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ABSTRACT 

 

Miscalibrated relationships between operator trust and automation can lead to 

accidents, some even fatal. If an operator either over or under trusts the system's 

capability, their overall assessment of the system's reliability can be inaccurate and 

potentially lead to poor decision making. As autonomous vehicles emerge, 

understanding the natural trust formation process as it occurs over time between drivers 

and these vehicles is crucial to increase safety and reliability, as well as identifying any 

factors that can affect this process. To fill this gap, an autonomous vehicle was observed 

as it operated on Texas A&M University's campus in mixed traffic for an 8-week 

demonstration. 

 Throughout the deployment, the vehicle was operated autonomously and used 

four safety operators from the student population to take over shuttle operations, as 

necessary. Research personnel collected daily and weekly surveys and hosted interviews 

to investigate how operators' trust developed and changed over time and to study the 

relationship between trust and operational factors. Preliminary findings established a 

potential relationship between trust and the number of vehicle errors. Interview data also 

suggested that trust was dependent on situational circumstances affected by the 

operator’s emotional comfort and familiarity with the vehicle.  
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INTRODUCTION  

 

Over the last several decades, many industries have increasingly automated tasks once performed 

by a human operator to optimize cost, time, and efficiency. One study found that enterprises that 

implement automation can have cost-saving benefits of nearly $4M while potentially saving 360 work 

hours annually (Wald, 2017). As automation continues to advance, industry and workforce performance 

are rapidly changing, and utilization is expected to increase (McKinsey Global Institute, 2017).  The 

McKinsey Institute predicts that nearly 30% of jobs will be replaced by automation by 2030 (French, 

Duenser, & Heathcote, 2018; McKinsey Global Institute, 2017). However, although many use automation 

to achieve their business endeavors, many such as aviation, medical, transportation, nuclear, and maritime 

industries implement automated systems to increase safety and reliability (Lee & See, 2004).  

Despite the benefits that automation offers, it is often wrongly described as perfect and believed 

to be a fix-all solution. Instead, responsibilities are organized differently between operators and 

technology, creating even more complex, dynamic relationships. For instance, although operators have 

less manual work to complete, they are still required to monitor the system. Supervision tasks can 

potentially make it more difficult to spot errors, and over time, the operator can become deskilled since 

they do not practice their skillset as often (Bainbridge, 1983). Designers ironically still expect operators 

to resolve errors at a moment’s notice despite their diminished ability. Furthermore, highly automated 

systems are still designed by humans making the system inherently flawed or biased but not error-proof 

(Bainbridge, 1983).  
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As systems continue to become more complex and or automated, the operator’s trust in the 

system’s reliability is becoming more essential for safety purposes especially in high-risk environments. 

Operator’s trust must be calibrated to system performance otherwise operators may not rely on the system 

appropriately (Lee & See, 2004). If operator trust is miscalibrated, operators may distrust automation, 

also known as disuse, by rejecting the system when it is, in fact, reliable (Parasuraman & Riley, 1997). 

Additionally, operators could also over-trust automation, also known as misuse, leading to the operator 

being overconfident even when the technology underperforms (Parasuraman & Riley, 1997). These 

miscalibrated relationships between operators and automation can then have the potential to lead to 

accidents, some even fatal, and is a relevant problem across many domains. 

For example, in 1995, the crew of the Royal Majesty cruise ship misused the ship's automated 

navigation system.  The crew believed the ship was on course for several hours when it was not, and the 

ship ultimately ran aground (Lee & Sanquist, 2000; Lee & See, 2004; National Transportation Safety 

Board, 1997). More recently, an automated Uber test vehicle crashed with a pedestrian crossing the street 

while the driver was watching a show on their phone in Temple, Arizona (National Transportation Safety 

Board (NTSB), 2018). Parasuramen and Riley's paper (1997) also refer to examples of disuse of 

automation, including ignoring automated alerting systems like Ground Proximity Warning Systems 

(GPWS) in early aircraft designs due to their frequent false alarms. Unfortunately, this same issue exists 

in the medical industry. Also referred to as alarm fatigue, medical staff can become desensitized to alarms 

if the frequency of false alarms is high despite the alarm being accurate (Sendelbach & Funk, 2013).    

Given the emergence of automated vehicles, which some say should be on the market by 2030, 

investigating miscalibrated trust in automated vehicles is timely and crucial to ensuring safety (Mckinsey 
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& Company, 2016). This requires understanding factors that can affect trust formation in automated 

vehicles over time as well as understanding the alignment between the levels of trust and system 

capability and reliability; a construct known as resolution (Cohen et al., 1999). However, while trust in 

automation has been investigated by many (e.g., Bisantz & Seong, 2001; Dzindolet et al., 2001; Dzindolet 

et al., 2003; Lee & Moray, 1992; Parasuraman & Wickens, 2008; Wiegmann, Rich, & Zhang, 2001), the 

natural trust formation process and resolution has not been studied longitudinally and or naturalistically 

for automated vehicles.  

This thesis will document a naturalistic study to address this research gap by observing four 

safety operators' trust as they operate a Level 3 autonomous vehicle in mixed traffic over time. The 

primary purpose of this study is to observe how operators’ trust will adapt over an 8-week period as 

drivers operate and supervise an autonomous shuttle. Specifically, this study aims to 

1. Develop a new methodology to investigate trust-capability relationship while factoring in the 

effects of time and experience. 

2. Identify any correlations between the operator’s trust with the system’s capability and 

performance. 

 For the remainder of this thesis, I will discuss further background information relating to these 

research aims, the methods used to explore them, and results. Specifically, in Chapter 2, I will review 

existing literature studying autonomous vehicles, operator trust in automation, trust formation, and 

other factors that affect trust. I will present the methodology implemented to meet specified research 

goals in Chapter 3. Finally, I will conclude by presenting the study results in Chapter 4 and 5, and a 

discussion further examining these findings in Chapter 6.  



 

4 

 

  

BACKGROUND 

 

Automated Vehicles 

National Highway Traffic Safety Administration (NHTSA) defines an automated vehicle (AV) 

as a vehicle that is capable of all driving functions in any condition, without the need for human 

intervention (NHTSA, n.d.). AVs are autonomous because of their dependence on AI (Artificial 

Intelligence) which makes decisions based on information gathered from the vehicle’s multiple sensors, 

cameras, and location (Ondruš et al., 2020). Specifically, with LIDAR (Light Detection and Ranging) 

sensors, mounted on top of the vehicle, the vehicle can create a 3D, 360-degree map of its surroundings 

using either laser, ultraviolet, visible light, or infrared light to image objects. Obstacles are then 

monitored, and the distance between them and the AV is calculated through RADAR (Radio Detection 

and Ranging), ultrasonic sensors, and video cameras (Ondruš et al., 2020). GPS (Global Positioning 

System) combined with IMU (Inertial Measurement Unit) helps the vehicle determine its location and 

uses this information as a reference point to other surrounding objects. 

However, not all autonomy is equal and exists on a continuum. The autonomy level depends on 

the vehicle’s functionality, capability, and the human operator’s responsibilities. The Society of 

Automotive Engineers (SAE) International's (2018) J3016 standard defines 5-levels of autonomy in 

autonomous vehicles, as seen in Figure 1. Level 0 in this taxonomy describes a vehicle completely 

dependent on the human operator, while a Level 5 vehicle is completely capable of performing all driving 

tasks without operator assistance.  
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Figure 1. Levels of Autonomy (SAE, 2018) 

Vehicles between Level 0 and 2 are ones that possess ADAS (Advanced Driving Assistance 

System) features but are not autonomous. ADAS features include but are not limited to cruise control, 

blind spot detection, self-park, highway autopilot, rearview systems, and so forth (NHTSA, n.d.).  While 

ADAS features are utilized to make specific driving tasks easier, they do not remove the task of driving 

altogether. Instead, the human operator is still primarily responsible for driving throughout these levels. 

Alternatively, vehicles that are considered autonomous or have ADS (Automated Driving Systems) 

utilize the same technology between Level 3 and 5 as described earlier, but mostly differentiate in 

capability. For instance, Level 3 and 4 vehicles can only operate autonomously in certain road conditions, 

while Level 5 vehicles can operate autonomously in any condition at any time.  
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Currently, Level 0 to 2 vehicles described by SAE's taxonomy are commercially available, but 

Level 3 and 4 prototypes are still undergoing rigorous testing while Level 5 vehicles do not yet exist 

(Bertoncello & Wee, 2015; NHTSA, n.d.). Once autonomous vehicles, or Level 3 to 5 vehicles, are 

commercially available, they are expected to advance communities and help private vehicle owners. 

Benefits of automated vehicles would include reducing traffic upwards of 50 minutes per day per driver, 

which would decrease driver stress and greenhouse gas emissions (United States Department of 

Transportation (USDOT), n.d.). Additionally, because a Level 5 autonomous vehicle would not require 

human intervention, those unable to drive will become mobile, potentially improving the quality of life 

of millions who live with a disability (NHTSA, n.d.; USDOT, n.d.).  

Among these benefits, though, the most crucial is the increase in safety expected from the 

nationwide adoption of autonomous vehicles. NHTSA reports that 94% of all motor vehicle-related 

deaths and injuries per year are caused by human error, supporting the common belief that automation 

could save many lives since the primary source of unreliability or the human operator would be replaced 

with automation instead (National Center for Statistics and Analysis, 2019). Achieving these benefits will 

depend not only on whether the technology is available but also on whether drivers choose to operate and 

trust autonomous vehicle technology. Trust is essential, primarily since it is often used to help operators 

make decisions in times of uncertainty or an incomplete understanding of the system’s complexity 

(Kramer, 1999; Lee & See, 2004). Now that the possibility of autonomous vehicles entering the market 

is within reach, understanding driver trust is needed to design safe, reliable systems.  

Trust in Automation 

Designing a reliable system requires an appropriate level of trust (Lee & See, 2004). As 

autonomous vehicles emerge, trust must be examined to determine how these systems will affect driver 
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behavior and decision making. Many researchers have claimed a relationship between trust and 

behavior, including how and if the automation is used by the operator (Masalonis & Parasuraman, 

1999; Muir & Moray, 1996; Lee & Moray, 1992; Sheridan & Parasuraman, 2005). Nevertheless, 

research is limited in driver trust in automated vehicles, but many strides have been made identifying 

what factors can affect trust formation and the consequences if the relationship between operator trust 

and system performance is miscalibrated. 

Currently, there are many definitions of trust in the context of automation. For example, Madsen 

and Gregor (2000) define trust in decision aids as "the extent to which a user is confident in, and 

willing to act on the basis of the recommendations, actions, and decisions of an artificially intelligent 

agent" (p. 1). Boon and Holmes (1991) define trust as "a state involving confident predictions about 

another's motives with respect to oneself in situations entailing risk" (p. 194). Meanwhile, Mayer, 

Davis, and Schoorman (1995) provide an organizational perspective, defining trust as "the willingness 

of a party to be vulnerable to the outcomes of another party based on the expectation that the other will 

perform a particular action important to the trustor, irrespective of the ability to monitor or control that 

other party" (p. 712). Most definitions discuss the trustor's vulnerability but will vary depending on the 

author's domain and whether they believe trust is a behavior (Meyer, 2001), attitude (Rempel et al., 

1985), or intention (Mayer, Davis, & Schoorman, 1995).  

In one of the most highly cited definitions of trust, which I will use for this study, by Lee and 

See (2004), trust is described as "the attitude that an agent will help achieve an individual's goals in a 

situation characterized by uncertainty and vulnerability" (p. 51) (i.e., Hoff & Bashir, 2015; 

Parasuraman & Manzey, 2010; Wickens et al., 2015, etc.). However, according to Parasuraman and 

Riley (1997), operator judgement is not always accurate during times of uncertainty. In fact, poor 
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judgement can often lead to misuse, disuse, and abuse, depending on the operator's trust for the system 

(Parasuraman & Riley, 1997). Misuse refers to the operator's overtrust in the system regardless of if the 

system is accurate. In contrast, disuse is whenever the operator distrusts the automated system and 

ignores commands even when correct. Lastly, abuse occurs when the system designer does not allocate 

functions to the automated system and human operator in an organized, responsible manner and can 

lead to misuse and disuse. In other words, designers do not consider the operator's performance and or 

behavior before function allocation. Instead, operator behavior results from the automated system 

created (Dzindolet et al., 2001). 

Misuse is a very concerning behavior in driver-autonomous vehicle relationships. Some studies 

have demonstrated that if the driver is overtrusting the system, they can become complacent and 

unaware of any potential danger (Skitka, Mosier, & Burdick, 1999, 2000). There is also concern that 

drivers will not have enough time to react if mentally detached initially and can cause harm to those 

around them. Furthermore, operators will not take appropriate action due to skill degradation from 

constant supervising practice rather than manual control (Bainbridge, 1983; Hancock & Scallen, 1996; 

Parasuraman & Riley, 1997; Sheridan, 1992). For example, the first accident involving a Level 3 AV 

was an Uber test vehicle that crashed into a pedestrian crossing the street in Tempe, Arizona (NTSB, 

2018). Rather than supervising the road, the operator trusted the vehicle enough to watch a show on 

their phone instead. Once the operator saw the pedestrian, there was unfortunately not enough time to 

respond. Other examples with similar circumstances have involved the misuse of Tesla vehicles, which 

are considered Level 2 AVs, in Williston, Florida (2016) and Delray, Florida (2019) (NTSB, 2016; 

NTSB, 2019). 

On the other hand, disuse is equally as concerning as misuse. In some cases, disuse can also lead 
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to fatal accidents, especially if the automated system is reliable and accurate. Although it is uncertain if 

there are any accidents involving the disuse of an autonomous vehicle, there are many other accidents 

involving the disuse of other automated systems. For example, nearly 5% to 10% of aviation accidents 

are caused by spatial disorientation, and 90% of these accidents are fatal (Federal Aviation 

Administration (FAA), 2011). According to the FAA, spatial disorientation is defined as "discrepancies 

between visual, vestibular, and proprioceptive sensory inputs [resulting] in a sensory mismatch that can 

produce illusions" (FAA, 2011, p. 1). Accidents often occur while the pilot is experiencing spatial 

disorientation, primarily since the illusions can be convincing to the point where pilots no longer trust 

their accurate instruments (Kallus & Tropper, 2004; Lyons et al., 2016). 

While misuse and disuse are significant concerns for autonomous vehicle manufacturers and 

designers, it is difficult to predict either behavior. The likelihood of misuse or disuse will vary 

depending on the system's perceived reliability (Dzindolet et al., 2001). In a study conducted by Lee 

and Moray (1992), they found that system reliability affected operator trust and performance. Over 

three days for 2-hour sessions, they observed groups of participants as they monitored a medium-

fidelity simulation of an orange juice pasteurization plant. On the first day of trials, operators 

experienced zero failures, while they experienced one failure on the 26th trial and a failure at each trial 

on the second and third day, respectively. Failure rates varied for each group (15%, 20%, 30%, 35%), 

but otherwise, the experimental setup was consistent for all participants. 

Participants were free to utilize manual and automatic controls while supervising plant 

operations and could practice using both controls during the first 10 trials of each testing day. Operators 

were monetarily rewarded based on how much orange juice was successfully pasteurized and if the 

plant safely operated. After each trial, operators were then asked to complete a subjective scale to rate 
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the system's predictability and dependability and their faith and trust in the overall system. Results 

showed that as operators became more experienced with the system and learned to accommodate 

system faults, there was an increase in trust. If they experienced a system fault, trust would initially 

decrease but would recover quickly. The magnitude of failure did impact trust even if the failure did not 

affect overall system performance.  

Similarly, in Muir and Moray's (1996) work, experimental results showed a relationship 

between trust and reliability. In this study, operators supervised a computer-controlled milk 

pasteurization plant and were tasked with maximizing the output of milk within specified safety 

constraints. Operators could take manual or automatic control of the pump system as often and as long 

as needed to improve system performance. Experimental conditions varied based error magnitude (0, 5, 

10, 20, 40 liters greater than inflow) and variability (zero or small variability) of the automatic pump. 

Each operator practiced manual and automatic controls until performance reached asymptote in terms 

of performance scores. Afterwards, each operator completed 8 trials for each experimental condition 

and then rated their trust using a subjective rating scale in the automatic pump and confidence in their 

trust ratings.  

Results showed that manipulations of system competence in terms of error magnitude and 

variability impacted operator trust. Trust decreased even after the pump displayed a small amount of 

variability even if it did not necessarily affect overall system performance. Furthermore, as the 

magnitude of the error increased trust would diminish. Overall if operators trusted the system, they 

utilized its automated features, but they performed the task manually if they possessed distrust. These 

findings indicate that trust does not affect long term use but instead can vary the operator’s behavior 

moment to moment. These relationships are significant and illustrate that perception of system 
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incompetence can change the behavior of those using the system. 

Trust Formation Models 

In Lee and See's framework, trust is considered an attitude, but within their trust formation 

model, they incorporate the influence of beliefs and intentions and their effects on behavior, unlike 

previous models (2004). This framework is grounded in the Theory of Planned Behavior (Ajzen, 1991; 

Fishbein & Ajzen, 1975) which posits that attitudes shape intentions and drive behavior. As shown in 

Figure 2, Lee and See describe trust formation as a dynamic, closed-loop process determined by 

context, the individual operator, and the automation, including the interface. Context includes 

individual, organizational, cultural, and environmental factors and their influence on an individual's 

beliefs, trust, intentions, and behavior. 
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Figure 2. Lee & See’s Trust Formation Model (2004) 

The model also accounts for factors that could affect the automation's capability and affect the 

information the display provides. In turn, this would affect the operator's beliefs and, ultimately, their 

trust and, eventually, behavior. These factors not only determine trust but also its appropriateness for 

the specific system. In other words, how well a person's trust matches the system's true reliability (Lee 

& See, 2004). According to this framework, several metrics such as calibration, resolution, and 

temporal and or functional specificity, can be used to determine the operator's trust's appropriateness. 

Definitions of these metrics are defined in the table below. 
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Table 1. Metrics of Appropriateness (Lee & See, 2004) 

Metrics of 

Appropriateness 
Definition 

Calibration 
“The correspondence between a person’s trust in the automation and 

the automation’s capabilities” (p. 55).  

Resolution 
The precision of the judgment of trust differentiates the levels of 

automation capability. 

Functional Specificity 
“The differentiation of functions, subfunctions, and modes of 

automation” (p. 56). 

Temporal Specificity 
“A generic change over time as the person’s trust adjusts to failures 

with the automation” (p. 56). 

Although Lee and See's model is comprehensive, it has often been criticized for being too 

complicated to replicate in an experimental setting (French, Duenser, & Heathcote, 2018). In contrast, 

and more recently, authors Hoff and Bashir proposed their trust formation model (2015), which is more 

straightforward and highly valued since it is based on empirical evidence on factors that influence trust 

(French, Duenser, & Heathcote, 2018). In Hoff and Bashir's trust formation model (2015), trust is 

determined by dispositional, situational, and learned trust. These different aspects of trust account for 

the individual operator differences, environmental factors, and the specific automation in use. 

For instance, dispositional trust entails the operator's tendency to trust the system based on 

predisposed individual differences such as culture, age, gender, and other unique personality traits 

(Hoff & Bashir, 2015). Situational trust will emerge from the situation at that specific moment in time 

but will vary depending on the individual operator and system. Lastly, learned trust "represents an 

operator's evaluations of a system drawn from past experience or the current interaction" and is 

determined by preexisting knowledge and system performance (Hoff & Bashir, 2015, p. 420). In a 
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combination of dispositional, situational, and learned trust, trust is established and will determine the 

operator's initial reliance. However, dynamic learned trust will influence reliance as the operator 

continues to interact with the automation. 

 
Figure 3. Hoff & Bashir’s Trust Formation Model (2015) 

Trust formation models serve as representations on how trust development is multifaceted. 

Much research has identified specific factors that influence trust, yet there are many variables that have 

not been observed such as time and experience. Because of the complexity of trust formation, it is 

important to observe the trust development process naturally using the specific system of interest. 

Situational Awareness Influence on Trust in Automation 

Relationships between trust in automation and situational awareness (SA) are beginning to 

emerge as new areas of research. The definition of situational awareness as proposed by Endsley (2000) 
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is “the perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near future” (p.529). Current 

research suggests that increasing situational awareness can promote trust especially since autonomous 

vehicles could help the driver better understand their environment and predict future actions (Miller et 

al., 2014). Other studies have also demonstrated that even driving assistance systems that support SA 

will facilitate and promote trust, but more work needs to be done in this field, especially as it relates to 

more automated vehicles and or driving functions (Kridalukmana, Lu & Naderpour, 2020; Petersen et 

al., 2019). 

Individual Factors Influencing Trust in Automation 

Much of current research has involved identifying individual factors that influence operators' 

trust in automation. For example, studies show that subjects who are considered experts often do not 

trust decision aids as much as novices (Sanchez, Rogers, Fisk, & Rovira, 2014). This finding may be 

explainable since a subject matter expert is generally more confident compared to someone lacking 

experience. Many studies have also shown that when trust for the system exceeds confidence, 

automation will be utilized, but if not, the operator will manually complete the task (de Vries, Midden 

& Bouwhuis, 2003; Dishaw, Strong, & Bandy, 2002; Lee & Moray, 1994; Madhavan & Phillips, 2010). 

Other researchers have focused on other individual factors, such as specific personality traits. Findings 

suggested that those who possess a more positive attitude may be overly confident in the automated 

system's capabilities (Bailey, Scerbo, Freeman, Mikulka, & Scott, 2006; French, Duenser, & Heathcote, 

2018; Merritt, Heimbaugh, LaChapell, & Lee, 2013).  

From these findings, it is evident that trust is a multifaceted process that is influenced by many 

factors, including the human operator, the automated system, and operating conditions. Because of the 
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complexity in which trust forms, it is necessary to observe it naturally with the specific system of 

interest. Because of the prevalence and lack of research surrounding human interaction with 

autonomous vehicles, this study’s focus surrounds driver trust overtime. The following chapter will 

discuss the methodology implemented to capture the impact of system capability and performance onto 

operator trust naturally. Final chapters 4,5 and 6 will present quantitative and qualitative findings and a 

final discussion, respectively. 
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METHODOLOGY* 

 

Automated Vehicle Under Investigation 

The Texas A&M Transportation Institute and Texas A&M University partnered with NAVYA, 

an industry leader in autonomous vehicle development, to host an autonomous shuttle (see Figure 4) on 

campus for 12 weeks in the 2019 Fall semester in mixed traffic. During this demonstration, the vehicle 

was operated on campus by four student drivers and was available to both the public and student body 

to ride. The vehicle traveled on a 1.4-mile fixed, squared route which included two stops for passengers 

to board. 

The vehicle's demonstration on campus was an opportunity for the student body to become 

exposed to innovative transportation methods and observe operators' trust with high ecological validity. 

To our knowledge, this is the first longitudinal study of an automated shuttle focusing on operator trust 

and behavior. The remaining sections will discuss the specifics of the design of this study and the 

methodology implemented to meet the proposed research objectives. 

 

*Part of this chapter is reprinted with permission from Assessing the Development of Operator Trust in Automation: A 

Longitudinal Study of an Autonomous Campus Shuttle by Margaret Fowler, Farzan Sasangohar, Robert Brydia, 2020. 

Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Volume 64, pp. 1421–1425, Copyright 2020 

by Human Factors and Ergonomics Society. 
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Figure 4. Autonomous Shuttle (left) and Route (right) used for Study 

Vehicle Design 

The vehicle used in this study was NAVYA's Autonom Shuttle, which is a 4-wheel, electric 

test vehicle that can hold up to 15 passengers (including the safety operator) with 4 standing and 11 

sitting (see Figure 5).  

 
Figure 5. Operator Seat 

The shuttle detects obstacles and tracks its location by integrating three technologies: 

odometry and inertial measurement unit (IMU), fixed Global Navigation Satellite System (GNSS) 
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base with 3G/4G mobile network, and LIDAR recognition. The vehicle can be operated autonomously 

and manually under a certified safety operator's supervision using a hand-held controller. All 

information needed for travel, including the vehicle's operational status, is communicated using a 

dashboard as seen in Figure 6. 

 
Figure 6. Vehicle Dashboard  

Participants 

Five safety operators were recruited from Texas A&M University’s undergraduate student 

population (2 females, 3 males, M = 23 years old, SD = 1.09). However, Operator 5 was excluded 

from analysis due to missing data. Each operator was required to possess a valid driver’s license, be 

at least 18 years of age, and be operator certified by NAVYA. The certification process entailed a 

week-long training course to become familiar with how to operate the shuttle manually and 

autonomously. The final examination included a written and practical segment to test each operator’s 
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driving skills and knowledge of the vehicle. 

Study Design and Procedure 

Interviews 

Pre- and post-deployment interviews were conducted either on campus or at the Texas A&M 

Transportation Institute’s Headquarters building. Interviews and data collection began after research 

personnel received the operator’s informed consent. The initial semi-structured interview involved 

questions relating to the operator’s previous experience with and knowledge of autonomous vehicles. 

Other questions focused on their trust and opinions on the vehicle’s safety, reliability, and potential 

benefits. Similar questions were then repeated during post training and deployment interviews (see 

Appendix A and B).  

Surveys 

As the campus demonstration officially began, each operator was required to submit daily and 

weekly surveys tracking their situational awareness and levels of trust towards the vehicle, 

respectively, throughout week 4 to 12 of the deployment. Trust surveys were also administered before 

the deployment began and after it concluded. Situational awareness was measured throughout the 

deployment using the Situation Awareness Rating Technique (SART) (SART; Taylor, 1989) as seen 

in Appendix C. The SART survey involves rating 10 dimensions of situational awareness using a 

seven-point scale (1 = Low, 7 = High). The dimensions are then summed to solve for summing 

understanding, demand, and supply. The final situational awareness score is found by subtracting the 

difference of demand and supply from understanding. 

Trust was recorded using one subjective scale (Madsen & Gregor, 2000). Madsen and 

Gregor’s (2000) subjective trust scale include twenty-five positively framed questions that can be 
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rated using a 7-point Likert scale (Strongly Agree = 3 to Strongly Disagree = -3) as seen in Appendix 

D. Trust scores can range from -75 (most distrustful) to 75 (most trustful). The variety of questions 

will score trust by evaluating the user’s perceived reliability, technical competence, understandability, 

faith, and personal attachment regarding the system.   

Finally, each operator was asked to wear a Tobii Pro Glasses 2 eye-tracker for the first hour of 

each scheduled shift to record and monitor their eye movements. A GoPro Hero 7 was also utilized 

and mounted to the inside of the shuttle to record interactions and behaviors, but the analysis of video 

and gaze behavior is outside the scope of this thesis and will be reported elsewhere. 

Analysis 

A quantitative analysis of trust surveys was conducted using R Studio version 4.0.3 (RStudio 

Team, 2020) and Microsoft Excel (2011) software (Microsoft Corporation, 2018). MAXQDA 12 

(VERBI Software, 2018) was utilized to complete a thematic analysis of operator interviews from 

before the deployment started to after it commenced.  

The quantitative analysis was completed for four operators from week 4 to 12 of the deployment 

since this was the timeframe trust surveys were collected. R Studio and Microsoft Excel were used to 

calculate important metrics, create visuals to display meaningful relationships and or findings and build 

models predicting trust. Table 2 presents the variables calculated and observed throughout the analysis.   

Table 2. Variables Measured throughout Study 

Variable Definition 

Vehicle Error Type The type of error that caused the vehicle to malfunction. 

Total Number of 

Errors 
The total number of errors the vehicle experienced throughout the deployment. 

Number of Errors 

per Operator 

The total number of errors the vehicle experienced throughout the deployment 

per operator. 
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Table 2 Continued 

Variable Definition 

Total Repair Time 
The total amount of time required to resolve vehicle errors that occurred 

throughout the deployment. 

Repair Time per 

Operator 

The total amount of time required of each operator to resolve vehicle errors 

that occurred throughout the deployment. 

Operational Time 

Loss 
Time loss in operations due to repairs to vehicle errors. 

Vehicle Error 

Severity Rating 

(VESR) 

A rating describing the degree of error the vehicle experienced and repair time 

required during operations. 

Situational 

Awareness 

Final situational awareness score per operator collected from SART survey 

(Taylor, 1989). 

Vehicle errors were categorized by type and ranged from software to mechanical failures (see 

Appendix E). Prior to finalizing the analysis, all error definitions were reviewed carefully by NAVYA 

and TTI (Texas A&M Transportation Institute) personnel. Furthermore, any errors that could not be 

classified by the research team were discussed with TTI staff to appropriately categorize.  

To calculate VESR, first a codebook was developed to operationalize 5 levels of vehicle error 

severity categorized as low (Level 1), moderate (Levels 2&3), and high (Levels 4&5) in collaboration 

between research personnel and TTI staff, who were heavily involved in managing and supervising 

operations for the shuttle (see Table 3). Next, transcripts of operator communications with NAVYA’s 

technical support team for each day of vehicle operation were reviewed carefully by three coders and 

rated by severity using the following subjective scale. Coders included project lead (Margaret Fowler) 

and two undergraduate research assistances part of the Dwight College of Engineering and were 

sponsored by the Aggie Research Scholar’s Program. Both undergraduate students were also trained in 
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qualitative data analysis prior analysis and were familiar with the project. After training, research 

personnel independently reviewed transcripts. Following the initial assignment of vehicle error severity 

ratings (1-5), there was 74% agreement between the three coders. After discussion, coders reached a 

consensus on the final severity ratings.  

Table 3. Vehicle Error Severity Rating Criteria 

Severity 

Category 

Severity 

Rating 
Definition 

Low 1 
Operations ran smoothly with possible minor errors that the operators 

were able to resolve on their own quickly. 

Moderate 

 

2 
There were problems that required help from technical support, but the 

issues did not cause operations to stop and were resolved quickly. 

3 

Operations paused for more than a few minutes so the operator could 

spend more time troubleshooting the error. However, operations were 

ultimately not suspended. 

High 

4 
There were errors on the shuttle that required significant time to resolve, 

and/or shut down operations for the day. 

5 The shuttle was out of service for hardware and/or maintenance reasons. 
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QUANITATIVE RESULTS 

 

Overview of Operations 

Vehicle Error 

A total of 129 vehicle errors were recorded throughout the entire 12-week deployment, while 84 

were experienced throughout the 8-week period operator trust was observed. Table 4 shows the number 

of errors experienced by each operator. Of the 84 vehicle errors, the four most common types of error 

the vehicle experienced included LIDAR Relocalization (43.86%), Unusual Vehicle Behavior 

(14.91%), Vehicle Stuck in Standby Mode (9.65%), and Loss of GNSS Signal (8.77%) (see Appendix 

E).   

Table 4. Vehicle Error, Repair Time, and Operational Time Loss per Operator 

OP. 
Number of Vehicle 

Errors per Operator 

Repair Time per 

Operator 

Operational Time 

Loss 

1 15 3.17 hours 33.17 hours 

2 24 3.37 hours 21.37 hours 

3 19 4.30 hours 34.30 hours 

4 26 8.62 hours 26.62 hours 

The time spent resolving errors during operations between all operators totaled 19.46 hours 

throughout the 8-week observation period.  It is estimated that the vehicle lost 115.46 hours of 

operational time due to repair time as well. As shown in Table 4, Operator 4 experienced the most 

errors and the highest repair time during the study. Operator 1, meanwhile, had the least number of 

errors and spent the least amount of time repairing the vehicle. Of the total hours, Operator 3 had the 

highest loss of 33.17 hours, while Operator 2 had the least with a total of 21.37 hours.    
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Two one-way ANOVA tests were conducted to compare operator’s repair time and number of 

vehicle errors experienced at an alpha level of .05. Results showed that there was not a significant 

difference between operator’s repair time or number of vehicle errors [F(3, 32) = 1.347, pRepair Time = 

.277; F(3, 32) = .215, pNumber of Errors = .885]. Figures 7 and 8 illustrate the number of vehicle errors and 

repair time each operator experienced per week throughout the deployment. As seen in Figure 7, most 

operators experienced a similar error frequency between weeks 4 and 7 and 10 and 12. However, 

between week 7 and 9, more variation between the operators appears. During week 8 and 9, Operators 4 

and 2 experienced an unusually high number of errors, while Operator 3 experienced more errors 

during weeks 9-11.  

 

Figure 7. Weekly Vehicle Errors per Operator 
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Figure 8. Weekly Repair Time per Operator 

 On the other hand, Figure 8 shows the time each operator spent repairing vehicle error per week. 

Operator 4 spent the most time resolving error throughout the deployment, while the other operators 

remained similar in time instead. By week 9 however, all operators except for Operator 2 were 

consistent with one another until the end of the deployment. 

Vehicle Error Severity Rating 

The average VESR for the 8-week observation period was 2.72 and the average VESR for the 

entire deployment was 2.58. The operators, on average, experienced errors daily they could not resolve 

independently and required assistance from NAVYA’s technical support team. As shown in Table 5, 

most vehicle errors (51.81%) were rated as moderate in severity, while only 21.69% were considered 

low in severity. A one-way ANOVA test was used to compare operator’s VESR at an alpha level of 

.05.  Results revealed no significant differences between VESR among operators [F(3, 31) = .730, p = 

.542]. Two one-way ANOVAs were then conducted to determine differences between operators for 
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moderate and high VESR. However, results did not yield any significant differences among operators 

[F(3, 17) = .609, pMODERATE = .618; F(3, 8) = .104, pHIGH = .955] . 

Table 5. Percentage Breakdown of all shifts VESR by Operator 

OP. Low Moderate High 

1 8.43% 18.07% 6.02% 

2 2.41% 12.05% 6.02% 

3 7.23% 12.05% 7.23% 

4 3.61% 9.64% 7.23% 

Total 21.69% 51.81% 26.51% 

       

As seen in Table 6, Operator 4 and 2 experienced the highest percentage of shifts that possessed 

an VESR of low severity. Instead, Operator 3 and 1, respectively, experienced the least. Operator 1 

experienced the least number of shifts (20%) with an VESR of 4 or 5, while Operator 4 experienced the 

highest (33%). Operator 3 and 1 experienced the highest percentage of shifts with an VESR score of 1, 

respectively, while Operator 2 and 4 experienced the least.  

   Table 6. Percentage Breakdown of Operator Shifts by VESR 

OP. Low Severity Moderate Severity High Severity 

1 25.71% 54.29% 20.00% 

2 14.29% 57.14% 28.57% 

3 34.48% 37.93% 27.59% 

4 14.29% 52.38% 33.33% 

Figures 9 represents the average VESR each operator experienced per week throughout the 

deployment. VESRs remained consistent between all operators until week 11 of the deployment 

excluding week 8, but this was due to Operator 3’s absence of work. However, during week 11, 

Operator 4 experienced the highest VESR compared to all operators, which continued to increase to 
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week 12. In contrast, Operator 1 experienced the lowest VESR through week 11 and 12, while 

Operators 2 and 3 were comparable during this same time frame. 

 

Figure 9. Average Weekly VESR per Operator 

Survey Results  

Operator Trust 

As shown in Figure 10, each operator experienced a slight decrease in trust from week 4 to 12. 

Between all operators, trust averaged 4.93 throughout weeks 4-12 of the deployment (SD = 36.32, MIN 

= -59, MAX= 57). However, Mann-Kendall trend tests revealed there were not any significant trends 

among operators (p1 = 1, p2 = .807, p3 = .454, p4 = .536). Overall Operator 4 possessed the most distrust 

towards the vehicle during the demonstration with an average score of -42. Operator 2 and 3 trusted the 

vehicle the most with a score of 40.6 and 35.88, respectively. Operator 1 remained relatively neutral 

with an average trust score of -3.5 between week 4 and 12.  
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Figure 10. Operator Trust Throughout Deployment 

A one-way ANOVA test was conducted to compare weekly trust scores between operators at an 

alpha level of .05. Test results yielded statistical significance [F(3, 23) = 69.38, p = < .001]. Post hoc 

comparisons using the Tukey HSD test showed significant differences between Operator 1 and 2, 3, and 

4 (M12 = -44.100, SD12 = 7.516; M13 = -39.375, SD13 = 6.703; M14= 38.500, SD14 = 6.703), between 

Operator 2 and 4 (M24 = 82.600, SD24 = 7.076), and Operator 3 and 4 (M34 = 77.875, SD34 = 6.206). 

However, Operators 2 and 3 did not significantly differ (M23 = 4.725, SD23 = 7.076).  

Additionally, trust from before the deployment started to after it commenced also decreased for 

all operators, but the decrease was slight as seen in Figure 11 (M10 = 8, M11 = -3.5, M12 = -2; M20 = 45, 

M21 = 40.6, M22 = 42; M30 = 37, M31 = 35.88, M32 = 30; M40 = -43, M41 = -42, M42 = -44). The greatest 

change in trust was experienced by Operator 1. Their trust for the vehicle decreased by 10 points from 

before the deployment to after. The smallest change in trust was demonstrated by Operator 4 whose 
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score dropped only by 1 point according to survey results. The average change for all operators from 

before the deployment to after was ΔM02 = -5.25 points.  

 
Figure 11. Average Operator Trust Before, During, and After the Deployment 

Situational Awareness 

Operator 1 and 4 (M1 = 13.83, M2 = 14) appear to possess low SA scores throughout the 

deployment, while Operator 2 and 3 (M2 = 20, M3 = 33.619) show much higher SA scores as seen in 

Figure 12.  

 
Figure 12. Operator SA Throughout Deployment 
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A one-way ANOVA test was conducted to compare SA scores between operators at an alpha 

level of .05. Test results yielded statistical significance [F(3, 19) = 14.969, p = < .001]. Post hoc 

comparisons using the Tukey HSD test only showed significant differences between Operator 1 and 3 

(M13 = -19.786, SD13 = 3.394) and between Operator 3 and 4 (M34 = 19.619, SD34 = 3.572). 

Figures 13-14 illustrate trends between each operator’s trust and SA provided by SART. As 

shown in Figure 13, at weeks 5-8 as trust decreased, Operator 1’s SA in increased. Similarly, there were 

some points that were inverse between Operator 2’s trust and SA such as week 4-6. Figure 14 did not 

demonstrate any obvious relationships between trust scores and SA for Operator 3 nor Operator 4. 

 
Figure 13. Trust and SA Overtime of Operator 1 and 2 

 
Figure 14. Trust and SA Overtime of Operator 1 and 2 
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Vehicle Error 

Figures 15-16 show trends of operator’s trust and the number of errors they individually 

experienced, and total recorded throughout the deployment. There are many instances where operator 

trust and vehicle error possess an inverse relationship from visual examination. At weeks 4-8 as trust 

decreased for Operator 1, as shown in Figure 15, vehicle error increased. However, as trust continued to 

increase from week 8-12 for Operator 1, vehicle error decreased, like results showed for Operator 3. 

Operator 4 also presented a similar inverse relationship as seen from week 4-6 and week 7-11 in Figure 

16. Although the inverse relationship between trust and error is not as evident in Figure 16 for Operator 

3, there are still weeks where this relationship exists. For example, between week 4-6, 6-7, and 10-12.  

 
Figure 15. Trust, Total Number of Errors, and Errors per Op. of Operator 1 and 2 

 
Figure 16. Trust, Total Number of Errors, and Errors per Op. of Operator 3 and 4 
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Operator Trust Model 

The correlation matrix provided in Table 7 shows the correlations between the metrics observed 

throughout this study. Moderate to high correlation values are bolded and include the relationship 

between trust and SA (R2 = .5839), as well as trust and repair time per operator (R2 = -0.3084). 

Additionally, between repair time per operator and the number of vehicle errors per operator (R2 = 

0.5091) and between errors per operator and the total number of vehicle errors (R2 = .5995). The 

coefficient of determination (R2) was calculated to examine the proportion of the variance in the 

operator’s individual trust scores that is predictable from the metrics of interest.  

Table 7. Correlation Matrix 

 

Table 8 presents correlations per operator and shows that Operator 3 did not have any 

significant correlations except between their trust and total repair time throughout the deployment. All 

other operators had a moderate to high correlation between their trust and situational awareness and 

total number of errors. Operators 1 and 4 also had a moderate correlation between the number of errors 

they experienced individually and trust, while Operators 1 and 2 had at least moderate correlation 

between trust and VESR values.  

 

Trust SA
Repair Time 

per Op.
Errors per Op. VESR Total Errors Total Repair Time

Trust 1.0000

Situational 

Awareness (SA) 0.5839 1.0000

Repair Time per 

Operator -0.3084 0.0058 1.0000

Number of Vehicle 

Errors per Operator -0.1152 -0.0447 0.5091 1.0000

VESR 0.1042 -0.2308 0.0427 0.0202 1.0000

Total Number of 

Vehicle Errors -0.2286 -0.0893 0.1157 0.5995 0.0338 1.0000

Total Repair Time -0.1859 0.0430 0.5099 0.1360 0.0837 0.2268 1.0000
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Table 8. R-Squared Values per Operator 

OP. SA VESR 
Total Repair 

Time 

Repair Time 

per Op. 

Total 

Number of 

Errors 

Number 

of 

Errors 

per Op. 

1 *0.4819 *.148 0.03 0.0153 *0.7788 *0.3974 
 

2 *0.6035 *.569 0.0818 0.039 *0.2442 0.0004 
 

 

3 0.0126 0.001 *0.1952 0.0214 0.0836 0.0017 
 

 

4 *0.423 0.038 0.0042 0.007 *0.418 *0.2423 
 

 
Note: Bolded values with asterisk (*) represent correlations that are moderate to high  

       
 

R Studio was then implemented to complete univariate and multivariate linear mixed effects 

models. Univariate models found a statistically significant relationship (α = .05) between trust and the 

total number of errors experienced throughout the observation period (p = .0098). Other univariate tests 

did not find any statistically significant relationships between operator trust (pSA = .8076, pVESR = 

.1868, pRepair Time per Op. =.5594, pTotal Repair Time = .3215, pNumber of Errors per Op. = .115).  

Multivariate models considered the combination of all variables collected throughout the 

deployment. However, to determine the most accurate model predicting trust, all possible combinations 

of models of at least one variable were tested. The final three models examined possessed the lowest 

AIC (Akaike Information Criterion) out of all 43 possible combinations. The models with the lowest 

AICs are listed below in ascending order (MAIC = 198.55, AIC1 = 155.82, AIC2 = 158.16, AIC3 = 

160.52): 

(1) Trust ~ SA + Number of Errors per Op. + VESR 

(2) Trust ~ SA + Total Number of Errors + VESR 

(3) Trust ~ SA + VESR   
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Results of each model produced in R Studio are shown in Figure 17. Models 1 and 2 show a 

significant relationship between operator trust and number of errors per operator and total errors, 

respectively (r(12) = -1.793583, pNumber of Errors per Op. = .0274; r(12) = -.800449, pTotal Number of Errors =.0403) 

using an alpha level of .05.  

 
Figure 17. RStudio Results for Linear Mixed Effects Model(s) 1-3 

 

 



 

36 

 

  

QUALITATIVE RESULTS 

 

Initial Interview 

Significant themes that emerged from the first set of interviews was operator self-confidence 

and their faith and concerns in automation (See Table 9). Self-confidence refers to the operator's 

confidence in their own abilities and judgement versus the vehicles. Meanwhile, faith described the 

operator's belief in the shuttle or autonomous vehicles' technological ability to provide safe and reliable 

transportation despite their lack of experience riding in an AV and knowledge of the technology. In 

contrast, automation concerns included the operator's beliefs in the technology's shortcomings and 

doubts regarding its ability.  

Table 9. Code System for Pre-Training Interviews 

Theme Subtheme Frequency Definition 

Self- 

Confidence 

Low Confidence 6 Anecdotes of operators concerned in their ability to 

operate the AV. 

High Confidence 14 Anecdotes of operators confident in their ability to 

operate the AV. 

Faith in 

automation 

Optimism 16 Operators expressed optimism for AV technology’s 

current and future abilities. 

Human 

Interference and 

Fault 

5 Rather than criticize AVs, operators defend the 

technology and instead hold themselves, other 

operators, and or pedestrians responsible for 

shortcomings. 

Improved 

Performance 

4 Operators make comments that AVs would improve 

their driving performance. 
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Table 9 Continued 

Theme Subtheme Frequency Definition 

Automation 

Concerns 

 

 

Doubt 6 Anecdotes of operators describing that AV 

technology may not be fully developed.  

Uncertainty 8 Operators describing their uncertainty of AV 

technology and their response to it.   

Preference for 

Manual 

Operation 

3 Statements of the operator describing their preference 

for manual operation. 

 

Self-Confidence 

The table 10 presents the number of statements each operator made regarding their own self 

confidence in the vehicle during the initial interview and includes their trust scores prior to training. 

However, it should be noted that Operator 2 was not available for initial interview so was excluded 

from this portion of the analysis. Interestingly, the operators who were more confident in their 

operating skills before training and were more reluctant of the vehicle’s technology were less trusting 

of the vehicle. Operators who were more trusting were very optimistic about the vehicle’s safety and 

were more willing to relinquish vehicle control in times of uncertainty.  

Table 10. Operator's Level of Self-Confidence in the System 

Initial Trust Score (Before) 8 45 37 -43 

 Op. 1 Op. 2* Op. 3 Op. 4 

High Self-Confidence 5 - 1 7 

Low Self-Confidence 0 - 6 0 
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High Self-Confidence 

Operators that possessed high self-confidence thought of themselves as highly capable in their 

ability to operate the vehicle and make decisions. For example, Operator 4, the most distrusting 

operator among the group, was the most confident in their own ability as the ultimate decision maker 

rather than the vehicle. Because of previous experience in the trucking driving industry, they made 

several mentions of being ready to take over manually ahead of time rather than waiting on the vehicle 

to decide. Operator 3 also made similar remarks. 

“I don’t need help. I’m pretty confident in my driving ability.” – Op. 4 

“Yeah, if someone’s coming towards me, yeah, I’m taking over.” – Op. 4 

“I'll probably be quick to take control cause it is more, not necessarily safer, but I would be able to 

respond to a more diverse set of circumstances that maybe an autonomous vehicle won't.” – Op. 3 

Low Self-Confidence 

In contrast to high-confidence, some statements of low-confidence were made during the first 

interview which placed more emphasis on the vehicle’s ability in comparison to the operator. Unlike 

Operator 1 and 4, Operator 3, who was one of the most trusting operators, believed the vehicle was 

safe. They were more willing to allow the vehicle to make critical decisions in risky situations before 

using their own judgement as seen by their statements below. 

“I think there are also negative talk on how unsafe it is especially because we drive our cars really fast 

and self-driving cars going to be the way of the future once they can work at 80 mph. And you know 

self-driving probably more safe than people outside the car controlling and human operated vehicles.” 

“I’ve never been in a self-driving car, operated a larger vehicle, or heavy machinery besides my own 

car, and…help conducting your car that can potentially hurt somebody. So, kind of like the liability, I’m 

not too but I’m looking forward to training like, I’m excited to see what happened, but I would be lying 

if I said I wasn’t hesitant about what I’m doing.” 

 

 

 

Faith in Automation 
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Faith in automation related to the operator’s belief that the autonomous vehicle could provide 

safe and reliable transportation despite the operator’s lack of personal experience riding or operating an 

autonomous vehicle. The level of faith was compromised of multiple subthemes, including the 

operator’s optimism for and believe that an autonomous vehicle would improve the operator’s driving 

performance. Statements were also made that any accidents involving an autonomous vehicle were due 

to human interference and fault rather than the vehicle’s ability. According to Table 11, the most 

trusting operator, Operator 3, possessed the most faith in automation, while Operator 4 and 1 possessed 

the least, respectively. 

Table 11. Operator's Level of Faith in Automation 

Initial Trust Score (Before) 8 45 37 -43 

 Op. 1 Op. 2* Op. 3 Op. 4 

Optimism 5 - 8 3 

Human Interference and Fault 1 - 4 0 

Improved Performance 1 - 3 0 

 

Optimism 

Although none of the operators had any prior personal experience with AVs before the 

deployment, many were optimistic about the technology. Operators 1 and 3 believed that the vehicle 

was not only safe and reliable but could be available on the market within the next ten years. Not only 

were most operators more optimistic about owning an autonomous vehicle and its safety at the 

beginning of the deployment but believed AVs would be ready for consumer use sooner.   

In fact, all operators increased their timelines of when AVs would be ready for market from 

their initial answer at the first interview. Furthermore, operators reported that news coverage regarding 
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AVs has generally been positive and the vehicles could provide many benefits such as increased safety 

and mobility for different populations.  

“It won't be impossible to design a vehicle that would be a hundred percent foolproof all the 

time.” – Op. 1 

“I think that if we want to make progress, we're going to have to use them and figure it out. So, I would 

say that they're reliable, is safe and a very interesting mode of transportation. – Op. 3 

 

“I think a lot of people are excited about [autonomous vehicles]. Conducted research shows that they 

are for the most part reliable.” – Op. 3 

Human Interference and Fault 

During the interviews, there were several instances where operators would defend autonomous 

vehicles whenever the topic of accidents and negative news coverage emerged during the discussion. 

Rather than fault the autonomous vehicle’s technological capability, operators would rather blame 

outside interference or the vehicle operator instead. Operators also reported not completely trusting 

news covering AV accidents as they believed the media was generally negatively bias. 

“…avoidable in the sense that maybe an operator should have been paying more attention.” – Op. 1 

“…probably due to outside interference that was out of not the shuttle car or autonomous car 

technology but of people being aware of their surroundings.” – Op. 3 

“…self-driving probably more safe than people outside the car controlling and it so human operated 

vehicles…. avoidable in the sense that maybe an operator should have been paying more attention.” -

Op. 3 

Improved Performance 

Operators also discussed that owning an autonomous vehicle would not only improve their 

visibility but increase their safety. Specifically, Operator 3 reported the vehicle would help them make 

decisions during times of uncertainty and help improve stress while driving.   
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“But I think we're approaching a point where I find most vehicles would be able to perform those steps 

better than if not magnitudes better.” – Op. 1 

“I think I just reflecting that the vehicle knows what it's doing. And it's like following procedures that I 

don't have to be like super stressed about my environment.” – Op. 3 

Automation Concerns 

Expressed doubt, uncertainty, and manual control preference were considered general concerns 

for automation in the analysis. Overall, automation concerns were negative anecdotes of the 

technology’s shortcomings and the operator’s uncertainty of its ability. Table 12 provides a breakdown 

of statements relating to the operator’s automation concerns and subthemes. From the table, Operators 1 

and 4 possessed the most doubt in the system during their initial interview, while Operator 3 possessed 

the least. Operators 3 and 1 were also the most uncertain of the vehicle’s ability compared to Operator 

4. Interestingly, Operator 4 was the only operator that openly discussed their preference to drive their 

vehicle rather than an autonomous one. 

Table 12. Operator's Concern for Automation 

Initial Trust Score (Before) 8 45 37 -43 

 Op. 1 Op. 2* Op. 3 Op. 4 

Doubt 3 - 1 2 

Uncertainty 3 - 4 1 

Preference for Manual Operation 0 - 0 3 

 

Doubt 

Operators expressed doubt concerning the shuttle’s ability and its safety. It was discussed that 

because autonomous vehicle technology is still upcoming and not available on the market yet, operators 

believed this meant that autonomous vehicles were not yet deployable and understood the vehicle may 
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have issues. However, they remained open minded to the technology especially since the vehicle was 

approved to operate on a college campus in mixed traffic.  

“But yeah, I really only see having benefits to [autonomous vehicles] but I can see it having problems 

because it’s just a new technology.” – Op. 3 

“Yeah, I would assume that right now [autonomous vehicles are] not [safe], since they're not out 

available to a lot of people.” – Op. 4 

Uncertainty 

Anecdotes of the operator admitting their lack of knowledge or experience with autonomous 

vehicles resulted in their uncertainty in how they felt about the technology and or how they would 

operate the vehicle during the deployment. Operators wanted assurance they knew the vehicle was safe 

before considering purchasing one or letting a family or friend use the vehicle. Operator’s 1 and 3 were 

admitted that if they were unsure whether the vehicle would stop in time for a pedestrian, they wanted 

to let the vehicle decide first but ultimately it depended on the situational circumstances.  

“If I could be sure that [autonomous vehicles] would be safer than even me driving my own vehicle. I 

absolutely, I would [own an autonomous vehicle]. But I also understand that people don't like agency 

bans taken away from them people more, even if they know that it's safer than if they were to drive their 

own vehicle, even magnitude safer, they might still have some level of distress.” – Op. 1 

“I would probably drive it at a pretty low speed though.” – Op. 3 

“I would say [autonomous vehicles are safe] but I think that is also in theory assuming that I know how 

they run.” – Op. 3 

“Yeah, I think that goes back to like if, if it's, if it's safe, like if they know like, okay, we have this fully 

functioning car and you know, it drives itself, it doesn't really, it doesn't have any problems.” – Op. 4 

Preference for Manual Operation 

Operator 4 was the only operator that confidently discussed their preference to manually control 

the vehicle during times of uncertainty. They asserted that if they saw a pedestrian coming towards the 



 

43 

 

vehicle, they would not give the vehicle any time to respond first. Also whenever asked if they would 

own an autonomous vehicle, they reported they would still like to own and use their vehicle often.  

 

“So that's kinda hard because I like driving my car. I have a fun part of drive and uh, I guess so we're 

going to have it alongside and it was like fully functioning and you know, didn't have any problems.”    

“Yeah, if someone's coming towards me, yeah, I'm taking over.”   

“I'm taking over. I am not going to let something bad happen.” 

Focus Group 

Throughout the focus group session, it was common for operators to discuss their situational 

trust in the vehicle. Statements relating to situational trust were mentioned 74 times throughout the 

focus group sessions (see Table 13). In these statements, operators described that their trust would vary 

depending on the specific circumstances and determine whether they would drive the vehicle manually 

or autonomously instead. Further analysis determined that specific circumstances often comprised of 

the operator's familiarity and emotional comfort level (see Figure 20). 

 

Figure 18. Breakdown of Comments Relating to Situational Trust 



 

44 

 

Table 13. Code System for Focus Group 

Theme Subtheme Definition 

Familiarity Perceived System Capability The operator’s perception of the system’s ability to 

make appropriate decisions. 

Perceived System Reliability The operator’s perception of the vehicle’s 

reliability. 

Emotional 

Comfort 

Physical Comfort The operator’s physical comfort within the vehicle. 

Road Conditions Discomfort imposed on the operator caused by 

specific road conditions while the vehicle was in 

operation.   

 

Emotional Comfort 

Operator's trust for the vehicle to decide and act independently primarily appeared to be related 

to whether the operator felt comfortable emotionally. Operators reported they were not comfortable 

emotionally if stress emerged from road conditions like high vehicle or pedestrian traffic in 

combination to the lack of visibility they possessed from the vehicle’s physical structure.  

“It was good at stopping, but in order to make it more comfortable, it was often easier to just drive 

manual.” – Op. 1 

“I think both, some of it was like me stopping it manually or the vehicle just experiencing too many 

errors, like getting off of it and I'm like solid ground. Yeah!” – Op. 2 

Physical Comfort 

Physical comfort would also influence the operator’s emotional comfort level. For instance, if 

the operator felt they had poor visibility due to the vehicle's physical design or if the vehicle became 

too close to other cars and pedestrians while operating in autonomous mode, it would cause operators 

also to feel uncomfortable. Operators reported that due to the vehicle's design, they often thought they 

could not achieve a comfortable position to operate the shuttle and attend to passengers.  
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The driver seat often caused the operators to feel uncomfortable. Since the seat would position 

operators to sit facing away from the vehicle’s dashboard, operators were not comfortable since they 

could not access critical information quickly, such as the vehicle's operating mode, location, and error 

messages. Operators also reported that the beveled edges and general shape of the vehicle caused them 

to have poor visibility. 

“The driver to feel comfortable [inaudible] to the shuttle. Sometimes you would turn to face the road 

directly neglecting passengers, which would be one, one of our duties. So, we’d regularly encounter 

problems, so when it would break hard, I’m a little bit of a taller person. So, my knees immediately hit 

the side of the seats, that was always, and I felt like the engineers and the designers of the shuttle 

sacrifice a lot of things that in traditional vehicles, would make it more user friendly, for it being 

symmetrical or being innovative for it being, having a cooler design.” – Op. 1 

“I just feel, also, that the screen is a very bad blind spot for an operator.” – Op. 2 

“So, none of those spots were friendly to the operator because if you’re sitting in the front and you 

face, your back would be to the road. If you are sitting on the side, then you’re looking this way and 

like your neck hurts and then you can’t sit over there and the back, because when you can’t see 

anything in the controller, doesn’t go that far. So, like, it was just tough, starting as an operator.” – 

Op. 4 

Road Conditions 

Specific road conditions would also heavily influence physical comfort and ultimately 

emotional comfort. Operators reported that during times of heavy vehicle or pedestrian traffic, they 

would wait for extended periods of time before operating the vehicle or resume operations manually 

instead. These conditions would also cause stress especially if the vehicle were to error during times of 

high traffic and cause emotional discomfort. 

“So that was predominantly at that pretty heavy crosswalk where like when students would get 

out, there’d be thoughts of students milling about, and so we would just sit there for two to three 

minutes, and just wait for it to subside before pushing the go button, regardless of if there were students 

there. So, I would, I would do the same if there was student walking in front, hit that stop button too.” – 

Op. 3 
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“I had a lot less faith in the vehicle than [Operator 3] did. So, if those people on the road more 

times than not, then I would just stop.” – Op. 4 

Familiarity 

However, sometimes, depending on the operator's familiarity or experience, operators would act 

ahead of time before the vehicle could potentially error. Based on the vehicle's previous demonstration 

of capability and reliability, operators would often foresee circumstances that would make them 

uncomfortable. Operators would use their previous experience and familiarity to forecast these 

inappropriate vehicle decisions to avoid discomfort altogether.  

“Sudden stops, so we already knew sometimes when the stops would occur or stuff like that, so I 

would tell them that.” – Op. 2 

“I would just forecast in advance so that they’re not as uncomfortable as someone who has no 

background knowledge about it. But I think it was just because we had driven enough circuits to know 

where some of those stops would be.” – Op. 3 

“If I didn’t, I didn’t trust [the vehicle] I knew I could take control of it.” – Op. 4  

Perceived System Capability and Reliability 

Operators understood the vehicle had both limited capability and reliability but admitted that 

there were specific situations where the vehicle was capable and reliable enough to provide emotional 

comfort. Other times the vehicle was not capable or reliable enough. Still, it depended on the situational 

circumstances, and over time operators were able to forecast these scenarios, improving their 

familiarity with how the vehicle operated. 

For example, although the operators were in consensus that the vehicle's stopping capability was 

consistent and reliable, they agreed the vehicle was not capable of always stopping appropriately and 

had limited ability. Often the vehicle would stop abruptly and not account for the speed of other cars. 

All operators expressed concern that they were less worried about the vehicle hitting an object, but 
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instead more worried other objects would not have enough time to respond to the vehicle's stop. 

Operators also expressed that even if the vehicle would make the right decision to stop, sometimes the 

stop's abruptness was disproportionate. In other words, the vehicle would stop suddenly as if the object 

were in very close proximity to vehicle when, the object was not even close to the vehicle. Some 

objects were not even moving, like traffic cones and or tree branches. 

“So, the safety was more about the people outside the vehicle and the vehicle kind of having a mind of 

its own.” – Op. 1 

“…if we were driving down around and cars had come into our lane and being a hard stop, the car 

drove in front of it, no matter how far ahead that vehicle was.” – Op. 3 

 

“…we're going slower than everybody else. And so, the cars that are going faster that want to get 

around us, they'll change the lane and merge into the lane that you’re in and it would just sense that 

there was a car or there was something, an object in the road and it was just hard stop. And it wouldn't 

take into account how fast the other car was going, like we're going 15 miles an hour, they're going 18 

miles an hour.” - Op. 4 

 

Additionally, the vehicle was unreliable at specific locations on the operational route. The 

vehicle would lose the GNSS signal at these locations, causing the vehicle to stop abruptly and 

experience other errors. Operators described foreseeing these scenarios and reported they were 

expecting these issues ahead, and overtime became confident in their ability to resolve these problems. 

However, there were other times where the vehicle would stop for no apparent reason according to 

operators causing them discomfort.  

“Yeah, so there was definitely, there were definitely points where I did not feel safe in the vehicle. 

Cause if you got somebody that was a little more aggressive and then it would just suddenly stop, then 

they would run to the back of you.” – Op. 3 

“So, they had a station set up, they would provide signal to the shuttle so that the shuttle would know 

where exactly on the route it would be. Okay, so that's, if the signal went out, like the shuttle was lost 

and then it would just stop. So, there were instances where it would just stop randomly, like the signal 

would just go out randomly...” – Op. 4 
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DISCUSSION AND CONCLUSIONS 

 

Given the emergence of automated vehicles, investigating miscalibrated trust is crucial to 

designing safe and reliable systems to ensure a successful adoption and driver acceptance. If trust is 

miscalibrated, drivers may not appropriately rely on autonomous vehicles, leading to unsafe driving 

practices and potentially fatal accidents. However, to further understand the alignment between trust 

and system capability, trust must be observed naturally since trust formation between people and 

technology is complex and uncertain by many. This study aimed to close this research gap by observing 

four safety operators’ trust over 8 weeks as they operated a Level 3 autonomous vehicle in mixed 

traffic. Preliminary results have shown a correlation between trust and error frequency as well as repair 

time. Furthermore, interviews have revealed that individual operator characteristics may drive trust, 

resulting in the emergence of three specific personas: Distrusting, Distrusting-Neutral, and the Trusting 

Operator. 

Distrusting Operator 

Distrusting operators possessed high self-confidence prior to beginning NAVYA’s training 

course. Operator 4, the most distrusting operator, possessed the most self-confidence and concern for 

automation. Operator 4 reported they had previous truck driving experience and possessed a 

commercial driving license. This participant led certification courses on the weekends for others to 

obtain a CDL and reiterated their emphasis on highway safety and driver responsibility multiple times 

throughout interviews. This participant’s distrust for the vehicle could be due to their years of 

experience in the trucking industry, allowing them to be more confident in their driving ability 
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compared to the shuttle (de Vries, Midden & Bouwhuis, 2003; Dishaw, Strong, & Bandy, 2002; Lee & 

Moray, 1994; Madhavan & Phillips, 2010). Furthermore, Operator 4 also expressed that if they felt 

uncomfortable at any time while operating the shuttle, they would not wait on the shuttle to respond and 

planned to take over operations manually each time. Additionally, this operator was the only one to 

report their love for driving manually and their personal vehicle. 

Distrusting-Neutral Operator 

Operator 1 was similar to Operator 4 regarding self-confidence and their concerns for automation but 

was not as distrusting. Operator 1 acknowledged that autonomous vehicle technology is still immature, 

making it inherently flawed, and recognized that upcoming technology requires testing time and may 

only work in specific circumstances. However, Operator 1 was still more willing to own an autonomous 

vehicle and was less attached to their personal vehicle than Operator 4, especially if the vehicle could 

prove safer than their vehicle. They were also still confident in their ability to operate the vehicle. This 

participant had an engineering background which might have led to more familiarity with automated 

systems, including their shortcomings. The participant generally appreciated the benefits of automation 

more so than Operator 4 and possessed more faith in automation. Regardless, Operator 1 was also 

willing to take over operations in times of uncertainty but did not necessarily believe an AV was the 

safer option since they thought they could handle a broader range of scenarios and conditions. 

Trusting Operator 

Meanwhile, Operators 2 and 3 were the most trusting of operators and generally positive when 

discussing automated vehicles during interviews. Operator 3 did demonstrate low confidence and 

hesitation operating the vehicle for liability reasons before the deployment. Operator 3, however, 

seemed confident of the vehicle’s safety and reliability at the initial interview and did not pose as many 
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questions about its potential shortcomings in comparison to the distrusting operators. Operator 3 also 

made the most statements relating to the subtheme of human interference and fault. In other words, they 

defended autonomous vehicle technology whenever discussing accidents the most. They would instead 

fault the human operator rather than the technology. 

Interestingly, Operator 3 was the only operator who admitted they would wait for the vehicle’s 

response during an uncertain or potentially unsafe moment during operations. Unfortunately, Operator 

2 was not available for an initial interview. However, during the focus group session, they were very 

optimistic about autonomous vehicle technology. They still held the belief that autonomous vehicles 

could benefit the public and improve road safety. 

Trust and System Performance 

Operators trust generally decreased from before to after the deployment commenced. Of the 

four operators included in this study, both Operator 2 and 3 remained relatively trusting of the vehicle, 

while Operators 1 and 4 were neutral to distrusting and distrusting, respectively, according to survey 

results. ANOVA results comparing operators and their trust for the vehicle confirmed differences 

among operators excluding Operator 2 and 3. 

However, although trust decreased for operators, the Mann-Kendall test did not yield any 

significant trends implying the decrease in trust was not substantial. This result is interesting since trust 

was expected to significantly change considering the number of errors and high VESRs each operator 

experienced throughout the deployment. The analysis revealed nearly 78% of all shifts were considered 

to possess moderate to high severity indicating operations ranged from operators needing help from 

technical support to ultimately ending operations due to high severity in vehicle errors. Additionally, 
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operators lost about 29 hours on average of operational time throughout the eight weeks trust was 

observed due to vehicle error.   

These results could be because trust is comprised of dispositional, situational, and learned trust, 

as proposed by Hoff and Bashir (2015). There are similarities between operator reports and the model 

proposed, such as the idea that trust is situational and learned over time based on system performance. 

For example, during focus group sessions, operators described that trust was, in fact, situational and 

depended primarily on their emotional comfort. They reported factors that would influence their 

emotional comfort, including their physical comfort within the vehicle and driving conditions.  

High traffic conditions combined with poor visibility from the vehicle's design would yield low 

emotional comfort and cause the operators to drive the vehicle manually or pause operations. For 

example, many operators felt the vehicle's beveled edges were blind spots and would hinder their road 

visibility. Operators also reported feeling uncomfortable sitting in front of the vehicle's dashboard since 

the vehicle's information was not easily accessible and would require them to face away from both the 

road and passengers. 

As their familiarity with the vehicle's capability and reliability increased, they could predict 

these situations and act ahead. Like what Hoff and Bashir describe as learned trust, operators could 

forecast what factors would lead to discomfort over time. Operators learned to predict error throughout 

specific locations in the operational route by bracing themselves or warning passengers. Preliminary 

findings also established a potential relationship between trust and the number of errors. Despite the 

small sample size, results from multivariate modeling and R-squared values reveal a correlation 

between error frequency and repair time, supporting the construct of situational and learned trust. 
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Findings from initial interviews also support Hoff and Bashir's idea of dispositional trust.  

Operators had prior dispositions before the deployment, such as faith and concerns in automation and 

their self-confidence to operate the vehicle. It was found that operators that possessed more self-

confidence were less trusting in the vehicle, which is a concept that has been supported by many (de 

Vries, Midden & Bouwhuis, 2003; Dishaw, Strong, & Bandy, 2002; Lee & Moray, 1994; Madhavan & 

Phillips, 2010). Operators that were less confident or nervous about operating the vehicle were more 

trusting. 

Trust and Situational Awareness 

Unlike initial interview findings, the relationship between situational awareness and trust was 

unexpected. Before data collection, it was hypothesized that as trust decreased, there would be 

increased situational awareness. Instead, more trusting operators possessed higher situational awareness 

than operators with low trust, but their self-confidence may explain this result. For example, operators 

with high self-confidence, like Operator 1 and 4, both possessed low situational awareness throughout 

the deployment and vice versa for Operator 2 and 3. Operators may have had low situational awareness 

because they were confident in their ability to resume control of the vehicle quickly compared to 

operators with low self-confidence. 

Overall Contribution 

Results from this study provided preliminary evidence that trust can be affected by system 

performance. This study demonstrated an inverse relationship between trust and error frequency and 

repair time from statistical analysis. Additionally, qualitative results showed that trust formation might 

fit with Hoff and Bashir's trust formation model (2015) by revealing examples of dispositional, 
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situational, and learned trust. Other preliminary findings have also shown a positive relationship 

between trust and situational awareness. 

To our knowledge, this is the first longitudinal study of an automated shuttle focusing on 

operator trust and behavior. This study not only serves as a contribution to fill this gap but will continue 

to guide future researchers interested in studying trust in automated vehicles naturalistically and or 

longitudinally. The work performed in this study also serves as a practical contribution to vehicle 

manufacturers involved in the development of automated vehicles. Preliminary evidence that trust can 

be affected by system capability and performance should motivate industry to implement testing 

protocols relating to trust in automation similar to the methods used in this study to ensure drivers use 

these systems appropriately. 

 Finally, this work has contributed VESR as a new taxonomy to evaluate vehicle error severity. 

Because this study's primary focus was to observe the relationship between operator trust and system 

capability and performance, developing VESR was necessary to quantify this relationship since this 

type of taxonomy did not previously exist. VESR can be used in future work and serves as a new 

methodology to examine trust-system capability and performance relationships. 

Future Work and Study Limitations 

This study had several notable limitations that may affect the scope of statistical inference and 

generalizability of findings. The most important limitation was the sample size. Unfortunately, the 

sample size could not be controlled by research personnel and resulted from budget constraints from 

funding sources. Secondly, data was pulled from transcripts rather than collected in real-time such as 

error frequency and VESR. Because these metrics were collected retrospectively, it is possible some 

errors were not reported, or some severity ratings were inaccurate. Future work should consider 
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allowing operators to complete VESR themselves and have operators note the number of errors they 

experienced in real-time. Finally, interviews and focus groups were coded by one person, and 

interpretations might be subject to the coder’s biases. 

Based on interviews, dispositional trust played a significant factor in whether the operator 

would be trusting or not. Operator's support this claim based on individual differences such as self-

confidence, faith in automation, and automation concerns before the deployment began. Although 

individual differences determined overall trust, week to week differences in trust are observed with 

evidence of an inverse relationship to error frequency.  

The relationship between trust and error could perhaps be due to the operator's situational trust, 

which primarily depended on their emotional comfort and familiarity with the vehicle. There are 

currently no studies focusing on comfort, but preliminary findings suggest that it could be an operator's 

motivation to decide to trust or not. Given the small sample size, more work is needed to verify the 

patterns observed in this study. Future work should also consider allowing operators to assess VESR 

themselves in real-time rather than researchers assign scores retrospectively.  
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APPENDIX A 

• Have you ever ridden in an autonomous vehicle?  

• In general, what are your thoughts on autonomous vehicles? 

• What are things you have heard about autonomous vehicles from other people or news sources? 

Is the news mostly positive or negative, and what is your opinion?  

• When do you think autonomous vehicles will be available on the market for consumer use?  

• Would you recommend letting a loved one or friend use or ride an autonomous vehicle?  

• What are your feelings or thoughts about operating an autonomous vehicle? 

• If traffic were high while operating the vehicle and you saw a cyclist and or car approaching 

fast, would you allow the AV to respond to avoid a potential collision? Or do you think you 

would take over manually? 

• Do you have any thoughts on NAVYA’s training course? Expectations? 
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APPENDIX B 

1. General Feelings about Autonomous Vehicles 

• Did you feel like you were knowledgeable about the technology?   

• Did you think it was safe?   

• What made you think it was safe or unsafe?   

• Did you think it was safer in certain conditions?  Which ones?   

• Has your opinion changed since the demonstration?   

 

2. General feelings about the Smart Shuttle demonstration 

• Did the vehicle operate the way you expected from the training?  

• Was there anything unexpected that occurred? 

• Did you feel like you could easily take control, when needed? 

• Were you concerned about the technology?  What were those concerns?   

• Did you feel safe as an operator?  Do you think the passengers felt safe? 

• What were some of the most common comments you heard about the demonstration?  Do you 

agree or disagree? 

• Did you hear anything about the Smart Shuttle demonstration from people other than 

passengers?  What was the overall sentiment? 

• What were your general feelings about the training? 

• Did you feel confident about your abilities to operate the Smart Shuttle after training? 

• Did this change over the deployment period? 

• What ways could the training be improved? 

• What are your thoughts about shifts and scheduling?  Were the shifts too long?  Did you feel 

like you lost focus during a shift? 

 

3. General feelings about the Smart Shuttle vehicle 

• Did you consistently feel safe while operating the shuttle? If not, describe a specific time that 

you did not feel safe. 

• What were some of the common problems that you experienced operating the shuttle?  

• How reliable to do you think the Smart Shuttle is?  Speak specifically about components of 

reliability (travel time, ability to operate autonomously) 

• Tell me about your experiences with troubleshooting errors with the Smart Shuttle.  Were you 

able to do that on your own?  How did the NAVYA representatives help? 

• What concerns do you have about the NAVYA vehicles?  How can these concerns be 

addressed? 
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4. Thoughts about future deployments 

• Was that too long?  Too short? 

• How could this demonstration have been improved? 

• If there were to be another demonstration, what could NAVYA, or Texas A&M do to encourage 

more ridership on the Smart Shuttle? 

• Do you think a different route might have more ridership?  If so, which route? 

 

5. Trust of technology 

• Do you believe your trust in the vehicle’s technology has changed since the beginning of the 

deployment? If so, how? 

• What aspects of the vehicle’s technology do you believe effected your trust/perception the most 

and why? 

• Can you describe a time where the vehicle violated your trust? If so, how? Did you operate the 

vehicle differently after this incident? 

• What year do you think autonomous vehicles would be ready for consumer use, did your 

estimate change from the start of the deployment to now? 

• Would you still purchase an autonomous vehicle if it were on the market and you could afford 

it? 
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APPENDIX C 
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APPENDIX D 
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APPENDIX E 

Error Type  

% Total 

Vehicle 

Error 

Definition 

LIDAR 

Relocalization 

Error 

43.86% LIDAR sensors are unable to detect vehicle's position. 

Unusual Vehicle 

Behavior 
14.91% 

The vehicle's behavior could not be categorized by NAVYA or 

the operator. 

Vehicle Stuck in 

Standby Mode 
9.65% 

The vehicle would not allow the operator to switch from 

'standby' to 'use' mode or the operator forgot to switch to 'use' 

mode. 

Loss of GNSS 

Signal 
8.77% The vehicle loss GNSS signal while in operation. 

LIDAR 

Malfunction 
3.51% 

LIDAR sensors malfunction due to weather conditions or other 

external factors. 

Problems with 

Suspension 
3.51% 

Operator had problems with changing the mode of the 

suspension for towing or regular operations. 

Construction 2.63% 

Construction occurring on the route results in the suspension 

of operations. The vehicle is not programmed to navigate 

around the construction work. 

Wrong 

Operational Mode 
1.75% 

The operator would forget to switch the vehicle from manual 

to autonomous mode. 

Overheating 1.75% 
The vehicle's battery would overheat causing it to turn off 

suddenly or malfunction. 

Wrong Passenger 

Mode 
1.75% Operator had vehicle in metro mode instead of demand mode. 

PC Offline 0.88% 
One of the PCs in the shuttle was offline so it could not 

operate 
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Wheel Sensor 

Malfunction 
0.88% 

Problems with the wheel sensor(s) were causing the vehicle to 

have hard stops or not operate smoothly. 

NAVYA 

Supervision  
0.88% NAVYA could not provide sufficient technical support. 

NAVYA 

Supervision 

Connection 

0.88% 
NAVYA Supervision lost connection to the vehicle while 

operating. 

Vehicle Stuck in 

Autonomous 

Mode 

0.88% Vehicle could not be switched to manual mode. 

Problem with 

Motor 
0.88% Humming coming from motor compartment. 

Problem with 

Doors Closing 
0.88% 

The doors to the vehicle would not close while attempting to 

tow the vehicle. 

Wheel Damage 0.88% The wheel of the vehicle suffered physical damage. 

Loss of Ethernet 

Connection 
0.88% Ethernet losses connection to vehicle.  

 


