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ABSTRACT

The purpose of this research is to study Drinfeld modules, tensor product of Drinfeld modules,

their rigid analytic trivializations, and their periods. A formula for rigid analytic trivializations

for Drinfeld modules was originally given by Pellarin. In this research, we provide a new method

to construct a rigid analytic trivialization for Drinfeld modules. Unlike Pellarin’s formula, our

method does not require periods of Drinfeld modules. Given a rank r Drinfeld module, we provide

a recursive process that produce a convergent t-division sequence. Consequently we use the t-

division sequence to construct a sequence of matrices (Υn)n≥1 and by computing the limit of

(Υn)n≥1, we obtain our rigid analytic trivialization for a Drinfeld module. Using the function

Lφ(ξ; t) introduced by El-Guindy and Papanikolas, we are able to find an explicit formula for our

rigid analytic trivialization. Furthermore, in the second part of our research, we investigate tensor

products of two Drinfeld modules φ1 and φ2. Using the theory of t-motives, we define a t-action

for φ1⊗φ2. Inspired by a formula for periods of the tensor product of Carlitz module by Anderson

and Thakur, we discover a formula for periods of the tensor product φ1⊗φ2. Moreover, we provide

a formula for Anderson generating functions for the tensor product φ1 ⊗ φ2.
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NOMENCLATURE

Fq finite field with q = pn elements.

A Fq[θ], the polynomial ring in θ over Fq.

k Fq(θ), the fraction field of A.

k∞ Fq((1/θ)), the completion of k with respect to | · |.

K the completion of an algebraic closure of k∞.

k the algebraic closure of k inside K.

A Fq[t], the polynomial ring in t over Fq, t independent from θ.

Matm×n(R) for a ring R, the left R-module of m× n matrices.

Matd(R) Matd×d(R).

Rd Matd×1(R).

MT the transpose of a matrix M .
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1. INTRODUCTION

1.1 Background and motivation

The theory of Drinfeld modules was established by V. G. Drinfeld [9] in 1974. A higher

dimensional version of Drinfeld modules, called t-modules, was introduced in 1986 by Anderson

[1]. In particular, a Drinfeld module is a 1-dimensional t-module. Anderson defined a new object

called t-motives, whose category is anti-equivalent to the category of t-modules. Anderson also

gave a notion of the rigid analytic triviality of t-motives which play an important role in studying

the uniformization of t-modules. He proved that a t-module associated to an abelian t-motive M

is uniformizable if and only if M is rigid analytically trivial.

The rigid analytic trivialization is also useful for finding periods and quasi-periods of t-modules.

Periods arise as the kernel of the exponential function associated to the t-module, and its quasi-

periods arise as values of quasi-periodic functions coming from biderivations associated to the

t-motive of the t-module. The exponential function was developed by Anderson [1] (see also [15],

[31]). The theory of the de Rham module and quasi-periodic functions for Drinfeld modules was

developed by Anderson, Deligne, Gekeler, and Yu [12], [14], [32], and this was extended by Brow-

nawell and Papanikolas to higher dimensional t-modules [5] (see also [18, §2.5]). Anderson first

observed that quasi-periods of Drinfeld modules could be obtained by specializations and residues

of what are now called Anderson generating functions (see [14]), and it was observed by Pel-

larin that Anderson generating functions were crucial ingredients to constructing the rigid analytic

trivialization of a Drinfeld module [26] (see also [7], [8]). Anderson generating functions have

subsequently arisen in many other contexts for Drinfeld modules and general t-modules (e.g., see

[11], [16], [17], [21], [22], [27], [28], [29], [30]). In the present dissertation we explore these con-

nections in depth for the tensor product of two Drinfeld modules (see Theorem 4.26 and Theorem

4.32).

The method to construct a rigid analytic trivialization for a Drinfeld module was originally
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given by Pellarin [26]. In his method, he fixed a basis π1, . . . , πr of the period lattice and used

the Anderson generating function associated to each πi to define a rigid analytic trivialization for

a Drinfeld module. See also [7], [8] for further developments in these directions.

In this dissertation, we provide a new method to construct a rigid analytic trivialization for a

Drinfeld module (see Theorem 3.15). Given a rank r Drinfeld module, we provide a recursive

process that produces a convergent t-division sequence. Then we use the t-division sequence to

construct a sequence of matrices (Υn)n≥1 and by computing the limit of (Υn)n≥1, we obtain our

rigid analytic trivialization for a Drinfeld module. Adopting the function Lφ(ξ; t) introduced by

El-Guindy and Papanikolas [11], we are able to find an explicit formula for our rigid analytic

trivialization. Furthermore we show that the rigid analytic trivialization derived from our approach

coincides with the one obtained by using Pellarin’s method. The benefit of our construction is that

it is effective in the sense that our construction requires only a finite amount of initial computation.

Moreover, we investigate the tensor products of two Drinfeld modules. The tensor powers

of Carlitz modules, which are Drinfeld modules of rank 1, are well studied by Anderson and

Thakur [3]. They showed that a generator of the period lattice of the tensor power C⊗n has a final

coordinate equal to the n-th power of the Carlitz period. For more details about tensor power C⊗n,

the reader is directed to Goss [15, §5] and Thakur [31, §7]. In the second part of our research,

our goal is to expand the results by Anderson and Thakur by studying the tensor product of two

Drinfeld modules with arbitrary rank. Using the theory of t-motives, we express the t-action of the

tensor products of two Drinfeld modules. As a consequence, we provide a formula for periods of

the tensor product of two Drinfeld modules with arbitrary rank. Moreover, using our formula for

the periods, we obtain a formula for Anderson generating functions for the tensor product of two

Drinfeld modules.

1.2 An outline of this dissertation

In §2, we will give preliminary definitions and results on Drinfeld modules, t-modules and

t-motives, which will be used to state and prove our results in §3 and §4.

We then give some details about rigid analytic trivializations for Drinfeld modules in §3. First,

2



we recall Pellarin’s method to construct a rigid analytic trivialization in §3.1. Then we provide our

method to construct a rigid analytic trivialization in §3.2. We finish the section by providing an

application of our method and an example on a specific rank 2 Drinfeld module in §3.3.

In §4, we investigate the tensor product of two Drinfeld modules of arbitrary rank. In §4.1, we

state some results from Anderson and Thakur. Then we give a definition of a tensor product of

two Drinfeld modules φ1 ⊗ φ2 in §4.2. In §4.3, we state the main result in Theorem 4.26, which

provide a formula for the periods of φ1 ⊗ φ2. Moreover, we provide a formula for the Anderson

generating functions for the tensor product in §4.4. Finally, we give an example in §4.5, where we

consider a tensor product of Drinfeld modules of rank 2.
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2. PRELIMINARIES

2.1 Drinfeld modules

Let Fq denote the field with q elements and let k = Fq(θ) be the rational function field in the

variable θ over Fq. Let k∞ = Fq((1/θ)) be the completion of k at ∞, with absolute value | · |

chosen so that |θ| = q. Let v∞ be the valuation at∞ with v∞(θ) = −1, and let deg := −v∞. Let

K denote the completion of an algebraic closure of k∞.

Consider the q-th power Frobenuis map τ : K→ K defined by z 7→ zq. Let K[τ ] be the ring of

twisted polynomials in τ subject to the relation

τa = aqτ, a ∈ K.

Let A = Fq[t] be the polynomial ring in a variable t independent from θ. A Drinfeld module

of rank r over K is an Fq-algebra homomorphism

φ : A→ K[τ ]

such that

φt = θ + A1τ + · · ·+ Arτ
r, Ar 6= 0. (2.1)

We obtain an A-module structure on K induced by φ by the action

a · x = φa(x), a ∈ A, x ∈ K.

For any a ∈ A, the a-torsion of φ is the A-submodule φ[a] = {x ∈ K : φa(x) = 0}. The

exponential of φ is the Fq-linear power series in z,

expφ(z) =
∞∑
n=0

αnz
qn , α0 = 1, αn ∈ K,
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satisfying expφ(a(θ)z) = φa(expφ(z)) for any a ∈ A. This power series defines an entire function

expφ : K→ K. The logarithm of φ is the formal inverse of expφ(z), which can be written as

logφ(z) =
∞∑
n=0

βnz
qn , β0 = 1, βn ∈ K,

and has a finite radius of convergence, denoted by Rφ, see [15, Prop. 4.14.2].

Let Λφ be the kernel of expφ(z). We call Λφ the period lattice of φ and call any element of Λφ

a period of φ. Then Λφ ⊂ K is a free A-module of rank r.

2.2 Anderson generating functions

Define the Tate algebra

T =

{
∞∑
i=0

cit
i ∈ K[[t]] : |ci| → 0

}
.

We use the Gauss norm ‖ · ‖ on T defined by ‖
∑
cit

i‖ = supi |ci| = maxi |ci|. For any f =∑∞
i=0 cit

i ∈ T and any n ∈ Z, let

f (n) =
∞∑
i=0

cq
n

i t
i ∈ T.

For any matrix M = (fij) ∈ Matr×s(T) and any n ∈ Z, we define the matrix M (n) = (f
(n)
ij ) ∈

Matr×s(T) and we set ‖M‖ = maxi,j ‖fij‖. Assume that we have a Drinfeld module φ of rank r

given as in equation (2.1). For u ∈ K, the Anderson generating function associated to u is defined

by

fφ(u; t) =
∞∑
m=0

expφ

( u

θm+1

)
tm.

Pellarin [26, §4.2] gave a formula for Anderson generating functions in the following proposition.

Proposition 2.1 (Pellarin). For u ∈ K,

fφ(u; t) =
∞∑
n=0

αnu
qn

θqn − t
∈ T,
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where αn are the coefficients of expφ. Furthermore, fφ(u; t) extends to a meromorphic function on

K with simple poles at t = θq
n
, n = 0, 1, . . . , and with residues

Rest=θqn fφ(u; t) = −αnuq
n

.

As an example, we consider the Carlitz module C. We know that ΛC is an A-module of rank

1. Fix a nonzero element π̃ ∈ ΛC . The Anderson generating function associated to π̃ is

fC(π̃; t) =
∞∑
m=0

expC(
π̃

θm+1
)tm.

Using Proposition 2.1 of Pellarin, we know that Rest=θ fC(π̃; t) = −π̃. Let

ωC(t) = (−θ)1/(q−1)
∞∏
i=0

(
1− t

θqi

)−1
,

which is defined by Anderson and Thakur [3, §2] and is nowadays called the Anderson-Thakur

function. It is known from [3] that fC(π̃; t) = ωC(t). In other words, ωC(t) is a formula for the

Anderson generating function that does not require π̃ to define it. This gives us the benefit of

finding a formula for π̃ by comparing the residues of both functions, which gives

π̃ = θ(−θ)1/(q−1)
∞∏
i=1

(
1− θ1−qi

)−1
.

We call π̃ the Carlitz period.

Anderson generating functions are useful tools for finding periods of a Drinfeld module. In the

recent work of El-Guindy and Papanikolas [11], they expressed Anderson generating functions in

terms of the defining polynomial of the Drinfeld module. They defined a series Lφ(ξ; t) by using

shadowed partitions as follows. For n, r ∈ N, Pr(n) is the set of r-tuples (S1, S2, . . . , Sr) such that

for each i, Si ⊆ {0, 1, . . . , n− 1} and the set {Si + j : 1 ≤ i ≤ r, 0 ≤ j ≤ i− 1} forms a partition

6



of {0, 1, . . . , n− 1}. They defined the series

Lφ(ξ; t) =
∞∑
n=0

Bn(t)ξq
n ∈ T, |ξ| < Rφ,

where Rφ is the radius of convergence of logφ(z) and

Bn(t) =
∑

S∈Pr(n)

r∏
i=1

∏
j∈Si

Aq
j

i

t− θqi+j

The series Lφ(ξ; t) is related to the Anderson generating function as one can see in the following

theorem proved by El-Guindy and Papanikolas [11, Thm. 6.13]. Moreover, it also appears in our

formula for rigid analytic trivialization in section 3.2.

Theorem 2.2 (El-Guindy and Papanikolas). Let u ∈ K with |u| < Rφ and ξ = expφ(u). Suppose

that |ξ| < Rφ. Then Lφ(ξ; θ) = logφ(ξ) = u and Lφ(ξ; t) = −(t− θ)fφ(u; t).

2.3 t-motives for Drinfeld modules

The ring K[t, τ ] is the polynomial ring in t and τ with coefficients in K subject to the following

relations,

tc = ct, tτ = τt, τc = cqτ, c ∈ K.

A t-motive M is a left K[t, τ ]-module that is free and finitely generated over K[τ ] and for which

there is ` ∈ N with

(t− θ)`(M/τM) = {0}.

Suppose we have a Drinfeld module φ : Fq[t] → K[τ ], given as in equation (2.1). The t-motive

associated to φ, denoted M(φ), is defined as follows: let M(φ) = K[τ ] and make M(φ) into a left

K[t, τ ]-module by setting

cti ·m := cmφti , m ∈M(φ), c ∈ K[τ ].

7



2.4 t-modules

Developing on the theory of Drinfeld modules, Anderson introduced t-modules which are a

higher dimensional version of Drinfeld modules. Most concepts in the theory of Drinfeld modules

still appear in the theory of t-modules. A t-module over K is an Fq-algebra homomorphism

φ : A→ Matd(K[τ ])

such that φt is given by

φt = B0 +B1τ + · · ·+B`τ
`, (2.2)

where B0, . . . , B` ∈ Matd(K) and B0 = θId + N for some nilpotent matrix N . We denote

dφt = B0 and we say that φ has dimension d. Every t-module φ induces an A-module structure

on Kd by setting

a · x = φa(x), a ∈ A, x ∈ Kd.

Given two t-modules φ and ψ with dimensions d and e, respectively, a morphism γ : φ → ψ is a

matrix γ ∈ Mate×d(K[τ ]) such that

γφa = ψaγ,

for any a ∈ A. If d = e and γ ∈ GLd(K[τ ]), then we call γ an isomorphism of t-modules. An

exponential function Expφ : Kd → Kd is defined via a power series

Expφ(z) = z +
∑
i≥1

Ciz
(i), z =


z1
...

zd

 , Ci ∈ Matd(K),

such that, for all a ∈ A,

Expφ(dφaz) = φa(Expφ(z)).

8



This functional equation uniquely determines the coefficients Ci. The exponential function is an

entire function. We say that φ is uniformizable if Expφ is surjective. The kernel of the exponential

function is denoted by Λφ = ker(Expφ) ⊂ Kd, and we call it a period lattice of φ. It is well-known

that Λφ is a free, finitely generated discrete A-submodule.

2.5 t-motives and dual t-motives for t-modules

Recall the definition of t-motives given in §2.3. For a t-motive M , we call rankK[τ ]M the

dimension of M , which will be denoted by d(M). If M is free and finitely generated as a K[t]-

module, we say that M is abelian and we call rankK[t]M the rank of M , which will be denoted by

r(M). Setting

M((1/t)) := M ⊗K[t] K((1/t)),

we say that an abelian t-motive M is pure if there is a finitely generated K[[1/t]]-submodule H in

M((1/t)) such that tuH = τ vH for some positive integers u, v. In this case, we define the weight

of M to be

w(M) := u/v.

It is evident that w(M) = d(M)/r(M). Moreover, for every Drinfeld module φ of rank r, its

t-motive is pure of dimension 1, rank r, weight 1/r (see [31, §7] or [6, §4] for more details).

For any t-module φ : A→ Matd(K[τ ]), the t-motive associated to φ, denotedM(φ), is defined

as follows: let M(φ) = Mat1×d(K[τ ]) and make M(φ) into a left K[t, τ ]-module by setting

cti ·m := cmφti , m ∈M(φ), c ∈ K[τ ].

The ring K[t, σ] is the polynomial ring in t and σ with coefficients in K subject to the following

relations,

tc = ct, tσ = σt, σc = c1/qσ, c ∈ K.

In this way for any f ∈ K[t],

σf = f (−1)σ.
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A dual t-motive N is a left K[t, σ]-module that is free and finitely generated over K[σ] and for

which there is ` ∈ N with

(t− θ)`(N/σN) = {0}.

We call rankK[σ]N the dimension of N . If N is free and finitely generated as a K[t]-module, we

say that N is A-finite and we call rankK[t]N the rank of N . The map ∗ : K[τ ] → K[σ] is the

anti-isomorphism given by

(
∑

aiτ
i)∗ =

∑
a
(−i)
i σi.

This map induces a map ∗ : Mat`×k(K[τ ]) → Matk×`(K[σ]), (bij) 7→ (b∗ij)
T. For a t-module φ

as before, the dual t-motive associated to φ, denoted N(φ), is defined as follows: let N(φ) =

Mat1×d(K[σ]) and make N(φ) into a left K[t, σ]-module by setting

cti · n := cn(φti)
∗, n ∈ N(φ), c ∈ K[σ].

If a t-module φ is uniformizable, and M(φ) is abelian and N(φ) is A-finite, then

rankA Λφ = rankK[t]M(φ) = rankK[t]N(φ).

Every morphism of t-modules γ : φ→ ψ induces a morphism of t-motives

γ+ : M(ψ)→M(φ), m 7→ mγ,

and a morphism of dual t-motives

γ+ : N(φ)→ N(ψ), n 7→ nγ∗.
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2.6 Anderson generating function for a t-module

Suppose φ : A → Matd(K[τ ]) is a t-module and y is an element in Kd. Then the Anderson

generating function for φ with respect to y is the column vector of power series,

Gy(t) =
∞∑
n=0

Expφ((dφt)
−n−1 · y)tn ∈ Td.

The properties of the Anderson generating functions for a t-module are investigated by Ander-

son and Thakur [3, §2], Green [16, §6], Green and Papanikolas [17, §5], and Namoijam and

Papanikolas [22, §4]. Anderson and Thakur defined the Anderson generating function for a t-

module C⊗n and provided a residue formula in this case. For a vector of meromorphic function

h = (h1, . . . , hd)
T ∈ Td and x ∈ K, its residue is defined by

Rest=x h = (Rest=x h1, . . . ,Rest=x hd)
T.

Proposition 2.3 (Namoijam and Papanikolas; see [22, §4.2]). Let φ : A → Matd(K[τ ]) be a

t-module and let y ∈ Kd. Then

Rest=θ(Gy(t)) = −y.

Furthermore, if λ ∈ Λφ and a ∈ A, then

φa(t)(Gλ(t)) = a(t)Gλ(t).
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3. RIGID ANALYTIC TRIVIALIZATIONS FOR DRINFELD MODULES

3.1 Pellarin’s method

We begin this section by providing a definition of rigid analytic trivialization. First of all, we

set M to be an abelian t-motive. Let m ∈ Matr×1(K[τ ]) comprise a basis for M as a K[t]-module,

and let Θ ∈ Matr(K[t]) represent multiplication by τ on M with respect to m i.e.,

τm = Θm.

We say that M is rigid analytically trivial if there exists Υ ∈ GLr(T) that satisfies

Υ(1) = ΘΥ. (3.1)

Anderson [1] called such a matrix Υ a rigid analytic trivialization for M .

There is also a notion of rigid analytic trivialization for a dual t-motive, which is defined using

the similar concept (see [2, §4.4]). Suppose that H is an A-finite dual t-motive and the σ-action

on H is represented by the matrix Φ ∈ Matd(K[t]). We say that H is rigid analytically trivial if

there exists Ψ ∈ GLd(T) that satisfies

Ψ(−1) = ΦΨ. (3.2)

We call Ψ a rigid analytic trivialization for H . The reader is directed to [6, §4] for more details

about rigid analytic trivialization.

In this section, we mainly focus on a rigid analytic trivialization for a t-motive associated

to a Drinfeld module. In other words, a rigid analytic trivialization in this section refers to a

matrix Υ satisfying equation (3.1). First, we consider a Drinfeld module φ of rank r defined by

φt = θ + A1τ + · · · + Arτ
r, Ar 6= 0, and its associated t-motive M(φ) = K[τ ] as in the previous
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section. Recall that t · 1 = 1 · φt = θ + A1τ + · · ·+ Ar−1τ
r−1 + Arτ

r, so

τ r · 1 =

(
t− θ
Ar
− A1

Ar
τ − · · · − Ar−1

Ar
τ r−1

)
· 1.

By using the right division algorithm on K[τ ], we see that 1, τ, . . . , τ r−1 form a K[t]-basis for

M(φ), and note that



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

t−θ
Ar

−A1

Ar

−A2

Ar
· · · −Ar−1

Ar





1

τ

...

τ r−1


=



τ

τ 2

...

τ r


= τ



1

τ

...

τ r−1


.

Therefore multiplication by τ on M(φ) is represented by the matrix

Θ :=



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

t−θ
Ar

−A1

Ar

−A2

Ar
· · · −Ar−1

Ar


. (3.3)

The method to construct a rigid analytic trivialization for a Drinfeld module was given by Pel-

larin [26, §4.2] using Anderson generating functions as follows (see also [14, §2]). Let π1, . . . , πr

be an A-basis of the period lattice Λ := Λφ and for i = 1, . . . , r let fi(t) = fφ(πi; t). He defined

the matrix

Υ =



f1 f2 · · · fr

f
(1)
1 f

(1)
2 · · · f

(1)
r

...
...

. . .
...

f
(r−1)
1 f

(r−1)
2 · · · f

(r−1)
r


,
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and then he proved that det(Υ) ∈ T× and Υ(1) = ΘΥ, i.e., Υ is a rigid analytic trivialization

for M(φ). However, in order to construct Υ this way, we need to know an A-basis of the period

lattice, which inherently are transcendental quantities. Therefore, our motivation is to introduce a

new method to find a rigid analytic trivialization that does not require the periods. In our research,

we provide a procedure to construct a rigid analytic trivialization Υ by simply finding roots of

finitely many polynomials.

3.2 Our method

In this section, we will state our results which are from our first paper [20]. However, only some

of the proofs will be included in this dissertation. Throughout this section, we consider a Drinfeld

module φ of rank r defined by φt = θ+A1τ+· · ·+Arτ r and its associated t-motiveM(φ) = K[τ ].

By using the right division algorithm on K[τ ], one can see that 1, τ, . . . , τ r−1 form a K[t]-basis for

M(φ), and the matrix representing multiplication by τ on M(φ) with respect to this basis is the

matrix Θ given in (3.3), and so we want to find a matrix Υ such that Υ(1) = ΘΥ. Furthermore, our

main goal is to construct Υ directly from φ in an effective manner, i.e., by requiring only a finite

amount of initial computation. Recall from §2.2 about the Gauss norm ‖ · ‖ on T. Our idea is to

build a matrix M ∈ Matr(T) satisfying

‖M−1Θ−1M (1) − I‖ < 1, (3.4)

where I is the r × r identity matrix. Then by letting F = M−1Θ−1M (1), we obtain that F (n) → I

as n → ∞, with respect to the Gauss norm. Thus the infinite product
∏∞

n=1 F
(n) converges with

respect to the Gauss norm. Then by defining Υ = MFF (1)F (2) · · · , we will observe that

Υ(1) = M (1)F (1)F (2) · · · = ΘMFF (1)F (2) · · · = ΘΥ,

which means Υ is the rigid analytic trivialization for M(φ). Our construction of a rigid analytic

trivialization consists of 3 major steps as follows.
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Step 1: Starting with a finite amount of data, we give a procedure to find a convergent t-

division sequence y1, y2, y3, . . ., and by using this procedure, we obtain a positive integer N and

torsion elements ξ1, . . . , ξr ∈ φ[tN ]. In this step, one important tool is the Newton polygon of the

polynomial φt(x) = θx+ A1x
q + · · ·+ Arx

qr .

Step 2: We use N and ξ1, . . . , ξr from step 1 to construct polynomials h1(t), . . . , hr(t) ∈ K[t]

and then we use them to create a matrixM ∈ Matr(K[t]) which satisfies ‖M−1Θ−1M (1)−I‖ < 1.

Step 3: We use the matrix M from step 2 to define the sequence of matrices (Υn)n≥1. Then

we let

Υ = lim
n→∞

Υn.

Our main result is Theorem 3.15, in which we show that Υ is a rigid analytic trivialization and we

also give an explicit formula for Υ.

3.2.1 Step 1

First of all, we recall the theory of the Newton polygon (see [15, §2] ). The Newton polygon

of a polynomial f(x) = a0 + a1x+ · · ·+ anx
n is defined to be the lower convex hull in R2 of the

set of points

(i, v∞(ai)), i = 0, 1, . . . , n.

Let λ1, . . . , λs be the slopes of the lower edges of the Newton polygon of f(x) arranged in in-

creasing order, and let `1, . . . , `s be the corresponding horizontal lengths of these line segments

projected onto the x-axis. Then for each integer 1 ≤ n ≤ s, f(x) has exactly `n roots with

valuation −λn.

Now consider the Newton polygon of the polynomial

φt(x) = θx+ A1x
q + · · ·+ Ar−1x

qr−1

+ Arx
qr .

Denote the vertices of the lower convex hull by (qdj ,− deg(Adj)), j = 1, 2, . . . , s for some s ∈ N.

Note that 0 = d0 < d1 < · · · < ds = r. For n,m ∈ {0, 1, . . . , r} with n < m, define Ln,m to
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be the line segments connecting points (qn,− deg(An)) and (qm,− deg(Am)) and let wn,m be its

slope. For j = 1, 2, . . . , s, we set λj = wdj−1,dj . It is not hard to see that λ1 < λ2 < · · · < λs and

the line segments Ldj−1,dj , j = 1, 2, . . . , s form the Newton polygon of φt(x) as shown in Figure

3.1.

x

y

λ1

λ2 λs−1

λs

0 qd0 qd1 qd2 · · · qds−2 qds−1 qds

-1

· · ·

Figure 3.1: Newton polygon of φt(x)

Suppose the Newton polygon consists of s edges. Let λ1, . . . , λs be the slopes of the edges of

the Newton polygon of φt(x). Let (qd0 , ∗), . . . , (qds , ∗) be the vertices of the Newton polygon of

φt(x).

Let N(φ) := {1 ≤ i ≤ r : Ai 6= 0}. For each n ∈ N(φ), we set

µn =
deg(An)− qn

qn − 1
. (3.5)

According to the result by El-Guindy and Papanikolas [11, Prop. 6.10], we know that

Rφ = |θ|−µm , (3.6)

where Rφ is the radius of convergence of logarithm logφ and m is the smallest index in N(φ) such

that µm ≥ µi for every i ∈ N(φ). In the following lemma, we investigate useful properties on the
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Newton polygon of φt(x), which contains information about the radius of convergence Rφ.

Lemma 3.1 (Khaochim and Papanikolas [20]). For j = 1, 2, . . . , s, let aj be the y-intercept of the

line containing Ldj−1,dj . The following hold.

1. a1 = µm, where µm is from equation (3.6).

2. a1 > a2 > · · · > as.

3. −aj > −
deg(Adj

)

qdj−1
for every j = 1, 2, . . . , s.

Given a nonzero element in φ[t], by using properties of the Newton polygon, we provide a

recursive procedure to find a convergent t-division sequence in the following proposition.

Proposition 3.2 (Khaochim and Papanikolas [20]). Let y1 ∈ φ[t] be nonzero. Then there exist a

sequence y1, y2, . . . and a positive integer N such that

1. φt(yk) = yk−1 for all k = 2, 3, . . .

2. deg(y1) > deg(y2) > deg(y3) > · · ·

3. |yN | < Rφ

4. limk→∞ deg(yk) = −∞.

Proof. First, for k ∈ N(φ), we define a function

uk(z) =
z − deg(Ak)

qk
.

Since y1 is a root of φt(x), we see that deg(y1) ≤ λs. For k ≥ 1, we perform the following recursive

process. Suppose deg(yk) ≤ λs and set y = yk. Consider the Newton polygon of φt(x)− y which

is obtained from the Newton polygon of φt(x) by adding one more point (0,− deg(y)). We observe

that − deg(y) must belong to one of the following intervals:

I1 := (a1,∞), I2 := (a2, a1], . . . , Is := (as, as−1],
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where a1, a2 . . . , as is defined in Lemma 3.1. To see why− deg(y) > as, one can use the technique

in the proof of Lemma 3.1 and see that as < −λs. So − deg(y) ≥ −λs > as.

• If − deg(y) ∈ (a1,∞), then the Newton polygon of φt(x)− y is obtained from the Newton

polygon of φt(x) by adding the line segment from (0,− deg(y)) to (1,−1). This new line

has slope deg(y) − 1 = u0(deg(y)), so there is one root of φt(x) − y with degree equal to

u0(deg(y)).

• If− deg(y) ∈ (aj+1, aj] for some 1 ≤ j ≤ s−1, then the Newton polygon of φt(x)−y is ob-

tained from the Newton polygon of φt(x) by replacing line segmentsLd0,d1 , Ld1,d2 , . . . Ldj−1,dj

by line segment from (0,− deg(y)) to (qdj ,− deg(Adj)). This new line has slope
deg(y)−deg(Adj

)

qdj
=

udj(deg(y)), so there are qdj roots of φt(x)− y with degree equal to udj(deg(y)).

Choose yk+1 to be a root of φt(x)− y with

deg(yk+1) =


u0(deg(y)) if− deg(y) ∈ (a1,∞)

udj(deg(y)) if− deg(y) ∈ (aj+1, aj]

We claim that deg(yk+1) < deg(y). To prove this, we observe by the definition above that

deg(yk+1) is either u0(deg(y)) or udj(deg(y)) for some j. It is clear that u0(deg(y)) = deg(y) −

1 < deg(y). Note that deg(yk+1) = udj(deg(y)) only if − deg(y) ∈ (aj+1, aj]. In this case, we

compute using Lemma 3.1 that

deg(y) ≥ −aj > −
deg(Adj)

qdj − 1
.

This implies that
deg(y)− deg(Adj)

qdj
< deg(y).

That is, deg(yk+1) = udj(deg(y)) < deg(y). In conclusion, we obtain yk+1 to be a root of φt(x)−y,

which satisfies deg(yk+1) < deg(y) ≤ λs.
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This recursion provides us the sequence y1, y2, . . . satisfying (1) and (2). Our next step is to

prove (3). We claim that there exist a positive integer N such that deg(yN) < −a1. To prove

this, first we compute a limit of u◦nk (z) when n → ∞, where we use the notation u◦nk for the n

composition of the function uk. We observe that

u◦nk (z) =
z

qnk
−
(
qnk − 1

qk − 1

)
deg(Ak)

qnk

for any z ∈ R and k ∈ N(φ), which means we have the pointwise limit

lim
n→∞

u◦nk (z) = −deg(Ak)

qk − 1
.

If − deg(y1) ∈ I1 = (a1,∞), then we already have deg(y1) < −a1 and we can choose N = 1.

Now assume that − deg(y1) ∈ Ij+1 for some 1 ≤ j ≤ s− 1. By Lemma 3.1,

lim
n→∞

u◦ndj (deg(y1)) = −
deg(Adj)

qdj − 1
< −aj,

so there must be a positive integer n such that u◦ndj (deg(y1)) < −aj.We choose k1 to be the smallest

such integer. Then k1 is the smallest integer such that after applying udj to deg(y1) for k1 times, we

have u◦k1dj
(deg(y1)) < −aj. Therefore − deg(yk1+1) = −u◦k1dj

(deg(y1)) ∈ I1 ∪ · · · ∪ Ij. Repeating

the same argument, we can choose the smallest integer k2 ≥ 0 that makes u◦k2dj−1
(deg(yk1+1)) <

−aj−1, and thus

− deg(yk2+k1+1) = −u◦k2dj−1
(deg(yk1+1)) ∈ I1 ∪ · · · ∪ Ij−1.

Continuing this, we finally get kj ≥ 0 that makes u◦kjd1
(deg(ykj−1+···+k1+1)) < −a1, i.e.,

− deg(ykj+···+k1+1) = −u◦kjdj
(deg(ykj−1+···+k1+1)) ∈ I1.

Letting N = 1 + k1 + · · ·+ kj , we obtain that − deg(yN) ∈ I1, i.e., deg(yN) < −a1. This proves
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the claim and (3) follows from the definition of Rφ. Furthermore, since deg(yN) < −a1, we see

that

deg(yN+k) = u◦k0 (deg(yN)) = deg(yN)− k

for every k ≥ 1. It follows that limk→∞ deg(yk) = −∞.

Remark 3.3. The integer N in the above proposition can be expressed as follows. Let j be such

that − deg(y1) ∈ Ij+1. Define k0 = 1 and for 1 ≤ i ≤ j, define ki to be the smallest integer such

that u◦kidj−i+1
(deg(yki−1

)) < −aj−i+1. Then

N = k0 + k1 + · · ·+ kj.

Moreover, we observe that

deg(yN) = u
◦kj
d1
◦ · · · ◦ u◦k2dj−1

◦ u◦k1dj
(deg(y1)).

Fix an Fq-basis x1, . . . , xr of φ[t]. By applying the algorithm in Proposition 3.2 to each xi, we

obtain a positive integer N and torsion elements ξ1, . . . , ξr ∈ φ[tN ] with applicable properties as

follows.

Proposition 3.4 (Khaochim and Papanikolas [20]). Let x1, . . . , xr be a basis of φ[t]. Then there

exist N ≥ 1 and ξ1, . . . , ξr ∈ φ[tN ] such that for each i,

1. |ξi| < Rφ

2. φtN−1(ξi) = xi

3. deg(φtN−1(ξi)) > . . . > deg(φt(ξi)) > deg(ξi).

Proof. Fix a basis x1, . . . , xr of φ[t]. Using Proposition 3.2 for each xi, we obtain a sequence

xi,1, xi,2, xi,3, . . . such that

• xi,1 = xi and φt(xi,k) = xi,k−1 for all k = 2, 3, . . .
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• xi,n ∈ φ[tn] for every n

• deg(xi,1) > deg(xi,2) > deg(xi,3) > . . .

• there exist a positive integer N(i) such that |xi,N(i)| < Rφ.

Let N = max{N(1), N(2), . . . , N(r)} and let ξi = xi,N . Then, for every i = 1, 2, . . . , r, we

obtain that

• ξi ∈ φ[tN ]

• |ξi| < Rφ

• deg(φtN−1(ξi)) > . . . > deg(φt(ξi)) > deg(ξi).

Moreover,

φtN−1(ξi) = φtN−1(xi,N) = φtN−2(φt(xi,N)) = φtN−2(xi,N−1) = . . . = φt(xi,2) = xi,1 = xi.

Recall that λ1, . . . , λs represent the slopes in the Newton polygon of φt(x) as we defined in the

beginning of this section. Now we define a strict basis for φ[t] as follows. Also we prove in the

next lemma that, for any Drinfeld module, a strict basis always exists.

Definition 3.5. An Fq-basis x1, . . . , xr of φ[t] is strict if for 1 ≤ n ≤ r, we have deg(xn) = λj ,

where j is the positive integer such that dj−1 + 1 ≤ n ≤ dj .

Lemma 3.6 (Khaochim and Papanikolas [20]). There exists a strict basis x1, . . . , xr of φ[t].

Proof. For 1 ≤ j ≤ s, define

Qj = {x ∈ φ[t] : deg(x) ≤ λj}

and

Rj = {x ∈ φ[t] : deg(x) = λj}.
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We observe that Qj is an Fq-subspace of φ[t] for 1 ≤ j ≤ s. Since Q1 = R1 t {0} and the set Q1

has qd1 elements, there exists x1, . . . , xd1 ∈ R1 such that

Q1 = Fqx1 ⊕ · · · ⊕ Fqxd1 .

We note that Q1 ⊂ Q2 and the set Q2 has qd2 elements, so we can pick xd1+1, . . . , xd2 such that

Q2 = Fqx1 ⊕ · · · ⊕ Fqxd1 ⊕ Fqxd1+1 ⊕ · · · ⊕ Fqxd2 .

We claim that for every d1 + 1 ≤ n ≤ d2, deg(xn) = λ2. To prove this, fix d1 + 1 ≤ n ≤ d2

and suppose that deg(xn) ≤ λ1. Thus xn ∈ Q1 which implies that xn = c1x1 + · · · + cd1xd1 for

some c1, . . . , cd1 ∈ Fq. This cannot happen because x1, . . . , xd2 are linearly independent over Fq.

Therefore deg(xn) = λ2. We note that Q2 ⊂ Q3 and the set Q3 has qd3 elements, so we can pick

xd2+1, . . . , xd3 such that

Q3 = Fqx1 ⊕ · · · ⊕ Fqxd2 ⊕ Fqxd2+1 ⊕ · · · ⊕ Fqxd3 .

By the same reason as above, we obtain that for every d2 + 1 ≤ n ≤ d3, deg(xn) = λ3. We can

continue this process until we get xds−1+1, . . . , xds such that

Qs = Fqx1 ⊕ · · · ⊕ Fqxds−1 ⊕ Fqxds−1+1 ⊕ · · · ⊕ Fqxds

and for every ds−1 + 1 ≤ n ≤ ds, we obtain that deg(xn) = λs. Therefore

φ[t] = Fqx1 ⊕ · · · ⊕ Fqxr

and for every 1 ≤ j ≤ s and dj−1 + 1 ≤ n ≤ dj , we obtain that deg(xn) = λj . Thus we obtain a

strict basis of φ[t].
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3.2.2 Step 2

In this step, we will use the t-division sequence from Proposition 3.4 to create a matrix M in

Theorem 3.12. Suppose we have a strict basis x1, . . . , xr of φ[t] as in Lemma 3.6. We choose

N ≥ 1 and ξ1, . . . , ξr ∈ φ[tN ] as in Proposition 3.4. For 1 ≤ i ≤ r, we define

hi = φtN−1(ξi) + φtN−2(ξi)t+ · · ·+ ξit
N−1.

Observe that

‖hi‖ = max
0≤m≤N−1

{|φtN−1−m(ξi)|} = |xi|.

Then we let M = (h
(i−1)
j ) ∈ Matr(K[t]). We dedicate the rest of this section to prove that the

matrix M defined this way satisfies (3.4). First, we need more information about det(M).

Proposition 3.7 (Khaochim and Papanikolas [20]). Suppose that for 1 ≤ i ≤ r, hi = xi + yit for

some xi ∈ K and yi ∈ K[t]. Let M = (h
(i−1)
j ) and let X = (xq

i−1

j ). Then

det(M) = det(X) + yt

for some y ∈ K[t].

The above proposition allows us to express the determinant of M in terms of the determinant

of another matrix X ∈ Matr(K) plus the term with t. Thus we want to gather information about

the determinant of X . Using the following lemma and properties of Moore determinant (see [15,

§1.3]), we get the formula for the degree of det(X) in Proposition 3.9.

Lemma 3.8 (Khaochim and Papanikolas [20]). Let x1, . . . , xr be a strict basis of φ[t]. If 1 ≤ j ≤ s

and dj−1 + 1 ≤ n ≤ dj , then

deg(c1x1 + · · ·+ cn−1xn−1 + xn) = λj

for every c1, . . . , cn−1 ∈ Fq.
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Proposition 3.9 (Khaochim and Papanikolas [20]). Let x1, . . . , xr be a strict basis for φ[t] and let

X = (xq
i−1

j ). Then

deg(det(X)) =
r∑

n=1

qn−1 deg(xn).

In the next lemma, we provide a bound for a determinant of a matrix in terms of its entries (see

also [4, §2-3] and [25, §2] for similar types of formulas). This formula will serve as a tool to prove

our main result.

Lemma 3.10 (Khaochim and Papanikolas [20]). Let n ≥ 1. For i = 1, 2, . . . , n, let bi ∈ T.

Suppose that ‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bn‖ and let N = (b
(i−1)
j ). Then

‖ det(N)‖ ≤ ‖b1‖‖b2‖q · · · ‖bn‖q
n−1

.

Our main goal in this section is to prove Theorem 3.12, which means we need to prove that

‖M−1Θ−1M (1) − I‖ < 1. In the following proposition, we give a formula for M−1Θ−1M (1) − I

which is more practical when we compute its norm. Then we finish this section by stating and

proving Theorem 3.12.

Proposition 3.11 (Khaochim and Papanikolas [20]). Let ` ∈ N and for i = 1, 2, . . . , r, let hi =∑`−1
m=0 φt`−1−m(ξi)t

m where ξi ∈ φ[t`]. Let

M =



h1 h2 . . . hr

h
(1)
1 h

(1)
2 . . . h

(1)
r

...
...

. . .
...

h
(r−1)
1 h

(r−1)
2 . . . h

(r−1)
r


.

Then

M−1Θ−1M (1) − I =
−t`

t− θ
M−1W,
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where

W =



ξ1 ξ2 · · · ξr

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


. (3.7)

Theorem 3.12 (Khaochim and Papanikolas [20]). Let x1, . . . , xr be a strict basis of φ[t]. Choose

N ≥ 1 and ξ1, . . . , ξr ∈ φ[tN ] as in Proposition 3.4 and for 1 ≤ i ≤ r, define

hi = φtN−1(ξi) + φtN−2(ξi)t+ · · ·+ ξit
N−1 ∈ K[t].

Let M = (h
(i−1)
j ) ∈ Matr(K[t]). Then

‖M−1Θ−1M (1) − I‖ < 1.

Proof. By Proposition 3.11, we have ‖M−1Θ−1M (1) − I‖ = ‖−t`
t−θM

−1W‖. We further observe

that ‖−t`
t−θ‖ = 1/q, so proving ‖M−1Θ−1M (1) − I‖ < 1 is equivalent to showing

‖M−1W‖ < q, (3.8)

where W is defined in (3.7). We denote the (i, j)-entry of M−1 by mij and observe that

M−1W =



m11ξ1 m11ξ2 · · · m11ξr

m21ξ1 m21ξ2 · · · m21ξr
...

...
. . .

...

mr1ξ1 mr1ξ2 · · · mr1ξr


.

That is, M−1W = (mi1ξj). It follows that ‖M−1W‖ = max{‖mi1ξj‖ : 1 ≤ i, j ≤ r}. To show

that ‖M−1W‖ < q, it suffices to show that ‖mi1ξj‖ < q for all 1 ≤ i, j ≤ r. Now fix i and j.
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Using a formula for the inverse of a matrix,

M−1 =
1

det(M)
Adj(M),

we see that

mi1 =
(−1)i+1

det(M)
det(M∗),

where

M∗ =



h
(1)
1 · · · h

(1)
i−1 h

(1)
i+1 · · · h

(1)
r

h
(2)
1 · · · h

(2)
i−1 h

(2)
i+1 · · · h

(2)
r

...
. . .

...
...

. . .
...

h
(r−1)
1 · · · h

(r−1)
i−1 h

(r−1)
i+1 · · · h

(r−1)
r


=



b1 b2 · · · br−1

b
(1)
1 b

(1)
2 · · · b

(1)
r−1

...
...

. . .
...

b
(r−2)
1 b

(r−2)
2 · · · b

(r−2)
r−1


and b1 = h

(1)
1 , . . . , bi−1 = h

(1)
i−1 and bi = h

(1)
i+1, . . . , br−1 = h

(1)
r . By the definition of a strict basis,

we know that |x1| ≤ |x2| ≤ · · · ≤ |xr|. Moreover, by Proposition 3.4, we know that

|ξi| < |φt(ξi)| < · · · < |φtN−1(ξi)| = |xi|,

which implies that ‖hi‖ = |xi| for all 1 ≤ i ≤ r. Thus, we have ‖h1‖ ≤ ‖h2‖ ≤ · · · ≤ ‖hr‖.

Using Lemma 3.10, we obtain that

‖ det(M∗)‖ ≤ ‖b1‖‖b2‖q · · · ‖br−1‖q
r−2

= ‖h1‖q · · · ‖hi−1‖q
i−1‖hi+1‖q

i · · · ‖hr‖q
r−1

≤ ‖h2‖q · · · ‖hi‖q
i−1‖hi+1‖q

i · · · ‖hr‖q
r−1

=
r∏

k=2

‖hk‖q
k−1

=
r∏

k=2

|xk|q
k−1

.
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It follows that

logq ‖mi1ξj‖ = logq

(
‖ det(M∗)‖|ξi|
‖ det(M)‖

)
= logq ‖ det(M∗)‖+ logq |ξi| − logq ‖ det(M)‖

≤
r∑

k=2

qk−1 deg(xk) + logq |ξi| − logq ‖ det(M)‖.

Since ξ1, . . . , ξr are chosen so that |ξi| < Rφ = q−µm , we obtain that

logq |ξi| < −µm.

It follows from Lemma 3.1 that µm = a1 = −1− λ1, which implies that

logq |ξi| < 1 + λ1 = 1 + deg(x1).

Therefore

logq ‖mi1ξj‖ <
r∑

k=2

qk−1 deg(xi) + deg(x1) + 1− logq ‖ det(M)‖

= 1 +
r∑

k=1

qk−1 deg(xk)− logq ‖ det(M)‖.

Combining Proposition 3.7 and Proposition 3.9, we obtain that

logq ‖ det(M)‖ ≥ deg(det(X)) =
r∑

k=1

qk−1 deg(xk),

where X = (xq
i−1

j ). It follows that logq ‖mi1ξj‖ < 1. Therefore ‖M−1W‖ < q.

3.2.3 Step 3

In this section, we will use the matrix M from step 2 to construct a rigid analytic trivialization

Υ. First of all, we set F = M−1Θ−1M (1). It follows directly from Theorem 3.12 that F (n) → I

27



as n→∞ with respect to the Gauss norm. Recall that the space of matrices with the Gauss norm

‖ · ‖ is a complete normed space, so
∏∞

n=0 F
(n) converges with respect to ‖ · ‖. We define

Υn = MFF (1)F (2) · · ·F (n)

and

Υ = lim
n→∞

Υn = MFF (1)F (2) · · · .

Since M (1) = ΘMF , we obtain that

Υ(1) = M (1)F (1)F (2) · · · = (ΘMF )F (1)F (2) · · · = ΘΥ.

Our next goal is to compute Υ explicitly. We start by computing Υn. In the following lemma, we

provide a formula for Υn as a summation of matrices.

Lemma 3.13 (Khaochim and Papanikolas [20]). Let W be the matrix defined in (3.7) and define

Rm =
Θ−1(Θ−1)(1) · · · (Θ−1)(m−1)

t− θqm
, m ≥ 1.

Then for n ≥ 1,

Υn = M − tN

t− θ
W − tN

n∑
m=1

RmW
(m).

We recall the functions Bn(t) and Lφ(ξ; t) from §2.2. Using the formula in Lemma 3.13, we

are able to express each coordinate in the matrix Υn as follows.

Proposition 3.14 (Khaochim and Papanikolas [20]). For n ≥ 1 and for 1 ≤ i, j ≤ r, the element

in (i, j)-coordinate of Υn is

hj − tN

t− θ

n−(i−1)∑
m=0

Bmξq
m

j

(i−1)

.

Finally, we use a formula for each entry of Υn given in Proposition 3.14 to get the main result
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which is the following theorem.

Theorem 3.15 (Khaochim and Papanikolas [20]). Let M be the matrix defined in Theorem 3.12

and let F = M−1Θ−1M (1) and Υn = MFF (1)F (2) · · ·F (n). Let

Υ = lim
n→∞

Υn = MFF (1)F (2) · · · .

Then

1. the element in (i, j)-coordinate of Υ is

(
hj −

tN

t− θ
Lφ(ξj; t)

)(i−1)

2. Υ is a rigid analytic trivialization for M(φ).

We finish this section with the following proposition, in which we observe that the rigid analytic

trivialization from our method matches the one from Pellarin’s method for a particular choice of

basis.

Proposition 3.16 (Khaochim and Papanikolas [20]). Let x1, . . . , xr be a strict basis of φ[t]. Choose

N ≥ 1 and ξ1, . . . , ξr ∈ φ[tN ] as in Proposition 3.4 and for 1 ≤ j ≤ r, let

πj = θN logφ(ξj). (3.9)

Then π1, . . . , πr is an A-basis of Λφ. Moreover,

hj −
tN

t− θ
Lφ(ξj; t) = fφ(πj; t).

3.3 Application and example

Proposition 3.16 from the previous section can be viewed as a tool to find periods. Suppose

we know a formula for ξ1, , . . . , ξr and N . Then we can apply equation (3.9) and get the periods
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π1, . . . , πr ∈ Λφ. Even if we do not know the explicit formula for ξi, it is not difficult to compute

the degree of ξi. In this section, we demonstrate how to compute the positive integer N and the

degrees of ξ1 and ξ2 defined in Proposition 3.4 for rank 2 Drinfeld modules. Then we compute

degree of the periods directly from that information. Consider a Drinfeld module φ of rank 2

defined by

φt = θ + A1τ + A2τ
2, A2 6= 0. (3.10)

We categorize Drinfeld modules into 2 cases depending on the Newton polygon of φt(x) as follows.

• Case 1 The Newton polygon of φt(x) has one lower edge with slope λ1.

• Case 2 The Newton polygon of φt(x) has two lower edges with slopes λ1 and λ2.

The reader can see the Newton polygons of Drinfeld modules of rank 2 in Figure 3.2.

x

y

λ1

0 1 q q2

-1
v∞(A1)

v∞(A2)

case 1

x

y

λ1

λ2

0 1 q q2

-1

v∞(A1)

v∞(A2)

case 2

Figure 3.2: Newton polygons of Drinfeld modules of rank 2

Using our observation in Remark 3.3 and some parts of the proof of Proposition 3.4, we obtain

the following theorem.

Theorem 3.17. Let φ be a rank 2 Drinfeld module defined as in 3.10. Consider the following

cases.
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(1) deg(A1) ≤ q+deg(A2)
q+1

(2) deg(A1) >
q+deg(A2)

q+1

(2.1) deg(A1) <
q2+deg(A2)

q+1

(2.2) There is a unique integer ` ≥ 2 such that q
`+deg(A2)
q+1

≤ deg(A1) <
q`+1+deg(A2)

q+1
.

Then the positive integer N and the degrees of ξ1, ξ2 in Proposition 3.4 are determined by

case N deg(ξ1) deg(ξ2)

1 1 1−deg(A2)
q2−1

1−deg(A2)
q2−1

2.1 1 1−deg(A1)
q−1

deg(A1)−deg(A2)
q2−q

2.2 ` 1−deg(A1)
q−1 − (`− 1) (−q`+q+1) deg(A1)−deg(A2)

q`(q−1)

Table 3.1: N and degrees of ξi for rank 2 Drinfeld module

Theorem 3.17 allows us to compute degrees of the periods π1, π2 in Proposition 3.16 as follows.

For j = 1, 2, we know from equation (3.9) that πj = θN logφ(ξj). We then compute that deg(πj) =

N + deg(logφ(ξj)). Using a result from El-Guindy and Papanikolas [10, Cor. 4.3], we know that

deg(logφ(ξj)) = deg(ξj). As a consequence, we have

deg(πj) = N + deg(ξj), j = 1, 2.

Finally, we apply Theorem 3.17 to a specific case when q = 3 and φ is a Drinfeld module of rank

2 defined by

φt = θ + y(θ3 − θ)τ + τ 2,

where y ∈ K satisfies y2 = θ3 − θ − 1 (see [10, §7] for comparison). First, we observe that

deg(A1) =
9

2
, deg(A2) = 0.
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Thus
q2 + deg(A2)

q + 1
≤ deg(A1) <

q3 + deg(A2)

q + 1
,

i.e. φ belongs to case 2.2, with ` = 2. Using Theorem 3.17, we obtain that N = 2 and

deg(ξ1) = −11

4
, deg(ξ2) = −5

4
.

Then we apply the formula deg(πj) = N + deg(ξj) and compute that

deg(π1) = 2 + deg(ξ1) = −3

4
, deg(π2) = 2 + deg(ξ2) =

3

4
.
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4. TENSOR PRODUCTS OF DRINFELD MODULES

4.1 Tensor product

Throughout this section, we suppose that φ1 and φ2 are Drinfeld modules of rank r and s with

the corresponding t-motives M1 and M2, respectively. When M1 and M2 are pure t-motives, the

tensor product of their t-motives M1 ⊗K[t] M2 is also a pure t-motive, on which τ acts diagonally,

i.e.

τ(m⊗m′) = τ(m)⊗ τ(m′),

with weight

w(M1 ⊗K[t] M2) = w(M1) + w(M2)

and rank

r(M1 ⊗M2) = r(M1)r(M2).

For more details, the reader is directed to [1, §1] or [31, §7.3]. Recall from §2.5 that every Drinfeld

module of rank r is pure of weight 1/r. In our case, we then have

w(M1 ⊗K[t] M2) = w(M1) + w(M2) =
1

r
+

1

s
,

and

r(M1 ⊗M2) = r(M1)r(M2) = rs.

We will begin our investigation by reviewing the definition and important properties of the

tensor powers of the Carlitz module. The theory of the tensor powers of the Carlitz module was

introduced by Anderson and Thakur, and has been well-studied (see [3], [6] and [24]). The t-

module C⊗n is given by

C⊗nt = (θI +N) + Eτ,
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where I ∈ Matn×n(K) is the identity matrix,

N =



0 1 . . . 0

. . .
. . .

...

0 1

0


, E =


0 . . . 0

...
...

1 . . . 0

 .

The t-motive M(C⊗n) of C⊗n has rank 1, dimension n, and weight n. In fact, it is given by the

n-th tensor power of the t-motive of the Carlitz module. Namely,

M(C⊗n) = K[τ ]⊗K[t] · · · ⊗K[t] K[τ ],

on which τ acts diagonally. For example, we consider n = 2. In this case, the C⊗2 is a t-module

given by

C⊗2t =

θ 1

0 θ

+

0 0

1 0

 τ.

In this case, m := (1⊗ 1, τ ⊗ 1)T is a K[τ ]-basis for its t-motive M(C⊗2), and

t ·m = t ·

1⊗ 1

τ ⊗ 1

 =

θ 1

τ θ


1⊗ 1

τ ⊗ 1

 = C⊗2t m.

Anderson and Thakur [3, Cor. 2.5.8] proved that a generator in the period lattice of C⊗n can be

chosen so that its last coordinate is equal to the n-th power of the Carlitz period.

Theorem 4.1 (Anderson and Thakur). Let Λn be the period lattice of C⊗n. Then there is a vector

Πn ∈ Matn×1(K) so that Λn = {(dC⊗na )Πn : a ∈ A}. Moreover, Πn can be chosen to have the
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form

Πn =



∗
...

∗

π̃n


, (4.1)

where π̃ is the Carlitz period.

4.2 Tensor product of two Drinfeld modules

In this section, we consider two Drinfeld modules φ1 and φ2 defined by

φ1(t) = θ + A1τ + . . .+ Arτ
r, φ2(t) = θ +B1τ + . . .+Bsτ

s, (4.2)

where r ≤ s, and both Ar and Bs are not zero. To simplify the notation, we denote T = t− θ and

[m,n] = A(−n)
m , (m,n) = B(−n)

m , m, n ∈ N.

Recall that the associated t-motives of φ1 and φ2 are M1 = K[τ ] with the action of K[t, τ ] given by

cti ·m = c ·m · φ1(t
i),

and M2 = K[τ ] with the action of K[t, τ ] given by

cti ∗m = c ·m · φ2(t
i),

respectively. One can see that the basis of M1 as a K[t]-module is {1, τ, . . . , τ r−1} and the basis of

M2 as a K[t]-module is {1, τ, . . . , τ s−1}. In fact, the reader may go back to section 3.1 for a review
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of this result. Also, we let

Θ1 =



0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

T/Ar −A1/Ar . . . −Ar−1/Ar


, Θ2 =



0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

T/Bs −B1/Bs . . . −Bs−1/Bs


.

Then τ(1, . . . , τ r−1)T = Θ1(1, . . . , τ
r−1)T and τ(1, . . . , τ s−1)T = Θ2(1, . . . , τ

s−1)T. That is, Θ1

and Θ2 are the matrices representing τ -action of φ1 and φ2 with respect to the bases {1, . . . , τ r−1}

and {1, . . . , τ s−1}, respectively. It is not hard to see that the following is a basis of M1⊗K[t]M2 as

a K[t]-module

{τ i ⊗ τ j : 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1}.

It is fundamental to find a matrix representing τ -action of φ1 ⊗ φ2 with respect to the basis of

M1 ⊗K[t] M2 above.

For any matrices A = (ai,j) ∈ Matn×m(R) and B = (bi,j) ∈ Mat`×k(R), where R is a

commutative ring, the Kronecker product A⊗B is the n`×mk block matrix defined by

A⊗B =


a11B . . . a1mB

...
. . .

...

an1B . . . anmB

 .
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Theorem 4.2. Let Θ = Θ1 ⊗Θ2 be the Kronecker product of matrices and let

m =



1⊗ 1

1⊗ τ
...

1⊗ τ s−1
...

τ r−1 ⊗ 1

τ r−1 ⊗ τ
...

τ r−1 ⊗ τ s−1



.

Then Θ is a matrix representing the τ -action with respect to m, i.e. τm = Θm.

Now, we consider the dual t-motives of φ1 and φ2. For each i = 1, 2, we denote the dual

t-motive of φi by Ni. One can see that the basis of N1 as a K[t]-module is {1, σ, . . . , σr−1} and the

basis ofN2 as a K[t]-module is {1, σ, . . . , σs−1}. As s result, the following is a basis ofN1⊗K[t]N2

as a K[t]-module

{σi ⊗ σj : 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1}.

Let

Φ1 =



0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

T
[r,r]

− [1,1]
[r,r]

. . . − [r−1,r−1]
[r,r]


, Φ2 =



0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

T
(s,s)

− (1,1)
(s,s)

. . . − (s−1,s−1)
(s,s)


.

Then Φ1 and Φ2 are the matrices representing σ-action of φ1 and φ2 with respect to the bases

{1, σ, . . . , σr−1} and {1, σ, . . . , σs−1}, respectively.
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Theorem 4.3. Let Φ = Φ1 ⊗ Φ2 the a Kronecker product of matrices and let

n =



1⊗ 1

1⊗ σ
...

1⊗ σs−1
...

σr−1 ⊗ 1

σr−1 ⊗ σ
...

σr−1 ⊗ σs−1



.

Then Φ is a matrix representing the σ-action with respect to n, i.e. σn = Φn.

Next, we want to define the tensor product φ1 ⊗ φ2 as a t-module in a similar way as C⊗n is

defined in section 4.1. Hamahata defined the tensor product φ1 ⊗ φ2 in Definition 2.1 in [19]. We

denote ρ = φ1 ⊗ φ2 as a t-module, so ρ : A → Matd(K[τ ]), where d is a dimension. The first

main goal is to determine the value of ρt. We know that w(ρ) = w(φ1) +w(φ2) = (r + s)/rs and

that r(ρ) = rankK[t] ρ = rs. This implies that dimK[τ ](ρ) = d(ρ) = r + s. As a result, we are able

to find a K[τ ]-basis for M1 ⊗M2 as follows.

Lemma 4.4. For 1 ≤ i ≤ s and 1 ≤ j ≤ r, let

xi = 1⊗ τ i−1, yj = τ j ⊗ 1.

Then {x1, . . . , xs, y1, . . . , yr} is a basis of M1 ⊗K[t] M2 as a K[τ ]-module.

Proof. We observe that rankK[τ ](M1 ⊗K[t] M2) = r + s, so it suffices to show that the set X :=

{x1, . . . , xs, y1, . . . , yr} spans M1⊗K[t]M2 as a K[τ ]-module. Since {τ i⊗ τ j : 0 ≤ i ≤ r− 1, 0 ≤
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j ≤ s− 1} is a K[t]-basis for M1 ⊗K[t] M2, any element m ∈M1 ⊗K[t] M2 can be written as

m =
r−1∑
i=0

s−1∑
j=0

ai,j(τ
i ⊗ τ j), ai,j ∈ K[t].

The idea of the proof is to show that, for every k ≥ 0, 0 ≤ i ≤ r − 1, and 0 ≤ j ≤ s− 1,

tk(τ i ⊗ τ j) ∈ SpanK[τ ]X. (4.3)

This can be proved by using induction on k as follows. For k = 0, we observe that τ i⊗ τ j is equal

to either τ i(1 ⊗ τ j−i) or τ j(τ i−j ⊗ 1), and both of them belong to SpanK[τ ]X . Now suppose that

the statement is true for k. Fix 0 ≤ i ≤ r − 1, and 0 ≤ j ≤ s− 1. By the hypothesis,

tk(τ i ⊗ τ j) =
s∑
`=1

a`x` +
r∑
`=1

b`y`, a`, b` ∈ K[τ ].

We compute that, for each `,

tx` = (t · 1)⊗ τ `−1 = (θ + . . .+ Arτ
r)⊗ τ `−1 ∈ SpanK[τ ]X,

ty` = τ ` ⊗ (t · 1) = τ ` ⊗ (θ + . . .+Bsτ
s) ∈ SpanK[τ ]X.

Therefore,

tk+1(τ i ⊗ τ j) =
s∑
`=1

a`tx` +
r∑
`=1

b`ty` ∈ SpanK[τ ]X.

Now we have a K[τ ]-basis for M1⊗K[t]M2. We can use it to determine the value of ρt. After a

calculation, one can see that the t-module ρ can be defined in the following way.

Definition 4.5. We define a t-module ρ := φ1 ⊗ φ2 : A→ Matr+s(K[τ ]) given by

ρt =

X1 X2

X3 X4

 ,
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where X1 ∈ Mats×s(K[τ ]), X2 ∈ Mats×r(K[τ ]), X3 ∈ Matr×s(K[τ ]), X4 ∈ Matr×r(K[τ ]) are

defined by

X1 =



θ

A1τ θ

...
. . .

. . .

Ar−1τ
r−1 . . . A1τ θ

Arτ
r . . . A1τ θ

. . .
. . .

. . .

Arτ
r . . . A1τ θ



, X2 =



A1 . . . Ar−1 Ar

A2τ . . . Arτ

... . .
.

Arτ
r−1

...
...

...

0 0 0


,

X3 =



B1τ . . . . . . Bs−1τ Bsτ

B2τ
2 . . . . . . Bsτ

2

... . .
.

Brτ
r . . . Bsτ

r


, X4 =



θ

B1τ θ

...
. . .

. . .

Br−1τ
r−1 . . . B1τ θ


.

Remark 4.6. We observe that ρt can be expressed as a polynomial in τ as

ρt = θIr+s +N + F1τ + · · ·+ Frτ
r, (4.4)

where N,F1, . . . , Fr ∈ Matr+s(K) and

N =



0 . . . 0 A1 A2 . . . Ar−1 Ar

0 . . . 0 0 0 . . . 0 0

...
. . .

...
...

...
. . .

...
...

0 . . . 0 0 0 . . . 0 0


.

As an example, we take the tensor product of two Carlitz modules. From the definition above, we
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have

C⊗2t =

θ 1

τ θ

 ,

which gives the same definition of C⊗2 as the one Anderson and Thakur defined; see §4.1.

Now we consider another example. Suppose that φ1 and φ2 are Drinfeld modules both with

rank 3, and given as in (4.2). Then from Definition 4.5, the tensor product ρ = φ1 ⊗ φ2 is a

t-module given by

ρt =



θ 0 0 A1 A2 A3

A1τ θ 0 A2τ A3τ 0

A2τ
2 A1τ θ A3τ

2 0 0

B1τ B2τ B3τ θ 0 0

B2τ
2 B3τ

2 0 B1τ θ 0

B3τ
3 0 0 B2τ

2 B1τ θ


.

Recall from §4.1 that in the case of the t-module C⊗2, we can choose a K[τ ]-basis m of its

t-motive so that t ·m = C⊗2t m. We want our definition of ρ to have the same property. We actually

obtain from this property that ρ is the tensor product.

Theorem 4.7. Let m ∈ Mat(r+s)×1(M1 ⊗K[t] M2) consist of the K[τ ]-basis of M1 ⊗K[t] M2 from

Lemma 4.4 and let ρ be the t-module defined in Definition 4.5. Then the t-action with respect to

this basis is represented by the matrix ρt, which means t ·m = ρtm.
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Remark 4.8. One can see that

ρtm =



θx1 + A1y1 + A2y2 + . . .+ Aryr

θx2 + A1τx1 + A2τy1 + . . .+ Arτyr−1
...

θxr + A1τxr−1 + . . . Ar−1τ
r−1x1 + Arτ

r−1y1

θxr+1 + A1τxr + A2τ
2xr−1 + . . .+ Arτ

rx1
...

θxs + A1τxs−1 + A2τ
2xs−2 + . . .+ Arτ

rxs−r

θy1 +B1τx1 +B2τx2 + . . .+Bsτxs

θy2 +B1τy1 +B2τ
2x1 + . . .+Bsτ

sxs−1
...

θyr +B1τyr−1 + . . .+Br−1τ
r−1y1 +Brτ

rx1 +Br+1τ
rx2 + . . .+Bsτ

rxs−r+1



.

Comparing to the result by Y. Hamahata [19], we see that our definition of φ1 ⊗ φ2 is actually

equal to φ2 ⊗ φ1 in his definition. However, he also proved that φ1 ⊗ φ2 is isomorphic to φ2 ⊗ φ1,

as the tensor product of t-motives is symmetric. Also, the t-motive M(φ1 ⊗ φ2) is isomorphic to

M1 ⊗K[t] M2.

4.3 Periods for the tensor product of two Drinfeld modules

First of all, we will introduce useful notation and results on rigid analytic trivializations and

periods of a t-module. More details about these results can be found in [13], [18] and [22, §3].

Suppose φ : A→ Matd(K[τ ]) is an A-finite t-module with its dual t-motiveNφ = Mat1×d(K[σ]).

For n =
∑`

i=0 aiσ
i ∈ Nφ, we set

ε0(n) = dnT = aT
0 ,

where d denote the projection onto the constant term. Suppose that {n1, . . . ,nr} is a K[t]-basis of

Nφ and Φ ∈ Matr(K[t]) is the unique matrix such that σn = Φn, where n := (n1, . . . ,nr)
T. We
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define a map

ι : Mat1×r(K[t])→ Nφ,

by setting

ι(α) = α · n,

for any α ∈ Mat1×r(K[t]). We call the pair (ι,Φ) a t-frame for φ.

Lemma 4.9 (Anderson; see [13, Rem. 4.4.4] and [18, Prop. 2.5.8]). There exists a unique bounded

K-linear map

E0 : (Mat1×r(Tθ), ‖ · ‖θ)→ (Kd, | · |∞)

of normed vector spaces such that E0|Mat1×r(K[t]) = ε0 ◦ ι.

The map E0 in Lemma 4.9 is a tool for finding periods of a t-module as one can see in the

following theorem (see [13, Thm. 4.5.14] or [22, Thm. 3.4.7]).

Theorem 4.10 (Anderson). Let φ : A→ Matd(K[τ ]) be an A-finite t-module . Then

1. φ is uniformizable if and only if it has rigid analytic trivialization.

2. If (ι,Φ,Ψ) is a rigid analytic trivialization of φ in the sense of (3.2), then

Λφ = E0((Mat1×rA) ·Ψ−1).

For ` ∈ N, we denote the standard basis vectors of Mat1×`(K[τ ]) by s1, . . . , s`, and we denote

the standard basis vectors of Mat1×`(K[t]) by e1, . . . , e`. In the next proposition, we state a useful

result from Namoijam and Papanikolas [22, §3.5] in which they demonstrated how to calculate E0

when the matrix dφt is in Jordan normal form.

Proposition 4.11 (Namoijam and Papanikolas). Let φ : A→ Matd(K[τ ]) be a t-module of rank r

with t-frame (ι,Φ). Suppose that the following conditions hold.
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(i) There exists C ∈ GLr(K[t]) so that

D := CΦ =


T `1

. . .

T `r


is a diagonal matrix. Furthermore, for some m with 1 ≤ m ≤ r, we have `1, . . . , `m > 0,

`m+1 = · · · = `r = 0, and `1 + · · ·+ `m = d.

(ii) For 1 ≤ i ≤ m and 1 ≤ j ≤ `i,

dι((t− θ)j−1 · ei) = s`1+···+`i−j+1.

Then for α = (α1, . . . , αr) ∈ Mat1×r(Tθ),

E0(α) =



∂`1−1t (α1)

...

∂1t (α1)

α1

...

∂`m−1t (αm)

...

∂1t (αm)

αm



∣∣∣∣∣
t=θ

. (4.5)

From now on, we let ρ be the tensor product φ1 ⊗ φ2, which is defined in Definition 4.5.

Our goal in this section is to find periods for ρ using Theorem 4.10. First, we need to find an

explicit formula for E0 using Proposition 4.11. Namoijam and Papanikolas ( [22, Rem. 3.5.9]) also

explained that conditions (i) and (ii) imply that the matrix dφt is in the following Jordan normal
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form:

dφt =


dθ,`1 [θ]

. . .

dθ,`m [θ]

 ∈ MatdK, (4.6)

where, for any k ∈ N, we define

dθ,k[θ] =



θ 1

. . .
. . .

θ 1

θ


∈ MatkK.

Returning to our formula for ρt from equation (4.4), we recall that the matrix dρt does not have

Jordan normal form. Thus we want to pursue our investigation by finding a t-module ρ′ such that

ρ′ is isomorphic to ρ and dρ′t is in Jordan normal form as in equation (4.6).

Theorem 4.12. Let ρ be a t-module defined as in equation 4.4 and let

γ =



1 0

. .
. ...

1 0

1 0

. .
. ...

1 0

−Ar−1

Ar
. . . −A1

Ar
0 . . . 0 1

Ar



∈ Matr+s(K).

Then γ induces an isomorphism of t-modules γ : ρ′ → ρ, where the t-module ρ′ is given by

ρ′t = γ−1ρtγ. Moreover,

ρ′t =

Y1 Y2

Y3 Y4

 ∈ Matr+sK[τ ],
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where Y1 ∈ Matr−1(K[τ ]), Y2 ∈ Mat(r−1)×(s+1)(K[τ ]), Y3 ∈ Mat(s+1)×(r−1)(K[τ ]), Y4 ∈ Mats+1(K[τ ])

are defined by

Y1 =



θ B1τ B2τ
2 . . . . . . Br−2τ

r−2

θ B1τ . . . . . . Br−3τ
r−3

. . .
. . .

...
...

θ B1τ B2τ
2

θ B1τ

θ


,

Y2 =



Bsτ
r−1 . . . Brτ

r−1 Br−1τ
r−1 0

. .
. ...

...
...

Bsτ
2 . . . . . . . . . B3τ

2 B2τ
2 0

Bsτ Bs−1τ . . . . . . . . . B2τ B1τ 0


,

Y3 =



0 . . . 0

...
...

Arτ
r−1

. .
. ...

Arτ
2 . . . A3τ

2

Arτ Ar−1τ . . . A2τ

0 . . . 0

d1 d2 . . . dr−1



,
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Y4 =



θ A1τ A2τ
2 . . . Arτ

r 0

. . .
. . .

. . .
...

θ A1τ A2τ
2 . . . Arτ

r 0

θ A1τ . . . Ar−1τ
r−1 0

. . .
. . .

...
...

θ A1τ 0

θ 1

c1 c2 . . . cr e1 . . . es−r θ



,

and

d` =
∑̀
i=1

A(r−`)+iBiτ
i, 1 ≤ ` ≤ r − 1,

c` =
∑̀
i=1

AiB(s−`)+iτ
i, 1 ≤ ` ≤ r,

e` =
r∑
i=1

AiB(s−r−`)+iτ
i, 1 ≤ ` ≤ s− r.

Proof. We compute that det(γ) = 1/Ar. This implies that γ is an isomorphism of t-modules. The

second statement follows from a direct computation; we leave the details to the reader.

Next, we want to find a K[t]-basis for the dual t-motive of ρ′ defined in Theorem 4.12. Recall

that the dual t-motive is a left K[t, σ]-module Nρ′ = Mat1×d(K[σ]) with t · h = h(ρ′t)
∗ .

Lemma 4.13. Let ρ′ be a t-module defined in Theorem 4.12. Then

(ρ′t)
∗ =

Y ∗1 Y ∗3

Y ∗2 Y ∗4

 ∈ Matr+s(K[τ ]),
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Y ∗1 =



θ

σB1 θ

σ2B2 σB1 θ

...
. . .

. . .

σr−2Br−2 . . . . . . σB1 θ


Matr−1(K[τ ]),

Y ∗2 =



σBs

σ2Bs σBs−1

. .
. ...

σr−1Bs . . . . . . σBs−r+2

...
...

σr−1Br−1 . . . . . . σB1

0 . . . . . . 0



∈ Mat(s+1)×(r−1))(K[τ ]),

Y ∗3 =



0 . . . 0 σAr 0 d∗1

0 . . . 0 σ2Ar σAr−1 0 d∗2
...

... . .
. ...

...
...

0 . . . 0 σr−1Ar . . . . . . σA2 0 d∗r−1


∈ Mat(r−1)×(s+1))(K[τ ]),

and

Y ∗4 =



θ c∗1

σA1 c∗2
...

. . . θ c∗3
... σA1

...

σrAr
...

. . . e∗1
. . .

...
. . .

...

σrAr . . . σA1 θ e∗s−r

1 θ



∈ Mats+1(K[τ ]).

Proof. This formula is computed directly from the definition of ρt and the notation of ∗ defined in
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section 2.5 .

Lemma 4.14. Let Nρ′ be the dual t-motive associated to ρ′ from Theorem 4.12. For 1 ≤ j ≤ r, let

Nj = {σj−1s1, . . . , σj−1sr−j, σj−1sr, . . . , σj−1sr+s−(j+1), σ
j−1sr+s}.

Then N := ∪rj=1Nj is a K[t]-basis of Nρ′ .

Proof. For each 1 ≤ j ≤ r, we observe that #Nj = r + s− j − (j − 1) = r + s+ 1− 2j, so

#N =
r∑
j=1

(r + s+ 1− 2j) = r(r + s+ 1)− 2(r/2)(r + 1) = rs.

Recall that rankK[t]Nρ′ = rs, so we just need to show the SpanK[t]N = Nρ′ . Recall that Nρ′ =

Mat1×(r+s) K[σ], so every element α ∈ Nρ′ is a sum of monomials in the form aσ`sk where a ∈ K

` ≥ 0 and 1 ≤ k ≤ r + s. Thus it suffices to show that σ`sk ∈ SpanK[t]N for all `, k. For each `,

let

X` = {σ`−1sk : k = 1, . . . , r + s},

P` = {σ`−1sk : k = r − `+ 1, . . . , r − 1},

Q` = {σ`−1sk : k = r + s− `, . . . , r + s− 1}.

Then X` = N` ∪ P` ∪Q` and we want to show that X` ⊂ SpanK[t]N for all `. This can be proved

using induction on ` as follows. For ` = 1, we already have s1, . . . , sr+s−2, sr+s ∈ SpanK[t]N . We

also compute directly from the formula for (ρ′t)
∗ that

t · sr+s = sr+s(ρ
′
t)
∗ = sr+s−1 + θsr+s,

so sr+s−1 = (t− θ)sr+s ∈ SpanK[t]N . Suppose that X1 ∪ . . . ∪X` ⊂ SpanK[t]N . Let x ∈ X`+1.

If x ∈ N`+1, then x ∈ SpanK[t]N and we are done. Now suppose that x ∈ P`+1. Then x = σ`sk

for some k ∈ {r − `, . . . , r − 1}. Case 1: Suppose that x = σ`sr−`. By the definition of (ρ′t)
∗, we
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observe that

B(−`)
s σ`sr−` = (t− θ)sr−1+` +

3∑
k=1

∑
z∈Dk,`

a(z)z,

where a(z) ∈ K depends only on z and

D1,` = {σisr−i : i = 1, 2, . . . , `− 1},

D2,` = {σisr+l−1−i : i = 1, 2, . . . , `− 1},

D3,` = {σisr+s : i = 1, 2, . . . , r − `}.

It is clear that D1,` ∪ D2,` ∈ X`−1 ⊂ SpanK[t]N and that D3,` ∈ N . So D1,` ∪ D2,` ∪ D3,` ∈

SpanK[t]N . This implies that x ∈ SpanK[t]N . Case 2: Suppose that x = σ`si for some r − ` ≤

i ≤ r − 1. Then x = σ`−(r−i)(σr−isi) = σ`−u(σusr−u), where u = r − i. By the definition of

(ρ′t)
∗, we observe that

B(−u)
s σusr−u = (t− θ)sr−1+u +

3∑
k=1

∑
z∈Dk,u

a(z)z,

so

x = σ`−u
1

B
(−u)
s

(t− θ)sr−1+u +
3∑

k=1

∑
z∈Dk,u

a(z)z


=

1

B
(−`)
s

(t− θqu−`

)σ`−usr−1+u +
3∑

k=1

∑
z∈Dk,u

a(z)q
u−`

σ`−uz

 .

We observe that, since u ≥ 1, σ`−usr−1+u ∈ X1 ∪ . . . ∪ X` and σ`−uz ∈ X1 ∪ . . . ∪ X` for all

z ∈ D1,u ∪ D2,u. Also σ`−uz ∈ N for all z ∈ D3,u. It follows that x ∈ SpanK[t]N . When

x ∈ Q`+1, by using the similar argument as above, we can see that x ∈ SpanK[t]N .

Let n′ ∈ Matrs×1(Nρ′) be a column vector consisting of K[t]-basis for the dual t-motive Nρ′
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from Lemma 4.14 with the following order:

n′ = (s1, . . . , sr+s−2, sr+s, σs1, . . . , σsr−2, σsr, . . . , σsr+s−3, . . . , σsr+s, . . . , σ
r−1sr+s)

T.

Let (ι′,Φ′) be the t-frame induced by n′ and let Ψ′ be a rigid analytic trivialization corresponding

Φ′. This means σn′ = Φ′n′ and Ψ′(−1) = Φ′Ψ′. Next, we want to prove that the t-frame (ι′,Φ′)

satisfies the condition (i) and (ii) in Proposition 4.11. First, we need to define a matrix B which

will serve as a matrix representing the changing of K[t]-basis.

Definition 4.15. 1. For 1 ≤ j ≤ r − 1 and 1 ≤ ` ≤ rs, define b`,j as follows:

b`,j =



1
[r,j]

if ` = js+ 1

− 1
[r,k]

∑k−1
i=j bis+1,j[r − (k − i), i] if ` = ks+ 1 for some k ≥ j + 1

0 otherwise

2. For r ≤ j ≤ r + s− 2 and 1 ≤ ` ≤ rs, define b`,j as follows:

b`,j =



1
(s,j−r+1)

if ` = j − r + 2

− 1
(s,`−1)

∑`−1
m=j−r+2 bm,j(s− `+m,m− 1) if j − r + 3 ≤ ` ≤ s

0 otherwise

3. For 1 ≤ ` ≤ r2, define

b`,r+s−1 =


1 if ` = 1

0 otherwise

Definition 4.16. Define a matrixB ∈ Matrs(K) as follows. For each 0 ≤ ` ≤ r−1 and 1 ≤ m ≤ s,
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we define

row`s+mB =

r+m−(`+2)∑
k=r

b
(−`)
m−`,ksk+`[r+s−(`+1)], if `+ 2 ≤ m, (4.7)

row`s+mB = sm(r+s−m), if m = `+ 1, (4.8)

row`s+mB =

`−(m−1)∑
k=1

b
(−m+1)
[`−(m−1)]s+1,ksk+(m−1)[r+s−(m−1)], if m ≤ `, (4.9)

where bi,j is defined in definition 4.15.

In the following lemma, we show that after rearranging columns ofB, we obtain the new matrix

which is a lower triangular matrix. Furthermore, we show that B ∈ GLrs(K).

Lemma 4.17. Let B be the matrix from Definition 4.16. Then there is a matrix X ∈ GLrs(K) such

that B′ := BX is a lower triangular matrix with nonzero diagonal terms. Moreover det(B) 6= 0.

Proof. Let X ∈ GLrs(K) be the matrix given as follows: for each 1 ≤ j ≤ rs, we can write j

uniquely as j = `s + m for some 0 ≤ ` ≤ r − 1 and 1 ≤ m ≤ s. We denote a column vector

δk = (0, . . . , 1, . . . , 0)T ∈ Matrs×1(K), where 1 is in the k-th coordinate, and let

colj X =


δr+m−2+`(r+s−`−2) if `+ 2 ≤ m

δm(r+s−m) if m = `+ 1

δ(`−m+1)−(m−1)(r+s−m+1) if m ≤ `

.

The matrix X is a permutation matrix defined so that when we multiply B by X , it acts like we are

rearranging columns of B. Then B′ := BX is a lower triangular matrix with the diagonal entries

d1, . . . , drs, where

d`s+m =


b
(−`)
m−`,r−2+m−` if `+ 2 ≤ m

1 if m = `+ 1

b
(−m+1)
(`−m+1)s+1,`−m+1 if m ≤ `

.

for 0 ≤ ` ≤ r − 1 and 1 ≤ m ≤ s. By the definition of bi,j , we see that d1, . . . , drs are
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all nonzero. Thus, det(B) = det(B′) 6= 0. For example, in case r = s = 3, we set X =

(δ5, δ3, δ4, δ1, δ8, δ7, δ2, δ6, δ9) ∈ Mat9×9(K). Then

B =



0 0 0 0 1 0 0 0 0

0 0 b2,3 0 0 0 0 0 0

0 0 b3,3 b3,4 0 0 0 0 0

b4,1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 b
(−1)
2,3 0 0

b7,1 b7,2 0 0 0 0 0 0 0

0 0 0 0 0 b
(−1)
4,1 0 0 0

0 0 0 0 0 0 0 0 1



,

and

B′ = BX =



1 0 0 0 0 0 0 0 0

0 b2,3 0 0 0 0 0 0 0

0 b3,3 b3,4 0 0 0 0 0 0

0 0 0 b4,1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 b
(−1)
2,3 0 0 0

0 0 0 b7,1 0 0 b7,2 0 0

0 0 0 0 0 0 0 b
(−1)
4,1 0

0 0 0 0 0 0 0 0 1



.

Lemma 4.18. Let Φ = Φ1⊗Φ2. After rearranging rows of Φ, we obtain the new matrix which is an

upper triangular matrix. In other words, there is a matrix Y such that Y Φ is an upper triangular

matrix, and all diagonal entries of Y Φ are nonzero.
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Proof. Let Y ∈ Matrs(K) be given by

(row1 Y, . . . , rows Y ) = (srs, srs−(s−1), . . . , srs−1),

(rows+1 Y, . . . , row2s Y ) = (ss, s1, . . . , ss−1),

(row2s+1 Y, . . . , row3s Y ) = (s2s, ss+1, . . . , s2s−1),

...

(row(r−1)s+1 Y, . . . , rowrs Y ) = (s(r−1)s, s(r−2)s+1, . . . , s(r−2)s+s−1).

The matrix Y is a permutation matrix defined so that when we multiply Φ by Y , it acts like we are

rearranging rows of Φ, and it follows that Y Φ is upper triangular. Moreover, we observe that the

diagonal entries of Y Φ are

T 2

[r, r](s, s)
,
T

[r, r]
, . . . ,

T

[r, r]︸ ︷︷ ︸
s terms

,
T

(s, s)
, 1, . . . , 1︸ ︷︷ ︸

s terms

, . . . ,
T

(s, s)
, 1, . . . , 1︸ ︷︷ ︸

s terms

For example, when r = s = 3,

Y Φ =



T 2

[3,3](3,3)
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
T

[3,3]
∗ ∗ ∗ ∗ ∗ ∗ ∗
T

[3,3]
∗ ∗ ∗ ∗ ∗ ∗
T

(3,3)
∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗

1 ∗ ∗ ∗
T

(3,3)
∗ ∗

1 ∗

1



.
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Lemma 4.19. Let

D =



T

. . .

T

T 2

Irs−(r+s−1)


.

Then there exists a matrix P such that

PΦB = D.

Proof. Let B′ and X be the matrices from Lemma 4.17. Let D′ = X−1DX . Using the definition

of the permutation matrix X , one can see that the

diag(D′) = (T 2, T, . . . , T︸ ︷︷ ︸
s terms

, T, 1, . . . , 1︸ ︷︷ ︸
s terms

, . . . , T, 1, . . . , 1︸ ︷︷ ︸
s terms

)

SinceB′ is lower triangular, we know that (B′)−1 is lower triangular. Recall that the product of two

lower triangular matrices U = (ui,j) and V = (vi,j) is lower triangular. Moreover, the diagonal

entry of UV is equal to ui,ivi,i. Using this property, we compute that

diag(D′(B′)−1) = (T 2z1, T z2, . . . , T zs+1, . . .),

for some z1, . . . , zs+1 ∈ K. Let Y be the matrix from Lemma 4.18. Since the matrix Y Φ is

invertible, there is a matrix V ∈ GLrs(K[t]) so that V (Y Φ) = D′(B′)−1. Now, we let P = XV Y .

Then

V Y ΦB′ = D′,

V Y ΦBX = D′,

XV Y ΦB = XD′X−1,

PΦB = D.
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Lemma 4.20. Let D be the matrix given in Lemma 4.19. Then there exists a matrix C such that

CΦ′ = D.

Proof. Recall that Φ = B(−1)Φ′B−1, so ΦB = B(−1)Φ′. Let C = PB(−1). Then

CΦ′ = PB(−1)Φ′ = PΦB = D.

Theorem 4.21. Let ρ′ be the t-module from Theorem 4.12 and let E0 be the function from Proposi-

tion 4.11 associated to ρ′. Then

E0(α) =



α1

...

αr+s−2

∂1t αr+s−1

αr+s−1



∣∣∣∣∣
t=θ

, (4.10)

for any α = (α1, . . . , αrs) ∈ Mat1×rs(Tθ).

Proof. In Theorem 4.12, we create the t-module ρ′ isomorphic our original t-module ρ such that

dρ′t is in Jordan normal form, in particular,

dρ′t =



θ

. . .

θ 1

θ


=



dθ,1[θ]

. . .

dθ,1[θ]

dθ,2[θ]


.

Comparing this matrix to equation (4.6), we know that m = r + s − 1 and `1 = . . . = `m−1 =

1, `m = 2. By Lemma 4.20, we know that the t-frame (ι′,Φ′) induced by the basis n′ satisfies
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condition (i) in Proposition 4.11. We observe that for each 1 ≤ i ≤ m− 1, we have `i = 1 and

dι′((t− θ)0ei) = n′i = si = s`1+...+`i .

Also, we see that `1 + . . .+ `m = r + s, and

dι′((t− θ)0em) = n′m = sr+s = s`1+...+`m ,

dι′((t− θ)em) = (t− θ)n′m = (t− θ)sr+s = sr+s−1 = s`1+...+`m−1.

This shows that n′ satisfies condition (ii) in Proposition 4.11. Therefore, by substituting in equation

(4.5), we obtain the formula for E0.

Now we set Φ = Φ1 ⊗ Φ2, which is the Kronecker product of matrices. Furthermore, for each

i = 1, 2, we let Ψi be the rigid analytic trivialization corresponding to Φi in the sense of equation

(3.2), i.e.

Ψ
(−1)
i = ΦiΨi, i = 1, 2.

One can show that

(Ψ1 ⊗Ψ2)
(−1) = Φ(Ψ1 ⊗Ψ2).

Let Ψ be the Kronecker product of matrices given by

Ψ = Ψ1 ⊗Ψ2. (4.11)

Therefore Ψ is the rigid analytic trivialization corresponding to Φ. Also, there is a well-known

formula for Ψi, which we will state soon. Thus the formula for Ψ is easier to obtain comparing to

Ψ′. Because of this, we will use Ψ to compute Ψ′. In the following proposition, we state a useful

result on rigid analytic trivialization. We also refer the reader to [8, §3.4] and [23, §4.2] for more

details. Recall the matrix Υ from §3.

Proposition 4.22. Suppose that φ is a Drinfeld module of rank r given in equation (2.1). Let
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π1, . . . , πr ∈ Λφ be an A-basis of the period lattice and let f1, . . . , fr be the corresponding Ander-

son generating functions for φ. Let

Υ =


f1 . . . fr
...

. . .
...

f
(r−1)
1 . . . f

(r−1)
r


and

V =



A1 A
(−1)
2 . . . A

(−r+2)
r−1 A

(−r+1)
r

A2 A
(−1)
3 . . . A

(−r+2)
r

...
... . .

.

Ar−1 A
(−1)
r

Ar


.

Then Ψ = ((Υ(1))TV )−1 is a rigid analytic trivialization for φ.

Remark 4.23. Fix an A-basis π1, . . . , πr of the period lattice Λφ1 and an A-basis µ1, . . . , µs of the

period lattice Λφ2 . For each 1 ≤ i ≤ r, let fi be the Anderson generating function for φ1 with

respect to πi. Similarly, for each 1 ≤ j ≤ s, let gj be the Anderson generating function for φ2 with

respect to µj . According to the result by Pellarin, which is mentioned in Proposition 2.1, we can

write

fi(t) = − πi
t− θ

+ ui + higher order terms in t− θ,

and

gj(t) = − µj
t− θ

+ vj + higher order terms in t− θ,

for some ui, vj ∈ K. Let

Υ1 =


f1 . . . fr
...

. . .
...

f
(r−1)
1 . . . f

(r−1)
r

 , Υ2 =


g1 . . . gs
...

. . .
...

g
(s−1)
1 . . . g

(s−1)
s

 ,
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V1 =



A1 A
(−1)
2 . . . A

(−r+2)
r−1 A

(−r+1)
r

A2 A
(−1)
3 . . . A

(−r+2)
r

...
... . .

.

Ar−1 A
(−1)
r

Ar


, V2 =



B1 B
(−1)
2 . . . B

(−s+2)
s−1 B

(−s+1)
s

B2 B
(−1)
3 . . . B

(−s+2)
s

...
... . .

.

Bs−1 B
(−1)
s

Bs


.

By Proposition 4.22, we have

Ψ−1i = (Υ
(1)
i )TVi, i = 1, 2. (4.12)

As we previously explained, we want to compute Ψ′ from Ψ. Therefore, we want to know the

relation between them. Let n′ be a column vector consisting of the K[t]-basis for Nρ′ from Lemma

4.14 with a t-frame (ι′,Φ′) and a corresponding rigid analytic trivialization Ψ′. Picking another

K[t]-basis n for Nρ′ , with a t-frame (ι,Φ) and a corresponding rigid analytic trivialization Ψ is

equivalent to picking a matrix B ∈ GLrs(K) so that n = Bn′. In the next theorem, we use the

matrix B given in Definition 4.16 to pick another K[t]-basis for Nρ′ .

Theorem 4.24. Let n′ be a column vector consisting of the K[t]-basis for Nρ′ from Lemma 4.14.

Let B = (bij) ∈ GLrs(K) be the matrix defined in Definition 4.16. Let n = Bn′. Then n is a

column vector consisting of the K[t]-basis for Nρ′ such that σn = (Φ1 ⊗ Φ2)n.

Proof. First, we denote

n = (n1, . . . , nrs)
T, n′ = (n′1, . . . , n

′
rs)

T.

It is clear that every integer 1 ≤ j ≤ rs can be written uniquely as j = `s + m for some

0 ≤ ` ≤ r − 1 and 1 ≤ m ≤ s. Therefore, in order to prove that σn = (Φ1 ⊗ Φ2)n, we need to

show that, for such ` and m,

σn`s+m = (row`s+m(Φ1 ⊗ Φ2)) · n. (4.13)
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Fix 0 ≤ ` ≤ r − 1 and 1 ≤ m ≤ s. To prove the equation (4.13), we divide it into 3 cases

depending on ` and m, namely ` ≤ m − 2, ` = m − 1 and ` ≥ m. Then we use (4.7), (4.8) and

(4.9) to compute σn`s+m as follows. case 1 Suppose ` ≤ m−2. Using equation (4.7), we compute

that

n`s+m = (row`s+mB) · n′

=

r+m−(`+2)∑
k=r

b
(−`)
m−`,ksk+`[r+s−(`+1)]

 · n′
=

r+m−(`+2)∑
k=r

b
(−`)
m−`,kn

′
k+`[r+s−(`+1)]

=

r+m−(`+2)∑
k=r

b
(−`)
m−`,kσ

`sk.

So

σn`s+m =

r+m−(`+2)∑
k=r

b
(−`−1)
m−`,k σ

`+1sk.

case 2 Suppose that ` = m− 1. Using equation (4.8), we compute that

n`s+m = (row`s+mB) · n′ = n′m(r+s−m) = σm−1sr+s.

So σn`s+m = σmsr+s. case 3 Suppose that ` ≥ m. Using equation (4.9), we compute that

n`s+m = (row`s+mB) · n′

=

`−(m−1)∑
k=1

b
(−m+1)
(`−(m−1))s+1,kn

′
k+(m−1)(r+s−(m−1))

=

`−(m−1)∑
k=1

b
(−m+1)
(`−(m−1))s+1,kσ

m−1sk.

60



So

σn`s+m =

`−(m−1)∑
k=1

b
(−m)
(`−(m−1))s+1,kσ

msk.

Then we consider the Kronecker product Φ1⊗Φ2 and compute (row`s+m(Φ1 ⊗ Φ2))·n, which also

depends on ` and m. To compute (row`s+m(Φ1 ⊗ Φ2)) · n, we divide each case into 4 sub-cases,

including

(i) ` = r − 1,m = s,

(ii) ` = r − 1,m ≤ s− 1,

(iii) ` ≤ r − 2,m = s,

(iv) ` ≤ r − 2,m ≤ s− 1.

Then in each case, using the definition of the basis n′ and the matrix B, we can show that (4.13)

holds. For example, in case 1(iv), we compute that

σn`s+m =

r+m−(`+2)∑
k=r

b
(−`−1)
m−`,k σ

`+1sk

=

r+m−(`+2)∑
k=r

b
(−`−1)
m−`,k n

′
k+(`+1)[r+s−(`+2)]

=

r+m−(`+2)∑
k=r

b
(−`−1)
m−`,k sk+(`+1)[r+s−(`+2)]

 · n′
=
(
row(`+1)s+(m+1)B

)
· n′

= n(`+1)s+(m+1)

= (row`s+m(Φ1 ⊗ Φ2)) · n.

At this point, we have two bases for Nρ′ , namely n and n′ with the corresponding rigid

analytic trivializations (ι,Φ,Ψ) and (ι′,Φ′,Ψ′), respectively. Since n = Bn′, we know that
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Φ = B(−1)Φ′B−1 and Ψ = BΨ′ (see [22, §3.5] or [23, §3.2] for more details). So the matrix

B is a key to convert from Ψ to Ψ′. Moreover, we know that Ψ = Ψ1 ⊗ Ψ2. Using this formula

together with the relation between Ψ and Ψ′, we derive a formula for Ψ′ in the following Theorem.

Theorem 4.25. Let f1, . . . , fr and g1, . . . , gs be the Anderson generating functions in Remark

4.23. Suppose that Ψ′ is the rigid analytic trivialization corresponding to the t-frame (ι′,Φ′). Then

(Ψ′)−1 has the following form,

(Ψ′)−1 =



f
(r−1)
1 Tg1 . . . f

(1)
1 Tg1 Tf1g

(s−1)
1 . . . T f1g

(1)
1 T 2f1g1 ∗ . . . ∗

...
...

...
...

...
...

...

f
(r−1)
1 Tgs . . . f

(1)
1 Tgs Tf1g

(s−1)
s . . . T f1g

(1)
s T 2f1gs ∗ . . . ∗

...
...

...
...

...
...

...

f
(r−1)
r Tg1 . . . f

(1)
r Tg1 Tfrg

(s−1)
1 . . . T frg

(1)
1 T 2frg1 ∗ . . . ∗

...
...

...
...

...
...

...

f
(r−1)
r Tgs . . . f

(1)
r Tgs Tfrg

(s−1)
s . . . T frg

(1)
s T 2frgs ∗ . . . ∗



.

Proof. Let B be the matrix defined in Definition 4.16. From Theorem 4.24, we have two bases for

Nρ′ , namely n and n′ with the corresponding rigid analytic trivializations (ι,Φ,Ψ) and (ι′,Φ′,Ψ′),

respectively. Since n = Bn′, it follows that Ψ = BΨ′. Thus

(Ψ′)−1 = Ψ−1B.

We will derive the formula for the first row of the matrix (Ψ′)−1. The other rows can be derived

using the same method by changing the subscripts from f1, g1 to f1, g2, and then f1, g3, and so on.

We denote row1(Ψ
−1
1 ) = (α1, α2, . . . , αr) and row1(Ψ

−1
2 ) = (β1, β2, . . . , βs). It follows from a

straightforward computation that

α1 = Tf1, αk =
r+1−k∑
i=1

[i+ k − 1, k − 1]f
(i)
1 , 2 ≤ k ≤ r,
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β1 = Tg1, βk =
s+1−k∑
i=1

(i+ k − 1, k − 1)g
(i)
1 , 2 ≤ k ≤ s,

where [m,n] := A
(−n)
m and (m,n) := B

(−n)
m for m,n ∈ N. Since Ψ−1 = (Ψ−11 )⊗ (Ψ−12 ), we have

row1(Ψ
−1) = row1(Ψ

−1
1 )⊗ row1(Ψ

−1
2 ) = (α1β1, . . . , α1βs, . . . , αrβ1, . . . , αrβs)

Fix j ∈ {1, . . . , r − 1}. It follows from Definition 4.15 (1) that

(Ψ′)−11j =
rs∑
`=1

(Ψ−1)1,`b`,j

=
r−1∑
m=j

(Ψ−1)1,ms+1bms+1,j

=
r−1∑
m=j

αm+1β1bms+1,j

=
r−1∑
m=j

(
r−m∑
d=1

[d+m,m]f
(d)
1

)
β1bms+1,j

= β1

(
r−1∑
m=j

r−m∑
d=1

bms+1,j[d+m,m]f
(d)
1

)
.

Let
r−1∑
m=j

r−m∑
d=1

bms+1,j[d+m,m]f
(d)
1 = c1f

(1)
1 + c2f

(2)
1 + . . .+ cr−jf

(r−j)
1 .

Using the definition of bij , we compute that c1 = · · · = cr−j−1 = 0 and cr−j = 1. Therefore,

(Ψ′)−11j = β1f
(r−j)
1 = f

(r−j)
1 Tg1, 1 ≤ j ≤ r − 1.
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Next, we fix r ≤ j ≤ r + s− 2. It follows from Definition 4.15 (2) that

(Ψ′)−11j =
rs∑
m=1

(Ψ−1)1,mbm,j

=
s∑

m=j−r+2

(Ψ−1)1,mbm,j

=
s∑

m=j−r+2

α1βmbm,j

=
s∑

m=j−r+2

α1

(
s+1−m∑
d=1

(d+m− 1,m− 1)g
(d)
1

)
bm,j

= α1

(
s∑

m=j−r+2

s+1−m∑
d=1

bm,j(d+m− 1,m− 1)g
(d)
1

)
.

Let

s∑
m=j−r+2

s+1−m∑
d=1

bm,j(d+m− 1,m− 1)g
(d)
1 = a1g

(1)
1 + a2g

(2)
1 + . . .+ ar+s−1−jg

(r+s−1−j)
1 .

Using the definition of bij , we compute that a1 = · · · = ar+s−j−2 = 0 and ar+s−j−1 = 1. So

(Ψ′)−11j = α1g
(r+s−1−j)
1 = g

(r+s−1−j)
1 Tf1, r ≤ j ≤ r + s− 2.

From Definition 4.15 (3), we compute that

(Ψ′)−11,r+s−1 =
rs∑
m=1

(Ψ−1)1,mbm,r+s−1 = (Ψ−1)1,1b1,r+s−1 = α1β1 = T 2f1g1.

Recall that we have the t-module ρ′ and the t-frame (ι′,Φ′). In the following theorem, we

use the formula for the map E0 from Theorem 4.21 and the formula for Ψ′ from Theorem 4.25,

associated to the t-frame (ι′,Φ′) to find the periods for ρ′.

Theorem 4.26. Let E0 be the map given in Theorem 4.21 and let f1, . . . , fr and g1, . . . , gs be
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the Anderson generating functions in Remark 4.23. Let Ψ′ be the matrix in Theorem 4.25. For

1 ≤ i ≤ r and 1 ≤ j ≤ s, let

λi,j = E0(rows(i−1)+j(Ψ
′)−1). (4.14)

Then {λi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} forms an A-basis for the period lattice Λρ′ and

λi,j = −



f
(r−1)
i (θ)µj

...

f
(1)
i (θ)µj

g
(s−1)
j (θ)πi

...

g
(1)
j (θ)πi

πivj + µjui

−πiµj



.

Proof. By Theorem 4.10, we know that

Λρ′ = E0((Mat1×rsA) · (Ψ′)−1).

It follows that λi,j ∈ Λρ′ for every 1 ≤ i ≤ r, 1 ≤ j ≤ s. By the proof of Proposition 4.5.9 (b) in

[13], we know that row1(Ψ
′)−1, . . . , rowrs(Ψ

′)−1 forms a basis for V := (Mat1×rsA)(Ψ′)−1. By

Theorem 4.5.14 in [13],

E0|V : V → Λρ′

is a bijection. It follows that λ1, . . . , λrs forms a basis for Λρ′ . The formula for λi,j can be

derived as follows. Fix i and j. We denote row(i−1)s+j(Ψ
′)−1 = (α1, . . . , αrs). Then λi,j =

E0(row(i−1)s+j(Ψ
′)−1) = E0(α1, . . . , αrs). Using the formula for row(i−1)s+j(Ψ

′)−1 from Theorem
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4.25, we get

α` = f
(r−`)
i Tgj, ` = 1, . . . , r − 1,

αr−1+k = Tfig
(s−k)
j , k = 1, . . . , s− 1,

αr+s−1 = T 2figj.

The last equation implies that

∂t(αr+s−1) = (Tfi)∂t(Tgj) + (Tgj)∂t(Tfi).

Evaluating at t = θ, we obtain that

α`|t=θ = −f (r−`)
i (θ)µj, ` = 1, . . . , r − 1,

αr−1+k|t=θ = −πig(s−k)j (θ), k = 1, . . . , s− 1,

∂t(αr+s−1)|t=θ = −πivj − µjui,

αr+s−1|t=θ = πiµj.

Substituting in equation (4.10), we obtain the formula for λi,j .

Remark 4.27. We recall our observation in Remark 4.6, where we investigate C⊗2. Using Theorem

4.26, we acquire the period of C⊗2 as follows. First, we take an Anderson generating function f(t)

associated to π̃, which is equal to the Anderson-Thakur function ωC(t) from §2,

f(t) = ωC(t) = − π̃

t− θ
+ u+ higher order terms in t− θ.
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Then the period we get from Theorem 4.26 is

λ =

−2π̃u

π̃2

 .

This coincides with the result by Anderson and Thakur in Theorem 4.1. Moreover, u can be

computed as follows. Recall that −π̃ = Rest=θ ωC = ((t− θ)ωc)|t=θ = ω
(1)
c |t=θ. So

−∂1θ (π̃) = ∂1θ (ω
(1)
c |t=θ).

By applying the chain rule (see [24, Cor. 2.4.6]), we see that

∂1θ (ω
(1)
c |t=θ) = ∂1θ (ω

(1)
C )|t=θ + ∂1t (ω

(1)
C )|t=θ.

We also observe that ∂1θ (ω
(1)
C )|t=θ = 0, and ∂1t (ω

(1)
C )|t=θ = ∂1t ((t− θ)ωC)|t=θ = u. Therefore

u = −∂1θ (π̃).

4.4 Anderson generating functions for the tensor product of two Drinfeld modules

Recall the definition of Anderson generating functions for a t-module given in §2.6. In this

section, we provide a formula for the Anderson generating functions for ρ′ with respect to the

periods λi,j in Theorem 4.26. For 1 ≤ ` ≤ r and 1 ≤ k ≤ s, we let λ(`−1)s+k := λ`,k, where λ`,k is

defined in Theorem 4.26. For 1 ≤ j ≤ rs, let

Gλj(t) = (h1,j, . . . , hr+s,j)
T

be the Anderson generating function for ρ′ associated to λj . Recall from Proposition 2.3 that

Rest=θ Gλj(t) = −λj.
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We will use this property along with a formula for λj to find a formula for Gλj(t).

Lemma 4.28. Let Mρ′ be a t-motive associated to ρ′ from Theorem 4.12. For 1 ≤ j ≤ r, let

Mj = {τ j−1sk|1 ≤ k ≤ r + s− 1, k 6= 1, . . . , j − 1, r, . . . , r + j − 2}.

Then M := ∪rj=1Mj is a K[t]-basis of Mρ′ .

Proof. For each 1 ≤ j ≤ r, we observe that #Mj = r + s− 1− 2(j − 1) = r + s+ 1− 2j, so

#M =
r∑
j=1

(r + s+ 1− 2j) = r(r + s+ 1)− 2(r/2)(r + 1) = rs.

Recall that rankK[t]Mρ′ = rs, so we just need to show the SpanK[t]M = Mρ′ . We follows the

same idea as the proof of Lemma 4.14. We leave the details to the reader.

Fix a K[t]-basis vector m of Mρ′ as in Lemma 4.28 with

(m1, . . . ,ms) = (sr+s−1, . . . , sr),

(ms+1, . . . ,m2s) = (sr−1, τsr+s−1, . . . , τsr+1),

(m2s+1, . . . ,m3s) = (sr−2, τsr−1, τ
2sr+s−1, . . . , τ

2sr+2),

...

(m(r−1)s+1, . . . ,mrs) = (s1, τs2, τ
2s3, . . . , τ

r−1ss+r−1).

(4.15)

Then we compute that

τm = Θm,

where Θ = Θ1 ⊗Θ2. For any β =
∑`

k=0Xkτ
k ∈ Matm×n(K[τ ]) and M ∈ Matn×s(T), we define

〈β |M〉 =
∑̀
k=0

XkM
(k) ∈ Matm×s(T).
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Let R ∈ Matrs(T) be the matrix given by

Ri,j =
〈
τmi | Gλj

〉
. (4.16)

From the result by Namoijam and Papanikolas [22, §4.3], we know that R = ΘR(−1). Let Γ =

R(−1). Then Γ(1) = ΘΓ. Also, recall that Υ := Υ1 ⊗ Υ2 satisfies the same equation as Γ, so

Γ = ΥX for some X ∈ GLrs(Fq[t]). Thus

ΥX = Γ = R(−1). (4.17)

First, we consider λ1 and we denote the Anderson generating function for φ1⊗φ2 associated to λ1

Gλ1(t) = (h1, . . . , hr+s)
T.

Lemma 4.29. Let h1, . . . , hr+s ∈ T be such that Gλ1(t) = (h1, . . . , hr+s)
T. Let X = (xi.j) ∈

GLrs(Fq[t]) be the matrix satisfying equation (4.17). Then

h` =
r∑
i=1

s∑
j=1

x(i−1)s+j,1f
(r−`)
i gj, 1 ≤ ` ≤ r − 1,

hr+` =
r∑
i=1

s∑
j=1

x(i−1)s+j,1fig
(s−1−`)
j , 0 ≤ ` ≤ s− 1,

hr+s = Thr+s−1.

69



Proof. We observe that Γi,j = R
(−1)
i,j =

〈
mi | Gλj(t)

〉
. Using definition of m in (4.15), we have

(Γ1,1, . . . ,Γs,1) = (hr+s−1, . . . , hr),

(Γs+1,1, . . . ,Γ2s,1) = (hr−1, h
(1)
r+s−1, . . . , h

(1)
r+1),

(Γ2s+1,1, . . . ,Γ3s,1) = (hr−2, h
(1)
r−1, h

(2)
r+s−1, . . . , h

(2)
r+2),

...

(Γ(r−1)s+1,1, . . . ,Γrs,1) = (h1, h
(1)
2 , h

(2)
3 , . . . , h

(r−1)
s+r−1).

(4.18)

For 0 ≤ ` ≤ s− 1, we then have

hr+` = Γ`+1,1 =
rs∑
k=1

Υ`+1,kxk,1 =
r∑
i=1

s∑
j=1

x(i−1)s+j,1fig
(s−1−`)
j .

Similarly, for 1 ≤ ` ≤ r − 1,

h` = Γ(r−`)s+1,1 =
rs∑
k=1

Υ(r−`)s+1,kxk,1 =
r∑
i=1

s∑
j=1

x(i−1)s+j,1f
(r−`)
i gj.

It follows from Proposition 2.3 that ρ′t(Gλ1) = tGλ1 . Comparing the (r + s − 1)-th coordinate of

both sides, we see that θhr+s−1 + hr+s = thr+s−1. This proves the last equality.

Lemma 4.30. Let h1, . . . , hr+s ∈ T be such that Gλ1(t) = (h1, . . . , hr+s)
T. Let X = (xi.j) ∈

GLrs(Fq[t]) be the matrix satisfying equation (4.17). Then

Rest=θ h` =
r∑
i=1

s∑
j=1

x(i−1)s+j,1(θ)f
(r−`)
i (θ)µj, 1 ≤ ` ≤ r − 1,

Rest=θ hr+` =
r∑
i=1

s∑
j=1

x(i−1)s+j,1(θ)πig
(s−1−`)
j (θ), 0 ≤ ` ≤ s− 2,

Rest=θ hr+s−1 =
r∑
i=1

s∑
j=1

(
−x(i−1)s+j,1(θ)(πivj + µjui) + x′(i−1)s+j,1(θ)πiµj

)
Rest=θ hr+s =

r∑
i=1

s∑
j=1

x(i−1)s+j,1(θ)πiµj.
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Proof. This follows from Lemma 4.29. The first two equations is obtained by a direct computation.

To compute the residue of hr+s−1 and hr+s, we recall that

fi = −πi
T

+ ui + higher order terms, gj = −µj
T

+ vj + higher order terms,

which makes

figj =
πiµj
T 2
− πivj + µjui

T
+ higher order terms.

We write

x(i−1)s+j,1(t) = a0 + a1T + · · ·+ amT
m, a0, . . . , am ∈ Fq.

Then

x(i−1)s+j,1(t)figj =
a0(πiµj)

T 2
+
a1(πiµj)− a0(πivj + µjui)

T
+ higher order terms.

Recall that a0 = x(i−1)s+j,1(θ) and a1 = x′(i−1)s+j,1(θ). So

Rest=θ(x(i−1)s+j,1(t)figj) = x′(i−1)s+j,1(θ)(πiµj)− x(i−1)s+j,1(θ)(πivj + µjui),

Rest=θ(Tx(i−1)s+j,1(t)figj) = x(i−1)s+j,1(θ)(πiµj),

and the results follow.

Lemma 4.31. Let X = (xi.j) ∈ GLrs(Fq[t]) be the matrix satisfying (4.17). The following hold.

1. For 1 ≤ k ≤ rs,
rs∑
j=1

xj,k(t)λj =
rs∑
j=1

dρ′xj,k(t)λj = −λk.

2. For 1 ≤ j, k ≤ rs, xj,k = −1 if j = k; and xj,k = 0 otherwise.

3. X = −I .

Proof. (2) follows from (1) and the fact that λ1, . . . , λrs are linearly independent over Fq[t]. More-

over, (3) follows directly from (2). We just need to prove (1). We fix k = 1. For k ≥ 2, the proof
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is the same. First, we observe that

dρ′x(t) =



x(θ) 0 . . . 0 0

0 x(θ) . . . 0 0

...
...

. . .
...

...

0 0 . . . x(θ) x′(θ)

0 0 . . . 0 x(θ)


∈ Matr+s(K).

For 1 ≤ i ≤ r and 1 ≤ j ≤ s, it follows from the formula in Theorem 4.26 that

dρ′x(i−1)s+j,1(t)
λ(i−1)s+j = −



x(i−1)s+j,1(θ)f
(r−1)
i (θ)µj

...

x(i−1)s+j,1(θ)f
(1)
i (θ)µj

x(i−1)s+j,1(θ)g
(s−1)
j (θ)πi

...

x(i−1)s+j,1(θ)g
(1)
j (θ)πi

x(i−1)s+j,1(θ)(πivj + µjui)− x′(i−1)s+j,1(θ)πiµj

−x(i−1)s+j,1(θ)πiµj



.
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It follows from Lemma 4.30 that

rs∑
j=1

xj,1(t)λj =
rs∑
j=1

dρ′xj,1(t)λj

=
r∑
i=1

s∑
j=1

dρ′x(i−1)s+j,1(t)
λ(i−1)s+j

=


Rest=θ(h1)

...

Rest=θ(hr+s)


= Rest=θ Gλ1(t)

= −λ1.

By the above lemma, we obtain that−Υ = R(−1) = Γ. Recall that Υ = Υ1⊗Υ2, which means

(Υ1,1, . . . ,Υs,1) = (f1g1, f1g
(1)
1 , . . . , f1g

(s−1)
1 ),

(Υs+1,1, . . . ,Υ2s,1) = (f
(1)
1 g1, f

(1)
1 g

(1)
1 , . . . , f

(1)
1 g

(s−1)
1 )

...

(Υ(r−1)s+1,1, . . . ,Υrs,1) = (f
(r−1)
1 g1, f

(r−1)
1 g

(1)
1 , . . . , f

(r−1)
1 g

(s−1)
1 ).
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Using (4.18) to compare each coordinate of −Γ and Υ, we derive

Gλ1(t) =


h1
...

hr+s

 = −



f
(r−1)
1 g1
...

f
(1)
1 g1

f1g
(s−1)
1

...

f1g
(1)
1

f1g1

f1g1T



.

We compute Gλ2 , . . . ,Gλrs using the same technique and then we obtain the following result.

Theorem 4.32. Let {λi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} be a basis in Λρ′ from Theorem 4.26. Then

Gλi,j(t) = −



f
(r−1)
i gj
...

f
(1)
i gj

fig
(s−1)
j

...

fig
(1)
j

figj

figjT



.

Recall the rigid analytic trivialization Ψ′ from Theorem 4.25. The following formula shows the

relation between Ψ′ and the Anderson generating functions Gλi,j from Theorem 4.32.

Proposition 4.33. Let R be the matrix defined in (4.16) and let B be the matrix from Definition
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4.16. Let V = V1 ⊗ V2, where V1 and V2 are the matrices from (4.12). Then

(Ψ′)−1 = −RTV B.

Proof. Recall that ΥX = R(−1), where Υ andX are the matrices in (4.17). It follows from Lemma

4.31 that −Υ = R(−1). Therefore Ψ−1 = (Υ(1))TV = −RTV . Then the result follows from the

relation (Ψ′)−1 = Ψ−1B.

4.5 Examples

In this section, we consider a tensor product of two Drinfeld modules φ1 and φ2 defined by

(φ1)t = θ + A1τ + A2τ
2, (φ2)t = θ +B1τ +B2τ

2, A2 6= 0, B2 6= 0.

Recall the t-module ρ = φ1 ⊗ φ2 from Definition 4.5 and the t-module ρ′ from Theorem 4.12. In

this case, the t-modules ρ and ρ′ are defined by

ρt =



θ 0 A1 A2

A1τ θ A2τ 0

B1τ B2τ θ 0

B2τ
2 0 B1τ θ


, ρ′t =



θ B2τ B1τ 0

A2τ θ A1τ 0

0 0 θ 1

A2B1τ A1B2τ A1B1τ + A2B2τ
2 θ


.

Also, the K[t]-basis n′ in Lemma 4.14 is (s1, s2, s4, σs4)
T and the matrix B in Definition 4.16 is

given by

B =



0 0 1 0

0 1

B
(−1)
2

0 0

1

A
(−1)
2

0 0 0

0 0 0 1


.
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Using Theorem 4.26, we acquire the periods of ρ′ as follows. First, we fix periods π1, π2 ∈ Λφ1

and take the Anderson generating functions f1(t), f2(t) associated to π1, π2. For each i, we expand

fi(t) = − πi
t− θ

+ ui + higher order terms in t− θ.

Similarly, we fix periods µ1, µ2 ∈ Λφ2 and take the Anderson generating functions g1(t), g2(t)

associated to µ1, µ2. For each i, we expand

gi(t) = − µi
t− θ

+ vi + higher order terms in t− θ.

Then, using our formula in Theorem 4.26, we obtain the following periods in Λρ′:

λ11 =



−f (1)
1 (θ)µ1

−g(1)1 (θ)π1

−π1v1 − µ1u1

π1µ1


, λ12 =



−f (1)
1 (θ)µ2

−g(1)2 (θ)π1

−π1v2 − µ2u1

π1µ2


,

λ21 =



−f (1)
2 (θ)µ1

−g(1)1 (θ)π2

−π2v1 − µ1u2

π2µ1


, λ22 =



−f (1)
2 (θ)µ2

−g(1)2 (θ)π2

−π2v2 − µ2u2

π2µ2


.

To find the Anderson generating functions associated to λi,j , we apply our formula in Theorem

4.32 and then we get

Gλ1,1(t) = −



f
(1)
1 g1

g
(1)
1 f1

f1g1

f1g1T


, Gλ1,2(t) = −



f
(1)
1 g2

g
(1)
2 f1

f1g2

f1g2T


,
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Gλ2,1(t) = −



f
(1)
2 g1

g
(1)
1 f2

f2g1

f2g1T


, Gλ2,2(t) = −



f
(1)
2 g2

g
(1)
2 f2

f2g2

f2g2T


.

Moreover, we compute the inverse of the rigid analytic trivialization Ψ′ using Proposition 4.33 as

follows. Let R be the matrix obtaining from the coordinates of Gλi,j given by

R = −



f
(1)
1 g

(1)
1 f

(1)
1 g

(1)
2 f

(1)
2 g

(1)
1 f

(1)
2 g

(1)
2

f
(1)
1 g

(2)
1 f

(1)
1 g

(2)
2 f

(1)
2 g

(2)
1 f

(1)
2 g

(2)
2

f
(2)
1 g

(1)
1 f

(2)
1 g

(1)
2 f

(2)
2 g

(1)
1 f

(2)
2 g

(1)
2

f
(2)
1 g

(2)
1 f

(2)
1 g

(2)
2 f

(2)
2 g

(2)
1 f

(2)
2 g

(2)
2


.

Let

V = V1 ⊗ V2 =



A1B1 A1B
(−1)
2 A

(−1)
2 B1 A

(−1)
2 B

(−1)
2

A1B2 0 A
(−1)
2 B2 0

A2B1 A2B
(−1)
2 0 0

A2B2 0 0 0


.

Then it follows from Proposition 4.33 that

(Ψ′)−1 = −RTV B =



Tf
(1)
1 g1 Tf1g

(1)
1 T 2f1g1 A

(−1)
2 B

(−1)
2 f

(1)
1 g

(1)
1

Tf
(1)
1 g2 Tf1g

(1)
2 T 2f1g2 A

(−1)
2 B

(−1)
2 f

(1)
1 g

(1)
2

Tf
(1)
2 g1 Tf2g

(1)
1 T 2f2g1 A

(−1)
2 B

(−1)
2 f

(1)
2 g

(1)
1

Tf
(1)
2 g2 Tf2g

(1)
2 T 2f2g2 A

(−1)
2 B

(−1)
2 f

(1)
2 g

(1)
2


.
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5. CONCLUSION

In this dissertation, we provided a method to construct a rigid analytic trivialization for a Drin-

feld module. Moreover, we study a tensor product of two Drinfeld modules φ1 and φ2, and then we

find the periods of φ1 ⊗ φ2. Furthermore, we provide a formula for the Anderson generating func-

tions associated to the tensor product φ1⊗φ2, which can be expressed via the Anderson generating

functions of φ1 and φ2.
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