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ABSTRACT 

 

PIR sensors, known as motion detectors, are widely used for moving occupancy 

detection. Made of pyroelectric materials, such as LiTaO3, generating pyroelectric current 

when the received infrared radiation changes, PIR sensors only respond to the motion of 

occupants. This results in frequent false negative detections when stationary occupancy 

detection is also desired, such as occupancy-based building lighting control.  

To enable stationary occupancy detection, in this dissertation, we develop optical 

shutters to actively modulate the radiation received by the PIR sensors in the long-wave 

infrared (LWIR) region (8-12 µm) where human skin radiates the most. The optical shutter 

is made of polymer dispersed liquid crystal (PDLC) sandwiched by two germanium 

substrates. Each germanium substrate has an anti-reflected film on one side (the non-

conductive side) to reduce the reflection.  

The PDLC infrared shutter, a PIR sensor, and a driving circuit forms a 

synchronized low-energy electronically chopped PIR (SLEEPIR) sensor module. To 

better improve its performance, we devised SLEEPIR sensor nodes, and formed a 

SLEEPIR sensor network system with advanced machine learning algorithms.  

The main contributions of this dissertation include: (i) modeling the SLEEPIR 

output as a function of the effective modulation, the response time of the PDLC shutter, 

and the time constants of the PIR sensor; (ii) quantifying the impact of the driving voltage, 

the mass ratio, the cell gap, and the cooling rate on the effective modulation and the 

response time of the PDLC shutter to obtain the optimal driving voltage and fabrication 
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conditions that maximize SLEEPIR module’s output; and (iii) experimental validation of 

the SLEEPIR sensor nodes for presence detection in the lab and uncontrolled environment 

settings. 
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1. INTRODUCTION  

 

1.1. Background and Motivation 

1.1.1. Occupancy Detection 

Occupancy detection is essential for power usage management in commercial and 

residential buildings. For instance, accurate occupancy information for lighting, heating, 

ventilation, and air-conditioning (HVAC) systems can reduce energy consumption and 

preserve user comfort [1-4].  

There are two types of occupancy detection systems: terminal-based and non-

terminal-based [5]. Terminal-based detection systems need a terminal such as a mobile 

phone [6] or radio frequency identification tag [4]. Such terminals should be carried by 

the occupant, resulting in high deployment costs, privacy invasions, and inconveniences. 

Non-terminal based systems utilize remote occupancy sensors, such as passive 

infrared (PIR) sensors [7-17], carbon-dioxide (CO2) sensors [18, 19], ultrasonic sensors 

[20, 21], image recording devices [22-24], thermopile array sensors [25, 26] or the 

combination of them. CO2 sensors predict the occupancy presence and counting by 

measuring indoor gas concentration [18, 19]. Their accuracy is largely disturbed by 

environmental conditions such as sensor locations and airflow. Ultrasonic sensors predict 

the occupancy presence and location by measuring the echo intensity of the transmitted 

signal [20, 21]. However, they frequently report false positive detections due to the 

vibrations in the surrounding environment [20].  Image-based detection systems such as 

video cameras are also popularly used to detect occupancy presence, location, 
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identification and activity tracking [22-24]. However, their application is limited by 

environmental light, sensor position, cost, complicated signal processing process, and 

privacy invasions [27]. Thermopile array sensors, containing multiple thermopile point 

detectors, detect occupancy presence, localization, and facing direction [25, 26], by 

analyzing the received infrared radiation through Seebeck effect [28]. However, their 

application is restricted by their cost, detection range, and power consumption.  

1.1.2. PIR Sensors 

    The PIR sensor typically has two or four sensing elements, made of pyroelectric 

materials, such as LaTiO3 [7, 29]. Each sensing element has an opposite polarization to its 

neighboring one. Take a PIR sensor with four sensing beams as an example. As shown in 

Figure 1.1, when a person moves into its field of view (FOV), the incident infrared 

radiation received by each sensing element changes due to motion. The resulted 

temperature change of the sensing elements will generate a pyroelectric current.  The 

pyroelectric current could be converted to a voltage signal with an amplifier. The detailed 

working principle of PIR sensors can be found in Chapter 2.1. There are two types of PIR 

sensors on the market, digital PIR sensors and analog PIR sensors. The digital PIR sensor 

has a comparator behind the amplifier so that once the voltage signal exceeds a certain 

level, the sensor will fire a high digital signal. The analog PIR sensors utilize several stages 

of amplifiers to convert the small pyroelectric current (several pA) to a voltage signal that 

could be collected by other devices, such as analog-digital converters (ADC).  
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Figure 1.1  The operation principle of a PIR sensor. 

 

 

As motion detectors, PIR sensors are widely used for moving occupancy detection 

in door automation [30, 31], security surveillance [32, 33], lighting [34], or HVAC [35, 

36] control.  Lately, the literature also explores their applications in indoor occupancy 

tracking [13, 14] and positioning [12, 37] due to some obvious advantages of PIR sensors: 

(i) low cost, large pyroelectric coefficient, and great chemical stability [38], (ii) high 

responsivity to long-wave infrared radiation from the human skin (8-12µm) [39-41], (iii) 

the output signal (analog) is proportional to the received LWIR infrared radiation [42-44], 

and (iv) the FOV is large and controllable.  

The major bottleneck PIR sensors are currently facing is that they could not detect 

stationary occupants, which limits their applications that require accurate occupancy 

information, such as indoor lighting and/or HVAC control [1, 45]. According to the survey 

conducted by the United States Department of Labor, for an average of 11.7 hours per day, 
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the occupancy state of a full-time employee is considered stationary [46]. As 

aforementioned, as motion detectors, PIR sensors could not detect stationary status, such 

as lying, sitting, or standing, without noticeable movements [1, 47]. This results in 

frequent false-negative detection of current PIR sensors used in building lighting control. 

For example, the light will turn off in modern offices when the occupant inside is not 

moving for a while, typically 15 – 30 mins. This leads to uncomfortable light swings, 

energy waste, and shortened lifetime of the equipment. 

1.1.3. Optical Shutters and the SLEEPIR Sensor Module 

The motivation of this dissertation is to extend the functionality of the PIR sensor 

to detect both stationary and moving occupants. The infrared radiation emitted by 

stationary occupants does not change and thus cannot be detected by PIR sensors. 

However, if we introduce an optical shutter to actively change its transmission so that the 

radiation received by the PIR sensor is changing, this will enable the detection of 

stationary occupants. This is the basic working principle of our synchronized low-energy 

electronically chopped PIR (SLEEPIR) sensor module, as shown in Figure 1.2.  
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Figure 1.2 The optical shutter enables the detection of stationary occupants. Top: 

existing PIR sensor. Bottom: SLEEPIR sensor module. 

 

 

The bottom line is that the SLEEPIR sensor module should still be able to detect 

moving occupants. The transmission rate of the optical shutter needs to be highly tunable 

and stays high in the LWIR region. Some researchers, including our group, developed 

mechanical shutters as LWIR optical shutters [43, 44, 48-51], which will be reviewed in 

Chapter 2.2. Their high-power consumption, noise level, size, and reliability limit their 

practical applications. Thus, in this dissertation, we developed LWIR liquid crystal 

shutters for the SLEEPIR sensor module.  

1.2. LWIR Liquid Crystal Shutters 

Liquid crystal (LC) is a thermodynamic phase of a condensed matter between the 

conventional liquid and the solid crystal [52]. LC material has the optically anisotropic 

property and shows birefringence. An external electrical field can change the direction of 

the LC molecules and thus impacts the propagation of the light transmitted through the 
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LC material. If we define its ordinary refractive index as 𝑛𝑜 and its extraordinary 

refractive index as 𝑛𝑒, their birefringence can be defined as: 

 Δ𝑛 = 𝑛𝑒 − 𝑛𝑜 (1.1) 

Due to this unique electro-optical property in response to an external electrical 

field, LC materials are widely used in displays [53] and spatial light modulators [54] [55]. 

In particular, many researchers have investigated LC with high birefringence in the LWIR 

region, which can be potentially used to fabricate LWIR LC shutters for the SLEEPIR 

sensor module. These LWIR LC materials can be grouped in two categories based on the 

light transmission modes. The first is the transmissive mode based, which includes the 

retardation effect based twisted nematic LC (TNLC) [56], and the anisotropic absorption 

LC (AALC) [57]. The second category is the trans-reflective mode based, which includes 

the scattering mode and the reflection mode. Among them, polymer dispersed LC (PDLC) 

utilizes the scattering effect when the LC and the polymer's refractive indices are different 

[58, 59]. Ferroelectric LC (FLC) with a large dipole also utilizes the scattering effect when 

the external field switches the direction. Cholesteric LC (CLC) utilizes the Bragg effect to 

reflect the light with a specific wavelength according to the chiral pitch of the LC in the 

cell. The comparison of these LWIR LC materials is shown in Table 1.1.  

The transmission difference in Table 1.1 is calculated by subtracting the 

transmission rate at λ=10μm of the OFF state from that of the ON state. Here, the ON and 

the OFF states represent the states when the LWIR LC shutter has the higher transmission 

rate and the lower transmission rate, respectively. Among all these potential LWIR LC 
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material candidates, PDLC material has the advantage of low cost, high transmission 

difference, and relatively simple fabrication process.  

 

Table 1.1 LWIR LC material candidates. 

Liquid 

Crystal Type 

Properties Reference 

TNLC • Low transmission difference (12%)  

• Low transmission rate (<40% even in the ON state) 

• LWIR polarizers required and thus high cost to 

fabricate the shutter  

• Large cell gap (46 µm) and thus long response time 

in LWIR (4 seconds) 

[56, 60-63] 

FLC • Low transmission difference (6%-8%) 

• High driving voltage (>25V) 

[64, 65] 

CLC • Narrow wave band (9.5-10.5 µm) 

• Low transmission difference (11%) 

• Complicate fabrication process 

[66] 

AALC • No commercialized LC material 

• Low transmission difference (10%) 

[57] 

PDLC • No polarizers required and thus low cost 

• High transmission difference (~20%) 

[67, 68] 

 

 

In Chapter 2.2.4, effective modulation, which reflects the difference of the 

transmitted radiation, will be introduced to better characterize the property of the PDLC 

shutters compared to the transmission difference at the wavelength of 10𝜇𝑚. 

In this dissertation, the property and application of the PDLC shutters will be 

studied.  
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1.3. Scope and Objectives of the Dissertation 

As shown in Figure 1.3, the SLEEPIR sensor module consists of a PDLC shutter, 

a driving circuit, and a PIR sensor. The PDLC shutter consists of the PDLC material 

sandwiched between two germanium (Ge) substrates. Each Ge substrate has an anti-

reflected film on one side (inner side, non-conductive side) to reduce the reflection as Ge 

has a high refractive index [69]. A pulse-width-modulation (PWM) driving circuit controls 

the transmission of the PDLC shutter to modulate the radiation received by the PIR sensor.  

 

 

  

Figure 1.3 The proposed SLEEPIR sensor system for presence detection. 

 

 

A SLEEPIR sensor node is made of a SLEEPIR sensor module, a digital PIR 

sensor, a microcontroller unit (MCU), batteries, and direct current (DC) to DC converters. 

Adding a digital PIR sensor is to reduce the energy consumption and to increase the 

detection accuracy during the sleep stage. The sensor node will not only periodically wake 
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up and drive the SLEEPIR module to detect the stationary occupants, but also wake up by 

the motion detected by the digital PIR sensor. The DC-to-DC converters on the sensor 

node convert the voltage to the desired level. Multiple SLEEPIR sensor nodes and a hub 

form a wireless sensor network. The central hub is used to collect the data from each 

sensor node. Using fixed threshold values from the PIR sensors to detect occupancy status 

is a widely used method [16, 70, 71]. However, using the threshold value determined from 

one dataset on another dataset will lead to low performance due to the environmental 

change. Machine learning approach could help to improve the detection accuracy by 

analyzing the statistical features of the signals. When the environment factors change 

significantly, adaptively calibrating the output of the SLEEPIR module, which is related 

to the environmental temperature, will also have a high accuracy.  

The main objective of this dissertation is to systematically study the factors that 

impact the effective modulation and the response time of the PDLC infrared shutters, and 

thus impact the SLEEPIR module’s output. In the end, the performance of the SLEEPIR 

sensor system is evaluated in both controlled and uncontrolled environmental settings.   

In Chapter 2, we model the output of an analog PIR sensor as a function of 

sinusoidally modulated infrared radiation. The development of mechanical shutters from 

our group are reviewed, including the chopped PIR sensor (C-PIR) [51], the rotational 

chopped PIR sensor (Ro-PIR) [43], and the Lavet motor-driven PIR sensor (LAMPIR) 

[44].  The working principles of TNLC, FLC, CLC, AALC, and PDLC are introduced and 

compared. PDLC infrared shutters are chosen for the SLEEPIR sensor module due to the 

high modulation. Compared to references in the literature [67, 68], we improve the 
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contrast ratio and the transmission difference of our PDLC shutters by 16% and 165%, 

respectively. Finally, the fabrication process of the PDLC shutters is described. 

In Chapter 3, the SLEEPIR sensor module is devised and characterized. Its output 

is theoretically modeled as a function of the effective modulation and the response time 

of a PDLC shutter, and the time constants of the PIR sensor. The time constants of the 

analog PIR sensor are calculated by measuring the frequency response of the PIR sensor. 

Finally, the effective modulation and response time of the PDLC shutters are defined and 

characterized.  

In Chapter 4, our goal is to find the optimal fabrication and driving conditions of 

the PDLC shutters that optimize the SLEEPIR sensor module's output. Firstly, we study 

the morphology of glass based PDLC shutters via microscope images. The results show 

that at the same mass ratio, the droplet size will increase with a slower cooling rate. At the 

same cooling rate, the droplet size will increase when the mass ratio increases. Secondly, 

we systematically study the impact of the driving amplitude, the driving frequency, and 

the fabrication conditions on the effective modulation of the PDLC shutters. The effective 

modulation represents the difference of the transmitted radiation before and after 

removing the applied driving voltage. The effective modulation will increase with larger 

voltage amplitude until reaching the saturation level. Then, due to the dielectric property 

of the PDLC shutter, the optimal driving frequency is found to be below than 980Hz. With 

the same driving condition, the fabrication condition, including cell gap, mass ratio, and 

cooling rate, is discussed. The optimal fabrication condition that maximizes the effective 

modulation is 𝜂 = 0.8, 𝑑 = 22𝜇𝑚 at the cool rate between 1 and 1.25°C/min. The study 
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on the cycling effect shows that cycling could help reduce the hysteresis, the persistence 

and/or the semi-permanent persistence (memory effect). Thirdly, the response time is 

studied. The results show that the rising time will decrease with the increased voltage 

amplitude, while the decay time 𝜏𝑑 does not have obvious changes. The impact of the 

fabrication condition on the response time is also studied systematically, which shows that 

when the cell gap d and the mass ratio 𝜂 increases, the response time will increase. A faster 

cooling rate will decrease the response time. Fourthly, several PDLC shutters are 

fabricated under different conditions to verify the theoretical model of the SLEEPIR 

sensor module described in Chapter 3. Meanwhile, the optimal fabrication condition that 

generates the highest voltage amplitude is still 𝜂 = 0.8 , 𝑑 = 22𝜇𝑚  at the cool rate 

between 1 and 1.25°C/min. Finally, the lifetime of the PDLC shutters is discussed. The 

result shows that the output of the SLEEPIR sensor module is stable after more than 

250,000 cycles, which represents five years of usage if the measurement period is every 

10 minutes. 

In Chapter 5, we developed the SLEEPIR sensor node consisting of a SLEEPIR 

sensor module, a traditional motion sensor, an MCU, and related electronics. The power 

consumption is 95% reduced compared to mechanical shutter prototypes. Next, lab tests 

are performed where the occupants perform activities under instructions. In the end, 

uncontrolled tests are carried out where no instructions are provided, and environmental 

factors are considered. The machine learning model is applied for controlled experiments, 

which shows an average accuracy of 99.38%, 2.67% higher than that using the traditional 

threshold method. For uncontrolled experiments, the thermal transfer model of the 



 

12 

 

SLEEPIR sensor module is developed, considering environmental factors. An adaptive 

detection algorithm is introduced to improve the detection accuracy further. The results 

show that the adaptive detection algorithm reaches an accuracy of 97.8%, which is 28.66% 

and 35.46% higher than that using a stand-alone PIR sensor and that using the SLEEPIR 

sensor module with a fixed threshold, respectively. Finally, the proposed SLEEPIR sensor 

system is compared with commercial products.  

Chapter 6 summarizes the result of the dissertation, which shows the feasibility 

and high potential of using the SLEEPIR sensor system for building occupancy detection.  
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2. RELATED WORK*†‡§** 

 

This chapter starts with introducing the working principle of the PIR sensor and 

the mechanically chopped PIR sensors. Then, we reviewed and compared the working 

principles of different types of LWIR LC infrared shutters.  

2.1. Working Principle of the PIR Sensor 

2.1.1. The Pyroelectric Effect 

As shown in Figure 1.1, PIR sensors detect moving occupants based on the 

pyroelectric effect. The pyroelectric effect, or pyroelectricity, refers to the change of 

internal polarization of a material due to small changes in heat flux [7]. As shown in Figure 

2.1, if the pyroelectric material has a temperature change due to the incident radiation 

variation it has received, an electrical charge will be released at the surface of this 

pyroelectric material. 

 

* Part of this chapter is reprinted from “Turning a pyroelectric infrared motion sensor into a high-accuracy 

presence detector by using a narrow semi-transparent chopper” by H. Liu, Y. Wang, K. Wang, and H. Lin, 

2017. Applied Physics Letters, vol. 111, no. 24, p. 243901, with the permission of AIP Publishing. 
† Part of this chapter is reprinted, with permission, from L. Wu, Y. Wang, and H. Liu, “Occupancy detection 

and localization by monitoring nonlinear energy flow of a shuttered passive infrared sensor”, IEEE Sensors 

Journal, vol. 18, no. 21, pp. 8656-8666, 2018. Copyright © 2018 IEEE. 
‡ Part of this chapter is reprinted, with permission, from L. Wu, and Y. Wang, “A Low-power electric-

mechanical driving approach for true occupancy detection using a shuttered passive infrared sensor”, IEEE 

Sensors Journal, vol. 19, no. 1, pp. 47-57, 2019. Copyright © 2019 IEEE. 
§ Part of this chapter is reprinted, with permission, from L. Wu, F. Gou, S-T. Wu, and Y. Wang, “SLEEPIR: 

Synchronized low-energy electronically chopped PIR sensor for true presence detection”, IEEE Sensors 

Letters, vol. 4, no. 3, pp. 1-4, 2020. Copyright © 2020 IEEE. 
** Part of this chapter is reprinted with permission, from L. Wu, Y. Wang, “True Presence Detection via 

Passive Infrared Sensor Network Using Liquid Crystal Infrared Shutters”, Proceedings of the ASME 2020 

Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2020. 
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Figure 2.1 The pyroelectric material shows a flow of current due to the temperature 

change. 

 

 

Since the pyroelectric element in the PIR sensor is very thin, if the pyroelectric 

coefficient perpendicular to its surface is denoted as 𝑝′ , which is the perpendicular 

component of the pyroelectric coefficient 𝒑, then the current flow becomes 

𝑖𝑝 = 𝐴𝑝
′
𝑑Θ

𝑑𝑡
 

(2.1) 

where 𝐴 is the surface area, and 𝑑Θ/𝑑𝑡 is the temperature changing rate of the pyroelectric 

element. For most pyroelectric detectors, we could consider 𝑝′ = 𝒑. 

2.1.2. The Output of the PIR Sensor 

Consider the radiation power received by the PIR sensor is modulated at a 

frequency 𝜔:  

 𝑊(𝑡) = 𝑊0𝑒
𝑖𝜔𝑡 (2.2) 

Here, 𝑊0 is the amplitude of the radiation power.  
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Consider the thermal transfer model of the pyroelectrical element of the PIR 

sensor, as shown in Figure 2.2(a). If its  capacitance is 𝐶𝐸, emissivity is 𝛼, thermal capacity 

is 𝐻,  its thermal conductance to its surroundings (heat sink) is 𝐺𝑇, and the temperature 

difference from the heat sink is ΔΘ, then the thermo-electrical analogy of this thermal 

transfer model is shown in Figure 2.2(b) [72]. 

 

 

Figure 2.2 (a) The thermal transfer model of the pyroelectric element of the PIR 

sensor after exposure to the incident radiation power. (b) The equivalent thermo-

electrical analogy of the thermal transfer model.  

  

  

The received incident radiation 𝛼𝑊 functions as a current source. The thermal 

capacity 𝐻 and the thermal conductance 𝐺𝑇 are represented by a capacitor and a resistor, 

respectively. Then the temperature difference ΔΘ is [7] 

 
ΔΘ =

𝛼𝑊

𝐺𝑇
∙

1

√1 + 𝜔2𝜏𝑇
2
exp(𝑖𝜔𝑡) 

(2.3) 

where 𝜏𝑇 = 𝐻/𝐺𝑇 represents the thermal time constant. 

Substituting Equation (2.3) to Equation (2.1) leads to [7] 
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𝑖𝑝(𝑡) = 𝐴𝑝

′
𝛼𝑊

𝐺𝑇

𝜔

√1 + 𝜔2𝜏𝑇
2
exp(𝑖𝜔𝑡) 

(2.4) 

The current in Equation (2.4) is extremely low (several pA), and the source's 

impedance is high. Thus, a preamplifier with a high impedance is required to convert the 

current to voltage. The preamplifier circuit is shown in Figure 2.3. 

 

 

Figure 2.3 Preamplifier circuit of a passive infrared sensor. 

 

 

For the circuit illustrated in Figure 2.3, 𝑅𝑓𝑏 and 𝐶𝑓𝑏 correspond to the feedback 

resistor and capacitor, respectively. Here, 𝜏𝐸 = 𝑅𝑓𝑏𝐶𝑓𝑏  represents the electrical time 

constant. The amplifier performs as a current-voltage converter. The relationship between 

the output current 𝑖𝑝, the temperature difference ΔΘ between the sensing elements and the 

surrounding environment, the radiation power 𝑊(𝑡) and the output voltage 𝑉𝑜𝑢𝑡(𝑡) can be 

expressed as [7]: 
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{
 
 
 

 
 
 𝑖𝑝(𝑡) = 𝐴𝑝′

𝑑(ΔΘ)

𝑑𝑡

𝛼𝑊(𝑡) = 𝐻
𝑑(ΔΘ)

𝑑𝑡
+ 𝐺𝑇ΔΘ

𝑉𝑜𝑢𝑡(𝑡) =
𝑖𝑝(𝑡)

1
𝑅𝑓𝑏

+ 𝑖𝜔𝐶𝑓𝑏

  

 

 

(2.5) 

By solving Equation (2.5), the output voltage of the preamplifier stage is: 

 
𝑉𝑜𝑢𝑡(𝑡) =

𝑅𝑓𝑏𝛼𝑝′𝐴𝑖𝜔𝑒
−𝑖(arctan𝜔𝜏𝑇+arctan𝜔𝜏𝐸)

𝐺𝑇(1 + 𝜔2𝜏𝑇
2)1 2⁄ (1 + 𝜔2𝜏E

2)1 2⁄
𝑊(𝑡) 

(2.6) 

Equation (2.6) shows that there is a phase change between 𝑉𝑜𝑢𝑡(𝑡) and 𝑊(𝑡). If 

we only focus on the magnitudes, the output of the PIR sensor is: 

 
𝑉𝑜𝑢𝑡(𝑡) =

𝑅𝑓𝑏𝛼𝑝′𝐴𝜔

𝐺𝑇(1 + 𝜔2𝜏𝑇
2)1 2⁄ (1 + 𝜔2𝜏E

2)1 2⁄
𝑊(𝑡) 

(2.7) 

In Equation (2.7), once the modulation angular frequency 𝜔 is fixed, the output 

voltage of the preamplifier stage 𝑉𝑜𝑢𝑡(𝑡) is proportional to incident radiation.  

Next, we simulate the frequency response of the amplitude of the pyroelectric 

current 𝑖𝑝(𝑡) and output voltage 𝑉𝑜𝑢𝑡(𝑡) of the PIR sensor using parameters and their 

values shown in Table 2.1. The values are from a handbook of InfraTec® [73].  

 

Table 2.1 Parameters and their values used in the PIR sensor model. 

Parameter Value Unit Parameter Value Unit 

𝜶 1 N/A 𝜏𝑇 159 ms 

𝑾𝟎 1 µW 𝜏𝐸 3 s 

𝑮𝑻 1.95 mW/K 𝑑 25 µm 

𝑯 310 µWs/K 𝐴 4 mm2 

𝑹𝒇𝒃 24  GΩ 𝑝′ 17 nC/cm2/K 

𝑪𝒇𝒃 125  pF 
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 The simulated result is shown in Figure 2.4, with the frequency range from 

0.001Hz to 1kHz. The blue and orange curves represent the amplitudes of 𝑖𝑝 and 𝑉𝑜𝑢𝑡, 

respectively. The pyroelectric current 𝑖𝑝 shows the typical high pass characteristics. The 

cutoff frequency is 𝑓𝑇 = 1/2𝜋𝜏𝑇, with the value of 1Hz. Above this frequency, 𝑖𝑝 reaches 

the saturation value. Due to the addition of the amplifier, the amplitude of the output 

voltage 𝑉𝑜𝑢𝑡 shows the band pass property, with the pass band being from 𝑓𝐸 = 1/2𝜋𝜏𝐸  to 

𝑓𝑇 = 1/2𝜋𝜏𝑇. Within this range, the voltage value is flat. 

 

 

Figure 2.4 The simulated frequency response of pyroelectric current (left y-axis) and 

the preamplifier voltage (right y-axis). 

 

  

If there is only one pyroelectric element in the PIR sensor, as long as the 

environmental temperature changes, even though the occupancy status, no matter 

occupied or unoccupied, is not changing, there will still be a voltage output. Therefore, all 
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commercialized PIR sensors, to our best knowledge, have an even number of pyroelectric 

elements to eliminate the environmental disturbances. The number of elements with a 

positive polarization is equal to those with a negative polarization.  

2.2. LWIR Optical Shutters 

From Equation (2.7), for traditional PIR sensors, the voltage output 𝑉𝑜𝑢𝑡(𝑡) is zero 

if the incident radiation is not changing, where 𝜔 = 0. However, according to the survey 

conducted by the U.S. department of labor in 2018 [46], indoor occupants spend an 

average of 11.8h a day doing stationary activities, such as sleeping or sitting. This results 

in frequent false-negative detection of existing PIR sensors as they only respond to motion 

[1, 47]. This issue could be resolved by utilizing an LWIR optical shutter to modulate the 

incident radiation received by the PIR sensor, which is expressed in the form of Equation 

(2.2).  

2.2.1. The Chopped PIR Sensor (C-PIR) 

Using a mechanical optical shutter in front of a PIR sensor is not a new idea. In 

[48], the authors used a chopper in front of a PIR sensor as a thermometer. However, their 

work had not proved to be able to detect stationary occupants. Also, the detection range is 

limited to 50cm. In [74], Juan et al. used a camera iris shutter to control infrared radiation 

transmission. But the speed to shutter to close or open is fixed. Before we dive into the 

LC infrared shutter, there is some related work done by our group that uses mechanical 

shutters.  

H. Liu et al. [51] from our research group use a semitransparent shutter in front of 

the PIR sensor, which is named as Chopped PIR (C-PIR) sensor. The shutter is made of 
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high-density polyethylene (HDPE). The shutter is driven by a servo motor and periodically 

shutter LWIR radiation across the FOV of the C-PIR, as shown in Figure 2.5.  

 

 

Figure 2.5 Schematic of the Chopped PIR sensor (C-PIR). Reprinted from [51], with 

the permission of AIP Publishing. 

 

 

 

Figure 2.6 Output voltage waveforms induced by the C-PIR and its PIR counterpart 

when unoccupied and occupied by an occupant sitting at 1m away, at the chopping 

period of 7 s. Reprinted from [51], with the permission of AIP Publishing. 
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Figure 2.6 shows the output voltage of the PIR sensor when the HDPE shutter is 

rotating at the chopping period of 7 seconds. The blue dotted line is the output signal when 

there is a stationary occupant before the C-PIR. The polarity peaks generated show a 

higher magnitude than the unoccupied scenario. The authors use this magnitude (also 

known as peak-to-peak values) to classify the presence status. When placing the C-PIR on 

a desk and facing front, the C-PIR could maintain the accuracy of 100% within the range 

of 8 m. 

2.2.2. The Rotational Chopped PIR Sensor (Ro-PIR) 

In [43], I modified the way how the mechanical shutter rotates. Unlike C-PIR, Ro-

PIR rotates the optical shutter around the center of the PIR sensor, as shown in Figure 2.7. 

This work reports that the Ro-PIR sensor, a stand-alone smart sensor node that uses an 

HDPE shutter to monitor infrared energy flow received by a traditional PIR sensor for 

localization, tracking, and facing direction detection. 

Figure 2.8 illustrates the structure and diagram of the Ro-PIR sensor, respectively. 

An Arduino Nano MCU is powered by a 6V, 3W solar panel, and a Lithium-ion 

rechargeable battery. The MCU powers a stepper motor (28-BYJ48), a PIR sensor 

(PaPIR® AMN24112, Panasonic), and a Bluetooth module (HC-06) via the output pin. 

The HDPE shutter is attached to a ball bearing driven by the stepper motor and rotates 

periodically. The PIR sensor is placed at the center of the ball bearing. The MCU samples 

the analog signals of the PIR sensor through an ADC and sends data to a computer by a 

Bluetooth module. The Fresnel lens is placed between the PIR sensor and the shutter.  
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Figure 2.7 Schematic diagram of Ro-PIR sensor for occupancy detection. © 2018 

IEEE. Reprinted with permission from [43].  

 

 

 

Figure 2.8 Prototype of Ro-PIR sensor. (b) 3D diagram of Ro-PIR sensor. © 2018 

IEEE. Reprinted with permission from [43].  

 

 

 For most application scenarios, only zone-level detection is required. Thus, for this 

experiment, the testing area, with a height H = 2.8 m and a radial distance D = 2 m, is 

segmented into 2×6 = 12 zones (as shown in Figure 2.9(a)). The Ro-PIR sensor node is 
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placed on the ceiling, and an occupant stands at the cross points shown in Figure 2.9(b): 

D = 1 m, 2 m with 60° angular distance apart. Note that, the reason for not extending the 

test radius beyond 2 m is that the output signal will be too weak to differentiate from 

unoccupied scenarios. 

 

 

Figure 2.9 (a) Experiment setup, the sensor node was mounted on the ceiling with a 

height of 2.8 m with a radial floor size of 2 m. (b) Twelve zone-level segments 

numbered from 1 to 12 are created, which have a radial distance of 1m, 2m, and an 

angular distance of 60˚. Cross signs represent the standing positions of an occupant. 

© 2018 IEEE. Reprinted with permission from [43].  

 

 

Figure 2.10 illustrates five consecutive periods when one occupant stands at D = 1 

m and different angular positions, suggesting that the polarity-phase shifts with different 

angular positions. For each polarity peak, two features can be extracted: 
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Figure 2.10 Voltage output from 5 consecutive shuttering periods when an occupant 

stands at radial distance D = 1 m, and different zone-level angular positions. © 2018 

IEEE. Reprinted with permission from [43].  

 

 

1) Peak-to-peak value 𝑉𝑝𝑝: From Equation (2.7), 𝑉𝑝𝑝 is associated with radiant energy 

density W and the three covering configurations. The distance of an occupant to 

the Ro-PIR sensor will affect the energy density received by the sensor. Thus, 𝑉𝑝𝑝  

can reflect the distance information of the occupant.  

2) Intersection point position: As shown in Figure 2.10, the occupant's positions will 

affect the positions of the polarity phase peak pairs. We use intersection points, 

which are the points where the voltage signals between peak and valley meet with 

half of the supply voltage, to reflect the occupant's positions. From (2.7), the 
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intersection points are the time when the radiant energy reaches 0 W, and output 

voltage reaches half of the supply voltage.   

These two features can be used for localization using machine learning 

classification algorithms. We take the following steps to extract these two features from 

the output voltage signals. Firstly, we find peaks and valleys with a minimum peak height 

(MPH) equals 3.3 V, and a maximum valley height (MVH) equals 2.0 V. Next, the 

intersection points, and peak-to-peak value 𝑉𝑝𝑝 are found for each peak pair. 

We get two features for all peak pairs from different zone-level areas. The 720 

instances in the feature space are shown in Figure 2.11. The 𝑉𝑝𝑝 values are different for 

the occupant at D = 1 m (Zone 1/2/3/4/5/6) because the Fresnel lens is not symmetrically 

segmented in a sphere, and the covered sensing beams may vary for different occupancy 

positions. This step is done using a Matlab program on a computer with an Intel i7-5600U 

CPU. The runtime of this preprocessing is 1.5 seconds. 
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Figure 2.11 The peak-to-peak value Vpp and the position of intersection points are 

mapped into the feature space for 12 different zone-level areas. © 2018 IEEE. 

Reprinted with permission from [43].  

 

 

Next, the training sets are fed into machine learning classifiers. We use four 

supervised classifiers: support vector machine (SVM), k-nearest neighbor (k-NN), Naïve 

Bayes, and Decision Trees. SVM is a discriminative classifier formally defined by 

separating hyperplanes [75, 76]. Given the training data, the algorithm gives optical 

hyperplanes which categorize new data. The SVM uses kernel functions to project input 

data into a high-dimensional space to make classification much easier. The k-NN 

classifier, a non-parametric classifier, categorizes new data to the most common class 

among its k nearest neighbors [77]. By using the Bayes theorem, the Naïve Bayes classifier 

assumes that the input features are independent. In this classifier, the posterior probability 

is computed from all input data based on all classes. Then the new data is assigned to the 

class with the highest posterior probability. Decision Trees (DTs) is a non-parametric 
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supervised learning method for classification and regression by making a series of decision 

rules from input data [78].  

We adopt a free software machine learning library, scikit-learn [79], using Python 

programming language to test the selected classification algorithms. The following 

algorithms are tested: SVM, k-NN, Gaussian NB, and Decision Trees. For the SVM 

classifier, we choose three types of kernels: linear, polynomial, and radial basis function 

(RBF). For the k-NN classifier, we select k = 3, 5, and 7. To evaluate the results, we use 

3-fold cross-validation. All instances are divided into three groups. Two of them are used 

to train the classifier and one to validate it. This step is repeated three times, and each time 

uses a different group of data. Table 2.2 shows the accuracy and the runtime of each 

classifier. From Table 2.2, linear SVM, RBF SVM, and k-NN classifiers perform better 

than others.   

 

Table 2.2 Corrected classification ratio and runtime for different classifiers. © 2018 

IEEE. Reprinted with permission from [43].  

Classifier Accuracy 

(%) 

Runtime 

(ms) 

Naïve Bayes 98.31 3 

SVM, linear 98.73 3 

SVM, poly 98.31 3 

SVM, RBF 98.73 4 

Decision Trees 97.47 1 

3-NN 97.89 2 

5-NN 98.73 3 

7-NN 98.31 2 
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Table 2.3 Comparison between C-PIR, Ro-PIR and LAMPIR. © 2019 IEEE. 

Reprinted with permission from [44].  

Sensor Weight 

(g) 

Size(cm) Power(W) Sound 

level 

(dBA) 

Cost ($) 

vol. 10000 

C-PIR 130 8×6.3×6 1.05 42.6 4.06 

Ro-PIR 160 10×6×4.5 1.68 36.0 4.99 

LAMPIR 40 6.5×4.3×4.5 0.19 30.2 3.46 

Compare with 

C-PIR 

-70 % -60 % -82 % -12 -15 % 

Compare with 

Ro-PIR 

-75 % -55 % -89 % -6 -31 % 

 

 

2.2.3. The Lavet Motor Driven PIR Sensor (LAMPIR) 

Compared to C-PIR and Ro-PIR, LAMPIR [44] has a smaller size and lower power 

consumption, as shown in Table 2.3. The reason is that instead of using a servo motor and 

stepper motor, LAMPIR uses a Lavet vibrator [80], which is widely used in the quartz 

clock and wristwatch due to its low power consumption, lower noise level, and high 

accuracy. Typically, an AA battery could power a quartz clock for several years. A Lavet 

vibrator is a special single-phase stepping motor consisting of three parts: a stator, a 

solenoid coil, and a permanent magnet rotor. The structural design of the low-power 

electromechanical driving mechanism is shown in Figure 2.12. 
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Figure 2.12 Low power electro-mechanical driving mechanism. © 2019 IEEE. 

Reprinted with permission from [44].  

 

 

A pulse signal will be applied to the solenoid with the width of the pulse 𝑡𝑝𝑢𝑙𝑠𝑒 

and the width of zero-current 𝑡𝑑𝑒𝑙𝑎𝑦. When the positive pulse is applied to the solenoid, 

the stator is energized, which forces the rotor to turn to the desired position. When there 

is no pulse, the stator is in a zero-current state. The rotor will reach a cogging point due to 

the reluctant force. Cogging point is designed by the shape of the stator, which is the 

position that minimizes the air volume between the rotor and stator. Next, when the 

negative pulse is applied, the stator is in an opposite energized state, which pushes the 

rotor to the opposite position as in the positive state. Thus, a cycle that consists of one 

positive pulse, one no-current state, one negative pulse, and another no-current state will 

make the rotor rotate 360° in a cycle. Note that when a pulse is applied, the rotor will 

rotate to the corresponding position in a very short time (approximately 25 ms). Thus, the 

pulse width needs to be larger than 25 ms. We choose 50 ms for reliable consideration. 
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The low-power electromechanical driving approach has several advantages over 

the traditional servo or stepper motors. Firstly, it has a much simpler structure, consisting 

of only one solenoid and a pulse signal source. However, a stepper motor needs two or 

four solenoids with a driving circuit, and a servo motor needs one direct current (DC) 

motor and a feedback circuit. Secondly, only one pulse signal is required to energize the 

stator to drive the rotor in the low-power electromechanical vibrator. However, the PWM 

signals are needed to hold the angular position of the servo motor, and the stepper motor 

needs four pulse signals to keep the rotor rotating at the designed speed. Thus, the 

electromechanical vibrator consumes much less power and is much lighter and smaller 

than the servo or the stepper motor.  

 

 

Figure 2.13 Concept design of the LAMPIR sensor. © 2019 IEEE. Reprinted with 

permission from [44].  

 

 

Figure 2.13 illustrates the concept design of the LAMPIR sensor. An Arduino 

Nano MCU powers and controls both the electromechanical vibrator and the PIR sensor 
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(Panasonic® AMN24112). After receiving radiation energy, the PIR sensor outputs analog 

signals. MCU samples analog signals through ADC and sends data to a computer by a 

Bluetooth module. The electromechanical vibrator is placed on a circuit board and 

connects to the MCU. A gear chain is used to drive the HDPE shutter. The rotor in the 

electro-mechanical vibrator has 12 teeth. The first gear has a ratio of 6:1, and the second 

has 60 teeth. The HDPE shutter is attached to the second gear and can shutter across the 

FOV of the PIR sensor. Figure 2.14 shows the schematic and the prototype of the LAMPIR 

sensor, respectively.  

In [44], I conduct a long-time occupancy detection test that can evaluate the long-

term performance of the LAMPIR sensor. This will provide occupancy patterns in offices, 

homes, or buildings, making smart control strategies for lighting and HVAC systems. 

 

 

Figure 2.14 The 3D schematic and prototype of the LAMPIR sensor. © 2019 IEEE. 

Reprinted with permission from [44].  
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Figure 2.15 Block diagram of long-time occupancy detection platform. © 2019 

IEEE. Reprinted with permission from [44].  

 

 

The block diagram of a long-time occupancy detection platform is shown in Figure 

2.15. The Raspberry Pi 3 is a single-board computer with a relatively higher computation 

power than the MCU. A Raspberry Pi camera module is connected to a Raspberry Pi 

computer via a camera serial interface (CSI). The camera has a FOV of 62.2° horizontally 

and 48.8° vertically and is integrated with a Sony® IMX219 CMOS image sensor. In this 

test, the camera is in video mode and records videos with a resolution of 640×480 to save 

storage space. Both the LAMPIR and the traditional PIR sensor are powered and sampled 

by the Arduino Nano MCU to illustrate the advantages of the LAMPIR sensor over 

traditional PIR sensors. They are placed at the same position and connected to Raspberry 

Pi via Bluetooth modules. The sampling rate of both the LAMPIR and PIR sensors is 120 

Hz. The Raspberry Pi camera records the videos, and the output signals of the LAMPIR 

and the PIR sensor are recorded in a secured digital (SD) card in the Raspberry Pi 3 as 
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well. The videos are manually processed. When human objects are detected, the 

corresponding moment is labeled as an ‘occupied’ state. When no human is in the video, 

the corresponding moment is labeled as an ‘unoccupied’ state.  

Moreover, the ‘occupied’ states can be divided into two subclasses: ‘stationary 

occupant’ state and ‘moving occupant’ state, which indicates stationary occupants and 

moving occupants, respectively. The occupancy states, which are manually labeled from 

videos, are used as ground truth. The output signals from the LAMPIR and the PIR sensor 

are processed in the following sequence: data preprocessing, FindState algorithm, 

parameter selection. These processes will be explained in the next section. After 

processing, the occupancy states are predicted from the LAMPIR and the PIR data. By 

comparing the predicted states and the true states, performance evaluation is made for the 

LAMPIR sensor.  
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Figure 2.16 Output voltage signals of the LAMPIR sensor ((a), (b)), and traditional 

PIR sensor ((c), (d)) from Apr. 04, 2018 10:07:26 to 10:27:29. © 2019 IEEE. 

Reprinted with permission from [44].  

 

 

Figure 2.16 shows the output signal of the LAMPIR and the traditional PIR sensor 

within 20 minutes, recorded from 04/04/2018 10:07:26 to 10:27:29. Figure 2.16 (a) and 

(b) show signals of the LAMPIR sensor, while Figure 2.16 (c) and (d) represent signals 

from the traditional PIR sensor. After analyzing the videos corresponding to this time, one 

occupant sits for 20 minutes. Another occupant is walking in and out of the FOV several 

times, around 10:21:28, 10:23:29, and 10:27:29, respectively. For the moving scenarios, 
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both the LAMPIR and PIR sensor output signals with high peak-to-peak values and high 

occurrences of such peak pairs. However, for stationary occupants, the traditional PIR 

sensor only outputs relatively flat signals, while the LAMPIR sensor gives obvious 

polarity-shaped peaks with a constant period from each other. Note that the disturbance 

around 10:07:26 and 10:12:26 is caused by the slight movement of the occupant’s arms. 

Thus, we still label these moments as ‘stationary’ states. 

In preprocessing, collected output signals from the LAMPIR and the PIR sensor 

are fed to a Python script to extract signals and time stamps. More importantly, the 

continuous signals are split into sub-signals that each sub-signal has a duration of one 

minute. We split the signals into a 1-minute interval to predict the coarse states in each 

time interval. The coarse state is ‘moving’ as long as there exists one moment that the 

human is moving in a one-minute interval. The ‘unoccupied’ state happens when no 

occupants within the entire one-minute interval. Otherwise, the coarse state is labeled as 

‘stationary’. 

Next, I apply the FindState algorithm for each one-minute sub-signals, as shown 

in Figure 2.17, based on a peak detection algorithm [81], which can find peaks with a 

certain minimal peak height and distance. The inputs are the signal and four parameters: 

Vth-high, Vth-low, MinPeakHeight (MPH), and MinPeakDistance (MPD). Firstly, the peaks 

with MPH and MPD are found using findpeaks function from [82]. Next, for each peak in 

the found peaks, find the smallest value within a one-second distance. Here, one second is 

chosen because this is the time when the HDPE shutter goes across the FOV of the Fresnel 
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lens. Thus, Vpp is calculated for each peak. The maximum Vpp is chosen to determine the 

state by comparing it with Vth-high and Vth-low. 

 

 

Figure 2.17 FindState algorithm. © 2019 IEEE. Reprinted with permission from 

[44].  

 

 

Four parameters in the FindState algorithm are critical for obtaining an excellent 

detection performance. A grid search method is applied to choose these four parameters 

with the highest accuracy. The grid search range is predefined as follows: Vth-high = 

0.244 × 𝑖𝑡ℎ−ℎ V, where 𝑖𝑡ℎ−ℎ = 11,12,… ,20;  Vth-low = 0.244 × 𝑖𝑡ℎ−𝑙 V, where 𝑖𝑡ℎ−𝑙 =

1,2, … ,10; MPH = (𝑉𝑡ℎ + 𝑉𝑑𝑑)/2 + 0.049 × (𝑖𝑀𝑃𝐻 − 1) V, where Vth is the threshold 

value 0.47 V,  Vdd is the supply voltage, which is 5 V, and 𝑖𝑀𝑃𝐻 = 0,1,2, … ,11; MPD = 

0.833 + 0.416 × 𝑖𝑀𝑃𝐷  seconds, where 𝑖𝑀𝑃𝐷 = 1,2, … ,12 . When setting the searching 
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range for Vth-high and Vth-low, we segment 0V to 4.882 V range into 20 intervals. I choose 

the higher and lower ten interval values as Vth-high and Vth-low, respectively. The lower 

bound of the MPD searching range uses the average peak-to-peak distance when an 

occupant moves in the FOV. 

Next, 50% of the dataset is chosen as the training set. Each combination of these 

four parameters is used to evaluate the accuracy. Figure 2.18 shows partial of the grid 

search result of these four parameters. Figure 2.18 (a) and (b) illustrate the 3-state accuracy 

while Figure 2.18 (c) and (d) indicate the 2-state accuracy. Figure 2.18 (a) and (c) are 

plotted when fixing MPH = 2.734 V and MPD = 1.25 seconds. Figure 2.18 (b) and (d) are 

plotted when fixing Vth-high = 3.906 V and Vth-low = 0.976 V. Within the whole grid search 

space, when Vth-high = 3.906 V, Vth-low = 0.976 V, MPH = 2.734 V, and MPD = 1.25 

seconds, 3-state accuracy reaches 94.1%. When Vth-low = 0.976 V, and MPD = 1.25 

seconds, 2-state accuracy reaches 96.88%. 
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Figure 2.18 Grid search to find optimal parameters in the FindState algorithm. (a) 

and (c) are 3-state and 2-state accuracy versus Vth-high and Vth-low, respectively, 

when MPH = 2.734 V, and MPD = 1.25 seconds. (b) and (d) are 3-state and 2-state 

accuracy versus MPH and MPD, respectively when Vth-high = 3.906 V, and Vth-low = 

0.976 V. © 2019 IEEE. Reprinted with permission from [44].  

 

 

 

Figure 2.19 Predicted and true 3-state diagram during 31 hours. © 2019 IEEE. 

Reprinted with permission from [44].  
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Figure 2.20 Predicted and true 2-state diagram during 31 hours. © 2019 IEEE. 

Reprinted with permission from [44].  

 

 

Figure 2.19 and Figure 2.20 illustrate the state diagram within an approximately 

31-hour detection period within four workdays, that is from 04/04/2018 10:07 to 

04/04/2018 20:07, from 04/05/2018 10:16 to 04/05/2018 17:47, from 04/10/2018 10:58 to 

04/10/2018 17:58, and from 04/13/2018 10:58 to 04/13/2018 17:58. We extract one 

occupancy state for every minute. The total number of states is 1865. The following 

parameters are chosen: Vth-high = 3.906 V, Vth-low = 0.976 V, MPH = 2.734 V, and MPD = 

1.25 seconds. The 3-state accuracy for the whole dataset is 92.9%, while a 2-state accuracy 

for the whole dataset is 97.2%. 

2.2.4. LWIR LC Shutters 

This subsection will review different LWIR LC shutters using materials 

summarized in Table 1.1. Since invented in 1973 [83], TNLC has been commonly used in 

LC display industry. Its application in the infrared region (2-14 µm) was first studied by 
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Wu’s group [60, 84]. They developed the LWIR TNLC shutter with two infrared 

polarizers, two infrared-transparent substrates coated with polyimide (PI). Each PI-coated 

substrate was rubbed by a cloth in one direction so that their rubbing directions are 

perpendicular to each other. The directions of the LC molecules will align to the rubbing 

directions. 

When there is no electric field, the direction of the LC molecules at the top is 

parallel with the top polarizer's direction, which makes the incident light transmit through. 

After traversing through the LC material, the polarizing direction of the light will rotate 

for 90°. Similarly, since the rubbing direction of the bottom substrate is parallel with the 

bottom polarizer, the light could be transmitted through the bottom polarizer. With the 

presence of the electric field, the LC molecules will align with the direction of the external 

field, which is perpendicular to the path of the light. When propagating through the LC 

material, the polarizing direction of the light does not change and will be blocked by the 

bottom polarizer. TNLC is widely used in display fields within the visible light region [85-

87]. The advantage of TNLC is that the contrast ratio is high.  However, there are several 

limitations for the TNLC shutters in the LWIR region: (1) the application in the LWIR 

region requires a larger cell gap (~46µm), which causes a large response time (4 seconds); 

(2) two infrared polarizers are required, which increases the cost dramatically; (3) The 

polarizers will reduce the transmission rate. 

FLC material has the property of polarization inversion, which causes the transient 

light scattering mode (TSM) effect [88, 89]. In the TSM effect, the dipole moment in the 

LC material is aligned with the direction of the applied electric field. When the polarity of 
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the electric field is reversed, the dipole moment is oriented to a new direction. The light 

scattering takes place due to the transient disturbance of the LC material orientation. 

According to [64, 65], the ferroelectric LC infrared shutter has low transmission difference 

(6% to 8%) and requires a high driving voltage amplitude (25V or above).  

CLC is a reflective display that does not require a backlight system but uses 

ambient light as the light source [90-92]. CLC does not require polarizers because it does 

not use the retardation effect. CLC utilizes the Bragg effect that reflects the light with a 

specific wavelength according to the chiral pitch of the LC in the cell. However, this is 

also the limitation for infrared applications because they require a wide wavelength range 

(8-12𝜇m). Also, the fabrication process is complicate. CLC requires ultra-violet (UV) 

light to stabilize the polymer while the Ge substrates are opaque to UV light. 

For AALC shown in Figure 2.21, the LC molecule has two light axes, the long axis 

and the short one. When no electric field is applied, the plane formed by the long and short 

axes is perpendicular to the incident light. Then the light in both directions has large 

absorption. As the electric field increases, the LC molecules will be reoriented along the 

electric field direction. In this case, the long axis and the incident light share the same 

polarization, which decreases the absorption. Thus, the external electric field will increase 

the transmission. The LC material that shows a potential application in the infrared region 

has been developed [57]. However, compared to other LC types, the modulation is lower, 

which limits the application.  
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Figure 2.21 Working principle of the anisotropic absorption LC shutter. © 2020 

IEEE. Reprinted with permission from [42].  

 

 

PDLC is also widely used in the LC display industry [58, 59, 93, 94]. As shown in 

Figure 2.22, a PDLC cell consists of a liquid crystalline material dispersed as droplets in 

a polymer film and operates on the principle of electrically controlled birefringence [59, 

95]. Figure 2.22 illustrates the basic operation principle of the PDLC shutter. When no 

voltage is applied (𝐸=0), which is called the OFF state, the orientations of the droplets are 

random. The average refractive index of droplets and polymer film shows a mismatch. 

Thus, in this state, the incident radiation is scattered. When an electric field is present 

across the film, which is in the ON state, the droplet director will align with the electric 

field. When the refractive index of polymer (𝑛𝑝) is close to the ordinary index of the LC 

droplet (𝑛𝑜), the PDLC shutter shows high transmission to the incident light, as shown in 

Figure 2.22 (b). According to [67, 68], PDLC infrared shutters have higher transmission 

differences compared to ferroelectric LC, CLC, and AALC shutters. Also, since the PDLC 

shutter utilizes the scattering effect in the OFF state, no infrared polarizers are required, 
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which reduces the cost significantly. Thus, the following chapters in the dissertation will 

mainly focus on the study of PDLC infrared shutters, including building a model based on 

the modulation and response time, optimizing the performance, and studying their 

application.  

 

 

Figure 2.22 Working principle of the PDLC shutter. (a) Scattering mode, and (b) 

transparent mode. Here, np, ne and no represent the refractive index of polymer film, 

extraordinary index, and ordinary index of LC droplets, respectively. Reprinted with 

permission from [96]. 

 

 

The material selection for the PDLC infrared shutter is as followed. The substrates 

are the single side anti-reflection (8-12𝜇m) coated germaniums. The anti-reflection 

coating could reduce the reflection of the incident light at the interface between the air and 

the germanium [69, 97, 98]. I choose E7 as the liquid crystal material for the infrared 

PDLC shutter due to its high transmission and relative large birefringence in the LWIR 

region, where Δ𝑛 = 0.22 [60, 63]. Meanwhile, I select polyvinylpyrrolidone (PVP) as the 

polymer since the refractive index 𝑛𝑝 = 1.527 is close to the ordinary index of the LC 

𝑛𝑜 =1.5 [99]. This closeness could make the transmission rate be high when the electric 
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field is present. The difference between 𝑛𝑝  and 𝑛𝑒  could increase the scattering effect 

[100, 101].  

Compared to the TNLC and the AALC shutter [42], the PDLC shutter's fabrication 

process is simpler, as shown in Figure 2.23. The PDLC shutter is prepared by solvent-

induced phase separation (SIPS) followed by thermally induced phase separation (TIPS) 

[102]. During SIPS, the nematic LC material E7 (BOC Sciences, Inc.) and the polymer 

PVP (VWR International) are dissolved in chloroform (VWR International). The mixture 

is then distributed on one Ge substrate (Shenyang Ebetter Optics Co., Ltd.) and let the 

chloroform evaporate. After applying the glass beads with the size of the desired cell gap, 

another Ge substrate is pressed on the top at a high temperature (100°C). The droplet size 

is controlled by cooling the E7/PVP PDLC shutter at a desired cooling rate. Normally, the 

cooling rate varies within 0.1 to 4 °C/min [102, 103]. The faster cooling rate will decrease 

the droplet size for the same mass fraction between the liquid crystal and polymer. The 

droplet size is observed by a polarized optical microscope on the PDLC shutter prepared 

under identical fabrication conditions with glass substrates instead of Ge substrates.  
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Figure 2.23 Fabrication process of the PDLC infrared shutter. 

 

 

In the following work, we will characterize the PDLC infrared shutters in terms of 

their effective modulation and response time.  Compared to previously made AALC 

infrared shutters [42], the optimized PDLC shutters improve the effective modulation by 

136%. Compared to the PDLC shutters made by other researchers  [67, 68], the optimized 

PDLC shutters improve the contrast ratio by 16% and transmission difference by 165% as 

shown in Figure 2.24. Take the wavelength 𝜆 = 10𝜇𝑚 as an example, the contrast ratio 

and the transmission difference are defined by 𝜉𝑜𝑛(10𝜇𝑚)/𝜉𝑜𝑓𝑓(10𝜇𝑚) , and 

𝜉𝑜𝑛(10𝜇𝑚) − 𝜉𝑜𝑓𝑓(10𝜇𝑚), respectively. Here, 𝜉𝑜𝑛(𝜆) and 𝜉𝑜𝑓𝑓(𝜆) are the wavelength-

dependent transmission spectrums in LWIR region (8-12 µm) for ON and OFF state, 

respectively. The bars in the figure shows the average contrast ratio and the transmission 

difference of 4 samples from references [67, 68], and 23 samples with the optimal 

preparation condition, where the mass ratio 𝜂 of the LC is 80%, the cell gap 𝑑 is 22𝜇𝑚 

and the cooling rate is 1°C/min. The error bars represent the standard deviation. The reason 
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that our PDLC infrared shutters have better performance is that I systematically optimize 

the fabrication conditions that yield the best modulations, which will be detailed in 

Chapter 4.  

 

  

Figure 2.24 The comparison of (a) contrast ratio and (b) transmission difference 

between the reference [67, 68] and our work. 

  

 

The PDLC infrared shutters under the optimized fabrication conditions show 

higher contrast ratios and transmission differences than the reference [67, 68]. In the 

remaining dissertation, we use another term, effective modulation, to characterize the 

PDLC infrared shutters. Effective modulation reflects the difference of the transmitted 
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LWIR radiation between the ON and OFF states. Compared to the contrast ratio and 

transmission difference at the wavelength of 10𝜇𝑚, the effective modulation over the 

LWIR region (8-12 𝜇𝑚) better describes the property of the PDLC shutters.  

2.3. Summary 

In this Chapter, the working principle of the PIR sensor and the mechanically 

chopped PIR sensors are presented. The C-PIR sensor uses a servo motor to drive a semi-

transparent shutter that goes across the PIR sensor's FOV. The Ro-PIR sensor uses a 

stepper motor to rotate the shutter around the center of the PIR sensor. The LAMPIR uses 

a Lavet motor to drive the shutter to reduce the power consumption, noise, and size. 

However, mechanical shutters have several disadvantages: (i) high power consumption, 

(ii) large noise that will disturb users, and (iii) low reliability that requires frequent 

maintenance. 

Different LWIR LC infrared shutters are reviewed, including TNLC, Ferroelectric 

LC, CLC, AALC, and PDLC. Among those, PDLC infrared shutters have the advantage 

of low cost, high modulation, and a simple preparation process.  

In this dissertation, the characterization and optimization of the PDLC shutter will 

be studied. Specifically, the impact of the fabrication and driving conditions on the 

effective modulation and the response time is studied.  
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3. DESIGN AND CHARACTERISTICS OF THE SLEEPIR SENSOR MODULE 

 

In this chapter, the SLEEPIR sensor module, which consists of a PDLC infrared 

shutter and a traditional PIR sensor, is designed and characterized. A theoretical model of 

the output of the SLEEPIR sensor module is developed as a function of the effective 

modulation and the response time of the PDLC shutter, and the time constants of the PIR 

sensor. The time constants of the PIR sensor are measured using a rotating optical chopper.  

3.1. Design of the SLEEPIR Module 

As aforementioned in Section 2.2.4, the transmission of the PDLC shutter in the 

LWIR region rises with an electric field applied and will drop after removing the electric 

field. Typically, the driving voltage that controls the transmission of the PDLC infrared 

shutter is an alternative current (AC) voltage without DC components to avoid the ionic 

material being attracted to the substrates and degrade the performance [104]. As shown in 

Figure 3.1, the blue curve represents the applied voltage on the PDLC shutter. 

 

 

Figure 3.1 The ON-OFF states of the SLEEPIR sensor module vs. the applied driving 

voltage. 
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 The time period that the AC voltage is turned on and off is 𝑇𝑂𝑁  and 𝑇𝑂𝐹𝐹 , 

respectively. During the 𝑇𝑂𝑁 state, the AC voltage with the frequency 𝑓𝐴𝐶  and amplitude 

𝑉𝑟𝑚𝑠 is applied. During the 𝑇𝑂𝐹𝐹 state, the voltage is zero across the PDLC shutter. The 

orange curve in Figure 3.1 represents the state of the PDLC shutter. We denote the state 

“ON” to be the state with the presence of the AC voltage, “OFF” to be the state when 

removing the AC voltage. 

 

 

 

Figure 3.2 The driving circuit of the PDLC shutter. 

 

  

As aforementioned in Figure 1.3, the SLEEPIR sensor module consists of a PDLC 

shutter, a PIR sensor, and a driving circuit. The driving circuit is shown in Figure 3.2. 

PWM1 and PWM2 represent the two channels of the PWM signals sent from the MCU. 



 

50 

 

VMCU represents the supply voltage of the MCU. Normally, VMCU=3.3V. VB is the 

output of a DC-DC upconverter. In this study, VB is selected to be 10V, which is enough 

to maximize the transmission difference. Resistors R1 to R4 are used to limit the current.  

PWM1 and PWM2 are PWM signals that have a 50% duty cycle and a frequency 

of 𝑓𝐴𝐶 .These two PWM signals are also out of phase, as illustrated in Figure 3.3. Their 

amplitude is VMCU, which is 3.3V. Each channel of the PWM signal is connected to the 

source pin of an N-type metal-oxide-semiconductor field-effect transistor (NMOS), N1 

and N2, respectively. The gate pin of the NMOS is connected to the VMCU. The output 

AC voltages, AC1 and AC2, are connected to the drain pin of the NMOS.  

 

 

 

Figure 3.3 Waveform of PWM1, PWM2, and AC1-AC2 in the driving circuit. 

 

 



 

51 

 

Consider the first channel that converts PWM1 to AC1. When PWM1 is high 

(𝑃𝑊𝑀1(𝑡) = 𝑉𝑀𝐶𝑈), the voltage difference between the gate and source of NMOS is 

zero. NMOS is in the cut-off region, where no current flows through it. Then AC1 will be 

pulled up to VB. When PWM1 is low (𝑃𝑊𝑀1(𝑡) = 0), the voltage difference between 

the gate and the source of NMOS is VMCU, which makes the NMOS function as a closed 

switch. Thus, AC1 is pulled down to 0.  

 
𝐴𝐶1(𝑡) = {

𝑉𝐵, 𝑃𝑊𝑀1(𝑡) = 𝑉𝑀𝐶𝑈
0, 𝑃𝑊𝑀1(𝑡) = 0

 
(3.1) 

Thus, the signal of AC1 and AC2 are also PWM signals with the amplitude of VB 

and the frequency of 𝑓𝐴𝐶 . Moreover, their phases are opposite to each other. When 

connecting AC1 and AC2 to two Ge substrates of the PDLC shutter, the effective voltage 

applied on the PDLC shutter is AC1-AC2, which is an AC voltage, shown in Figure 3.3. 

As aforementioned in Chapter 1, commercial PIR sensors have an even number of 

sensing elements, typically two or four. Each sensing element has a polarization, which is 

the opposite direction to its neighboring one [105, 106]. Figure 3.4 shows two types of 

connections of two types of PIR sensors. The direction of arrows represents the 

polarization of the sensing elements. Figure 3.4(c) illustrates the PIR sensor with four 

sensing elements connected in series, which is the case (AMN24112, Panasonic) we are 

using in this dissertation. Since the environmental changes that affect all sensing elements 

are identical, the pyroelectric currents from the sensing elements cancel each other. For a 

SLEEPIR sensor module, although changing the state of the PDLC shutter could change 

the received radiation of the sensing elements, the compensation effect will lead to a flat 

output signal. Thus, in this dissertation, we use copper foils, which is opaque in the LWIR 
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region, to cover two sensing elements in diagonal to cancel the compensation effect. Only 

the uncovered sensing elements could respond to the infrared radiation variation. The 

uncovered and covered PIR sensors are shown in Figure 3.5. There is an optical window 

on the shell of the PIR sensor to make sure the sensing elements encapsulated in the sensor 

receive the radiation in LWIR region (8-12µm). The copper foils cover two diagonal areas 

on the optical window to block the radiation received by the two diagonal sensing 

elements. 

 

 

 

Figure 3.4 (a) Two sensing elements in series. (b) Two sensing elements in parallel. 

(c) Four sensing elements in series. (d) Four sensing elements in parallel. The arrow 

next to each sensing element represents the polarization. 
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Figure 3.5 The uncovered PIR sensor (left) and the covered PIR sensor (right). 

 

 

3.2. Model of the SLEEPIR Module 

In this subsection, we construct the SLEEPIR sensor module's output model as a 

function of the incident infrared radiation, the effective modulation and the response time 

of the PDLC infrared shutter, and the time constants of the PIR sensor. In Chapter 2.1, the 

output signal of a traditional analog PIR sensor is modeled. Equation (2.7) shows the 

output of the preamplifier stage of a pyroelectric element when the incident radiation is 

𝑊(𝑡) = 𝑊0 exp(𝑖𝜔𝑡).  

When building the model, we consider a traditional analog PIR sensor with a single 

pyroelectric element and a second-stage amplifier. If we denote, the gain of the second-

stage amplifier is 𝐴𝑎𝑚𝑝, the output of this analog PIR sensor becomes  

 
𝑉𝑜𝑢𝑡(𝑡) =

𝐾𝑃𝐼𝑅𝜔

(1 + 𝜔2𝜏𝑇
2)1 2⁄ (1 + 𝜔2𝜏E

2)1 2⁄
𝑊(𝑡) 

(3.2) 

where 𝐾𝑃𝐼𝑅 = 𝐴𝑎𝑚𝑝𝑅𝑓𝑏𝛼𝑝
′𝐴/𝐺𝑇.  

Next, we look at the incident radiation power 𝑊(𝑡). This represents the infrared 

radiation transmitted through the PDLC shutter and received by the PIR sensor. Figure 3.6 
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illustrates the variation of the transmitted infrared radiation when the PDLC shutter 

changes its operation state between ON and OFF. Before the time instant 𝑡1, the PDLC is 

in the OFF state, the transmitted infrared radiation after PDLC shutter is denoted as 𝑊𝑂𝐹𝐹. 

After the AC voltage is applied at 𝑡1, the transmission rate of the PDLC shutter starts 

increasing over time. The transmitted radiation reaches the maxima value, 𝑊𝑂𝑁 at time 𝑡2. 

Similarly, from 𝑡3 to 𝑡4, after removing the AC voltage, the transmitted infrared radiation 

of the PDLC shutter decreases from 𝑊𝑂𝑁 to 𝑊𝑂𝐹𝐹.  

 

 

Figure 3.6 Illustration of the variation of the transmitted infrared radiation when 

PDLC changes its operation state between ON and OFF. 

 

 

We use “response time” to represent how fast the PDLC shutter changes its 

transmission. The measurement of the response time will be described in Section 3.4. Here, 

we define two phases. The “rising phase” corresponds to the time period from 𝑡1 to 𝑡2, 
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and the “falling phase” corresponds to the time period from 𝑡3 to 𝑡4, as shown in Figure 

3.5. To simplify the modeling, we assume that the transmitted radiation within the rising 

and the falling phase changes in a sinusoidal manner, which can be represented in the 

following respective forms: 

 
𝑊𝑟𝑖𝑠𝑒(𝑡) =

𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹

2
exp(𝑖𝜔𝑟𝑡) +

𝑊𝑂𝑁 +𝑊𝑂𝐹𝐹

2
 

(3.3) 

 
𝑊𝑓𝑎𝑙𝑙(𝑡) =

𝑊𝑂𝐹𝐹 −𝑊𝑂𝑁

2
exp(𝑖𝜔𝑑𝑡) +

𝑊𝑂𝑁 +𝑊𝑂𝐹𝐹

2
 

(3.4) 

where 𝜔𝑟 = 𝜋/(𝑡2 − 𝑡1), 𝜔𝑑 = 𝜋/(𝑡4 − 𝑡3). Equation (3.3) and (3.4) indicate that during 

the rising and the falling phase, the infrared radiation transmitted through the PDLC 

shutter or received by the PIR sensor, is modulated at the frequency of 𝜔𝑟  and 𝜔𝑑 , 

respectively. From Chapter 2.1.2, we know that only when the incident radiation is 

sinusoidally modulated, the output of the PIR sensor could be written in Equation (2.7) or 

Equation (3.2). If we substitute the term 𝑊(𝑡) in Equation (3.2) by Equation (3.3) and 

(3.4), then the output of the SLEEPIR sensor module during the rising phase and the falling 

phase yields: 

 
𝑉𝑜𝑢𝑡,𝑟𝑖𝑠𝑒(𝑡) =

𝐾𝑃𝐼𝑅𝜔𝑟(𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹)

2(1 + 𝜔𝑟2𝜏𝑇
2)
1
2(1 + 𝜔𝑟2𝜏𝐸

2)
1
2

exp(𝑖𝜔𝑟𝑡) 
(3.5) 

 
𝑉𝑜𝑢𝑡,𝑓𝑎𝑙𝑙(𝑡) =

−𝐾𝑃𝐼𝑅𝜔𝑑(𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹)

2(1 + 𝜔𝑑2𝜏𝑇
2)
1
2(1 + 𝜔𝑑2𝜏𝐸

2)
1
2

exp(𝑖𝜔𝑑𝑡) 
(3.6) 

 We could consider 𝐾𝑃𝐼𝑅 as a constant, which depends only on the internal thermal 

and electrical parameters of the PIR sensor. Then Equations (3.5) and (3.6) prove that the 

output of the SLEEPIR sensor module depends only on three factors: the modulation 
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frequency of the rising and the falling phase 𝜔𝑟 and 𝜔𝑑, the difference of the transmitted 

radiation 𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹 of the PDLC shutter, and the time constants of the PIR sensor: the 

thermal time constant 𝜏𝑇 of the pyroelectric material and the electrical time constant 𝜏𝐸 of 

the preamplifier circuit.  

 The difference of the transmitted radiation 𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹  and the modulation 

frequency, 𝜔𝑟  and 𝜔𝑑 , represent how much and how fast the infrared radiation is 

transmitted by the PDLC shutter between the ON and the OFF state, respectively. The 

latter can be calculated by measuring the response time of the PDLC infrared shutter, 

which will be detailed in Chapter 3.4. 

 The time constants, 𝜏𝑇 and 𝜏𝐸, represent how fast the PIR sensor responds to the 

changes of the infrared radiation. Their values influence the sensitivity of the SLEEPIR 

sensor module. Their measurement and characteristic analysis are detailed in Chapter 3.3. 

The difference of the transmitted radiation and the response time of PDLC shutters 

and their optimization are introduced in Chapter 3.4.  

3.3. Time Constants of the PIR Sensor 

As shown in Equation (3.2), the output of an analog PIR sensor 𝑉𝑜𝑢𝑡(𝑡)  is a 

function of the sinusoidal modulation frequency 𝜔  of the incident infrared radiation. 

According to [7],  the frequency response of the PIR sensor’s output is reasonably flat 

between 𝜏𝑇
−1 and 𝜏𝐸

−1, deviating by -3dB from the maximum value. The time constants 𝜏𝑇 

and 𝜏𝐸 could be derived once the frequency response is found.  

The experimental setup to measure the time constants of 𝜏𝑇  and 𝜏𝐸  of the PIR 

sensor is shown in Figure 3.7. A blackbody radiation source (ThermoWorks IR-500) is 
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used to emit infrared radiation. An optical chopper is placed between the blackbody source 

and the PIR sensor (AMN24112 Panasonic). The optical chopper is a 3D printed circular 

plate with different numbers (1 and 5) of chopper blades. The rotation frequency of the 

chopper 𝜔𝑐 is controlled by a stepper motor. A black cardboard (opaque in the LWIR 

region) with a circular hole is placed between the chopper and the PIR sensor to limit the 

FOV of the PIR sensing elements. An oscilloscope reads the output voltage of the PIR 

sensor. 

 

 

Figure 3.7 (a) The schematic and (b) the photographic representation of the 

experimental setup to measure the time constants of the PIR sensor. 

 

 

The infrared radiation from the blackbody is chopped by the rotating optical 

chopper. The chopped radiation is in the shape of a sector, which has a radius of 𝑅 and 

rotating at a frequency of 𝜔𝑐. The cardboard with a hole crops the sensing area of the PIR 

sensor into a cylinder area. In Figure 3.8, a 3D illustration of the chopped radiation and 

the effective sensing beam is shown. The orange sector shape represents the chopped 
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infrared radiation. The blue cylinder area represents the effective sensing beam with a 

radius of 𝑟.  

 

 

Figure 3.8 The 3D illustration shows the chopped radiation rotating across the 

effective sensing beam. 

 

 

As shown in Figure 3.9, if we denote the overlapped area between the chopped 

radiation and the effective sensing beam to be 𝑆(𝑡), and we assume that the intensity of 

the chopped radiation is uniformly distributed, then the received radiation power of the 

PIR sensor 𝑊(𝑡) is proportional to 𝑆(𝑡). 

 𝑊(𝑡) = 𝐼𝑠𝑆(𝑡) (3.7) 

where 𝐼𝑠 represents the intensity of the radiation. When the chopped radiation rotates, the 

overlapped area 𝑆(𝑡) and the received radiation power of the PIR sensor 𝑊(𝑡) will change 

over time.  

The next step is to calculate the overlapped area 𝑆(𝑡) over time 𝑡. I define four 

time instances 𝑡𝑎 , 𝑡𝑏 , 𝑡𝑐 , 𝑡𝑑  to represent the time stamp when the chopped radiation 

interacts with an effective sensing beam. As shown in Figure 3.10, the chopped radiation 
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area rotates with a frequency of 𝜔𝑐. Its bottom edge is firstly tangent with the effective 

sensing beam at the time instant 𝑡𝑎. At time 𝑡𝑏, the effective sensing beam is fully covered. 

Here, 𝑡𝑐 represents the time when the upper edge of the chopped radiation is tangent with 

the effective sensing beam. And the effective sensing beam and the chopped radiation are 

separated at time 𝑡𝑑.  

 

 

Figure 3.9 The common area between the rotationally chopped radiation and the 

effective sensing beam. 

 

 

The overlapped area 𝑆(𝑡) could be calculated. Specifically, I denote two phases, 

the “incoming phase” and the “leaving phase”, to represent the time within [𝑡𝑎 , 𝑡𝑏] and 

[𝑡𝑐, 𝑡𝑑], respectively.  

 
𝑆(𝑡) = {

𝑆𝑖𝑛𝑐𝑜𝑚𝑒(𝑡), 𝑡 ∈ [𝑡𝑎, 𝑡𝑏]

𝑆𝑙𝑒𝑎𝑣𝑒(𝑡), 𝑡 ∈ [𝑡𝑐, 𝑡𝑑]
 

(3.8) 

𝑆𝑖𝑛𝑐𝑜𝑚𝑒(𝑡) and 𝑆𝑙𝑒𝑎𝑣𝑒(𝑡) represent the overlapped area within the incoming phase 

and the leaving phase, which are in the following forms, respectively: 
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Figure 3.10 Four time instances ta, tb, tc, td that represent the time stamp when the 

chopped radiation interacts with effective sensing beam. 

 

 

 

𝑆𝑖𝑛𝑐𝑜𝑚𝑒(𝑡) = {
𝑟2𝛽1 − 𝑟𝑑1 sin 𝛽1 , 𝑡 ∈ [𝑡𝑎,

𝑡𝑎 + 𝑡𝑏
2

]

𝑟2(𝜋 − 𝛽2) + 𝑟𝑑2 sin 𝛽2 , 𝑡 ∈ (
𝑡𝑎 + 𝑡𝑏
2

,  𝑡𝑏]
 

 

(3.9) 

 

𝑆𝑙𝑒𝑎𝑣𝑒(𝑡) = {
𝑟2(𝜋 − 𝛽3) + 𝑟𝑑3 sin 𝛽3 , 𝑡 ∈ [𝑡𝑐 ,

𝑡𝑐 + 𝑡𝑑
2

]

𝑟2𝛽4 − 𝑟𝑑4 sin 𝛽4 , 𝑡 ∈ (
𝑡𝑐 + 𝑡𝑑
2

, 𝑡𝑑] 
 

 

(3.10) 

where 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝛽1, 𝛽2, 𝛽3, 𝛽4 are functions with the variable 𝑡. Their forms are written 

in Equation (3.11) and (3.12). 
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𝑑𝑖 =

{
 
 
 

 
 
 𝑅 sin(arcsin

𝑟

𝑅
− 𝜔𝑐(𝑡 − 𝑡𝑎)) , 𝑖 = 1

𝑅 sin(𝜔𝑐(𝑡 − 𝑡𝑎) − arcsin
𝑟

𝑅
) , 𝑖 = 2

𝑅 sin(arcsin
𝑟

𝑅
− 𝜔𝑐(𝑡 − 𝑡𝑐)) , 𝑖 = 3

𝑅 sin(𝜔𝑐(𝑡 − 𝑡𝑐) − arcsin
𝑟

𝑅
) , 𝑖 = 4

 

 

(3.11) 

 
𝛽𝑖 = arccos

𝑑𝑖
𝑟
, 𝑖 = 1,2,3,4 

(3.12) 

 Equations (3.9) and (3.10) indicate that during the incoming phase (𝑡 ∈ [𝑡𝑎, 𝑡𝑏]) 

and the leaving phase (𝑡 ∈ [𝑡𝑐, 𝑡𝑑]), 𝑆𝑖𝑛𝑐𝑜𝑚𝑒(𝑡) and 𝑆𝑙𝑒𝑎𝑣𝑒(𝑡) are not sinusoidal functions. 

Thus, the received radiation of the PIR sensor 𝑊(𝑡)  is not sinusoidally modulated. 

Equation (3.2) does not hold. I define a sinusoidal function 𝑆′(𝑡) in the form of   

 

𝑆′(𝑡) =

{
  
 

  
 𝜋𝑟2

2
[1 + sin [

𝜋𝜔𝑐

2 arcsin
𝑟
𝑅

(𝑡 −
𝑡𝑎 + 𝑡𝑏
2

)]] , 𝑡 ∈ [𝑡𝑎, 𝑡𝑏] 

𝜋𝑟2

2
[1 − sin [

𝜋𝜔𝑐

2arcsin
𝑟
𝑅

(𝑡 −
𝑡𝑐 + 𝑡𝑑
2

)]] , 𝑡 ∈ [𝑡𝑐, 𝑡𝑑]  

 

 

(3.13) 

The modeling results of 𝑆(𝑡), 𝑆′(𝑡) and their difference are presented in Figure 

3.11, where 𝜔𝑐 = 0.6𝑟𝑎𝑑/𝑠, 𝑟 = 4𝑚𝑚, and 𝑅 = 10𝑚𝑚. The left y-axis represents the 

overlapped area of 𝑆(𝑡) and 𝑆′(𝑡), respectively. The right y-axis indicates their relative 

difference compared to the maximum overlapped area 𝜋𝑟2 . The difference does not 

exceed 5%, and thus, we could make an approximation: 

 𝑆(𝑡) ≈ 𝑆′(𝑡), 𝑡 ∈ [𝑡𝑎, 𝑡𝑏] ∪ [𝑡𝑐, 𝑡𝑑] (3.14) 
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Figure 3.11 The modeling results of S(t), S’(t) and their difference when ωc=0.6rad/s, 

r=4mm, R=10mm. 

 

 

 Therefore, the received radiation of the PIR sensor 𝑊(𝑡) could be approximated 

as 

 𝑊(𝑡) ≈ 𝐼𝑠𝑆
′(𝑡) (3.15) 

Equation (3.15) indicates that 𝑊(𝑡)  follows the sinusoidal manner, with a 

sinusoidal modulation frequency 𝜔 =
𝜋𝜔𝑐

2arcsin
𝑟

𝑅

. Thus, the output of the PIR sensor shown 

in Figure 3.7 follows Equation (3.2). To evaluate the time constants 𝜏𝑇  and 𝜏𝐸 , the 

relationship between the amplitude of the PIR sensor’s output and the sinusoidal 

modulation frequency 𝜔 should be found.  

In the experiment, the frequency of the chopper 𝜔𝑐 is in the range of [0.05, 50.00] 

rad/s. The radius of the chopped radiation is in the range of 𝑅 ∈ [25𝑚𝑚, 45𝑚𝑚]. The 

radius of the effective sensing beam is in the range of 𝑟 ∈ [5𝑚𝑚, 8𝑚𝑚], respectively. 



 

63 

 

Thus, the effective modulation frequency 𝜔 is in the range of [0.26, 705.04]rad/s. Figure 

3.12 shows the output 𝑉𝑜𝑢𝑡(𝑡) of the PIR sensor when the chopper rotates at the frequency 

of 𝜔𝑐 = 20.7rad/s. The curve changes in a sinusoidal manner. The peak-to-peak value is 

𝑉𝑝𝑝. 

 

 

Figure 3.12 The output of the PIR sensor Vout(t) when ωc=20.7 rad/s. 

 

 

For each 𝜔  value, the peak-to-peak value 𝑉𝑝𝑝  of PIR sensor is recorded.  The 

relationship between the averaged 𝑉𝑝𝑝 values and the sinusoidal modulation frequency 𝜔 

is shown in Figure 3.13. The x-axis is on the logarithm scale. The y-axis is in the unit of 

decibel (dB). The horizontal black line in Figure 3.13 represents the -3dB level from the 

maximum 𝑉𝑝𝑝 value. The two intersections between the -3dB level with the 𝑉𝑝𝑝-𝜔 curve 

indicate the values of 𝜔 that fullfill 𝜔𝜏𝑇 = 1 and 𝜔𝜏𝐸 = 1, respectively [7]. Thus, by 
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determining the value of 𝜔 at these two intersections, the corresponding time constants 𝜏𝑇 

and 𝜏𝐸 could be derived. As a result, 

 𝜏𝑇 ≈ 3.6𝑠, 𝜏𝐸 ≈ 3.5𝑚𝑠 (3.16) 

 

 

Figure 3.13 The peak-to-peak value of PIR sensor at different sinusoidal chopping 

frequencies ω. 

 

 

Now, the time constants of the PIR sensors are evaluated. The next step is to study 

the remaining two factors in Equation (3.5) and (3.6): 𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹, 𝜔𝑟 and 𝜔𝑑. 

3.4. The Effective Modulation and the Response Time 

In this subsection, the measurement methods of the effective modulation and the 

response time will be introduced. 
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By observing Equation (3.5) and (3.6), the amplitudes of the sinusoidal function 

𝑉𝑜𝑢𝑡,𝑟𝑖𝑠𝑒(𝑡) and 𝑉𝑜𝑢𝑡,𝑓𝑎𝑙𝑙(𝑡) are proportional to 𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹. It represents the difference 

of the infrared radiation transmitted through the PDLC shutter between the ON and the 

OFF state. The radiation 𝑊𝑂𝑁 and 𝑊𝑂𝐹𝐹 can be calculated from the incidental radiation 

and the transmission rate or contrast ratio of the PDLC shutter 𝜉𝑂𝑁(𝜆) and 𝜉𝑂𝐹𝐹(𝜆). The 

latter can be measured using a Fourier-transform infrared spectroscopy (FTIR) under 

different driving conditions.  

 As shown in Figure 3.14 and Figure 3.15, the FTIR spectrometer (Thermo 

Scientific Nicolet iS5) has a chamber with a light source and a detector placed at both 

ends. The PDLC shutter is placed at the center of the chamber. The driving signals are 

connected to the two Ge substrates, respectively. We use a waveform generator and an 

amplifier to change the frequency and amplitude of the AC voltage signal. The external 

voltage is provided by a waveform generator (Keysight 33500B) and a voltage amplifier 

(Trek model 2220). The electric field is in the form of an AC square wave with the 

frequency 𝑓𝐴𝐶  and the amplitude 𝑉𝑟𝑚𝑠, as described in Chapter 3.1.  
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Figure 3.14 FTIR spectrometer measurement setup. 

 

 

 

Figure 3.15 The photographic representation of the experimental setup to measure 

the FTIR spectrums of the PDLC shutter. 

 

 

 The effect of 𝑓𝐴𝐶  and 𝑉𝑟𝑚𝑠 on the effective modulation is discussed in Chapter 4. 

Here, we briefly introduce how to measure and calculate the effective modulation. When 

measuring the FTIR, we first configure the driving frequency 𝑓𝐴𝐶  from the waveform 
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generator. Then we start with 𝑉𝑟𝑚𝑠 = 0. It takes 18-20 seconds for the FTIR spectrometer 

to complete and report one measurement of the transmission rate. The reason it takes such 

a long time is that the spectrometer requires time to change the wavelength by changing 

the interferometer inside [107, 108] and to compute the measured transmission rate. After 

the measurement is complete, the wavelength-dependent transmission spectrum will show 

up on the OMNIC® software, with the range from 2.5µm to 25µm. Next, we control the 

waveform generator with different voltage amplitudes. Finally, we reduce 𝑉𝑟𝑚𝑠 to zero 

and repeat the measurement process. Figure 3.16 shows the measured transmission 

spectrums with different 𝑉𝑟𝑚𝑠 values when the frequency 𝑓𝐴𝐶 = 122𝐻𝑧. The range on the 

x-axis is 4-16µm. In the figure, the first five curves in the solid lines with different colors 

indicate the results with the increasing 𝑉𝑟𝑚𝑠 = 0𝑉, 2.1𝑉, 5.0𝑉, 9.0𝑉,  and 10.0𝑉 , 

respectively. The remaining three curves in the dashed lines represent the spectrums with 

the decreasing 𝑉𝑟𝑚𝑠 = 5.0𝑉, 2.1𝑉 and 0𝑉, respectively. The LC shutter was fabricated 

with 𝜂 = 0.7, 𝑑 = 26𝜇𝑚, and the cool rate of 1℃/min. We could observe that, when 

𝑉𝑟𝑚𝑠 = 2.1V, the transmission rate only changes a little compared to 𝑉𝑟𝑚𝑠 = 0V. As the 

𝑉𝑟𝑚𝑠 increases, the transmission rate increases until reaches the saturation when 𝑉𝑟𝑚𝑠 is 

larger than 6.0V. When the amplitude decreases, the transmission rate decreases but are 

not equal to those when increasing the amplitude.  For example, when 𝑉𝑟𝑚𝑠 decreases to 

zero, the measured transmission rate (dashed blue line) is slightly higher than its initial 

transmission rate at complete scattering state (solid red line). This might be caused by the 

hysteresis, the persistence and/or the memory effect, which will be discussed in Chapter 

4.2.4 in detail. Here, we could define the transmission rate 𝜉𝑂𝑁(𝜆) and 𝜉𝑂𝐹𝐹(𝜆) to be the 
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transmission spectrums when the transmission rate saturates and when 𝑉𝑟𝑚𝑠 decreases to 

zero, respectively. 

 

 

Figure 3.16 The FTIR Spectra of the LC shutters fabricated with η=0.7, d=26μm and 

the cool rate of 1°C/min at under different driving voltages. 

 

 

We denote the infrared radiation before and after the PDLC shutter is 𝑊 and 𝑊𝑇. 

Based on Planck’s law [109], any object in the FOV with a surface temperature of 𝑇 will 

emit radiance power (in the unit of watt) per unit area of the body, per unit solid angle of 

emission, and per unit wavelength: 
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𝐵(𝜆, 𝑇) =

ℎ𝑐2

𝜆5
  

1

𝑒𝑥𝑝 (
ℎ𝑐
𝜆𝑘𝐵𝑇

) − 1
 

(3.17) 

where ℎ is the Planck constant; 𝑐 is the speed of light; 𝑘𝐵 is the Boltzmann constant. 

 The transmitted radiation power 𝑊𝑇 in a wavelength range [𝜆1, 𝜆2] is: 

 
𝑊𝑇 = ∫ 𝐵(𝜆)𝜉(𝜆)𝑑𝜆

𝜆2

𝜆1

 
(3.18) 

Here, 𝜉(𝜆)  is the wavelength-dependent transmission spectrum of the PDLC 

shutter. Specifically, 𝜉𝑂𝑁(𝜆) and 𝜉𝑂𝐹𝐹 are the transmission spectrums for the ON and the 

OFF state, respectively. 

 
𝑊𝑂𝑁 = ∫ 𝐵(𝜆)𝜉𝑂𝑁(𝜆)𝑑𝜆

𝜆2

𝜆1

 

𝑊𝑂𝐹𝐹 = ∫ 𝐵(𝜆)𝜉𝑂𝐹𝐹(𝜆)𝑑𝜆
𝜆2

𝜆1

 

 

(3.19) 

Due to the hysteresis, the persistence and/or the memory effect of the PDLC 

shutters [110-113], after removing the electric field for a certain time, the transmission 

rate will still be slightly higher than that its initial transmission rate at complete scattering 

state. As illustrated in Figure 3.17 (a), applying the voltage to a PDLC shutter increases 

𝑊𝑇 from the initial state (marked by the black box) to the ON state (marked by the red 

circle). After removing the voltage, 𝑊𝑇 decreases gradually until it reaches a stable value 

(marked by the blue triangle). Figure 3.17 (b) illustrates the change of 𝑊𝑇 after removing 

the voltage. The OFF state is determined by the moment when 𝑊𝑇 changes less than 1% 

after the removal of the voltage. The time required to reach the OFF state will be discussed 

in Chapter 4.2.4. 



 

70 

 

 

Figure 3.17 The transmitted radiation WT (a) changes after applying and removing 

the voltage, and (b) decreases and reaches a relative stable state after removing the 

voltage for a certain amount of time. 

 

 

To better quantifying the changes of the transmitted energy, we use the effective 

modulation, 𝑀𝑂𝐷 to represent the difference of the transmitted infrared radiation between 

the ON and the OFF state, as shown in Figure 3.17. 

 
𝑀𝑂𝐷 = 𝑊𝑂𝑁 −𝑊𝑂𝐹𝐹 = ∫ 𝐵(𝜆)[𝜉𝑂𝑁(𝜆) − 𝜉𝑂𝐹𝐹(𝜆)]𝑑𝜆

𝜆2

𝜆1

 
(3.20) 
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In this dissertation, we use [𝜆1, 𝜆2] = 8-12𝜇𝑚 as the integration bandwidth where 

the human skin radiates the most [39, 114] like a blackbody in this region [114, 115]. In 

Chapter 4.2.4, we will characterize the persistence and the memory effect. We use cycling 

to reduce the time to be stable as well as the transmission difference between the initial 

and the OFF states. 

Next, we discuss the modulation frequency 𝜔𝑟  and 𝜔𝑑  shown in the model 

described by Equation (3.5) and (3.6). Before that, the response time of the PDLC infrared 

shutter will be introduced. The response time is the time required for a PDLC shutter to 

change from one state to another state. For PDLC infrared shutters, two types of response 

time are defined: the rise time 𝜏𝑟 and the decay time 𝜏𝑑. The rise time is the time in which 

transmission rate of the PDLC shutter rises from 10% to 90% after the electric field is 

applied. Similarly, the decay time is when its transmission rate falls from 90% to 10% 

after the electric field is removed [58, 59]. The visualization to of the response time is 

shown in Figure 3.18. The red curve shows the “rising phase”, which means the PDLC 

shutter changes from the OFF to the ON state. The blue curve represents the “falling 

phase”, where the PDLC shutter changes from ON to OFF state. To simplify the model, 

the relationship between the modulation frequency 𝜔𝑟 and 𝜔𝑑 and response time 𝜏𝑟 and 

𝜏𝑑 is shown below: 

 𝜔𝑟 =
𝜋

𝜏𝑟
 

𝜔𝑑 =
𝜋

𝜏𝑑
 

 

(3.21) 
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Figure 3.18 Definition of the response time. 

 

 

Although the FTIR spectrometer could measure the transmission rate with high 

wavelength resolution, it takes too long (tens of seconds) for one single measurement to 

calculate the response time. Thus, in this experiment, we use a photovoltaic detector with 

an amplifier to measure the response time of PDLC infrared shutters [56, 65, 68]. The 

output of the photodetector is linear to the received infrared radiation and its measurement 

is much faster (3 nanoseconds) so that its response is concurrent with that of the PDLC 

shutter. 

The experimental setup is shown in Figure 3.19(a) and (b), where the PDLC shutter 

with the control circuit is placed between a blackbody radiation source (ThermoWorks, 

IR-500) and the InAsSb photovoltaic detector (P13894-011MA) with an amplifier 

(C4159-01). The blackbody radiation source has a surface temperature of 80℃. The 

distance between the blackbody source to the PDLC shutter is set to be 5cm. This setup 

could help increase the signal-noise ratio by increasing the input radiation power. The AC 

voltage applied on the PDLC shutter is controlled by a manual push button. An 

oscilloscope will read the output from the amplifier.  
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Figure 3.19 Test setup of the photodetector to measure the response time. 

 

 

 

Figure 3.20 Output of the photodetector to calculate the response time. 

 

 

After turning on and off the AC voltage, the output voltage from the photodetector 

is shown in Figure 3.20. The label “turn on” and “turn off” indicate the time instances 

when we change the state of the PDLC shutter by pushing the button. As described earlier, 

the rise time 𝜏𝑟 and the decay time 𝜏𝑑 are calculate by the 10% and 90% levels of the 
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photodetector’s output, as shown in Figure 3.20. In Chapter 4.3, we will characterize the 

impact of the driving and the fabrication conditions on the response time.  

3.5. Discussion and Summary 

In this chapter, the SLEEPIR sensor module is designed by placing a PDLC 

infrared shutter in front of a traditional analog PIR sensor. The PDLC infrared shutter is 

driven by an AC voltage. By applying or removing the AC voltage, the transmission of 

the PDLC shutter will change accordingly.  

The SLEEPIR sensor module’s output model is developed by analyzing the 

working principle of the PIR sensor and quantifying the change of transmission of the 

PDLC shutter. The model shows that the output depends on three factors: the difference 

of the transmitted radiation between the ON and the OFF state, which is denoted by the 

effective modulation 𝑀𝑂𝐷, the response time of the PDLC shutter, which indicates how 

fast the radiation changes when changing the state of the PDLC shutter, and the time 

constants of the analog PIR sensor. 

We designed a rotating optical chopper to measure the time constants of the PIR 

sensors. They are the thermal time constant 𝜏𝑇  of the pyroelectric material and the 

electrical time constant 𝜏𝐸 of the preamplifier circuit.  More specifically, we measure the 

frequency response of the PIR sensor and determine the time constants by finding out the 

-3dB level. As a result, 𝜏𝑇 = 3.6𝑠, 𝜏𝐸 = 3.5𝑚𝑠. 

Finally, the measurement methods of the effective modulation 𝑀𝑂𝐷 and response 

time are introduced. The effective modulation 𝑀𝑂𝐷  is calculated by the transmission 

spectrums of the ON and OFF states.  The transmission rate of a PDLC shutter will change 
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when the amplitude of the AC voltage changes. Specifically, the transmission will increase 

as 𝑉𝑟𝑚𝑠  increases until it reaches saturation while reduces after removing the applied 

electrical field. However, it will not reduce to its initial transmission rate at complete 

scattering state even after a certain time due to the hysteresis, the persistence and/or the 

memory effect. Note that, here 𝑊𝑂𝐹𝐹 represents the transmitted power measured when it 

decreases and reaches a relative stable level. It is slightly higher than the transmitted power 

at the complete scattering state. The effective modulation 𝑀𝑂𝐷  is defined to be the 

difference between the transmitted radiation of the ON and the OFF state. To precisely 

measure the response time, an infrared photodetector is used. The rise time 𝜏𝑟 and the 

decay time 𝜏𝑑  are calculated by determining the 10% and the 90% level of the 

photodetector’s output.  

From the model of the SLEEPIR sensor module, we know that besides the time 

constants of the PIR sensor, the effective modulation 𝑀𝑂𝐷 and the response time will 

impact the output of the SLEEPIR sensor module. If the object that radiates infrared power 

does not change, then the effective modulation 𝑀𝑂𝐷 and the response time only depend 

on the PDLC infrared shutter itself. To be specific, the morphology of the LC droplets in 

the PDLC cell will impact the 𝑀𝑂𝐷 and the response time. The morphology is dependent 

on the fabrication conditions, which include the mass ratio 𝜂 of the LC material compared 

to the PDLC material, the cell gap 𝑑 of the PDLC shutter, and the cooling rate during the 

phase separation. When using the PDLC infrared shutter, the driving voltage will also 

impact the effective modulation. In Chapter 4, we will quantify the impact of these 
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fabrication and driving conditions to identify the optimal condition that maximizes the 

SLEEPIR sensor module's output.  
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4. PERFORMANCE OPTIMIZATION OF THE SLEEPIR SENSOR MODULE 

 

From the model develop in Chapter 3, the output of the SLEEPIR sensor module 

depends on the effective modulation 𝑀𝑂𝐷, and the modulation frequency of the rising 

and falling phase 𝜔𝑟 and 𝜔𝑑 of the PDLC shutter, and the time constants 𝜏𝑇 and 𝜏𝐸 of the 

PIR sensor. Here 𝜔𝑟  and 𝜔𝑑   can be calculated from their response time 𝜏𝑟  and 𝜏𝑑  as 

shown in Equation (3.21).  The time constants of the PIR sensor were also characterized 

in Chapter 3.  

In this chapter, we will characterize the effective modulation and the response time 

of the LC shutter, which represent how much and how fast the transmitted radiation 

changes when the state of the PDLC shutter changes, respectively.  

  The effective modulation and the response time of PDLC shutters, were 

extensively studied by researchers in the past, but mainly focused on the visible region  

[94, 116]. As introduced in Chapter 2.2.4, their modulation capacity is largely depending 

on their scattering effect. The LC droplets within the polymer will scatter incident light 

when no electric field is present. A single-droplet model of a PDLC shutter [117, 118] 

show that the level of applied voltage will alter the direction of LC droplets, and thus the 

scattering and propagation of light. The morphology of the droplets, such as their sizes, 

shape, density, also have impact on their modulation and response time [110, 117, 119-

121]. The morphology is determined by the fabrication condition, including the mass ratio, 

the cell gap, the cooling rate, polymer type, etc. We use TIPS with SIPS, to fabricate our 

PDLC shutters, as shown in Figure 2.23. Here, three fabrication conditions are studied and 
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compared: the mass ratio 𝜂, cell gap 𝑑 and the cooling rate (CR). The mass ratio is the 

mass percentage of E7 LC material within the PDLC mixture, ranging from 0 to 1. The 

cell gap is controlled by the glass beads with different diameters, which are placed between 

the Ge substrates. A thermal stage (Instec MK2000) with a resolution of 0.01°C is used to 

control the cooling rate. 

 For each PDLC shutter, we define the name convention following the order of the 

mass ratio, the cell gap, the cooling rate, and the index. For example, M80D22C1.5-3, 

represents the PDLC shutter prepared with the mass ratio of 80%, the cell gap of 22 𝜇m, 

and the cooling rate of 1.5℃/min and this is the 3rd sample prepared under such condition.  

 In this chapter, we firstly show how morphology changes with different fabrication 

conditions. Next, the effective modulation 𝑀𝑂𝐷  and the response time of the PDLC 

shutters are measured and analyzed. Specifically, their dependences on the driving and the 

fabrication condition are studied. Then, the optimal factors enabling the maximum output 

of the SLEEPIR sensor module are obtained. Finally, the lifetime of the PDLC shutters is 

shown.  

4.1. Morphology of PDLC Shutters 

The morphology, which shows the distribution of the LC droplets within the 

polymer film, is studied. The substrates must be transparent to visible light so that the 

polarized image microscope could take images. However, the proposed infrared shutter 

uses Ge substrates due to its high transmission in the LWIR region but opaque in the 

visible region [98]. To solve this issue, we prepare the glass-based PDLC shutters at the 

same time when preparing the Ge-based shutters. The recipe and process are identical, 
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including the mass ratio 𝜂, cell gap d, and cooling rate. The only difference is that we use 

the indium tin oxide (ITO) coated glasses instead of the Ge substrates. The ITO is widely 

used as electrodes deposited on surfaces, such as glasses [122, 123].  

The polarized microscope images are taken by the LEICA DM 6B microscope 

system. Figure 4.1 shows the microscope image of 5 glass based PDLC shutters, named 

M60D22C2-G1, M60D22C1-G1, M70D22C2-G1, M70D22C1-G1, and M80D22C1-G1, 

respectively. The letter “G” represents that the sample is made with ITO glasses. From 

these images, we could see that at the same mass ratio, the droplet size will increase with 

a slower cooling rate. At the same cooling rate, the droplet size will increase when the 

mass ratio increases.  

 

 

Figure 4.1 Polarized light images of PDLC cells with ITO-glass substrates. 
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 More glass based PDLC shutters are made with different conditions, and the 

measurement results are shown in Table 4.1. The mass ratio 𝜂 is from 60% to 80%, while 

the cell gap 𝑑 varies from 12-32 μm. For each sample, we measure the diameters of 20 

randomly selected droplets. The fifth and the last columns of Table 4.1 show the average 

droplet size with the standard deviation, respectively. Similarly, the droplet size increases 

with a slower cooling rate. At the same cooling rate, the droplet size will increase when 

the mass ratio increases. This observation agrees with the findings in [102, 124].  

 

Table 4.1 The measured droplet size of PDLC cells with glass substrates. 

Sample name 𝜼 

(%) 

Cell gap 

𝒅 (μm) 

Cooling rate 

(°C/min) 

Average 

droplet size 

(µm) 

Standard 

deviation 

(µm) 

M60D22C1 60 22 1 5.01 1.50 

M60D22C2 60 22 2 3.52 0.74 

M70D22C1 70 22 1 11.71 1.86 

M70D22C2 70 22 2 8.56 1.47 

M75D22C1 75 22 1 12.78 2.21 

M75D22C2 75 22 2 11.83 1.84 

M80D22C1 80 22 1 23.31 2.99 

M80D22C2 80 22 2 21.71 3.24 

M80D12C1 80 12 1 20.06 2.67 

M80D32C1 80 32 1 23.83 3.01 
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4.2. Effective Modulation of PDLC Infrared Shutters 

Equations (3.5), (3.6) and (3.20) indicate that the effective modulation 𝑀𝑂𝐷 =

𝑊𝑂𝑁- 𝑊𝑂𝐹𝐹,  plays an important part in determining the output of the SLEEPIR sensor 

module. Chapter 3.4 introduces the measurement approaches of 𝑊𝑂𝑁  and 𝑊𝑂𝐹𝐹 . This 

subsection will study the impact of the driving and the fabrication conditions on the 

effective modulation 𝑀𝑂𝐷.  

4.2.1. Effect of the Driving Voltage Amplitude 

 At the first step, we will look at the impact of the driving voltage amplitude 𝑉𝑟𝑚𝑠. 

The PDLC shutters used here are fabricated with 𝜂 = 0.8, CR= 1°C/min and d = 12, 22, 

32, and 50 𝜇𝑚. The setup to measure the effective modulation is shown in Figure 3.14. 

The PDLC shutter is placed in the center of the FTIR spectrometer. The AC voltage is 

generated by a waveform generator and a voltage amplifier. The frequency of the voltage 

is chosen at 𝑓𝐴𝐶 = 200𝐻𝑧  to make sure MOD saturates, which will be introduced in 

Chapter 4.2.2. We record each FTIR spectrum when decreasing the voltage amplitudes 

from 7 to 0 Volt at a step of around 1 Volt. The corresponding transmitted radiation 𝑊𝑇, 

calculated by using Equation (3.18) is shown in Figure 4.2(a). We could observe that 𝑊𝑇 

values of both the ON and the OFF states decrease with a larger cell gap. The persistence 

effect of these shutters is very small, which means that 𝑊𝑇 reaches a relatively stable level 

once 𝑉𝑟𝑚𝑠 decreases to zero. The reason is that these shutters have been cycled for a long 

time (>100,000 cycles). The effect of cycling on the persistence will be introduced in 

Chapter 4.2.4. 
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Figure 4.2(b) shows the 𝑀𝑂𝐷-𝑉𝑟𝑚𝑠 curves for difference cell gaps. Each curve is 

calculated by subtracting 𝑊𝑇 when 𝑉𝑟𝑚𝑠 = 0𝑉 from the  𝑊𝑇-𝑉𝑟𝑚𝑠 curve in Figure 4.2(a). 

We can see 𝑀𝑂𝐷 decreases when 𝑉𝑟𝑚𝑠  decreases, until reaching zero. Also, 𝑀𝑂𝐷 will 

saturate when 𝑉𝑟𝑚𝑠 is larger than a certain value, which is called the saturation voltage 

𝑉𝑠𝑎𝑡. We could observe that the saturated voltage increases with larger cell gaps, as shown 

in Figure 4.2(c). 

 

 

Figure 4.2 (a) The difference of the transmitted radiation WT and (b) the effective 

modulation MOD with different driving voltages and cell gaps when the cooling rate 

is 1°C/min. (c) The relationship between the saturated voltage Vsat and the cell gap. 

 

 

In practice, we use a printed circuit board (PCB), with an MCU, a DC-to-DC 

converter, and a driving circuit to provide the driving voltage. The MCU will control the 

frequency 𝑓𝐴𝐶  and ON-OFF time of the PWM signal. The DC-to-DC converter will boost 

the battery voltage (3V from 2 AA batteries) to the desired level 𝑉𝐵, which is introduced 
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in Chapter 3.1. The driving circuit, shown in Figure 3.2, will convert the PWM signal from 

the MCU to the AC voltage connected to the PDLC shutter. The choice of 𝑉𝐵 is important 

for the PCB to drive the PDLC shutter. The result shown in Figure 4.2 could help to 

determine the level of VB. In the end, the VB is chosen to be 10V, which is enough for 

PDLC shutters to reach the saturation. 

4.2.2. Effect of the Driving Frequency 

Not only the driving voltage amplitude 𝑉𝑟𝑚𝑠  will affect 𝑀𝑂𝐷 , the driving 

frequency 𝑓𝐴𝐶  will also affect 𝑀𝑂𝐷. This is because of the dielectric property of the PDLC 

shutter. A PDLC film could be modeled as a capacitor and resistor in parallel [125], as 

shown in Figure 4.3. After considering the resistor of the Ge substrates, we could develop 

the analogy between the PDLC shutter and a passive electrical circuit. The PDLC 

composite can be illustrated as a parallel plate capacitor. Here, two substrates (ITO glasses 

or Ge windows) act as two parallel electrodes. The PDLC composite is a dielectric 

material.  
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Figure 4.3 The equivalent circuit of the PDLC shutter. 

 

 

Since the applied voltage on the PDLC shutter is an AC voltage, we only consider 

the DC phase, where the applied AC voltage increases from zero to 𝑉𝑟𝑚𝑠. Here 𝑉𝑟𝑚𝑠 is the 

amplitude of the voltage source. The equivalent resistance of the driving circuit is 𝑅𝑠. The 

equivalent resistance and capacitance of the PDLC shutter is 𝑅𝐿𝐶 and 𝐶𝐿𝐶, respectively. 

The equivalent resistance of the Ge substrates is 𝑅𝐺 . We denote the effective voltage 

applied on the PDLC shutter to be 𝑉𝐿𝐶(𝑡). After solving the equivalent circuit, 𝑉𝐿𝐶(𝑡) can 

be derived as: 

 
𝑉𝐿𝐶(𝑡) = 𝑉1 − 𝑉2𝑒

−
𝑡
𝜏𝐿𝐶 

(4.1) 

Here, 𝑉1 and 𝑉2 are in the forms of 

 
𝑉1 =

𝑅𝐺 + 𝑅𝐿𝐶
𝑅𝑠 + 𝑅𝐺 + 𝑅𝐿𝐶

𝑉𝑟𝑚𝑠 
(4.2) 
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𝑉2 = (

𝑅𝑠
𝑅𝑠 + 𝑅𝐺

−
𝑅𝑠

𝑅𝑠 + 𝑅𝐺 + 𝑅𝐿𝐶
)𝑉𝑟𝑚𝑠 

(4.3) 

The time constant of this RC circuit is 𝜏𝐿𝐶 = (𝑅𝑠 + 𝑅𝐺)𝑅𝐿𝐶𝐶𝐿𝐶/(𝑅𝑠 + 𝑅𝐺 + 𝑅𝐿𝐶).  

From Equation (4.1), we notice that the voltage between two Ge substrates of the 

PDLC shutter will show exponential decay. In this section, the driving voltage is provided 

by an MCU (Arduino), a DC-DC converter (LTC3459) and the driving circuit. We 

compared the effect of different driving frequency 𝑓𝐴𝐶 =31300Hz, 3900Hz, 980Hz, 

490Hz, 244Hz, 122Hz and 30Hz.  Their corresponding open circuit and closed loop 

voltage applied on the PDLC shutter are shown in Figure 4.4, respectively. The open 

circuit is the condition when the PDLC shutter is disconnected physically from the driving 

circuit. The closed loop is the circuit shown in Figure 4.3. The range on the x-axis is scaled 

into the same region [0, 0.6 ms] for better visualization. When 𝑡 = 0, we could notice that 

the 𝑉𝐿𝐶(0) is not equal to zero. The reason is that 𝑅𝐺  will show a voltage at this time 

instance. Notice that when 𝑓𝐴𝐶 =31300Hz, the period is 1/𝑓𝐴𝐶 = 0.03𝑚𝑠, which is much 

shorter than the scaled range of x-axis. Thus, the closed loop voltage 𝑉𝐿𝐶(𝑡) will drop 

before it could start increasing as Equation (4.1). For slower frequencies, when the switch 

is closed at 𝑡 = 0, 𝑉𝐿𝐶(𝑡) in the closed loop condition will increase in the exponential 

decay manner until it reaches the maximum value. The maximum value of 𝑉𝐿𝐶(𝑡) in the 

closed loop is equal to the maximum value of open circuit condition. In this experiment, 

the maximum value is 10V since this is the amplitude of the provided AC voltage. We use 

the curve fitting to evaluate the parameters in Equation (4.1). The result shows that the 
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PDLC shutter (M80D22C1-1) used in this experiment has the following curve fitting 

parameters, 𝑉1 = 10.22𝑉, 𝑉2 = 5.32𝑉, the time constant 𝜏𝐿𝐶 = 0.99 × 10−4𝑠.  

 

 

Figure 4.4 The open circuit and the closed-loop voltage with different fAC. 

 

  

Four more PDLC shutters have been measured with the same procedure and the 

corresponding curve fitting parameters are shown in Table 4.2. These fitted parameters 

are similar for multiple PDLC shutters. The differences may come from the different 

resistance at the interface between the electrodes and the Ge substrates. 
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Table 4.2 Curve fitting parameters V1, V2 and τLC of four PDLC shutters. 

PDLC Shutter 𝑽𝟏 (V) 𝑽𝟐 (V) 𝝉𝑳𝑪 (s) 

M80D22C1-5 10.30 5.70 0.94 × 10−4 

M80D22C1-6 10.26 5.63 1.01 × 10−4 

M80D22C1-7 10.19 5.69 1.07 × 10−4 

M80D22C1-8 10.18 5.41 0.96 × 10−4 

 

 

Next, the effect of 𝑓𝐴𝐶  on the effective modulation 𝑀𝑂𝐷 is tested. Four PDLC 

shutters are used in this experiment. The amplitude of the AC voltage is 10V. The 

calculated 𝑀𝑂𝐷 is shown in Figure 4.5 with different driving frequencies. These shutters 

show small persistence effect and memory effect due to large cycle numbers, which will 

be discussed in Chapter 4.2.4. From this figure, when 𝑓𝐴𝐶  decreases, 𝑀𝑂𝐷 will increase. 

When 𝑓𝐴𝐶  is less than 980Hz, 𝑀𝑂𝐷 will reach saturation.  
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Figure 4.5 The effective modulation MOD with different driving frequencies fAC of 

four PDLC shutters. 

 

 

One explanation is that the effective voltage 𝑉𝐿𝐶(𝑡) shows different maximum 

values when 𝑓𝐴𝐶  changes. As shown in Figure 4.4, for each period of AC voltage,  𝑉𝐿𝐶(𝑡) 

cannot reach a large value when the driving frequency is high. From [42, 68, 96], we know 

that 𝑀𝑂𝐷 is depending on the 𝑉𝑟𝑚𝑠. For low 𝑉𝑟𝑚𝑠, 𝑀𝑂𝐷 cannot reach the saturated region. 

For the following study, we choose 𝑓𝐴𝐶 = 122𝐻𝑧. The reason is that a lower frequency 

will have longer pulse width. For example, when 𝑓𝐴𝐶  is 30Hz, the period of one AC pulse 

is 33ms. This is close to the response time of the PDLC shutter, which will be discussed 

in Chapter 4.3. 

 This subsection introduces the equivalent RC model of the PDLC shutter. The 

effective voltage applied on the PDLC shutter shows exponential decay. A higher 

frequency 𝑓𝐴𝐶  will reduce the amplitude of the effective voltage 𝑉𝐿𝐶, thus decrease MOD. 
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From Chapter 4.2.1 and 4.2.2, the driving condition that could maximize MOD for the 

PDLC shutter is found to be 𝑉𝑟𝑚𝑠 =10V and 𝑓𝐴𝐶 = 122𝐻𝑧.  

4.2.3. Effect of Cell Gap, Mass Ratio, and Cooling Rate 

After determining the driving signals’ amplitude 𝑉𝑟𝑚𝑠 and frequency 𝑓𝐴𝐶 , the next 

step is to study the impact of fabrication conditions on the effective modulation. Mass 

ratio 𝜂 is selected from three values 75%, 80%, and 85%. The cell gap 𝑑 has five options: 

12µm, 22 µm, 26 µm, 32 µm, and 50 µm. The cooling rate is from 0.5 to 2.0 °C/min. We 

prepared four samples for each combination of the three fabrication factors. The driving 

signals’ amplitude 𝑉𝑟𝑚𝑠 and frequency 𝑓𝐴𝐶  is 10V and 122Hz, respectively. The reason for 

choosing 𝜂 within 75%, 80%, and 85% is that, for lower or higher mass ratio, the effective 

modulation will be much smaller.  

Figure 4.6 shows the effective modulation of PDLC shutters with different 

fabrication conditions. Each marker represents the average 𝑀𝑂𝐷 of four samples. The 

error bar represents the standard deviation of these four samples. For the samples with 

𝜂 = 0.75 and 𝜂 = 0.85, PDLC shutters with four cell gaps are prepared. The cooling rate 

is from 0.75 to 1.5°C/min. For the samples with 𝜂 = 0.8, PDLC shutters with five cell 

gaps and seven cooling rates (0.5 to 2°C/min) are prepared. The range of the y-axis of all 

three subplots in Figure 4.6 is scaled to the same range for better visualization. 
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Figure 4.6 Effective modulation MOD with different cell gaps, mass ratios, and 

cooling rates.  

 

  

Firstly, the highest 𝑀𝑂𝐷 happens with the condition when 𝜂 = 0.8, 𝑑 = 22𝜇𝑚, 

cooling rate equals 1 or 1.25°C/min, which is significantly higher than cooling with lower 

or higher rates. The average 𝑀𝑂𝐷 for the PDLC shutters with 1°C/min (5.38±0.10) is 

slightly higher than those with 1.25°C/min (5.26±0.11). But considering the error bar, 

these two cooling rates have a similar result.  

 Secondly, we study the impact of the mass ratio 𝜂. Under the same cell gap and 

the cooling rate, the effective modulation with 𝜂 = 0.75 and 𝜂 = 0.85 is lower than 𝜂 =

0.8. The explanation is that, for a lower mass ratio, the droplet size is small. From Table 

4.1, the droplet size is 12.78±2.21µm. The scattering effect of this size is smaller than 

those with 𝜂 = 0.8. Thus, in the OFF state, the overall transmission rate of PDLC shutters 

with 𝜂 = 0.75 is higher than those with 𝜂 = 0.8, which reduces the difference in the 

transmitted radiation between the ON and OFF state. The droplet size is much larger for a 
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higher mass ratio than the LWIR wavelength (~ 50 µm), which will reduce the efficiency 

of scattering [101].  

 Thirdly, for PDLC shutters with 𝜂 = 0.8, small or large cell gaps both lead to a 

low 𝑀𝑂𝐷. For small cell gaps, one explanation is because the shape of the droplets is not 

a sphere. The length that is vertical to the substrates is smaller than the length that is 

parallel with the substrates. For a large cell gap (d=50µm), the large thickness will 

decrease the transmitted rate even in the ON state [126]. During the OFF state, the 

backscattering, which is the energy that radiates back to the incident direction, will 

increase with a larger cell gap [100]. These two effects will reduce 𝑀𝑂𝐷. 

 Finally, for PDLC shutters with 𝜂 = 0.8, the cooling rate will change the droplet 

size. According to [102], a faster cooling rate will decrease the size of the LC droplets. 

However,  the scattering model based on [101] shows that there exists an optimal droplet 

size that will maximize the scattering efficiency. The radius of the droplet size 𝑅𝐷 and the 

wave number 𝑘𝑤 (𝑘𝑤 = 2𝜋/𝜆 ) will impact the scattering cross section 𝜎𝑠. The model in 

[101] indicates that when 𝑘𝑤𝑅𝐷 ≈ 19, the scattering cross-section will be maximized. 

This result leads to the optimal droplet size for the scattering is 𝑅𝐷(𝜆) =
8.5

𝜋
𝜆. In the LWIR 

region, the optimal droplet size is from 21µm to 32µm. From Table 4.1, the droplet size 

measured from the glass-based PDLC shutters with the condition of 𝜂 = 0.8, 𝑑 = 22𝜇𝑚, 

cooling rate=1°C/min, is 23𝜇𝑚 . Although we could not observe the droplet size of 

germanium-based PDLC shutters due to the opaque in visible light region, we could imply 

that the cooling rate of 1 or 1.25°C/min will make the most droplet size within this range. 
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4.2.4. Effect of Cycling 

When characterizing the 𝑀𝑂𝐷 of the PDLC shutters, we observe that the effective 

modulation becomes much more stabilized after applying and removing the AC voltage 

repeatedly (cycling). For instance, the transmitted radiation of a freshly made PDLC 

shutter does not immediately drop to its original level at the complete scattering as soon 

as we remove the applied electric field due as aforementioned in Chapter 3.4. The 

transmitted radiation 𝑊𝑇  of this PDLC shutter (M80D22C1-5), calculated by Equation 

(3.18), will take more than 150 seconds to be relatively stable, as shown in Figure 4.7. The 

stabilized 𝑊𝑇 level is also not equal to the value at the complete scattering state, but higher, 

due to the hysteresis, the persistence or the memory and persistence effect [110-113].  

 

 

Figure 4.7 (a) Measured WT when applying and removing the AC voltage for 

different cycling numbers of a PDLC shutter. (b) WT changes after removing voltage 

for different cycling numbers. 

 



 

93 

 

The hysteresis effect is mainly caused by the orientation mechanism of the LC 

droplet direction. When applying or removing the AC voltage, the directions of LC 

molecules located at the polymer-LC interface and inside the LC droplets, will show 

difference [112]. Also, the hysteresis may come from the residual electric charge after 

removing the electrical field [127].  

The persistence is mainly caused by the high interconnectivity between LC 

droplets. For example, during the droplets' reorientation process, when we apply the AC 

voltage, some distributed droplets will connect and then trapped in the high-field state, 

which creates the defect structure [103]. After removing the electric field, the connected 

droplets cannot return to the complete scattering state immediately. That is the 𝑊𝑂𝐹𝐹 of 

freshly fabricated PDLC shutters is always higher than the transmitted power at the 

complete scattering state.   

The memory effect or the semi-permanent persistence effect [128] is mainly due 

to the anchoring force between the boundaries of the polymer network and the LC domain 

[129].  

We observed that cycling could help reduce the time needed to help the PDLC 

shutter returns to its complete scattering state. As shown in Figure 4.7, after the PDLC 

shutter has been cycled for 10,000 times, it only takes 18 seconds to reach the stability. 

Note that the time of 18 seconds is the minimum interval between two FTIR measurements. 

More samples are shown in Table 4.3. Here, 𝑊𝑇,𝑖𝑛𝑖𝑡 , 𝑊𝑂𝑁 , and 𝑊𝑂𝐹𝐹  values, are the 

calculated transmitted radiation 𝑊𝑇  for the initial state, ON state, and OFF state, 

respectively. The initial state is the state before applying the voltage, as shown in Figure 
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3.17. It is worth to mention that the last column shows the difference between the 𝑊𝑂𝐹𝐹 

and 𝑊𝑇,𝑖𝑛𝑖𝑡, which may reflect the persistence or the memory effect. After cycling, the 

time required to stabilize after removing the voltage decreases significantly. The last four 

samples in Table 4.3 have been cycled for around 100,000 cycles. The results show that 

after 100,000 cycles, 𝑊𝑂𝐹𝐹 −𝑊𝑇,𝑖𝑛𝑖𝑡, close to zero, which reveals that cycling may help 

to reduce either the hysteresis, the persistence, or the memory effect. The reason behind 

this may be the cycling could reduce the interconnectivity between LC droplets.  

 

Table 4.3 The calculated WT,init, WON, WOFF, the stabilized time, MOD, and WOFF- 

WT,init of eight PDLC shutters. 

Sample Cycle No. 𝑾𝑻,𝒊𝒏𝒊𝒕 𝑾𝑶𝑵 𝑾𝑶𝑭𝑭 Stabilized 

Time (s) 

MOD 𝑾𝑶𝑭𝑭

−𝑾𝑻,𝒊𝒏𝒊𝒕 

M80D22C1-5 
0 12.98 18.88 13.40 148 5.52 0.42 

10,000 12.89 18.59 13.21 18 5.38 0.32 

M80D22C1-6 
0 12.50 18.30 12.97 152 5.33 0.47 

10,000 12.88 18.5 13.21 18 5.29 0.34 

M80D22C1-7 
0 13.1 18.95 13.55 160 5.40 0.45 

10,000 13.21 18.78 13.50 20 5.28 0.29 

M80D22C1-8 
0 12.74 18.69 13.24 160 5.45 0.50 

10,000 13.01 18.78 13.38 19 5.40 0.37 

M80D22C1-9 

0 12.82 18.38 13.21 310 5.67 0.39 

10,000 12.59 18.15 12.83 20 5.32 0.24 

100,000 12.27 17.88 12.28 18 5.30 0.01 

M80D22C1-10 

0 12.82 19.04 13.11 281 5.93 0.29 

10,000 12.58 18.60 12.78 32 5.82 0.20 

100,000 12.31 18.16 12.34 19 5.82 0.03 

M80D22C1-11 

0 12.29 18.61 12.91 187 5.70 0.62 

10,000 12.46 18.21 12.66 22 5.55 0.20 

100,000 12.61 18.22 12.70 18 5.52 0.09 

M80D22C1-12 

0 12.65 18.65 13.17 202 5.48 0.52 

10,000 12.82 18.46 13.08 30 5.38 0.26 

100,000 12.45 17.85 12.47 20 5.38 0.02 



 

95 

 

4.3. Response Time of PDLC Infrared Shutters 

Response time of the PDLC shutter is another important factor that affects the 

SLEEPIR output. Response time is the time required by the LC molecules to align along 

the electric field upon applying the field and relax to their initial orientation at the complete 

scattering state. As described in Section 3.4, two types of response time, the rise time 𝜏𝑟 

and the decay time 𝜏𝑑, are defined. Mathematically [59], 

 1

𝜏𝑟
=

𝛥𝜀

𝛾1𝑑2
𝑉𝑟𝑚𝑠
2 +

𝑘(𝑙2 − 1)

𝛾1𝑎2
 

(4.4) 

 1

𝜏𝑑
=
𝑘(𝑙2 − 1)

𝛾1𝑎2
 

(4.5) 

where 𝛥𝜀 is the dielectric anisotropy of the LC; 𝛾1 is the rotational viscosity of LC; 𝑘 is 

the elastic constant; 𝑙 = 𝑎/𝑏 is the aspect ratio of the droplet; 𝑎 and 𝑏 are the length of the 

major and minor axes of the LC droplet, respectively. The properties of the PDLC film 

morphology, which include droplet size, shape, multiple scattering processes, etc., have a 

high impact on the response time of the PDLC composite film [112, 130].  

4.3.1. Effect of the Driving Voltage Amplitude 

Firstly, we will study the effect of the AC voltage amplitude on the response time. 

According to Equation (4.4) and (4.5), the higher voltage amplitude will decrease the rise 

time 𝜏𝑟, but it will not affect the decay time 𝜏𝑑. By observing these two equations, notice 

that  

 
Δ
1

𝜏
=
1

𝜏𝑟
−
1

𝜏𝑑
=

𝛥𝜀

𝛾1𝑑2
𝑉𝑟𝑚𝑠
2  

(4.6) 
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 The result for the PDLC shutter with the fabrication condition of M80D32C1 is 

shown in Figure 4.8. The left y-axis represents the response time 𝜏𝑟 and 𝜏𝑑 in the unit of 

second. The right y-axis is the difference between the reciprocals of 𝜏𝑟 and 𝜏𝑑, which is 

defined by Δ
1

𝜏
. The x-axis is the square of the voltage amplitude 𝑉𝑟𝑚𝑠. The result shows 

that the rise time will decrease with the increasing voltage amplitude. The decay time 𝜏𝑑 

is not change much with different amplitudes. Also, good linearity is found between Δ
1

𝜏
 

and 𝑉𝑟𝑚𝑠
2 . The 𝑅2 value of the linear fitting is 0.98. 

 

 

Figure 4.8 The response time τr, τd, and 1/τr-1/τd with different Vrms. The dash line is 

the linear fitting. The fabrication condition of the PDLC shutter is η=0.8, d=32μm, 

cool@1°C/min. 
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4.3.2. Effect of the Cell Gap, the Mass Ratio, and the Cooling Rate 

Next, we study the impact of the fabrication condition of the PDLC shutters on the 

response time. Similarly, the mass ratio 𝜂 is selected from three values 75%, 80%, and 

85%. The cell gap 𝑑 has five options: 12µm, 22 µm, 26 µm, 32 µm, and 50 µm. The 

cooling rate is from 0.5 to 2.0 °C/min. We prepared four samples for each combination of 

the three conditions. The driving signal’ amplitude 𝑉𝑟𝑚𝑠 and frequency 𝑓𝐴𝐶  is 10V and 

122Hz, respectively. 

 

 

Figure 4.9 Response time with different cell gap, mass ratio, and cooling rate. (a-c) 

shows the τr with mass ratio of 0.75,0.8 and 0.85 respectively. (d-f) shows the τd with 

mass ratio of 0.75, 0.8 and 0.85 respectively. 
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Figure 4.9 shows the response time of PDLC shutters fabricated under different 

conditions. The range of the y-axis of all three subplots in Figure 4.9 is scaled to the same 

range for better visualization. 

From the figure, when the mass ratio and the cooling rate are the same, the response 

time will increase with a larger cell gap. Specifically, the rise time 𝜏𝑟  shows higher 

dependency than the decay time 𝜏𝑑. The reason is that from Equation (4.4), 𝜏𝑟 is related 

with cell gap d. Although 𝜏𝑑 does not depend on the cell gap 𝑑 in Equation (4.5), it is still 

affected by the droplet size. From Table 4.1, the droplet size slightly increases with a larger 

cell gap 𝑑, which will increase the decay time 𝜏𝑑 in return. When the cooling rate and the 

cell gap are the same, both the rise time and the decay time increase with a higher mass 

ratio 𝜂. The reason is that larger 𝜂 will increase the droplet size significantly, as indicated 

in Table 4.1. The effect of the cooling rate is also obvious: the faster cooling rate will 

reduce both the rise and the decay time due to the decrease in the droplet size.  

4.4. Optimal Factors of the SLEEPIR Sensor Module 

We now have a better understanding on how the effective modulation and the 

response time of PDLC shutters behave under different fabrication conditions. Our next 

step is to evaluate the performance of the SLEEPIR sensor module and determine optimal 

fabrication condition that could maximize the output of the SLEEPIR sensor module.  

Figure 4.10 shows the output of a SLEEPIR sensor module when the PDLC shutter 

changes its state. When the PDLC shutter changes in the rising phase (from OFF to ON), 

the SLEEPIR sensor module’s output will decrease from the baseline to a negative peak. 

Then the signal goes back to the baseline. During the falling phase (from ON to OFF), the 
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SLEEPIR sensor module’s output will increase from the baseline to a positive peak, then 

returns to the baseline value. We denote the difference between the baseline and the 

negative peak to be 𝑉𝑟 (<0), the difference between the baseline and the positive peak to 

be 𝑉𝑑 (>0). The sign of 𝑉𝑟 and 𝑉𝑑 are determined by the polarity of the sensing elements 

exposed, as shown in Figure 1.3. The difference between the positive peak and the 

negative value is 𝑉𝑝𝑝 = |𝑉𝑟 − 𝑉𝑑|. The baseline, which is represented by the horizontal 

black dashed line in Figure 4.10, is select to be 1.14V, which is the average value of the 

analog PIR sensor’s output when there is no motion detected. Notice that according to 

Equation (3.5) and (3.6), 𝑉𝑟 and 𝑉𝑑 are the amplitude of 𝑉𝑜𝑢𝑡,𝑟𝑖𝑠𝑒(𝑡) and 𝑉𝑜𝑢𝑡,𝑑𝑒𝑐𝑎𝑦(𝑡). 

 

 

Figure 4.10 Output of the SLEEPIR module. 

 

 

The objective function to find the optimal fabrication condition is represented by 

 𝜂, 𝑑, 𝐶𝑅 = argmax𝑉𝑝𝑝 (4.7) 



 

100 

 

The next step is to validate the SLEEPIR sensor output model in Equations (3.5) 

and (3.6), and to find the optimal fabrication condition. We denote two terms 𝐴𝑉,𝑟 and 

𝐴𝑉,𝑑: 

 
𝐴𝑉,𝑟 =

𝜔𝑟 ∙ 𝑀𝑂𝐷

(1 + 𝜔𝑟2𝜏𝑇
2)
1
2(1 + 𝜔𝑟2𝜏𝐸

2)
1
2

 
(4.8) 

 
𝐴𝑉,𝑑 =

−𝜔𝑑 ∙ 𝑀𝑂𝐷

(1 + 𝜔𝑑2𝜏𝑇
2)
1
2(1 + 𝜔𝑑2𝜏𝐸

2)
1
2

 
(4.9) 

Note that, 𝐴𝑉,𝑟  and 𝐴𝑉,𝑑  are the theoretical amplitudes of 𝑉𝑜𝑢𝑡,𝑟𝑖𝑠𝑒(𝑡)  and 

𝑉𝑜𝑢𝑡,𝑑𝑒𝑐𝑎𝑦(𝑡) indicated by Equation (3.5) and (3.6). Thus, the measured peak-to-peak 

value 𝑉𝑝𝑝 should be proportional to Δ𝐴𝑉 = 𝐴𝑉,𝑟 − 𝐴𝑉,𝑑.  

 𝑉𝑝𝑝 ∝ Δ𝐴𝑉 (4.10) 

 Equation (4.7) becomes 

 

𝜂, 𝑑, 𝐶𝑅 = argmax{𝑀𝑂𝐷 [
𝜔𝑟

(1 + 𝜔𝑟2𝜏𝑇
2)
1
2(1 + 𝜔𝑟2𝜏𝐸

2)
1
2

+
𝜔𝑑

(1 + 𝜔𝑑2𝜏𝑇
2)
1
2(1 + 𝜔𝑑2𝜏𝐸

2)
1
2

]} 

(4.11) 

In the experiment, sixteen PDLC shutters are prepared with eight different 

fabrication conditions. The mass ratio is 𝜂 = 0.8. The cell gap 𝑑 is from 22 to 32𝜇𝑚. The 

cooling rate varies from 0.75 to 2°C/min. The reason to choose 𝜂 = 0.8 is that compared 

to other mass ratios (0.75 and 0.85), 𝑀𝑂𝐷 is at least 30% higher with the same cell gap 

and the same cooling rate, while the remaining part in Equation (4.11) changes less than 

1%. We consider the function 𝐹𝜏(𝜔𝜏) 
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 𝐹𝜏(𝜔𝜏) =
𝜔𝜏

(1 + 𝜔𝜏2𝜏𝑇
2)
1
2(1 + 𝜔𝜏2𝜏𝐸

2)
1
2

 (4.12) 

where 𝜔𝜏 is defined by 𝜔𝜏 = 𝜋/𝜏, and response time 𝜏 could be either the rise time or the 

decay time. From all the samples we have prepared under different conditions, the range 

of the rise time 𝜏𝑑 is from 0.03s to 0.38s. The change on 𝐹𝜏(𝜔𝜏) when 𝜏𝑟 ∈ [0.03𝑠, 0.38𝑠] 

is from 0.272 to 0.285, with only a 1% difference. The range of the decay time 𝜏𝑑 is from 

0.2s to 1.6s. The change on 𝐹𝜏(𝜔𝜏) for different 𝜏𝑑 is from 0.282 to 0.285, with only a 1% 

difference. Thus, 𝐴𝑉,𝑟  and 𝐴𝑉,𝑑  are dominated by the 𝑀𝑂𝐷  in comparison with the 

response time.  

 The setup to measure 𝑉𝑝𝑝 of the SLEEPIR sensor module with sixteen different 

PDLC shutters is shown in Figure 4.11. The SLEEPIR sensor module is placed in front of 

a blackbody radiation source. The position of the SLEEPIR sensor module and the 

blackbody source do not change during the test. The surface temperature of the blackbody 

source is set to be 26°C to make sure that the measured 𝑉𝑝𝑝 is within the detection range 

of the PIR sensor. The effective modulation and the response time are measured with the 

same procedure described in Chapter 3.4. Note that all the sixteen PDLC shutters in this 

experiment are cycled for more than 10,000 cycles. 
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Figure 4.11 The setup to measure the output of the SLEEPIR module.  

 

 

 

Figure 4.12 Relationship between Vpp,cal and ΔAV for PDLC shutters. 

 

 

After collecting the measured 𝑉𝑝𝑝, the effective modulation 𝑀𝑂𝐷 and the response 

time for each PDLC shutter, and their relationship with Δ𝐴𝑉  and 𝑉𝑝𝑝  could be found. 
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Before that, the measured 𝑉𝑝𝑝 should be calibrated by the temperature difference between 

the sensor and the blackbody. The reason is that the net radiation flux received by the 

SLEEPIR sensor module is proportional to 𝑇𝑏𝑏
4 − 𝑇𝑠

4 when the position of the SLEEPIR 

sensor module and the blackbody source do not change [106]. Here, 𝑇𝑏𝑏 and 𝑇𝑠 are the 

absolute temperature of the blackbody source and the SLEEPIR sensor module, 

respectively. The temperature of the SLEEPIR sensor module is collected by an onboard 

temperature sensor. We calibrate the measured 𝑉𝑝𝑝 with 

 
𝑉𝑝𝑝,𝑐𝑎𝑙 =

𝑉𝑝𝑝

𝑇𝑏𝑏
4 − 𝑇𝑠4

 
(4.13) 

The results between 𝑉𝑝𝑝,𝑐𝑎𝑙  and Δ𝐴𝑉  are shown in Figure 4.12. Each point 

represents the result from one PDLC shutter. The markers with the same color and shape 

belong to the PDLC shutters with the same fabrication condition.  

 We could observe that there exists a good linearity between 𝑉𝑝𝑝,𝑐𝑎𝑙 and Δ𝐴𝑉. The 

𝑅2 of the fitting is 0.944. This result verifies that the model for the SLEEPIR sensor 

module is correct. Then, by observing the 𝑉𝑝𝑝,𝑐𝑎𝑙 of different PDLC shutters, the optimal 

fabrication condition is found to be 𝜂 = 0.8, 𝑑 = 22𝜇𝑚 , CR=1 or 1.25 °C/min. The 

reason that CR has two optimal values is that the result of the PDLC shutters cooled at 1 

or 1.25 °C/min cannot be separated statistically.  

 

 



 

104 

 

Table 4.4 The measured Vpp,cal, the linear fitted value and their discrepancy for PDLC 

shutters under eight fabrication conditions. 

Fabrication 

Conditions 

Average Measured 

𝑽𝒑𝒑,𝒄𝒂𝒍 (
𝟏𝟎−𝟗𝑽

𝑲𝟒
) 

Average Fitted 

𝑽𝒑𝒑,𝒄𝒂𝒍 (
𝟏𝟎−𝟗𝑽

𝑲𝟒
) 

Difference (
𝟏𝟎−𝟗𝑽

𝑲𝟒
) 

and percentage 

M80D22C0.75 3.306 3.336 0.030 (1.0%) 

M80D22C1 3.640 3.670 0.040 (1.1%) 

M80D22C1.25 3.711 3.691 0.020 (0.5%) 

M80D22C1.5 2.976 2.915 0.061 (2.1%) 

M80D22C2 2.381 2.449 0.068 (2.8%) 

M80D26C1 3.353 3.415 0.062 (1.8%) 

M80D26C1.25 3.319 3.275 0.044 (1.3%) 

M80D32C1 3.407 3.342 0.065 (1.9%) 

  

 

 Table 4.4 shows the average measured 𝑉𝑝𝑝,𝑐𝑎𝑙 , the predicted 𝑉𝑝𝑝,𝑐𝑎𝑙  using the 

linear fitting and their discrepancy of two PDLC shutters under the same fabrication 

condition. The percentage difference is shown in the last column. From this table, we 

observed that the linearity between 𝑉𝑝𝑝,𝑐𝑎𝑙 and Δ𝐴𝑉 is good. 

4.5. The Lifetime of the PDLC Shutters 

Another factor that needs to be considered when evaluating the performance of the 

PDLC shutter is the lifetime. PDLC films in display applications show excellent stability 

with more than 3 million cycles [131]. In this section, the lifetime of the PDLC shutters is 
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studied by evaluating the output of the SLEEPIR sensor module after cycling. In practical 

application, the SLEEPIR sensor module installed on the SLEEPIR sensor node should be 

switched frequently. For example, if the measurement period (turn on and off the PDLC 

shutter once) is 10 minutes, the total switch period in five years is 5 × 365 × 24 × 6 =

262,800 cycles. In this experiment, the PDLC shutter on the SLEEPIR sensor module is 

cycled for different numbers. The output of the SLEEPIR sensor module is recorded while 

being placed in front of a blackbody radiation source, as shown in Figure 4.11. The 

temperature of the blackbody radiation source is 26°C. The temperature of the SLEEPIR 

sensor module is also recorded. The cycle period is 8 seconds to accelerate the experiment. 

We calculated the calibrated peak-peak values 𝑉𝑝𝑝,𝑐𝑎𝑙  of several PDLC shutters with 

different cycle numbers. In this study, a PDLC shutter fails when 𝑉𝑝𝑝,𝑐𝑎𝑙 drops to 90% of 

its full capacity.  

Figure 4.13 shows the measured 𝑉𝑝𝑝,𝑐𝑎𝑙 of six PDLC shutters after different cycle 

numbers. The result shows that after 250,000 cycles of usage, these shutters do not fail 

and maintain a relatively stable performance.  
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Figure 4.13 Vpp,cal with different cycle numbers.  

 

 

4.6. Discussion and Summary 

In this chapter, our goal is to find the optimal fabrication and driving conditions of 

the PDLC shutter that optimize the output of the SLEEPIR module.  

Firstly, the morphology of glass based PDLC shutters is studied via microscope 

images. The result shows that the droplet size increases with a slower cooling rate and a 

larger mass ratio.  

Next, the effective modulation 𝑀𝑂𝐷  of the PDLC shutters is studied 

systematically. The 𝑀𝑂𝐷 will increase with a larger voltage amplitude until reaching the 

saturation. The saturated voltage 𝑉𝑠𝑎𝑡 increases with a larger cell gap. The result shows 

that in practical application, 10V is enough to make the PDLC shutters saturate. Then, the 

impact on the driving frequency is studied by modeling the PDLC shutter as a capacitor 
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and a resistor in parallel. The 𝑀𝑂𝐷 will decrease at a higher frequency 𝑓𝐴𝐶 . When 𝑓𝐴𝐶 <

980𝐻𝑧 , 𝑀𝑂𝐷  will saturate. Under the same driving condition, the impact of the 

fabrication condition, including the cell gap, the mass ratio, and the cooling rate, on 𝑀𝑂𝐷 

is discussed. The result shows that the highest effective modulation is with the fabrication 

condition when 𝜂 = 0.8, 𝑑 = 22𝜇𝑚, and the cooling rate equals 1 or 1.25°C/min. The 

effective modulation with 𝜂 = 0.75 and 𝜂 = 0.85 is lower than those with 𝜂 = 0.8. Also, 

small or large cell gaps lead to low 𝑀𝑂𝐷 . PDLC shutter shows the hysteresis, the 

persistence and/or the memory effect upon removing the AC voltage. The experiment 

shows that the cycling could reduce the persistence effect and memory effect. Specifically, 

cycling could reduce the time for the transmission rate to reach a stable level after 

removing the driving voltage. The difference of the transmission rate between the initial 

state and the OFF state, also reduces with a larger cycling number. 

Then, the response time is studied. The result shows that the rise time will decrease 

with the increasing voltage amplitude, while the decay time 𝜏𝑑 does not change much, 

which agrees with Equation (4.4) and (4.5). Also, a good linearity is found between Δ
1

𝜏
 

and 𝑉𝑟𝑚𝑠
2 . The impact of the fabrication condition on the response time is studied 

systematically. Response time will increase with a larger cell gap and a larger mass ratio 

𝜂. 

The optimal factor to fabricate the PDLC shutters is determined in Chapter 4.4. 

Several PDLC shutters are prepared with different conditions. After measuring 𝑉𝑝𝑝, 𝑀𝑂𝐷 

and the response time for each shutter, the relationship between the calibrated 𝑉𝑝𝑝,𝑐𝑎𝑙 and 

Δ𝐴𝑉 are found. The good linearity indicates the correctness of the model of the SLEEPIR 
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sensor module described in Chapter 3.2. Meanwhile, the optimal fabrication condition that 

generates the highest 𝑉𝑝𝑝,𝑐𝑎𝑙, is 𝜂 = 0.8, 𝑑 = 22𝜇𝑚, CR=1 or 1.25 °C/min.  

Finally, the lifetime of the PDLC shutters is discussed. The result shows that the 

output of the SLEEPIR is stable after 250,000 cycles, which represents five years of usage 

if the measurement period is 10 minutes. 

Some open questions could be discussed for future research.  

Firstly, there are several sources of manual error when preparing the PDLC 

shutters. (1) When moving the mixture of LC, polymer, and chloroform on the Ge 

substrate, the mixture's actual volume may vary due to the fast evaporation rate of 

chloroform. (2) The cleanness of the Ge substrates cannot be guaranteed, especially for 

those substrates recycled from the previous PDLC shutters. (3) The uncertainty of the cell 

gap. The cell gap is controlled by the glass beads with desired diameters. However, there 

will be slight differences in the actual diameters.  

Secondly, the measurement error from the FTIR spectrometer and the infrared 

photodetector will cause uncertainty of the result. The position of the PDLC shutter when 

measuring the FTIR spectrums may differ for each measurement. In the future, we could 

design a precise holder to make sure each PDLC shutter will be located at the same 

position for each measurement. When measuring the response time, the photodetector's 

output that measures the response time is sensitive to electromagnetic disturbance, airflow, 

and vibration. One solution is to conduct the experiment in an environment with less 

disturbance, such as an electromagnetic shielding chamber [132]. Another solution is to 
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increase the signal-noise ratio (SNR) by using an infrared light source with a high power 

density, such as CO2 lasers [133]. 

Thirdly, there is noise and error of the PIR sensor and the ADC converter. When 

measuring the output of the SLEEPIR, we use the ADC on the microcontroller to read the 

voltage. There are several solutions. (1) Choose a PIR sensor with high sensitivity. (2) 

Design a noise filtering circuit after the PIR sensor. (3) Use a separate ADC converter 

with high resolution and low noise to collect analog signals.  

Finally, the persistence effect and memory effect will affect the falling phase if the 

effective modulation cannot reach the original level shortly. Some researchers suggest that 

we could alter: (1) the polymer material for the PDLC shutter; (2) Physical properties of 

LC such as optical and dielectric parameters, rotational viscosity, temporal characteristics, 

etc. [120, 121, 134, 135].  
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5. PRESENCE DETECTION USING THE SLEEPIR SENSOR NODE*† 

 

The characteristics of the PDLC infrared shutter and optimal condition have been 

studied in the previous chapters. In this chapter, we characterize the occupancy detection 

accuracy of the proposed SLEEPIR sensor module. Firstly, the sensor node is designed, 

consisting of a SLEEPIR sensor module, a digital PIR sensor, a microcontroller, and DC-

to-DC converters. Then, the working principle and the power consumption of the 

SLEEPIR sensor node are introduced. Next, two types of tests are conducted. The first 

type is the controlled lab test, where the environmental condition is relatively stable during 

the test. The occupants perform predefined activities. The second type is the uncontrolled 

test, where the environmental factors and occupants’ activities are not controlled. For the 

lab test, the machine learning approach is introduced and shows a higher accuracy over 

the traditional threshold method. For the uncontrolled test, environmental factors, 

especially the room temperature, are considered. A thermal transfer model of the 

SLEEPIR sensor module is developed. Then, to improve the detection accuracy, an 

adaptive detection algorithm is introduced. Finally, a comparison between our proposed 

detection system and commercial products is made. 

 

 

* Part of this chapter is reprinted with permission, from L. Wu, Y. Wang, “True Presence Detection via 

Passive Infrared Sensor Network Using Liquid Crystal Infrared Shutters”, Proceedings of the ASME 2020 

Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2020.  
† Part of this chapter is reprinted with permission, from L. Wu, and Y. Wang, “Stationary and moving 

occupancy detection using the SLEEPIR sensor module and machine learning”, IEEE Sensors Journal, pp. 

1-1, 2021. Copyright © 2021 IEEE. 
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5.1. Sensor Node Design 

A SLEEPIR sensor module consists of a PDLC infrared shutter, an analog PIR 

sensor, and the driving circuit, as described in Chapter 3.1. The first version of SLEEPIR 

sensor module is devised as shown in Figure 5.1(a). The frame is 3D printed using 

Polylactic acid (PLA). The PDLC shutter is hold by two metal screws. The two Ge 

substrates (20mm diameter, 1mm thickness, Shenyang Ebetter Optics Co., Ltd.) are in 

contact with the screws, so that these two screws conduct two channels of AC signals 

generated from the driving circuit.  

The devised SLEEPIR sensor node consists of a Bluetooth MCU (EFR32BG13, 

Silicon Labs), a battery, a DC-DC upconverter (3V to 10V, LTC3459, Analog Devices), 

a SLEEPIR module, and a traditional PIR sensor (AMN24112, Panasonic), as shown in 

Figure 5.1(b).  

 

 

 

Figure 5.1 (a) The 3D illustration of a SLEEPIR module, and (b) the devised 

SLEEPIR sensor node.  
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The block diagram of the SLEEPIR sensor node is shown in Figure 5.2. The battery 

could be either a coin cell or 2 AA batteries. The battery will power the MCU, the DC-

DC upconverter, the SLEEPIR module, and the PIR sensor. In this prototype, the output 

voltage from DC-DC upconverter is 10V, which is enough to make the PDLC shutter 

reaches the maximum 𝑀𝑂𝐷 , as descripted in Chapter 4.2.1. The driving circuit will 

convert the PWM signal from the MCU to the AC voltage to drive the PDLC shutter. The 

MCU will also read the analog signals from both the SLEEPIR module and the PIR sensor.  

 

 

 

Figure 5.2 Block diagram of the SLEEPIR sensor node. 

 

  

The operation pipeline of the SLEEPIR sensor node is shown in Figure 5.3. 

Normally, the MCU stays in the sleep mode to save energy while a timer is running to 

count the time of sleep. Once the timer reaches a certain value of measurement frequency, 

such as every 10 mins, or the motion PIR sensor is triggered, the MCU will wake up and 

start sending PWM signals to drive the PDLC shutter while collecting and transmitting 

data, which will last for 8 seconds. The collected data will be sent to the hub via a wireless 
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connection, Bluetooth, in this work. After the communication is complete, the node will 

go back to the sleep mode and wait for the next wake-up command. 

 

 

Figure 5.3 The operation pipeline of the SLEEPIR sensor node. 

 

 

 

Figure 5.4 Power Consumption of SLEEPIR sensor node and previous prototypes. 

 

 

The power consumption of the SLEEPIR sensor node, measured by a multimeter 

is compared with the mechanical shutter prototypes, the C-PIR, the Ro-PIR, and the 

LAMPIR developed by our group, as shown in Figure 5.4. The result shows that the 
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average power consumption of this SLEEPIR node is 10.9 mW, which is over 95% 

reduction compared to the previous prototypes. 

5.2. Lab Test with SLEEPIR Sensor Nodes 

A SLEEPIR sensor network consists of two SLEEPIR sensor nodes is tested in the 

lab environment, where the temperature is relatively stable. Each SLEEPIR sensor node 

has one SLEEPIR module and one traditional PIR sensor. The PDLC shutter on the 

SLEEPIR module is fabricated with the condition M80D22C1.  

5.2.1. Test Overview 

The tests are conducted in a room with two types of floor maps, as shown in Figure 

5.5. We denote them Floorplan I and Floorplan II, respectively. Figure 5.5 (a) shows 

Floorplan I, which represents a great room of a single-family house with two 

functionalities, the left part is the living room (LR), and the right part is the dining room 

(DR). Figure 5.5 (b) shows Floorplan II, which represents a one-bedroom apartment with 

a bedroom (BR) and a dining room (DR). The difference between these two floorplans is 

that there is an additional wall separating two rooms in Floorplan II. The “wall” in this 

study is replaced by a white curtain for easy implementation, as shown in Figure 5.5 (c). 

We refer to the installed two sensor modules to be Node 1 and Node 2, respectively. 
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Figure 5.5 (a) Floorplan I (b) Floorplan II (c) The photograph of Floorplan II. (d) 

The diagram shows that the ceiling-mounted sensor node and the detection range. 

The detection area of the SLEEPIR is a circular area with a radius of 2 m. We 

segmented this area into two zones: zone 1 (circular area with 1m radius) and zone 

2 (concentric circles). The detection area of the PIR sensor is a circular area with a 

radius of 2.5m. (e) The photograph of the test area. Reprinted with permission from 

[96]. 

 

 

The green round area is the detection range of the SLEEPIR sensor module, with 

a radius of 2m. The yellow area is the detection range of the PIR sensor. The photograph 

of Floorplan II is shown in Figure 5.5 (c). Two sensor nodes are placed on the two frames 

in each room's center with a height of 2.9m. For the SLEEPIR sensor module, the field of 

view is 90° × 90°. The traditional PIR sensor has a FOV of 103°×103°. Here, we assume 
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the upper body of a human has an average height of 0.9m while performing daily activities. 

This detection range applies to most standard office rooms, bedrooms, and dining rooms 

[136]. The covering area of SLEEPIR is segmented into two zones to investigate the zone-

level-dependent occupancy, as shown in Figure 5.5 (d) and (e). Zone 1 is a circular area 

with a radius of 1m, while zone 2 is the remaining concentric circle area. 

Three types of tests are conducted to include more complex occupancy scenarios: 

the action-based test, the continuous activity-based test, and the typical daily routine-based 

test. 

 

Table 5.1 Typical daily actions. Reprinted with permission from [96]. 

Actions ID Action name Zone Recorded Time 

(min) 

1 Sitting Zone1 5 

2 Sitting Zone2 5 

3 Sitting, 

posture change 

Zone1 5 

4 Sitting, 

posture change 

Zone2 5 

5 Lying Zone1 5 

6 Lying Zone2 5 

7 Standing Zone1 5 

8 Standing Zone2 5 

9 Standing, 

posture change 

Zone1 5 

10 Standing, 

posture change 

Zone2 5 

11 Walking - 5 

Unoccupied - - 60 
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For the action-based test, 12 different actions are selected, as shown in Table 5.1. 

The first 11 actions are occupied, and the last one is unoccupied. Note that all the tests are 

done within the detection range of the SLEEPIR sensor node. For Action 1, 2, 5, 6, 7, and 

8, the occupant remains almost stationary. For Action 3, 4, 9, and 10, the occupant would 

change postures not significantly while the main body remains at the same position, such 

as stretching arms and changing body postures. During the test, the occupant will repeat 

the same activities in both rooms. Note that the background infrared radiation of different 

rooms with different floorplans is different.  

After collecting data from the action-based test, seven continuous activities are 

planned, as shown in Figure 5.6. We denote these activities in the alphabetic order, which 

are Activity A to G. Activity A to E are the activities conducted by only one occupant, 

while activities F and G are the activities of two occupants performing at different action 

sequences. In Figure 5.6, the arrows represent the routes of the occupants. The detailed 

descriptions of each activity are shown below: 

Activity A: The occupant stays outside the living room for 5 minutes → sits on the 

sofa and watches TV for 5 minutes → walks to the dining room and cooking for 5 minutes 

→ sits by the table for 5 minutes.  

Activity B: The occupant sits in the dining room for 5 minutes → walks to the living 

room and sits on the sofa for 5 minutes → walks to the edge of the detection area and 

makes a phone call → goes back to the sofa and sits for 5 minutes → leaves the living room 

for 5 minutes. 
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Figure 5.6 The continuous activity sequence for (a) Activity A, (b) Activity B, (c) 

Activity C, (d) Activity D, (e) Activity E, (f) Activity F, and (g) Activity G. Reprinted 

with permission from [96]. 
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Activity C: The occupant lies on the bed in the bedroom for 5 minutes → leaves the 

room for personal care for 5 minutes → goes back to the bedroom for 5 minutes → walks 

to the dining room for 5 minutes. 

Activity D: The occupant works out in the living room for 5 minutes → leaves the 

room for personal care for 5 minutes → goes to the bedroom for 5 minutes → walks to the 

living room and sits for 5 minutes. 

Activity E: The occupant sits in the bedroom for 5 minutes → leaves the room for 

personal care for 5 minutes → goes back to the bedroom and sits on the bed for 5 minutes 

→ lies on the bed for 5 minutes.  

Activity F: Occupant 1 stays outside the living room for 5 minutes while occupant 

2 sits on the sofa for 5 minutes. → Occupant 1 walks into the living room and sits on the 

sofa for 5 minutes, while occupant 2 goes to the dining room and cooks for 5 minutes. → 

Both occupants enter the dining room and sit for 5 minutes.  

Activity G: Both occupants sit by the table in the dining room for 5 minutes. → 

Occupant 1 goes to the living room and sits on the sofa for 10 minutes, while occupant 2 

cleans the dining room for 5 minutes and goes to the sofa for 5 minutes. → Both occupants 

leave the room for 5 minutes. 

Also, note that Activity A, B, F, and G are performed in rooms with Floorplan I, 

while Activity C, D, and E are performed in rooms with Floorplan II. Figure 5.7 shows 

the signals from the SLEEPIR and PIR sensor and the PDLC shutters’ state of each node 

when performing seven continuous activities. The green line, blue line, and red line 
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indicate the SLEEPIR and PIR sensor signal and the PDLC shutters’ state of each node, 

respectively. 

 

 

Figure 5.7 Signals from two sensor nodes for 7 different activities. (a) activity A, (b) 

activity B, (c) activity C, (d) activity D, (e) activity E, (f) activity F, and (g) activity G. 

Reprinted with permission from [96]. 
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Next, we conduct experiments based on the typical daily routine that one occupant 

will perform for 24 hours. However, we scaled the test by a factor of 24 due to the limited 

time for the testing. It means that the duration of the test is 1 hour. In Table 5.2, column 

1, column 3, and column 4 show the ideal time duration, the person's action, and the room 

the person would be in, respectively. The 2nd column shows the actual time duration when 

performing the test. One person conducts the test to simulate a full-time employee’s 

typical daily routine on a regular weekday living in a one-bedroom apartment with 

Floorplan II. The original signal from both sensor nodes is shown in Figure 5.8.  

 

Table 5.2 Typical daily routine of a full-time employee on a regular weekday. 

Reprinted with permission from [96]. 

Ideal Time Test time 

(scaled by 24) 

Action Room 

0:00-7:30 18.75min Sleep BR 

7:30-8:00 1.25min Personal care - 

8:00-8:30 1.25min Cook + eat DR 

8:30-18:00 23.75min Work - 

18:00-19:00 2.5min Cook + eat + clean DR 

19:00-20:00 2.5min Workout - 

20:00-22:00 5min Rest DR 

22:00-22:30 1.25min Personal care - 

23:00-0:00 2.75min Sleep BR 
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Figure 5.8 Raw signals from both Node 1 and Node 2 for the daily routine dataset. 

Reprinted with permission from [96]. 

 

 

5.2.2. Threshold Approach 

There are three datasets collected from three sets of previous experiments. I denote 

them as the action-based dataset, the activity-based dataset, and the daily-routine-based 

dataset. The action-based dataset is used to extract the optimal threshold value we will use 

to evaluate the presence detection performance of the other two datasets. The threshold 

value method is commonly used for presence detection [16, 70, 71]. 

Firstly, I will determine the threshold value from the action-based dataset. When 

the PDLC shutter turns ON or OFF for stationary occupants, there will be peaks from the 

SLEEPIR sensor module while the PIR sensor shows a flat output [42]. According to 

Equation (3.5) and (3.6), the peak-to-peak value depends on the IR radiation received by 

the SLEEPIR sensor module. Thus, the peak-to-peak value in a period 𝑇, which is denoted 

as 𝑉𝑝𝑝  can be used to classify the occupied and unoccupied scenarios. For a moving 

occupant, the motion of the human body results in even higher 𝑉𝑝𝑝 values. We denote 
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these threshold values to be 𝑉𝑡ℎ,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1 , 𝑉𝑡ℎ,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1, 𝑉𝑡ℎ,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2, 𝑉𝑡ℎ,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2, 

which represent the threshold values of the SLEEPIR sensor module and the PIR sensor 

of node 1 and node 2, respectively. 

For the action-based dataset, the first 11 actions are occupied actions, while the 

last one is unoccupied action. For each action, I extract the 𝑉𝑝𝑝 values from both the 

SLEEPIR sensor module and the PIR sensor of both nodes for each period. For occupied 

actions, we concatenate all 𝑉𝑝𝑝 values into four arrays, 𝑽𝑝𝑝𝑜,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1, 𝑽𝑝𝑝𝑜,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1, 

𝑽𝑝𝑝𝑜,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2 , and 𝑽𝑝𝑝𝑜,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2 . These four arrays represent the 𝑉𝑝𝑝  from the 

SLEEPIR and PIR of node 1 and node 2, respectively. Similarly, for the unoccupied 

action, we have 𝑽𝑝𝑝𝑢,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1, 𝑽𝑝𝑝𝑢,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1, 𝑽𝑝𝑝𝑢,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2, and 𝑽𝑝𝑝𝑢,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2. 

The letters “o” and “u” in the subscript represent the occupied and unoccupied actions, 

respectively. 

To determine the optimal threshold value to classify the occupied and unoccupied 

scenarios, I first determine the threshold value for the PIR sensor. Due to the nature of 

motion detection, the threshold value can be known as 

 𝑉𝑡ℎ,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1 = max(𝑽𝑝𝑝𝑢,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1)

𝑉𝑡ℎ,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2 = max(𝑽𝑝𝑝𝑢,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2)
 

(5.1) 

To determine the threshold value for the SLEEPIR sensor of both nodes, I define 

the accuracy on a variable ℎ to be: 

 𝐴𝑐𝑐𝑛𝑜𝑑𝑒1(ℎ)

=
𝑠𝑢𝑚(𝑽𝑝𝑝𝑜,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1 ≥ ℎ) + 𝑠𝑢𝑚(𝑽𝑝𝑝𝑢,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1 < ℎ)

𝑠𝑖𝑧𝑒(𝑽𝑝𝑝𝑜,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1) + 𝑠𝑖𝑧𝑒(𝑽𝑝𝑝𝑢,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1)
 

 

(5.2) 
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 𝐴𝑐𝑐𝑛𝑜𝑑𝑒2(ℎ)

=
𝑠𝑢𝑚(𝑽𝑝𝑝𝑜,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2 ≥ ℎ) + 𝑠𝑢𝑚(𝑽𝑝𝑝𝑢,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2 < ℎ)

𝑠𝑖𝑧𝑒(𝑽𝑝𝑝𝑜,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2) + 𝑠𝑖𝑧𝑒(𝑽𝑝𝑝𝑢,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2)
 

 

(5.3) 

where sum(∙) calculates the number of the arguments to be true, and size(∙) is the length 

of the array. Then the threshold value for the SLEEPIR sensor of both nodes can be derived 

from 

 𝑉𝑡ℎ,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒1 = argmax
h
𝐴𝑐𝑐𝑛𝑜𝑑𝑒1(ℎ)

𝑉𝑡ℎ,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒2 = argmax
h
𝐴𝑐𝑐𝑛𝑜𝑑𝑒2(ℎ)

 
(5.4) 

Table 5.3 shows the optimal threshold value determined from the action-based 

dataset. 

 

Table 5.3 Threshold values for the SLEEPIR and PIR of Node 1 and Node 2. 

Reprinted with permission from [96]. 

𝑽𝒕𝒉,𝒔𝒍𝒆𝒆𝒑𝒊𝒓,𝒏𝒐𝒅𝒆𝟏 𝑽𝒕𝒉,𝒑𝒊𝒓,𝒏𝒐𝒅𝒆𝟏 𝑽𝒕𝒉,𝒔𝒍𝒆𝒆𝒑𝒊𝒓,𝒏𝒐𝒅𝒆𝟐 𝑽𝒕𝒉,𝒑𝒊𝒓,𝒏𝒐𝒅𝒆𝟐 

0.37V 0.37V 0.17V 0.16V 

 

 

After extracting the corresponding peak-to-peak values for each period, I use the 

obtained threshold value from Table 5.3 to determine each activity's occupancy status and 

then calculate the accuracy. For the values of 𝑉𝑝𝑝,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒(𝑖)  and 𝑉𝑝𝑝,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒(𝑖) from 

each period of node i, where i =1 or 2, the determined occupancy state is 
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 𝑆𝑡𝑎𝑡𝑒(𝑉𝑝𝑝,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒𝑖 , 𝑉𝑝𝑝,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒𝑖) =

 {
0, 𝑖𝑓 𝑉𝑝𝑝,𝑠𝑙𝑒𝑒𝑝𝑖𝑟 < 𝑉𝑡ℎ,𝑠𝑙𝑒𝑒𝑝𝑖𝑟,𝑛𝑜𝑑𝑒𝑖  𝑜𝑟 𝑉𝑝𝑝,𝑝𝑖𝑟 < 𝑉𝑡ℎ,𝑝𝑖𝑟,𝑛𝑜𝑑𝑒𝑖
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5.5) 

Here, 0 and 1 indicate the unoccupied and occupied state, respectively. Based on 

Equation (5.5), the accuracies of the detection results are shown in Table 5.4.  

 

Table 5.4 Accuracy for continuous activities and daily routine using fixed threshold 

values. 

Activity Node 1 

Accuracy (%) 

Node 2 

Accuracy (%) 

A 93.07 99.15 

B 98.67 96.03 

C 98.10 97.46 

D 98.35 99.19 

E 98.23 98.13 

F 97.62 100.00 

G 96.69 98.29 

Daily Routine 94.93 93.75 

 

 

5.2.3. Machine Learning Approach 

From the previous result, the accuracy of using threshold values extracted from the 

action-based dataset and predicting on the other two datasets is not high. There are several 

reasons: (1) Different datasets are collected at different times. Also, the background and 

placement of furniture may be different. The threshold value extracted from a dataset is 

not suitable for another dataset. (2) When performing continuous activities, the occupant 

may change postures or perform actions with large amplitudes than instructed from time 

to time. For example, the occupant will perform actions when the PDLC shutter is turning 
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ON or OFF. If the radiation variation from the action and the variation from the PDLC 

change in the opposite directions, the 𝑉𝑝𝑝 will decrease. Thus, I explore machine learning 

models to improve the detection performance further [137]. 

The overall process of using the machine learning model is as followed. At first, I 

extract the statistical features from all three datasets. Then, I feed the training dataset to 

the machine learning models to train and evaluate each model. Finally, the trained models 

are used on the test dataset. 

A total of 34 statistical features are extracted from both the SLEEPIR and the PIR 

sensing signals during each detection period of 𝑇, which is defined in Figure 3.1(b). They 

include 15 typical features [138] and two additional features from each node: the rising 

peak to peak value 𝑉𝑝𝑝𝑟 and the falling peak to peak value 𝑉𝑝𝑝𝑓. Both additional features 

represent the peak-to-peak value that happens when the PDLC shutter switches from OFF 

to ON and from ON to OFF, respectively. According to Figure 4.10, SLEEPIR will 

generate polarity peaks for stationary objects. These are critical features distinguishing 

stationary occupants from the unoccupied environment. When the occupant is moving, 

there will also be various peaks. Thus, other features, such as peak numbers, signal power, 

peak-to-peak values, could help detect moving occupants. Note that the abbreviation of 

features extracted from the SLEEPIR and PIR sensor has subscripts of “s” and “p”, 

respectively. All features will be normalized in the range of (0,1) before fed to the machine 

learning models.  
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Figure 5.9 (a) The illustration of wrapper feature selection method. (b) The pipeline 

of feature selection using RFECV algorithm and predict the presence result on 

various machine learning models. © 2021 IEEE. Reprinted with permission from 

[137].  

 

 

However, a large number of features will cause overfitting, which will decrease 

the accuracy of the test set, and increase the computation complexity. Thus, I use wrapper 

feature selection to choose key features and form an optimal feature subset, as shown in 

Figure 5.9(a). I employ recursive feature elimination with cross-validation (RFECV), one 

of the most popular implementation algorithms, to down select key features [139, 140]. 

As shown in Figure 5.9 (b), I utilize an open-source machine learning framework, scikit-

learn [79], to perform such a down selection. At first, the 34 features extracted from the 

action-based dataset will be extracted and ranked by their importance for an estimator. 

The least important feature(s) will be removed. This process will be repeated iteratively 

until the maximum accuracy is reached (100%) on the action-based dataset. Thus, an 

optimal subset containing a minimum (eight) number of selected features will be generated: 

the minimum value of SLEEPIR (𝑚𝑖𝑛𝑠), maximum value of SLEEPIR (𝑚𝑎𝑥𝑠), standard 
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deviation of SLEEPIR (𝑠𝑑𝑠), cross variation of SLEEPIR (𝑐𝑣𝑠), peak to peak value of 

SLEEPIR (𝑣𝑝𝑝𝑠), peak number of SLEEPIR (𝑝𝑘𝑠𝑠), rising peak to peak value of SLEEPIR 

(𝑣𝑝𝑝𝑟𝑠), peak to peak value of PIR (𝑣𝑝𝑝𝑝). Then, we form another subset from the activity-

based dataset and daily routing dataset with the same eight selected key features.   

Finally, these eight key features will be applied to six machine learning models, as 

shown in Figure 5.10. Random forest (RF) is an ensemble learner that constructs a forest 

of uncorrelated decision trees (week learners) [141]. The k-nearest neighbors (KNN) 

classifier categorizes new data to the class that is the most common among its k nearest 

neighbors [77]. Multiple layer perception (MLP) model is a neural network that consists 

of an input layer, hidden layer(s), and an output layer. The weights of the connections 

would be updated during backpropagation [142]. Support vector machine (SVM) is a 

discriminative classifier formally defined by separating hyperplanes [75, 76]. Given the 

training data, the algorithm gives optical hyperplanes which categorize new data. In Naïve 

Bayes (NB) classifier, the posterior probability is computed from all input data based on 

all classes. Then the new data is assigned to the class with the highest posterior probability 

[143]. Decision tree (DT) is a non-parametric supervised learning method to do 

classification and regression by making a series of decision rules from input data [78].  
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Figure 5.10 The predicted accuracy for presence detection using selected features 

with six multiple machine learning models for activity-based dataset and daily-

routine-based dataset. 

 

 

From Figure 5.10, we see that although these classifiers show similarly high 

accuracy over the action-based dataset, the predicted performance over the activity-based 

dataset is different. For example, the accuracy of Node 1 of activity A is lower than others. 

One reason is that the overlap detection area of the PIR sensors on both nodes. For 

example, in Figure 5.7, Activity A, the signal from the PIR sensor of node 1 shows five 
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peaks even though the person is not in the living room. However, when the person is 

moving in the dining room, since there is no wall between these two rooms of Floorplan 

I, the movement of the occupant will still be detected by the PIR sensor in the living room. 

Thus, in the detection result of Figure 5.11(A) for Activity A, the result of node 1 shows 

five “occupied” states at the same moment. Similarly, for Floorplan II, although there is a 

wall between the two rooms, the doorway is shared by the two rooms. When the occupant 

enters or leaves the doorway, both PIR sensors could still detect the occupant. The 

potential solutions to address this issue include increasing the segmentation of the PIR 

Fresnel lens and extracting statistical features from a longer period. Another reason is the 

noise of the PIR sensor. This can be solved by using a filter circuit or a high-resolution 

ADC. 

Finally, SVM with the radial basis function kernel reports the highest weighted 

average accuracy for all seven activities and daily routine dataset, which is 99.11% for 

Node 1, and 99.66% for Node 2. They are 2.53% and 2.81% higher than the threshold 

approach. In addition, such a machine learning model does not require the system to 

foresee the data distribution. The predicted results for the activity-based dataset and the 

daily-routine dataset, as well as the ground truth, are shown in Figure 5.11. The 

improvement of the machine learning approach than the threshold approach is shown in 

Table 5.5.  
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Table 5.5 The result of the machine learning approach than threshold approach. 
Dataset Activity 

A 

Activity 

B 

Activity 

C 

Activity 

D 

Activity 

E 

Activity 

F 

Activity 

G 

Daily 

Routine 

Node 1 Accuracy (%) 98.02 99.33 99.04 100.00 99.11 98.81 98.35 99.44 

Node 2 Accuracy (%) 100.00 100.00 99.15 99.19 100.00 100.00 99.15 99.72 

Improvement 

than 

threshold 

method (%) 

Node 

1 

4.95 0.66 0.95 1.65 0.89 1.19 1.66 4.51 

Node 

2 

0.85 3.97 1.69 0 1.87 0 0.86 5.97 

 

 

 

Figure 5.11 The ground truth and predicted results for (a-g) activity A to G and (h) 

daily-routine-based dataset. The machine learning model is based on the SVM model 

with the radial basis function kernel and with the selected key features (mins, maxs, 

sds, cvs, vpps, pkss, vpprs, and vppp). 
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5.3. Uncontrolled Test with the SLEEPIR Sensor Node 

The occupancy detection experiments conducted in controlled environments have 

been discussed before. It means that the environment has a stable temperature. Also, the 

person under the test is following the predefined routine to perform different activities. 

However, these tests may not be suitable for practical application. For example, the indoor 

room temperature of residential houses that is comfortable for residents varies from 22°C 

to 26°C [144-146], depends on the location, natural light, clothes, ventilation, etc. In this 

varying environment, the temperature of the sensor itself, the surface of the floor, the 

human skin, and the furniture will also change. In this subsection, we study the impact of 

the temperature of the sensor node and the floor surface on the detection performance of 

the SLEEPIR sensor node.  

5.3.1. Thermal Model of the SLEEPIR Sensor Node 

Firstly, the thermal model of the sensor node is developed. A simplified model is 

shown in Figure 5.12. The SLEEPIR sensor node is placed on the ceiling. Its surface 

temperature, area and emissivity are 𝑇𝑠, 𝐴𝑠, 𝜀𝑠, respectively. The floor in the field of view 

is shown in the circle. The surface temperature, area, and emissivity are 𝑇𝑓, 𝐴𝑓 and 𝜀𝑓, 

respectively. The air in the room is 𝑇𝑎. Since the sensor node has a small heat capacity, it 

will reach thermal equilibrium with the air fast. Thus, normally, 𝑇𝑓 = 𝑇𝑎. The temperature 

of floor usually is different from the air temperature because of the heat conduction with 

the ground and ventilation with the air [147, 148].  



 

133 

 

 

Figure 5.12 The thermal model of the SLEEPIR sensor node placed on the ceiling.  

 

 

Since there is a temperature difference between the floor surface in the FOV and 

the sensor node, a radiation flux will transfer between the floor and the sensor. When there 

are no other objects within the field of view, the net radiation flux from the floor to the 

SLEEPIR sensor node is [106] 

 𝑊𝑠 = 𝐴𝑓𝐹𝑓→𝑠𝜀𝑓𝜀𝑠𝜎(𝑇𝑓
4 − 𝑇𝑠

4) (5.6) 

where 𝐹𝑓→𝑠  is the view factor from the floor to the sensor; 𝜎 is the Stefan-Boltzmann 

constant. Note that, when 𝑇𝑓 > 𝑇𝑠, the direction of the net heat flux is from the floor to the 

sensor, which means the SLEEPIR sensor node will receive radiation. When 𝑇𝑓 < 𝑇𝑠, the 

direction of the net heat flux is from the sensor to the flow, which means the SLEEPIR 

will emit radiation.  

 From the model built in Chapter 3.2, the peak-peak value 𝑉𝑝𝑝 of the SLEEPIR 

module is proportional to the incident radiation on the sensor. Thus, we have  
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 𝑉𝑝𝑝 ∝ 𝑇𝑓
4 − 𝑇𝑠

4 (5.7) 

 

 

Figure 5.13 The output of the SLEEPIR module with Tbb
4-Ts

4. Tbb and Ts is the 

temperature of the blackbody source and SLEEPIR module, respectively.  

 

 

I design an experiment with the same setup shown in Figure 4.11 to verify the 

thermal model described by Equation (5.7). The SLEEPIR sensor node is placed in front 

of a blackbody radiation source. The distance between the sensor and the blackbody is 

around 1 cm to make sure the blackbody's surface covers the FOV of the SLEEPIR 

module. The temperature of the sensor 𝑇𝑠 is measured by a temperature sensor (Si7021, 

Silicon Labs). The surface temperature of the blackbody radiation source 𝑇𝑏𝑏 will change 

to different values.  

𝑇𝑏𝑏  is changed with six different values. I plot the relationship between the 

measured output 𝑉𝑝𝑝 with 𝑇𝑏𝑏
4 − 𝑇𝑠

4. The result is shown in Figure 5.13. Good linearity is 
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found between 𝑉𝑝𝑝 with 𝑇𝑏𝑏
4 − 𝑇𝑠

4. Thus, this result verifies the thermal model described 

by Equations (5.6) and (5.7).  

5.3.2. Setup of Uncontrolled Test  

Next, I conduct the experiment in an uncontrolled environment. There are two 

separate tests, the cooling stage test and the uncontrolled presence test. The experiment 

setup is shown in Figure 5.14. The sensor node is placed on a pole with a height of 2.7 

meters. The surface temperature is measured by thermocouples and collected by a data 

acquisition device (DAQ, National Instrument) at a sampling frequency of 20Hz. A 

portable air conditioner unit is placed in the room.   

 

 

Figure 5.14 Experiment setup of the uncontrolled test. 
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For the cooling stage test, the air conditioner unit is turned on to heat the room 

temperature to around 28°C. Then the room is naturally cooled down with no occupants 

inside. The purpose of this test is to find the relationship between the measured 𝑉𝑝𝑝 values 

of the SLEEPIR sensor module and the temperature difference 𝑇𝑏𝑏
4 − 𝑇𝑠

4. The output of 

the SLEEPIR sensor module, sensor temperature 𝑇𝑠 and floor temperature 𝑇𝑓 are shown 

in Figure 5.15. The experiments last 167 minutes, which represents 335 periods of the 

SLEEPIR sensor module. The result shows that the amplitude of the SLEEPIR sensor 

module’s output decreases when the difference between 𝑇𝑠 and 𝑇𝑓 decreases.  

 

 

Figure 5.15 (a) The output of the SLEEPIR module during the cooling stage. (b) The 

temperature of the sensor node Ts and floor surface Tf during the cooling stage. 
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Figure 5.16 (a) The output of the SLEEPIR sensor module and the PIR sensor in the 

uncontrolled presence test. (b) The temperature of the sensor node Ts and floor 

surface Tf in the uncontrolled presence test. (c) Ground truth that is recorded 

manually. “O” and “U” represent the occupied and unoccupied states, respectively.  

 

 

 The second test is the uncontrolled presence test. One occupant goes in and out in 

an uncontrolled manner. The ground truth is recorded manually. The room temperature is 

controlled by the air conditioner unit. Besides the SLEEPIR sensor module, a traditional 
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digital PIR sensor will also output a positive detection result once it is triggered by the 

motion. The test lasts for around 8 hours, which is 956 periods of the SLEEPIR sensor 

module. The original data and the ground truth of the uncontrolled presence test are shown 

in Figure 5.16.  

5.3.3. Adaptive Detection Algorithm 

Next, I develop the adaptive detection algorithm for uncontrolled presence 

detection. Firstly, the relationship between the measured 𝑉𝑝𝑝 and 𝑇𝑓
4 − 𝑇𝑠

4 is found. The 

𝑉𝑝𝑝 values are extracted for each period of the SLEEPIR sensor module during the cooling 

stage test. The scattering plot is shown in Figure 5.17. We fit 𝑉𝑝𝑝 and 𝑇𝑓
4 − 𝑇𝑠

4 linearly. 

The 𝑅2 value of the linear fitting is 0.987. We denote the linear function of this fitting to 

be  𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠), where the input arguments are 𝑇𝑓  and 𝑇𝑠 . The linear fitting could be 

written as 

 𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠) = 3.738 × 10
−9(𝑇𝑓

4 − 𝑇𝑠
4) + 0.38𝑉 (5.8) 

 We also define another variable 𝛿𝑉 with 

 𝛿𝑉 = max|𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠) − 𝑉𝑝𝑝| = 0.165𝑉 (5.9) 
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Figure 5.17 Blue dots are the measured Vpp and Tf
4-Ts

4. Red curve is the linear fitting. 

Yellow and purple curves are linear fitting with a margin of δV. 

 

 

By definition, the 𝛿𝑉 indicates the margin between all the measured 𝑉𝑝𝑝 values 

and the linear fitting 𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠). The yellow and purple curves in Figure 5.17 are the 

linear fitting with a margin ±𝛿𝑉 , which are 𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠) − 𝛿𝑉  and 𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠) + 𝛿𝑉 , 

respectively. All the measured 𝑉𝑝𝑝 values are within the area covered by these two lines.  

After getting the linear function 𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠)  and the margin 𝛿𝑉 , the adaptive 

detection algorithm is developed, as shown in Figure 5.18. For each period in the 

uncontrolled presence test, four values will be extracted: the sensor temperature 𝑇𝑠, the 

floor temperature 𝑇𝑓, the peak-to-peak value 𝑉𝑝𝑝 from the SLEEPIR sensor module and 

the result of the motion sensor motion. The input of the adaptive detection algorithm is  



 

140 

 

𝑇𝑠 , 𝑇𝑓 , 𝑉𝑝𝑝 , motion, 𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠) , and 𝛿𝑉 . The adaptive peak-to-peak value 𝑉𝑝𝑝,𝑎𝑑𝑎 is 

calculated as 

 𝑉𝑝𝑝,𝑎𝑑𝑎 = 𝑉𝑝𝑝 − 𝑃𝑓𝑖𝑡(𝑇𝑓 , 𝑇𝑠) (5.10) 

 Then, the occupancy state of this period could be derived from the adaptive 

detection algorithm shown in Figure 5.18. 

 

 

Figure 5.18 The adaptive detection algorithm. 

 

 

5.3.4. Presence Detection Result 

After applying the adaptive detection algorithm, the corresponding measured 𝑉𝑝𝑝, 

adaptive 𝑉𝑝𝑝,𝑎𝑑𝑎 are shown in Figure 5.19. When the occupant is within the detection area, 

𝑉𝑝𝑝,𝑎𝑑𝑎  will exceed the margin ±𝛿𝑉  defined by the yellow and purple dotted curves, 

which represent the level of 𝛿𝑉 and −𝛿𝑉, respectively.  
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Figure 5.19 The measured Vpp and adaptive Vpp,ada for the uncontrolled test. 

 

 

Then, I compare the result of the adaptive detection algorithm with two other 

methods: using a stand-alone PIR sensor and using the SLEEPIR sensor module with a 

fixed threshold.  

The first method that uses a stand-alone PIR sensor depends on the detection result 

of the PIR sensor solely, which is widely used in indoor light control [34, 149, 150]. The 

second method that uses a fixed threshold is also used by some publications with analog 

PIR sensors to detect occupancy [51]. It follows the detection method 

 
𝑆𝑡𝑎𝑡𝑒 = {

1,   if Vpp > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,   otherwise
 

(5.11) 
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The threshold value for this experiment is determined by the first 1 hour of the 

uncontrolled experiment test, which is 0.25V. 

 

 

Figure 5.20 (a) The ground truth of the uncontrolled presence test. (b) The prediction 

results with the method that uses the stand-alone PIR sensor. (c) The prediction 

results with the method that uses the SLEEPIR sensor module with a fixed threshold. 

(d) The prediction results with the adaptive detection algorithm.  

 

 

The prediction result of these three methods are shown in Figure 5.20 (b) (c) and 

(d), respectively. We could see that the adaptive detection algorithm is much better than 
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the other two methods. The errors in the result are mainly triggered by the motion sensor. 

The reason is that the air from the air conditioner unit will make the pole vibrate and cause 

false-positive detections for the motion sensor. We expect that if we place the sensor far 

away from the air conditioner outlet, the detection result will improve. 

5.3.5. Comparison with Commercial Products 

There are a lot of presence detection products on the market. Ecobee is a company 

that sells smart thermostats and occupancy sensors. The sensor nodes consist of a 

traditional motion sensor. Each node will send signals to the thermostat once triggered by 

a motion. From a publication that uses the data collected from Ecobee users, the authors 

analyzed the data from over 100 thermostats for over a year [151]. In total, there are over 

73,000 measurements. However, the accuracy is 85% even it applies a machine learning 

approach. The reason is that the motion sensor will cause false-negative results when the 

occupants are not moving.  

In this subsection, we introduce a concept called Annual Failure Rate (AFR) to 

evaluate the performance of our proposed SLEEPIR presence detection system and those 

in the reference. AFR is a common concept to evaluate the reliability of a device or a 

component [152, 153]. For a presence detection system, the total measurement number is 

𝑁𝑦 per year. The detection accuracy is 𝑝𝑇. The AFR in this work is defined to be the 

minimal number of the failure detection number 𝐾, which makes the probability of no 

more than 𝐾  failed detections every year to be at least 95%. Mathematically, the 

probability of no more than 𝐾 failures per year is 
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𝑃(𝐾) = ∑(
𝑁𝑦
𝑛
)𝑝𝑇

𝑁𝑦−𝑛(1 − 𝑝𝑇)
𝑛

𝐾

𝑛=0

 

(5.12) 

AFR is the minimal value of 𝐾 that makes 𝑃(𝐾) ≥ 0.95.  

I compare the AFR of our proposed detection system and other approaches, such 

as using a stand-alone PIR sensor, using the SLEEPIR module with a fixed threshold, and 

the Ecobee products [151]. When calculating AFR, the total number of measurement per 

year 𝑁𝑦 = 17520, so that the detection system could report the presence state every 30 

minutes. The comparison is shown in Table 5.6. Compared to the Ecobee work, the 

adaptive detection algorithm run on the SLEEPIR sensor node reduces the AFR by 85%.  

 

Table 5.6 Comparison of AFR between different presence detection approaches. 

Presence 

Detection System 

Data Size Accuracy AFR 

Ecobee [151] 73000 85% 2628 

Stand-alone PIR 

sensor 

956 69.14% 5407 

SLEEPIR with 

Fixed Threshold 

956 62.34% 6598 

Adaptive 

Detection 

Algorithm 

956 97.80% 385 

 

 

5.4. Discussion and Summary  

In this chapter, the sensor node is designed with a SLEEPIR module, a traditional 

motion sensor, a wireless microcontroller, and DC-to-DC converters. The sensor node will 

periodically wake up to drive the PDLC shutter and collect data to reduce the power 
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consumption. The power consumption of the SLEEPIR sensor node is 10.9mW, which is 

a 95% reduction compared to previous mechanical shutter approaches.  

Next, two types of presence detection experiments are conducted. The first one is 

the lab test. During the test, the environment temperature is unchanged, and the occupants 

follow the predefined activities to perform the experiment. A sensor network consists of 

two sensor nodes are placed in two floorplans. Three types of data are collected to evaluate 

the detection performance of the constructed sensor network: action-based dataset, 

continuous activity-based dataset, and daily routine-based dataset. The fixed threshold 

approach shows low accuracy since the background radiation may change when collecting 

different datasets. To improve the detection accuracy, we introduce the machine learning 

approach. Specifically, we use the RFECV algorithm to select optimal feature subsets to 

reduce overfitting and computing complexity. We use the action-based dataset to select 

features, train the machine learning models, then predict the accuracy of the realistic 

activity-based dataset. With a selected optimal subset, the SVM classifier reports the 

average accuracy for the activity-based dataset and the daily-routine dataset to be 99.11% 

for Node 1, and 99.66% for Node 2, which is 2.53% and 2.81% higher than the fixed 

threshold approach. 

The second type of test is the uncontrolled test, where the room temperature and 

the occupant's behavior are uncontrolled. A thermal model is built for the sensor node, 

which indicates that the peak-peak value 𝑉𝑝𝑝  of the SLEEPIR sensor module is 

proportional to 𝑇𝑓
4 − 𝑇𝑠

4, where 𝑇𝑓 and 𝑇𝑠 are the the absolute temperatures of the floor 

and the sensor, respectively. The linear fitting between 𝑉𝑝𝑝 and 𝑇𝑓
4 − 𝑇𝑠

4 is found when 
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the room temperature changes. An adaptive detection algorithm is proposed to calibrate 

the measured 𝑉𝑝𝑝. The adaptive detection algorithm shows an accuracy of 97.8%, which 

is 28.66% and 35.46% higher than the method using a digital PIR sensor and the method 

using the SLEEPIR sensor module with a fixed threshold, respectively. 

Finally, we compare the result of the uncontrolled test with a commercial product, 

Ecobee. By introducing the concept AFR, the proposed adaptive detection algorithm 

shows an 85% reduction in AFR compared to Ecobee.  

Some future works could improve the performance of the result of the presence 

detection test. (1) Apply machine learning to the uncontrolled test as well. The temperature 

of the sensor and the floor surface could be added to the inputs. Then, we could apply a 

similar process as we do on the controlled test, such as feature selection. (2) Instead of 

feature selection, feed the original signal of the SLEEPIR module to a deep learning 

model. This could help observe more information within the signal than statistical features. 

(3) Improve the thermal model by considering a more complex setup. The reason is that 

the furniture has different surface temperatures, emissivity, and shapes. By collecting the 

temperature of the furniture, the thermal model could be more accurate.  
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6. SUMMARY 

 

This dissertation presents a SLEEPIR sensor module that consists of a PDLC 

infrared shutter, a PIR sensor, and a driving circuit. Commercial PIR sensors are widely 

used for automation, intrusion detection, and lighting control. However, PIR sensors only 

respond to the motion. Adding an infrared shutter that actively changes the transmitted 

radiation will enable the PIR sensor to detect stationary occupants. PDLC infrared shutters 

are chosen due to the high modulation, low cost, low power consumption, and simple 

fabrication process. A SLEEPIR sensor node is made of a SLEEPIR module, a traditional 

PIR sensor, a microcontroller, batteries, and DC-to-DC converters.  

Three topics are studied in this dissertation: (1) the impact of different factors on 

the performance of the PDLC shutters, (2) the relationship between the SLEEPIR sensor 

modules’ output and the properties of the PDLC infrared shutters, (3) the performance of 

presence detection using the SLEEPIR sensor nodes for different environmental factors.  

6.1. Contribution 

Chapter 2 introduces the working principle of the PIR sensor, the result of 

mechanical shutters, and the comparison between different LWIR LC shutters. The output 

of the analog PIR sensor is related to the sinusoidally modulated radiation. Mechanical 

shutters could be used as optical shutters that change the incident radiation of the PIR 

sensors. Our previously developed prototypes, including the chopped PIR sensor (C-PIR) 

[51], the rotational chopped PIR sensor (Ro-PIR) [43], and the Lavet motor-driven PIR 

sensor (LAMPIR) [44] are briefly introduced and show high accuracy for presence 
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detection, positioning, and tracking. However, they have several disadvantages, such as 

high power consumption, large size, large noise, and low reliability, which limit their 

practical applications. The PDLC infrared shutters are chosen as the focus of this 

dissertation due to their high modulation, low cost, and a simple preparation process. 

Compared to the reference [67, 68], we improve the contrast ratio and transmission 

difference of PDLC shutters by 16% and 165%, respectively.  

Chapter 3 presents the design and characteristics of a SLEEPIR sensor module. I 

develop a model of the SLEEPIR sensor module's output, which is related to three factors, 

the effective modulation, the response time of the PDLC shutter, and the time constants 

of the PIR sensor. To measure the time constants of the PIR sensor, we design an 

experiment with a blackbody radiation source, a mechanical chopper, and a controller. 

The frequency response of the PIR sensor is measured and used to calculate the time 

constants. Finally, the measurement methods of the effective modulation MOD and the 

response time are introduced. By introducing the hysteresis, the persistence and the 

memory effect, the effective modulation 𝑀𝑂𝐷  is defined to be the difference of the 

transmitted radiation between the ON and the OFF state. The two types of the response 

time, the rise time 𝜏𝑟 and the decay time 𝜏𝑑, are measured by an infrared photodetector.  

Chapter 4 presents the impact of the PDLC shutter's fabrication condition and 

driving condition on the effective modulation, the response time, and the output of the 

SLEEPIR module. From the microscope images of glass based PDLC shutters, we found 

that the droplet size will increase when the cooling rate decreases and when the mass ratio 

increases. Next, we study the impact of the driving and fabrication conditions on the 
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effective modulation of the PDLC shutters. The MOD will increase with larger voltage 

amplitude until reaching saturation level. The optimal driving frequency is found to be 

below than 980Hz. The optimal fabrication condition that maximizes the effective 

modulation is 𝜂 = 0.8, 𝑑 = 22𝜇𝑚, cool at 1 or 1.25°C/min. Moreover, cycling could help 

to reduce the persistence effect and memory effects. In the study of the response time, the 

result shows that rise time will decrease with the increasing voltage amplitude, while the 

decay time 𝜏𝑑  does not change much. We also study the impact of the fabrication 

condition on the response time. The result shows that the response time will increase with 

a larger cell gap d and a larger mass ratio 𝜂. Fourthly, the model of the SLEEPIR sensor 

module is verified by the good linearity between 𝑉𝑝𝑝 and Δ𝐴𝑉, which are measured from 

PDLC shutters under difference fabrication conditions. Meanwhile, the optimal 

fabrication condition that generates the highest voltage amplitude is 𝜂 = 0.8, 𝑑 = 22𝜇𝑚, 

CR=1 or 1.25 °C/min. Finally, the lifetime of the PDLC shutters is discussed. The result 

shows that the output of the SLEEPIR sensor module is stable after 250,000cycles, which 

represents five years of usage if the measurement period is 10 minutes. 

Chapter 5 presents the application of the SLEEPIR sensor nodes on presence 

detection experiments. The sensor node reduces the power consumption by 95% compared 

to the mechanical shutter prototypes. For the lab tests conducted by a sensor network in a 

controlled environment, the machine learning approach shows high detection accuracies, 

which are 99.11% for Node 1, and 99.66% for Node 2. They are 2.53% and 2.81% higher 

than the fixed threshold approach. For the uncontrolled test, the measured 𝑉𝑝𝑝  of the 

SLEEPIR module is proportional to the temperature difference between the floor and the 
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sensor. An adaptive detection algorithm that adaptively calibrates the measured 𝑉𝑝𝑝 shows 

an accuracy of 97.8% on the uncontrolled test, which is 28.66% and 35.46% higher than 

the method using a digital PIR sensor and the method using the SLEEPIR sensor module 

with a fixed threshold, respectively. 

In summary, the PDLC infrared shutter is studied systematically. The optimal 

fabrication condition is found to maximize the output of the SLEEPIR sensor module. The 

proposed SLEEPIR sensor module and sensor node show feasibility and high performance 

for indoor presence detection.  

6.2. Future Work 

Throughout the study, we identify three issues that are critical to further improve 

the reliability and repeatability of the SLEEPIR sensor system: how to further reduce the 

fabrication variation of the PDLC shutters; how to reduce the error when measuring the 

FTIR spectrums, the response time and the SLEEPIR sensor module’s output; how to 

further improve the presence detection accuracy in a fully uncontrolled environment in the 

long term. 

Firstly, as described in Chapter 4, when preparing the PDLC shutters, there are 

several sources leading to the measurement error. (1) The uncertainty when moving the 

mixture with LC, polymer, and chloroform on the Ge substrate could be addressed by 

improving the speed of operation, considering the chloroform's evaporation rate, and 

compensating for the volume of the mixture. (2) Using new Ge substrates with a careful 

cleaning process could ensure the same quality of the substrates. (3) Using glass beads 

with smaller variations may help to reduce the uncertainty of the cell gap 𝑑. 
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Secondly, there is also measurement error from the FTIR measurement, response 

time measurement, and PIR output measurement. (1) At each FTIR measurement, the 

position of the PDLC shutter may differ. In the future, we could design a precise holder to 

make sure each PDLC shutter will be located at the same position for each measurement. 

(2) The infrared photodetector that measures the response time is sensitive to 

electromagnetic disturbance, airflow, and vibration. Using an electromagnetic shielding 

chamber may help to reduce the noise during the measurement [132]. Another solution is 

to increase the signal-noise ratio (SNR) using an infrared light source with high power 

density, such as CO2 lasers [133]. (3) There is noise when we use a microcontroller to 

read the voltage from the PIR sensor. In the future, choosing a PIR sensor with high 

sensitivity, designing a noise filtering circuit, and utilizing a separate high-precision ADC 

converter could help to reduce the measurement error.  

Thirdly, several future works improve the performance of the result for the 

presence detection test. (1) For the uncontrolled test, we could use the temperature of the 

sensor and the floor surface in addition to the SLEEPIR module’s output, which will 

provide more information between the voltage signal and the temperature. (2) Use 

automated feature selection tools, such as tsfresh [154], to extract more features for 

machine learning models. (3) Instead of selecting features, feed the original signal of the 

SLEEPIR module to a deep learning model to observe more information within the signal 

than statistical features. (4) Improve the thermal model by considering a more complex 

setup. The reason is that the furniture has different surface temperatures, emissivity, and 
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shapes. By collecting the temperature of the furniture, the thermal model could be more 

accurate.  
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