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ABSTRACT

The purpose of this research is to study Drinfeld modules, tensor product of Drinfeld modules,
their rigid analytic trivializations, and their periods. A formula for rigid analytic trivializations
for Drinfeld modules was originally given by Pellarin. In this research, we provide a new method
to construct a rigid analytic trivialization for Drinfeld modules. Unlike Pellarin’s formula, our
method does not require periods of Drinfeld modules. Given a rank  Drinfeld module, we provide
a recursive process that produce a convergent ¢-division sequence. Consequently we use the ¢-
division sequence to construct a sequence of matrices (Y,),>; and by computing the limit of
(Y,,)n>1, We obtain our rigid analytic trivialization for a Drinfeld module. Using the function
L(&;t) introduced by El-Guindy and Papanikolas, we are able to find an explicit formula for our
rigid analytic trivialization. Furthermore, in the second part of our research, we investigate tensor
products of two Drinfeld modules ¢; and ¢,. Using the theory of ¢-motives, we define a t-action
for ¢1 ® ¢. Inspired by a formula for periods of the tensor product of Carlitz module by Anderson
and Thakur, we discover a formula for periods of the tensor product ¢ ® ¢5. Moreover, we provide

a formula for Anderson generating functions for the tensor product ¢; ® ¢o.
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NOMENCLATURE

finite field with ¢ = p™ elements.

IF,[6], the polynomial ring in 6 over F,.

IF,(8), the fraction field of A.

F,((1/0)), the completion of k with respect to | - |.

the completion of an algebraic closure of k.

the algebraic closure of £ inside K.

IF,[t], the polynomial ring in ¢ over F, ¢ independent from 6.
for aring R, the left R-module of m X n matrices.
Matgxq(R).

Mat g1 (R).

the transpose of a matrix M.
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1. INTRODUCTION

1.1 Background and motivation

The theory of Drinfeld modules was established by V. G. Drinfeld [9] in 1974. A higher
dimensional version of Drinfeld modules, called ¢-modules, was introduced in 1986 by Anderson
[1]. In particular, a Drinfeld module is a 1-dimensional t-module. Anderson defined a new object
called t-motives, whose category is anti-equivalent to the category of ¢t-modules. Anderson also
gave a notion of the rigid analytic triviality of £-motives which play an important role in studying
the uniformization of ¢-modules. He proved that a ¢-module associated to an abelian ¢-motive M
is uniformizable if and only if M is rigid analytically trivial.

The rigid analytic trivialization is also useful for finding periods and quasi-periods of ¢-modules.
Periods arise as the kernel of the exponential function associated to the ¢-module, and its quasi-
periods arise as values of quasi-periodic functions coming from biderivations associated to the
t-motive of the -module. The exponential function was developed by Anderson [1] (see also [15],
[31]). The theory of the de Rham module and quasi-periodic functions for Drinfeld modules was
developed by Anderson, Deligne, Gekeler, and Yu [12], [14], [32], and this was extended by Brow-
nawell and Papanikolas to higher dimensional t-modules [5] (see also [18, §2.5]). Anderson first
observed that quasi-periods of Drinfeld modules could be obtained by specializations and residues
of what are now called Anderson generating functions (see [14]), and it was observed by Pel-
larin that Anderson generating functions were crucial ingredients to constructing the rigid analytic
trivialization of a Drinfeld module [26] (see also [7], [8]). Anderson generating functions have
subsequently arisen in many other contexts for Drinfeld modules and general ¢-modules (e.g., see
[11], [16], [17], [21], [22], [27], [28], [29], [30]). In the present dissertation we explore these con-
nections in depth for the tensor product of two Drinfeld modules (see Theorem 4.26 and Theorem
4.32).

The method to construct a rigid analytic trivialization for a Drinfeld module was originally



given by Pellarin [26]. In his method, he fixed a basis 71, ..., 7, of the period lattice and used
the Anderson generating function associated to each 7; to define a rigid analytic trivialization for
a Drinfeld module. See also [7], [8] for further developments in these directions.

In this dissertation, we provide a new method to construct a rigid analytic trivialization for a
Drinfeld module (see Theorem 3.15). Given a rank r Drinfeld module, we provide a recursive
process that produces a convergent ¢-division sequence. Then we use the ¢-division sequence to
construct a sequence of matrices (Y,,),>; and by computing the limit of (Y,),,>1, we obtain our
rigid analytic trivialization for a Drinfeld module. Adopting the function L£4(&;¢) introduced by
El-Guindy and Papanikolas [11], we are able to find an explicit formula for our rigid analytic
trivialization. Furthermore we show that the rigid analytic trivialization derived from our approach
coincides with the one obtained by using Pellarin’s method. The benefit of our construction is that
it is effective in the sense that our construction requires only a finite amount of initial computation.

Moreover, we investigate the tensor products of two Drinfeld modules. The tensor powers
of Carlitz modules, which are Drinfeld modules of rank 1, are well studied by Anderson and
Thakur [3]. They showed that a generator of the period lattice of the tensor power C®" has a final
coordinate equal to the n-th power of the Carlitz period. For more details about tensor power C®",
the reader is directed to Goss [15, §5] and Thakur [31, §7]. In the second part of our research,
our goal is to expand the results by Anderson and Thakur by studying the tensor product of two
Drinfeld modules with arbitrary rank. Using the theory of ¢-motives, we express the ¢-action of the
tensor products of two Drinfeld modules. As a consequence, we provide a formula for periods of
the tensor product of two Drinfeld modules with arbitrary rank. Moreover, using our formula for
the periods, we obtain a formula for Anderson generating functions for the tensor product of two

Drinfeld modules.
1.2 An outline of this dissertation

In §2, we will give preliminary definitions and results on Drinfeld modules, ¢-modules and
t-motives, which will be used to state and prove our results in §3 and §4.

We then give some details about rigid analytic trivializations for Drinfeld modules in §3. First,



we recall Pellarin’s method to construct a rigid analytic trivialization in §3.1. Then we provide our
method to construct a rigid analytic trivialization in §3.2. We finish the section by providing an
application of our method and an example on a specific rank 2 Drinfeld module in §3.3.

In §4, we investigate the tensor product of two Drinfeld modules of arbitrary rank. In §4.1, we
state some results from Anderson and Thakur. Then we give a definition of a tensor product of
two Drinfeld modules ¢; ® ¢ in §4.2. In §4.3, we state the main result in Theorem 4.26, which
provide a formula for the periods of ¢; ® ¢,. Moreover, we provide a formula for the Anderson
generating functions for the tensor product in §4.4. Finally, we give an example in §4.5, where we

consider a tensor product of Drinfeld modules of rank 2.



2. PRELIMINARIES

2.1 Drinfeld modules

Let F, denote the field with ¢ elements and let £ = [F,(¢) be the rational function field in the
variable 6 over IF,. Let ky, = F,((1/6)) be the completion of %k at oo, with absolute value | - |
chosen so that || = ¢. Let vy, be the valuation at co with v, () = —1, and let deg := —v,. Let
K denote the completion of an algebraic closure of k..

Consider the ¢-th power Frobenuis map 7 : K — K defined by z — 29. Let K[7] be the ring of

twisted polynomials in 7 subject to the relation
Ta =a't, a€k

Let A = F,[t] be the polynomial ring in a variable ¢ independent from 6. A Drinfeld module

of rank r over K is an F,-algebra homomorphism
¢: A — K[7]

such that

dr=0+A T+ + AT, A #£0. 2.1)

We obtain an A-module structure on K induced by ¢ by the action
a-v=¢.(x), acA, zek

For any a € A, the a-torsion of ¢ is the A-submodule ¢la] = {xr € K : ¢,(x) = 0}. The

exponential of ¢ is the [F-linear power series in z,

o
expy(z) = Zanzqn, ap=1, a, €K,
n=0



satisfying expy(a(0)z) = ¢a(expy(2)) for any a € A. This power series defines an entire function

expy : K — K. The logarithm of ¢ is the formal inverse of exp,(z), which can be written as

logy(2) =Y Buz"", Bo=1, B.€K,
n=0

and has a finite radius of convergence, denoted by R4, see [15, Prop. 4.14.2].
Let A be the kernel of exp,(z). We call Ay the period lattice of ¢ and call any element of A,

a period of ¢. Then A, C K is a free A-module of rank r.

2.2 Anderson generating functions

Define the Tate algebra
T = {Z cit' € K[[t]] : |ci| — O} :
i=0
We use the Gauss norm || - || on T defined by || Y ¢;t|| = sup, |¢;] = max; |¢;|. For any f =

Yoot € Tand any n € Z, let

o0

= Z 't e,

i=0
For any matrix M = (f;;) € Mat,.(T) and any n € Z, we define the matrix M™ = (fi(n)) €
Mat,«s(T) and we set | M|| = max; ; || f;;||. Assume that we have a Drinfeld module ¢ of rank r

given as in equation (2.1). For u € K, the Anderson generating function associated to v is defined

by

oo U .
Folust) = 3 exp, (i)
m=0
Pellarin [26, §4.2] gave a formula for Anderson generating functions in the following proposition.

Proposition 2.1 (Pellarin). For u € K,




where a, are the coefficients of exp,. Furthermore, fs(u;t) extends to a meromorphic function on

K with simple poles att = 09" ,n = 0,1, ..., and with residues
Res,_gan fs(u;t) = —au?”.

As an example, we consider the Carlitz module C'. We know that A is an A-module of rank

1. Fix a nonzero element 7 € Ao. The Anderson generating function associated to 7 is

_ - o
fo@t) =) expo( oy 1
m=0

Using Proposition 2.1 of Pellarin, we know that Res;—y fo(7;t) = —7. Let

et) = (0 ] (1)

1=0

which is defined by Anderson and Thakur [3, §2] and is nowadays called the Anderson-Thakur
function. Tt is known from [3] that fo(7;t) = we(t). In other words, we(t) is a formula for the
Anderson generating function that does not require 7 to define it. This gives us the benefit of

finding a formula for 7™ by comparing the residues of both functions, which gives

7=0(-0)""V]] (1 - elff)_l :

i=1

We call 7 the Carlitz period.

Anderson generating functions are useful tools for finding periods of a Drinfeld module. In the
recent work of El-Guindy and Papanikolas [11], they expressed Anderson generating functions in
terms of the defining polynomial of the Drinfeld module. They defined a series L,4(&;¢) by using
shadowed partitions as follows. For n,r € N, P.(n) is the set of r-tuples (51, Sa, ..., .S;) such that

foreachi, S; C {0,1,...,n—1}andtheset {S;+7:1 <i<r,0<j<i—1} forms a partition



of {0,1,...,n — 1}. They defined the series

L&) = Bu(t)¢" €T, [¢] <Ry,
n=0

where Ry is the radius of convergence of log(z) and

r qu
s0= Y 11,5

S€eP.(n) i=1 jES;

The series L,4(&;t) is related to the Anderson generating function as one can see in the following
theorem proved by El-Guindy and Papanikolas [11, Thm. 6.13]. Moreover, it also appears in our

formula for rigid analytic trivialization in section 3.2.

Theorem 2.2 (El-Guindy and Papanikolas). Let u € K with |u| < Ry and § = expy(u). Suppose
that |§] < Ry. Then L4(&;0) = logy(§) = wand Ly(&;t) = —(t — 0) fo(ust).

2.3 t-motives for Drinfeld modules

The ring K[¢, 7] is the polynomial ring in ¢ and 7 with coefficients in K subject to the following
relations,

tc=ct, ttr =71t, Tc =1, c€ K.

A t-motive M is a left K[¢, 7]-module that is free and finitely generated over K[7] and for which
there is £ € N with

(t = 0)"(M/TM) = {0}.

Suppose we have a Drinfeld module ¢ : F,[t] — K[7], given as in equation (2.1). The t-motive
associated to ¢, denoted M (¢), is defined as follows: let M (¢) = K|7] and make M (¢) into a left

K([t, 7]-module by setting

ct'-m = cmeou, me M(¢), ceK[r].



2.4 t-modules

Developing on the theory of Drinfeld modules, Anderson introduced ¢-modules which are a
higher dimensional version of Drinfeld modules. Most concepts in the theory of Drinfeld modules

still appear in the theory of t-modules. A t-module over K is an IF;-algebra homomorphism
¢ : A — Maty(K[7])

such that ¢, is given by

¢, = By + BT+ -+ By, (2.2)

where By, ..., B, € Maty(K) and By = 6I; + N for some nilpotent matrix N. We denote
d¢, = By and we say that ¢ has dimension d. Every t-module ¢ induces an A-module structure
on K¢ by setting

a-r=¢u(r), acAxecK

Given two t-modules ¢ and 1) with dimensions d and e, respectively, a morphism v : ¢ — 1 is a

matrix 7 € Mat,.4(K[7]) such that

’7@5@ = %%

forany a € A. If d = e and v € GL4(K]7]), then we call -y an isomorphism of t-modules. An

exponential function Exp,, : K¢ — K is defined via a power series

21

Expy(z) = 2 + Z CizD, 2= |, C;eMaty(K),
i>1
Zd

such that, forall a € A,

EXp¢(d¢aZ) = gba(Equﬁ(z))‘



This functional equation uniquely determines the coefficients C;. The exponential function is an
entire function. We say that ¢ is uniformizable if Exp, is surjective. The kernel of the exponential
function is denoted by A, = ker(Exp,) C K%, and we call it a period lattice of ¢. It is well-known

that A, is a free, finitely generated discrete A-submodule.
2.5 t-motives and dual t-motives for t-modules

Recall the definition of {-motives given in §2.3. For a t-motive M, we call rankg;] M the
dimension of M, which will be denoted by d(M). If M is free and finitely generated as a K[t]-
module, we say that M is abelian and we call rankg; M the rank of M, which will be denoted by
r(M). Setting

M((1/t)) := M @k K((1/1)),

we say that an abelian ¢-motive M is pure if there is a finitely generated K[[1/¢]]-submodule H in
M ((1/t)) such that t*H = 7" H for some positive integers u, v. In this case, we define the weight
of M to be

w(M) == u/v.

It is evident that w(M) = d(M)/r(M). Moreover, for every Drinfeld module ¢ of rank r, its
t-motive is pure of dimension 1, rank r, weight 1/r (see [31, §7] or [6, §4] for more details).
For any t-module ¢ : A — Mat,(K|7]), the t-motive associated to ¢, denoted M (¢), is defined

as follows: let M (¢) = Mat;4(K][7]) and make M (¢) into a left K[t, 7]-module by setting

ct'-m = cmeou, me M(¢), ceK[r].

The ring K[¢, o] is the polynomial ring in ¢ and o with coefficients in K subject to the following
relations,

tc=ct, to=ot, oc=c", ceK.

In this way for any f € K][¢],
of = fVe.



A dual t-motive N is a left K[t, o]-module that is free and finitely generated over K[o] and for
which there is ¢ € N with

(t —0)"(N/oN) = {0}.

We call rankg,; N the dimension of N. If N is free and finitely generated as a K[t]-module, we
say that NV is A-finite and we call rankgy) N the rank of N. The map * : K[r] — K[o] is the

anti-isomorphism given by
(Z a; 7 ) = Z al o',
This map induces a map * : Maty,(K[7]) — Maty,(Ko]), (b;;) = (b};)T. For a t-module ¢

as before, the dual t-motive associated to ¢, denoted N(¢), is defined as follows: let N(¢) =

Mat;4(K][o]) and make N(¢) into a left K[¢, o]-module by setting
ct'-n:=cn(pu)*, n€N(p), ceKlol.
If a t-module ¢ is uniformizable, and M (¢) is abelian and N (¢) is A-finite, then
ranka Ay = rankgpy M(¢) = rankgy N ().
Every morphism of ¢-modules 7 : ¢ — 1 induces a morphism of ¢-motives
7t M() = M(g), m e my,
and a morphism of dual ¢-motives

Y4 N(¢) = N(¥), n—ny"

10



2.6 Anderson generating function for a t-module

Suppose ¢ : A — Maty(K[7]) is a t-module and y is an element in K¢. Then the Anderson

generating function for ¢ with respect to y is the column vector of power series,

Gy(t) = Z EXP¢((d¢t)7n71 Syt € T
n=0

The properties of the Anderson generating functions for a t-module are investigated by Ander-
son and Thakur [3, §2], Green [16, §6], Green and Papanikolas [17, §5], and Namoijam and
Papanikolas [22, §4]. Anderson and Thakur defined the Anderson generating function for a ¢-
module C®" and provided a residue formula in this case. For a vector of meromorphic function

h=(hy,...,hg)T € T¢and x € K, its residue is defined by
Res;—, h = (Resj—y hy, ..., Res—y hy) .

Proposition 2.3 (Namoijam and Papanikolas; see [22, §4.2]). Let ¢ : A — Maty(K[7]) be a

t-module and let y € K. Then

Restzg(gy (t)) =Y.

Furthermore, if \ € Ay and a € A, then

Gar) (Ga()) = a(t)Gr(t).

11



3. RIGID ANALYTIC TRIVIALIZATIONS FOR DRINFELD MODULES

3.1 Pellarin’s method

We begin this section by providing a definition of rigid analytic trivialization. First of all, we
set M to be an abelian t-motive. Let m € Mat, . (K[7]) comprise a basis for M as a K[t]-module,

and let © € Mat, (K[t]) represent multiplication by 7 on M/ with respect to m i.e.,

Tm = Om.

We say that M is rigid analytically trivial if there exists T € GL,(T) that satisfies

T = Y. (3.1)

Anderson [1] called such a matrix Y a rigid analytic trivialization for M.

There is also a notion of rigid analytic trivialization for a dual ¢-motive, which is defined using
the similar concept (see [2, §4.4]). Suppose that H is an A-finite dual ¢-motive and the o-action
on H is represented by the matrix & € Maty(K[t]). We say that H is rigid analytically trivial if

there exists ¥ € GL,4(T) that satisfies

¢l = oy, (3.2)

We call V¥ a rigid analytic trivialization for H. The reader is directed to [6, §4] for more details
about rigid analytic trivialization.

In this section, we mainly focus on a rigid analytic trivialization for a ¢-motive associated
to a Drinfeld module. In other words, a rigid analytic trivialization in this section refers to a
matrix T satisfying equation (3.1). First, we consider a Drinfeld module ¢ of rank r defined by

¢ =0+ A7+ -+ A7, A # 0, and its associated t-motive M (¢) = K][7] as in the previous

12



section. Recall thatt-1=1-¢;, =0 + A7+ -+ A, 1771+ A 7", s0

r t—0 A Ara r—1 1
T = —_ —T7T — — T
AT’ A?" A?”
By using the right division algorithm on K[7]|, we see that 1,7,...,7"~! form a K[t]-basis for
M (¢), and note that
0 1 0 0
1 T 1
0 0 1 0
T T2 T
e = T
0 0 0 1
Tr—l " Tr—l
=0 —A;  —Ay —Ar_
A A A, A,

0 1 0 0
0 0 1 0
O = : : : - : . 3.3)
0 0 0 1
t—0 —Aq —_AQ —Ar_1
A, A, Ar Ar

The method to construct a rigid analytic trivialization for a Drinfeld module was given by Pel-
larin [26, §4.2] using Anderson generating functions as follows (see also [14, §2]). Let 7y, ..., 7,
be an A-basis of the period lattice A := Ay and fori = 1,....r let f;(t) = fs(m;t). He defined

the matrix

S oo S
O

T

r—1 r—1 r—1
. S

13



and then he proved that det(Y) € T* and T = OT, i.e., Y is a rigid analytic trivialization
for M(¢). However, in order to construct T this way, we need to know an A-basis of the period
lattice, which inherently are transcendental quantities. Therefore, our motivation is to introduce a
new method to find a rigid analytic trivialization that does not require the periods. In our research,
we provide a procedure to construct a rigid analytic trivialization T by simply finding roots of

finitely many polynomials.
3.2 Our method

In this section, we will state our results which are from our first paper [20]. However, only some
of the proofs will be included in this dissertation. Throughout this section, we consider a Drinfeld
module ¢ of rank r defined by ¢, = 6+ A7+ - -+ A, 7" and its associated t-motive M (¢) = K[7].
By using the right division algorithm on K|[7], one can see that 1, 7, ..., 7! form a K[t]-basis for
M (¢), and the matrix representing multiplication by 7 on M (¢) with respect to this basis is the
matrix © given in (3.3), and so we want to find a matrix Y such that Y(!) = ©Y. Furthermore, our
main goal is to construct T directly from ¢ in an effective manner, i.e., by requiring only a finite
amount of initial computation. Recall from §2.2 about the Gauss norm || - || on T. Our idea is to

build a matrix M € Mat, (T) satisfying

IMteo MW — 1| <1, (3.4)

where I is the r x r identity matrix. Then by letting ' = M 'O~ M1 we obtain that £ — |
as n — oo, with respect to the Gauss norm. Thus the infinite product [[ 2, F (") converges with

respect to the Gauss norm. Then by defining ¥ = M FFMF®) ... we will observe that

TO = py OO p@ . oM FFOFR ... =0T

Y

which means T is the rigid analytic trivialization for M (¢). Our construction of a rigid analytic

trivialization consists of 3 major steps as follows.

14



Step 1: Starting with a finite amount of data, we give a procedure to find a convergent ¢-
division sequence ¥, ¥2, ¥s3, - - ., and by using this procedure, we obtain a positive integer N and
torsion elements &, .. ., &, € @[tV]. In this step, one important tool is the Newton polygon of the
polynomial ¢;(z) = 0x + Ayz? + - + Ax7 .

Step 2: We use N and &, . .., &, from step 1 to construct polynomials h(t), ..., h.(t) € K[t]
and then we use them to create a matrix M € Mat, (K[t]) which satisfies |[M 1O 'M® —J|| < 1.

Step 3: We use the matrix M from step 2 to define the sequence of matrices (Y,,),>1. Then
we let

T = lim T,.

n—oo

Our main result is Theorem 3.15, in which we show that T is a rigid analytic trivialization and we

also give an explicit formula for Y.
3.2.1 Step1

First of all, we recall the theory of the Newton polygon (see [15, §2] ). The Newton polygon
of a polynomial f(x) = ag + a1z + - - - + a,x" is defined to be the lower convex hull in R? of the
set of points

(1, V00(a;)), 1 =0,1,...,n.

Let Ay, ..., s be the slopes of the lower edges of the Newton polygon of f(z) arranged in in-
creasing order, and let /1, ..., ¢, be the corresponding horizontal lengths of these line segments
projected onto the z-axis. Then for each integer 1 < n < s, f(x) has exactly ¢, roots with
valuation —\,,.

Now consider the Newton polygon of the polynomial

r—1

o) = 0 + Ar? 4+ -+ A_127 + Aa?

Denote the vertices of the lower convex hull by (g%, — deg(Aqg,)),j = 1,2,...,s for some s € N.

Note that 0 = dy < dy < --- < dy = r. Forn,m € {0,1,...,r} with n < m, define L, ,,, to

15



be the line segments connecting points (¢", — deg(A,,)) and (¢™, — deg(A,,)) and let w, ,, be its

slope. For j = 1,2,...,s, we set \j = wgy,_, ;. It is not hard to see that \; < Ay < --- < A, and
the line segments Ly, , 4;,j = 1,2,...,s form the Newton polygon of ¢;(x) as shown in Figure
3.1.

Yy

Figure 3.1: Newton polygon of ¢;(x)

Suppose the Newton polygon consists of s edges. Let Ay, ..., As be the slopes of the edges of
the Newton polygon of ¢;(x). Let (¢%, %),. .., (¢%, *) be the vertices of the Newton polygon of
Pi().

Let N(¢) :={1 <i<r:A; #0}. Foreachn € N(¢), we set

deg(A,) — q"
L dea(An) =g 3.5)
" —1
According to the result by El-Guindy and Papanikolas [11, Prop. 6.10], we know that
Ry =10]7"m, (3.6)

where Ry is the radius of convergence of logarithm log,, and m is the smallest index in N (¢) such

that j1,,, > p; for every i € N(¢). In the following lemma, we investigate useful properties on the
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Newton polygon of ¢,(z), which contains information about the radius of convergence R,.

Lemma 3.1 (Khaochim and Papanikolas [20]). For j = 1,2,...,s, let a; be the y-intercept of the

line containing Lg;_, 4,. The following hold.
1. a1 = [y, where L1, is from equation (3.6).

2. a1 > a9 > > Q.

deg(Aq.
3. —a; > — qii_df)foreveryj:1,2,...,3.

Given a nonzero element in ¢[t], by using properties of the Newton polygon, we provide a

recursive procedure to find a convergent ¢-division sequence in the following proposition.

Proposition 3.2 (Khaochim and Papanikolas [20]). Let y; € ¢[t] be nonzero. Then there exist a

sequence i, Yo, . .. and a positive integer N such that
1. ¢i(y) = yp_1 forallk =23, ...
2. deg(y1) > deg(y2) > deg(ys) > -
3. lyn] < Ry
4. limy_,o deg(yg) = —oc.

Proof. First, for k € N(¢), we define a function

z — deg(Ay)

ug(z) = 7

Since y; is aroot of ¢, (), we see that deg(y;) < As. For k > 1, we perform the following recursive
process. Suppose deg(yx) < A, and set y = y;. Consider the Newton polygon of ¢,(x) — y which
is obtained from the Newton polygon of ¢;(x) by adding one more point (0, — deg(y)). We observe

that — deg(y) must belong to one of the following intervals:

Il = (a1,00)7]2 = (&2,@1], s 718 = (aS?as_l]’
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where a1, as . .., as is defined in Lemma 3.1. To see why — deg(y) > as, one can use the technique

in the proof of Lemma 3.1 and see that a; < —\;. So —deg(y) > — s > as,.

o If —deg(y) € (a1, o0), then the Newton polygon of ¢,(z) — y is obtained from the Newton
polygon of ¢;(z) by adding the line segment from (0, — deg(y)) to (1, —1). This new line

has slope deg(y) — 1 = ug(deg(y)), so there is one root of ¢;(z) — y with degree equal to

uo(deg(y)).

o If —deg(y) € (aj41,a;] forsome 1 < j < s—1, then the Newton polygon of ¢,(z)—y is ob-
tained from the Newton polygon of ¢;(z) by replacing line segments Lq, 4, , La, dy» - - - La;_, 4
by line segment from (0, — deg(y)) to (¢%, — deg(Ay;,)). This new line has slope w =

q“I

ug, (deg(y)), so there are ¢ roots of ¢, () — y with degree equal to ug, (deg(y)).

Choose 1 to be a root of ¢;(x) — y with

up(deg(y))  if — deg(y) € (a1, 00)
deg(yrr1) =

ug;(deg(y)) if —deg(y) € (a;41, ay]

We claim that deg(yx.1) < deg(y). To prove this, we observe by the definition above that
deg(yr+1) is either ug(deg(y)) or ug, (deg(y)) for some j. It is clear that ug(deg(y)) = deg(y) —
1 < deg(y). Note that deg(yx4+1) = uqg,(deg(y)) only if —deg(y) € (a;41,a;]. In this case, we

compute using Lemma 3.1 that
deg(y) > —a; > ———-.

This implies that

deg(y) — deg(Aq;)

q%

< deg(y).

That s, deg(yx+1) = ua,(deg(y)) < deg(y). In conclusion, we obtain y;, to be aroot of ¢ (x)—y,

which satisfies deg(yx+1) < deg(y) < As.
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This recursion provides us the sequence vy, ys, ... satisfying (1) and (2). Our next step is to
prove (3). We claim that there exist a positive integer N such that deg(yy) < —ay. To prove
this, first we compute a limit of u{"(z) when n — oo, where we use the notation uy" for the n
composition of the function u;. We observe that

wn(z) = = <an - 1) deg(Ar)

for any z € R and k € N(¢), which means we have the pointwise limit

- on oy deg(Ay)
Mm i (z) = ==

If —deg(y1) € I = (a1,00), then we already have deg(y,) < —a; and we can choose N = 1.

Now assume that — deg(y;) € I;41 forsome 1 < j < s— 1. By Lemma 3.1,

deg(A,;
lim w3 (deg(y) = — B

< —ay
n—00 qdj —1 7

so there must be a positive integer n such that ug (deg(y1)) < —a;. We choose k; to be the smallest
such integer. Then £ is the smallest integer such that after applying ugq, to deg(y:) for k1 times, we
have uflfl(deg(yl)) < —a;. Therefore — deg(y,+1) = —qul (deg(y1)) € I; U - - - U I;. Repeating
the same argument, we can choose the smallest integer k, > 0 that makes uflffl(deg(yklﬂ)) <

—a;_1, and thus
— deg(Yrythy1+1) = _u?lfil(deg(ykﬁ-l)) cehU---Ulj,.
Continuing this, we finally get k; > 0 that makes uzlfj (deg(Yr,_4-iki+1)) < —ay, ie.,
— deg(Yn; -tk +1) = _ucolfj(deg<ykj71+---+/€1+1)> € .

Letting N = 1+ k; + - - - + k;, we obtain that — deg(yy) € I3, i.e., deg(yn) < —ay. This proves
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the claim and (3) follows from the definition of R,. Furthermore, since deg(yn) < —a;, we see

that

deg(yn+k) = ug* (deg(yn)) = deg(yn) — k
for every k > 1. It follows that limy,_, ., deg(yx) = —oc. O

Remark 3.3. The integer N in the above proposition can be expressed as follows. Let 7 be such
that — deg(y1) € I;+1. Define kg = 1 and for 1 < ¢ < j, define k; to be the smallest integer such

that quim(deg(ykiil)) < —@;_;+1. Then
N=ko+ki+--+k.
Moreover, we observe that
deg(yn) = ug,” o -0 ug?, oug (deg(yn)).

Fix an F -basis z1, . .., z, of ¢[t]. By applying the algorithm in Proposition 3.2 to each z;, we
obtain a positive integer N and torsion elements &, . .., &, € ¢[tY] with applicable properties as

follows.

Proposition 3.4 (Khaochim and Papanikolas [20]). Let x1,...,x, be a basis of ¢[t]. Then there

exist N > land &, ... & € @[tY] such that for each i,
1. &) < Ry
2 G (&) = @
3. deg(p1(&)) > ... > deg(n(&)) > deg(&).

Proof. Fix a basis xy,...,x, of ¢[t]. Using Proposition 3.2 for each z;, we obtain a sequence

Zi1,%i2,T;3, ... such that

o z;; =ux;and ¢y(x; ;) = ;1 forall k = 2,3, ...
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o 1, € ¢[t"] for every n
o deg(z;1) > deg(z;2) > deg(z;3) > ...
e there exist a positive integer N (¢) such that |z; n¢;)| < Rg.

Let N = max{N(1),N(2),...,N(r)} and let {; = z; y. Then, for every i = 1,2,...,r, we

obtain that
o & e olth]
o |G| < Ry

o deg(div-1(&)) > ... > deg(e(&i)) > deg(&).

Moreover,
Pv-1(&) = dv-1(Tin) = G2 (Pe(Tin)) = v-2(Tin-1) = ... = ¢u(Ti2) = Ti1 = T3
]
Recall that \q, ..., A, represent the slopes in the Newton polygon of ¢;(x) as we defined in the

beginning of this section. Now we define a strict basis for ¢[t] as follows. Also we prove in the

next lemma that, for any Drinfeld module, a strict basis always exists.

Definition 3.5. An F-basis 1, ..., x, of ¢[t] is strict if for 1 < n < r, we have deg(z,) = Aj,

where j is the positive integer such that d;_; +1 < n < d;.
Lemma 3.6 (Khaochim and Papanikolas [20]). There exists a strict basis 1, . . ., x, of ¢[t].

Proof. For1 < j < s, define

Q; =A{z € olt] : deg(z) < Ay}

and
R, = {z € [f] : deg(z) = A,}.
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We observe that (), is an IF-subspace of ¢[t] for 1 < j < s. Since ); = Ry U {0} and the set ()

has g% elements, there exists z1, . .., x4, € R; such that

Q1 =Fx1®--®F zq,.

We note that Q1 C @, and the set O, has ¢%2 elements, so we can pick Tdy+1, - - - , Ta, such that

Qr=Fx1® - @Fzq @Foxg,41 P - B Fyxg,.

We claim that for every d; + 1 < n < dy, deg(x,) = Ag. To prove this, fix d; +1 < n < ds
and suppose that deg(z,,) < A;. Thus z,, € @1 which implies that x,, = c;xzq + - - - + cq, 24, for
some ci, ..., cq, € IFy. This cannot happen because z1, ..., x4, are linearly independent over [F,.
Therefore deg(z,,) = A2. We note that Q; C Q3 and the set (3 has ¢% elements, so we can pick

Tdy+1, - - - Lay such that

Qs =F21 @ OF x4, ®F 2001 ® - © Fyzy,.

By the same reason as above, we obtain that for every ds + 1 < n < ds, deg(z,) = A3. We can

continue this process until we get x4, 41, ..., 24, such that

Qs=Fr1®-- - ®Fxq,_, ®F x4, 111 @ -+ B Fyzy,

and for every d,_; + 1 < n < d,, we obtain that deg(z,,) = A;. Therefore

o] =Fx1 & --- @ Fya,

and forevery 1 < j < sandd;_; + 1 < n < d;, we obtain that deg(x,,) = A,;. Thus we obtain a

strict basis of ¢[t]. O
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3.2.2 Step2

In this step, we will use the ¢-division sequence from Proposition 3.4 to create a matrix M in
Theorem 3.12. Suppose we have a strict basis 1, ..., z, of ¢[t] as in Lemma 3.6. We choose

N >1land§y, ..., & € ¢[t"] as in Proposition 3.4. For 1 < i < r, we define

hi = ¢t1\’*1(€i) + thl\’f?(gi)t + -4 fitN_l.

Observe that

[hill = _max {[gpv-1-m(&)]} = |zl

0<m<N-1

Then we let M = (hg-i_l)) € Mat,(K[t]). We dedicate the rest of this section to prove that the

matrix M defined this way satisfies (3.4). First, we need more information about det(M).

Proposition 3.7 (Khaochim and Papanikolas [20]). Suppose that for 1 <1 < r, h; = z; + y;t for
some x; € K and y; € K[t]. Let M = (hgi_l)) and let X = (m?i_l). Then

det(M) = det(X) + yt

for some y € K[t].

The above proposition allows us to express the determinant of M in terms of the determinant
of another matrix X € Mat, (K) plus the term with ¢. Thus we want to gather information about
the determinant of X. Using the following lemma and properties of Moore determinant (see [15,

§1.3]), we get the formula for the degree of det(X ') in Proposition 3.9.

Lemma 3.8 (Khaochim and Papanikolas [20]). Let x1, ..., z, be a strict basis of ¢[t]. If1 < j < s

and d;_; +1 <n <d,, then
deg(cizy + -+ co1®p1 +2) = A

foreveryci, ..., c,.1 €F,

23



Proposition 3.9 (Khaochim and Papanikolas [20]). Let z1, ..., x, be a strict basis for ¢[t] and let
X = (a:?i_l). Then
deg(det(X)) = Z q" ' deg(z,).
n=1

In the next lemma, we provide a bound for a determinant of a matrix in terms of its entries (see

also [4, §2-3] and [25, §2] for similar types of formulas). This formula will serve as a tool to prove
our main result.

Lemma 3.10 (Khaochim and Papanikolas [20]). Letn > 1. Fori = 1,2,...,n, let b; € T.

Suppose that ||by|| < ||bs|| < -+ < ||ba]| and let N = (b V). Then

n—1

[ det(N)[ < [[ba[l[o2]} - -- lonf|*

Our main goal in this section is to prove Theorem 3.12, which means we need to prove that
|M~t0~tM®M — [|| < 1. In the following proposition, we give a formula for M~ 1M1 — T
which is more practical when we compute its norm. Then we finish this section by stating and

proving Theorem 3.12.

Proposition 3.11 (Khaochim and Papanikolas [20]). Let ¢ € N and fori = 1,2,...,r, let h; =

Zf::lo Ppe—1-m (&)™ where &; € ¢[tY]. Let

hy hy ... h
Y AR S 1
r—1 r—1 r—1
pir= o pl Ry
Then
V4
Mo tMW T = t_tGle’
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where

& & o &
w=|_ = (3.7)

Theorem 3.12 (Khaochim and Papanikolas [20]). Let x1, ..., x, be a strict basis of ¢[t|. Choose

N >1land&,... & € o[tY] as in Proposition 3.4 and for 1 < i < r, define
hi = ¢un—1(&) 4+ Gv—2(&)t + - - - + &tV € K[t
Let M = (h{™") € Mat, (K[t]). Then

IM~to MW — 1| < 1.

Proof. By Proposition 3.11, we have || M '@ ' MM — [|| = || =5 M~11W||. We further observe

that ||%|| = 1/q, so proving ||[M 'O~ 'M®™ — ]|| < 1 is equivalent to showing
1MW < g, (3.8)

where TV is defined in (3.7). We denote the (4, j)-entry of M~! by m,; and observe that

m11§1 m11£2 T mnfr
MW — mo1§1 mar&e - maé,
mrlfl mr1§2 Tt mﬂfr

That is, MW = (mu§&;). It follows that ||[M'W|| = max{|[mi&;]| : 1 < i,j < r}. To show

that || M ~*W|| < g, it suffices to show that ||m;&;|| < ¢ forall 1 < 4,5 < r. Now fix i and j.
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Using a formula for the inverse of a matrix,

1
-1 .
= M
we see that
(_1)i+1
i = det(M™),
1= Gean )
where
hiY DS A by by by,
O e I I LA L)
hgr—l) . hz(i_ll) hgjr—ll) . hs:r—l) bg'r—Q) bg—?) . by__f)

and b; = hgl), b = h§1_)1 and b; = hﬁ)l, o b_ = hf}). By the definition of a strict basis,

we know that |z1| < |z2| < --- < |z,|. Moreover, by Proposition 3.4, we know that

&l < [@e(&i)] < -+ < |Pen—1(&)| = |4l

which implies that ||h;|| = |z;| for all 1 < ¢ < r. Thus, we have ||h|| < [|haf] < -+ < ||h]-

Using Lemma 3.10, we obtain that

r—2

[ det (M) || < [[ba[[la]|* - - |- ]|

r—1

= | et |7 g |7 (]|

r—1

< Bl Iall ™ W - 1|

T
k—1
o N
k=2
T
_ H ‘xk‘qkA.
k=2
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It follows that

det(M™)|||&;
log, [mié;|| = log, (H (M) ’)

[ det(M)]
= log, || det(M7)]| + log, |&| — log, || det(M))]]

<Y " deg(wy) + log, €] — log, || det(M)]).
k=2

Since &1, . .., & are chosen so that |;| < Ry = ¢~ *™, we obtain that
log, [&] < —pum-
It follows from Lemma 3.1 that u,,, = a; = —1 — A1, which implies that
log, & <14 A1 =1+ deg(x).
Therefore

log, [ma&ll < ) ¢ deg(w:) + deg(a) + 1 —log, || det(M))]
k=2

=1+ ¢" " deg(i) —log, || det(M).

k=1

Combining Proposition 3.7 and Proposition 3.9, we obtain that
log, || det(M)[| > deg(det(X)) = ) ¢* " deg(xy),
k=1

where X = (x?i_l). It follows that log, [[m&;|| < 1. Therefore | M~'W|| < q. O

3.2.3 Step3

In this section, we will use the matrix M from step 2 to construct a rigid analytic trivialization

Y. First of all, we set F' = MO~ 'MW, Tt follows directly from Theorem 3.12 that F(®) — [
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as n — oo with respect to the Gauss norm. Recall that the space of matrices with the Gauss norm

| - || is a complete normed space, so [[°~, F(™) converges with respect to || - ||. We define

Y, =MFFOF®...p0

and

Y=1limY,=MFFOF® ...

n—oo

Since MY = O M F, we obtain that

TO = (OO @), — (@MF)F(I)F(Q) ... =0OT.

Our next goal is to compute T explicitly. We start by computing Y,,. In the following lemma, we

provide a formula for Y, as a summation of matrices.

Lemma 3.13 (Khaochim and Papanikolas [20]). Let W be the matrix defined in (3.7) and define

o eHm...(e 1)im1
t— 0" ’

R, =

Then forn > 1,

We recall the functions B,,(t) and £4(&;t) from §2.2. Using the formula in Lemma 3.13, we

are able to express each coordinate in the matrix T, as follows.

Proposition 3.14 (Khaochim and Papanikolas [20]). For n > 1 and for 1 < ©,5 < r, the element

in (i, j)-coordinate of Y, is

(i—1)
N

n—(i—1)

t m

hi =g D B
m=0

Finally, we use a formula for each entry of T, given in Proposition 3.14 to get the main result
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which is the following theorem.
Theorem 3.15 (Khaochim and Papanikolas [20]). Let M be the matrix defined in Theorem 3.12

andlet F = MO 'MW and ¥,, = MFFOF® ... F() et

Y=1limY,=MFFOF® ...

n—oo

Then

1. the element in (i, j)-coordinate of Y is
tN (i-1)
(hj — g Lel& t)>

2. Y is a rigid analytic trivialization for M (o).

We finish this section with the following proposition, in which we observe that the rigid analytic
trivialization from our method matches the one from Pellarin’s method for a particular choice of

basis.

Proposition 3.16 (Khaochim and Papanikolas [20]). Let x1, . . ., x, be a strict basis of [t]. Choose

N >1land&, ..., & € ¢[tN] as in Proposition 3.4 and for 1 < j <, let

m; = 6N log,(&)). (3.9)
Then 7y, ..., m, is an A-basis of Ay. Moreover,
tN
hyj — =5 L6(&5i 1) = folmsit).

3.3 Application and example

Proposition 3.16 from the previous section can be viewed as a tool to find periods. Suppose

we know a formula for &, ,...,& and N. Then we can apply equation (3.9) and get the periods
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m1,...,m € Ay. Even if we do not know the explicit formula for &, it is not difficult to compute
the degree of &;. In this section, we demonstrate how to compute the positive integer N and the
degrees of &; and & defined in Proposition 3.4 for rank 2 Drinfeld modules. Then we compute
degree of the periods directly from that information. Consider a Drinfeld module ¢ of rank 2
defined by

¢r =0+ AT+ Ao, Ay #0. (3.10)

We categorize Drinfeld modules into 2 cases depending on the Newton polygon of ¢;(x) as follows.
e Case 1 The Newton polygon of ¢;(x) has one lower edge with slope ;.
e Case 2 The Newton polygon of ¢;(x) has two lower edges with slopes A; and \s.

The reader can see the Newton polygons of Drinfeld modules of rank 2 in Figure 3.2.

Voo (A1)

Voo (A2)

Figure 3.2: Newton polygons of Drinfeld modules of rank 2

Using our observation in Remark 3.3 and some parts of the proof of Proposition 3.4, we obtain

the following theorem.

Theorem 3.17. Let ¢ be a rank 2 Drinfeld module defined as in 3.10. Consider the following

cases.
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(1) deg(A,;) < Lriestte)

(2) deg(A,;) > L)

2 €
(2.1) deg(A;) < LA

(2.2) There is a unique integer { > 2 such that % < deg(4;) < %.

Then the positive integer N and the degrees of &1, & in Proposition 3.4 are determined by

case | N deg(&1) deg(&2)
1 1 kdgg(lAz) lfdsg(lAz)
q°— -
71 1 1—deg(A1) deg(Al)Q—deg(Az)
. q—1 q°—q
1—deg(A1) (=¢°4q+1) deg(A1) —deg(Az2)
22 | ¢ | =SEAD — (¢ 1) | el el

Table 3.1: N and degrees of ¢; for rank 2 Drinfeld module

Theorem 3.17 allows us to compute degrees of the periods 71, 75 in Proposition 3.16 as follows.
For j = 1,2, we know from equation (3.9) that 7; = 6" log,(&;). We then compute that deg(m;) =
N + deg(log4(&;)). Using a result from El-Guindy and Papanikolas [10, Cor. 4.3], we know that

deg(log,(£;)) = deg(&;). As a consequence, we have
deg(m;) = N +deg(§;), Jj=1,2.

Finally, we apply Theorem 3.17 to a specific case when ¢ = 3 and ¢ is a Drinfeld module of rank
2 defined by

¢y =0 +y(0® —O)1 + 77,

where y € K satisfies y? = 0% — 0 — 1 (see [10, §7] for comparison). First, we observe that

9
deg(Al) = 57 deg(AZ) = 0.

31



Thus
q* + deg(As)
qg+1

q* + deg(Ay)
q+1

J

< deg(4;) <

i.e. ¢ belongs to case 2.2, with ¢ = 2. Using Theorem 3.17, we obtain that N = 2 and

deg(&1) = —%, deg(&2) = T

Then we apply the formula deg(m;) = N + deg(;) and compute that

deg(my) = 2+ dea(&r) = —>,  dog(rs) = 2 + deg(6s) = -
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4. TENSOR PRODUCTS OF DRINFELD MODULES

4.1 Tensor product

Throughout this section, we suppose that ¢; and ¢, are Drinfeld modules of rank r and s with
the corresponding ¢-motives M, and M,, respectively. When M, and M, are pure ¢t-motives, the

tensor product of their {-motives M; Qg M- is also a pure ¢-motive, on which 7 acts diagonally,

1.e.
T(m®m') =7(m) ® 7(m),
with weight
w( My @xpy M) = w(My) +w(Ms)
and rank

r(M; ® Ms) = r(Mp)r(M,).

For more details, the reader is directed to [1, §1] or [31, §7.3]. Recall from §2.5 that every Drinfeld

module of rank r is pure of weight 1/7. In our case, we then have

1 1
w(My @iy Ma) = w(M) + w(Mp) = ~ + -,

and

r(My ® Ms) = r(My)r(Msy) = rs.

We will begin our investigation by reviewing the definition and important properties of the
tensor powers of the Carlitz module. The theory of the tensor powers of the Carlitz module was
introduced by Anderson and Thakur, and has been well-studied (see [3], [6] and [24]). The t-
module C®" is given by

Cf" = (01 + N) + Er,

33



where I € Mat,,»,,(K) is the identity matrix,

0 1 0
0 ... 0
N = . E=
0 1
1 0
0

The ¢-motive M (C'®™) of C®™ has rank 1, dimension n, and weight n. In fact, it is given by the

n-th tensor power of the ¢-motive of the Carlitz module. Namely,

M(C®") = K[7] ®kp - - - @k K[7],

on which 7 acts diagonally. For example, we consider n = 2. In this case, the C®? is a t-module

given by

In this case, m := (1 ® 1,7 ® 1)T is a K[r]-basis for its £-motive M (C*?), and

1®1 6 1| (11 ,
t-m=t- = = CP%m.

T®1 T 0 T®1

Anderson and Thakur [3, Cor. 2.5.8] proved that a generator in the period lattice of C'®" can be

chosen so that its last coordinate is equal to the n-th power of the Carlitz period.

Theorem 4.1 (Anderson and Thakur). Let A,, be the period lattice of C®™. Then there is a vector

I1,, € Mat,«1(K) so that A,, = {(dCZ™1I, : a € A}. Moreover, 11,, can be chosen to have the
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form

IT,, = : , 4.1)

where T is the Carlitz period.

4.2 Tensor product of two Drinfeld modules

In this section, we consider two Drinfeld modules ¢, and ¢, defined by

01(t) =0+ AT+ ...+ AT, ¢o(t) =0+ BT+ ...+ ByT?, 4.2)

where r < s, and both A, and B, are not zero. To simplify the notation, we denote 7" =t — ¢ and

[m,n] = Aﬁ;"), (m,n) = Bfn_”), m,n € N.

Recall that the associated ¢-motives of ¢; and ¢, are M; = K[| with the action of K[t, 7| given by

ct'-m=c-m-¢i(t),

and M, = K[r] with the action of K[¢, 7] given by

ct' xm =c-m- go(t"),

respectively. One can see that the basis of M; as a K[t]-module is {1,7,...,7"~'} and the basis of

M, as a K[t]-module is {1, 7, ..., 75" '}. In fact, the reader may go back to section 3.1 for a review
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of this result. Also, we let

0 1 0 0 1 0
@1 = ; 62 =
0 0 1 0 0 1
T/A, —AiJA, ... —A,_1/A, T/B, —Bi/B, ... —B.s 1/B,

Then 7(1,...,7" )T = 6(1,...,7 HTand 7(1,..., 7 HT = O,(1,...,7°71)T. That is, ©,
and ©, are the matrices representing T-action of ¢; and ¢, with respect to the bases {1,..., 77!}
and {1,..., 757}, respectively. It is not hard to see that the following is a basis of M; ®xp M- as

a K[t]-module

{fer:0<i<r—1,0<j<s—1}L

It is fundamental to find a matrix representing 7-action of ¢; ® ¢, with respect to the basis of
M, ®gy M, above.
For any matrices A = (a;;) € Mat,x,(R) and B = (b;;) € Matyx(R), where R is a

commutative ring, the Kronecker product A ® B is the n{ x mk block matrix defined by

(lllB almB
A® B =

amB ... apmB
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Theorem 4.2. Let © = O ® O, be the Kronecker product of matrices and let

1®1

1®T

1@ st

11

mler

7_r—l ® Ts—l
Then © is a matrix representing the T-action with respect to m, i.e. Tm = Om.

Now, we consider the dual z-motives of ¢; and ¢5. For each ¢ = 1,2, we denote the dual
t-motive of ¢; by N;. One can see that the basis of N; as a K[¢]-module is {1,0,...,0" "'} and the
basis of N, as a K[t]-module is {1, 0,...,0°'}. As s result, the following is a basis of N7 @ No
as a K[t]-module

{0"®c?:0<i<r—10<j<s—1}.

Let
0 1 0 0 1 0
CI)l = ) q)2 =
0 0 . 1 0 0 ... 1
T [1,]] _[r=1-1] T (1D _ (s—1,5-1)
[r,r] [ryr] 7 [r,7] (s,9) (s,8) "~ (s,9)

Then ®; and P, are the matrices representing o-action of ¢; and ¢, with respect to the bases

{1,0,...,0" '} and {1,0,...,0° '}, respectively.
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Theorem 4.3. Let & = &, ® O, the a Kronecker product of matrices and let

1®1

1®o

1 ® 0.8—1

J7'—1 ® 1

O.’l"*l ® o

0.7"—1 ® O.s—l
Then ® is a matrix representing the o-action with respect to n, i.e. on = dn.

Next, we want to define the tensor product ¢; ® ¢, as a t-module in a similar way as C*" is
defined in section 4.1. Hamahata defined the tensor product ¢; ® ¢, in Definition 2.1 in [19]. We
denote p = ¢; ® ¢ as a t-module, so p : A — Mat,(K[7]), where d is a dimension. The first
main goal is to determine the value of p;. We know that w(p) = w(¢1) + w(p2) = (r + s)/rs and
that r(p) = rankgp) p = rs. This implies that dimg,(p) = d(p) = r + s. As aresult, we are able

to find a K|[7]-basis for M; ® M, as follows.

Lemmadd. For1 <i<sandl1 < j <r,let

xi:1®7'i’1, yj:Tj®1.

Then {x1, ..., %5, Y1,-..,Yr} is a basis of My @k Ms as a K[1]-module.

Proof. We observe that rankg(,)(M; @k M) = 7 + s, so it suffices to show that the set X :=

{z1,.. . 25, y1, ...,y } spans My ®kpy M, as a K[r]-module. Since {7' @77 : 0 <i <r—1,0 <
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J < s—1}is a K[t]-basis for My @k Mo, any element m € M; ®xkp) M, can be written as

—

r—1 s—1
m = a;i;(T"® 1), a;; € K[t

7

I
o

J=0

The idea of the proof is to show that, forevery £ > 0,0 <:<r —1,and 0 < j < s —1,
t"(r' @ 77) € Spang,; X. (4.3)

This can be proved by using induction on k as follows. For k = 0, we observe that 7° ® 77 is equal
to either 7°(1 ® 777*) or 77(7"~7 @ 1), and both of them belong to Spany,; X. Now suppose that

the statement is true for k. Fix 0 < ¢ <r —1,and 0 < 5 < s — 1. By the hypothesis,

s

t(r' @) =) Jame+ ) bye,  arb €K7l

(=1 (=1

We compute that, for each ¢,

try=(t- ) @7 ' =(0+...+ A7) @ 7" € Spang,y X,

tye=7'®(t 1) =7 (0 +...+ B,r*) € Spang, X.

Therefore,

S

(T @ 19) =) agtry + Y bitys € Spang,) X.
/=1 (=1

O

Now we have a K|[r]-basis for M; ®x[y Ma. We can use it to determine the value of p;. After a

calculation, one can see that the t-module p can be defined in the following way.

Definition 4.5. We define a t-module p := ¢; @ ¢o : A — Mat,, (K[r]) given by

X1 | Xo
Pt = )
X3 | Xy
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where X; € Matys(K[7]), Xo € Matsw,(K[7]), X3 € Mat,«s(K[7]), X4 € Mat,«,.(K|[7]) are

defined by
0
Ay o A A,
AlT 0
Ao ... AT
X, = Ar_lTril e AlT 0 7X2 = ‘ . )
A7t
A" . AT 0
0 0 0
ATTT Ce AlT 0
BlT ce c. BsflT BST 0
Byt? ... ... B,? BT 0
X3 = 7X4 =
B, ... B B,y ... Byt 0

Remark 4.6. We observe that p; can be expressed as a polynomial in 7 as

pr =0l s+ N+ 71+ + F71, 4.4)

where N, Fi, ..., F,. € Mat,4(K) and

0 ... 0 A A ... A A

O ...0 0o 0 ... O 0
N =

0 0 0 0 0 0

As an example, we take the tensor product of two Carlitz modules. From the definition above, we
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have

C't®2=91
T 0

which gives the same definition of C®? as the one Anderson and Thakur defined; see §4.1.
Now we consider another example. Suppose that ¢; and ¢, are Drinfeld modules both with
rank 3, and given as in (4.2). Then from Definition 4.5, the tensor product p = ¢; ® ¢9 is a

t-module given by

0 0 0 A Ay A
AlT (9 0 AQT A3T 0
AQ 7'2 AlT 0 A37'2 0 0

Pt
BlT BQT BgT 0 0 0

827'2 337'2 0 BlT 0 0

)

B37'3 0 0 BQT2 BlT

Recall from §4.1 that in the case of the t-module C'®?, we can choose a K[7]-basis m of its
t-motive so that - m = C*m. We want our definition of p to have the same property. We actually

obtain from this property that p is the tensor product.

Theorem 4.7. Let m € Mat(,45)x1 (M1 @k Ma) consist of the K[r]-basis of My Qg Mo from
Lemma 4.4 and let p be the t-module defined in Definition 4.5. Then the t-action with respect to

this basis is represented by the matrix p;, which meanst - m = p,m.
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Remark 4.8. One can see that

Oz + Ay + Agyo + ... + Ay

61’2 +A1T£C1 + AQTyl +...+ ArTyrfl

Oz, + Ayt + .. Ar T + ATy
0,41 + A1, + AT + ...+ AT
prm =
Oz, + A1Txs 1 + AgT?25 o+ ...+ AT X5,
0y, + By1x1 + BoTao + ... + Byt

ng —+ BlTyl + B272$1 + ..+ BSTSSCS,1

0y, + Bi7yp_1+ ...+ By + Bym"ry + BT e + .+ Bt o

Comparing to the result by Y. Hamahata [19], we see that our definition of ¢; ® ¢, is actually
equal to ¢» ® ¢; in his definition. However, he also proved that ¢; ® ¢, is isomorphic to ¢ ® ¢4,
as the tensor product of ¢-motives is symmetric. Also, the ¢-motive M (¢ ® ¢5) is isomorphic to

My @k Mo.
4.3 Periods for the tensor product of two Drinfeld modules

First of all, we will introduce useful notation and results on rigid analytic trivializations and
periods of a t-module. More details about these results can be found in [13], [18] and [22, §3].
Suppose ¢ : A — Mat,(K[7]) is an A-finite t-module with its dual £-motive Ny = Mat,4(K][o]).

Forn =Y a0’ € N,, we set

where d denote the projection onto the constant term. Suppose that {ny, ..., n,} is a K[t|-basis of

N, and ® € Mat,(K[t]) is the unique matrix such that on = ®n, where n := (ny,...,n,)". We
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define a map

by setting

for any v € Mat . (K[t]). We call the pair (¢, ®) a t-frame for ¢.

Lemma 4.9 (Anderson; see [13, Rem. 4.4.4] and [18, Prop. 2.5.8]). There exists a unique bounded
K-linear map

50 : (Matlxr(T9)7 || : ||9) — (Kdv | : |OO)
of normed vector spaces such that & Mat . (K[]) = €0 © L.

The map &, in Lemma 4.9 is a tool for finding periods of a t-module as one can see in the

following theorem (see [13, Thm. 4.5.14] or [22, Thm. 3.4.7]).
Theorem 4.10 (Anderson). Let ¢ : A — Maty(K[7]) be an A-finite t-module . Then
1. ¢ is uniformizable if and only if it has rigid analytic trivialization.

2. If (1, ®, V) is a rigid analytic trivialization of ¢ in the sense of (3.2), then

A¢ = 80((Mat1><7« A) . ‘Ifil).

For ¢ € N, we denote the standard basis vectors of Mat;,(K|[7]) by s1,. .., S¢, and we denote
the standard basis vectors of Maty,¢(K[t]) by ey, . .., e, In the next proposition, we state a useful
result from Namoijam and Papanikolas [22, §3.5] in which they demonstrated how to calculate &,

when the matrix d¢; is in Jordan normal form.

Proposition 4.11 (Namoijam and Papanikolas). Let ¢ : A — Maty(K|7]) be a t-module of rank r

with t-frame (v, ®). Suppose that the following conditions hold.
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(i) There exists C' € GL,(K[t]) so that

Th
D =Cdo=
Tt
is a diagonal matrix. Furthermore, for some m with 1 < m < r, we have {1, ...,{,, > 0,
bypi1 ==L, =0,and ly +--- + {,, = d.

(ii) For1 <i<mand1<j </,

de((t = 0Y 7" - €i) = St tti—jir-

Then for o = (o, ..., a,) € Matyy,.(Ty),

o)

9} (o)
a
Eo(a) = : . (4.5)

t=0
0" (0m)

8151 (am)

Om

From now on, we let p be the tensor product ¢; ® ¢, which is defined in Definition 4.5.
Our goal in this section is to find periods for p using Theorem 4.10. First, we need to find an
explicit formula for &, using Proposition 4.11. Namoijam and Papanikolas ( [22, Rem. 3.5.9]) also

explained that conditions (i) and (ii) imply that the matrix d¢; is in the following Jordan normal
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form:

dg.¢, [0]
do, = € Maty K, (4.6)
dg.¢,,[0]
where, for any £ € N, we define
6 1
do i [0] = - € Mat; K.
0 1
0

Returning to our formula for p; from equation (4.4), we recall that the matrix dp; does not have
Jordan normal form. Thus we want to pursue our investigation by finding a t-module p’ such that

p' is isomorphic to p and dpj is in Jordan normal form as in equation (4.6).

Theorem 4.12. Let p be a t-module defined as in equation 4.4 and let

1 0
1 0
V= 1 0 | € Mat,;s(K).
1 0
Ar_ Aq 1
— i —a 0 0 =

Then -y induces an isomorphism of t-modules vy : p' — p, where the t-module p' is given by

0t = v piy. Moreover,

Yi|Y;
p; = S Matr+s K[T],
Y |Y,
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where Yy € Mat,_(K][7]), Y2 € Mat(,_1)x(s41)(K[7]), Y3 € Mat (s 1)x(r—1)(K[7]), Y2 € Mat,1(K[7])

are defined by
0 Bt BQT2 el e BT,QTT_2
0 Bir ... ... Br_gTT_3
}/1 - )
0 BlT B2’7'2
0 BlT
0
B, ' .. B B._ymmt 0
}/2 - )
B,m2 L. .. ... DBsr? Byt? 0
B.r B, ... . ... Bt BiT 0
0 .. 0
A7t
Y; = ;
A% L. AsT?
AT A1 ... Asr
0 .. 0
dy dsy .. dy_1
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0 Ay Ay .. AT 0
0 Ayt AT ... A" 0
0 AlT e AT_lTT_l 0
Y, = ;
0 AlT 0
0 1
1 Co e Cy er ... Cop 0

and

L
dg = ZA(TfE)%»iBiTi; 1 < 14 S r— 1,
i=1

L
Cy = ZAiB(st)JriTia 1 S l S r,

i=1
er = Z AiB(S,T,g)HTi, 1<i<s—r.
i=1

Proof. We compute that det(+y) = 1/A,. This implies that v is an isomorphism of ¢-modules. The

second statement follows from a direct computation; we leave the details to the reader. O]

Next, we want to find a K[t|-basis for the dual ¢-motive of p’ defined in Theorem 4.12. Recall

that the dual ¢-motive is a left K[t, o]-module N, = Mat.4(K|o]) with ¢ - b = h(p})* .

Lemma 4.13. Let p’ be a t-module defined in Theorem 4.12. Then

€ Mat,,(K[7]),
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0
O'B1
Y= 02 By
O'T72BT_2
}/'2* = O.’I”leS
O.r—lBr_1
0
0 . 0
0 . 0
Yy =
0 0 o™ A,
and
0
O'Al
0
O'Al
Yi=
oA,
oA,

0
0B, 0 Mat, ; (K[r]),
O'Bl 0
o B,
UQBS O'Bsfl
0By _yya | € Mat(sayx 1)) (K[7]),
O'Bl
0
cA, 0 df
0'2147« OAT,1 0 d;
— Mat(rfl)x(erl))(K[T]))
c
C
C3
€ Mat, 1 (K[7]).
€
O'Al 0 8:_7,
1 6

Proof. This formula is computed directly from the definition of p; and the notation of * defined in
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section 2.5 . ]

Lemma 4.14. Let N, be the dual t-motive associated to p' from Theorem 4.12. For 1 < j <, let
i—1 j—1 i—1 i—1 i—1
Ny ={0? " s1,...,07 50,07 5, 0,07 Shs (1), 07 Spys )

Then N := U;_, N; is a K[t]-basis of N.

Proof. Foreach1 < j <r,weobservethat #N, =r+s—j—(j—1)=r+s+1—2j4,s0

#N:Zr:(r—l—s%—l—Qj):r(r—l-s—l—l)—2(r/2)(r+1)=7’5.

j=1

Recall that rankg) Ny = rs, so we just need to show the Spangy N = N,. Recall that N, =
Mat () Ko}, so every element o € N, is a sum of monomials in the form ao's;, where a € K
¢>0and 1 < k < r+ s. Thus it suffices to show that o’s;, € SpanK[t] N for all ¢, k. For each /,

let

Xo={c" sy k=1,...,r+s},
Pr={o" sy k=r—0+1,...,r =1},

Qi={c"tsp: k=r4+s—¢(,....,r+s5—1}.

Then X, = N, U P, U (0, and we want to show that X, C SpanK[ﬂ N for all ¢. This can be proved
using induction on / as follows. For ¢ = 1, we already have sy, ..., 5,15 2,845 € SpanK[t] N. We

also compute directly from the formula for (p})* that

1\ %
b Spys = Sr+s(pt) = Spys—1 T 08r+su

SO Sy45-1 = (t — 0)s,+s € Spangy) N. Suppose that X; U... U X, C Spangy N. Letz € Xyy1.
If x € Nyyq,thenz € SpanKM N and we are done. Now suppose that x € Py, ;. Then x = olsy

for some k € {r — ¢,...,r — 1}. Case 1: Suppose that z = o’s,_,. By the definition of (p})*, we
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observe that

3
B s,y = (t —0)s,_140 + Z Z a(z)z,

k=1 ZGD}C’[

where a(z) € K depends only on z and

Dyy={o's,;:i=1,2,...,0 —1},
Dyy={0"s, 1 i:i=1,2,....0—1},

D3y ={0"84s:1=1,2,....,7 —(}.

It is clear that Dl,ﬁ U D27g € X1 C SpanK[t] N and that Dg,g € N. So Dl,g U DQ,K U D37g €
Spangg, V. This implies that z € Spangp) N. Case 2: Suppose that x = ots; for some r — ( <
i <r—1. Then z = o'~ (0""'s;) = o*"%(o"s,_,), where u = r — 4. By the definition of

(p,)*, we observe that

3
Bg_u)ausr—u = (t - Q)ST_H‘“ + Z Z CL(Z)Z,

k=1 ZEDk,u
SO
l—u 1 -
rT=0 = (t—0)s,_14u + Z Z a(z)z
BS k=1 zEDk’u
1 3
A PSS o) SR
Bs k=1 ZEDkﬁu

We observe that, since ©v > 1, a““sr_pru € X;U...UX;and 0%z € X, U...U X, for all
z € Dy, U Dy,. Also c" "z € N for all z € Ds,. It follows that z € Spang; N. When

x € Qey1, by using the similar argument as above, we can see that + € Spangg, V. ]

Let n" € Mat,x1(/N,) be a column vector consisting of K[t]-basis for the dual ¢-motive N
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from Lemma 4.14 with the following order:

-1 T
N = (S1,.. ., 8545 2,545,081y, 089,080, ..., 084g 3,y TSpigy-r s 0 Spys) .

Let (¢/, ®’) be the ¢t-frame induced by n’ and let U’ be a rigid analytic trivialization corresponding

®’. This means on’ = ®'n’ and ¥'(~1) = &'U’. Next, we want to prove that the t-frame (., ®')

satisfies the condition (i) and (ii) in Proposition 4.11. First, we need to define a matrix B which

will serve as a matrix representing the changing of K[¢]-basis.
Definition 4.15. I. For1 <j<r—1land1 </ <rs,define b, ; as follows:

(
ﬁ ifl=js+1

bg,j - —

[le] Zf:jl bist1,4r — (k—1i),i] ifl=ks+1forsomek > j+1

0 otherwise

2. Forr <j<r+s—2and1 < ¢ <rs,define b, ; as follows:

1 e
[exE=] ifl=7—r+2

by = _@Zf;j_HQbmJ(s—zjum,m— 1) ifj—r+3<(<s
0 otherwise

3. For1 < ¢ < r?, define

1 ifée=1
bﬁ,r—i—s—l -
0 otherwise

Definition 4.16. Define a matrix B € Mat,;(K) as follows. Foreach) < ¢/ <r—1land1 <m < s,
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we define

r+m—(£+2)
rOWys+m B = Z f;f)&ksk-l-f[r—%—s—(f-i-l)]a if ( +2< m, 4.7
k=r
TOWstm B = Sm(r4s—m), ifm=~+1, 4.8)
£—(m—1)
roWeeim B =3 b Sk re(moy), ifm <L (4.9)
k=1

where b; ; is defined in definition 4.15.

In the following lemma, we show that after rearranging columns of 53, we obtain the new matrix

which is a lower triangular matrix. Furthermore, we show that B € GL,(K).

Lemma 4.17. Let B be the matrix from Definition 4.16. Then there is a matrix X € GL,.4(K) such

that B' :== BX is a lower triangular matrix with nonzero diagonal terms. Moreover det(B) # 0.

Proof. Let X € GL,4(K) be the matrix given as follows: for each 1 < j < rs, we can write j
uniquely as 7 = s+ m forsome 0 < / < r —1and 1 < m < s. We denote a column vector

Or = (0,...,1,...,0)T € Mat,,;(K), where 1 is in the k-th coordinate, and let

¢

Opm—2-4+4(r+s—0—2) ifl+2<m

col; X = Gm(rs—m) itm=~¢+1-

kd(é—m—&—l)—(m—l)(r—l—s—m—&—l) it m < 14

The matrix X is a permutation matrix defined so that when we multiply B by X, it acts like we are

rearranging columns of B. Then B’ := BX is a lower triangular matrix with the diagonal entries

dl) AR )d'r‘s, Where
.
0 2imt ifl+2<m
dfs—i—m: 1 ifm=¢+1-
(—m+1) .
\b(f—m+1)s+1,z_m+1 ifm</¢
for0 < ¢ <r—1and1 < m < s. By the definition of b; ;, we see that d,,...,d, are
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all nonzero. Thus, det(B) = det(B’) # 0. For example, in case r = s = 3, we set X =
(05, 03, 04, 01, 08, 07, 02, 06, 0g) € Matgxg(K). Then

0 0 0 0 1 0 0 00
0 0 by 0 0 0 0 00
0 0 byg by O 0 0 00
byt 0 0 0 0 0 0 00
B=10 0 0 0 0 0 0 10/,
0 0 0 0 0 0 b3 00
bii brs 0 0 0 0 0 00
0 0 0 0 00d8” 0 00
0 0 0 00 0 0 01
and
1 0 0 00 0 0 0 0
00 bygy 0 0 0 0 0 0 0
0 byg by 0 0O 0O 0O 0 0O
000 0 by O 0 0 0 0
B'=BX=]0 0 0 01 0 0 0 0
00 0 0 0b;) 0 0 0
000 0 by 0 0 b 0 0
000 0 0 0 0 0 "0
00 0 00 0 0 0 1

]

Lemma 4.18. Let ® = &, RD,. After rearranging rows of ®, we obtain the new matrix which is an
upper triangular matrix. In other words, there is a matrix Y such that Y ® is an upper triangular

matrix, and all diagonal entries of Y ® are nonzero.
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Proof. LetY € Mat,;(K) be given by

(I‘OWl Yva <o, TOWg Y) = (Srsa Srs—(s—1) -+ Srs—l)a
(rows 1Y, ..., rowas Y) = (s, S1,. -+, Ss-1);
(rOWQS—H Y) ..., TOW3g Y) = (3257 Ss+15- - 7325—1)7
(IOW(T—l)s—H Y7 oo, TOWpg Y) = (S(r—1)87 S(r—2)s+1s -+ S(r—2)s+s—1)-

The matrix Y is a permutation matrix defined so that when we multiply ® by Y/, it acts like we are
rearranging rows of ®, and it follows that Y ® is upper triangular. Moreover, we observe that the

diagonal entries of Y ® are

T2 T T T ] ]
[, r](s,8) [rr] " ] (s,s)) T
stgr,ms st;rrms
For example, when r = s = 3,
T2

ey ¢ * * % %

% S * ko ok

T
B3 * * %
T

m Xk ok
YO = 1 *

1
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Lemma 4.19. Let

T2

Irs—(r-I—s—l)

Then there exists a matrix P such that

POB =D.

Proof. Let B’ and X be the matrices from Lemma 4.17. Let D' = X "' DX. Using the definition

of the permutation matrix X, one can see that the

diag(D") = (T%,T,...,T,T,1,...,1,....,T,1,...,1)

Y )
[\

~~ ~~ ~~
S terms s terms S terms

Since B’ is lower triangular, we know that (B’) ! is lower triangular. Recall that the product of two
lower triangular matrices U = (u; ;) and V' = (v; ;) is lower triangular. Moreover, the diagonal

entry of UV is equal to u; ;v; ;. Using this property, we compute that

diag(D'(B)™") = (T%21, T2, ..., Tzes1,- . .),

for some z,...,2,41 € K. Let Y be the matrix from Lemma 4.18. Since the matrix Y ® is
invertible, there is a matrix V' € GL,4(K[t]) so that V(Y ®) = D'(B’)~'. Now, we let P = X VY.
Then

VY®B =D,
VY®BX =D/,
XVY®B=XD'X,

POB =D.

55



O]

Lemma 4.20. Let D be the matrix given in Lemma 4.19. Then there exists a matrix C' such that

Co' = D.

Proof. Recall that ® = BCYV®' B~ s0o ®B = BEYP. Let C = PBY. Then
Cd® = PBY®' = POB = D.

]

Theorem 4.21. Let p' be the t-module from Theorem 4.12 and let &, be the function from Proposi-

tion 4.11 associated to p'. Then

(€51

Eo(a) = : (4.10)

Qypys—9
t=0

1
at Qrys—1

Qpis—1

forany a = (aq, ..., qps) € Matyy,.s(Th).

Proof. In Theorem 4.12, we create the t-module p’ isomorphic our original t-module p such that

dpj is in Jordan normal form, in particular,

0 dp110]
0 1 dp10)
0 dp2[0)
Comparing this matrix to equation (4.6), we know that m = r+s—land ¢y = ... = {, 1 =

1, ¢,, = 2. By Lemma 4.20, we know that the ¢-frame (//, ') induced by the basis n’ satisfies
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condition (i) in Proposition 4.11. We observe that foreach 1 <7 < m — 1, we have /; = 1 and

d/((t = 0)°e;) = 1} = 5; = st,4..44,-

Also, we seethat ¢y + ...+ ¥, = r + s, and

dL/((t - e)oem) = nfm = Srts = Sti+.tlms

d((t—0)en) = (t—0)n, = (t — 0)Sr1s = Srrs-1 = Sty +..+4,,1-

This shows that n’ satisfies condition (ii) in Proposition 4.11. Therefore, by substituting in equation

(4.5), we obtain the formula for &. L]

Now we set & = ®; ® Py, which is the Kronecker product of matrices. Furthermore, for each
1 = 1,2, we let W; be the rigid analytic trivialization corresponding to ®; in the sense of equation
(3.2),1.e.
o =91, i=1,2.

(3

One can show that

(T @ Uy) D = (T ® U,).

Let W be the Kronecker product of matrices given by

U =0, U,. (4.11)

Therefore W is the rigid analytic trivialization corresponding to ®. Also, there is a well-known
formula for W;, which we will state soon. Thus the formula for W is easier to obtain comparing to
U’. Because of this, we will use ¥ to compute W', In the following proposition, we state a useful
result on rigid analytic trivialization. We also refer the reader to [8, §3.4] and [23, §4.2] for more

details. Recall the matrix T from §3.

Proposition 4.22. Suppose that ¢ is a Drinfeld module of rank r given in equation (2.1). Let
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T, ..., T € Ny be an A-basis of the period lattice and let fi, . .., f, be the corresponding Ander-

son generating functions for ¢. Let

fl fr

T =
fl('r—l) o fgr—l)

and
Ay ASD AT 4t
Ay ALY oAl
V=
Ar—l Av("_l)
Ay

Then U = ((YM)TV) =Y is a rigid analytic trivialization for ¢.

Remark 4.23. Fix an A-basis 7y, ..., m, of the period lattice Ay, and an A-basis (i1, . .., 115 of the
period lattice Ay,. For each 1 < ¢ < r, let f; be the Anderson generating function for ¢, with
respect to ;. Similarly, for each 1 < j < s, let g; be the Anderson generating function for ¢, with

respect to j1;. According to the result by Pellarin, which is mentioned in Proposition 2.1, we can

write
fi(t) = —tﬂ—ie + u; + higher order terms in ¢t — 0,
and
gi(t) = —t'uje + v, + higher order terms in ¢ — 6,
for some u;, v; € K. Let
S e r g1 e s
Tl = ) TQ = ’
r—1 r—1 s—1 s—1
e e goD gD
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Al Ag—l) A£_11+2) Ag—r-i-l) Bl Bé_l) Bé_i+2) B§_5+1)
A, ACD AL B, BV ... B
Vi = Vo=
Ay ATV By, B{Y
A, B,

By Proposition 4.22, we have

U= (e, i=1,2. (4.12)

)

As we previously explained, we want to compute ¥’ from W. Therefore, we want to know the
relation between them. Let n’ be a column vector consisting of the K[¢]-basis for N, from Lemma
4.14 with a t-frame (¢/, ®’) and a corresponding rigid analytic trivialization ¥’. Picking another
K[t]-basis n for N, with a ¢t-frame (¢, ®) and a corresponding rigid analytic trivialization W is
equivalent to picking a matrix B € GL,4(K) so that n = Bn’. In the next theorem, we use the

matrix B given in Definition 4.16 to pick another K[t]-basis for N,.

Theorem 4.24. Let n' be a column vector consisting of the K[t]-basis for N, from Lemma 4.14.
Let B = (bj;) € GL,s(K) be the matrix defined in Definition 4.16. Let n = Bn'. Then n is a

column vector consisting of the K|[t]-basis for N, such that on = (®; @ $;)n.

Proof. First, we denote

n=(n,...,n)", n' =, . n)".

»'rs

It is clear that every integer 1 < 7 < rs can be written uniquely as 7 = {s + m for some
0</¢<r—1land1 < m < s. Therefore, in order to prove that on = ($; ® ®5)n, we need to

show that, for such ¢ and m,

ONpsim = (TOWps1m (P ® §y)) - 1. (4.13)

59



Fix0</{<r—-—1landl <

m < s. To prove the equation (4.13), we divide it into 3 cases

depending on ¢ and m, namely / < m — 2, { = m — 1 and ¢ > m. Then we use (4.7), (4.8) and

(4.9) to compute oy, as follows. case 1 Suppose ¢ < m — 2. Using equation (4.7), we compute

that

Nps+m

So

= (rowgs m B) -1’

r+m—(¢+2)

2

k=r

—L
bt wSktirs— (1) | -1

r+m—(+2)

2

k=r
r+m—({+2)

2.

k=r

—¢
bgn—)i,kn;c—&-([r-i-s—(f-i-l)]

(=0 ¢
bm_£7k0- Sk.

r4+m—(4+2)

>

k=r

b(_e_l)aéﬂsk.

m—~,k

ONys4m =

case 2 Suppose that / = m — 1. Using equation (4.8), we compute that

Ngs4m =

/ m—1

/ _
(r0w45+mB) =N (rgs—m) = O Sr+s-

So 0ngsym = 0™ 5,4 case 3 Suppose that £ > m. Using equation (4.9), we compute that

(—m+1) !
Dlo—(m=1))ys+1,5 ket (m—1) (r-+s—(m—1))
k=1
0—(m—1)
(—=m+1) m—1
Dle—(m-1))s+147" Sk
k=1
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So

—(m-1)

OMs+m = E : b(e (m—1))s+1, kO Sk

Then we consider the Kronecker product ®; ® ®5 and compute (row s, (P1 ® P2))-n, which also
depends on ¢ and m. To compute (row s, (P ® ®2)) - n, we divide each case into 4 sub-cases,

including

@) l=r—1,m=s,
@ fl=r—1,m<s-—1,
(i) £ <r—2,m=s,
v) £ <r—2m<s—1.

Then in each case, using the definition of the basis n’ and the matrix B, we can show that (4.13)

holds. For example, in case 1(iv), we compute that

r+m—({+2)
_ § : (—=£=1) _¢+1
k=r

+m—(£+2)
_ b(—f—l) /
= Z =k Tkt (041)[r+s—(€+2)]
k=r
r+m—({+2)
—0—1
= Z bgnfé,k)Sk+(f+1)[T+87(€+2)] -’
k=r

= (rOW(t+1)s(m+1) B) - 10
= N(+1)s+(m+1)

= (roW/s 1 (P1 ® @2)) - n

O]

At this point, we have two bases for N,, namely n and n’ with the corresponding rigid

analytic trivializations (¢, ®, W) and (//, ®’,¥’), respectively. Since n = Bn’, we know that
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d = BEVY'B1and ¥ = BV (see [22, §3.5] or [23, §3.2] for more details). So the matrix
B is a key to convert from ¥ to ¥’'. Moreover, we know that ¥ = ¥; ® W,. Using this formula

together with the relation between W and V', we derive a formula for ¥’ in the following Theorem.

Theorem 4.25. Let f1,...,f, and ¢1,...,qs be the Anderson generating functions in Remark
4.23. Suppose that V' is the rigid analytic trivialization corresponding to the t-frame (V', ®"). Then

(U")~! has the following form,

fl(ril)Tgl e fl(l)Tgl Tflg?il) e Tflgil) T2f191 b S 3

fl(r_l)TgS . l(l)TgS Tflggs_l) . Tflggl) T?figs * ... *
(q;/)—l —

ffr_l)Tgl e f,(l)Tgl Tfrgis_l) e Tf,,gg) T2fg1 * ... %

g o fPTg, TSV L T Tfge o« o %

Proof. Let B be the matrix defined in Definition 4.16. From Theorem 4.24, we have two bases for
N/, namely n and n’ with the corresponding rigid analytic trivializations (¢, ®, ) and (¢/, &', ¥’),

respectively. Since n = Br', it follows that ¥ = BW’. Thus
(Ut =018,

We will derive the formula for the first row of the matrix (¥’)~!. The other rows can be derived
using the same method by changing the subscripts from f, g; to f1, g2, and then fi, g3, and so on.
We denote row (U;!) = (a1, q,...,a,) and row, (¥5') = (B, B, ..., Bs). It follows from a
straightforward computation that

r+l1—k

o =Th, o= Y li+k—Lk-1f" 2<k<r

=1
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s+1—k
51:Tgla 5]6: Z(l—l-k—l,k’—l)ggl), ZSkSS,

=1

where [m,n] := A5 ™ and (m, n) := BS ™ form,n € N. Since U= = (¥U71) ® (¥5), we have
row; (U1) = row; (U7 ) @ rowy (U5 1) = (@181, ..., 1 Bs, o s B, - oo € Bs)

Fix j € {1,...,r — 1}. It follows from Definition 4.15 (1) that

rs

(P)5 = (T )iebey

=1
r—1
- Z(\Ijil)17ms+lbms+l,j
m=j
r—1
- Z Qi1 B10mst1,j
m=j
r—=1 /r—m
- (Z[d+m7m}fl(d)) Blbms-l—l,j
m=j \d=1
r—1 r—m
= <Z bimst1,5(d +m,m] 1(d)> _
m=j d=1
Let
r—1 r—m |
bins+1,5[d +m, m]f1(d) = 01f1(1) + sz1(2) + .+ Cr—jffr_]).
m=j d=1
Using the definition of b;;, we compute that ¢; = - -- = ¢,_;_; = 0 and ¢,_; = 1. Therefore,

(\I[/)l_jl = 51f1(r_j) = fl(r_j)Tgh 1<3<r—-1L
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Next, we fix r < j < r + s — 2. It follows from Definition 4.15 (2) that

rs

()5 =D () imbmy

m=1
= Z (‘Ijil)l,mbm,j
m=j—r+2
= Z alﬁmbm,j
m=j—r+2
s s+1-m
- 5 (St
m=j—r+2 d=1

s s+1—m
= < Z Z bm7j(d+m—1,m—1)g§d)> .

m=j—r+2 d=1
Let

S s+1—m
Z Z bmj(d +m —1,m — 1)9@ = a19§1) + azg§2) 4+ ...+ ar+sflfjg§r+37lfj).
m=j—r+2 d=1

Using the definition of b;;, we compute that a; = -+ = @, 5—j_2 = 0 and @, ;5s—;—1 = 1. So
(‘1’/)1_3'1 = CVIQYJFS_I_JA) = 9§T+S_1_j)Tf1, r<jg<r+s-—2.

From Definition 4.15 (3), we compute that
(\Iﬂ)l—,i—&-s—l - Z(‘I’_l)l,mbm,ms—l = (\P_l)l,lbl,r—&-s—l = 04151 = T2f191-

m=1

O

Recall that we have the t-module p’ and the ¢-frame (¢/, ®’). In the following theorem, we
use the formula for the map & from Theorem 4.21 and the formula for ¥’ from Theorem 4.25,

associated to the t-frame (¢/, ®’) to find the periods for p'.

Theorem 4.26. Let & be the map given in Theorem 4.21 and let f,..., f. and gy,...,qgs be
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the Anderson generating functions in Remark 4.23. Let V' be the matrix in Theorem 4.25. For
1<i<randl <j<s, let

Nig = Eo(rowy(iy; (T) 7). (4.14)

Then {)\;;: 1 <i<r1<j<s}formsan A-basis for the period lattice A, and

9]('1)(9)7Ti

TU; + Uy

il

Proof. By Theorem 4.10, we know that

Ay = Eo((Matyyrs A) - (U)71).

It follows that \; ; € A, forevery 1 <¢ <, 1 < j < s. By the proof of Proposition 4.5.9 (b) in
[13], we know that row; (') !, ... row, (V") forms a basis for V := (Mat; s A)(¥’)"'. By
Theorem 4.5.14 in [13],

50‘\/ V= Ap/
is a bijection. It follows that A;,..., \,, forms a basis for A,. The formula for );; can be
derived as follows. Fix ¢ and j. We denote row(;_1)s1;(¥')"' = (a1,...,a,s). Then \;; =
Eo(row(i—1y54 (V)71 = E(au, . .., ). Using the formula for row ;_1)s+;(¥’)~! from Theorem
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4.25, we get

Qp = fi(T_E)ng, (=1,....,r—1,

14k :Tfigﬁ's_k)v k= 17"'a3_ 1a

Qris—1 = T2fi9j-

The last equation implies that

d(rys—1) = (T1:)0:(Tg;) + (Tg;)0(T ).
Evaluating at t = 6, we obtain that

Qolimg = —f Oy, =1, r—1,
Qr14k|i=0 = —Wig](»ka)(e), k=1,...,5s—1,

at(ar+sfl)|t=9 = TTU; — iUy,

Oér+sfl|t:9 = Tifbj.

Substituting in equation (4.10), we obtain the formula for A, ;.

]

Remark 4.27. We recall our observation in Remark 4.6, where we investigate C®2. Using Theorem
4.26, we acquire the period of C'®? as follows. First, we take an Anderson generating function f (¢)

associated to 7, which is equal to the Anderson-Thakur function w¢(t) from §2,

ft) =wel(t) = —ﬁ + u + higher order terms in ¢ — 6.
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Then the period we get from Theorem 4.26 is

This coincides with the result by Anderson and Thakur in Theorem 4.1. Moreover, u can be

computed as follows. Recall that —7 = Res;—p we = ((t — 0)w,)|i=g = wi li=o- So
—05(7) = 95(w V] =0)-
By applying the chain rule (see [24, Cor. 2.4.6]), we see that
04 (@M i=0) = (@) i=o + O (W )s=o-
We also observe that 9} (wh))|i—s = 0, and 9} (w5 ]i—g = OL((t — O)we)|i—s = u. Therefore
u = —0y(%).

4.4 Anderson generating functions for the tensor product of two Drinfeld modules

Recall the definition of Anderson generating functions for a ¢t-module given in §2.6. In this
section, we provide a formula for the Anderson generating functions for p’ with respect to the
periods )\; j in Theorem 4.26. For 1 </ <rand 1 < k <5, we let A(y_1)s1r := Ag, where Ay, is

defined in Theorem 4.26. For 1 < j < rs, let
Gy () = (Pigs -y hrgs )T
be the Anderson generating function for p’ associated to \;. Recall from Proposition 2.3 that
Res;—g Gy, (t) = — ;.
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We will use this property along with a formula for A; to find a formula for G, (¢).

Lemma 4.28. Let M, be a t-motive associated to o from Theorem 4.12. For 1 < j <r, let
My={r" syl <k<r+s—1,k#1,...,5—1,r,...,7+j—2}.

Then M := U_, Mj; is a K[t]-basis of M,.

Proof. Foreach1 < j <r,weobservethat #M; =r+s—1—-2(j—1) =r+s+1—2j,s0

#M:i(r—l—s—l—l—%):r(r+s+1)—2(r/2)(r+1):7"3.

j=1

Recall that rankg; M, = rs, so we just need to show the SpanK[t] M = M,. We follows the

same idea as the proof of Lemma 4.14. We leave the details to the reader. [

Fix a K[t]-basis vector m of M, as in Lemma 4.28 with

(ma,...,mg) = (Sprs—1y---,Sr),
(merla s 7m25> = (Srfla TSprgs—1y--- 77—3r+1>7
(m2s+17 s 7m3s> = (Sr727 TSr—1, T2S7‘+8717 oo 77—25r+2)7 (415)
(m(r,1)5+1, ce ,mrs) = (Sl, TS9, 7'283, c. ,TT_183+T,1>.
Then we compute that
Tm = Om,

where © = ©, ® ©,. Forany 8 = 31 _, X4 € Mat,u, (K[r]) and M € Mat,,(T), we define

J4
(B M) =" XxM® € Maty,s(T).
k=0
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Let R € Mat,s(T) be the matrix given by
Rij = (tm; | Gy,). (4.16)

From the result by Namoijam and Papanikolas [22, §4.3], we know that R = ORY, Let T’ =
RV, Then T™M = OT'. Also, recall that T := T; ® Y, satisfies the same equation as I', so
I' = TX for some X € GL,s(F,[t]). Thus

TX =T =RY. (4.17)
First, we consider \; and we denote the Anderson generating function for ¢; ® ¢, associated to Ay
Gn(t) = (ha, ..o heys) T

Lemma 4.29. Let hy, ..., h.s € T be such that Gy, (t) = (h1,...,hys)". Let X = (z;;) €

GL,s(F,[t]) be the matrix satisfying equation (4.17). Then

he = Z Zx(i*1)8+j,1fi(r_£)gj> 1<i<r—1,

i=1 j=1

hr+€ = Z Zx(i—l)s-l-j,lfig](?ilie)? 0< 14 <s-— 17

i=1 j=1

hr+s = Thr+s—1-
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Proof. We observe that T'; ; = RE;U = (m; | Gy, (t)). Using definition of m in (4.15), we have

<F1,17 v 7Fs,1) = (hr—i—s—h R h?“)7
(Fs+1,17 cee aFQS,l) = (hr 15 hr+s 1o hﬁgl)a

(Pasiits - Tas1) = (heg, BV A2 R2,), (4.18)

(F(T—l)s—i-l,ly v 7Prs,1) = (hh hgl)) hgf)? RS hgi_rl,)l)

For 0 < ¢ < s — 1, we then have

(s 1-0)
RS Fe+11—§ TZ—f—lkxkl—g E T(i-1)s+4,1Ji9; -

i=1 j=1

Similarly, for 1 < /¢ <r —1,

he =T _pysy110 = Z T(rfé)erl,kl'k,l = Z Z $(171)s+j,1fi(rie)9g

k=1 i=1 j=1

It follows from Proposition 2.3 that p}(G»,) = tG,,. Comparing the (r + s — 1)-th coordinate of

both sides, we see that 6h, 1 + h,+s = th,+s_1. This proves the last equality. O

Lemma 4.30. Let hy, ..., h,s € T be such that Gy, (t) = (hy,...,hyys)". Let X = (x;;) €
GL,(F,[t]) be the matrix satisfying equation (4.17). Then

Resi—p hy = Z Z$(i—1)s+j,1(9)f¢(T_e)(Q)Mj7 1<i<r-1,

i=1 j=1
Restz@ hr—f—f - Z Zm(ifl)s+]’,l( Wzgj(s . 5)(9)’ 0 S l S S — 27
i=1 j—l
Resi—g Npys—1 = Z Z (i—1)s+4,1 )(Wivj + ,Ujui) + x,(i_1)5+j71(9)7ri,uj)
=1 j=1

Resi—g hrvs = ) Y a1yt (0)mipsy.

i=1 j=1
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Proof. This follows from Lemma 4.29. The first two equations is obtained by a direct computation.

To compute the residue of h,.,s_; and A, s, we recall that

Uy . j .
fi = —= + u; + higher order terms, ¢, = K + v; + higher order terms,

T T
which makes
fig; = W}’LQL L ;MJ * + higher order terms.
We write
Ti-1)s4ja(t) = ag +aiT + -+ a, T,  ao,...,an €Ty
Then

ao(mit;) N ay (mipy) — ao(mivy + pju;)
T? T

T(i-1)s4j1(t) fig; = -+ higher order terms.

Recall that ap = 2(;_1)s+;,1(0) and a; = x’(i_l) 6). So

s+j,1<

Resi—o (T (i-1)s1.1(8) fi95) = T 1y515.1(0)(Tittg) — 2151 (0) (miv; + pjus),

Resi—o (T (i—1)s14,1 (1) fi95) = Ti—1)s44,1(0) (mips),

and the results follow. [
Lemma 4.31. Let X = (x;;) € GL,s(F,[t]) be the matrix satisfying (4.17). The following hold.

1. Forl1 <k <rs,
D mikA =D do oh =~k
j=1 j=1

2. For1 < j,k<rs xj,=—1ifj =k; and x;;, = 0 otherwise.

3. X=-I

Proof. (2) follows from (1) and the fact that A, ..., A, are linearly independent over F,[t]. More-

over, (3) follows directly from (2). We just need to prove (1). We fix £ = 1. For k > 2, the proof
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is the same. First, we observe that

0 0 0
z(0) 0 0
€ Mat,, (K).
0 z(0) 2'(0)
0o ... 0 =z

Forl <i:<rand1 < j < s, it follows from the formula in Theorem 4.26 that

/ JR—
dpx(ifl)erj,l(t))\(i_l)s+j -

T(i—1)s4j,1 (H)fi(r_l) (Q)Mj
T(i—1)s+j4,1 (e)fi(l) (0) 1

s—1
(i-1)511(0)g5 " (0)m;

1
Ti-1)5+5,1(0)g5" (0)m;
T(i—1)s+5,1 (0) (T30 + pju) — @)y 51 (0)mips;

_x(i—l)s—i-j,l(e)ﬂ-i,uj
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It follows from Lemma 4.30 that

> waN =Y _do, A
j=1 j=1

- Z Z dp;(z‘—1)s+j,1(t)A(i*1)3+j

i=1 j=1

Resi—g(h1)

Rest:@ (hrJrs )

= Resi=o G, (1)

- —>\1.

]

By the above lemma, we obtain that — Y = R1Y =T, Recall that T = T; ® Y5, which means

(T1,17 R TS,I) = (flgl; flg§1)7 o flggs—l))7

1 1 1 1 -1
(Ts+1,17 .. ‘7T25,1) = ( 1( )gl7f1( )g§ )7 e 7f1( )gf ))

r—1 r—1 1 r—1) (s—1
(T(r—l)s—l-l,la"'aTrs,l) = ( 1( )glafl( )95 )7"‘7 1( )g§ ))
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Using (4.18) to compare each coordinate of —I" and T, we derive

r—1
f1( )91

f1(1)91
(s—1)
. Ji91
g)\l (t) = . = - .
figt)
fin

ST

We compute G,,, ..., G,,, using the same technique and then we obtain the following result.

Theorem 4.32. Let {\;; : 1 <i <r,1<j < s} bea basis in A, from Theorem 4.26. Then

r—1
fi( )gj

fz’(l)gj

figj(-s_l)

fig]m
figj
fig; T

Recall the rigid analytic trivialization WU’ from Theorem 4.25. The following formula shows the

relation between W’ and the Anderson generating functions Gy, ; from Theorem 4.32.

Proposition 4.33. Let R be the matrix defined in (4.16) and let B be the matrix from Definition
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4.16. Let V =V} ® Vs, where V| and V5 are the matrices from (4.12). Then

(¥)"' = —-R'VB.

Proof. Recall that YX = R(-Y, where T and X are the matrices in (4.17). It follows from Lemma
4.31 that =Y = R(-Y. Therefore U=! = (TM)TV = —RTV. Then the result follows from the
relation (U/)~! = U1 B. O

4.5 Examples

In this section, we consider a tensor product of two Drinfeld modules ¢; and ¢ defined by

(¢1)t = 9 + AlT + AQTQ, (¢2>t = 6 + BlT + BQTQ, AQ 7é 0, BQ 7& O

Recall the t-module p = ¢; ® ¢ from Definition 4.5 and the t-module p’ from Theorem 4.12. In

this case, the t-modules p and p’ are defined by

0 0 Al AQ 0 BQT BlT 0
AlT 0 AQT 0 , AQT 0 AlT 0
Pt = Py =
BlT BQT 0 0 0 0 0 1
3272 0 BlT 0 AgBlT AlBQT AlBlT + AQBQTz 0

Also, the K[t]-basis n’ in Lemma 4.14 is (s1, S, 84,054)" and the matrix B in Definition 4.16 is

given by
0 0 10
. 0 ﬁ 00
A(:_l) 0 00
0 0 01

75



Using Theorem 4.26, we acquire the periods of p’ as follows. First, we fix periods 71,2 € Ay,

and take the Anderson generating functions f;(t), f2(t) associated to 7y, mo. For each i, we expand

fi(t) = —tﬂ—ie + u; + higher order terms in ¢ — 6.
Similarly, we fix periods p1, 2 € Ay, and take the Anderson generating functions g;(t), g=(t)
associated to y1, po. For each 7, we expand
Hi

g:i(t) = —rgtut higher order terms in ¢ — 6.

Then, using our formula in Theorem 4.26, we obtain the following periods in A

~1 O ~1"O)2
A1 = —o (0 ;A= —02 O)m ;
—TV] — U1Ug —T1V — HaU1
1M1 T2
—17(0) ~ 15O
o | O | e O
—TMoU1 — U1U2 —ToUg — HaUg
T 1 T2 42

To find the Anderson generating functions associated to \; ;, we apply our formula in Theorem

4.32 and then we get
1(1)91 f1(1)92
(1) (1)
9 S 9o f1
g)\l,l(t) = - ) g)\1,2 (t) = = )
Jig f192
figp T J192T
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(1) (1)

g1 g2
(1) (1)
g1 f2 95 fo
g>\2,1(t) = ) g)\2,2 (t> - -
Jag1 f292
foi T J292T'

Moreover, we compute the inverse of the rigid analytic trivialization ¥’ using Proposition 4.33 as

follows. Let R be the matrix obtaining from the coordinates of G, ; given by

1 1 1 1
PG 0 160 gl

1 2 1 1 2 1 2
FOA fG A A0

R=—
FOG 100 1050 gl
@, (@)@ @)@ ) @
Let
AB, A4BSY AUYB, ATYBY
AB, 0  AUYB, 0
V:V1®V2:
Ay By A2B§71) 0 0
AsBy 0 0 0

Then it follows from Proposition 4.33 that

Tfl(l)gl Tflggl) T2f191 A(_I)B(_l)f(l)g(l)
TV The" T?fige ATVBSY Vgl
Tt The" T2foq A(‘”B(‘”f m
Tf(l) Tf, g(l) T2f292 I)B f2 (1)

(U)y'=-R'VB =
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5. CONCLUSION

In this dissertation, we provided a method to construct a rigid analytic trivialization for a Drin-
feld module. Moreover, we study a tensor product of two Drinfeld modules ¢; and ¢5, and then we
find the periods of ¢; ® ¢,. Furthermore, we provide a formula for the Anderson generating func-
tions associated to the tensor product ¢; ® ¢, which can be expressed via the Anderson generating

functions of ¢; and ¢-.
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