1.562
sanr400-0.5 140.625 139.063 142.188 1.562 3.125 10.937

51

MANN, and p-hat families and applied an upper time limit of three hours to solve each instance.

Shimizu et al. [72] report results for 34 of the DIMACS instances, with a 1,000-second time limit.

Our experiment involves all families of DIMACS-EW graphs. In addition to all the graphs with

up to 300 vertices, we consider instances with up to 700 vertices with edge density no larger than

0.50 and use a three-hour time constraint for each instance.

Table 3.4 summarizes the recorded solution time. In this table, W ∗ shows the optimal solution

value of the MEWC problem (if known) for each instance. The column “IP” provides the results

of [25]. They report the solution time of nine different integer programming models for the MEWC

problem using the ILOG/CPLEX 11.2 solver on an Intelr Core i-7 CPU @3.40 GHz and 8 GB

RAM. We consider the best model for each instance among them in our comparison. The column

“CBQ” shows the computational results of the algorithm presented in [2], using the same system

used to run the algorithms proposed in this chapter. The column “EWC” presents the results for

EWCLIQUE algorithm reported in [72]. The results for EWC were copied from [72] and were

obtained using a computer running Linux 4.4.0 OS with Intelr Core i-7 CPU @3.40 GHz and 16

GB RAM. Shimizu et al. [72] implemented their EWCLIQUE algorithm in C++ and used g++ 5.4.0

compiler with optimization option -O2. The last two columns concern the results of the algorithm

presented in this chapter. The column “Alg.1” shows the solution time when the SUBCOLOR1

function was used in the algorithm and “Alg.2” corresponds to application of SUBCOLOR2. We

have used “t-lim” in this table to indicate that the corresponding algorithm was terminated due

to time limit before completing the search. We have run our algorithm with the initial lower bound

used in [2]. The reported results in Table 3.4 include the computing time of the initial lower

bounds.

We could solve 36 out of 41 instances within three hours. The only instance (among successful

ones) that took more than one hour for our method to solve was san200-0.9-3. Our solution

times are an order of magnitude better than the best results obtained by IP and CBQ methods for

instances considered by all the three methods (except for small graphs which are solved quickly by

all methods). In comparison of our method with EWCLIQUE, neither of them performs uniformly

52

Table 3.4: Solution time for the MEWC problem.

CPU (sec.)

Name W ∗ IP CBQ EWC Alg.1 Alg.2
brock200-1 21,230 t-lim 3,047.565 338.31 196.359 282.281
brock200-2 6,542 9,464.240 7.436 0.10 0.765 0.983
brock200-3 10,303 t-lim 55.905 1.27 5.140 6.733
brock200-4 13,967 t-lim 188.031 4.84 16.311 21.765
C125.9 66,248 t-lim 4,558.170 - 108.109 173.719
C250.9 - t-lim t-lim - t-lim t-lim
c-fat200-1 7,734 3.870 0.483 < 0.01 0.030 0.046
c-fat200-2 26,389 33.260 0.890 < 0.01 0.046 0.061
c-fat200-5 168,200 155.300 t-lim 74.31 0.077 0.124
c-fat500-1 10,738 - - < 0.01 0.343 0.390
c-fat500-10 804,000 - - t-lim 723.406 1,357.550
c-fat500-2 38,350 - - < 0.01 0.374 0.421
c-fat500-5 205,864 - - 0.43 0.702 0.905
DSJC500-5 9,626 - - 44.43 204.109 254.406
gen200-p0.9-44 - - - - t-lim t-lim
gen200-p0.9-55 150,839 - - - 286.140 429.234
hamming6-2 32,736 0.300 4.437 < 0.01 0.015 0.031
hamming6-4 396 1.970 0.031 < 0.01 0.000 0.000
hamming8-2 800,624 t-lim t-lim 0.23 t-lim t-lim
hamming8-4 12,360 t-lim 439.437 1.46 14.390 18.421
johnson16-2-4 3,808 t-lim 84.687 0.25 12.203 15.984
johnson8-2-4 192 0.140 0.000 < 0.01 0.000 0.000
johnson8-4-4 6,552 2.340 0.687 < 0.01 0.046 0.078
keller4 6,745 t-lim 42.218 0.70 2.233 2.952
MANN-a9 5,460 9.390 1.906 0.02 0.203 0.359
p-hat300-1 3,321 1,273.050 3.281 0.01 0.327 0.374
p-hat300-2 31,564 t-lim 171.281 42.90 10.468 14.984
p-hat300-3 63,390 t-lim t-lim - 3,576.471 5,152.831
p-hat500-1 4,764 - - 0.13 2.296 2.671
p-hat500-2 63,870 - - - 1,023.799 1,519.049
p-hat700-1 5,185 - - 0.52 9.280 10.921
p-hat700-2 - - - - t-lim t-lim
san200-0.7-1 45,295 - - 54.88 1.827 2.421
san200-0.7-2 15,073 - - 17.86 0.718 0.858
san200-0.9-1 242,710 - - 12.56 89.249 124.234
san200-0.9-2 178,468 - - 833.49 160.765 215.656
san200-0.9-3 96,764 - - - 4,037.105 8,740.675
san400-0.5-1 7,442 - - 60.36 11.530 15.187
sanr200-0.7 16,398 - - 18.67 45.233 62.936
sanr200-0.9 - - - - t-lim t-lim
sanr400-0.5 8,298 - - 9.04 52.827 66.046

53

better than the other. However, on the 30 instances solved by both methods, the total time to

solve all these 30 instances taken by Alg.1, Alg.2, and EWCLIQUE was 837.866, 1,122.228, and

1,516.54 seconds, respectively. The difference is mainly due to more challenging instances of this

set. In fact, for most instances that the reported solution time of EWCLIQUE is less than Alg.1,

the solution time for both algorithms is less than 10 seconds. Regarding the two vertex coloring

routines employed in our method, the algorithm performed uniformly better when the method of

Tomita and Kameda [49] was used in the pruning process. The difference is noticeable for instances

that took more time to solve; see for example the results corresponding to san200-0.9-3.

Our best time improvements were obtained for c-fat200-5, C125.9 and san family in-

stances. The CBQ algorithm failed to solve c-fat200-5 within three hours while it was solved

by one of the integer programming models of Gouveia and Martins [25] in about 155 seconds,

and by EWCLIQUE in 74.31 seconds. We solved this instance in 0.077 seconds. All nine integer

programming models of Gouveia and Martins [25] failed to solve C125.9, while we solved this

instance 42 times faster than the CBQ algorithm. For the five instances of the san family consid-

ered by our method and EWCLIQUE, the total time taken by Alg.1 to solve all these five instances

was 264.089 seconds, while it took 979.15 seconds for EWCLIQUE to solve them. It should be

noted that both Shimizu et al. [72] and Gouveia and Martins [25] used computers with slightly

faster processors (3.40 GHz) than that of the machine we used for our experiments (2.90 GHz).

Among the five solution methods in Table 3.4, four are combinatorial B&B algorithms, three

of which (EWCLIQUE being an exception) use the same initial lower bounds and vertex ordering.

For each of these methods, we present the number of nodes of the corresponding search tree in

Table 3.5. We exclude from this table the five instances that we could not solve. As it can be

seen in this table, the number of B&B nodes in either version of the algorithm presented in this

paper is much less than that of the CBQ and EWCLIQUE algorithms, with one exception for each

CBQ and EWCLIQUE. Namely, CBQ uses less nodes for johnson8-2-4, which is the smallest

graph among the test instances; and EWCLIQUE uses less nodes for hamming6-4. Besides, the

number of B&B nodes under the second chromatic method in our algorithm is less than (or equal

54

to) the first method for all but one of the considered instances, san200-0.9-3. Along with

the results of Table 3.4, this implies that better quality of the upper bound (on the clique number)

generated by the second chromatic method did not make up for the overhead of calculating the

pruning threshold for the MEWC problem.

55

Table 3.5: Size of the search tree.

Number of B&B nodes

Name CBQ EWC Alg.1 Alg.2
brock200-1 19,445,372 1,328,614,116 3,058,744 2,853,358
brock200-2 54,328 345,371 14,418 13,683
brock200-3 443,026 4,282,305 99,441 92,784
brock200-4 1,357,862 13,814,425 284,391 264,588
C125.9 13,276,576 - 1,022,493 1,018,056
c-fat200-1 186 632 186 186
c-fat200-2 2,431 6,780 178 178
c-fat200-5 - 138,193,445 176 176
c-fat500-1 - 1,605 486 486
c-fat500-10 - - 586,791 586,791
c-fat500-2 - 4,679 472 472
c-fat500-5 - 1,227,023 750 750
DSJC500-5 - 200,152,687 2,994,499 2,856,281
gen200-p0.9-55 - - 572,542 520,760
hamming6-2 16,134 896 223 213
hamming6-4 403 340 351 351
hamming8-4 2,568,843 2,475,100 155,100 145,634
johnson16-2-4 1,544,956 1,905,154 1,189,751 1,173,959
johnson8-2-4 113 150 127 127
johnson8-4-4 5,532 3,953 1,407 1,360
keller4 353,436 2,158,496 41,474 40,271
MANN-a9 40,407 116,041 26,159 26,159
p-hat300-1 11,278 50,151 3,939 3,862
p-hat300-2 854,903 134,486,327 114,726 110,475
p-hat300-3 - - 23,035,890 21,907,679
p-hat500-1 - 468,371 25,159 23,945
p-hat500-2 - - 6,211,268 5,893,921
p-hat700-1 - 1,678,557 113,239 108,136
san200-0.7-1 - 387,149,894 6,717 5,917
san200-0.7-2 - 48,732,878 3,983 3,765
san200-0.9-1 - 12,731,307 219,755 174,470
san200-0.9-2 - 303,169,816 377,156 303,253
san200-0.9-3 - - 11,876,914 18,700,526
san400-0.5-1 - 43,132,933 41,090 40,953
sanr200-0.7 - 55,871,909 814,221 754,629
sanr400-0.5 - 36,003,126 928,826 881,902

56

4. POLYHEDRAL PROPERTIES OF THE INDUCED CLUSTER SUBGRAPHS∗

4.1 Introduction

A graph is called a cluster graph if its every connected component is a complete graph. Given

a simple, undirected graph G = (V,E), with the set of vertices V and the set of edges E, an

independent union of cliques (IUC) is a subset of vertices U ⊆ V inducing a cluster graph. The

maximum IUC problem is to find an IUC of maximum cardinality in G. The importance of this

problem stems from its application in graph clustering (partitioning the vertices of a graph into

cohesive subgroups), which is a fundamental task in unsupervised data analysis; see [74] and the

references therein for a survey of graph clustering applications and methods. A cluster graph is

an ideal instance from the standpoint of cluster analysis—as it is readily composed of mutually

disjoint “tightly knit” subgroups—and the maximum IUC problem aims to identify the largest in-

duced cluster graph contained in an input graph G. Such an induced subgraph uncovers important

information about the heterogeneous structure of the graph, including the inherent number of its

clusters and their cores (centers). Besides the practical importance of this problem, the definition of

IUC subsumes two fundamental structures in a graph, i.e., cliques and independent sets. The maxi-

mum clique problem and maximum independent set problem are among the most popular problems

of combinatorial optimization, several variants of which have been studied in the literature; see

e.g. [3, 55, 23, 75, 76, 77]. Therefore, the study of the maximum IUC problem, that admits both

of these complementary structures as feasible solutions, is also of a particular theoretical interest.

The maximum IUC problem has appeared under different names in the literature. Fomin et

al. [78] introduced this problem as the maximum induced cluster subgraph problem, and proposed

an exact O(1.6181nnO(1))-time algorithm for it, where n = |V |. Ertem et al. [79] considered

the maximum IUC problem as a relaxation of the maximum α-cluster problem with the maximum

local clustering coefficient, i.e., α = 1. They proposed a graph clustering algorithm based on

∗ This chapter is reprinted with permission from “Polyhedral properties of the induced cluster subgraphs” by S.
Hosseinian, and S. Butenko [73]. Copyright © 2021, Elsevier B.V.

57

a given maximum IUC, referred to as disjoint 1-clusters in [79], and showed the competence of

their method via experiments with real-life social networks. Even though the term “independent

union of cliques” was used earlier (see, e.g., [80]), it was not until very recently that the corre-

sponding optimization problem was referred to as “MAXIMUM IUC” by Ertem et al. [81]. In this

work, the authors studied some basic properties of IUCs and analyzed complexity of the maximum

IUC problem on some restricted classes of graphs. They also performed computational experi-

ments using a combinatorial algorithm (Russian Doll Search) and an integer (linear) programming

formulation of this problem. To the best of our knowledge, this is the only work containing com-

putational experiments on the maximum IUC problem, and their results show that this problem is

quite challenging for the exact solution methods. It is known that a graph is a cluster graph if and

only if it contains no induced subgraph isomorphic to P3 (the path graph on three vertices) [82]. In

this regard, the maximum IUC problem has also been referred to as the maximum induced P3-free

subgraph problem [78]. In our presentation to follow, we refer to induced subgraphs isomorphic

to P3 as open triangles.

Evidently, finding a maximum IUC inG is equivalent to finding a minimum number of vertices

whose deletion turns G into a cluster graph. The latter is the optimization version of the cluster

vertex deletion problem (k-CVD), which asks if an input graph G can be transformed into a cluster

graph by deleting at most k vertices, and is known to be NP-hard by Lewis and Yannakakis theo-

rem [83]. The study of this problem started from the viewpoint of parameterized complexity with

the work of Gramm et al. [82], who proposed an O(2.26k + nm)-time fixed-parameter tractable

algorithm for k-CVD, where n = |V | and m = |E|. Later, Hüffner et al. [84] and Boral et al. [85]

improved this result toO(2kk9 +nm) andO(1.9102k(n+m)), respectively. Le et al. [86] showed

that k-CVD admits a kernel with O(k5/3) vertices, which means there exists a polynomial-time

algorithm that converts an n-vertex instance of k-CVD to an equivalent instance withO(k5/3) ver-

tices. Fomin et al. [87] used the parameterized results of [85] to show that the minimum CVD

(hence, maximum IUC) problem is solvable in O(1.4765n+o(n)) time, which is better than the for-

mer result of [78]. It is also known that the minimum CVD problem is approximable to within

58

a constant factor. In particular, You et al. [88] proposed a 5
2
-approximation algorithm for it, and

Fiorini et al. [89] improved the approximation ratio to 7
3
. Several other problems involving cluster

subgraphs (not necessarily induced) have also been considered in the literature, including cluster

editing [90, 91, 92, 93, 94, 95, 96], disjoint cliques [97, 98], s-plex cluster vertex deletion [99], and

s-plex cluster editing [100].

From a broader perspective, the maximum IUC problem is to identify a maximum-cardinality

independent set in a graph-based independence system. An independence system (S,S) is a pair

of a finite set S together with a family S of subsets of S such that I2 ⊆ I1, I1 ∈ S implies

I2 ∈ S . Referring to an independence system (S,S), every I ∈ S is called an independent set

and every D ⊆ S,D /∈ S, is called a dependent set. The minimal (inclusion-wise) dependent

subsets of S are called circuits of the independence system (S,S). In graph-theory terminology,

an independent set (stable set, vertex packing) is a subset of pairwise non-adjacent vertices in a

graph G = (V,E). Let I denote the set of all independent sets (in the sense of graph theory)

in G. Then, (V, I) is an independence system whose circuit set is given by E; hence, the two

definitions coincide. Following this concept, V together with the set of all IUCs in G form an

independence system whose set of circuits is given by the three-vertex subsets of V inducing open

triangles in the graph. This perspective on the maximum IUC problem is of our interest as some of

the results to follow correspond to certain properties of independence systems. It is worth noting

that many well-known problems of graph theory, beyond those mentioned here, convey the notion

of independence systems associated with a graph; see for example [101, 102].

Here, we present a comprehensive study of the maximum IUC problem from the standpoint

of polyhedral combinatorics. More specifically, we study the facial structure of the IUC polytope

associated with a simple undirected graph G, and identify several facet-defining valid inequalities

for this polytope. As a result, we will be able to present the full description of the IUC polytope for

some special classes of graphs. We also study the computational complexity of the separation prob-

lems for these inequalities, and perform computational experiments to examine their effectiveness

when used in a branch-and-cut scheme to solve the maximum IUC problem.

59

4.1.1 Terminology and notation

Throughout this chapter, we consider a simple undirected graph G = (V,E), where V is the vertex

set and E ⊆ {{i, j} | i, j ∈ V, i 6= j} is the edge set. Unless otherwise stated, we assume |V | = n.

Given a subset of vertices S ⊆ V , the subgraph induced by S is denoted by G[S] and is defined

as G[S] = (S,E(S)), where E(S) is the set of edges with both endpoints in S. A clique is a

subset of vertices inducing a complete graph, and an independent set (stable set, vertex packing)

is a subset of vertices inducing an edgeless graph. A clique (resp. independent set) is called

maximum if it is of maximum cardinality, i.e., there is no larger clique (resp. independent set) in

the graph. Cardinality of a maximum clique in G is called the clique number of the graph, and is

denoted by ω(G). Respectively, the independence number of G is the cardinality of a maximum

independent set in the graph, and is denoted by α(G). In a similar manner, a maximum IUC in G

is an IUC of maximum cardinality, and the IUC number of G, denoted by αω(G), is the cardinality

of a maximum IUC in the graph. Since every clique as well as every independent set in G is an

IUC, the IUC number of the graph is bounded from below by its clique number and independence

number, i.e., max{ω(G), α(G)} ≤ αω(G). The (open) neighborhood of a vertex i ∈ V is the

set of vertices j ∈ V \{i} adjacent to i, and is denoted by N(i). The closed neighborhood of i is

defined asN [i] = N(i)∪{i}. The incidence vector of a subset of vertices S ⊆ V is a binary vector

x ∈ Rn such that xi = 1,∀i ∈ S, and xi = 0,∀i ∈ V \S. Conventionally, the incidence vector of a

single vertex i ∈ V is denoted by ei. We use 0, 1 and 2 to denote the vectors of all zero, one and

two, respectively. The corresponding dimensions will be clear from the context.

We assume familiarity of the reader with fundamentals of polyhedral theory, and just briefly

mention the concept of lifting [103, 104, 105], as several proofs to follow are based on lifting

arguments. Let P be the convex hull of the set of 0-1 feasible solutions to an arbitrary system of

linear inequalities with a nonnegative coefficient matrix, i.e., P = conv{x ∈ {0, 1}n | Ax ≤ b}.

Corresponding to a subset of variables indexed by N ′ ⊆ N = {1, . . . , n}, consider the polytope

P(xN′=0) obtained from P by setting xj = 0,∀j ∈ N ′. Let N ′′ = N\N ′, and suppose that the

inequality
∑

i∈N ′′ πixi ≤ π0 induces a facet of P(xN′=0). Then, lifting a variable xj, j ∈ N ′, into

60

this inequality leads to an inequality πjxj +
∑

i∈N ′′ πixi ≤ π0, where

πj = π0 −max

{∑
i∈N ′′

πixi|
∑
i∈N ′′

Aixi ≤ b− Aj; xi ∈ {0, 1},∀i ∈ N ′′
}
, (4.1)

which is facet-defining for P(xN′\{j}=0). In (4.1), Ai denotes the coefficient vector of a variable xi

in the system of inequalities, i.e., the i-th column of A. The importance of this result is due to the

fact that some facets of the original polytope P can be obtained from the facets of the restricted

polytopes through sequential (or simultaneous) lifting procedures. In particular, some facets of

the polytope associated with a graph G for a certain problem may be identified through lifting the

facets of the lower-dimensional polytopes corresponding to its subgraphs. Finally, note that (4.1)

is equivalent to

πj = π0 −max

{∑
i∈N ′′

πixi | x ∈P and xj = 1

}
, (4.2)

which is easier to use when P is defined to be the convex hull of the incidence vectors of the sets

of vertices in a graph holding a certain property.

4.2 The IUC Polytope

The IUC polytope associated with a simple, undirected graph G, denoted by PIUC(G), is the

convex hull of the incidence vectors of all IUCs in G, which can be characterized by the circuit set

of the corresponding independence system as follows [106]:

PIUC(G) = conv{x ∈ {0, 1}n | xi + xj + xk ≤ 2,∀{i, j, k} ∈ Λ(G)}, (4.3)

where Λ(G) denotes the set of three-vertex subsets of V inducing open triangles in G. Patently,

αω(G) = max{
∑

i∈V xi | x ∈PIUC(G)}, and the maximum weight IUC problem, which is to find

an IUC with the maximum total weight in a vertex-weighted graph, can be formulated as

Maximize
∑
i∈V

wixi subject to x ∈PIUC(G), (4.4)

61

with wi denoting the weight of a vertex i ∈ V . We call each inequality xi+xj +xk ≤ 2, {i, j, k} ∈

Λ(G), an open-triangle (OT) inequality. The following theorems establish the basic properties of

PIUC(G) including the strength of the OT inequalities.

Theorem 7. PIUC(G) is full-dimensional, and for every i ∈ V , the inequalities xi ≥ 0 and xi ≤ 1

are facet-defining for this polytope.

Proof. Note that 0 ∈ PIUC(G). Also, every single vertex, as well as every pair of vertices in

G is an IUC, by definition. Full-dimensionality of PIUC(G) is established by noting that 0 and

ei,∀i ∈ V , are n + 1 affinely independent points in Rn belonging to this polytope. Besides, for

every i ∈ V , 0 and ej,∀j ∈ V \{i}, belong to F0
i = {x ∈PIUC(G) | xi = 0}, which indicates that

F0
i is a facet of PIUC(G). Similarly, for every i ∈ V , the points ei and eij = ei + ej,∀j ∈ V \{i},

are affinely independent and belong to F1
i = {x ∈ PIUC(G) | xi = 1}, hence F1

i is a facet of

PIUC(G).

It follows from full-dimensionality of PIUC(G) that every facet-defining inequality of this poly-

tope is unique to within a positive multiple. Thus, in order to prove that a proper faceF of PIUC(G)

defined by a valid inequality π(x) ≤ π0 is a facet, it suffices to show that any supporting hyperplane

of PIUC(G) containing F is a (non-zero) scalar multiple of π(x) = π0.

Theorem 8. The inequality xi+xj+xk ≤ 2, {i, j, k} ∈ Λ(G), is facet-defining for PIUC(G) if and

only if there does not exist a vertex v ∈ V \{i, j, k} such that H = {i, j, k, v} induces a chordless

cycle in G.

Proof. Clearly, F = {x ∈PIUC(G) | xi + xj + xk = 2} is a proper face of PIUC(G). So, suppose

that it is contained in a supporting hyperplane H :
∑

v∈V avxv = b of this polytope. Observe that,

ei + ej ∈ F ⊆H ∴ ai + aj = b.

Similarly, ai + ak = b and aj + ak = b, which imply ai = aj = ak = a and b = 2a. Now, consider

G[H] the subgraph induced by H = {i, j, k, v} for an arbitrary vertex v ∈ V \{i, j, k}. As G[H] is

62

not a chordless cycle, it contains at most three open triangles, and those have at least one vertex in

common. Let k be such a vertex, then

ei + ej + ev ∈ F ⊆H ∴ ai + aj + av = b ∴ av = 0, ∀v ∈ V \{i, j, k}.

As the interior of PIUC(G) is nonempty, a 6= 0 and H is a (non-zero) scalar multiple of xi + xj +

xk = 2. To complete the proof, note that if H = {i, j, k, v} induces a chordless cycle in G, then

xi + xj + xk ≤ 2 is dominated by the inequality xi + xj + xk + xv ≤ 2, which is facet-defining for

PIUC(G) by Theorem 9 of the next section.

In Section 4.3 we will show that Theorem 8 is a special case of a more general statement for

the so-called star inequality, defined later.

Obviously, the maximum IUC problem can be directly solved using off-the-shelf MIP solvers

through the following formulation:

αω(G) = max
∑
i∈V

xi

s.t. xi + xj + xk ≤ 2, ∀{i, j, k} ∈ Λ(G),

xi ∈ {0, 1}, ∀ i ∈ V.

(4.5)

However, the LP relaxation of (4.5) is generally too weak. In fact, given the feasibility of the

fractional assignment xi = 2
3
,∀i ∈ V , the optimal solution value of the LP relaxation prob-

lem is at least as large as 2n
3

, while the computational results of Ertem et al. [81] show that the

IUC number of graphs with moderate densities tends to stay in a close range of their relatively

small independence and clique numbers. This is due to the fact that the fractional IUC polytope

PF
IUC

(G) = {x ∈ [0, 1]n | xi + xj + xk ≤ 2, ∀{i, j, k} ∈ Λ(G)} is a polyhedral relaxation of a

cubically constrained region in the space of original variables. Note that the IUC property may

be enforced through trilinear products of the variables in a 0-1 program, i.e., by replacing the OT

inequalities of (4.5) with xixjxk = 0,∀{i, j, k} ∈ Λ(G). In such a cubic formulation, relaxing

63

the integrality of variables will not change the set of optimal solutions, because given a set of

variables xi = 0,∀i ∈ V0 ⊂ V , to satisfy the constraints, the optimality conditions necessitate

xi = 1,∀i ∈ V \V0. Hence, αω(G) can be obtained by solving the following continuous problem:

αω(G) = max
x∈[0,1]n

{∑
i∈V

xi | xixjxk = 0,∀{i, j, k} ∈ Λ(G)

}
. (4.6)

It is known that the (convex and concave) envelopes of a trilinear monomial term w = xyz when

0 ≤ x, y, z ≤ 1 are as follows [107]:

w ≤ x, w ≤ y, w ≤ z, w ≥ x+ y + z − 2, w ≥ 0,

which, along with wijk = xixjxk = 0,∀{i, j, k} ∈ Λ(G), indicates that PF
IUC

(G) is a polyhedral

outer-approximation of the feasible region of (4.6). As a result, the gap between αω(G) and the

optimal solution value of the LP relaxation problem of (4.5) is due to accumulation of the gap

between the trilinear terms and their overestimating envelopes. A similar result holds between

continuous and integer (linear) programming formulations of the maximum independent set and

maximum clique problems, except that the corresponding continuous formulations of those prob-

lems are quadratically constrained. The cubic nature of the IUC formulation justifies the weakness

of PF
IUC

(G) even compared to the fractional independent set (vertex packing) and clique polytopes,

which are known to be loose in general. This further reveals the importance of exploring the facial

structure of the IUC polytope and applying strong cutting planes in integer (linear) programming

solution methods of the maximum IUC problem.

4.3 Facet-producing Structures

In this section, we present some facet-inducing valid inequalities for the IUC polytope associated

with chordless cycle (and its edge complement), star (and double-star), fan and wheel graphs. We

study the conditions under which these inequalities remain facet-defining for the IUC polytope of

an arbitrary graph that contains the corresponding structure as an induced subgraph, and present

64

some results with respect to lifting procedure for those that do not have this property. In some

cases, we will present the full description of the IUC polytope associated with these graphs.

4.3.1 Chordless cycle and its complement

The following theorem concerns the facial structure of the IUC polytope associated with a (chord-

less) cycle graph. In an arbitrary graphG = (V,E), a subset of verticesH ⊆ V, |H| ≥ 4, inducing

a chordless cycle is called a hole. In labeling the vertices of a hole H , we assume that adjacent

vertices have consecutive labels with the convention |H|+ 1 ≡ 1.

Theorem 9. (Hole Inequality) Let H ⊆ V be a hole of cardinality |H| = 3q + r in G = (V,E),

where q is a positive integer and r ∈ {0, 1, 2}. Then, the inequality

∑
i∈H

xi ≤ 2q +

⌊
2r

3

⌋
(4.7)

is valid for PIUC(G). Moreover, (i) it induces a facet of PIUC(G[H]) if and only if r 6= 0, and (ii)

it is facet-defining for PIUC(G) if q = r = 1.

Proof. Consider G[H] the subgraph induced by H . This subgraph contains |H| distinct open

triangles, and each vertex i ∈ H appears in exactly three of them. Summation of the corresponding

OT inequalities leads to

3
∑
i∈H

xi =
∑

{i,j,k}∈Λ(G[H])

xi + xj + xk ≤ 2|H| = 6q + 2r.

After dividing both sides of the last inequality by 3, integrality of the left-hand side implies validity

of (4.7) for PIUC(G) as a Gomory-Chvátal cut.

(i) It is clear that, as a linear combination of OT inequalities, (4.7) is not facet-defining for

PIUC(G[H]) if r = 0. Thus, we just need to show that r 6= 0 is sufficient for (4.7) to induce a facet

of this polytope. We examine the corresponding cases separately.

• CASE 1: r = 1

Consider a sequential partitioning of H such that each partition contains exactly three ver-

65

tices except for the last one, which is left with a single vertex. Assume a labeling of the

vertices such that the first partition is given by {1, 2, 3}, and let xU1 and xU2 be the incidence

vectors of the following sets of vertices:

U1 = {1, 3, 3p− 1, 3p, ∀p ∈ {2, . . . , q}},

U2 = {2, 3, 3p− 1, 3p, ∀p ∈ {2, . . . , q}}.

The sets of black vertices in Figures 4.1(a) and 4.1(b) depict U1 and U2, respectively.

Observe that, xU1 , xU2 ∈ F = {x ∈PIUC(G[H]) |
∑

v∈H xv = 2q}, hence F is a proper face

of PIUC(G[H]). Suppose that H :
∑

v∈H avxv = b is an arbitrary supporting hyperplane of

PIUC(G[H]) containing F . Then, xU1 , xU2 ∈ H implies that a1 = a2. The same argument

using similar partitions can be used to show that this result holds for every two adjacent

vertices in G[H], thus av = a,∀v ∈ H , and b = 2qa. The proof is complete by noting that

the interior of PIUC(G[H]) is nonempty, so a 6= 0.

• CASE 2: r = 2

Similar to the former case, let xU1 and xU2 be the incidence vectors of

U1 = {3q + 2, 1, 3, 3p− 1, 3p,∀p ∈ {2, . . . , q}},

U2 = {3q + 2, 2, 3, 3p− 1, 3p,∀p ∈ {2, . . . , q}}.

Then, the same argument leads to the result that the inequality
∑

v∈H xv ≤ 2q + 1 induces a

facet of PIUC(G[H]).

(ii) To conclude the proof, we show that (4.7) is facet-defining for PIUC(G) if q = r = 1, i.e.,

|H| = 4. By (i),
∑

i∈H xi ≤ 2 defines a facet of PIUC(G[H]). Let
∑

i∈H xi+
∑

v∈V \H avxv ≤ 2 be

the inequality obtained from an arbitrary sequential lifting of
∑

i∈H xi ≤ 2 (to Rn). Observe that,

for every vertex v ∈ V \H , there always exists two vertices i, j ∈ H such that {i, j, v} /∈ Λ(G),

thus, max{
∑

i∈H xi | x ∈ PIUC(G) and xv = 1} = 2. This implies av = 0,∀v ∈ V \H , hence∑
i∈H xi ≤ 2 induces a facet of PIUC(G).

66

Figure 4.1: Subgraph induced by a hole H , |H| = 3q + 1.

It is easy to see the similarity between (4.7) and the odd-hole inequality for the vertex packing

(independent set in the sense of graph theory) polytope associated with G. Padberg [108] proved

that, given a hole H in G with an odd number of vertices, the inequality
∑

i∈H xi ≤
1
2
(|H| − 1)

is facet-defining for the vertex packing polytope associated with G[H]. Later, Nemhauser and

Trotter [106] noted that the odd-hole inequality is a special case of a more general result concerning

independence systems, stated as follows:

Theorem 10. [106] Suppose α0 is the cardinality of a maximum independent set in an indepen-

dence system S = (S,S), and S contains n = |S| maximum independent sets I1, I2, . . . , In

with corresponding affinely independent (incidence) vectors x1, x2, . . . , xn. Then
∑

i∈S xi ≤ α0 is

facet-defining for the polytope associated with S , i.e., the convex hull of the incidence vectors of

all members of S in Rn.

Similar to the odd-hole inequality for the vertex packing polytope, Theorem 9(i) spots a facet-

inducing inequality implied by Theorem 10 for the independence system defined by the IUC prop-

erty on G[H]. Note that Theorem 10 itself is of little practical value as it provides no means to

identify the independence systems satisfying such properties.

Furthermore, Theorems 8 and 9(ii) correspond to maximal clique inequality of independence

67

systems. An independence system (S,S) is called k-regular if every circuit of it is of cardinality k.

Referring to a k-regular independence system (S,S), C ⊆ S is called a clique if |C| ≥ k and all(|C|
k

)
subsets of C are circuits of (S,S). Clearly, this definition coincides with the graph-theoretic

definition of a clique. Nemhauser and Trotter [106] also proved that the inequality
∑

i∈C xi ≤ k−1

is facet-inducing for the polytope associated with a k-regular independence system (S,S) ifC ⊆ S

is a maximal (inclusion-wise) clique. A special case of this result for the vertex packing polytope

associated with a graph G had been originally shown by Padberg [108]. Let U denote the set of all

IUCs inG, and (V,U) be the corresponding independence system. Patently, every {i, j, k} ∈ Λ(G)

is a clique in (V,U), and such a clique is maximal only if it is not contained in a clique of cardinality

4. It is not hard to see that a clique of size 4 in (V,U) must be a hole in G. Therefore, Theorem 8

corresponds to maximality of {i, j, k} ∈ Λ(G) as a clique of the corresponding independence

system. Besides, by the proof of Theorem 9(ii), it became clear that (V,U) cannot have a clique

of cardinality greater than 4 because, for every 4-hole H and every vertex v ∈ V \H , there always

exist two vertices i, j ∈ H such that {i, j, v} /∈ Λ(G). Thus, a hole of cardinality 4 in G is

actually a maximum clique in (V,U), and Theorem 9(ii) corresponds to its maximality. This result

is of a special value for the maximum IUC problem as all facets of this type can be identified

in polynomial time. Recall that the vertex packing polytope associated with G may possess an

exponential number of such facets.

Given this result, we extend the concept of fractional clique/independence number of a graph

G to the independence system (V,U). The fractional clique number of G is the maximum sum

of nonnegative weights that can be assigned to its vertices such that the total weight of every

independent set in the graph is at most 1. Naturally, the fractional clique number of G is equivalent

to the fractional independence number of its complement graph, where the total weight of every

clique is at most 1. We define the fractional IUC number of a graph G as the maximum sum of

nonnegative (and no more than 1) weights that can be assigned to its vertices such that the total

weight of every clique in (V,U), i.e., the vertex set of every open triangle and 4-hole in G, is at

most 2. Clearly, the fractional IUC number of G provides an upper bound on its IUC number,

68

which is computable in polynomial time as opposed to the fractional clique and independence

numbers of a graph which are NP-hard to compute [75].

The vertex packing polytope associated with a cycle graph is characterized by the set of max-

imal clique inequalities, i.e., xi + xj ≤ 1, ∀{i, j} ∈ E, the variable (lower) bounds, and the Pad-

berg’s odd-hole inequality if the number of vertices is odd. However, the IUC polytope associated

with a cycle graph has more facets than those defined by these families. As a case in point, consider

a cycle graph on n = 12 vertices, and observe that the point given by xi = 1, ∀i ∈ {1, 5, 9}, and

xi = 1
2
, ∀i ∈ V \{1, 5, 9}, is an extreme point of the polytope defined by the corresponding set of

OT inequalities and the variable bounds. In fact, a fractional extreme point of a similar structure—

generated by OT inequalities and variable bounds—exists for every cycle graph on n = 3q1 + 4q2

vertices, for some nonnegative integers q1 and q2, if q2 is odd. In such a cycle graph, fixing q1 + q2

variables whose vertices are located at distances 3 or 4 from each other at 1 turns the set of OT

inequalities into the set of vertex packing inequalities associated with a conflict cycle graph with an

odd number of vertices; this leads to extremity of a point with half integral values on the remaining

n− (q1 + q2) variables. It is easy to check that, unless q2 = 1, this fractional point always satisfies

the hole inequality (4.7).

Given the definition of IUC, it is also natural to consider the correspondence between the IUC

polytope and the clique polytope associated with a graph G, i.e., the convex hull of the incidence

vectors of all cliques in G. Patently, the odd-hole inequality for the vertex packing polytope trans-

lates to the odd-anti-hole inequality for the clique polytope associated with G. An anti-hole is a

subset of vertices A ⊆ V, |A| ≥ 4, such that the (edge) complement of the corresponding in-

duced subgraph is a chordless cycle, i.e., A is a hole in the complement graph of G. The following

theorem states that, under a slightly stronger condition, the same inequality is valid for the IUC

polytope associated with G and possesses the same facial property on the polytope associated with

the corresponding induced subgraph.

Theorem 11. (Anti-hole Inequality) Let A ⊆ V, |A| ≥ 6, be an anti-hole in G = (V,E). Then,

69

the inequality ∑
i∈A

xi ≤
⌊
|A|
2

⌋
(4.8)

is valid for PIUC(G). Furthermore, it induces a facet of PIUC(G[A]) if and only if |A| is odd.

Proof. Consider a labeling of the vertices of an anti-hole A, |A| ≥ 6, such that {i, i + 1}, ∀i ∈

{1, . . . , |A| − 1}, and {|A|, 1} identify the pairs of non-adjacent vertices in G[A]. For a fixed

sequence of labels, note that {1, 2, i, i + 1},∀i ∈ {4, . . . , |A| − 2}, is a hole of cardinality 4, thus

the inequality x1 + x2 + xi + xi+1 ≤ 2,∀i ∈ {4, . . . , |A| − 2}, is valid for PIUC(G). Consider

the summation of those |A| − 5 valid inequalities. Observe that each vertex j ∈ {1, 2} appears

|A| − 5 times, j ∈ {4, |A| − 1} once, and j ∈ {5, . . . , |A| − 2} twice, in the left-hand side of

the resultant inequality. These partitions are illustrated by black, hatched, and gray vertices in

Figure 4.2, respectively. The white vertices in Figure 4.2 are those that are not present in this

inequality. Since the starting vertex of the labeling sequence was arbitrary, |A| valid inequalities of

this type may be written for PIUC(G). Considering all those inequalities, every vertex will appear

exactly twice in a black position, twice in a white, twice in a hatched, and |A| − 6 times in a gray

position. As a result, the summation of all 4-hole inequalities associated with G[A] results in

(
2(|A| − 5) + 2 + 2(|A| − 6)

)∑
i∈A

xi ≤ 2|A|(|A| − 5).

Therefore,
∑

i∈A xi ≤
1
2
|A| is valid for PIUC(G), which further implies validity of (4.8) as the

Gomory-Chvátal cut corresponding to this inequality. Clearly, when |A| is even, (4.8) is a lin-

ear combination of the 4-hole inequalities associated with G[A], hence not facet-defining for the

corresponding polytope. Thus, it remains to show that it induces a facet of PIUC(G[A]) if |A| is

odd.

Given an odd anti-hole A, consider F = {x ∈ PIUC(G[A]) |
∑

v∈A xv = 1
2
(|A| − 1)}. Asso-

ciated with a fixed labeling of A as described above, let xC be the incidence vector of the set of

even vertices, i.e., C = {2, 4, . . . , |A| − 1}. Observe that C is a clique in G[A] and xC ∈ F , which

implies F is a proper face of PIUC(G[A]). Suppose that F is contained in a supporting hyperplane

70

Figure 4.2: Subgraph induced by an anti-hole.

H :
∑

i∈A aixi = b of PIUC(G[A]). Let C ′ = (C ∪ {1})\{2} and note that C ′ is also a clique,

hence xC′ ∈ F . Then, xC , xC′ ∈H implies that a1 = a2. Since the start vertex of the labeling was

arbitrary, this results holds for all pairs of vertices with consecutive labels. That is, ai = a,∀i ∈ A,

and b = 1
2
a(|A| − 1). The proof is complete noting that the interior of PIUC(G[A]) is nonempty,

thus a 6= 0.

Theorem 11 is closely related to a basic property of IUCs. Ertem et al. [81] showed that, in an

arbitrary graph, a (maximal) clique is a maximal IUC if and only if it is a dominating set. In an

anti-cycle graph G = (A,E), each maximal clique is maximum, and in case |A| ≥ 6, it is also a

maximum IUC by Theorem 11. It is easy to verify that the anti-cycle graphs on 4 and 5 vertices

are the only ones in which a maximal clique is not a dominating set.

In the subsequent sections, we will show that the IUC polytope associated with an anti-cycle

graph has many other facets than those induced by the 4-hole inequalities and (4.8), due to the fan

substructures that appear in this graph. We postpone our discussion in this regard to Section 4.3.3.

Finally, it should be mentioned that the odd-hole and odd-anti-hole inequalities for the vertex

packing polytope have been generalized by Trotter [109] via introducing a general class of facet-

producing subgraphs, called webs, that subsumes cycle and anti-cycle graphs as special cases.

71

Figure 4.3: Example graphs for lifting the hole inequality.

Given the connection between the vertex packing and IUC polytopes, webs may lead to further

facet-inducing inequalities for the IUC polytope as well. We leave this topic for future research

and will not pursue it in this paper.

Lifting hole and anti-hole inequalities

Let G[H], |H| ≥ 5, be an induced chordless cycle in G = (V,E), where |H| = 3q + r and r 6= 0.

Then by Theorem 9, inequality (4.7) induces a facet of PIUC(G[H]), but it is not necessarily

facet-defining for PIUC(G). Consider lifting a variable xv, v ∈ V \H , into (4.7) to generate a

facet-defining inequality for PIUC(G[H ∪ {v}]) of the form avxv +
∑

i∈H xi ≤ 2q +
⌊

2r
3

⌋
. The

value of av in such an inequality depends on cardinality of H ∩N(v) as well as distances (lengths

of the shortest paths) among the vertices of N(v) in G[H]. As a case in point, consider the graphs

of Figure 4.3, and lifting x8 into the inequality
∑7

i=1 xi ≤ 4 corresponding to H = {1, . . . , 7}.

In both graphs, |H ∩ N(8)| = 4 and the difference is due to the distance between the vertices 4

and 7 (equivalently, 1 and 7) in the left-hand-side graph, and the vertices 4 and 6 (equivalently, 1

and 6) in the right-hand-side graph. The sets of black vertices illustrate the maximum size IUCs

containing vertex 8 in these graphs. Clearly, the coefficient of x8 vanishes in lifting
∑7

i=1 xi ≤ 4

for the left-hand-side graph, indicating that this inequality is facet-defining for PIUC(G[H ∪{8}]).

On the other hand, for the IUC polytope associated with the right-hand-side graph, this inequality

is dominated by the lifted (facet-defining) inequality x8 +
∑7

i=1 xi ≤ 4.

Obviously, the structure of N(v) in G[H] becomes irrelevant at extreme values of |H ∩N(v)|.

72

This result can be slightly strengthened by showing that the lengths of the paths among the neigh-

bors of v in G[H] are redundant when |H ∩ N(v)| is restricted to 3 and 2 for r = 1 and r = 2,

respectively. This leads to the following theorem concerning the lifting procedure of the hole

inequality to higher-dimensional spaces.

Theorem 12. Consider the hole inequality (4.7) where r 6= 0. In every sequential lifting of (4.7),

the coefficient of a variable xv, v ∈ V \H , vanishes under the following conditions: (i) |H ∩

N(v)| ≤ 3 if r = 1, (ii) |H ∩N(v)| ≤ 2 if r = 2.

Proof. In an arbitrary sequential lifting of the hole inequality (4.7), even if some variables not-

satisfying the theorem conditions have already been lifted into (4.7) before xv, existence of 2q +⌊
2r
3

⌋
vertices in H forming an IUC with v is sufficient for the coefficient of xv to vanish. Thus, we

just need to establish the existence of these vertices under the theorem conditions. Such structures

for all possible distributions of neighbors of v in G[H] are presented below.

Consider a sequential partitioning of H as described in the proof of Theorem 9. In a clockwise

walk, let vpi denote the i-th vertex in the p-th partition, where i ∈ {1, 2, 3}, p ∈ {1, . . . , q+ 1}, and

p = q + 1 is the partition with less than 3 vertices. The cases where |H ∩N(v)| ≤ 1 are trivial, so

we start with |H ∩N(v)| = 2. Let u and w be the neighbors of v in H , i.e., H ∩N(v) = {u,w},

and d = dG[H](u,w) denote the distance (length of the shorter path) between u and w in G[H].

Without loss of generality, we assume u = v1
1 and the shorter path between u and w in G[H] is

due to a clockwise walk from u toward w. We treat d ∈ {1, 2} separately as those are the only

cases where u and w are located in the same partition. For each case, we present an IUC of size

2q +
⌊

2r
3

⌋
+ 1 in G[H ∪ {v}]. In the following presentation, each set of vertices is a clique, and j

denotes the partition that contains w.

d = 1, r = 1 : {v, u = v1
1, w = v1

2}; {v
p
1, v

p
2},∀p ∈ {2, . . . , q}

d = 1, r = 2 : {v, u = v1
1, w = v1

2}; {v
p
1, v

p
2},∀p ∈ {2, . . . , q}; {v

q+1
1 }

d = 2, r = 1 : {v}; {v1
2}; {v

p
1, v

p
2}, ∀p ∈ {2, . . . , q}; {v

q+1
1 }

d = 2, r = 2 : {v}; {v1
2}; {v

p
1, v

p
2}, ∀p ∈ {2, . . . , q}; {v

q+1
1 , vq+1

2 }

73

d ≡ 0 (mod 3), r = 1 : {v}; {vp2, v
p
3},∀p ∈ {1, . . . , q}

d ≡ 0 (mod 3), r = 2 : {v}; {vp2, v
p
3},∀p ∈ {1, . . . , q}; {v

q+1
2 }

d ≡ 1 (mod 3), r = 1 : {v, w = vj2}; {v
p
2, v

p
3},∀p ∈ {1, . . . , j − 1};

{vp1, v
p
2},∀p ∈ {j + 1, . . . , q}; {vq+1

1 }

d ≡ 1 (mod 3), r = 2 : {v, w = vj2}; {v
p
2, v

p
3},∀p ∈ {1, . . . , j − 1};

{vp1, v
p
2},∀p ∈ {j + 1, . . . , q}; {vq+1

1 , vq+1
2 }

d ≡ 2 (mod 3), r = 1 : {v}; {vp2, v
p
3}, ∀p ∈ {1, . . . , j − 1}; {vj2};

{vp1, v
p
2},∀p ∈ {j + 1, . . . , q}; {vq+1

1 }

d ≡ 2 (mod 3), r = 2 : {v}; {vp2, v
p
3}, ∀p ∈ {1, . . . , j − 1}; {vj2};

{vp1, v
p
2},∀p ∈ {j + 1, . . . , q}; {vq+1

1 , vq+1
2 }

Next, we consider |H ∩ N(v)| = 3 and r = 1. Let H ∩ N(v) = {u,w, z}. As before, suppose

that u = v1
1 , and in a clockwise walk starting from u, first w is reached in d1 = dG[H](u,w) steps,

and then z is reached in d2 = dG[H](w, z) steps from w. We also assume d1 ≤ d2. In the following

presentation, j and k denote the partitions containing w and z, respectively. First, we consider the

cases where u and w are located in the same partition, i.e., d1 ∈ {1, 2}. Note that u, w and z are

placed in one partition only if d1 = d2 = 1.

d1 = 1, d2 = 1 : {v, u = v1
1, w = v1

2}; {v
p
1, v

p
2},∀p ∈ {2, . . . , q}

d1 = 1, d2 ≡ 0 (mod 3) : {v, u = v1
1, w = v1

2}; {v2
1};

{vp3, v
p+1
1 }, ∀p ∈ {2, . . . , q − 1}; {vq3}

d1 = 1, d2 ≡ 1 (mod 3) : {v, u = v1
1, w = v1

2}; {v
p
1, v

p
2},∀p ∈ {2, . . . , q}

d1 = 1, d2 ≡ 2 (mod 3) : {v, u = v1
1, w = v1

2}; {v
p
2, v

p
3},∀p ∈ {2, . . . , q}

d1 = 2, d2 ≡ 0 (mod 3) : {v}; {v1
2}; {v

p
1, v

p
2},∀p ∈ {2, . . . , q}; {v

q+1
1 }

d1 = 2, d2 ≡ 1 (mod 3) : {v, z = vk1}; {v1
2}; {v

p
1, v

p
2},∀p ∈ {2, . . . , k − 1};

{vp3, v
p+1
1 },∀p ∈ {k, . . . , q}

74

d1 = 2, d2 ≡ 2 (mod 3) : {v}; {v1
2}; {v2

1}; {v
p
3, v

p+1
1 },∀p ∈ {2, . . . , q}

Finally, the following IUCs correspond to the cases where u, w and z are all located in separate

partitions.

d1 ≡ 0 (mod 3), d2 ≡ 0 (mod 3) : {v}; {vp2, v
p
3},∀p ∈ {1, . . . , q}

d1 ≡ 0 (mod 3), d2 ≡ 1 (mod 3) : {v, z = vk2}; {v
p
2, v

p
3},∀p ∈ {1, . . . , k − 1};

{vp1, v
p
2},∀p ∈ {k + 1, . . . , q}; {vq+1

1 }

d1 ≡ 0 (mod 3), d2 ≡ 2 (mod 3) : {v}; {vp2, v
p
3},∀p ∈ {1, . . . , k − 1}; {vk2};

{vp1, v
p
2},∀p ∈ {k + 1, . . . , q}; {vq+1

1 }

d1 ≡ 1 (mod 3), d2 ≡ 0 (mod 3) : {v, w = vj2}; {v
p
2, v

p
3},∀p ∈ {1, . . . , j − 1};

{vj+1
1 }; {vp3, v

p+1
1 },∀p ∈ {j + 1, . . . , q}

d1 ≡ 1 (mod 3), d2 ≡ 1 (mod 3) : {v, w = vj2}; {v
p
2, v

p
3},∀p ∈ {1, . . . , j − 1};

{vp1, v
p
2},∀p ∈ {j + 1, . . . , q}; {vq+1

1 }

d1 ≡ 1 (mod 3), d2 ≡ 2 (mod 3) : {v, u = v1
1}; {v

p
3, v

p+1
1 }, ∀p ∈ {1, . . . , j − 1};

{vp3, v
p+1
1 },∀p ∈ {j, . . . , k − 2}; {vk−1

3 };

{vp2, v
p
3},∀p ∈ {k, . . . , q}

d1 ≡ 2 (mod 3), d2 ≡ 0 (mod 3) : {v}; {vp2, v
p
3},∀p ∈ {1, . . . , j − 1};

{vj2}; {v
p
1, v

p
2}, ∀p ∈ {j + 1, . . . , q}; {vq+1

1 }

d1 ≡ 2 (mod 3), d2 ≡ 1 (mod 3) : {v, z = vk1}; {v
p
2, v

p
3},∀p ∈ {1, . . . , j − 1};

{vj2}; {v
p
1, v

p
2}, ∀p ∈ {j + 1, . . . , k − 1};

{vp3, v
p+1
1 },∀p ∈ {k, . . . , q}

d1 ≡ 2 (mod 3), d2 ≡ 2 (mod 3) : {v}; {vp2, v
p
3},∀p ∈ {1, . . . , j − 1};

{vj2}; {v
j+1
1 }; {vp3, v

p+1
1 },∀p ∈ {j + 1, . . . , q}

The proof is complete.

75

In Section 4.3.3, we will discuss implication of this theorem about the facial structure of the

IUC polytope associated with a defective wheel graph.

We conclude this section by stating a similar result concerning the anti-hole inequality. By

construction of a maximum IUC in an anti-cycle graph, presented it the proof of Theorem 11, it is

easy to verify that the coefficient of a variable xv, v ∈ V \A, vanishes in lifting the odd-anti-hole

inequality (4.8) to higher-dimensional spaces if |A ∩ N(v)| ∈ {0, 1, |A| − 1, |A|}. The following

theorem mainly asserts that distribution of the neighbors of v in G[A] is not relevant in lifting xv

into (4.8) when |A ∩ N(v)| ∈ {2, |A| − 2}, and the corresponding coefficient vanishes under this

condition as well.

Theorem 13. Consider the odd-anti-hole inequality (4.8). In every sequential lifting of (4.8), the

coefficient of a variable xv, v ∈ V \A, vanishes if |A ∩N(v)| ≤ 2 or |A ∩N(v)| ≥ |A| − 2.

Proof. We show that if |A ∩ N(v)| ≤ 2, then G[A] always contains a clique C of cardinality

|C| = 1
2
(|A| − 1) such that C ∩ N(v) = ∅, and if |A ∩ N(v)| ≥ |A| − 2, then G[A ∪ {v}] has a

clique of size 1
2
(|A| − 1) + 1. The cases |A ∩ N(v)| ≤ 1 and |A ∩ N(v)| ≥ |A| − 1 are trivial.

Let |A ∩ N(v)| = 2, and suppose u and w are the neighbors of v in A. Consider a clockwise

labeling of A starting from u as described in the proof of Theorem 11. Observe that, if the label

of w is odd, then the set of vertices with even labels form a clique of size 1
2
(|A| − 1), neither of

which is connected to v. On the other hand, if the label of w is even, it will become odd in a

counterclockwise labeling of A starting from u, as A itself is of odd cardinality. The clique of

interest is then given by the even-labeled vertices in the counterclockwise labeling. The proof for

the case |A ∩ N(v)| = |A| − 2 is identical except that u and w are defined to be the vertices in A

not adjacent to v. The proof is complete.

4.3.2 Star and double-star

A star graph on n vertices is a tree composed of a central vertex, called hub, connected to n − 1

leaves. We use the notation S = {h}∪ I to refer to the vertex set of a star graph. Here, h is the hub

vertex and I denotes the set of leaves, remarking that they form an independent set in the graph.

76

Theorem 14. (Star Inequality) Let S = {h} ∪ I be a subset of vertices inducing a star graph in

G = (V,E). Then, the inequality

∑
i∈I

xi + (|I| − 1)xh ≤ |I| (4.9)

is valid for PIUC(G). Furthermore, (i) it induces a facet of PIUC(G[S]), and (ii) it is facet-defining

for PIUC(G) if and only if there does not exist a vertex v ∈ V \N [h] such that S ′ = {v}∪I induces

another star graph in G.

Proof. Validity of (4.9) is evident. Let x̂ be the incidence vector of an arbitrary IUC in G. If

x̂h = 0, then (4.9) is trivially valid. Otherwise, at most one vertex from I may belong to this IUC,

since {h, i, j} ∈ Λ(G),∀i, j ∈ I .

(i) To prove that (4.9) is facet-defining for PIUC(G[S]), it is sufficient to point out that xI =∑
i∈I ei and x{h,i} = eh + ei,∀i ∈ I , are |I| + 1 affinely independent points belonging to F =

{x ∈PIUC(G[S]) |
∑

i∈I xi + (|I| − 1)xh = |I|}.

(ii) To see the necessity of this condition, note that if there exist two star subgraphs inG induced

by S = {h}∪ I and S ′ = {v}∪ I , for some v ∈ V \N [h], then the star inequality corresponding to

S is dominated by
∑

i∈I xi + (|I| − 1)xh + xv ≤ |I|, which is obtained from lifting xv into (4.9).

To prove sufficiency, assume that there does not exist a vertex v ∈ V \N [h] such that S ′ =

{v}∪I induces a star graph inG. Let
∑

v∈V \S avxv+
∑

i∈I xi+(|I|−1)xh ≤ |I| be the inequality

obtained from an arbitrary sequential lifting of (4.9). We need to show that av = 0,∀v ∈ V \S. In

this regard, consider the following cases:

• v ∈ N(h)

If v is also adjacent to a vertex i ∈ I , then {h, i, v} is a clique. Otherwise, {v} ∪ I is an

independent set in G.

• v /∈ N(h)

Since {v} ∪ I does not induce a star subgraph, there exists a vertex i ∈ I not adjacent to v.

Thus, G[{h, i, v}] is the union of an isolated vertex v and an edge {h, i}.

77

Therefore, there always exists an IUC in G[S ∪ {v}] containing v whose incidence vector satisfies∑
i∈I xi + (|I| − 1)xh = |I|. This results implies that av = 0,∀v ∈ V \S, hence (4.9) is facet-

defining for PIUC(G) under the theorem’s condition.

It is interesting to note that no further condition, such as maximality of I in the neighborhood of

h, is required for (4.9) to be facet-defining for PIUC(G). In fact, in absence of a vertex v ∈ V \N [h]

described in the theorem statement, every I ′ ⊆ I, |I ′| ≥ 2, corresponds to a distinct facet of

PIUC(G) defined by (4.9). In particular, every minimal (inclusion-wise) of such subsets corre-

sponds to a facet-defining OT inequality. Recall that an OT inequality corresponding to {h, i, j},

for some {i, j} ⊆ I , is facet-defining for PIUC(G) if and only if {h, i, j, v},∀v ∈ V \{h, i, j}, is

not a 4-hole, or equivalently, {v, i, j} does not induce a star subgraph.

The proof of Theorem 14 also declares that if two star subgraphs with the same set of leaves

exist in G, then the family of star inequalities (4.9) corresponding to each one of them can be

lifted to a higher-dimensional space to generate facet-inducing inequalities for the corresponding

double-star (complete bipartite K|I|,2) subgraph. The following theorem shows that these double-

star inequalities are actually facet-inducing for PIUC(G), which also generalizes the facial property

of the 4-hole inequality.

Theorem 15. (Double-star Inequality) Let Sh = {h}∪I and Su = {u}∪I be two sets of vertices

inducing star subgraphs in G, where h and u ∈ V \N [h] denote two (non-adjacent) hub vertices,

and I is the joint set of leaves. Then, the inequalities

∑
i∈I

xi + (|I| − 1)xh + xu ≤ |I| and
∑
i∈I

xi + xh + (|I| − 1)xu ≤ |I| (4.10)

induce facets of PIUC(G).

Proof. We present the proof for
∑

i∈I xi + (|I| − 1)xh + xu ≤ |I|. The other follows from the

symmetry of this structure. To this end, we just need to show that, for every v ∈ V \({h, u} ∪ I),

there always exists an IUC containing v in the subgraph G[{h, u, v} ∪ I] whose incidence vector

satisfies
∑

i∈I xi+(|I|−1)xh+xu = |I|. This result will be sufficient to indicate that the coefficient

78

of a variable xv,∀v ∈ V \({h, u}∪I) vanishes in every sequential lifting of
∑

i∈I xi+(|I|−1)xh+

xu ≤ |I|, proving that this inequality is facet-defining for PIUC(G). The existence of such IUCs

when v ∈ N(h) is established by the proof of Theorem 14. On the other hand, if v /∈ N(h), then

{h, u, v} is an IUC, that is either an independent set or the union of an isolated vertex with two

adjacent vertices. This completes the proof.

It is easy to see that if G = (S,E), S = {h} ∪ I , is a star graph, then a subset of vertices

in G is an IUC if and only if it is a co-1-defective clique. An s-defective clique is a subset of

vertices C such that the corresponding induced subgraph contains at least
(|C|

2

)
− s edges [77].

Correspondingly, a co-s-defective clique is a subset of vertices whose induced subgraph has at

most s edges. Sherali and Smith [110] have shown that the family of inequalities defined by (4.9)

for all I ′ ⊆ I, |I ′| ≥ 2, along with the variable bounds, is sufficient to describe the co-1-defective

clique polytope associated with a star graph. Given the equivalence of these two structures in a star

graph, this result also holds for the IUC polytope associated with G, which is presented through

the following theorem.

Theorem 16. The family of inequalities (4.9) together with the variable bounds provide a complete

description for the IUC polytope associated with a star graph G = (S,E).

Proof. See Proposition 3 in [110] and its proof.

In [110], the authors use the term generalized vertex packing to refer to co-s-defective clique.

We have used the latter term to avoid confusion with the concept of generalized independent set,

which has also been the subject of some recent studies [111, 112].

We extend this result to the IUC polytope associated with a (general) tree. Every tree can be

seen as a collection of connected stars, whose hub vertices are the internal (branch) nodes of the

tree. The following theorem declares that the family of star inequalities (4.9) generated by the star

subgraphs of a tree, together with the variable bounds, is sufficient to describe the IUC polytope

associated with this graph.

79

Theorem 17. LetG = (V,E) be a tree, and Vb ⊂ V denote the set of its internal (branch) vertices.

Then,

PIUC(G) = {x ∈ [0, 1]n |
∑
i∈I

xi + (|I| − 1)xv ≤ |I|, ∀v ∈ Vb, ∀I ⊆ N(v), |I| ≥ 2}. (4.11)

Proof. We show that every extreme point of the polytope defined by the inequalities in (4.11) is

integral. The proof is by induction. The base case is a star graph, for which the result holds by

Theorem 16. Patently, every tree G = (V,E) is constructed by appending a leaf vertex j ∈ V to

the subtree G[V \{j}]. So, suppose that the result holds for every induced subtree of G[V \{j}];

we show that it also holds for G. Let h denote the parent of j, i.e., the internal vertex adjacent to

j, in G, and without loss of generality, assume that G is rooted at h. Furthermore, let N(h)\{j} =

{rk, ∀k ∈ {1, . . . , |N(h)| − 1}}, and Gk, ∀k ∈ {1, . . . , |N(h)| − 1}}, denote the subtree of G

rooted at rk together with h as a leaf vertex. We present the proof for the case that h is an internal

vertex of G[V \{j}]; the case that h is a leaf vertex in G[V \{j}] becomes trivial after presenting

this (more general) result, as it corresponds to k ∈ {1}.

Let x̂ be an arbitrary extreme point of the polytope defined by the inequalities in (4.11), denoted

by P . Evidently, if x̂j = 0 or x̂h = 0, the result trivially holds, by the induction hypothesis.

Besides, x̂j = x̂h = 1 implies x̂rk = 0, ∀k ∈ {1, . . . , |N(h)| − 1}}, which brings about the same

result. We show that fractionality of x̂j or x̂h contradicts the extremity of x̂ for each one of the

remaining three possibilities:

(i) x̂h = 1 and x̂j ∈ (0, 1) ⇒ x̂rk 6= 1, ∀k ∈ {1, . . . , |N(h)| − 1}}

Consider the facet P(xh=1) = {x ∈ P | xh = 1}. Observe that, xh = 1 reduces the entire

set of star inequalities (4.9) associated with the star subgraph G[{h} ∪N(h)] to

xj +

|N(h)|−1∑
k=1

xrk ≤ 1,

in the description of P(xh=1), and every other inequality in the description of this facet

80

uniquely appears in the description of the polytope Pk
(xh=1) = {x ∈ PIUC(G

k) | xh = 1},

for some k ∈ {1, . . . , |N(h)| − 1}}, by the induction hypothesis. Note that, if x̂rk = 0,

for some k ∈ {1, . . . , |N(h)| − 1}}, we may exclude the subtree rooted at rk from the

graph; so, without loss of generality, we assume x̂rk ∈ (0, 1), ∀k ∈ {1, . . . , |N(h)| − 1}}.

Let V 1 = V (G1) denote the vertex set of G1, and consider the point x̃ ∈ R|V 1| given by

x̃i = x̂i, ∀i ∈ V 1. By the induction hypothesis, x̃ is not an extreme point of P1
(xh=1) =

{x ∈ PIUC(G
1) | xh = 1}. Hence, there always exist two distinct points x̃+ ∈ P1

(xh=1) and

x̃− ∈P1
(xh=1) such that x̃+

r1
= x̃r1 +ε and x̃−r1 = x̃r1−ε, for some ε ≥ 0, and x̃ = 1

2
(x̃++x̃−).

Notice that x̃+ and x̃− are always two distinct points, and ε = 0 corresponds to the event

that they differ in a coordinate other than xr1 . This immediately implies that x̂ can always

be written as a convex combination of two distinct points x̂+ ∈ P(xh=1) and x̂− ∈ P(xh=1)

given by

x̂+
j = x̂j − ε; x̂+

h = 1; x̂+
r1

= x̂r1 + ε, x̂+
i = x̃+

i ,∀i ∈ V 1\{h, r1}; x̂+
i = x̂i,∀i ∈ V \({j} ∪ V 1),

x̂−j = x̂j + ε; x̂−h = 1; x̂−r1 = x̂r1 − ε, x̂−i = x̃−i ,∀i ∈ V 1\{h, r1}; x̂−i = x̂i,∀i ∈ V \({j} ∪ V 1),

which contradicts the extremity of x̂.

(ii) x̂h ∈ (0, 1) and x̂j = 1 ⇒ x̂rk 6= 1, ∀k ∈ {1, . . . , |N(h)| − 1}}

As before, we assume x̂rk ∈ (0, 1), ∀k ∈ {1, . . . , |N(h)| − 1}}. In this case, the set of star

inequalities (4.9) associated with the star subgraph G[{h} ∪N(h)] reduces to

∑
i∈I

xi + |I|xh ≤ |I|, ∀I ⊆ N(h)\{j}, |I| ≥ 1. (4.12)

Notice that every inequality not involving xj in this set is redundant in the description of

P(xj=1) = {x ∈ P | xj = 1}, and (4.12) is due to substituting xj = 1 in the inequalities

involving this variable. Besides, every other inequality in the description of P(xj=1) uniquely

appears in the description of PIUC(G
k), for some k ∈ {1, . . . , |N(h)|−1}}, by the induction

81

hypothesis. Observe that every two points x̂+ ∈ Rn and x̂− ∈ Rn that satisfy

x̂+
h = x̂h + ε; x̂+

rk
= x̂rk − ε,∀k ∈ {1, . . . , |N(h)| − 1},

x̂−h = x̂h − ε; x̂−rk = x̂rk + ε,∀k ∈ {1, . . . , |N(h)| − 1},
(4.13)

for some ε ≥ 0, will also satisfy all inequalities in (4.12). We aim to show that, under the

induction assumptions, x̂ can always be written as x̂ = 1
2
(x̂+ + x̂−) for two distinct points

x̂+ ∈ Rn and x̂− ∈ Rn that, in addition to (4.13) and x̂+
j = x̂−j = x̂j = 1, satisfy all

defining inequalities of PIUC(G
k), ∀k ∈ {1, . . . , |N(h)| − 1}}. Clearly, we just need to

present the proof for PIUC(G
1), as xh is the only variable that the defining inequalities of

PIUC(G
k), ∀k ∈ {1, . . . , |N(h)| − 1}}, share. To this end, it is sufficient to show that the

point x̃ ∈ R|V 1| given by x̃i = x̂i, ∀i ∈ V 1, is not an extreme point of the polytope

P̃ = PIUC(G
1) ∩ {x ∈ R|V 1| | xr1 + xh = x̃r1 + x̃h}.

By the induction hypothesis, x̃ is not an extreme point of PIUC(G
1). Therefore, if it is an

extreme point of P̃ , it must lie on the interior of an edge of PIUC(G
1), and can be written as

x̃ = λxU1 + (1− λ)xU2 , λ ∈ (0, 1),

where xU1 and xU2 are the incidence vectors of two distinct IUCs in G1. Since x̃r1 and x̃h

are not integral, xU1 and xU2 must satisfy one of the following conditions:

(a) xU1
r1

= xU2
h = 1 and xU2

r1
= xU1

h = 0

Thus, x̃r1 = λ, x̃h = 1 − λ, and x̃r1 + x̃h = 1. This implies that every star inequal-

ity (4.9) involving xh, associated with the star subgraph G1[{r1}∪N(r1)], is redundant

in the description of P̃ , as it can be written as a linear combination of xr1 +xh ≤ 1 and

another star inequality, associated with the subgraph G1[S], S = {r1} ∪ (N(r1)\{h}),

or a variable bound. Consider the point x̄ ∈ R|V 1|−1 given by x̄i = x̃i, ∀i ∈ V 1\{h}.

82

By the induction hypothesis, x̄ can always be written as a convex combination of

two distinct points x̄+ ∈ PIUC(G
1[V 1\{h}]) and x̄− ∈ PIUC(G

1[V 1\{h}]) such that

x̄+
r1

= x̄r1 + ε and x̄−r1 = x̄r1 − ε, for some ε ≥ 0. Since xr1 + xh = 1 is the only

essential inequality involving xh in the description P̃ , this result immediately implies

that x̄ can always be written as a convex combination of two distinct points x̃+ ∈ P̃

and x̃− ∈ P̃ , given by

x̃+
h = x̃h − ε; x̃+

r1
= x̃r1 + ε; x̃+

i = x̄+
i , ∀i ∈ V 1\{h, r1},

x̃−h = x̃h + ε; x̃−r1 = x̃r1 − ε; x̃−i = x̄−i , ∀i ∈ V 1\{h, r1},
(4.14)

which contradicts the extremity of x̃.

(b) xU1
r1

= xU1
h = 1 and xU2

r1
= xU2

h = 0 ⇒ xU1
i = 0, ∀i ∈ N(r1)\{h}

Thus, x̃r1 = x̃h = λ and x̃i ∈ {0, 1 − λ}, ∀i ∈ N(r1)\{h}. This implies that no star

inequality (4.9) involving xh, associated with the star subgraph G1[{r1} ∪N(r1)], can

be binding at x̃, because otherwise the equality

∑
i∈I

xi + xh + |I|xr1 = |I|+ 1, I ⊆ N(r1)\{h}, |I| ≥ 1,

leads to λ = 1. Similar to (a), this result further implies the existence of two distinct

points x̃+ ∈ P̃ and x̃− ∈ P̃ , defined in (4.14) for a small enough ε, which contradicts

the extremity of x̃.

(iii) x̂h ∈ (0, 1) and x̂j ∈ (0, 1)

Consider the following possibilities:

(a) x̂h + x̂j > 1 ⇒ x̂rk ∈ [0, 1), ∀k ∈ {1, . . . , |N(h)| − 1}

In this case, no star inequality (4.9) associated with the star subgraph G[S], S = {h}∪

(N(h)\{j}), can be tight at x̂, because otherwise x̂ violates a star inequality involving

xj . Therefore, any star inequality (4.9) associated with the star subgraphG[{h}∪N(h)]

83

binding at x̂ is of the form

∑
i∈I

xi + xj + |I|xh ≤ |I|+ 1, ∀I ⊆ N(h)\{j}, |I| ≥ 1,

and every other inequality in the description of P uniquely appears in the description

of PIUC(G
k), for some k ∈ {1, . . . , |N(h)| − 1}}, by the induction hypothesis. The

rest of the proof is identical to (ii), except that here we have x̂+
j = x̂−j = x̂j 6= 1.

(b) x̂h + x̂j = 1

If x̂ is an extreme point of P , it must also be an extreme point of the polytope

P̃ = P ∩ {x ∈ Rn | xh + xj = 1}.

Then, an argument similar to (ii).(a) will lead to a contradiction with the extremity of

x̂.

(c) x̂h + x̂j < 1

This implies that no star inequality (4.9) involving xj , associated with the star subgraph

G[{h}∪N(h)], can be binding at x̂, because otherwise x̂ violates a star inequality (4.9)

associated with the star subgraph G[S], S = {h} ∪ (N(h)\{j}). Since the other

inequalities in the description of P are the inequalities defining PIUC(G[V \{j}]), by

the induction hypothesis, this is a blatant contradiction with the extremity of x̂.

The proof is complete.

Given a graph G, a subset of vertices is called a k-dependent set if the degree of every vertex

in the corresponding induced subgraph is at most k. It is evident that IUC and 1-dependent set

are equivalent in trees. Hence, the foregoing result also holds for the 1-dependent set polytope

associated with a tree, which we present through the following corollary. We should also point

out that the MAXIMUM k-DEPENDENT SET problem, which is to find a maximum-cardinality

k-dependent set in G, is linear-time solvable on trees, for every k ≥ 1 [113].

84

Corollary 18. Let G be a tree. Then, the family of star inequalities (4.9) for all star subgraphs

of G, together with the variable bounds, is sufficient to describe the 1-dependent set polytope

associated with G.

We also show that the family of inequalities given by (4.10) plays the same role in description

of the IUC polytope associated with a complete bipartite graph G = K|I|,|J |. The class of complete

bipartite graphs is of a special interest because it has been shown by Pyatkin et al. [114] that a

complete bipartite graph Kbn
2
c,dn

2
e on n vertices accommodates the maximum possible number of

open triangles among all the graphs with the same number of vertices.

Theorem 19. Let G = (V,E) be a complete bipartite graph, where the bipartition of vertices is

given by V = I ∪ J . Then, a complete description of the IUC polytope associated with G is given

by the family of inequalities (4.10) for all double-star subgraphs of G together with the variable

bounds.

Proof. We assume |I|, |J | ≥ 2 because otherwise G is a star graph. Let P be the polytope defined

by the family of inequalities (4.10) for all double-star subgraphs of G together with the variable

bounds:

P = {x ∈ Rn | 0 ≤ xv ≤ 1, ∀v ∈ V ; (4.15a)

∀{j′, j′′} ⊆ J, ∀I ′ ⊆ I, |I ′| ≥ 2 :∑
i∈I′

xi + (|I ′| − 1)xj′ + xj′′ ≤ |I ′|, (4.15b)

∑
i∈I′

xi + xj′ + (|I ′| − 1)xj′′ ≤ |I ′|; (4.15c)

∀{i′, i′′} ⊆ I, ∀J ′ ⊆ J, |J ′| ≥ 2 :∑
j∈J ′

xj + (|J ′| − 1)xi′ + xi′′ ≤ |J ′|, (4.15d)

∑
j∈J ′

xj + xi′ + (|J ′| − 1)xi′′ ≤ |J ′|}. (4.15e)

We aim to show that PIUC(G) = P . Validity of the set of inequalities (4.15) for the IUC polytope

85

associated with G indicates that PIUC(G) ⊆ P . In order to prove that the reverse also holds, we

show that every extreme point of P is integral, hence it is the incidence vector of an IUC in G,

which implies P ⊆ PIUC(G). The proof is by contradiction. Let x̂ be a fractional extreme point

of P , and define V0 = {v ∈ V | x̂v = 0} and V1 = {v ∈ V | x̂v = 1}. First, observe that

every inequality in (4.15) involving xv, for some v ∈ V0, is redundant in description of the face

P(xV0
=0) = {x ∈P |xv = 0,∀v ∈ V0}. To see this, consider a fixed vertex j̃ ∈ J ∩V0. If |J | = 2,

i.e., J = {j̃, j′}, then (4.15) reduces to

P = {x ∈ Rn | 0 ≤ xj′ ≤ 1; 0 ≤ xi ≤ 1,∀i ∈ I;∑
i∈I′

xi + (|I ′| − 1)xj′ ≤ |I ′|,∀I ′ ⊆ I, |I ′| ≥ 2},

which is precisely the description of the IUC polytope associated with the star subgraphG[{j′}∪I].

If |J | ≥ 3, then each inequality of type (4.15b)-(4.15c) corresponding to {j̃, j′} is dominated by

an inequality of the same type corresponding to {j′, j′′},∀j′′ ∈ J\{j̃, j′}. Besides, each inequality

of type (4.15d)-(4.15e) involving xj̃ can be written as a linear combination of xi′ ≤ 1 (or xi′′ ≤ 1)

and another inequality of the same type corresponding to J ′\{j̃}. Therefore,

P(xV0
=0) = {x ∈ Rn | xv = 0, ∀v ∈ V0; (4.16a)

0 ≤ xv ≤ 1, ∀v ∈ V \V0; (4.16b)

∀{j′, j′′} ⊆ J\V0, ∀I ′ ⊆ I\V0, |I ′| ≥ 2 :∑
i∈I′

xi + (|I ′| − 1)xj′ + xj′′ ≤ |I ′|, (4.16c)

∑
i∈I′

xi + xj′ + (|I ′| − 1)xj′′ ≤ |I ′|; (4.16d)

∀{i′, i′′} ⊆ I\V0, ∀J ′ ⊆ J\V0, |J ′| ≥ 2 :∑
j∈J ′

xj + (|J ′| − 1)xi′ + xi′′ ≤ |J ′|, (4.16e)

∑
j∈J ′

xj + xi′ + (|J ′| − 1)xi′′ ≤ |J ′|}. (4.16f)

86

Now, consider the following three possibilities for the cardinality of V1: |V1| = 0, |V1| = 1, and

|V1| ≥ 2.

• CASE 1: |V1| = 0 (x̂v is fractional for every v ∈ V \V0.)

Then, there exists a sufficiently small ε > 0 for which x̂+ and x̂− with

x̂+
i = x̂i + ε,∀i ∈ I\V0; x̂+

j = x̂j − ε,∀j ∈ J\V0; x̂+
v = x̂v,∀v ∈ V0

x̂−i = x̂i − ε,∀i ∈ I\V0; x̂−j = x̂j + ε,∀j ∈ J\V0; x̂−v = x̂v,∀v ∈ V0

belong to P(xV0
=0) ⊆P . Since x̂ = 1

2
(x̂+ + x̂−), this contradicts extremity of x̂.

• CASE 2: |V1| = 1

Without loss of generality, assume V1 = {j̃}, for some j̃ ∈ J . Note that, in description of the

face P(xV0
=0,xj̃=1), every inequality in (4.16d) corresponding to {j̃, j′}, j′ ∈ J\(V0 ∪ {j̃}),

is dominated by the corresponding inequality of type (4.16c), as xj′ ≤ 1. Furthermore, each

inequality of type (4.16c) involving xj̃ and corresponding to a proper subset of I is in turn

dominated by the one corresponding to I itself, i.e.,

∑
i∈I

xi + xj′ ≤ 1, ∀j′ ∈ J\(V0 ∪ {j̃}). (4.17)

Now, it is clear that every inequality of type (4.16c)-(4.16d) corresponding to {j′, j′′} ⊆

J\(V0∪{j̃}) and I can be written as a linear combination of an inequality in (4.17), xj′ ≤ 1,

and xj′′ ≤ 1, and the ones corresponding to proper subsets of I are dominated by such linear

combinations. Hence, (4.16c)-(4.16d) reduces to (4.17) in description of P(xV0
=0,xj̃=1) =

{x ∈ P | xj̃ = 1; xv = 0, ∀v ∈ V0}. Besides, in the description of this face, every

inequality of type (4.16e)-(4.16f) corresponding to a set J ′ = J̃ , j̃ /∈ J̃ , is dominated by the

inequality corresponding to J ′ = J̃ ∪ {j̃}, thus (4.16e)-(4.16f) can be replaced by

87

∀{i′, i′′} ⊆ I\V0, ∀J ′ ⊆ J\(V0 ∪ {j̃}), |J ′| ≥ 1 :∑
j∈J ′

xj + |J ′|xi′ + xi′′ ≤ |J ′|, (4.18a)

∑
j∈J ′

xj + xi′ + |J ′|xi′′ ≤ |J ′|. (4.18b)

Furthermore, all inequalities in (4.18) are dominated by linear combinations of the inequali-

ties corresponding to |J ′| = 1, i.e.,

xj′ + xi′ + xi′′ ≤ 1, ∀j′ ∈ J\(V0 ∪ {j̃}), ∀{i′, i′′} ⊆ I\V0, (4.19)

and (4.19) is, in turn, dominated by (4.17). This implies that

P(xV0
=0,xj̃=1) = {x ∈ Rn | xj̃ = 1; xv = 0, ∀v ∈ V0;

0 ≤ xv ≤ 1, ∀v ∈ V \(V0 ∪ {j̃});∑
i∈I

xi + xj′ ≤ 1, ∀j′ ∈ J\(V0 ∪ {j̃})}.

Let i′ and i′′ be two fixed vertices in I , and recall that 0 < x̂i′ , x̂i′′ < 1. Correspondingly, let

x̂+ and x̂− be the two distinct points defined as follows for a small-enough value of ε > 0:

x̂+
i′ = x̂i′ + ε; x̂+

i′′ = x̂i′′ − ε; x̂+
v = x̂v,∀v ∈ V \{i′, i′′},

x̂−i′ = x̂i′ − ε; x̂−i′′ = x̂i′′ + ε; x̂−v = x̂v,∀v ∈ V \{i′, i′′}.

Then, x̂ = 1
2
(x̂+ + x̂−) while x̂+, x̂− ∈P(xV0

=0,xj̃=1), which contradicts extremity of x̂.

• CASE 3: |V1| ≥ 2

The set of inequalities (4.16) indicate that if I ∩ V1 6= ∅ and J ∩ V1 6= ∅, then each one of

I and J must have exactly one vertex in V1. Suppose V1 = {i′, j′}, for some i′ ∈ I and

88

j′ ∈ J . Then, (4.16) immediately implies x̂v = 0,∀v ∈ V \(V0 ∪ V1), which contradicts x̂

being fractional. On the other hand, if I∩V1 = ∅, then (4.16c)-(4.16d) imply x̂i = 0,∀i ∈ I ,

and (4.16e)-(4.16f) become trivial and redundant. As a result,

P(xV0
=0,xV1

=1) = {x ∈ Rn | xv = 1,∀v ∈ V1;

xv = 0, ∀v ∈ V0;

0 ≤ xv ≤ 1, ∀v ∈ V \(V0 ∪ V1)},

all extreme points of which are integral. Patently, the same result holds when J ∩ V1 = ∅,

which contradicts fractionality of x̂.

Hence, such a fractional extreme point x̂ does not exist, and the proof is complete.

It is clear that IUC, 1-dependent set, and co-1-defective clique are equivalent in complete bipar-

tite graphs. This leads to the following corollary concerning the 1-dependent set and co-1-defective

clique polytopes.

Corollary 20. Let G = K|I|,|J | be a complete bipartite graph, where |I|, |J | ≥ 2. Then, the family

of inequalities (4.10) for all double-star subgraphs of G, together with the variable bounds, is

sufficient to describe the 1-dependent set (equivalently, co-1-defective clique) polytope associated

with G.

4.3.3 Fan and wheel

A fan graph on n vertices is composed of one vertex adjacent to n − 1 vertices inducing a path

(chain) subgraph. Following our notation in the previous section, we denote the vertex set of a fan

graph by F = {h}∪P , where h is the hub vertex and P denotes the vertex set of the corresponding

path subgraph. Recall that a path graph itself is not facet-producing for the IUC polytope by

Theorem 17. Conventionally, we assume that the edges of G[P] are given by {i, i + 1}, ∀i ∈

{1, . . . , |P | − 1}.

89

Theorem 21. (Fan Inequality) Let F = {h} ∪ P, |P | ≥ 4, be a subset of vertices inducing a fan

graph in G = (V,E). Given |P | = 3q + r, where q is a positive integer and r ∈ {0, 1, 2}, the

inequality ∑
i∈P

xi +

(
2(q − 1) +

⌊
2(r + 1)

3

⌋)
xh ≤ 2q +

⌊
2(r + 1)

3

⌋
(4.20)

is valid for PIUC(G), and induces a facet of PIUC(G[F]) if and only if r 6= 2.

Proof. First, note that the right-hand side of (4.20) is the cardinality of a maximum IUC in G[P];

hence, the inequality ∑
i∈P

xi ≤ 2q +

⌊
2(r + 1)

3

⌋
(4.21)

is valid for PIUC(G). More formally, (4.21) is the Gomory-Chvátal cut corresponding to the in-

equality obtained from the summation of all OT inequalities ofG[P] and 2x1+x2+x|P |−1+2x|P | ≤

6 divided by 3. Besides, every maximal IUC containing h in G[F] is a clique of size 3, since every

pair of non-adjacent vertices in G[P] with h induces an open triangle in this subgraph. There-

fore, max{
∑

i∈P xi | x ∈ PIUC(G[F]) and xh = 1} = 2, and the coefficient of xh due to lifting

into (4.21) is 2q +
⌊2(r+1)

3

⌋
− 2. This establishes validity of (4.20).

Next, we show that r 6= 2 is sufficient for (4.20) to induce a facet of the IUC polytope associated

with G[F]. For r = 0, consider the proper face F = {x ∈PIUC(G[F]) |
∑

i∈P xi + 2(q − 1)xh =

2q} of PIUC(G[F]) and an arbitrary supporting hyperplane H : ahxh +
∑

i∈P aixi = b that

contains F . Let xU1 and xU2 be the incidence vectors of two maximum IUCs in G[P] given as

follows:
U1 = {1, 3, 3p− 1, 3p,∀p ∈ {2, . . . , q}},

U2 = {2, 3, 3p− 1, 3p,∀p ∈ {2, . . . , q}}.
(4.22)

These are the sets of black vertices in the path graphs obtained from eliminating the vertex in the

last partition in the graphs of Figure 4.1. Clearly, xU1 , xU2 ∈ F ⊆ H , which immediately leads

to a1 = a2. In addition, ai = ai+2,∀i ∈ {1, . . . , |P | − 2}, as the incidence vector of every clique

{h, i, i+1},∀i ∈ {1, . . . , |P |−1}, inG[F] belongs toF ⊆H . This indicates that ai = a,∀i ∈ P ,

b = 2aq, and ah = 2a(q− 1). Finally, PIUC(G[F]) having non-empty interior implies a 6= 0, so F

90

is a facet of PIUC(G[F]). For the case r = 1, using the same argument based on

U1 = {3q + 1, 1, 2, 3p− 2, 3p, ∀p ∈ {2, . . . , q}},

U2 = {3q + 1, 1, 3, 3p− 2, 3p, ∀p ∈ {2, . . . , q}},

we may show that the inequality
∑

i∈P xi+(2q−1)xh ≤ 2q+1 is facet-inducing for PIUC(G[F]).

This completes the sufficiency part of the proof.

It remains to prove that (4.20) is not facet-defining for PIUC(G[F]) if r = 2. Observe that

G[F] has exactly |P | − 1 IUCs containing h whose incidence vectors belong to F = {x ∈

PIUC(G[F]) |
∑

i∈P xi + 2qxh = 2q + 2}, that is {h, i, i + 1},∀i ∈ {1, . . . , |P | − 1}. Thus,

every other extreme point of PIUC(G[F]) that lies on F must be the incidence vector of a max-

imum IUC in G[P]. On the other hand, if r = 2, G[P] has a unique maximum IUC, whose

incidence vector satisfies x1 = x2 = x|P |−1 = x|P | = 1. Therefore, exactly |P | extreme points of

PIUC(G[F]) belong to F , which implies dim(F) ≤ |P | − 1 = |F | − 2. Recall that, every point

x ∈ F is a convex combination of these extreme points. Hence, F is not a facet of PIUC(G[F]),

and the proof is complete.

Every fan graph contains quadratically many induced subgraphs of the same type, most of

which satisfy the conditions of Theorem 21. The following theorem states that the fan inequalities

corresponding to those subgraphs are facet-inducing for the IUC polytope associated with the

supergraph.

Theorem 22. Let G = (F,E), F = {h} ∪ P , be a fan graph. Then, every fan inequality (4.20)

corresponding to F ′ = {h} ∪ P ′, P ′ ⊆ P , satisfying the cardinality condition of Theorem 21

induces a facet of PIUC(G).

Proof. Without loss of generality, let P ′ = {j, j + 1, . . . , k − 1, k} and consider lifting a variable

xi, i ∈ P\P ′ into the fan inequality (4.20) corresponding to F ′ = {h}∪P ′. Note that P ′∩N(i) =

∅,∀i ∈ P\{j − 1, . . . , k + 1}, thus every maximum IUC in G[P ′] together with i ∈ P\{j −

1, . . . , k + 1} forms an IUC in G. Besides, observe in the proof of Theorem 21 that G[P ′] always

91

has a maximum IUC in which j is an isolated vertex. As P ′ ∩ N(j − 1) = {j}, the union of this

set and the vertex j − 1 is also an IUC in G. By symmetry, the same result holds for the vertex

k + 1. This implies that the coefficient of every variable xi,∀i ∈ P\P ′, vanishes in an arbitrary

sequential lifting of the fan inequality corresponding to F ′, which completes the proof.

Next, we present similar results concerning the IUC polytope associated with a wheel graph. A

wheel graph induced byW = {h}∪H consists of a hub vertex h connected to all vertices of a hole

H . As before, we assume that adjacent vertices in G[H] have consecutive labels, and |H|+ 1 ≡ 1.

Novelty of the following result mainly concerns the case that |H| is a multiple of 3.

Theorem 23. (Wheel Inequality) Let W = {h} ∪H, |H| ≥ 4, be a subset of vertices inducing a

wheel graph in G = (V,E). Given |H| = 3q + r, where q is a positive integer and r ∈ {0, 1, 2},

the inequality ∑
i∈H

xi +

(
2(q − 1) +

⌊
2r

3

⌋)
xh ≤ 2q +

⌊
2r

3

⌋
(4.23)

is valid for PIUC(G), and induces a facet of PIUC(G[W]) if and only if r 6= 0 or q is odd.

Proof. Validity of (4.23) as well as its facial property when r 6= 0 are evident, as (4.23) is ob-

tained from lifting xh into the hole inequality (4.7). Similar to a fan graph, max{
∑

i∈H xi | x ∈

PIUC(G[W]) and xh = 1} = 2, hence the coefficient of xh in such a lifted hole inequality is

2q +
⌊

2r
3

⌋
− 2.

Let r = 0, and consider F = {x ∈ PIUC(G[W]) |
∑

i∈H xi + 2(q − 1)xh = 2q} as well

as a supporting hyperplane H : ahxh +
∑

i∈H aixi = b of PIUC(G[W]) containing it. The

incidence vector of every clique {h, i, i + 1},∀i ∈ {1, . . . , |H|}, in G[W] belongs to F ⊆ H ,

thus ai = ai+2,∀i ∈ {1, . . . , |H|}. If q is odd—equivalently, H is of odd cardinality—this result

further implies that a|H| = a2, which immediately leads to ai = a,∀i ∈ {1, . . . , |H|}, b = 2aq,

and ah = 2a(q − 1). Since the interior of PIUC(G[W]) is non-empty, a 6= 0 and the sufficiency

part of the proof is complete.

To prove the necessity, we examine the case where r = 0 and q is even. Similar to the proof of

Theorem 21, our argument is based on the number of extreme points of PIUC(G[W]) that lie on F ,

92

and the dimension of the affine subspace containing them. Patently, G[W] has exactly |H| IUCs

containing h whose incidence vectors belong to F , i.e., {h, i, i + 1},∀i ∈ {1, . . . , |H|}. Recall

from Theorem 9 that the right-hand-side of (4.23) is the IUC number of G[H], hence every other

extreme point of PIUC(G[W]) lying on F must be the incidence vector of a maximum IUC in

G[H]. It is easy to verify that, if |H| is a multiple of 3, G[H] always has three distinct maximum

IUCs (of cardinality 2q) as follows:

U1 = {3p− 2, 3p− 1,∀p ∈ {1, . . . , q}},

U2 = {3p− 1, 3p, ∀p ∈ {1, . . . , q}},

U3 = {3p− 2, 3p, ∀p ∈ {1, . . . , q}}.

Hence, exactly |H|+ 3 extreme points of PIUC(G[W]) belong to F .

It is known that the adjacency matrix of a cycle graph with even number of vertices is rank defi-

cient, which immediately implies that the affine subspace of R|H| spanned by the points x{i,i+1} =

ei + ei+1,∀i ∈ {1, . . . , |H|}, is at most |H| − 2 dimensional. Besides, the incidence vectors of

U1, U2, and U3 in R|H| can be easily written as linear combinations of these points, hence the

dimension of the subspace of R|H| spanned by {xU1 , xU2 , xU3 , x{i,i+1},∀i ∈ {1, . . . , |H|}}, is no

more than |H|− 2. Since all extreme points of PIUC(G[W]) lying on F are generated from a point

in this set by adding the coordinate corresponding to h, the subspace of R|W | spanned by them is at

most |H| − 1 = |W | − 2 dimensional. Finally, because every point of F is a convex combination

of these extreme points, dimension of this face is no more than |W | − 2, therefore F is not a facet.

The proof is complete.

The result of Theorem 22 naturally extends to the induced fans of a wheel graph. The only

exception is given by the subgraphs obtained from eliminating a single vertex (and incident edges)

from the corresponding chordless cycle. Let F = {h} ∪ P , where P = H\{v}, be the vertex

set of such a fan subgraph, while |P | satisfies the facet-defining conditions of Theorem 21, that is

|P | = 3q+1 or |P | = 3q. Observe that, in this case, |H| also satisfies the facet-defining conditions

93

of Theorem 23, that is |H| = 3q + 2 or |H| = 3q + 1. Then, it can be easily shown that the wheel

inequality (4.23) corresponding to W = {h} ∪ H coincides with the lifted fan equality (4.20)

corresponding to F = {h} ∪ P .

Patently, this result also applies to a defective wheel graph. A defective wheel is obtained from a

(complete) wheel graph by eliminating some edges connecting the hub vertex to the corresponding

hole. In addition to its fan subgraphs, a defective wheel always has at least one chordless cycle that

contains its hub vertex. Examples of defective wheels are given in Figure 4.3. LetHh denote a hole

containing the hub vertex h in a defective wheel graph. In reference to Theorem 12 of Section 4.3.1,

observe that every vertex not in Hh has at most two neighbors in this set. The following corollary

summarizes the implications of Theorems 22 and 12 regarding the facial structure of the IUC

polytope associated with a defective wheel graph.

Corollary 24. Let G = (V,E) be a defective wheel graph. Then,

(i) inequality (4.20) corresponding to a fan subgraph satisfying the cardinality condition of

Theorem 21 is facet-defining for PIUC(G). Besides,

(ii) inequality (4.7) corresponding to a hole containing the hub vertex that satisfies the cardinal-

ity condition of Theorem 9 induces a facet of PIUC(G).

Finally, note that the IUC polytope associated with a fan graph, likewise a wheel graph, pos-

sesses exponentially many facets induced by the star inequality (4.9) as well.

Lifting fan and wheel inequalities

We consider lifting the fan and wheel inequalities under the conditions that they are facet-defining

for the IUC polytope associated with the corresponding induced subgraph. Similar to Section 4.3.1,

our focus is on the distribution of N(v), v ∈ V \F (resp. v ∈ V \W), within G[F] (resp. G[W])

and the cases where the lifting coefficients can be determined without solving a computationally

expensive lifting problem.

First, observe that the result of Theorem 12, concerning the hole inequality (4.7), also applies

to the wheel inequality (4.23) since an IUC of cardinality 2q+
⌊

2r
3

⌋
+ 1 in G[W ∪{v}], v ∈ V \W,

94

can always be attained through the vertices of H (together with v) under the theorem conditions.

However, the result concerning redundancy of the distribution of neighbors of v does not extend to

the fan inequality (4.20) as well as the wheel inequality (4.23) when r = 0 (and q is odd). Consider,

for example, the case where |P | = 7 and P ∩N(v) = {1, 3}, or |H| = 9 and H ∩N(v) = {1, 5}.

In addition, it is trivial that |P ∩N(v)| ≤ 1 (resp. |H∩N(v)| ≤ 1) is sufficient for the coefficient of

xv, v ∈ V \F (resp. v ∈ V \W), to vanish in the latter cases, regardless of the role of the hub vertex

h. In general, however, the lifting coefficient of a variable xv is highly influenced by connectivity

of v and h. Particularly, if {h, v} ∈ E, existence of two adjacent vertices in P ∩ N(v) (resp.

H ∩ N(v)) is sufficient for the corresponding lifting coefficient to vanish. On the other hand, if

{h, v} /∈ E, existence of two adjacent vertices in P\N(v) (resp. H\N(v)) brings about the same

result. The following theorem concerns redundancy of the distribution of N(v) within G[F] given

the contribution of the hub vertex h. Note that, the coefficient of xv in every sequential lifting of

the corresponding inequality will not exceed 2 because {h, v} is always an IUC in the graph.

Theorem 25. Consider the fan inequality (4.20) where r 6= 2. In every sequential lifting of this

inequality, the coefficient of a variable xv, v ∈ V \F , vanishes under the following conditions: (i)

h ∈ N(v) and |P ∩N(v)| ≥
⌈
|P |
2

⌉
+ 1, or (ii) h /∈ N(v) and |P ∩N(v)| ≤

⌊
|P |
2

⌋
− 1.

Proof. It suffices to observe that the cardinality of P ∩N(v) in each case guarantees the existence

of two adjacent vertices i, i+1 ∈ P such that {h, v, i, i+1} is an IUC inG[F ∪{v}]. In the former

case, this IUC is a clique, and in the latter, it is the union of a clique and an isolated vertex.

A similar result holds for the wheel inequality, which we skip here. We finish this section with

presenting a family of facet-defining inequalities for the IUC polytope associated with an anti-

cycle graph due to its fan substructures. We assume the vertices of an anti-cycle graph are labeled

as described in the proof of Theorem 11, and |A|+ 1 ≡ 1.

Theorem 26. Let G = (A,E) be an anti-cycle graph on |A| ≥ 8 vertices. Then, the inequality

i+3∑
j=i

xj + xk + xk+1 ≤ 3, ∀i ∈ A, ∀k ∈ {i+ 4, . . . , |A|+ i− 2}, (4.24)

95

induces a facet of PIUC(G).

Proof. Observe that P = {i, i+ 1, i+ 2, i+ 3},∀i ∈ A, induces a path (chain) graph on 4 vertices,

and G[{k} ∪ P],∀k ∈ {i + 5, . . . , |A| + i − 2}, is a fan in G. In fact, for a fixed vertex i, the

vertices i + 4 and |A| + i − 1 are the only ones in A\P which are not adjacent to all vertices

of P . Therefore, the inequality
∑i+3

j=i xj + xk ≤ 3,∀k ∈ {i + 5, . . . , |A| + i − 2}, is valid for

PIUC(G) and induces a facet of PIUC(G[{k} ∪ P]), by Theorem 21. First, consider lifting the

variable xk+1 into
∑i+3

j=i xj + xk ≤ 3, for some k ∈ {i+ 5, . . . , |A|+ i− 3}. Since {k, k+ 1} /∈ E

and P ∩ N(k + 1) = P , the coefficient of xk+1 in the corresponding lifted inequality will be

1 and the inequality
∑i+3

j=i xj + xk + xk+1 ≤ 3 is facet defining for PIUC(G[{k, k + 1} ∪ P]).

Besides, every other vertex v ∈ A\({k, k + 1} ∪ P) has at least one neighbor in {k, k + 1} and

|P ∩ N(v)| ≥ 3, hence the coefficient of xv vanishes in every sequential lifting of this inequality,

by Theorem 25. Therefore, the inequality
∑i+3

j=i xj + xk + xk+1 ≤ 3 induces a facet of PIUC(G),

for every k ∈ {i + 5, . . . , |A| + i − 3}. It remains to show that, for every i ∈ A, the inequalities∑i+3
j=i xj +xi+4 +xi+5 ≤ 3 and

∑i+3
j=i xj +x|A|+i−2 +x|A|+i−1 ≤ 3 are facet-defining for PIUC(G).

We present the proof for the former inequality, i.e.,

i+5∑
j=i

xj ≤ 3, (4.25)

for an arbitrary vertex i; the latter then follows by symmetry of the graph structure. It is easy to

verify that (4.25) is obtained from lifting xi+4 into the fan inequality
∑i+3

j=i xj + xi+5 ≤ 3, hence

facet-defining for the IUC polytope associated with the corresponding induced subgraph. Besides,

every vertex k ∈ {i + 7, . . . , |A| + i − 1} is adjacent to the vertex i + 5, thus the corresponding

coefficient vanishes in lifting xk into (4.25), by Theorem 25. Finally, observe that {i, i + 2, i +

4, i + 6} is a clique in G, therefore, max{
∑i+5

j=i xj | x ∈ PIUC(G) and xi+6 = 1} = 3, and the

coefficient of xi+6 also vanishes in lifting this variable into (4.25). The proof is complete.

Note that the anti-cycle graph on |A| = 6 vertices does not have an induced (complete) fan,

and the inequality
∑6

j=1 xj ≤ 3 is not facet-inducing for the corresponding IUC polytope, pre-

96

viously shown by Theorem 11. Also, for the anti-cycle graph on |A| = 7 vertices, the inequal-

ities
∑6

j=1 xj ≤ 3 and
∑4

j=1 xj + x6 + x7 ≤ 3 are both dominated by the anti-hole inequality∑7
j=1 xj ≤ 3 of Theorem 11.

4.4 The Separation Problems

In this section, we study the computational complexity of the separation problem for each family

of the valid inequalities presented in the previous section for the IUC polytope. Given a family of

(linear) inequalities F and a point x∗, the corresponding separation problem is to decide whether

x∗ belongs to the polyhedron defined by F , i.e., if x∗ satisfies all inequalities in F , and if not,

find an inequality which is violated by x∗. Efficient separating subroutines are essential in devising

branch-and-cut algorithms for integer (linear) programs; however, our results in this part are neg-

ative in that we can show that the separation problems for most of the proposed valid inequalities

for the IUC polytope are NP-hard.

Complexity of the separation problem for the family of hole, as well as anti-hole, inequalities

for the IUC polytope is yet to be determined, although there is a rich body of literature concerning

identification of holes and anti-holes in graphs. In fact, the focus of this line of research has

been mostly on holes and anti-holes of odd cardinality due to the Berge’s strong perfect graph

conjecture [115]. According to this conjecture, a graph G is perfect, i.e., the chromatic number of

every induced subgraph of G equals its clique number, if and only if G does not contain an odd

hole or odd anti-hole. Chudnovsky et al. [116] proved this conjecture, and Chudnovsky et al. [117]

proposed an O(n9)-time algorithm to test if a graph has an odd hole or odd anti-hole; hence

deciding if it is perfect. However, it remained an open problem whether or not it is polynomial-

time decidable if a graph has an odd hole (equivalently, an odd anti-hole) until very recently that

Chudnovsky et al. [118] presented anO(n9)-time algorithm for it. It is also known that the problem

of deciding if a graph has a hole (equivalently, an anti-hole) of even cardinality is tractable [119],

and the most efficient algorithm proposed for this problem has a time complexity ofO(n11) [120].

On the other hand, it is NP-complete to decide if a graph has an odd (resp. even) hole containing

a given vertex [121, 122, 120]. It is clear—due to feasibility of x∗ = 2
3
1 to the fractional IUC

97

polytope—that the separation problem for the family of hole inequalities (4.7) for the IUC polytope

is at least as hard as determining if a graph has a hole whose cardinality is not a multiple of

3, for which we are not aware of an efficient algorithm. Similarly, the feasibility of x∗ = 1
2
1

to the fractional IUC polytope implies that the separation problem for the family of anti-hole

inequalities (4.8) for the IUC polytope is at least as hard as deciding if a graph has an odd hole.

It should be mentioned that the separation problem for the family of odd-hole inequalities for

the vertex packing polytope (equivalently, odd-anti-hole inequalities for the clique polytope) is

polynomial-time solvable [75]; however, this result does not automatically extend to the family of

odd-anti-hole inequalities for the IUC polytope.

In the rest of this section, we show that the separation problems for the families of star, double-

star, fan and wheel inequalities for the IUC polytope are all NP-hard.

Theorem 27. The separation problem for the family of star inequalities (4.9) for the IUC polytope

is NP-hard.

Proof. The reduction is from the INDEPENDENT SET problem (k-IS), which asks if a simple,

undirected graph G = (V,E) has an independent set of cardinality at least k. Without loss of

generality, we assume k ≥ 3. Corresponding to an instance (G, k) of k-IS, consider an instance

(G′, x∗) of the separation problem for the family of star inequalities (4.9), where G′ = (V ′, E ′) is

constructed by appending a new vertex h to G adjacent to all vertices of V , i.e.,

V ′ = V ∪ {h},

E ′ = E ∪ {{h, i},∀i ∈ V },

and x∗ is defined as follows:
x∗h = 1,

x∗i =
1

k − 1
, ∀i ∈ V.

Note that k ≥ 3 implies x∗ ∈ PF
IUC

(G′). We claim that (G, k) is a positive instance of k-IS if and

only if x∗ violates a star inequality in G′. Let I∗ be an independent set of cardinality k in G. Then,

98

S = {h} ∪ I∗ induces a star subgraph in G′, and

∑
i∈I∗

x∗i + (|I∗| − 1)x∗h =
k

k − 1
+ (k − 1) = k +

1

k − 1
> k = |I∗|,

which indicates violation of the star inequality associated withG′[S]. To prove the reverse, suppose

that x∗ violates the inequality associated with a star subgraph induced by S ′ = {v} ∪ I ′ in G′, for

some I ′ ⊆ V ′ and v ∈ V ′\I ′. Evidently, I ′ ⊆ V ; since x∗v ≤ 1 = x∗h,∀v ∈ V ′, this also indicates

violation of the star inequality associated with G′[{h} ∪ I ′], i.e.,

∑
i∈I′

x∗i + (|I ′| − 1)x∗h =
|I ′|
k − 1

+ (|I ′| − 1) > |I ′|,

which implies |I ′| > k − 1, or equivalently |I ′| ≥ k. The proof is complete.

Theorem 28. The separation problem for the family of double-star inequalities (4.10) for the IUC

polytope is NP-hard.

Proof. The proof is similar to Theorem 27. Corresponding to an instance (G, k) of k-IS, consider

an instance (G′ = (V ′, E ′), x∗) of the separation problem for the family of double-star inequali-

ties (4.10) constructed as follows:

V ′ = V ∪ {h, u},

E ′ = E ∪ {{h, i},∀i ∈ V } ∪ {{u, i}, ∀i ∈ V },

x∗h = 1,

x∗i =
1

k
, ∀i ∈ V ∪ {u}.

Then, the same argument leads to the fact that (G, k) is a positive instance of k-IS if and only if x∗

violates a double-star inequality in G′.

Theorem 29. The separation problem for the family of fan inequalities (4.20) for the IUC polytope

is NP-hard.

99

Proof. We present a reduction from the INDUCED PATH problem (k-IP), which is to decide if a

simple, undirected graphG = (V,E) has an induced path subgraph (equivalently, a chordless path)

on at least k vertices. Similar to k-IS, this problem is among the classical NP-complete problems

listed by Garey and Johnson [123]. The proof idea is similar to that for Theorem 27. Let k ≥ 5,

and corresponding to an instance (G, k) of k-IP, consider an instance (G′ = (V ′, E ′), x∗) of the

separation problem for the family of fan inequalities (4.20) constructed as follows:

V ′ = V ∪ {h},

E ′ = E ∪ {{h, i},∀i ∈ V },

x∗h = 1,

x∗i =
2

k − 1
, ∀i ∈ V.

Let P ∗ be the vertex set of a chordless path in G on k = 3qk + rk vertices. Then, F = {h} ∪ P ∗

induces a fan subgraph in G′, and

∑
i∈P ∗

x∗i +

(
2(qk − 1) +

⌊
2(rk + 1)

3

⌋)
x∗h =

2k

k − 1
+ 2qk − 2 +

⌊
2(rk + 1)

3

⌋
=

2

k − 1
+ 2qk +

⌊
2(rk + 1)

3

⌋
> 2qk +

⌊
2(rk + 1)

3

⌋
,

which indicates violation of the fan inequality associated withG′[F]. Now, suppose that x∗ violates

a fan inequality in G′. Given the magnitude of the components of x∗, this also implies violation of

the inequality associated with a fan subgraph G′[{h} ∪ P ′], for some P ′ ⊆ V , i.e.,

∑
i∈P ′

x∗i +

(
2(q′ − 1) +

⌊
2(r′ + 1)

3

⌋)
x∗h > 2q′ +

⌊
2(r′ + 1)

3

⌋
,

where |P ′| = 3q′ + r′. This leads to

100

∑
i∈P ′

x∗i =
2|P ′|
k − 1

> 2,

or equivalently, |P ′| ≥ k, and completes the proof.

Theorem 30. The separation problem for the family of wheel inequalities (4.23) for the IUC poly-

tope is NP-hard.

Proof. The proof is almost identical to the proof of Theorem 29. The difference is that, instead

of k-IP, the reduction is from the INDUCED CYCLE problem, which is also known to be NP-

complete [123]. The INDUCED CYCLE problem (k-IC) is to decide if a simple, undirected graph

G = (V,E) has a chordless cycle on at least k vertices. Then, using the same argument on an

instance (G′ = (V ′, E ′), x∗) of k-IC constructed as stated in the proof of Theorem 29, one can

show that the separation problem for the family of wheel inequalities (4.23) is NP-hard.

It is worth noting that, from the viewpoint of parameterized complexity, the INDEPENDENT

SET, INDUCED PATH, and INDUCED CYCLE problems—parameterized by the solution size—are

all W[1]-complete [124], implying that it is unlikely that there exists a fixed-parameter-tractable

(fpt) algorithm for either of them. This result immediately implies that the separation problems for

the families of star, double-star, fan and wheel inequalities remain intractable even if the separation

problem is defined with respect to a subset of inequalities from the corresponding family with a

fixed (small) number of variables.

4.5 Computational Experiments

In this section, we present the results of our computational experiments. We have conducted two

sets of experiments to evaluate the effectiveness of incorporating the proposed valid inequalities in

integer (linear) programming solution approaches for the maximum IUC problem.

In the first set of experiments, we investigated the effectiveness of each class of valid inequali-

ties, as well as their combinations, using a set of graphs whose structures were known a priori. We

generated a set of 20 undirected graphs, each of which is essentially a collection of 21 principal

101

subgraphs that are sparsely connected to each other. Every principal subgraph of each instance

has been randomly selected to be a cycle, anti-cycle, star, double-star, fan or wheel, and its num-

ber of vertices is given by the floor of a number drawn from a normal distribution with mean 10

and standard deviation 1. This choice of parameters yields graphs with around 200 vertices. The

principal subgraphs have been connected to one another by a sparse set of random edges. To do

this, an edge has been generated between every pair of vertices from two different principal sub-

graphs with a probability 0.01 independent of the others. Table 4.1 displays the characteristics of

these instances, including the number of open triangles |Λ| and the number of principal subgraphs

for each structure type. In this table, “A-cycle” and “D-star” stand for anti-cycle and double-star,

respectively.

Table 4.1: First set of experiments: characteristics of the test instances.

Number of principal subgraphs

Name |V | |E| |Λ| Cycle A-cycle Star D-star Fan Wheel
rnd#1 204 550 2,464 3 2 2 3 7 4
rnd#2 213 630 2,857 2 4 6 1 3 5
rnd#3 196 510 2,273 3 2 3 5 6 2
rnd#4 194 470 2,056 6 2 3 3 2 5
rnd#5 211 623 3,078 4 5 5 3 3 1
rnd#6 194 617 2,673 2 8 2 4 2 3
rnd#7 193 488 2,014 2 3 3 4 6 3
rnd#8 198 506 2,226 5 2 4 4 4 2
rnd#9 194 496 2,293 3 2 5 3 3 5
rnd#10 194 472 1,998 2 3 5 6 3 2
rnd#11 203 567 2,644 4 3 1 5 5 3
rnd#12 188 466 2,143 2 1 2 5 8 3
rnd#13 202 514 2,537 4 2 4 6 4 1
rnd#14 212 497 2,070 7 2 5 2 3 2
rnd#15 206 575 2,536 4 3 3 2 5 4
rnd#16 201 550 2,608 2 3 2 7 2 5
rnd#17 204 586 2,751 4 4 3 5 2 3
rnd#18 200 581 2,813 3 5 4 3 2 4
rnd#19 204 562 2,422 5 4 2 1 5 4
rnd#20 203 550 2,268 5 3 2 3 7 1

102

We solved the maximum IUC problem on each instance using the base formulation (4.5), i.e.,

considering only the OT inequalities, as well as using this formulation strengthened by the valid

inequalities corresponding to its principal subgraphs. For each principal subgraph, we generated

only one inequality, except for the double-star subgraphs where both inequalities of (4.10) were

generated. Recall that anti-cycle, star, double-star, fan and wheel graphs may generate several

(potentially facet-defining) valid inequalities of the same or different types; yet, we restricted the

incorporated inequalities to the whole structures, i.e., the principal subgraphs themselves, so we

could have a better measure of the effectiveness of each family. We performed the experiments

using ILOG/CPLEX 12.7 solver on a Dell Precision Workstation T7500r machine with eight 2.40

GHz Intel Xeonr processors and 12 GB RAM. We used the default settings of the solver except

for the automatic cut generation, which was off in our first set of experiments.

Table 4.2 presents the solution time for each instance using the base formulation (4.5) as well

as the strengthened formulations by the individual classes of the proposed valid inequalities. In

this table, “opt.” denotes the optimal solution value for each instance. The column “Base” reports

the solution time under the base formulation (4.5). The next three columns, named “+HA”, “+SD”,

and “+FW”, present the solution time for each instance when the base formulation is strengthened

by the hole (4.7) and anti-hole (4.8) inequalities, star (4.9) and double-star (4.10) inequalities, and

fan (4.20) and wheel (4.23) inequalities associated with its principal subgraphs, respectively. The

last three columns of this table show the percentage improvement in the solution time for each

instance per appended valid inequality; that is,

Base solution time− Improved solution time
Base solution time× Number of incorporated inequalities

× 100.

The boldface numbers in these columns show the highest improvement for each instance. Note

that the highest per-inequality improvement does not necessarily imply the best solution time, due

to different number of principal subgraphs of each type. On 10 instances (out of 20), the most

per-inequality improvement was attained by the FW family (fan and wheel inequalities). With a

103

Table 4.2: First set of experiments: improvement (in solution time) for each family of the valid
inequalities.

Solution time (CPU sec.) Impv. per ineq. (%)

Name opt. Base +HA +SD +FW +HA +SD +FW
rnd#1 111 3,094.30 989.39 1,804.45 715.48 13.6 5.2 7.0
rnd#2 118 1,103.08 765.27 791.47 369.09 5.1 3.5 8.3
rnd#3 114 90.77 87.08 92.72 21.45 0.8 −0.2 9.5
rnd#4 110 197.38 180.75 177.79 108.90 1.1 1.1 6.4
rnd#5 118 1,218.80 471.90 510.82 486.17 6.8 5.3 15.0
rnd#6 103 9,820.76 250.19 5,012.75 2,299.58 9.7 4.9 15.3
rnd#7 110 173.19 61.19 120.13 82.52 12.9 2.8 5.8
rnd#8 115 115.95 54.36 75.58 87.51 7.6 2.9 4.1
rnd#9 113 95.45 83.50 51.37 22.74 2.5 4.2 9.5
rnd#10 114 48.18 11.76 43.24 18.51 15.1 0.6 12.3
rnd#11 114 438.31 197.32 471.63 182.44 7.9 −0.7 7.3
rnd#12 110 73.44 20.98 53.08 13.16 23.8 2.3 7.5
rnd#13 123 24.86 14.33 13.22 11.37 7.1 2.9 10.9
rnd#14 124 156.53 89.51 84.94 90.49 4.8 5.1 8.4
rnd#15 116 654.23 320.22 521.43 289.63 7.3 2.9 6.2
rnd#16 109 5,259.73 2,170.50 1,271.24 1,342.31 11.7 4.7 10.6
rnd#17 111 3,870.85 1,096.95 944.77 1,126.95 9.0 5.8 14.2
rnd#18 110 1,085.21 216.91 602.61 376.10 10.0 4.4 10.9
rnd#19 110 10,496.40 1,971.21 3,847.48 708.52 9.0 15.8 10.4
rnd#20 114 540.62 90.82 382.95 359.84 10.4 3.6 4.2

similar performance, the HA family (hole and anti-hole inequalities) generated the highest per-

inequality improvement on 9 instances. On the other hand, the SD family (star and double-star

inequalities) showed an inferior performance compared to the two former families. In fact, on two

instances rnd#3 and rnd#11, incorporating these inequalities into the base formulation even

resulted in a slight increase in the solution time. This observation may be justified by noting

that star and double-star subgraphs generate exponentially many (with respect to the size of the

subgraph) known facet-defining valid inequalities for the IUC polytope associated with the super-

graph, whereas this number for the other two families is much smaller, and we have incorporated

only a couple of these inequalities from each family.

In the next phase of our experiments, we also examined the effect of adding different combi-

104

nations of these valid inequalities on the solution time of the test instances. Table 4.3 presents the

corresponding results. In this table, “+HA&SD” shows the solution time when the base formu-

lation has been strengthened by the combination of HA and SD families. Similarly, “+HA&FW”

and “+SD&FW” show the results for the combination of HA and FW families, and SD and FW

families, respectively. The last column of this table, i.e., “+All”, presents the solution time for each

instance obtained by incorporating all three HA, SD, and FW families in the base formulation (4.5).

Note that the total number of appended inequalities in this case is about 1% of the number of OT

inequalities for each instance. The boldface numbers in this table show the best solution time ob-

tained for each instance. Even by incorporating a rather small number of valid inequalities, the

solution times are substantially better than those obtained due to incorporating individual families

of the valid inequalities, presented in Table 4.2. Interestingly, for all instances, the best solution

time was attained when the FW family was incorporated, and only on 11 instances (out of 20), the

best solution time was due to incorporating all valid inequalities.

The results of our first set of experiments reveal the merit of the proposed valid inequalities.

In practice, however, the structure of an input graph is not known a priori. Therefore, integer

(linear) programming solution methods of the maximum IUC problem should rely on subgraph-

detection routines in order to generate these valid inequalities. In our second set of experiments,

we investigated efficacy of the proposed valid inequalities under this setting. We generated a set

of (Erdös-Rényi) random graphs G(n, p) with n = 100 and p varying from 0.05 to 0.95. In

these graphs, n is the number of vertices and an edge exists between every pair of vertices with

a probability p independent of the others. The characteristics of our second set of test instances,

including the number of open triangles |Λ| for each instance, are shown in Table 4.4. In this table,

the numerical part of the name of each instance shows the corresponding value of p, which is also

the expected edge density of the graph. In light of the results of our first set of experiments, as

well as the complexity results of the previous section, we just considered 4-hole, wheel and fan

cutting planes in this part of our experiments, and applied them all to the root node of the branch-

and-cut tree. It should be mentioned that developing a full-blown branch-and-cut algorithm for

105

Table 4.3: First set of experiments: results of incorporating different combinations of valid in-
equalities.

Solution time (CPU sec.)

Name Base +HA&SD +HA&FW +SD&FW +All
rnd#1 3,094.30 477.81 345.94 291.17 167.73
rnd#2 1,103.08 923.40 637.46 237.37 354.18
rnd#3 90.77 29.96 19.81 25.13 16.91
rnd#4 197.38 158.29 103.24 91.26 103.08
rnd#5 1,218.80 326.88 356.16 583.89 242.28
rnd#6 9,820.76 274.15 119.29 1,346.66 157.43
rnd#7 173.19 32.46 36.02 58.75 23.43
rnd#8 115.95 26.17 19.85 84.22 25.78
rnd#9 95.45 68.12 17.80 19.70 15.05
rnd#10 48.18 11.85 15.05 9.29 7.47
rnd#11 438.31 152.38 123.44 158.43 131.15
rnd#12 73.44 28.09 10.14 14.47 14.18
rnd#13 24.86 7.28 1.99 8.93 8.40
rnd#14 156.53 97.76 50.99 87.31 47.58
rnd#15 654.23 287.86 147.35 216.37 103.77
rnd#16 5,259.73 722.94 665.09 414.69 157.23
rnd#17 3,870.85 846.85 635.40 510.96 332.18
rnd#18 1,085.21 138.07 127.95 223.97 102.35
rnd#19 10,496.40 1,391.08 283.62 546.51 354.59
rnd#20 540.62 93.92 61.29 191.92 68.03

the maximum IUC problem is out of the scope this paper, and the purpose of our experiments

was to test effectiveness of employing these inequalities using a straightforward strategy, which is

described below.

For each instance, we identified the entire set of 4-holes, but we employed a subset of them

to generate the 4-hole cutting planes. Note that the expected number of 4-holes in random graphs

with moderate densities is much higher than the expected number of open triangles. Besides,

every 4-hole inequality (4.7) dominates four OT inequalities, which can be eliminated from the

original formulation upon adding the 4-hole cuts. In this regard, our solution strategy was to

find a small subset of 4-hole inequalities that could cover a large portion (possibly all) of OT

inequalities. Clearly, finding a minimum number of 4-holes to dominate all possible open triangles

106

Table 4.4: Second set of experiments: cut-generation characteristics.

Valid inequalities (cuts) Cut generation

Name |V | |E| |Λ| OT 4-hole Wheel Fan (CPU sec.)
RND_0.05 100 255 1,204 956 70 0 0 0.05
RND_0.10 100 503 4,558 1,867 868 9 0 0.06
RND_0.15 100 810 10,823 1,235 3,444 378 211 0.34
RND_0.20 100 1,058 17,337 511 6,126 1,614 965 1.40
RND_0.25 100 1,261 23,406 274 8,378 2,463 1,323 3.57
RND_0.30 100 1,541 32,444 30 10,945 3,338 1,466 9.623
RND_0.35 100 1,812 41,242 7 13,683 3,382 1,616 20.19
RND_0.40 100 1,966 45,987 2 14,988 3,470 1,528 27.58
RND_0.45 100 2,253 54,553 1 17,523 3,506 1,494 46.07
RND_0.50 100 2,470 60,337 0 19,323 3,456 1,544 63.04
RND_0.55 100 2,773 67,027 0 21,103 3,604 1,396 87.25
RND_0.60 100 2,981 70,308 0 21,897 3,687 1,313 101.20
RND_0.65 100 3,223 71,881 0 22,766 3,589 1,384 108.66
RND_0.70 100 3,457 71,135 0 22,923 3,747 1,184 104.21
RND_0.75 100 3,748 67,644 0 21,707 2,328 700 91.00
RND_0.80 100 3,994 61,000 0 19,990 350 62 66.70
RND_0.85 100 4,259 50,326 0 16,822 2 24 38.02
RND_0.90 100 4,460 39,011 2 13,635 0 0 17.86
RND_0.95 100 4,726 19,977 762 7,509 0 0 2.53

in a graph is a set covering problem, which is NP-hard in general. We employed a well-known

greedy heuristic for this problem to generate the 4-hole cuts; at every iteration, we selected a 4-

hole with the maximum number of uncovered open triangles, and stopped when this number was

zero for all the remaining 4-holes. Obviously, not all open triangles are guaranteed to be part of

a 4-hole in a graph, thus not all OT inequalities could be replaced with the generated 4-hole cuts.

Table 4.4 shows the number of generated 4-hole cuts for each instance, as well as the number of

OT inequalities that were not covered by them and remained in the problem formulation.

We also generated a set of wheel and fan cuts for each instance. To do this, for every vertex

i ∈ V , we considered the subgraph induced by its neighbors, i.e., G[N(i)], and detected a set of

chordless cycles and paths using a simple enumeration method. Clearly, a graph may contain an

exponential number of such structures, thus we restricted the search on each subgraph to at most

107

50 cycles and paths or 1.00 CPU second, whichever came first before the search was complete.

In order to generate high-quality wheel and fan cuts, we only considered (chordless) cycles and

paths with at least 7 vertices that satisfied the facet-defining conditions of Theorems 21 and 23.

The number of generated wheel and fan cuts for each instance is presented in Table 4.4. The last

column of this table shows the aggregate time spent on generating all 4-hole, wheel and fan cuts

for each instance. It should be mentioned that, for all instances, the CPU time taken to generate

the wheel and fan inequalities was negligible compared to the required time to generate the 4-hole

cuts. In fact, the maximum time spent by the algorithm to generate the entire set of wheel and fan

cuts for an instance remained below 1.20 CPU seconds.

The results of the second set of experiments are presented in Table 4.5. We solved each instance

using the base formulation (4.5), as well as its enhancement obtained by adding the generated valid

inequalities, denoted by “+VI” in Table 4.5. The second column of this table shows the optimal

solution value of the maximum IUC problem for each instance. The next two columns present

the optimal solution value of the corresponding LP relaxation problems. The last four columns

of this table compare the size of the branch-and-cut (B&C) trees and solution times. In this set

of experiments, the automatic cut-generation of the solver was also on. The results clearly show

the effectiveness of the proposed valid inequalities. Significant improvements in the solution times

are observed for the graphs with the edge density of less than 65%, as well as those with the edge

density of 80% and more, due to incorporating the generated cutting planes. The +VI solution

times were slightly better than those for the base formulation on RND_0.65 and RND_0.75,

and slightly worse on RND_0.70. The better solution time for each instance is shown in bold in

Table 4.5. For all instances, the number of B&C nodes was considerably smaller under the +VI

strategy.

108

Table 4.5: Second set of experiments: integer (linear) programming solution results.

LP rlx. opt. value # B&C nodes Solution time (CPU sec.)

Name opt. Base +VI Base +VI Base +VI
RND_0.05 53 66.67 59.22 3,241 0 22.51 5.63
RND_0.10 39 66.67 49.71 213,358 17,005 1,778.93 218.46
RND_0.15 28 66.67 46.60 2,017,952 160,544 35,357.90 2,284.37
RND_0.20 24 66.67 44.92 1,112,661 180,755 23,173.20 4,248.66
RND_0.25 21 66.67 44.30 1,159,561 192,961 34,036.80 5,123.73
RND_0.30 18 66.67 44.29 724,553 227,952 35,861.80 8,733.08
RND_0.35 16 66.67 44.33 615,306 191,929 30,004.00 8,444.93
RND_0.40 15 66.67 44.44 468,742 125,469 26,178.80 6,928.29
RND_0.45 13 66.67 44.44 295,550 126,449 19,691.90 7,250.91
RND_0.50 12 66.67 44.44 222,235 104,277 18,260.00 8,861.15
RND_0.55 11 66.67 44.44 176,862 70,025 13,810.80 6,621.82
RND_0.60 11 66.67 44.44 111,914 49,889 9,102.53 5,930.36
RND_0.65 13 66.67 44.44 66,995 33,969 5,615.65 4,927.96
RND_0.70 15 66.67 44.44 57,423 31,844 5,273.13 5,414.28
RND_0.75 19 66.67 44.48 31,135 19,714 5,163.23 4,490.54
RND_0.80 21 66.67 46.63 74,719 29,461 7,943.90 4,605.04
RND_0.85 25 66.67 49.75 46,781 22,872 4,574.90 2,404.52
RND_0.90 31 66.67 50.00 18,562 7,787 1,897.80 492.21
RND_0.95 46 66.67 51.50 0 0 34.24 5.16

109

5. SUMMARY AND CONCLUSIONS

In this dissertation, we addressed two optimization problems concerning cluster analysis of graphs:

the maximum edge weight clique and maximum induced cluster subgraph problems.

In Chapter 2, we introduced a nonconvex quadratic-programming formulation for the maxi-

mum edge weight clique (MEWC) problem. Optimality characteristics of the new formulation

were studied, and the correspondence between local and global optima of the continuous problem

and spacial structures in the underlying graph was established. Mainly, it was shown that a feasible

solution is a local maximizer of the continuous problem if and only if it is the characteristic vector

of a maximal clique in the graph. Consequently, a global maximizer characterizes a maximum

edge weight clique.

Based on the continuous formulation and its optimality characterization, a new exact algorithm

for the MEWC problem was presented. The algorithm is a combinatorial branch-and-bound proce-

dure that takes advantage of an algebraic upper bound, which is derived from a quadratic relaxation

of the continuous problem. The branch-and-bound algorithm also uses an initial lower bound that

is provided by a construction heuristic method. The heuristic algorithm extracts a maximal clique

based on solving an approximation of the continuous problem. We conducted computational exper-

iments on 28 benchmark instances, and compared the solution time of our algorithm with the best

results on the same instances in the literature. The experiments show significant improvements; in

particular, we could solve 24 instances within the time limit of 3 hours (for each instance). We also

used the computational results to show the quality of the presented algebraic bound explicitly. Our

results indicate the effectiveness of our method, especially on relatively dense graphs.

In future research, one may devise other heuristic algorithms for the MEWC problem by dif-

ferent approximations of the continuous problem presented in this dissertation. Besides, other

properties of the presented formulation may be explored to find tighter algebraic upper bounds for

this problem.

In Chapter 3, we used a Lagrangian relaxation of an integer (linear) programming formulation

110

of the MEWC problem to derive a new analytic (closed-form) upper bound on the clique number

of a graph. The presented bound is characterized by the degrees of the vertices in the graph; hence,

it is computable in linear time. We compared this bound with other analytic bounds proposed in

the literature. Our computational results showed that the Lagrangian relaxation bound is in general

tighter than the bound introduced by Amin and Hakimi [58], which was the only existing analytic

upper bound on the clique number computable in linear time.

We also presented a new exact algorithm for the MEWC problem. The algorithm is a com-

binatorial branch-and-bound procedure that employs an efficient combinatorial pruning method.

At every node of the search tree, the algorithm uses an upper bound on the clique number of the

corresponding subgraph to calculate an upper bound for the MEWC problem. The calculation of

this bound is based on contribution of the vertices of a clique to its weight, rather than the edges of

the induced subgraph. We presented computational results of our algorithm on some benchmark

instances, and compared them with the existing results in the literature. It was shown that the

proposed algorithm outperforms the preceding solution methods of the MEWC problem due to ef-

fectiveness of its pruning process. Our solution times are at least an order of magnitude better than

the best reported results for all nontrivial instances considered in previous works for this problem,

including the algorithm presented in Chapter 2 of this dissertation. The computational results also

showed that recoloring approaches and sequential elimination enhancements to draw tight upper

bounds on the clique number are not as effective as in the maximum clique problem, due to the

overhead of calculating the pruning threshold and enhanced bounds for the MEWC problem.

Developing better coloring-based upper bounds on the clique number that exploit the structure

of the colorings used may significantly speed up the proposed B&B algorithm. In addition, in-

corporating fast and effective heuristics could improve the performance of the proposed approach,

especially on dense graphs with large clique number, for which the classical maximum clique

algorithms tend to perform well.

In Chapter 4, we presented a study of the IUC polytope associated with a simple undirected

graph, defined as the convex hull of the incidence vectors of all its vertex subsets inducing clus-

111

ter subgraphs. It was shown that the fractional IUC polytope, obtained from relaxing integrality

of the variables in the definition of the original polytope, is a polyhedral outer-approximation of

a cubically-constrained region in the space of the original variables. Hence, it provides a very

weak approximation of the (integral) IUC polytope, remarking the importance of incorporating

strong valid inequalities in integer (linear) programming solution methods of the maximum IUC

problem. We derived several facet-defining valid inequalities for the IUC polytope associated with

cycle, anti-cycle, star, double-star, fan and wheel graphs, along with the conditions that they remain

facet-defining for the IUC polytope associated with a supergraph containing them, as well as some

results concerning the corresponding lifting procedures. We also presented a complete description

of the IUC polytope for some classes of these graphs. In our presentation, we spotted the simi-

larities between the facial structure of the IUC polytope and those of the independent set (vertex

packing) and clique polytopes. For each family of the proposed valid inequalities, we studied the

computational complexity of the corresponding separation problem. In particular, we showed that

the separation problem for the families of star, double-star, fan and wheel inequalities are NP-hard.

We also examined the effectiveness of the proposed valid inequalities when employed in an inte-

ger (linear) programming solution method of the maximum IUC problem through computational

experiments. Our results showed great improvement in solution time of this problem, revealing the

merit of the proposed valid inequalities from the computational standpoint.

As an extension of this work, one may search for other facet-producing structures for the IUC

polytope. An immediate step could be to investigate webs that subsume cycle and anti-cycle

graphs. Developing detailed branch-and-cut algorithms for the maximum IUC problem based on

effective heuristic separation procedures for the proposed valid inequalities in this paper is another

direction for future research. Another interesting direction is to explore LP-based scale reduction

techniques for the maximum IUC problem. It should be mentioned that, because of the cubic

nature of the IUC formulation, the fractional IUC polytope does not generally hold the favorable

structural properties of the fractional independent set (vertex packing) and clique polytopes such

as persistency [125]. However, we observed through a set of computational experiments that the

112

frequency of non-persistent optimal solutions to the corresponding LP relaxation problem is not

high. In this regard, it is of interest to identify the conditions under which an extreme point of

the fractional IUC polytope shows persistency. Finally, we note that several other integer (linear)

programming formulations for the maximum IUC problem can be obtained from the cubic formu-

lation presented in this dissertation, through different linearization techniques, such as the method

of Sherali and Adams [126] or the one of Boros and Hammer [127] in higher-dimensional spaces

than the space of the original variables. These formulations will have theoretically stronger LP re-

laxations than its natural integer programming formulation; hence, it is also interesting to compare

their performances in practice.

113

REFERENCES

[1] R. Luce and A. Perry, “A method of matrix analysis of group structure,” Psychometrika,

vol. 14, pp. 95–116, 1949.

[2] S. Hosseinian, D. B. M. M. Fontes, and S. Butenko, “A nonconvex quadratic optimization

approach to the maximum edge weight clique problem,” Journal of Global Optimization,

vol. 72, no. 2, pp. 219–240, 2018.

[3] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer

Computations, pp. 85–103, Plenum Press, New York, 1972.

[4] M. Pavan and M. Pelillo, “Generalizing the motzkin-straus theorem to edge-weighted

graphs, with applications to image segmentation,” in Energy Minimization Methods in Com-

puter Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lis-

bon, Portugal, July 7-9, 2003. Proceedings (A. Rangarajan, M. Figueiredo, and J. Zerubia,

eds.), pp. 485–500, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

[5] T. Ma and L. J. Latecki, “Maximum weight cliques with mutex constraints for video ob-

ject segmentation,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition,

pp. 670–677, June 2012.

[6] L. Cavique, “A scalable algorithm for the market basket analysis,” Journal of Retailing and

Consumer Services, vol. 14, no. 6, pp. 400–407, 2007.

[7] T. Akutsu, M. Hayashida, E. Tomita, and J. Suzuki, “Protein threading with profiles and con-

straints,” in Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering,

pp. 537–544, May 2004.

[8] J. B. Brown, D. B. K. C., E. Tomita, and T. Akutsu, “Multiple methods for protein side chain

packing using maximum weight cliques,” Genome Informatics, vol. 17, pp. 3–12, 2006.

114

[9] M. A. Jabbar, B. L. Deekshatulu, and P. Chandra, “Graph based approach for heart disease

prediction,” in Proceedings of the Third International Conference on Trends in Information,

Telecommunication and Computing (V. V. Das, ed.), pp. 465–474, New York, NY: Springer

New York, 2013.

[10] G. Dijkhuizen and U. Faigle, “A cutting-plane approach to the edge-weighted maximal

clique problem,” European Journal of Operational Research, vol. 69, no. 1, pp. 121–130,

1993.

[11] K. Park, K. Lee, and S. Park, “An extended formulation approach to the edge-weighted max-

imal clique problem,” European Journal of Operational Research, vol. 95, no. 3, pp. 671–

682, 1996.

[12] E. M. Macambira and C. C. de Souza, “The edge-weighted clique problem: Valid inequal-

ities, facets and polyhedral computations,” European Journal of Operational Research,

vol. 123, no. 2, pp. 346–371, 2000.

[13] M. M. Sorensen, “New facets and a branch-and-cut algorithm for the weighted clique prob-

lem,” European Journal of Operational Research, vol. 154, no. 1, pp. 57–70, 2004.

[14] M. Hunting, U. Faigle, and W. Kern, “A Lagrangian relaxation approach to the edge-

weighted clique problem,” European Journal of Operational Research, vol. 131, no. 1,

pp. 119–131, 2001.

[15] B. Alidaee, F. Glover, G. Kochenberger, and H. Wang, “Solving the maximum edge weight

clique problem via unconstrained quadratic programming,” European Journal of Opera-

tional Research, vol. 181, no. 2, pp. 592–597, 2007.

[16] G. Palubeckis, “Iterated tabu search for the maximum diversity problem,” Applied Mathe-

matics and Computation, vol. 189, no. 1, pp. 371–383, 2007.

[17] R. Aringhieri and R. Cordone, “Comparing local search metaheuristics for the maximum

diversity problem,” Journal of the Operational Research Society, vol. 62, no. 2, pp. 266–

280, 2011.

115

[18] Y. Wang, J. K. Hao, F. Glover, and Z. Lü, “A tabu search based memetic algorithm for the

maximum diversity problem,” Engineering Applications of Artificial Intelligence, vol. 27,

pp. 103–114, 2014.

[19] M. Gallego, A. Duarte, M. Laguna, and R. Martí, “Hybrid heuristics for the maximum

diversity problem,” Computational Optimization and Applications, vol. 44, no. 3, pp. 411–

426, 2009.

[20] M. R. Q. de Andrade, P. M. F. de Andrade, S. L. Martins, and A. Plastino, “Grasp with path-

relinking for the maximum diversity problem,” in Experimental and Efficient Algorithms:

4th International Workshop, WEA 2005, Santorini Island, Greece, May 10-13, 2005. Pro-

ceedings (S. E. Nikoletseas, ed.), pp. 558–569, Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2005.

[21] G. C. Silva, M. R. Q. de Andrade, L. S. Ochi, S. L. Martins, and A. Plastino, “New heuristics

for the maximum diversity problem,” Journal of Heuristics, vol. 13, no. 4, pp. 315–336,

2007.

[22] R. Martí, M. Gallego, A. Duarte, and E. G. Pardo, “Heuristics and metaheuristics for the

maximum diversity problem,” Journal of Heuristics, vol. 19, no. 4, pp. 591–615, 2013.

[23] Q. Wu and J.-K. Hao, “A review on algorithms for maximum clique problems,” European

Journal of Operational Research, vol. 242, no. 3, pp. 693–709, 2015.

[24] W. Pullan, “Approximating the maximum vertex/edge weighted clique using local search,”

Journal of Heuristics, vol. 14, no. 2, pp. 117–134, 2008.

[25] L. Gouveia and P. Martins, “Solving the maximum edge-weight clique problem in sparse

graphs with compact formulations,” EURO Journal on Computational Optimization, vol. 3,

no. 1, pp. 1–30, 2015.

[26] S. Hosseinian, D. B. M. M. Fontes, and S. Butenko, “A quadratic approach to the maximum

edge weight clique problem.,” in XIII Global Optimization Workshop (GOW’16) (A. M.

116

A. C. Rocha, M. F. P. Costa, and E. M. G. P. Fernandes, eds.), pp. 125–128, Braga, Portugal:

University of Minho, 2016.

[27] S. Hosseinian, D. B. M. M. Fontes, and S. Butenko, “The maximum edge weight clique

problem: Formulations and solution approaches,” in Optimization Methods and Applica-

tions (S. Butenko, P. M. Pardalos, and V. Shylo, eds.), pp. 209–227, Springer, 2017.

[28] T. S. Motzkin and E. G. Straus, “Maxima for graphs and a new proof of a theorem of Turán,”

Canad. J. Math., vol. 17, pp. 533–540, 1965.

[29] P. Pardalos and A. Phillips, “A global optimization approach for solving the maximum clique

problem,” Int. J. Comput. Math., vol. 33, pp. 209–216, 1990.

[30] M. Pelillo and A. Jagota, “Feasible and infeasible maxima in a quadratic program for maxi-

mum clique,” Journal of Artificial Neural Networks, vol. 2, pp. 411–420, 1995.

[31] L. E. Gibbons, D. W. Hearn, and P. M. Pardalos, “A continuous based heuristic for the maxi-

mum clique problem,” in Cliques, Coloring, and Satisfiability: Second DIMACS Challenge,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26 (D. S. John-

son and M. A. Trick, eds.), pp. 103–124, Providence, RI: American Mathematical Society,

1996.

[32] L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana, “Continuous character-

izations of the maximum clique problem,” Mathematics of Operations Research, vol. 22,

pp. 754–768, 1997.

[33] I. M. Bomze, “Evolution towards the maximum clique,” Journal of Global Optimization,

vol. 10, pp. 143–164, 1997.

[34] I. M. Bomze, M. Budinich, M. Pelillo, and C. Rossi, “A new “annealed” heuristic for the

maximum clique problem,” in Approximation and Complexity in Numerical Optimization:

Continuous and Discrete Problems (P. M. Pardalos, ed.), pp. 78–96, Dordrecht, The Nether-

lands: Kluwer Academic Publishers, 2000.

117

[35] S. R. Bulò and M. Pelillo, “A generalization of the Motzkin–Straus theorem to hypergraphs,”

Optimization Letters, vol. 3, no. 2, pp. 287–295, 2009.

[36] S. Busygin, “A new trust region technique for the maximum weight clique problem,” Dis-

crete Applied Mathematics, vol. 154, pp. 2080–2096, 2006.

[37] Y. Peng, H. Peng, Q. Tang, and C. Zhao, “An extension of the Motzkin–Straus theorem

to non-uniform hypergraphs and its applications,” Discrete Applied Mathematics, vol. 200,

pp. 170–175, 2016.

[38] J. Harant, “A lower bound on the independence number of a graph,” Discrete Mathematics,

vol. 188, pp. 239–243, 1998.

[39] J. Harant, A. Pruchnewski, and M. Voigt, “On dominating sets and independent sets of

graphs,” Combinatorics, Probability and Computing, vol. 8, pp. 547–553, 1999.

[40] J. Harant, “Some news about the independence number of a graph,” Discussiones Mathe-

maticae Graph Theory, vol. 20, pp. 71–79, 2000.

[41] J. Abello, S. Butenko, P. Pardalos, and M. Resende, “Finding independent sets in a graph

using continuous multivariable polynomial formulations,” Journal of Global Optimization,

vol. 21, pp. 111–137, 2001.

[42] S. Busygin, S. Butenko, and P. M. Pardalos, “A heuristic for the maximum independent

set problem based on optimization of a quadratic over a sphere,” Journal of Combinatorial

Optimization, vol. 6, pp. 287–297, 2002.

[43] B. Balasundaram and S. Butenko, “On a polynomial fractional formulation for indepen-

dence number of a graph,” Journal of Global Optimization, vol. 35, pp. 405–421, 2006.

[44] P. M. Pardalos and S. A. Vavasis, “Quadratic programming with one negative eigenvalue is

NP-hard,” Journal of Global Optimization, vol. 1, no. 1, pp. 15–22, 1991.

118

[45] Y. Ye, “A new complexity result on minimization of a quadratic function with a sphere

constraint,” in Recent Advances in Global Optimization, pp. 19–31, Princeton University

Press, 1992.

[46] G. E. Forsythe and G. H. Golub, “On the stationary values of a second-degree polynomial

on the unit sphere,” Journal of the Society for Industrial and Applied Mathematics, vol. 13,

no. 4, pp. 1050–1068, 1965.

[47] R. Carraghan and P. Pardalos, “An exact algorithm for the maximum clique problem,” Op-

erations Research Letters, vol. 9, pp. 375–382, 1990.

[48] P. R. J. Östergård, “A fast algorithm for the maximum clique problem,” Discrete Applied

Mathematics, vol. 120, pp. 197–207, 2002.

[49] E. Tomita and T. Kameda, “An efficient branch-and-bound algorithm for finding a maximum

clique with computational experiments,” Journal of Global Optimization, vol. 37, no. 1,

pp. 95–111, 2007.

[50] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki, “A simple and faster

branch-and-bound algorithm for finding a maximum clique,” in WALCOM: Algorithms and

Computation: 4th International Workshop, WALCOM 2010, Dhaka, Bangladesh, February

10-12, 2010. Proceedings (M. S. Rahman and S. Fujita, eds.), pp. 191–203, Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2010.

[51] M. Batsyn, B. Goldengorin, E. Maslov, and P. M. Pardalos, “Improvements to MCS algo-

rithm for the maximum clique problem,” Journal of Combinatorial Optimization, vol. 27,

no. 2, pp. 397–416, 2014.

[52] P. San Segundo, A. Nikolaev, and M. Batsyn, “Infra-chromatic bound for exact maximum

clique search,” Computers & Operations Research, vol. 64, pp. 293–303, 2015.

[53] D. S. Johnson and M. A. Trick, eds., Cliques, Coloring, and Satisfiability: Second DIMACS

Implementation Challenge. Providence, RI: American Mathematical Society, 1996.

119

[54] S. Hosseinian, D. B. M. M. Fontes, and S. Butenko, “A lagrangian bound on the clique

number and an exact algorithm for the maximum edge weight clique problem,” INFORMS

Journal on Computing, vol. 32, no. 3, pp. 747–762, 2020.

[55] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The maximum clique prob-

lem,” in Handbook of Combinatorial Optimization (D.-Z. Du and P. M. Pardalos, eds.),

(Dordrecht, The Netherlands), pp. 1–74, Kluwer Academic Publishers, 1999.

[56] D. Zuckerman, “Linear degree extractors and the inapproximability of max clique and chro-

matic number,” in Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of

Computing, (New York), pp. 681–690, ACM, 2006.

[57] H. S. Wilf, “The eigenvalues of a graph and its chromatic number,” J. London Math. Soc.,

vol. 42, pp. 330–332, 1967.

[58] A. T. Amin and S. L. Hakimi, “Upper bounds on the order of a clique of a graph,” SIAM J.

Appl. Math., vol. 22, pp. 569–573, 1972.

[59] M. Budinich, “Exact bounds on the order of the maximum clique of a graph,” Discrete

Applied Mathematics, vol. 127, pp. 535–543, 2003.

[60] M. Padberg, “The boolean quadric polytope: some characteristics, facets and relatives,”

Mathematical Programming, vol. 45, no. 1-3, pp. 139–172, 1989.

[61] A. Mehrotra and M. A. Trick, “Cliques and clustering: A combinatorial approach,” Opera-

tions Research Letters, vol. 22, no. 1, pp. 1–12, 1998.

[62] R. Martí, M. Gallego, and A. Duarte, “A branch and bound algorithm for the maximum

diversity problem,” European Journal of Operational Research, vol. 200, no. 1, pp. 36–44,

2010.

[63] D. B. M. M. Fontes, J. F. Gonçalves, and F. A. C. C. Fontes, “An evolutionary approach

to the maximum edge weight clique problem,” Recent Advances in Electrical & Electronic

Engineering, 2018.

120

[64] W. Pullan, “Phased local search for the maximum clique problem,” Journal of Combinato-

rial Optimization, vol. 12, no. 3, pp. 303–323, 2006.

[65] L. Lovász, “On the shannon capacity of a graph,” IEEE Trans. Inform. Theory, vol. 25,

pp. 1–7, 1979.

[66] S. R. Bulò and M. Pelillo, “A new spectral bound on the clique number of graphs,” in

Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2010. (E. Hancock,

R. Wilson, T. Windeatt, I. Ulusoy, and F. Escolano, eds.), vol. 6218 of Lecture Notes in

Computer Science, pp. 680–689, Berlin, Heidelberg: Springer, 2010.

[67] J. Mycielski, “Sur le coloriage des graphs,” Colloquium Mathematicae, vol. 3, no. 2,

pp. 161–162, 1955.

[68] E. Tomita and T. Seki, “An efficient branch-and-bound algorithm for finding a maximum

clique,” in Discrete Mathematics and Theoretical Computer Science: 4th International Con-

ference, DMTCS 2003 Dijon, France, July 7–12, 2003 Proceedings (C. S. Calude, M. J.

Dinneen, and V. Vajnovszki, eds.), pp. 278–289, Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2003.

[69] C. M. Li and Z. Quan, “An efficient branch-and-bound algorithm based on MaxSAT for the

maximum clique problem,” in AAAI, vol. 10, pp. 128–133, 2010.

[70] P. San Segundo, D. Rodrıiguez-Losada, and A. Jiménez, “An exact bit-parallel algorithm for

the maximum clique problem,” Computers & Operations Research, vol. 38, pp. 571–581,

2011.

[71] B. Gendron, A. Hertz, and P. St-Louis, “A sequential elimination algorithm for computing

bounds on the clique number of a graph,” Discrete Optimization, vol. 5, pp. 615–628, 2008.

[72] S. Shimizu, K. Yamaguchi, and S. Masuda, “A branch-and bound based exact algorithm

for the maximum edge-weight clique problem,” in Computational Science/Intelligence &

Applied Informatics (R. Lee, ed.), vol. 787 of Studies in Computational Intelligence, pp. 27–

47, Springer International Publishing AG, 2019.

121

[73] S. Hosseinian and S. Butenko, “Polyhedral properties of the induced cluster subgraphs,”

Discrete Applied Mathematics, vol. 297, pp. 80–96, 2021.

[74] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1, pp. 27–64,

2007.

[75] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-

mization. Berlin: Springer-Verlag, 2nd ed., 1993.

[76] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization. New York:

Wiley, 1999.

[77] J. Pattillo, N. Youssef, and S. Butenko, “On clique relaxation models in network analysis,”

European Journal of Operational Research, vol. 226, no. 1, pp. 9–18, 2013.

[78] F. V. Fomin, S. Gaspers, D. Kratsch, M. Liedloff, and S. Saurabh, “Iterative compression

and exact algorithms,” Theoretical Computer Science, vol. 411, no. 7-9, pp. 1045–1053,

2010.

[79] Z. Ertem, A. Veremyev, and S. Butenko, “Detecting large cohesive subgroups with high

clustering coefficients in social networks,” Social Networks, vol. 46, pp. 1–10, 2016.

[80] B. Balasundaram and S. Butenko, “On a polynomial fractional formulation for indepen-

dence number of a graph,” Journal of Global Optimization, vol. 35, no. 3, pp. 405–421,

2006.

[81] Z. Ertem, E. Lykhovyd, Y. Wang, and S. Butenko, “The maximum independent union

of cliques problem: complexity and exact approaches,” Journal of Global Optimization,

vol. 76, no. 3, pp. 545–562, 2020.

[82] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier, “Automated generation of search tree

algorithms for hard graph modification problems,” Algorithmica, vol. 39, no. 4, pp. 321–

347, 2004.

122

[83] J. M. Lewis and M. Yannakakis, “The node-deletion problem for hereditary properties is

NP-complete,” Journal of Computer and System Sciences, vol. 20, no. 2, pp. 219–230, 1980.

[84] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier, “Fixed-parameter algorithms

for cluster vertex deletion,” Theory of Computing Systems, vol. 47, no. 1, pp. 196–217, 2010.

[85] A. Boral, M. Cygan, T. Kociumaka, and M. Pilipczuk, “A fast branching algorithm for

cluster vertex deletion,” Theory of Computing Systems, vol. 58, no. 2, pp. 357–376, 2016.

[86] T.-N. Le, D. Lokshtanov, S. Saurabh, S. Thomassé, and M. Zehavi, “Subquadratic kernels

for implicit 3-hitting set and 3-set packing problems,” in Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 331–342, SIAM, 2018.

[87] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh, “Exact algorithms via monotone

local search,” in Proceedings of the Forty-eighth Annual ACM Symposium on Theory of

Computing, (New York, NY), pp. 764–775, ACM, 2016.

[88] J. You, J. Wang, and Y. Cao, “Approximate association via dissociation,” Discrete Applied

Mathematics, vol. 219, pp. 202–209, 2017.

[89] S. Fiorini, G. Joret, and O. Schaudt, “Improved approximation algorithms for hitting

3-vertex paths,” in Integer Programming and Combinatorial Optimization. IPCO 2016

(Q. Louveaux and M. Skutella, eds.), vol. 9682 of Lecture Notes in Computer Science,

(Cham), pp. 238–249, Springer, 2016.

[90] R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification problems,” Discrete Applied

Mathematics, vol. 144, no. 1-2, pp. 173–182, 2004.

[91] F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang, “The cluster editing

problem: Implementations and experiments,” in Parameterized and Exact Computation.

IWPEC 2006 (H. L. Bodlaender and M. A. Langston, eds.), vol. 4169 of Lecture Notes in

Computer Science, (Berlin, Heidelberg), pp. 13–24, Springer, 2006.

[92] S. Böcker, “A golden ratio parameterized algorithm for cluster editing,” Journal of Discrete

Algorithms, vol. 16, pp. 79–89, 2012.

123

[93] C. Komusiewicz and J. Uhlmann, “Cluster editing with locally bounded modifications,”

Discrete Applied Mathematics, vol. 160, no. 15, pp. 2259–2270, 2012.

[94] S. Böcker and J. Baumbach, “Cluster editing,” in The Nature of Computation. Logic, Algo-

rithms, Applications. CiE 2013 (P. Bonizzoni, V. Brattka, and B. Löwe, eds.), vol. 7921 of

Lecture Notes in Computer Science, pp. 33–44, Berlin, Heidelberg: Springer, 2013.

[95] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger, “Tight bounds for

parameterized complexity of cluster editing with a small number of clusters,” Journal of

Computer and System Sciences, vol. 80, no. 7, pp. 1430–1447, 2014.

[96] L. Bastos, L. S. Ochi, F. Protti, A. Subramanian, I. C. Martins, and R. G. S. Pinheiro,

“Efficient algorithms for cluster editing,” Journal of Combinatorial Optimization, vol. 31,

no. 1, pp. 347–371, 2016.

[97] K. Jansen, P. Scheffler, and G. Woeginger, “The disjoint cliques problem,” RAIRO-

Operations Research, vol. 31, no. 1, pp. 45–66, 1997.

[98] B. P. W. Ames and S. A. Vavasis, “Convex optimization for the planted k-disjoint-clique

problem,” Mathematical Programming, vol. 143, pp. 299–337, Feb 2014.

[99] R. Van Bevern, H. Moser, and R. Niedermeier, “Approximation and tidying – a problem

kernel for s-plex cluster vertex deletion,” Algorithmica, vol. 62, no. 3-4, pp. 930–950, 2012.

[100] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann, “A more relaxed model for

graph-based data clustering: s-plex cluster editing,” SIAM Journal on Discrete Mathemat-

ics, vol. 24, no. 4, pp. 1662–1683, 2010.

[101] M. S. Krishnamoorthy and N. Deo, “Node-deletion NP-complete problems,” SIAM Journal

on Computing, vol. 8, no. 4, pp. 619–625, 1979.

[102] M. Pilipczuk, “Exact algorithms for induced subgraph problems,” in Encyclopedia of Algo-

rithms (M.-Y. Kao, ed.), pp. 674–678, New York, NY: Springer New York, 2016.

124

[103] M. W. Padberg, “A note on zero-one programming,” Operations Research, vol. 23, pp. 833–

837, 1975.

[104] L. A. Wolsey, “Facets and strong valid inequalities for integer programs,” Operations Re-

search, vol. 24, no. 2, pp. 367–372, 1976.

[105] E. Zemel, “Lifting the facets of zero–one polytopes,” Mathematical Programming, vol. 15,

no. 1, pp. 268–277, 1978.

[106] G. L. Nemhauser and L. E. Trotter, “Properties of vertex packings and independence sys-

tem,” Mathematical Programming, vol. 6, pp. 48–61, 1974.

[107] C. A. Meyer and C. A. Floudas, “Trilinear monomials with positive or negative do-

mains: Facets of the convex and concave envelopes,” in Frontiers in Global Optimization

(C. Floudas and P. M. Pardalos, eds.), vol. 74 of Nonconvex Optimization and Its Applica-

tions, pp. 327–352, Boston, MA: Springer, 2004.

[108] M. W. Padberg, “On the facial structure of set packing polyhedra,” Mathematical Program-

ming, vol. 5, pp. 199–215, 1973.

[109] L. E. Trotter, “A class of facet producing graphs for vertex packing polyhedra,” Discrete

Mathematics, vol. 12, pp. 373–388, 1975.

[110] H. D. Sherali and J. C. Smith, “A polyhedral study of the generalized vertex packing prob-

lem,” Mathematical Programming, vol. 107, no. 3, pp. 367–390, 2006.

[111] M. Colombi, R. Mansini, and M. Savelsbergh, “The generalized independent set problem:

Polyhedral analysis and solution approaches,” European Journal of Operational Research,

vol. 260, no. 1, pp. 41–55, 2017.

[112] S. Hosseinian and S. Butenko, “Algorithms for the generalized independent set problem

based on a quadratic optimization approach,” Optimization Letters, vol. 13, no. 6, pp. 1211–

1222, 2019.

125

[113] A. Dessmark, K. Jansen, and A. Lingas, “The maximum k-dependent and f -dependent

set problem,” in International Symposium on Algorithms and Computation, pp. 88–97,

Springer, 1993.

[114] A. Pyatkin, E. Lykhovyd, and S. Butenko, “The maximum number of induced open triangles

in graphs of a given order,” Optimization Letters, vol. 13, no. 8, pp. 1927–1935, 2019.

[115] C. Berge, “Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr

sind (zusammenfassung),” Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-

Wittenberg, Mathematisch-Naturwissenschaftliche, vol. 10, pp. 114–115, 1961.

[116] M. Chudnovsky, N. Robertson, P. Seymour, and R.Thomas, “The strong perfect graph theo-

rem,” Ann. Math., vol. 164, pp. 51–229, 2006.

[117] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković, “Recognizing berge

graphs,” Combinatorica, vol. 25, no. 2, pp. 143–186, 2005.

[118] M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl, “Detecting an odd hole,” Journal of

the ACM (JACM), vol. 67, no. 1, pp. 1–12, 2020.

[119] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković, “Even-hole-free graphs part ii:

Recognition algorithm,” Journal of Graph Theory, vol. 40, no. 4, pp. 238–266, 2002.

[120] H. Chang and H. Lu, “A faster algorithm to recognize even-hole-free graphs,” Journal of

Combinatorial Theory, Series B, vol. 113, pp. 141–161, 2015.

[121] D. Bienstock, “On the complexity of testing for odd holes and induced odd paths,” Discrete

Mathematics, vol. 90, no. 1, pp. 85–92, 1991.

[122] D. Bienstock, “Corrigendum to: On the complexity of testing for odd holes and induced odd

paths,” Discrete Mathematics, vol. 102, no. 1, p. 109, 1992.

[123] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-completeness. New York: W.H. Freeman and Company, 1979.

126

[124] Y. Chen and J. Flum, “On parameterized path and chordless path problems,” in Proceedings

of the Twenty-Second Annual IEEE Conference on Computational Complexity, (Washing-

ton, DC), pp. 250–263, IEEE Computer Society, 2007.

[125] G. L. Nemhauser and L. E. Trotter, “Vertex packing: structural properties and algorithms,”

Mathematical Programming, vol. 8, pp. 232–248, 1975.

[126] H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems,” SIAM Journal of Discrete

Mathematics, vol. 3, pp. 411–430, 1990.

[127] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete Applied Mathematics,

vol. 123, no. 1-3, pp. 155–225, 2002.

127

APPENDIX A

THE UNIVARIATE LAGRANGIAN RELAXATION PROBLEM

Lemma 31. Suppose S is a set of objects, each of which has a weight wi > 0, ∀i ∈ S. For every

x ≥ 0, let S+ = {i ∈ S | wi ≥ 2x}. Then, for every positive integer N , the optimal value of the

following optimization problem is always given by sum of the N largest weights of the objects in

S:

min
x≥0

∑
i∈S+

(wi − 2x) + 2Nx. (A.1)

Proof. Let SN denote the set of N objects with the largest weights in S, and w̃ be the average

weight of the objects in SN , i.e., w̃ = 1
N

∑
i∈SN wi. First, we show that Nw̃ ≤

∑
i∈S+(wi − 2x) +

2Nx. Patently, the inequality holds if w̃ ≤ 2x. Hence, suppose w̃ > 2x. Consider a partition of

SN as follows:

S1 = {i ∈ SN | w̃ ≤ wi},

S2 = {i ∈ SN | 2x ≤ wi < w̃},

S3 = {i ∈ SN | wi < 2x}.

(A.2)

Note that, S1 ∪ S2 = SN ∩ S+. By definition of w̃, we have

∑
i∈S1

(wi − w̃) =
∑
i∈S2

(w̃ − wi) +
∑
i∈S3

(w̃ − wi)

=
∑
i∈S2

(w̃ − wi) +
∑
i∈S3

(w̃ − 2x) +
∑
i∈S3

(2x− wi)

≥
∑
i∈S2

(w̃ − wi) +
∑
i∈S3

(w̃ − 2x),

(A.3)

as wi < 2x, ∀i ∈ S3. Therefore,

128

∑
i∈S+

(wi − 2x) ≥
∑

i∈SN∩S+

(wi − 2x) =
∑
i∈S1

(wi − 2x) +
∑
i∈S2

(wi − 2x)

=
∑
i∈S1

(wi − w̃ + w̃ − 2x) +
∑
i∈S2

(wi − w̃ + w̃ − 2x)

≥
∑
i∈S1

(w̃ − 2x) +
∑
i∈S2

(w̃ − 2x) +
∑
i∈S3

(w̃ − 2x)

=
∑
i∈SN

(w̃ − 2x) = N(w̃ − 2x),

(A.4)

where the second inequality is due to (A.3). Since the choice of x was arbitrary, this result implies

that

Nw̃ ≤ min
x≥0

∑
i∈S+

(wi − 2x) + 2Nx. (A.5)

Let x′ be equal to one half of the smallest weight of an object in SN . Then,

∑
i∈S+

(wi − 2x′) + 2Nx′ =
∑
i∈SN

(wi − 2x′) + 2Nx′ =
∑
i∈SN

wi − 2Nx′ + 2Nx′ = Nw̃. (A.6)

That is, by this choice of x, the univariate optimization problem reaches its lower bound. Hence,

its optimal value is always given by Nw̃ =
∑

i∈SN wi.

129

APPENDIX B

SUPPLEMENTARY ALGORITHMS

Algorithm 12 Initialization step proposed in [49]
1: function INITIALIZE(G)
2: U = an empty array of size n
3: for k = n to 1 do . initial sorting starts here
4: R← set of vertices with minimum degree in G
5: if |R| = 1 then
6: u← the vertex in R
7: else
8: for every vertex i ∈ R do
9: σ(i) =

∑
v∈N(i) dv . dv: degree of vertex v

10: end for . N(i) = {j ∈ V | {i, j} ∈ E}
11: u← a vertex in R with the minimum σ
12: end if
13: U [k]← u
14: G← G\{u}
15: end for
16: L← U . initial coloring starts here
17: for k = 1 to ∆(G) do
18: color(L[k])← k
19: end for
20: for k = ∆(G) + 1 to n do
21: color(L[k])← ∆(G) + 1
22: end for
23: return (U,L)
24: end function

130

Algorithm 13 Vertex coloring method proposed in [49]

1: function SUBCOLOR1(G,Uv)
2: Lv = an empty array of size |Uv|
3: K = 0 . K: the number of colors used
4: I1 = ∅
5: for i = 1 to |Uv| do
6: u← Uv[i]
7: k = 1
8: while N(u) ∩ Ik 6= ∅ do
9: k ← k + 1

10: end while
11: if k > K then
12: K ← k
13: Ik = ∅
14: end if
15: Ik ← Ik ∪ {u}
16: end for
17: i = 1
18: for k = 1 to K do
19: for j = 1 to |Ik| do
20: Lv[i]← Ik[j]
21: color(Lv[i])← k
22: i← i+ 1
23: end for
24: end for
25: return Lv
26: end function

131

Algorithm 14 Recoloring method proposed in [52]

1: function SUBCOLOR2(G,Uv, C,W,W ∗)
2: Lv = an empty array of size |Uv|
3: T = THRESHOLD(G,Uv, C,W,W

∗)
4: F = ∅ . F : the set of forbidden colors
5: s = 1 ; I1 = ∅
6: Array ← Uv
7: while Array 6= ∅ do
8: Is ← Array
9: while all vertices in Is have been selected do

10: pick a vertex v from Is
11: result← false
12: if s ≥ T + 1 then result← EXCLUDE(v, T, {I1, · · · , IT}, Is, F)
13: if result = false then Is ← Is\N(v)
14: Array ← Array\{v}
15: end while
16: s← s+ 1 ; Is = ∅
17: end while
18: i = 1
19: for k = 1 to s− 1 do
20: for j = 1 to |Ik| do
21: Lv[i]← Ik[j]
22: color(Lv[i])← k
23: i← i+ 1
24: end for
25: end for
26: return Lv
27: end function

132

Algorithm 15 Vertex exclusion method proposed in [52]

1: function EXCLUDE(v, T, {I1, · · · , IT}, Is, F)
2: for k1 = 1 to T do
3: if k1 /∈ F and |Ik1 ∩N(v)| = 1 then
4: u← Ik1 ∩N(v)
5: for k2 = k1 + 1 to T do
6: if k2 /∈ F and Ik2 ∩N(v) ∩N(u) = ∅ then
7: F ← F ∪ {k1} ∪ {k2}
8: Is ← Is\{v}
9: return true

10: end if
11: end for
12: for k2 = 1 to k1 − 1 do
13: if k2 /∈ F and Ik2 ∩N(v) ∩N(u) = ∅ then
14: F ← F ∪ {k1} ∪ {k2}
15: Is ← Is\{v}
16: return true
17: end if
18: end for
19: end if
20: end for
21: return false
22: end function

133

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Summary of Contributions

	A NONCONVEX QUADRATIC OPTIMIZATION APPROACH TO THE MAXIMUM EDGE WEIGHT CLIQUE PROBLEM
	Introduction
	Quadratic Programming Formulation for the MEWC Problem
	First order necessary conditions (FONC)
	Second order necessary conditions (SONC)
	Second order sufficient conditions (SOSC)

	Optimality Characterizations
	Solving the MEWC Problem
	Construction heuristic
	Quadratic relaxation bound
	Combinatorial branch-and-bound procedure

	Computational Experiments

	A LAGRANGIAN BOUND ON THE CLIQUE NUMBER AND AN EXACT ALGORITHM FOR THE MAXIMUM EDGE WEIGHT CLIQUE PROBLEM
	Introduction
	A Lagrangian Relaxation Bound on the Clique Number
	An Exact Solution Method for the MEWC Problem
	Upper-bounding method
	Algorithm

	Computational Experiments

	POLYHEDRAL PROPERTIES OF THE INDUCED CLUSTER SUBGRAPHS
	Introduction
	Terminology and notation

	The IUC Polytope
	Facet-producing Structures
	Chordless cycle and its complement
	Star and double-star
	Fan and wheel

	The Separation Problems
	Computational Experiments

	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDIX THE UNIVARIATE LAGRANGIAN RELAXATION PROBLEM
	APPENDIX SUPPLEMENTARY ALGORITHMS

