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ABSTRACT

In this dissertation, NMR techniques combined with various experimental and computational

techniques were applied to investigate materials systems including advanced thermoelectric ma-

terials and topological chalcogenides. Among thermoelectric materials, substituted half-Heuslers

Nb1−xTixFeSb (0 ≤ x ≤ 0.3), pure half-Heuslers NbCoSn, ZrCoSb and TaFeSb, as well as CoSb3-

based skutterudites are studied. Magnetic measurements, combined with an observed Schottky

anomaly and changes in the NMR line width indicate the presence of a 0.2% concentrated na-

tive magnetic defect in stoichiometric NbFeSb samples. To further understand this system, I have

done NMR and Mössbauer studies combined with DFT calculations of Nb1−xTixFeSb (0 ≤ x ≤

0.3). These studies provide local information about defects and electronic configurations in these

heavily p-type materials. I also investigated 59Co, 93Nb, and 121Sb NMR spectroscopy on an ad-

ditional series of half-Heusler semiconductors, including NbCoSn, ZrCoSb, TaFeSb and NbFeSb,

to better understand their electronic properties and general composition-dependent trends. Signifi-

cant results of these studies include evidence for non-conductive states in more heavily substituted

compositions, and for an enhancement of the orbital susceptibility connected with electron-electron

interactions. I have additionally applied 59Co NMR and transport measurements to probe the elec-

tronic behavior of n-type filled skutterudites BaxYbyCo4Sb12 and AxCo4Sb12 (A = Ba, Sr). The

results demonstrate consistently that a shallow defect level near the conduction band minimum

dominates the electronic behavior, in contrast to the behavior of unfilled CoSb3.

Studies of the topological chalcogenides ZrTe5 and ZrTe2 are also described here. NMR and

magnetic measurements can reveal the magnetic properties of the defects states in the samples.

NMR is specialized to provide information of band structure close to Fermi level, which gives

a better understanding of electronic structures of materials. For topological materials included

here, NMR is also able to detect the Dirac Fermions and then show interesting topological fea-

tures of them. I carried out 125Te NMR measurements of the topological quantum material ZrTe5.

Spin-lattice relaxation results, well-explained by a theoretical model of Dirac electron systems,

ii



reveal that the topological characteristic of ZrTe5 is T-dependent, changing from weak topological

insulator to strong topological insulator as temperature increases. Finally, NMR studies of the tran-

sition metal dichalcogenide ZrTe2 were completed. The measured NMR shift anisotropy reveals a

quasi-2D behavior connected to a topological nodal line close to the Fermi level.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Advanced Thermoelectric Materials

In 1823, the German physicist Thomas J. Seebeck discovered in experiments that there is a

voltage drop between the ends of a sample with a high temperature gradient. This effect became the

theoretical foundation of the design of thermocouples to directly convert heat energy to electrical

energy, which is called the Seebeck effect. When an electric current is passed through a circuit of

a thermocouple, heat is evolved at one junction and absorbed at the other junction. This effect is

called the thermoelectric cooling effect or Peltier effect, named after French physicist Jean Charles

Athanase Peltier, who discovered it in 1834, which is a reverse effect of the Seebeck effect.

The Seebeck effect is the build up of an electric potential across a temperature gradient, which

is a classic example of an electromotive force (EMF). In general, the Seebeck effect is described

locally by the creation of an electromotive field

Eemf = −S∇T, (1.1)

where S is the Seebeck coefficient and ∇T is the temperature gradient. If the system reaches a

steady state, where J = 0 (the ohmic current compensates the thermoelectric current), then the

voltage gradient is given simply by the EMF: ∇V = S∇T . The Peltier effect can be considered

as the back-action counterpart to the Seebeck effect. The close relationship between Peltier and

Seebeck effects can be seen in the direct connection between their coefficients Π = TS.

The use of materials with a high Seebeck coefficient is one of many important factors for

the efficient behavior of thermoelectric generators and thermoelectric coolers. Fig. 1.1 shows

both thermoelectric generator and cooler. Based on the Seebeck coefficient, the usefulness of a

material in thermoelectric systems is determined by the device efficiency. These are determined by

the material’s electrical conductivity, thermal conductivity, Seebeck coefficient which change with

temperature. The maximum efficiency of the energy conversion process (for both power generation
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Figure 1.1: Schematics of both thermoelectric generator and cooler are shown.

and cooling) at a given point in the material is determined by the thermoelectric materials figure of

merit zT , given by

zT =
σS2T

κ
(1.2)

which contains the Seebeck coefficient S, thermal conductivity κ, electrical conductivity σ, and

temperature T . The thermal conductivity is κ = κph + κel, where κph and κel are the phonon and

electron contributions, respectively. Additionally, often the thermoelectric power factor is reported

for a thermoelectric material, defined as σS2 which represents the efficiency of generating energy.

In the following 100 years, the research on thermoelectric materials was mainly carried out for

metallic materials. The conversion efficiency is low, so the research and applications of thermo-

electric materials and thermoelectric conversion devices had been progressing slowly. In the 1950s,

Abram Ioffe discovered that the thermoelectric conversion efficiency of semiconductor materials

is much better than that of metal materials, with an enhancement of an order of magnitude. As a

result, the use of semiconductor thermoelectric materials has led to an increasing number of prac-

tical thermoelectric devices. In recent years, with the increasingly serious environmental pollution

and energy crisis around the world, the need of further development of advanced thermoelectric is

also increasing.
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The half-Heusler family, as one of the most fascinating intermetallic systems, has gained con-

siderable attention in recent decades due to their unique transport and magnetic behaviors. These

materials have general formula XYZ (X and Y representing transition metals, Z a tetrel or pnictogen

element) [1–3], and can be formally derived from the cubic Heusler phases X2YZ by removing one

of the two equivalent X atoms, leading to a structural vacancy. The ideal valence electron concen-

tration (VEC) of half-Heusler compounds is 8 or 18 electrons per formula unit [4–8], with VEC

= 8 for those cases (not discussed here) where X and Y are main-group elements, and with semi-

conducting or semimetallic behavior often observed with VEC = 18 [2–5, 9] in transition-metal

half-Heuslers. With a rich combination of chemical elements stablized in this structure, this feature

leads to interesting properties, from nonmagnetic semiconductors to ferromagnetic half metals, as

well as other anomalous behavior, including strongly correlated electrons and topological insulator

behavior [10–12].

To better understand the mechanism and further improve thermoelectric performance, the NMR

technique can be used as a local probe to reveal information about electronic properties, phonon

behavior and native defects [13–15]. For half-Heusler materials, there have been several previous

works applying NMR. In Fig. 1.2, a summary of known half-Heuslers is shown, with NMR studies

of half-Heusler materials also shown. Fig. 1.2 was assembled from multiple published works on

half-Heuslers. Among these the existing NMR studies are shown, with some specified as having

non-trivial topological features, all of which are band inverted semimetals [11, 12, 16, 17]. Other

NMR studies shown in Fig. 1.2 are Ref. [15, 18–28]. The half-Heusler compositions studied in

the dissertation (shown by stars) are transition-metal or rare-earth half-Heuslers which follow the

18-electron stability rule.

Within the half-Heusler system, NbFeSb has recently been of particular interest due to its ex-

cellent thermoelectric performance for high-temperature applications and since its composition

places it within the realm of earth abundant thermoelectric materials [29]. In substituted composi-

tions such as Nb1−xTixFeSb (x = 0.05, 0.1, 0.2, 0.3), NbFeSb-based semiconductors can exhibit a

large power factor, above 100 µW cm−1 K−2 [29–31]. Substituted elements can control the carrier
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Figure 1.2: Summary of NMR studies of half-Heusler materials with XYZ composition. Existing
and predicted compositions shown, with materials studied here shown by star symbols. Lower
panels show Sn and Sb compositions. 18-electron compositions are boxed in.
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density, for example Ti which changes the total electron count in NbFeSb, allowing the transport

properties to be tuned, thus enabling the electronic behavior to be optimized. A number of dif-

ferent types of half-Heusler alloys have been designed with multiple elemental substitutions and

shown to have high figures of merit (zT > 1.5) [32–35]. Based on these alloys, thermoelectric

generators thus have the potential to reach a high power-conversion efficiency [34–36], enhancing

the prospect of future thermoelectric applications. However, native defects can also counteract the

desired effects or otherwise degrade the electronic response. The nature of these defects has been

explored experimentally for several compounds, such as ZrNiSn and TiCoSb [37–39].

Besides NbFeSb-related half-Heuslers, there have been other half-Heusler materials drawing

great attention due to their excellent thermoelectric performance. TaFeSb has been recently re-

ported as a stable thermoelectric candidate and shown promising thermoelectric properties [35].

ZrCoSb-based materials have also been widely studied and shown promising zT values and low

thermal conductivity [40].

Similar to the half-Heusler system, skutterudites are another family of materials which are

excellent candidate thermoelectric materials. Filled skutterudites MzT4X12, where M is a guest

atom such as Ba or Yb, T represents a transition metal (Co, Rh, Ir or Fe), and X is a pnicogen

or chalcogenide, have gained considerable attention due to their outstanding thermoelectric per-

formance, as well as superconductivity, magnetic ordering, unusual metal-insulator transitions,

and heavy fermion behavior [41–46] with NMR studies summarized in Ref. [47]. Many of the

semiconducting filled skutterudites obey the phonon-glass electron-crystal concept explaining the

significant reduction in thermal conductivity [48]. This behavior was first experimentally observed

by Morelli et al. [49], as a lattice thermal conductivity decreases due to loosely bonded Ce guests

in FeSb3. Although the guest atoms act as dopants in addition to inducing low thermal conductiv-

ity, they can also modify the electronic behavior, for example, 4f states of elements such as Ce can

introduce flat bands and lower the carrier mobility.

Recently, filled CoSb3-based materials have been studied intensely due to their excellent ther-

moelectric response [50–53]. Although the filler atoms occupy the guest positions in these skut-
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terudite materials, as shown here the rattling behavior does not play a large role for these composi-

tions. On the other hand, the native electronic defects in these skutterudites have been particularly

interesting because of their crucial importance for improving thermoelectric efficiency [54–59]. In

the work described below, NMR studies combined with transport measurements have been used to

address such electronic properties.

1.2 Topological Chalcogenides

One of the most important research areas of condensed matter physics is to discover new states

of matter. The common solid, liquid and gas states in daily life are three different states of matter.

Conductive metals vs non-conductive insulators is another way to classify the physical states of

matter. The energy band theory of solids tells us that this is determined by the arrangement of

electrons in solids. In this theory which applies if electron-electron interactions are not too strong,

electron states form an energy band structure in a periodic solid, and the Pauli exclusion principle

makes each state only contain up to two electrons with opposite spins. According to Aufbau

principle, electrons fill energy bands in the order of energy level. If a certain energy band happens

to be filled, and there is a finite energy gap between the lowest unoccupied energy band, it is an

insulator; if there is an energy band that is not filled and partly occupied, that is metal.

With the help of the topological classification methods for closed curved surfaces in mathe-

matics, topological invariants of electronic energy band structures have been introduced to further

classify insulators into ordinary insulators and topological non-trivial insulators, that is, topologi-

cal insulators (TIs). For TIs, there has been a few decades since people started to work on related

problems. Time-reversal symmetry-protected two-dimensional edge states were first predicted by

A. Volkov and O. Pankratov [60, 61] leading to the start of topological insulators. Afterwards, the

2D topological insulator or the quantum spin Hall state was predicted by C. Kane and E. Mele [62],

and A. Bernevig and S.-C. Zhang [63]. The concept then soon developed to 3D topological insu-

lator by J. Moore and L. Balents [64]. Besides those, there has been also many other critical

problems being addressed, such as topological phase transition in two-dimensional systems by M.

Kosterlitz and D. Thouless [65].
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According to different topological invariants, topological insulators have been then further clas-

sified into integer Hall effect states, Z2 topological insulators [62], and topological crystalline in-

sulators [66]. These non-trivial topological states have attracted great attention due to their novel

edge states. Although the bulk state is not conductive, unlike ordinary insulators there is a conduc-

tive state protected by the topological characteristics on the edges of a TI, which could thus be used

in ideal current-carrying devices without energy dissipation, and this has huge potential for future

application. Also, spintronic devices based on spin-momentum coupling are also promising, as

well as advanced magnetoelectronic and optoelectronic devices. With research on topological in-

sulators progressing, there will be a natural question being asked: do metals also have a topological

classification of topological metals and ordinary metals?

To answer this question, the starting point is Dirac equation proposed by Paul Dirac [67] de-

scribing electronic states with relativistic effects. Later Weyl pointed out that the massless solution

of the Dirac equation described a pair of new particles. This pair of new particles has opposite

chirality, wherein each is a Weyl fermion. The massless Dirac electron is a simple superposition

of Weyl fermions with opposite chirality, which is found in Dirac semimetals. In 2012 and 2013,

Na3Bi [68] and Cd3As2 [69] were predicted to be Dirac semimetals whose Fermi surfaces are

composed of overlapping Weyl fermion pairs and protected by lattice symmetry. In 2014, those

theoretical predictions were verified by experiments and this was therefore the first discovery of

a three-dimensional version of graphene [70, 71]. From then on, the Dirac semimetals have been

attracting great attention, and have formed a current research hotspot in the field of condensed mat-

ter physics. Besides Dirac semimetals, there are also Weyl semimetals and nodal-line semimetals.

Possible energy dispersions for these are shown in Fig. 1.3.

ZrTe5 has attracted great interest as an exotic quantum material due to observations such as

the chiral magnetic effect [73] and 3D quantum Hall effect [74]. Initially, monolayer ZrTe5 was

predicted to be a 2D topological insulator (TI) [75], with bulk ZrTe5 argued to be either a weak

TI (WTI) or strong TI (STI) [75], where the latter implies a more robust protection of topological

surface states from disorder, along with presence of a bulk gap. The STI state possesses helical
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Figure 1.3: Energy dispersion characteristics of Dirac semimetal, normal semiconductor, Weyl
semimetal and nodal-line semimetal. Reused with the permission from Ref. [72]. Copyright (2018)
American Physical Society.

Dirac surface states which might be utilized along with the proximity effect as the basis for devices

for quantum computation [76]. It was further predicted that a topological phase transition separates

these TI states [77,78] with a temperature-driven valence and conduction band inversion associated

with the topological phase transition [77].

Since these predictions were made, the topological nature of ZrTe5 has remained controver-

sial. Angle-resolved photoemission spectroscopy (ARPES) studies [73,79] and the observed chiral

magnetic effect [73] indicate a 3D Dirac semimetal state, also suggested by infrared [80], magneto-

optical [81], and transport [82] measurements. Based on high-resolution ARPES, however, it was

concluded that ZrTe5 should be a 3D WTI at low temperatures [83]. Scanning tunneling mi-

croscopy [84, 85] and Shubnikov-de Haas results [86] also support a WTI interpretation, while

other probes of the metallic surface states argued that ZrTe5 is a low-T STI [77,87]. Regarding the

topological phase transition, a recent infrared [88] study suggested that ZrTe5 transits from WTI to

STI with temperature decreasing, with the Dirac semimetal state appearing at the transition, while

ARPES results [89] have shown the gap remaining open and the sample a WTI over the measured

temperature range. Besides these topological features in ZrTe5, the Dirac dispersion can also lead

to other extreme quantum behaviors in relatively weak magnetic fields because of the large Fermi

velocity and corresponding Landau level splitting.
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In recent years, there has been great interest in layered transition metal dichalcogenides (TMDCs),

with MX2 composition and comprised of a wide range of transition metal (M = Mo, W, Ta, Zr, Hf,

etc.) and chalcogen (X = S, Se, or Te) elements. The TMDC family offers platforms for explor-

ing striking physical phenomena and exotic electronic device applications [90]. Among TMDCs,

ZrTe2 has been relatively little investigated; however, recent work [91–93] has indicated interest-

ing topological features in this material both in the normal state and as a doped superconductor.

Also, other zirconium tellurides have been of considerable interest. For instance, as described

above, ZrTe5 shows interesting topological properties and unique physical properties such as the

chiral magnetic effect [73] and three-dimensional quantum Hall effect [74], as well as quantum

thermoelectric behavior [94] and distinctive optical behavior [95]. ZrTe5 also exhibits a topologi-

cal phase transition separating the strong and weak topological insulator states [77, 78, 96] with a

temperature-driven valence and conduction band inversion associated with this topological phase

transition [77]. Other Zr-Te materials include the layered material ZrTe3 which has also been long

studied due to interesting behavior such as a charge density wave phase transition [97]. Recently,

theoretical calculations indicate distinctive topological behavior in ZrTe, which possesses triple-

point fermions coming from the three-fold degenerate crossing points formed by the crossing of a

double-degeneracy band and a nondegeneracy band [98].

Regarding ZrTe2, the theoretical predictions from several groups give rather different results

[91–93,99–101], leading to the importance of determining its topological nature. Although several

theoretical reports [91, 99] predicted ZrTe2 to be a simple metal, there is no direct experimental

evidence supporting this result. However, recent ARPES studies [93] present evidence of massless

Dirac fermions observed in the ZrTe2 bulk phase, while the DFT calculations [92, 93] also sup-

port the topological semimetal prediction. As a topological semimetal candidate from the layered

TMDC family, ZrTe2 may show attractive electrical transport phenomena and promising prospects

for quantum device applications.

As a powerful experimental technique, NMR can provide useful insights on different perspec-

tives of various topological materials. In particular, NMR is uniquely sensitive to the behavior
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and dynamics of carriers very close to the Fermi level, the understanding of which is essential for

the understanding of Dirac and Weyl semimetals, as demonstrated in this dissertation. In other

work on topologically inverted materials, NMR shifts have been shown to be good indicators of

the band inversion in half-Heusler bismuthides, such as YPdBi and YPtBi [11, 16], although the

reason behind this is still unclear. NMR has also been applied to investigate the Weyl semimetals,

such as TaP [102] and TaAs [103]. Ref. [103] showed that Landau diamagnetism can be a unique

fingerprint for 3D topological semimetals. NMR has also been utilized in studying organic materi-

als, such as electronic correlations in α-(BEDT-TTF)2I3 [104]. Besides the topological semimetals,

NMR has also been previously used to study topological insulators, for example materials prepared

as nanomaterials so that the surface resonance could be detected. In Ref. [105], NMR was shown

to be an efficient method to detect the Dirac states in such materials. Also Ref. [106] demonstrated

the NMR signals of protected TI surface states with magnetic shielding that is influenced by the

Dirac electrons.
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2. SOLID STATE NMR THEORY AND TECHNIQUES

Nuclear magnetic resonance was first described and measured in molecular beams by Isidor

Rabi in 1938 [107], and in 1944, Rabi was awarded the Nobel Prize in Physics for this work. In

1946, Felix Bloch and Edward Mills Purcell applied the NMR technique for use on liquids and

solids, for which they shared the Nobel Prize in Physics in 1952 [108, 109]. Since then, NMR

technique has been further developed and expanded. In the current research community, NMR is

widely used in many fields including physics, chemistry, biology, and medical research to provide

great assistance on studying materials and health-related topics.

2.1 Basic Principles in NMR

Most nuclei have a spin I and a magnetic moment µ = γnh̄I, where γn is the nuclear gyro-

magnetic ratio. The Hamiltonian of a nucleus in an external magnetic field H due to the Zeeman

effect is

H = −µ ·H. (2.1)

With the magnetic field H = H0ẑ, the corresponding eigenvalues are

E = −mγnh̄H0, m = I, ...,−I. (2.2)

Due to the existence of the energy difference between energy levels, it is possible to observe an

absorption spectrum by applying a RF pulse with a proper frequency ω0 that satisfies h̄ω0 = ∆E =

γnh̄H , where H = H0 +Hloc includes both the external field and local environment.

2.2 Equations of Motion

Applying an external magnetic field H to a nuclear spin system, with a magnetization M, will

produce a torque M ×H to force M to precess around H. Writing the equation of motion in the
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laboratory frame and including exponential relaxation processes, we obtain

dMz

dt
= γn(M×H)z −

Mz −M0

T1

, (2.3a)

dMx,y

dt
= γn(M×H)x,y −

Mx,y

T2

, (2.3b)

whereM0 is the equilibrium magnetization, T1 is spin-lattice relaxation time and T2 is the spin-spin

relaxation time. From an analysis of the T1 and T2, it is possible to quantify the atomic motion or

even transport properties.

2.3 Knight Shift and Korringa Relation

The Knight shift is named after Walter Knight, who first observed the phenomenon in 63Cu

NMR for metallic copper, where the shift is an order of magnitude larger than the chemical shifts.

Later, this was found to be typical for metallic materials. Considering the interaction between a

nucleus and a free electron, there are three terms that need to be considered: the Fermi contact in-

teraction, magnetic dipole interaction and orbital angular momentum interaction. The Hamiltonian

describing the interactions between the nucleus and conduction electrons can be expressed as:

H = −2µBγnh̄I ·
{

8π

3
Sδ(r) +

[
3r(r · S)

r5
− S

r3

]
− r× p

r3

}
(2.4)

where µB is the Bohr magneton, γn is the gyromagnetic ratio, I and S are the nuclear spin and

electron spin, respectively, and r is the radius vector of the electron with the nucleus at the origin.

The first term of Eq. 2.4 is the Fermi contact term, which is usually used to explain Knight

shifts in a simple metal. The second term describes the spin-dipole interaction, a source for NMR

line shape broadening for powders which can also produce a shift in some cases. The last term

represents the spin-orbit interaction, which is usually important in transition metals and contributes

to the anisotropic Knight shift.

If we just consider s-state electrons, only the Fermi contact term will survive after taking an

average over the electron wave function. By assuming the external field is in the z direction, the
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effective Fermi contact interaction can be written as

H = −γnh̄Iz
(

8π

3
〈|Ψs(0)|2〉EF

)
χPH0, (2.5)

where χP is the Pauli paramagnetic spin susceptibility and Ψs(0) is the electron wave function

measured at the nucleus. This energy can be treated as a small perturbation of the external field

(∆H) and will lead to a small resonance frequency shift, called the Knight shift, as below:

K =
∆H

H0

=
8π

3
〈|Ψs(0)|2〉EFχP . (2.6)

If one expresses the relationship between the experimental resonance frequency νm in a metal

and the resonance frequency νd in a diamagnetic reference as

νm = νd + ∆ν, (2.7)

we can find the connection that ∆ν/νd = HHFχP/µB, where HHF is the hyperfine coupling field.

For Fermi contact interaction, the following results are typically observed: (1) ∆ν is always pos-

itive in simple metals. (2) ∆ν/νd is unaffected by external field change. (3) ∆ν/νd is nearly

temperature independent. (4) ∆ν/νd increases with increasing nuclear charge. However, in this

dissertation, most cases are not simple metal cases dominated by s electrons and core polarization

plays a more significant role contributing to the Knight shift.

For metallic materials, conduction electrons will control the relaxation mechanism and only

electrons at the Fermi level need to be considered. In this case, the Korringa relation can be

derived from the Fermi contact interaction and gives an expression

K2T1T =
h̄

4πkB

γ2
e

γ2
n

, (2.8)

where γe is the electron gyromagnetic ratio and kB is the Boltzmann constant. Note that this is only
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correct for metallic materials, and the relationship is more complicated for semiconductors. The

Korringa ratio can also be affected by a number of sources, such as electron-electron interactions,

and exchange enhancement. So, although a constant behavior can be observed, the K2T1T value

is not necessary to be exactly the same as calculated from the equation above.

2.4 Chemical Shift

Nuclei are always surrounded by an electron cloud which interacts with the nuclear spin angular

momentum. The surrounding electrons will build up a modified magnetic field around their nuclei

and affect the spin energy levels by a small amount. The change of nuclear magnetic resonance

frequencies for the same kind of nucleus, due to variations in the electron distribution, is called

the chemical shift. The Hamiltonian term associated with this chemical shift is simply a Zeeman

operator,

HCS = −I · σ ·B, (2.9)

where σ is the chemical shift tensor.

For solid state environments, the Hamiltonian for axial conditions is

HCS = −σiω0Iz −
3 cos2 θ − 1

2
(σzz − σi)ω0Iz, (2.10)

where σi = (σxx + σyy + σzz)/3 is the isotropic chemical shift given by the diagonal sum of the

shift tensor σ, and θ is the polar angle between the polarizing field direction and the principal axis

of σ.

Knight shifts tend to be an order of magnitude larger than the small paramagnetic chemical

shift for metallic materials, so that if high accuracy is not required, we can often pick a standard

reference and define the Knight shift in percentage as

K =
νm − νref

νref

× 100%, (2.11)

where νm and νref are the measured resonance frequencies for the object and the reference under
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Figure 2.1: Zeeman levels due to magnetic-only interaction, and with the addition of first and
second order quadrupole interaction. The central transition splitting does not change due to the
first order quadrupole interaction in contrast to the satellite transition.

the same external field. In other cases, such as described in Chapter 5 below, the Knight shift and

chemical shift must be carefully separated in order to probe the underlying electronic features.

2.5 Quadrupole Interaction

The quadrupole interaction needs to be taken into consideration for nuclei with I > 1/2. (For

I = 1/2, the average quadrupole interaction is zero.) For I > 1/2, the charge distribution is

non-spherical, which interacts with an electric field gradient to produce a change in the energy

levels in addition to the Zeeman effect, as shown in Fig. 2.1. The interaction energy E of a charge

distribution of density ρ with a potential V can be expressed as

E =

∫
ρV dτ, (2.12)

and the leading term in its expansion gives the the effective quadrupolar HamiltonianHQ,

HQ =
eQ

6I(2I − 1)

∑
αβ

Vαβ

[
3

2
(IαIβ + IβIα)− δαβI2

]
, (2.13)
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where Vαβ is the field gradient and Q is the quadrupole moment of the nucleus.

The frequency shift of NMR transitions can also be calculated from Eq. 2.13 as a series of

perturbations for the case that the eigenvalues of Eq. 2.13 are small compared to h̄ω0. For example,

the first order quadrupolar effect for high symmetry systems gives

ν(m↔ m− 1) = ν0 +
νQ(3µ2 − 1)(m− 1/2)

2
, (2.14)

where m is the energy level, µ = cos θ and νQ = 3e2qQ
2I(2I−1)h

is the pure quadrupolar 2I(2I − 1)h

frequency with eq = Vzz = ∂2V/∂z2, the z-z principal value of the EFG, with z defined as the

direction with largest principal value. This indicates that the central transition (m = 1/2) will

not be shifted by the first order quadrupole effect. But higher order quadrupolar effects, most

importantly the second order, will still bring additional changes to the frequency shift. For the

cases with axial symmetry or higher, the effect gives a net NMR shift described as

ν(m↔ m− 1) = ν0 +
νQ(3µ2 − 1)(m− 1/2)

2
+

ν2
Q

32ν0

(1− µ2)×

{[102m(m− 1)− 18I(I + 1) + 39]µ2 − [6m(m− 1)− 2I(I + 1) + 3]}.
(2.15)

2.6 Dipole Coupling

In solid state NMR, dipolar coupling and quadrupolar interactions are also important. The

dipolar coupling describes the interaction between the dipole moments of different nuclei. The

Hamiltonian of the interaction between two magnetic dipoles can be written as

H = − µ0

4πr3
jk

[3(mj · ejk)(mk · ejk)−mj ·mk], (2.16)

where ejk is a unit vector parallel to the line joining the center of the two dipoles, rjk is the distance

between two dipoles, mk and mj. For two interacting nuclear spins, this can be expressed by

H = −µ0

4π

γjγkh̄
2

r3
jk

[3(Ij · ejk)(Ik · ejk)− Ij · Ik], (2.17)
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where γj and γk are gyromagnetic ratios of the two nuclei with spin Ij and Ik.

The direct dipole coupling is useful for structural studies. Estimation of this coupling provides

a direct spectroscopic route to the distance between nuclei and hence the geometrical form of

the molecule, or additionally also on intermolecular distances in the solid state leading to NMR

crystallography notably in amorphous materials. Although internuclear magnetic dipole couplings

contain a great deal of structural information, in isotropic solutions, they average to zero as a result

of rotational diffusion. In addition, the pseudo-dipolar interaction often can be large, which may

need further consideration.

2.7 NMR Pulse Sequences

The most commonly used NMR pulse sequences in my measurements are shown in Fig. 2.2.

With proper combinations of multiple spin-echo sequences and variable parameters, we can con-

struct T1 and T2 sequences to obtain relaxation properties. We can use a RF pulse sequence (180◦

- Twait - 90◦ - Tdelay - 180◦) to measure the spin-lattice relaxation time T1. Comparing to spin-echo

sequence (90◦ - Tdelay - 180◦), there is another 180◦ pulse placed at a time Twait before it. The 180◦

pulse tips magnetization to the −z direction in the rotating frame. The spin systems will return

to equilibrium with the characteristic time T1. The spin-echo amplitude measured by 90◦ - Tdelay

- 180◦ sequence thus depends on the time Twait. By repeating such a spin-echo sequence (180◦ -

Twait - 90◦ - Tdelay - 180◦) with different Twait, a magnetization recovery curve can be constructed

to reveal the value of T1. For nuclei with spin 1/2, like Te, the central transition recovery curve for

the magnetic contribution is given as

M(Twait)

M(∞)
= 1− αe−

Twait
T1 , (2.18)
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Figure 2.2: Free induction decay (FID), spin echo, inversion recovery, and CPMG sequences.
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and for nuclei with spin > 1/2, the effect is more complicated, for example, for spin 9/2, such as

93Nb, the corresponding recovery curve is given as

M(Twait)

M(∞)
= 1−α

(
0.152e

−Twait
T1 +0.14e

− 6Twait
T1 +0.153e

− 15Twait
T1 +0.192e

− 28Twait
T1 +0.363e

− 45Twait
T1

)
,

(2.19)

where M(∞) is the saturating magnetization and α is a fitted amplitude. Note that this is for the

case that satellites are well separated from central transition and the saturation pulse affects only

the central line.

2.8 Magic Angle Spinning NMR

Magic angle spinning (MAS) was first described by Andrew, Bradbury, and Eades in 1958

[110] and independently by Lowe in 1959 [111]. This technique is to make the broad lines nar-

rower in order to increase the resolution of NMR spectrum. In regular NMR measurements, the

sample is fixed in the sample coil which lies perpendicularly to the external magnetic field. The

nuclear spins will experience multiple orientation-dependent interactions, such as dipole-dipole

coupling, anisotropic chemical shifts and quadrupole interactions, which will lead to broadening

of the NMR lines. The dipole-dipole and first order quadrupole interactions have an angular depen-

dence (3 cos2 θ − 1) connected to the second rank spherical harmonic. To more precisely identify

the signals, we can manually set 3 cos2 θ − 1 = 0, giving the magic angle of θ = 54.7◦. In the

MAS technique, a rapid spin for the sample about an axis at this magic angle to the external field

can average out most of these interactions and make the NMR lines narrower. Also note that for

large quadrupole splitting, MAS may not give any significant broadening, so this technique was

only used for specific cases in this dissertation.
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3. EXPERIMENTAL APPARATUS AND COMPUTATIONAL METHODS

3.1 NMR Spectrometer

All NMR experiments in this dissertation except for MAS measurements were performed us-

ing a home-built NMR pulse spectrometer and a set of customized NMR probes which cover a

temperature range from 4.2 K to 350 K. The major components of our NMR spectrometer include

a superconducting magnet, a pulse sequence generator (PSG), a radio frequency (RF) synthesizer,

transmitters, signal receivers, a detecting probe, a cryostat system and a controlling system based

on a LabVIEW program. A block diagram of this spectrometer is illustrated in Fig. 3.1.

While executing a certain pulse sequence, the RF is produced by a frequency synthesizer, and

the PSG is used to control the pulses. The transmitter is used to deliver the RF radiation to the

sample to perturb the nuclear spin system from its equilibrium state. During the relaxation process

of the spin system, an electric signal can be recorded from the pick-up coil. The receiver detects,

amplifies, and digitally records the signal. Normally the voltage induced in the pick-up coil is as

low as one microvolt, and it has to be amplified before being digitally recorded by the computer.

The circuit of the probe is basically a tunable LC circuit, and the sample coil serves as the

inductor of the LC circuit. It is used to excite and detect NMR signals from the sample inside the

coil. There is a general requirement that all components must be non-magnetic. There are also

many other add-ons to the probe for additional functions. A platinum thermometer is attached

inside the sample can for temperature detection from 4.2 K to room temperature. A home-made

resistance heater, a Cu-Ni wire, is attached to the sample can of the probe for temperature adjust-

ment. A cryostat system is needed to perform low-temperature NMR. In our case, liquid nitrogen

was used to perform measurements from 77 K to room temperature, while liquid helium was used

for the range from 4.2 K to 77 K.

To measure NMR shifts of different nuclei, the corresponding references are also needed. For

93Nb, standard reference NbCl5 in acetonitrile was used. For 121Sb, standard reference KSbCl6 in
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Figure 3.1: Block diagram of the NMR system.
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acetonitrile was used. For 59Co, K3Co(CN)6 was used as reference. For 125Te, Te(OH)6 was used as

reference. Magic Angle Spinning (MAS) measurements on 93Nb based samples were performed at

the NMR facility in the Chemistry Department, using a Bruker Avance 400 MHz NMR instrument

with NbCl5 in acetonitrile as reference. All NMR measurements except for MAS were done by

myself.

3.2 PPMS, SQUID, Mössbauer, XRD, and WDS

High-resolution powder X-ray diffraction (XRD) data were collected at the Advanced Pho-

ton Source, Argonne National Laboratory. Rietveld refinements (a technique described by Hugo

Rietveld for use in the characterisation of crystalline materials) were performed using the Crys-

tallography Data Analysis Software (GSAS-II) package [112] by myself. Wavelength dispersive

spectroscopy (WDS) measurements were performed on multiple points on the samples using a

Cameca SXFive Electron Microprobe. Hall coefficient and heat capacity measurements were con-

ducted in a Quantum Design Physical Property Measurement System (PPMS) and these data were

also analyzed by myself. A Quantum Design superconducting quantum interference device magne-

tometer (SQUID) was used to measure magnetic properties. All these measurements were carried

out in user facilities.

3.3 Computational Packages

DFT calculations on density of states, band structures, optimized structures, electric field gra-

dients and many other properties were carried out using in the WIEN2K package [113]. I have

utilized XCRYSDEN package [114] to plot Fermi surfaces. All crystal structures in this disserta-

tion are displayed using VESTA package [115]. DFT work in this dissertation was carried out by

my labmate Dr. Nader Ghassemi.

3.4 Sample Preparation

In this dissertation, all half-Heusler samples were prepared by Prof. Zhifeng Ren’s group.

Skutterudites were prepared by Dr. Ballikaya and Prof. Uher at University of Michigan. Topologi-

cal chalcogenides ZrTe5 and ZrTe2 were prepared by myself using chemical vapor transport (CVT)
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method.
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4. ADVANCED THERMOELECTRIC HALF-HEUSLER NbFeSb∗

4.1 Introduction

In this chapter, to analyze the underlying electronic and magnetic properties of NbFeSb, I

perform a series of measurements aimed at better understanding and eventual utilization of these

materials. All half-Heusler samples were prepared by Dr. Ren’s group at University of Houston.

The DFT was conducted by my labmate Dr. Nader Ghassemi and I measured all the experimental

results. In results from magnetic, NMR and specific heat measurements, I demonstrate the presence

of several native defects in NbFeSb resulting in its very low native mobility and an enhanced carrier

density above room temperature due to an impurity band.

4.2 Sample Preparation

Three samples with nominal composition NbFeSb were prepared by an arc melting, ball milling,

and hot pressing process. Stoichiometrically weighed raw elements were melted several times in

an Ar-protected chamber to form homogeneous ingots. These were loaded into an Ar-filled stain-

less steel jar and ball milled for 3 h. The ball milled powder was finally consolidated into 13 mm

diameter disks via hot pressing. The hot pressing temperatures were 1050, 1000, and 900 ◦C with

holding for 2 min. Here I denoted these samples as NbFeSb-1050, NbFeSb-1000, and NbFeSb-900

respectively.

4.3 Experimental Methods

High-resolution powder X-ray diffraction (XRD) data were collected at the Advanced Photon

Source, Argonne National Laboratory using an X-ray wavelength of 0.412703 Å. NbFeSb-1050

results are shown in Fig. 4.1. Rietveld refinements were performed using the GSAS-II software

package, and the lattice constant 5.9497 Å was obtained, with identical results for the other two

samples within 0.0001 Å. This is close to the value 5.9522 Å reported in other work [116]. The

∗Part of this chapter is reprinted from Ref. [15] (Y. Tian, H. Zhu, W. Ren, N. Ghassemi, E. Conant, Z. Wang, Z.
Ren, and J. H. Ross, Jr., “Native defects and impurity band behavior in half-Heusler thermoelectric NbFeSb,” Phys.
Chem. Chem. Phys., vol. 20, no. 34, pp. 21960–21967, 2018) with permission from the PCCP Owner Societies.
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Figure 4.1: Powder XRD results for NbFeSb-1050 sample at 295 K with Rietveld refinement and
difference plots. The half-Heusler structure is also shown superposed.

XRD results showed no sign of secondary phase.

Magnetic measurements were performed using a Quantum Design MPMS superconducting

quantum interference device magnetometer. Specific heat and transport measurements were con-

ducted using a Quantum Design Physical Property Measurement System. 93Nb NMR experiments

were carried out by applying a custom-built pulse spectrometer at a fixed magnetic field of about 9

T using shift standard NbCl5 in acetonitrile, with positive shifts here denoting paramagnetic sign.

Magic angle spinning (MAS) NMR measurements were performed using a Bruker Advance 400

spectrometer. To avoid multi-exponential effects due to quadrupole splitting, NMR T1 measure-

ments were performed using a saturating comb of pulses.

Resistivity and Hall measurements were performed at 300 K, on a piece of the NbFeSb-1050

sample cut into a Hall bar. The measured resistivity is 0.2 Ω cm, with Hall results corresponding

to a hole density of 9 × 1019 cm−3, assuming no compensation effects. This indicates a very

small room-temperature hole mobility of about 0.3 cm2 V−1 s−1, considerably smaller than found

in Ti-substituted NbFeSb [29]. A very small mobility was previously noted for unsubstituted

NbFeSb [117,118], apparently due to nearness to a localization transition. For example, assuming
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Figure 4.2: Sample NbFeSb-1050 magnetization vs magnetic field measured at 5 K. Brillouin
function fit is shown with J = 1/2 and J = 5/2 curves for comparison. Error bars are too small
to be seen.

a hole effective mass of 2 me [119] and a dielectric constant ε = 30 similar to that of TiNiSn [120],

the Mott condition (aBn
1/3
c ≈ 0.25) [121] corresponds to a carrier density nc = 3 × 1019 cm−3.

4.4 Results and Analysis

4.4.1 Magnetic measurements

Magnetization vs T results proved difficult to separate from a small ferromagnetic response,

likely due to a surface oxide, even though representing a several orders of magnitude smaller

moment density than the defects discussed below. However, M vs H measurements revealed

dilute paramagnetic defects, as shown at T = 5 K for NbFeSb-1050 in Fig. 4.2. To analyze for the

local magnetic moments, data were fit to

M = NAcgJµBBJ(x), (4.1)

where NA is Avogadro’s constant, c is the concentration of defects, and BJ(x) is a Brillouin func-

tion with x = gµBJB
kBT

. Assuming g = 2, expected for transition ions, the fitted J = 1.53 indicates

a single, dominant type of defect with J = 3/2. Fixing J = 3/2, the fit gave c = 0.00221 per for-
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Figure 4.3: 93Nb static NMR spectrum of NbFeSb-1050 at 290 K. Inset: Magic angle spinning
spectrum with rotation speed 6 kHz.

mula unit with g = 2.026. The corresponding effective moment is peff = g
√
J(J + 1)µB = 3.923

µB.

4.4.2 NMR measurements

4.4.2.1 NMR line shape

The static (stationary sample) 290 K 93Nb NMR spectrum shown in Fig. 4.3 demonstrates a

very large shift of 3600 ppm for NbFeSb-1050, which is outside the typical range of Nb chemical

shifts [122], presumably due to a large paramagnetic response of Nb d orbitals appearing in both

the valence and conduction bands. The inset of Fig. 4.3 shows room temperature MAS results, indi-

cating a narrow intrinsic line with no sign of splitting or inhomogeneous broadening, an indication

that the site occupations are well ordered, with few local atomic interchanges [21, 123, 124]. To

further examine whether there could be a small peak within the observed resonance, corresponding

to additional local Nb environments such as reported for Mg on octahedral sites in half-Heusler

MgAgAs in Ref. [124], I examined the first moment of the static line measured in the MAS probe.

Its position is identical to that of the MAS isotropic peak, to less than the 1 ppm first moment

uncertainty. Thus there is no evidence for any significant population of Nb atoms located on such

27



Figure 4.4: 93Nb static NMR spectra of NbFeSb samples prepared in hot pressing temperatures
1050, 1000, and 900 ◦C, normalized to sample mass.

additional sites, with a detection limit for these measurements on order of 1%.

Line shapes of all samples are shown in Fig. 4.4 with shifts increasing to 3680 ppm for NbFeSb-

900. The inset of Fig. 4.5 shows the center of mass shift vs T for the NbFeSb-1050 sample. At

low temperatures there is a decrease corresponding to the interaction of carriers with the local-

ized defects, and at high temperatures the increase corresponds to an enhanced Knight shift (see

Discussion section).

In cubic NbFeSb, I expect no quadrupole shifts for an ideal crystal. However, spectral ampli-

tudes at 290 K vary considerably between samples (Fig. 4.4), with the observed NbFeSb-900 line

smaller by a factor 4.8 (scaled according to sample mass) than for NbFeSb-1050. This is close

to the factor of [I(I + 1) + 1/4]1/2 = 5 for the central transition (m = 1/2 to -1/2) for I = 9/2

93Nb, as the quadrupole satellite resonances collapse toward the central transition; see for example

Ref. [125]. This indicates that random electric field gradients due to lattice strains are significantly

reduced in sample NbFeSb-1050.
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Figure 4.5: Variation of 93Nb FWHM line width vs temperature for NbFeSb-1050. Dashed line:
Curie-like function fitted as described in the text. Inset: shift vs temperature.

4.4.2.2 NMR line width

The low-temperature broadening of the 93Nb NMR lines also supports the magnetic defect

picture described above. To probe this behavior, the full width at half maximum (FWHM) was

recorded vs temperature. The results correspond to a Curie-type behavior as shown in Fig. 4.5.

With no associated Curie-law shifts, this corresponds to the effect of dilute paramagnetic defects.

Walstedt et al. [126] calculated such effects. For the case where fluctuation of the impurity

spins is rapid compared with the NMR splittings, the line width is proportional to the average

spin moment. According to this theory, substitutional defects having spin quantum number J and

concentration c will produce a FWHM, ∆ν, which can be expressed [126, 127],

∆ν =
2

9
√

3

cγngµB
V

〈Sz(T )〉, (4.2)

where 〈Sz(T )〉 = g2J(J+1)µBB
3kBT

is the average spin component in the field direction, and V is the

volume per formula unit. I used g = 2 and J = 3/2, obtained from magnetic measurements. The

fit vs T , shown in Fig. 4.5, yields an impurity concentration of 0.0022 with a T -independent back-

ground 14.4 kHz. These results are consistent with results from the other methods, and confirm
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Figure 4.6: Temperature dependence of 93Nb spin-lattice relaxation rates, along with T1,exp ob-
tained as described in the text. Error bars are approximately the size of the symbols.

that the defects are randomly distributed in the sample.

4.4.2.3 Spin-lattice relaxation

T−1
1 results from saturation-recovery experiments are shown in Fig. 4.6, obtained from fitting

a recovery curve M(t) ∝ e−(t/T1)β , setting β = 1. Alternatively, allowing β to vary yielded β ≈ 1

near room temperature and at low temperatures, but smaller values in the vicinity of the peak,

for example β = 0.85 at 155 K. This result is consistent with a contribution due to fluctuating

defects, with the peak occurring when the maximum in the fluctuation spectrum matches the NMR

frequency, as also observed in other Fe-containing Heusler alloys [128].

If nuclear spin-diffusion is not important, relaxation due to uncorrelated local moments is found

to approach a stretched exponential, M(t) ∝ e(−t/τ1)1/2 . This occurs because of an inhomogeneous

distribution of local relaxation rates. For a concentration c per unit volume of effective moments

p, the exponential factor is [129],

τ
−1/2
1 = 4.7

pµBγnc√
ω

(
ωτc

1 + ω2τ 2
c

)1/2

, (4.3)
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where ω is the NMR frequency, and a single Debye-type correlation time τc has been assumed to

apply to the local moments. When ω = τ−1
c , a maximum of τ−1

1 is reached,

(τ−1
1 )max = 11.05

p2µ2
Bγ

2
nc

2

ω
. (4.4)

For the concentration 0.0022 per formula unit of defects detected here, this yields, (τ−1
1 )max = 1.5

s−1.

Since the paramagnetic fluctuation peak sits atop an overall increase in T−1
1 vs T , I assumed a

relaxation function for each T given by M(t) = M0 exp(−t/T1,exp)
∑

i ci exp[−t/(T1s)i], where

exp(−t/T1,exp) is the overall exponential relaxation function, ci and (T1s)i represent a continuous

distribution generating the stretched function exp[−(t/τ1)1/2]. I obtained a numerical summation

equivalent to the latter distribution, scaled by a single parameter corresponding to τ1, and fitted

the relaxation data to obtain T1,exp and τ1 near the observed peak (See Appendix A). Results agree

with the calculated τ−1
1 = 1.5 s−1 within experimental error, so to better identify the underlying

exponential behavior I fixed τ−1
1 = 1.5 s−1, and fitted for T1,exp at three temperatures close to

the maximum position. This yielded the results 2.21(11), 2.29(16) and 2.33(12) s−1, at 151, 155

and 160 K respectively, also plotted in Fig. 4.6. As described in the Discussion, these agree with a

Korringa process for the overall relaxation term, as expected in the case of sufficient carrier density

to produce metallic behavior.

At the upper end of the temperature range, both K and T−1
1 show a rapid increase. Normally,

due to phonons, T−1
1 approaches a T 2 behavior [130] (dashed curve in Fig. 6), with little effect on

the NMR shift. Instead, the T−1
1 data could be fitted to

T−1
1 = CT 2e∆/kBT , (4.5)

with ∆ = 55 meV. Setting ∆ = Eg/2, this is the expected function [131] for an intrinsic semi-

conducting regime, however this assumes a gap (Eg) much larger than kT , with the chemical

potential (µ) close to the mid-gap. Starting in the metallic regime with µ at the band-edge, ∆
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Figure 4.7: Debye temperature extracted from NbFeSb-1050 specific heat, for H = 0 T. Inset:
C/T vs T 2 between 2 and 10 K, with fit described in the text.

should be closer to Eg, and in numerical simulations for various band-edge effective masses the

observed steep rise in T−1
1 was consistent with Eg of approximately 0.03 eV. With computed band

gaps [6, 29, 119, 132–134] in the range 0.51-0.78 eV, and an activated electrical conductivity cor-

responding to Eg = 0.51 eV identified above 600 K [29], it is unlikely that the NMR result cor-

responds to the entire gap. Therefore, I conclude that this activation energy corresponds to an

isolated impurity band within the NbFeSb gap.

4.4.3 Specific heat

Specific heats of the NbFeSb-1050 and NbFeSb-900 samples were measured from 1.8-300 K

in magnetic fields H = 0, 5 and 9 T. The zero-field C/T vs T 2 below 11 K for NbFeSb-1050,

shown in the inset of Fig. 4.7, shows linear behavior with a small upturn at low temperature. The

upturn may be due to local moment interaction with carriers. A fit to C/T = γ + βT 2 yields

γ = 0.77 mJ mol−1 K−2 and β = 0.11 mJ mol−1 K−4. The Debye temperature obtained from

ΘD = (12nRπ4/5β)1/3, where n is the number of atoms per formula unit and R is the ideal gas

constant, is ΘD = 375 K. A similar fit for NbFeSb-900 yields γ = 1.21 mJ mol−1 K−2.

Fig. 4.7 shows the Debye temperature fitted by solving the standard integral equation,
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Figure 4.8: (a) NbFeSb-900 and (b) NbFeSb-1050 specific heat differences vs T . Solid curves: H
= 5 and 9 T J = 3/2 multilevel Schottky anomalies; dotted curves: J = 1/2 fits for comparison.

C = 9nR

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx, (4.6)

As shown, there is a plateau of ΘD about 375 K, consistent with the low-temperature results and

other reports [118].

Field-dependent results for NbFeSb-900 and NbFeSb-1050 yield a small low-temperature dif-

ference shown in Fig. 4.8(a) and 4.8(b), subtracting the 0 T from 5 T and 9 T data. For independent

moments with J 6= 1/2, the corresponding specific heat anomaly is generalized to the multilevel
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Table 4.1: Specific heat fitting parameters, with J = 3/2, and c per formula unit.

NbFeSb ∆C g-factor c

1050 C(5 T) − C(0 T) 2.159 ± 0.007 0.00225 ± 0.00005

1050 C(9 T) − C(0 T) 2.058 ± 0.003 0.00253 ± 0.00003

900 C(5 T) − C(0 T) 1.941 ± 0.003 0.00205 ± 0.00002

900 C(9 T) − C(0 T) 1.897 ± 0.004 0.00219 ± 0.00003

Schottky function [135]:

Cm = cR

[
x2ex

(ex − 1)2
− [(2J + 1)x]2e(2J+1)x

(e(2J+1)x − 1)2

]
, (4.7)

where x = gµBH
kBT

. With J = 3/2, this function provided good agreement. Curves for J = 1/2

corresponding to a standard two-level Schottky function are also shown in Fig. 4.8, however the

goodness of fit is not as favorable. Fitted results are shown in Table 4.1.

4.5 Discussion

According to first principles band structure calculations, NbFeSb is predicted to be a narrow-

gap semiconductor, with an indirect gap in the range 0.51-0.78 eV [6,29,119,132–134], up to 1.77

eV reported by Çoban et al. [136]. The properties observed here can be interpreted by the following

picture: the as-grown material is nonmagnetic with a 0.2% paramagnetic defects per formula unit

in a p-type matrix. A consistent measurement of the defect concentrations is provided by different

methods, as summarized in Table 4.2. The transport properties observed here are similar to those

of the unsubstituted material reported in Ref. [118], and thus I expect that this behavior is typical

for native defects in NbFeSb.

The narrow observed NMR line widths, and collapse of the quadrupole-split satellites in the

highest-temperature processed sample NbFeSb-1050, demonstrate that samples prepared this way

are very well ordered. The unchanging lattice constant vs processing conditions indicates little
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Table 4.2: Summary for NbFeSb-1050 by different methods.

method defect concentration (per formula unit)

Magnetization 0.00221

NMR FWHM 0.00223

Specific heat1 0.00253
1From C(9 T) − C(0 T).

or no variation in composition, while the NMR quadrupole broadening process is very sensitive

to site-occupation disorder. As shown above, the NMR shift results indicate a single local envi-

ronment for Nb, precluding the presence of a large concentration of Nb antisites or similar de-

fects. This also agrees with results [118] limiting NbFeSb to a narrow composition region of the

ternary phase diagram, and with stabilization according to the 18-electron rule for half-Heusler

compounds [4–8].

To better understand the temperature-dependence of the NMR results identified for NbFeSb-

1050, note that the NMR shift (inset of Fig. 4.5) consists of a sum of the chemical shift (δ),

due to the orbital susceptibility, and the Knight shift (K), connected to the paramagnetic spin

susceptibility [137], with K the most important source of T dependence. With the valence band

(VB) edge dominated by Fe and Nb d orbitals [119,132,133],K would be due to core-polarization,

with a negative sign [138] for Nb. Based on the linear heat capacity at low temperatures, the

degenerate statistics result [139] γ = π2

3
k2
Bg(εF ) gives a Fermi level density of states g(εF ) =

0.33 states/eV per formula unit. Using the room-temperature Hall-derived hole density nh =

9 × 1019 cm−3, and an effective mass approximation [139] for which g(εF ) = 3
2
(nh/εF ) and

εF = h̄2

2m∗ (3π2nh)
2/3, I obtain m∗ = 3.4 me and a Fermi temperature TF = 250 K. The effective

mass is close to computed values, for example 4.5 me based on mBJ-based DFT [119], distributed

among 4 degenerate VB maxima at the L position in k-space and out results (4.9 me) described in

Chapter 5.

In absence of correlation effects, in terms of the Pauli susceptibility (χP ), the Knight shift
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is given by K = HHFχP/µB = HHFµBgεF . Here HHF is the hyperfine field, assumed equal

to −21 T for 93Nb polarization [138]. Also for degenerate carriers in a Fermi gas picture, the

Korringa relation [137], κKP ≡ K2T1T = (h̄γ2
e )/(4πkBγ

2
n), can be used to obtain T1, where γe

and γn are the electron and nuclear gyromagnetic ratios, respectively. This yields K = −400

ppm, and 1/(T1T ) = 0.052 s−1 K−1. Comparing the latter value to 1/(T1,expT ) = 0.015 s−1 K−1

for T ≈ 155 K as described above, this implies that approximately (0.015/0.052)1/2 = 50% of the

total Fermi level density of states resides in Nb d orbitals. DFT calculations [119, 132] display

an orbital projection at the VB edge more heavily dominated by Fe-based states, however the

result obtained here appears reasonable, and a small enhancement of T−1
1 relative to the Korringa

relation is not surprising. By contrast, for carriers confined to a separate impurity band, much larger

departures from Korringa behavior would be expected [140], with the electronic contribution to the

specific heat not expected to be consistent with an effective mass picture. Thus this provides strong

evidence that the native holes reside at the VB edge at these temperatures. This is inconsistent with

a low-carrier compensated model for NbFeSb, however given the observed mobility, it is likely that

there would be a large energy-dependence to the electron scattering rate. This situation can lead to

sign changes in the Seebeck coefficient [141], such as have been observed in NbFeSb [117, 118],

thus not requiring changes in carrier type.

Scaled according to the Korringa relation, T1,exp derived for 155 K corresponds to K = −212

ppm (using κKP = 3.05 × 10−6 s K for 93Nb). Assuming the corresponding chemical shift, δ =

3790 ppm is temperature independent, I obtain K vs temperature shown as the absolute value in

Fig. 4.9. Also shown in this figure is the quantity and (κKP/T1T )1/2, which tracks K when the

Korringa relation holds. This occurs for temperatures below 80 K where the additional dilute

paramagnetic contribution to T−1
1 disappears, although below 20 K the curves diverge, with T−1

1

assuming an approximate T 1/2
1 behavior. The latter is consistent with Kondo interactions above the

Kondo temperature [142, 143], thus it appears that the low-temperature behavior is dominated by

carriers interacting with the observed local moments.

Note that based on an extrapolation of results from Tix-substituted materials (Chapter 5), I ob-
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Figure 4.9: Dimensionless Korringa factor vs T for sample NbFeSb-1050, with κKP denoting the
theoretical Korringa product.

tained a slightly larger δ ∼= 4020 ppm. Thus, the assumption used here of an unmodified Korringa

product yields a somewhat reduced K, but aside from this difference the general results obtained

by these methods are consistent.

As noted above, the activated upturn in T−1
1 above 280 K must be associated with an impurity

band. In the low-temperature regime, since the Fermi level is located in the VB, this impurity band

is empty. With the enhancement of thermopower between 300 and 600 K indicating additional

holes excited into the VB [29], the impurity band thus must be located just above the VB maximum.

The positive sign of the increased NMR shift at these temperatures is presumably due to impurity

band defects having Nb s-character, given the positive Fermi contact hyperfine field [144].

Considering the nature of the observed defects, Fe antisites on Nb sites appear to be a likely

explanation for the observed dilute magnetic defects: the smaller Fe ion has 3 electrons beyond the

5 needed for hybridization on that site. According to crystal field theory, the spin-only magnetic

moment of Fe in tetrahedral environment adopts a high-spin µso =
√

4S(S + 1)µB = 3.87 µB

with S = 3/2. However, this defect would be charge-neutral, so that other defects are needed to

explain the observed hole doping. As shown in Ref. [144], an impurity band due to Ni interstitials

can explain the gap anomaly in 18-electron ZrNiSb, and by analogy it may be that Fe on the half-
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Heusler interstitial sites form a separate impurity band giving the observed ∼0.03 eV activation

gap. This band can provide more carriers with increasing temperature, thus explaining the sharp

increase of Seebeck coefficient above room temperature [29]. The other likely defect candidate

is Nb antisites on Fe sites. Since Nb has 3 fewer valence electrons, and could thus act as a triple

acceptor, and such acceptors can pull the chemical potential into the VB and lead to p-type metallic

behavior at low temperatures. The high resistivity and low mobility of unsubstituted NbFeSb

[117, 118] can thus be explained by scattering from Nb antisites resonant with the VB.

4.6 Summary

In this chapter, various techniques including 93Nb NMR, magnetic and specific heat measure-

ments were applied to measure the half-Heusler semiconductor NbFeSb. The results show a high

degree of atomic order, with defects limited to a small density, including a 0.2% uniformly dis-

tributed native magnetic defect in NbFeSb samples, likely due to Fe antisites on Nb sites. The

NMR shift and spin-lattice relaxation results are consistent with heavily doped p-type behavior at

low temperatures. The results include a Korringa-type NMR response below 200 K, with constant

Knight shift, and a Kondo-related behavior below 80 K due to the interaction of carriers and lo-

cal moments. Above 280 K, the enhanced Knight shift and T−1
1 indicate increased carrier density

across a very small gap of about 0.03 eV. Based on this and previously reported transport results,

it can be concluded that this response is associated with an empty impurity band due to acceptor

states located a small distance above the valence band maximum, with native p-type doping giving

the low-temperature metallic behavior.
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5. THERMOELECTRIC HALF-HEUSLERS Nb1−xTixFeSb∗

5.1 Introduction

In this chapter, to analyze the underlying electronic and magnetic properties of Nb1−xTixFeSb

as Ti(x) (x = 0.05, 0.1, 0.2, 0.3), 93Nb and 121Sb NMR and 57Fe Mössbauer measurements were

done as local probes for all sites aiming at a better understanding of these materials. All half-

Heusler samples were prepared by Dr. Ren’s group at University of Houston. The DFT was

conducted by my labmate Dr. Nader Ghassemi and I measured all the experimental results.

5.2 Sample Preparation

Raw elements (Nb pieces, 99.9%, and Sb broken rods, 99.9%, Atlantic Metals & Alloy; Fe

granules, 99.98%, and Ti foams, 99.9%, Alfa Aesar) were weighed stoichiometrically, and arc

melted multiple times to form uniform ingots. The ingots were then ball milled (SPEX 8000M

Mixer/Mill) for 3 h under Ar protection to produce nanopowders. The powders were then consol-

idated into disks via hot pressing at 80 MPa for 2 min at 1373 K. This process has been shown to

yield uniform samples with high power factors [29]. In this work, I denote Nb1−xTixFeSb as Ti(x)

(x = 0.05, 0.1, 0.2, 0.3), the same samples as prepared in Ref. [29]. I also studied an unsubstituted

sample, which is one of the samples described previously in Ref. [15] (Chapter 4), annealed at

1323 K (sample NbFeSb-1050).

5.3 Experimental and Computational Methods

Substitution fractions, actual compositions and carrier concentrations of all samples are listed

in Table 5.1. Half-Heusler materials normally follow an 18-electron stability rule, and NbFeSb sat-

isfies this criterion and is found to be a semiconductor. Cation substitution in the range (Nb1−xTix)

leads to heavily p-type samples because Ti lacks one electron compared with Nb. In these samples,

room-temperature carrier concentrations were determined by Hall measurements [29] and shown

∗Part of this chapter is reprinted from Ref. [145] (Y. Tian, F. G. Vagizov, N. Ghassemi, W. Ren, H. Zhu, Z. Wang,
Z. Ren, and J. H. Ross, Jr., “Defect charging and resonant levels in half-Heusler Nb1-xTixFeSb,” Mater. Today Phys.,
vol. 16, p. 100278, 2021.) with permission from Elsevier.
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Fe

Nb/Ti

Sb

Figure 5.1: Crystal structure of Ti-substituted half-Heusler Nb1−xTixFeSb, showing site occupa-
tions.

Table 5.1: Nb1−xTixFeSb nominal substitution fraction x, sample label used in the text, actual
composition from microprobe analysis, measured room-temperature hole concentration (p) from
Hall measurements and theoretical hole concentration (ptheo) along with their ratio.

x label Actual composition p (1020 cm−3) ptheo (1020 cm−3) p/ptheo

0 NbFeSb-1050 NbFeSb1 0.91 - -

0.05 Ti(0.05) Nb0.94Ti0.05Fe1.01Sb0.992 8.12 9.5 0.85

0.1 Ti(0.1) Nb0.89Ti0.1Fe1.00Sb0.99
2 15.22 19 0.80

0.2 Ti(0.2) Nb0.8Ti0.2Fe1.02Sb0.99
2 25.72 38 0.68

0.3 Ti(0.3) Nb0.69Ti0.3Fe1.02Sb0.98
2 30.32 57 0.40

1From Ref. [15]. (Chapter 4)
2From Ref. [29].
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to be p-type as expected, with larger hole concentration for larger x; however, the ratio of the

measured charge density to the theoretical charge density becomes smaller with larger x as further

discussed below.

Magnetic measurements were performed using a Quantum Design MPMS superconducting

quantum interference device magnetometer. 93Nb and 121Sb NMR experiments were carried out

by applying a custom-built pulse spectrometer at a fixed magnetic field 9 T using shift standards

NbCl5 and KSbF6 in acetonitrile respectively, with positive shifts here denoting paramagnetic sign.

Shift is calculated by ∆ν/ν0 where ∆ν = ν − ν0 is the deviation from the standard reference fre-

quency, ν0, determined by the shift standard. Mössbauer spectra were measured in the temperature

range 7-323 K on a conventional constant acceleration spectrometer (WissEl) equipped with a

Co-57 source in rhodium matrix 35 mCi in activity. Samples were prepared from fine powders,

mixed with BN powder and uniformly distributed as a thin layer with density 18 mg of NbFeSb per

cm2 (3.12 mg of Fe per cm2) over an MB-PAH-1 sample holder (WissEl) for room-temperature

measurements. Above and below room temperature, a boron nitride MBF-BND sample holder

(WissEl) was used with identically prepared samples, while above room temperature, the sam-

ple had a slightly smaller powder density (∼13 mg of NbFeSb per cm2). For low-temperature

measurements, the samples were mounted on the cold finger of a helium continuous-flow cryostat

(CFICEV-MOSS, ICE Oxford, UK), with temperatures controlled within ±0.5 K over the whole

temperature range. Above room temperature MBF-1100 Mössbauer furnace (WissEl) was used.

Isomer shifts are referred to α-Fe at room temperature.

Density functional theory (DFT) calculations were performed with WIEN2k [113] using the

Perdew, Burke, and Ernzerhof (PBE) exchange-correlation potential, a k-point grid of 10 × 10 ×

10, and lattice constants from experimental values [15]. In calculations not including spin-orbit

coupling, a semiconducting gap of 0.54 eV was obtained for NbFeSb. This can be compared to

0.51 eV obtained from high-temperature transport measurements [29]. For the VB maximum at the

L point, I also obtained an effective mass meff = 4.9me by fitting the calculated density of states

within 0.1 eV of the band edge. For 93Nb NMR chemical shifts the zero offset was calibrated by

41



Figure 5.2: Room-temperature 93Nb (black) and 121Sb (gray) NMR line shapes for Ti(x) (x =
0.05, 0.1, 0.2, 0.3) samples. The previously reported 93Nb spectrum of NbFeSb (sample NbFeSb-
1050) [15] is shown as a solid curve for comparison, and 121Sb spectrum is also shown for the same
sample, with dashed lines indicating the center positions.

a separate shift calculation for LaNbO4 and for YNbO4, and then adjusted based on the previously

reported shifts [146] to the standard reference (NbCl5 in acetonitrile). Since chemical shift are less

well studied for 121Sb, we did not find a comparable solid compound with which to calibrate the

computational 121Sb zero offset. We also performed similar calculations with spin-orbit coupling

included, giving relative little change in the results – for example, the effective mass increases from

4.9 to 5.0me, while the calculated 93Nb chemical shifts changed by less than 60 ppm.

42



5.4 Experimental Results

5.4.1 NMR measurements

5.4.1.1 Line shapes

Fig. 5.2 shows 93Nb and 121Sb NMR line shapes for the Ti(x) samples obtained from the fast

Fourier transform using a standard spin echo sequence. Also superposed are resonances for the

x = 0 sample NbFeSb-1050 with a much smaller room-temperature carrier concentration (p =

9 × 1019 cm−3) [15]. It can be seen from the superposed spectra that there is a small signal due

to pure-phase NbFeSb, appearing only in the Ti(0.05) substituted sample. The resonances for both

nuclei become broader and move to lower frequencies when the substitution fraction increases.

The increasing line width vs x is due to a superposition of local environments at Nb and Sb

sites. For Nb, the first and second neighbor shells are composed of Fe and Sb ions respectively, so

it is only starting with the third shell that the (Nb, Ti) substitution produces a distribution of local

environments. Correspondingly, for Sb the first neighbor shell consisting of Fe ions is fixed, while

the second neighbors include a distribution of (Nb, Ti) ions. This leads to relatively symmetric

local environments, with a large number of (Nb, Ti) configurations contributing to the observed line

widths. Since the widths scale nearly proportionally to the changes in shift relative to NbFeSb, with

Sb widths and shifts considerably smaller, I surmise that the widths, as well as the asymmetry seen

for Ti(0.3), are due to a quasi-random superposition of chemical and Knight shifts. As quadrupolar

nuclei, it is possible for a second-order quadrupole contribution to affect the mean shift; however,

this contribution should be small. For example, Nb oxides having a nearly symmetric first-neighbor

shell are found to have 93Nb quadrupole parameters νQ less than 1 MHz [146], which would yield

[137] a mean shift contribution of about 50 ppm. This is 2% of the mean shift for the Ti(0.3)

sample, and is presumably an upper limit, so I neglect such contributions in analyzing the relative

shifts.

5.4.1.2 Shifts

93Nb and 121Sb shifts for all samples, measured at room temperature, are shown in Fig. 5.3(a).
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(a)
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Figure 5.3: (a) Nb1−xTixFeSb center-of-mass 93Nb and 121Sb shifts vs p1/3 at room temperature,
where p is the measured hole density. Dashed lines are the fits to the data described in the text.
(b) The same data and fits as (a) but plotted vs Ti content x. The Knight shift parts of the fit are
also included. (c) Temperature dependence of 93Nb relaxation rates in Ti(x) samples, indicated by
squares, circles, triangles, and diamonds for x = 0.05, 0.1, 0.2, 0.3 respectively, with fits to metallic
behavior as described in the text. (d) 93(1/T1T ) from the linear fits shown in (c) vs p2/3. Straight
line corresponds to carriers filling a parabolic band, fitted to the two lowest points. Also shown:
p/ptheo vs p2/3, where ptheo is the theoretical hole concentration expected from the composition.
(e) 93(1/T1T ) vs x2/3 with a linear fit. (f) Room-temperature p and ptheo vs Ti content x.
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These are the center-of-mass isotropic positions of the measured spectra defined as the intensity-

weighted average shifts, thus corresponding to the mean shift of the observed nuclei. Note that

the Ti(0.05) shift is also a center-of-mass shift, however with the small peak due to unsubstituted

phase removed. The spectrum was fitted using two Lorentzian peaks, and the extra small peak was

subtracted, after which the remaining spectrum was used for shift calculation. These shifts can be

considered as a sum of the Knight shift (K) due to the susceptibility of the charge-carrier spins

and the chemical shift (δ) due to the local orbital susceptibility. For samples sufficiently doped to

exhibit metallic behavior, K is given generally as,

K =
HHFχP
µB

, (5.1)

where HHF is the relevant hyperfine coupling field constant, µB is Bohr magneton, and χP is the

Pauli electron spin susceptibility per atom, g(EF )(geff/2)µ2
B for weakly-interacting electrons. geff

is the effective g-factor due to spin-orbit coupling, which can modify the energy splitting and also

K. For s-character conduction electron states, the dominant hyperfine interaction is Fermi contact.

However, with d electrons dominant here, the core polarization hyperfine field HCP is the relevant

spin coupling with the dipolar spin contribution to K vanishing in cubic symmetry. Note also that

I assume spin-orbit coupling effects are small. As a result, K can be expressed as

K = gpartial(EF )(
geff

2
)µBHCP, (5.2)

where gpartial(EF ) is the Fermi-level partial density of states for the atom containing the nucleus

being measured.

In an effective mass approximation, which is often appropriate for semiconductors, it is found

in the metallic limit,

g(EF ) = meff
(3π2n)1/3

π2h̄2 Vf.u., (5.3)

where meff is the thermodynamic effective mass, n is the carrier density and Vf.u. is the volume
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per formula unit. Thus, substituting Eq. (7.5) into Eq. (7.7), K should scale as p1/3. As shown

in Ref. [147], the chemical shift (δ) of Cd1−xZnxTe is linearly dependent on x, indicating a linear

relationship between substitution fraction and chemical shift similar to other properties often ob-

served in semiconductor alloys. δ(x) is thus assumed to be linearly dependent on the substitution

fraction of Ti. I therefore model the shift as,

(Total Shift) = K(p) + δ(x) = A · p(x)1/3 +B · x+ C (5.4)

whereA = (3π2)1/3

π2h̄2 (geff

2
)meffµBHCP andC represents the baseline shift, corresponding to the Fermi

level at the mid-gap for pure NbFeSb. The list of hole densities vs x is given in Table 5.1, and these

are designated here as p(x). Curves shown in Fig. 5.3(a) and (b) correspond to the fits to Eq. (6.1).

This yields, for Nb A = (−0.9 ± 0.2) × 10−4 cm, B = −4440 ± 700 and C = 4020 ± 150; and

for Sb A = (−0.4 ± 0.2) × 10−4 cm, B = −1200 ± 600 and C = 1660 ± 130, all in ppm shift

units. The Knight shift contributions (A terms) are also plotted in Fig. 5.3(b), with the remainder

corresponding to the chemical shift. For all fitting parameters, B has the largest standard error

due to the lack of points for x close to 1. Also note, as mentioned above, the Ti(0.05) shift was

obtained after subtracting the unsubstituted-phase peak, thus I also considered the fit in absence

of this composition. I discovered that removing the Ti(0.05) point only makes very slight changes

in the fitting results: the x = 0 chemical shifts (parameter C) changed by less than 1%, with the

largest difference upon omission of the Ti(0.05) point being a change of B for Sb from −1200 to

−1000, which is within the fitting uncertainty. This gives further confidence in the consistency of

the results.

While the T1 results described below allow a more targeted analysis of the carrier behavior, the

shift analysis is particularly important in assessing the NbFeSb (x = 0) chemical shifts. The fitted

results indicate a large 93Nb chemical shift of δ ≈ 4020 ppm for NbFeSb, decreasing rapidly vs

x. The x = 0 result is slightly larger than obtained as described in Chapter 4 since here I are able

to better separate the chemical shift rather than assuming a fixed Korringa ratio. The 93Nb shift
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in NbFeSb is quite large; the calculated chemical shift, with the offset for the reference standard

calibrated against LaNbO4 and YNbO4, is δ = 3220 ppm, a considerably smaller value. We also

made a similar calculation for the half-Heusler compound NbCoSn, which yielded a 93Nb chemical

shift of 2585 ppm, in much closer agreement with the measured value, δ = 2849 ppm [24]. The

fitted results also indicate a much smaller reduction in 121Sb chemical shift going from NbFeSb to

TiFeSb. The 121Sb shifts calculated using the WIEN2k package decrease by 132 ppm, following

the same trend vs substitution as the measured results. However, the 93Nb result exceeds the usual

range of reported shifts, and here I see that it is significantly larger than obtained by DFT. In

Chapter 6 this is explored further, and shown to be a general trend for half-Heusler compounds

with large orbital susceptibility.

5.4.1.3 Spin-lattice relaxation rates

The 93Nb spin-lattice relaxation rate, denoted as 93(1/T1), was measured using the inversion

recovery method from 77-290 K. The recovery of the 93Nb central-transition magnetization for the

case that only the central transition is inverted can be expressed as

M(t)−M(∞)

M(∞)
= −2α(0.152e

− t
T1 + 0.14e

− 6t
T1 + 0.153e

− 15t
T1 + 0.192e

− 28t
T1 + 0.363e

− 45t
T1 ). (5.5)

Here, M(t) is the measured signal and t the recovery time. Each experimental T1 value was

obtained by a fit to this multi-exponential recovery curve. For all studied compounds, the 93(1/T1)

results exhibit a constant T1T behavior within error bars, indicating a metallic-type relaxation

process as shown in Fig. 5.3(c). In the case that an effective mass treatment is appropriate, from an

analysis similar to what is given above for K one finds that 1/T1 should scale as p2/3. As shown

in Fig. 5.3(d), 93(1/T1T ) follows a linear dependence on p2/3 for smaller p, although there is an

enhancement for large p, which is further discussed below. On the other hand, with p expected to be

proportional to x in the case that each Ti donates one hole to the valence band (see Fig. 5.3(f)), I find

that indeed the fitted 1/T1T is proportional to x2/3, as shown in Fig. 5.3(e). This is an indication

that the Hall results do not represent all of the holes in the valence band for large substitution
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Figure 5.4: (a)-(c) 57Fe Mössbauer spectra for unsubstituted NbFeSb-1050 sample with least-
squares fits described in the text (solid curves). Velocities are relative to α-Fe, with error bars too
small to be seen. Residuals are also shown below these plots with fitted satellite curves overlaid,
relative to the statistical error of the fit. (d) Shift vs temperature for the fitted NbFeSb-1050 main
peak and satellite peak. (e) Satellite peak relative area vs temperature. (f)-(g) 57Fe Mössbauer
spectra of Ti(0.3) and Ti(0.05) samples, with fits for neighbor configurations of Fe atoms as shown.
3Nb-1Ti and 4Nb-0Ti configurations have negligible probabilities for Ti(0.05) and are not shown.

levels.

5.4.2 Mössbauer measurements

Figs. 5.4(a)-5.4(c) show Mössbauer spectra for the unsubstituted NbFeSb-1050 sample at 80,

295 and 323 K, respectively. The spectra show no sign of magnetic splitting. Least-square fitting

curves are also shown in the figure. The initial fits including one singlet revealed a second satellite

peak in the residual plots especially at larger T as shown in Figs. 5.4(a)-5.4(c). Thus, I adopted a
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fitting with two Lorentzian lines, including a main peak and a small satellite with about 0.5 mm/s

larger shift. The fitted line widths for the main peak are temperature independent at FWHM 0.30

mm/s. The small line widths indicate a lack of inhomogeneous broadening, showing NbFeSb to be

well-ordered in the half-Heusler structure. The main line shift is 0.089 mm/s at 295 K, gradually

increasing to 0.199 mm/s at 7 K, very similar to the results reported [148] for n-type NbFeSb. The

T -dependent shift is shown in Fig. 5.4(d). The addition of the satellite yielded a small improvement

in the fitting at high temperatures, for example at 323 K, χ2 improved from 1.25 to 0.92. The fitted

satellite positions are also shown in Fig. 5.4(d). Due to the small amplitude of the satellite peak, it

was fitted with the same width as the main peak.

The change in amplitude of the fitted satellite vs T can be understood as a change in the charge

state of a native defect vs temperature. Fig. 5.4(e) shows the spectral area of the satellite peak, as

a percentage of the total area, corresponding to the relative number of Fe ions affected by these

defects. Since the defect identity is not determined [15], the satellite might correspond to either a

Fe-centered defect, or immediate Fe neighbors of the defect site, although the lack of quadrupole

splitting tends to indicate the former. With a large density of such defects close to the band edge

energy, when temperature increases the charge state of these defects can change, as holes are

transferred to the valence band, due to excitation of carriers out of the defect level. Accordingly,

the result was fit to the acceptor density function [139],

N+
a =

NA

1 + 4 · e∆/kT
, (5.6)

assuming each neutral acceptor contains two electrons with opposite spins and the state with no

electron is prohibited, and where ∆ is the energy difference between defect level and chemical

potential. The fitting [Fig. 5.4(e)] gives ∆ = 31 ± 0.6 meV and NA = 39 ± 10 (%) showing

maximally around 8% Fe affected by defects. This is in good agreement with the result previously

obtained from NMR [15], in which the spin-lattice relaxation rate of NbFeSb also shows a sharp

increase close to room temperature, modeled as a large density of shallow defects located about
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Table 5.2: Absorption areas, described in text, and the fitted hyperfine parameters for the room-
temperature 57Fe Mössbauer spectra of Ti(0.3) and Ti(0.05) samples with the labels referring to
Nb1−xTixFeSb (x = 0.3 and 0.05), respectively.

Absorption area (%) Isomer shift (mm/s) Quadrupole splitting (mm/s)

Ti(0.3) Ti(0.05) Ti(0.3) Ti(0.05) Ti(0.3) Ti(0.05)

4Nb-0Ti 26.5± 0.8 81.4± 0.6 0.087± 0.005 0.085± 0.002 0 0

3Nb-1Ti 44.8± 0.5 17.1± 0.8 0.111± 0.003 0.13± 0.01 0.105± 0.004 0.08± 0.01

2Nb-2Ti 19.8± 1.0 1.3± 1.2 0.173± 0.003 0.16± 0.10 0.446± 0.005 0.4± 0.2

1Nb-3Ti 8.0± 1.4 - 0.181± 0.006 - 0.73± 0.01 -

30 meV above the valence band in the p-type samples making up an impurity band near the band

edge.

Figs. 5.4(f) and 5.4(g) show 57Fe Mössbauer spectra of Ti(0.3) and Ti(0.05) respectively at

room temperature. For Fe atoms (4c sites) in Nb1−xTixFeSb alloys, 4 out of 8 nearest-neighbor

sites are occupied by mixed Nb and Ti atoms. Therefore, the resulting spectra were modeled as

superpositions of peaks for different local configurations of these neighbor ions. The spectra were

fit assuming amplitudes corresponding to a binomial distribution,

Pn(x) =
4!

n!(4− n)!
xn(1− x)4−n, (5.7)

for the probability of each Nb4−nTin configuration. For the Ti(0.3) composition, probabilities given

by Eq. (5.7) are 24, 41, 26, 7.6, and 0.8%, for n = 0 through 4 respectively. However, after first

fixing these areas in the fit, I found that the goodness of fit (χ2) decreased from 1.58 to 0.98 based

on slightly modified probabilities equal to 26.5, 44.8, 19.8, 8.0, and 0.9%, for the same neighbor

configurations. The results are plotted in Fig. 5.4(f) based on the modified probabilities. The

fitting parameters are shown in Table 5.2, omitting the very small n = 4 term; widths were held

fixed in these fits. The results indicate a reduced probability for the 2Nb-2Ti configuration in favor

of the others, which could be an indication of the segregation of Nb and Ti neighbors for larger

substitution amounts. On the other hand, for Ti(0.05), the standard binomial probabilities, 81.4,
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(a)

(b)

Figure 5.5: Magnetic measurements for sample Ti(0.3). (a) Susceptibility vs T from 3 to 100 K
with fit described in text. (b) M vs H measured at 5 K. J = 3/2 Brillouin function fit is shown
with J = 1/2 and J = 5/2 curves for comparison.

17.1, and 1.3% (Table 5.2), with negligible contributions for 3 and 4 neighbors, worked very well

in fitting the data. In the fits, the peaks for Fe with Nb-only neighbors (4Nb-0Ti) have very similar

center shifts of 0.087 and 0.085 mm/s, and these are very close to the room-temperature shifts

for the unsubstituted sample with an identical Fe nearest neighbor configuration. The increasing

isomer shift vs number of Ti neighbors, shown in the Table 5.2, is an indication of enhanced d-

electron transfer to Fe in these configurations.
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5.4.3 Magnetic measurements

The DC magnetic susceptibility (χ) of the sample with the largest Ti concentration, Ti(0.3), is

shown in Fig. 5.5(a), for a fixed field of 1000 Oe. I fit the low-T data to a Curie-Weiss function

according to the standard relationship, χ(T ) = C/(T − Tc) + χ0, where C = NAcµ
2
eff/3kB is the

Curie constant with c the concentration of paramagnetic defects, and µeff the effective moment.

The results are TC = −1.4 K, χ0 = 2.8× 10−4 emu mol−1 and assuming µeff = 3.87µB per defect

corresponding to J = 3/2 (see below), a dilute concentration c = 0.01 per formula unit of these

defects.

M vs H measurements confirm that the magnetic response is due to dilute paramagnetic de-

fects, as shown at T = 5 K in Fig. 5.5(b) for sample Ti(0.3). To analyze for the local magnetic

moments, data were fit to

M = NAcgJµBBJ(x), (5.8)

where BJ(x) is a Brillouin function with x = gµBJB
kBT

. Assuming g = 2 expected for transition

ions, I found that J = 3/2 gives the closest agreement [Fig. 5.5(b)] by choosing possible J values

and fitting to c. Fixing J = 3/2, the fitted c = 0.008 per formula unit agrees well with the value

obtained from M -T measurement, c = 0.01. This indicates that the predominant magnetic defect

is a J = 3/2 local moment.

The small density of moments obtained here is comparable to what was obtained in annealed

unsubstituted NbFeSb samples [15], for example 0.002 per formula unit in sample NbFeSb-1050

also with J = 3/2 (see Chapter 4). Thus, I see that there is almost no tendency for Ti substitution

to promote magnetic defect formation. Note also that in TiFe1+xSb half-Heusler alloys close to

the stable TiFe1.33Sb composition [149,150], with the Fe interstitials balancing the charge of the Ti

ions to achieve 18-electron balance, a large Curie-type response was observed. However, this term

corresponds to only a few percent of the Fe sites, with the bulk of the material also nonmagnetic

similar to NbFeSb, as confirmed by Mössbauer results [150]. In the compositions studied here,

even with Ti substitution far from the 18-electron stability rule, there are not significant numbers
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of Fe interstitials (Table 5.1). By analogy with the TiFe1.33Sb results quoted above, those antisites

present are likely to be nonmagnetic, and perhaps these are the source of the defects indicated by

Mössbauer results. As was discussed in detail in Ref. [15] a likely candidate for the dilute-magnetic

J = 3/2 defects would be Fe antisites on Nb positions. Note also that a small paramagnetic

peak [15] might also be expected in the NMR 1/T1 [Fig. 5.3(c)]; however, here the relaxation rate

is strongly dominated by a larger 1/T1 contribution due to the carriers in the substituted samples.

5.5 Discussion

The variation in amplitude of the satellite 57Fe Mössbauer peak in NbFeSb is an unusual feature

corresponding to a relatively large density of defects with charge states changing vs T . As shown

above, this is consistent with the existence of the impurity band shown previously from NMR

results [15]. The temperature dependence of 57Fe Mössbauer absorption area shows that the origin

of the impurity band is Fe-related, perhaps due to Fe interstitials [15].

In a previous study, Gerard et al. pointed out that charge promotion between bands in FeSi

and FeSb2 can lead to dynamically averaged spectra [151], and charge hopping in mixed valence

materials has also been observed to lead to activated dynamical effects [152, 153]. However, in

contrast to excitation of carriers in delocalized bands, here I consider charge promotion involving

fixed defect sites. Since a fixed satellite is observed here, I surmise that there is very little hop-

ping between these sites within the impurity band on the Mössbauer time-scale, whereas hopping

faster than ∼10-100 MHz would be expected to collapse the satellite line with the main line. I

also consider the possibility that the charges would be dynamically promoted between the band

edge and the defect states fast enough to lead to an averaging of the spectrum. However, the de-

fect capture cross-section can vary over many orders of magnitude in semiconductors depending

upon the relative symmetries, and whether a phonon must be involved, which are not known in

the present case. Thus, the charge-state lifetime is not known, but based on the good agreement

between the excitation energy observed for the Mössbauer satellite amplitude and the previously

observed NMR results connected to a band of impurity states [15], I conclude that the behavior of

the Mössbauer satellite is also connected to these defects.
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Besides our work, Hobbis et al. [148] also reported 57Fe Mössbauer spectroscopy of NbFeSb;

however, in contrast with the p-type NbFeSb-1050 sample, their work focused on n-type NbFeSb.

For n-type NbFeSb, two extra small doublets were observed with positions that differ from that

of our measured satellite (0.65 mm/s). These different behaviors indicate distinct types of defects,

which is reasonable given the different carrier types.

Comparing to 57Fe Mössbauer results for different materials within the half-Heusler family, for

VFeSb, only a single line was observed with an isomer shift of ∼0.05 mm/s with no extra peaks

[154]. In Ref. [150], 57Fe Mössbauer of TiFe1.33Sb also shows two sets of peaks, a doublet (main

peak) with an isomer shift 0.108 mm/s and a singlet with an isomer shift 0.279 mm/s (a satellite

peak). These were matched to certain local atomic arrangement close to Fe atoms, indicating non-

randomness of Fe atoms on the 4d site. The larger shifts observed for NbFeSb are consistent with

the results found here for Nb1−xTixFeSb, with an isomer shift which is enhanced as the number of

Ti neighbors increases.

In transition metals, besides the contribution from the spin moments of the conduction elec-

trons, the orbital contribution to the NMR relaxation caused by fluctuating orbital moments of the

conduction electrons can also make an important contribution to 1/T1. In this case, the spin-lattice

relaxation rate should be dominated by two terms: (1/T1)total = (1/T1)orb + (1/T1)d, where the

first term is an orbital contribution term and the second is the d-spin relaxation rate.

For transition metals with cubic structure, the orbital relaxation rate can be expressed in a

general form [155],

(1/T1)orb = 2A
2π

h̄
[γeγnh̄

2gNb(EF )〈r−3〉]2kBT, (5.9)

where A = 10α(2 − α) is a dimensionless quantity with α the degree of admixture of Γ5 and Γ3

symmetry at the Fermi level and 〈r−3〉 is the average over occupied d orbitals, expected [156] for

NbFeSb to include only on-site contributions. It was shown in Ref. [155] that (1/T1)orb for d-band

metals reaches a maximum with an admixture of d orbitals corresponding to Γ5 : Γ3 = 3 : 2.

Our DFT calculation shows that the ratio of atomic functions for NbFeSb near the band edge is

t2g(Γ5) : eg(Γ3) = 68% : 32%, giving A = 9.8, close to the maximum A = 10, while for Nb, the
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calculated g(E) near the VB edge is 14% of the total. Since, as shown below, (1/T1)orb is found

to dominate, I examine the dependence on Ti substitution. In Fig. 5.3(d), the solid line is a fit of

Eq. (5.9) to Ti(0.05) and Ti(0.1) with g(EF ) expressed by Eq. (7.5). Using 〈r−3〉 = 1.84 × 1025

cm−3 [157], I obtain meff = 4.6me in a good agreement with the calculated meff = 4.9me for

unsubstituted NbFeSb.

The core polarization contribution to the d-spin spin-lattice relaxation rate in metals is

(1/T1)d = 2hkBT [γnHCPgNb(EF )]2q, (5.10)

where the core polarization hyperfine field HCP is reported to be −21 T [138] and q is a reduction

factor which is a function of the admixture of d orbitals. In the present case, nearly uniform

occupation of the five d orbitals gives q ≈ 1/5 [138]. Using gNb(EF ) = 0.243 states/eV calculated

as described above for the case of x = 0.3, Eq. (5.10) gives (1/T1T )d = 0.016 s−1 K−1 with

meff = 4.6me, inserted in Eq. (7.5). This is considerably smaller than the observed rates. There

is also a dipole spin contribution to 1/T1; however, for the large d-orbital degeneracy case, this

can be shown [138] to be much smaller than the orbital contribution. These results show that the

orbital contribution is the dominant term in the spin-lattice relaxation process.

When the Ti fraction increases to 30%, the 1/T1T values depart from p2/3 behavior (solid line

in Fig. 5.3(d) fitted to the two low-p points). At the same time, there is a decrease in the measured

hole density relative to ptheo, as also shown in Fig. 5.3(d). Non-parabolicity of the valence band

could give an increase in meff which might explain the 1/T1T upturn; however, such an effect

would not be expected to affect the Hall effect results, at least in the spherical hole pocket limit.

Thus, I conclude that the presence of resonant levels having low mobility in the valence band [158]

becomes important for large x. The results shown in Fig. 5.3(e) help to further clarify this result,

indicating that 1/T1 is affected by states near EF which make little contribution to the Hall results.

For large x, the Fermi level moves more deeply into the valence band encountering states caused

by Ti substitutions. This effect could have significance for thermoelectric properties; however, the
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agreement between theory and experiment indicates that such effects are not important for smaller

x, and thus a rigid-band effective mass model provides a good description for the less-heavily

substituted compositions.

For Ti(x) samples, the measured Knight shift values are also found to be larger than expected.

For example, the Knight shift contribution to the total shift for the Ti(0.3) sample is −2185 ppm

from our fit. However, using gNb(EF ) = 0.243 states/eV obtained above and the core polarization

hyperfine field HCP = −21 T, Eq. (7.7) gives K = −295 ppm. (The orbital shift contribution is

the chemical shift discussed below, which does not depend on g(EF ).) The Knight shift difference

could be explained by a large geff in these samples, or by electron-electron interactions which can

also enhance the measured spin susceptibility and thereby the Knight shift.

In addition to the observed large Knight shifts, the 93Nb chemical shifts (δ) also show relatively

large values as noted above. Paramagnetic contributions to δ depend upon the connection of filled

to empty states through the applied field and orbital hyperfine interaction. Similar to the Van Vleck

susceptibility (χVV), the connection of multiple orbitals in this way with a small energy splitting

can give a large response, and in the present case d orbitals divided between the conduction and

valence bands with relatively small separation appear to be the main contribution to these shift [24].

However, the DFT calculations give the 93Nb chemical shift as 3220 ppm, compared to the fitted

δ = 4020 ppm. This shift difference corresponds to a further enhancement of the local orbital

hyperfine field which I believe is an interaction effect. In addition to the well-known enhancement

of the spin susceptibility, electron-electron interactions can also lead to an enhancement of χVV

[159], and thus by analogy an enhanced chemical shift. Ref. [160] also pointed out that orbital

degeneracy is necessary for this effect; the large degeneracy of orbitals was already discussed

above in analyzing the 1/T1T of these samples. Thus, although the calculated distribution of d

electrons in the valence band for Nb and Fe provide good agreement with the observed orbital

T1, as a measure of the local susceptibilities the NMR shifts demonstrate that electron-electron

interaction effects are relatively strong for these states. This is examined in further detail in the

next chapter.
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5.6 Summary

In this chapter, I have investigated the effect of defects and substitutions of NbFeSb and

Nb1−xTixFeSb using local 93Nb and 121Sb NMR and 57Fe Mössbauer probes. The spin-lattice re-

laxation results are well modeled in terms of an orbital contribution in good agreement with DFT

calculations for NbFeSb. With increasing x, I find a deviation from the expected behavior due to

resonant valence band levels which do not contribute to transport results. NMR shift vs x are well-

explained by a model combining carrier-concentration-dependent Knight shift and composition-

dependent chemical shift. The local paramagnetic susceptibilities are found to be significantly

enhanced relative to calculated values. The T -dependence of the satellite peak in the unsubstituted

NbFeSb Mössbauer spectrum provides a direct measure of charging of acceptor states in an impu-

rity band located around 30 meV above valence band edge as previously reported. The Mössbauer

spectrum for x = 0.3 shows small departures from a binomial distribution, indicating a small de-

viation from random substitution in the mixed alloys, revealing a possible segregation of 4a-site

substitution atoms.
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6. OTHER THERMOELECTRIC HALF-HEUSLERS∗

6.1 Introduction

In this chapter, I apply NMR in studying members of a series of transition-metal-based half-

Heusler materials, including TaFeSb, NbCoSn, ZrCoSb and NbFeSb, focusing in particular on

trends in the electronic properties in this thermoelectric materials family. All half-Heusler samples

were prepared by Dr. Ren’s group at University of Houston. The DFT was conducted by my

labmate Dr. Nader Ghassemi and I measured all the experimental results.

6.2 Sample Preparation

All of the half-Heusler polycrystalline samples discussed in this chapter were made from high

purity elements (Zr, Sb, Nb and Ta ≥ 99.9%; Fe and Sn ≥ 99.8%; Co ≥ 99.5%). ZrCoSb

and NbFeSb were prepared by arc-melting, ball-milling and hot-pressing and NbCoSn and TaFeSb

were made by ball-milling and hot-pressing. These include: (a) ZrCoSb which is the same material

described in Ref. [161], prepared using AC hot pressing at 1400 K and pressure of ∼80 MPa for

2 min. Microprobe measurements indicated a composition of ZrCo1.02Sb0.99, while the Seebeck

coefficient result indicates that ZrCoSb is an n-type material with a large Seebeck peak of about

−280 µV/K observed near 600 K. (b) NbCoSn which was prepared as described in Ref. [162],

where the sintering was at 1113-1273 K under a pressure of ∼80 MPa for 2 min. The actual

NbCoSn composition was measured to be Nb31.4Co35.4Sn33.2, indicating a likely n-type behavior

for NbCoSn with the extra Co possibly located on Nb sites. (c) TaFeSb which was prepared as

described in Ref. [35] with hot-pressing temperature about 1123 K and pressure of ∼80 MPa for

2 min. The positive Seebeck coefficient result indicates that TaFeSb is a p-type material with no

peak observed in S below 1000 K, unlike its “twin material” NbFeSb [15]. (d) NbFeSb which is

the same sample as NbFeSb-1050 described in Ref. [15] and Chapter 4. Hall measurement showed

∗Part of this chapter is reprinted from Ref. [24] (Y. Tian, N. Ghassemi, W. Ren, H. Zhu, S. Li, Q. Zhang, Z. Wang,
Z. Ren, and J. H. Ross, Jr., “Half-Heusler thermoelectric materials: NMR studies,” J. Appl. Phys., vol. 128, no. 5, p.
055106, 2020.) with permission from AIP Publishing.
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this sample as p-type with carrier concentration of 9 × 1019 cm−3. The sample preparation was

done in the group of Z. Ren at University of Houston. All other work (except for DFT) described

below was done by myself at TAMU or using external facilities.

6.3 Experimental and Computational Details

59Co, 93Nb, and 121Sb NMR experiments were carried out by applying a custom-built pulse

spectrometer at a fixed magnetic field 9 T using shift standards aqueous K3[Co(CN)6], NbCl5, and

KSbF6 in acetonitrile, respectively, with positive shifts here denoting paramagnetic sign. NMR

spectra were obtained from the fast Fourier transform of the spin echo using a standard π/2-τ -π

sequence.

Density function theory (DFT) calculations were conducted using the WIEN2k package [113].

In this package, an (linearized) augmented plane wave plus local orbitals method is implemented.

These calculations were done using the experimental lattice parameters a = 6.068 Å for ZrCoSb

[163], 5.950 Å for NbFeSb [15], 5.938 Å for TaFeSb [35], 5.950 Å for NbCoSn [162, 164], and

5.883 Å for TiCoSb [22]. We used 10 × 10 × 10 k-points and adopted the exchange correlation

functional introduced by Perdew, Burke, and Ernzerhof (PBE) [165]. The calculations were run

without spin-orbit coupling or spin polarization. Calibration of calculated 93Nb chemical shifts

was done by computing shifts for YNbO4 and LaNbO4, and comparing to the standard reference

(NbCl5 in acetonitrile) as established in Ref. [146]. For 59Co and 121Sb, no comparable solid-state

shift standard has been established, so we report relative calculated shifts.

6.4 Results and Discussion

6.4.1 ZrCoSb

In Fig. 6.1(a), the room-temperature 59Co NMR spectrum for ZrCoSb is shown. The spectrum

is relatively broad, with a full width at half maximum (FWHM) of 750 ppm (equivalent to 67

kHz), and a Lorentzian shape similar to what has been reported for TiCoSb after annealing [22].

The corresponding ZrCoSb 59Co center-of-mass shift was measured in the temperature range 77-

295 K. Note that the error bars have not been indicated for the extracted shifts; however, these are
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: NMR results for ZrCoSb. 59Co NMR: (a) room-temperature lineshape, (b) shift vs T ,
and (c) 121(1/T1T ) vs T [inset: 121(1/T1) vs T ]. 121Sb NMR: (d) room-temperature lineshape, (e)
shift vs T , and (f) 59(1/T1T ) vs T [inset: 59(1/T1) vs T ]. Shifts and 1/T1 for both nuclei are fitted
to an excitation energy gap function (solid curves).
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typically 5-10 ppm, for all samples. As shown in Fig. 6.1(b), the results can be fitted to a function

corresponding to a small energy gap. In this model, when temperature increases, the carriers are

thermally excited across an excitation gap, leading to the increase of spin susceptibility. For a

parabolic band-edge, appropriate for semiconductors, the change in shift will be proportional to

the density of excited carriers divided by the temperature. Thus, the mechanism of shift increase

can be written as [166]

K = K1 + C1T
1/2 exp(−∆/kBT ), (6.1)

where K1 is a temperature-independent contribution and ∆ is the excitation energy. Note that very

similar excitation behavior was also reported in TiCoSb [22], with Ti substituted from the same

group. The solid red curve in Fig. 6.1(b) represents a fit to Eq. (6.1), yielding ∆ = Eg/2 = 18

meV, consistent with the result obtained via spin-lattice relaxation shown below. The constant term

59K1 is 445± 20 ppm.

Note that here I use the notation K for the total observed shift of the NMR line, which is

normally a sum of the Knight shift due to carrier spin susceptibility (which I designate Kc) and the

chemical shift (δ) due to local orbital susceptibility. Although these nuclei have electric quadrupole

moments, quadrupole contributions to the shift will vanish in these cubic materials. However,

due to random quadrupole splitting due to defects or small internal strains, the satellite splitting

is sufficient that the observed lines are (1/2 to −1/2) transitions. This is the case for all of the

observed spectra, as I verified by the optimized 90-degree pulse lengths. These small random

quadrupole splittings will not affect the line positions, thus the shifts were treated as K = Kc + δ.

In the limit of zero carrier density, Kc will vanish, leaving only δ as the observed contribution.

59Co spin-lattice relaxation results 59(1/T1) are shown in the Fig. 6.1(c) inset, with 59(1/T1T )

shown in the main plot. An inversion-recovery sequence was used for the measurements, with the

results fitted to a multi-exponential recovery curve appropriate for the observed (1/2 to −1/2) tran-

sitions; this was also done for the other materials described below. Generally, the small 59(1/T1)

indicates a relatively low density of carriers interacting with the nuclei, while at high T , 59(1/T1)

rises rapidly with temperature increasing, which is the characteristic behavior for semiconductors.
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Similar to the shift behavior, 59(1/T1) was also fitted to an excitation energy gap. Based on the

same mechanism as the shift, the increase in relaxation rate is due to an increase of carriers induced

by thermal excitation. In this case, the spin-lattice relaxation rate is given by [166]

1/T1 = C2T
2 exp(−∆/kBT ) + const. (6.2)

In good agreement with the shift fitting, this fit yields an excitation gap ∆ = 17 meV. Note that this

analysis is different from that of the other half-Heuslers, since I found that based on the combined

shift and spin-lattice relaxation results for ZrCoSb, the excitation-gap model gives much more

reasonable and consistent fits than a Curie-Weiss model.

Similar to 59Co NMR, 121Sb NMR has also been measured for ZrCoSb as shown in Figs. 6.1(d)-

6.1(f). Again a broad Lorentzian-type line is observed, with room-temperature FWHM of 1030

ppm (equivalent to 93 kHz). The same fits described for 59Co have been done for the 121Sb NMR

shifts and 121(1/T1T ), with ∆ = 10 meV obtained from the shift fit and ∆ = 22 meV from

121(1/T1T ), consistent with the 59Co NMR results and confirming the presence of a small gap. For

consistency, fits for both the center-of-mass shift [Fig. 6.1(e)] and 121(1/T1) [Fig. 6.1(f) inset] have

been recalculated, fixed with an excitation gap ∆ = 17.5 meV, the mean value obtained for 59Co.

The corresponding constant term 121K1 is 978 ppm.

In Ref. [22], there is an increased line broadening observed in TiCoSb after annealing. The

broad lineshape was fitted to Lorentzian function which apparently indicated dilute magnetic local-

moment broadening. A quantitative analysis [22] showed about 2% Co local moments appearing

after annealing. Similarly, the somewhat larger line widths observed in ZrCoSb also likely indicate

a local moment density on this order, presumably due to Co antisites. While there has previously

been uncertainty [161] about the significance of antisites in this material, the relatively large line

widths in ZrCoSb, as compared to other half-Heusler samples described below, point to an en-

hanced tendency towards such local disorder in this material.
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(a) (b)

(d)

(e) (f) (g)

(c)

Figure 6.2: NMR results for NbCoSn. 59Co NMR: (a) room-temperature lineshape, (b) shift vs T ,
(c) FWHM vs T , and (d) 59(1/T1T ) vs T . 93Nb NMR: (e) room-temperature lineshape, (f) shift vs
T , and (g) 93(1/T1T ) vs T . Solid and dashed curves are Curie-Weiss fits described in text.
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6.4.2 NbCoSn

Figs. 6.2(a) and 6.2(e) show the 59Co and 93Nb room-temperature spectra of NbCoSn, respec-

tively. The line shapes are slightly asymmetric, with line widths of 300 ppm (28 kHz) for 59Co

NMR and 790 ppm (72 kHz) for 93Nb NMR, increasing as T is lowered. Figs. 6.2(b) and 6.2(d)

show 59Co NMR center-of-mass shifts and spin-lattice relaxation rate results for NbCoSn vs T .

Similarly Figs. 6.2(f) and 6.2(g) show 93Nb NMR shifts and spin-lattice relaxation rate results.

The shifts in both cases were modeled by K = K1 + K2(T ), where K2(T ) was well fitted to a

Curie-Weiss type function, A1/(T + θ). The fit for 59Co K2(T ) is shown as the dashed curve in

Fig. 6.2(b), yielding 59K1 = 1815 ppm and the Curie-Weiss temperature θ = 309 K. Shown in

Fig. 6.2(c), the 59Co line width also follows a Curie-Weiss law, FWHM ∝ A2/(T + θ), with the

fitted Curie-Weiss temperature θ = 196 K. In this material, the lineshapes have a tail on the low

frequency side, presumably due to a small amount of composition inhomogeneity; however, the

FWHM is relatively unaffected by this. Thus, I rely upon the FWHM result as a better measure of

the temperature dependence, and the Curie-Weiss temperature was fixed to θ = 196 K for fitting

the 59Co shift, giving the result shown as the solid curve with the resulting 59K1 = 1652 ppm.

Shown in Fig. 6.2(f), the 93Nb center-of-mass shift also follows a Curie-Weiss behavior. For

both nuclei, there is a small shift downturn near room temperature, perhaps due to a small increase

in carrier density due to native defects, such as seen in NbFeSb [15]. The Curie-Weiss fit yields

θ = 188 K with the corresponding 93K1 = 3728 ppm, in good agreement with the 59Co line width

result, confirming the paramagnetic mechanism governing the observed behavior of NbCoSn. The

Curie-Weiss term observed in the NbCoSn shifts indicates local hyperfine interactions with mag-

netic moments, as opposed to the results observed in ZrCoSb and NbFeSb (shown below), which

correspond to long-range dipolar interactions with relatively dilute local moments. Thus, the be-

havior is that of a more strongly magnetic material, comparable to Refs. [167,168], with the shifts

and line widths scaling together. However, the effect here is much smaller than expected for a

magnetic semiconductor [168], with for example no sign of the constant-1/T1 behavior charac-

teristic of interaction-driven fluctuations, indicating a weak effect. The source of the magnetic
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moments is apparently the observed Co excess, an effect which also drives this material to n-type

behavior [162].

The constant 1/T1T shown in Figs. 6.2(d) and 6.2(g) is characteristic of a Korringa-type mech-

anism, representing the partial Fermi-level DOS of the probed site. The results reveal that there are

sufficient carriers so that the Fermi level locates in the band for the whole measured temperature

range. The results are larger than observed in ZrCoSb, but 93(1/T1T ) is still considerably smaller

than observed in NbFeSb [15], for which the Korringa contribution was specifically identified and

extracted from the paramagnetic contribution. This indicates that the Knight shift contribution is

relatively small for NbCoSn.

6.4.3 TaFeSb

Fig. 6.3(a) shows the room-temperature 121Sb NMR spectrum for TaFeSb, showing a relatively

narrow FWHM equal to 210 ppm (21 kHz). Fig. 6.3(b) shows the shift obtained from the center of

mass of the measured spectra. As above, the shifts can be expressed byK = K1+K2(T ), whereK1

is a temperature-independent term and K2(T ) is the temperature-dependent term which I observed

to follow a Curie-Weiss type behavior, A1/(T + θ). A fit to this function yields 121K1 = 1193± 6

ppm and the corresponding Curie-Weiss temperature θ = 9 K. The fitting shows the existence of

paramagnetic centers, possibly in the form of paramagnetic defects; however, the magnitude is

considerably smaller than what was observed in NbCoSn.

Fig. 6.3(c) shows the temperature dependence of the 121Sb FWHM, which can also be fitted to

a Curie-Weiss type function FWHM ∝ A2/(T + θ). The unconstrained fit yields θ = 22 K, close

to the 121Sb shift result. For the same reason as NbCoSn, I thus fixed the Curie-Weiss temperature

as 22 K for the shifts with corresponding 121K1 = 1199 ppm, yielding the fitting curve shown

in Fig. 6.3(b). (In the figure, the θ = 9 and 22 K curves are indistinguishable, so the θ = 9 K

case cannot be seen.) Similar to Refs. [167, 168], and for NbCoSn, the FWHM of TaFeSb at each

temperature also scales as about 2-3 times the shift, thus the average local field is about the same

size as the distribution of local fields about the mean value. This confirms the local-hyperfine

mechanism, and Curie-Weiss behavior of TaFeSb. By analogy to the previous analysis of the “twin

65



(b)

(c)

(a)

(d)

Figure 6.3: 121Sb NMR for TaFeSb: (a) room-temperature lineshape, (b) shift vs T , (c) FWHM vs
T , and (d) 121(1/T1T ) vs T . Solid curves are Curie-Weiss fits described in text.
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(a) (b) (c)

Figure 6.4: 121Sb NMR for NbFeSb: (a) room-temperature lineshape, (b) shift vs T , and (c)
121(1/T1T ) vs T .

material” NbFeSb [15], the local moments for TaFeSb are likely Fe antisites. The Curie-Weiss

behavior points to weak interactions for these moments, in contrast to NbFeSb (below) where the

1/T1 peak indicates independent fluctuations of dilute moments, behavior which is not observed

in TaFeSb.

The constant 1/T1T shown in Fig. 6.3(d) represents the partial Fermi-level DOS of the probed

site, indicating the weakly metallic behavior of TaFeSb at low temperature. When temperature is

above 250 K, a small upturn can be observed, revealing a possible additional excitation of carriers,

as was fitted for the case of ZrCoSb. However, the baseline 1/T1T in this case is larger, making

the carrier excitation effect relatively quite small. The constant shift term K1 is a combination

of chemical shift and Knight shift. Based on the Korringa relation, the Knight shift 121Kc can

be estimated from measured 121(1/T1T ) and the small magnitude reveals that the contribution of

charge carrier is not significant. Details of calculation can be found below.

6.4.4 NbFeSb

Figs. 6.4(a)-6.4(c) show the 121Sb NMR results for NbFeSb, which shows similar behavior

comparable to 93Nb NMR reported in Ref. [15] for the same sample. In Fig. 6.4(a), the 121Sb NMR

spectrum shows a very narrow line width, with FWHM about 90 ppm (8 kHz) at room temperature,

similar to the 93Nb spectrum. There is a very small decrease in shift as temperature is lowered
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[Fig. 6.4(b)], and as shown in Fig. 6.4(c), 121(1/T1T ) also shows a peak very similar to the 93Nb

results [15], shown to be due to very dilute magnetic moments [15]. To extract the moment density

requires a more detailed set of measurements using a stretched-exponential analysis [15]; however,

for comparison the observed peak 93(1/T1) corresponds to 93(1/T1T ) = 30 × 10−3 (s K)−1, very

similar to the result observed here. Due to a long range dipole mechanism, in the dilute-moment

limit, the results are scaled only by the squared gyromagnetic ratios of the two nuclei [40], which

are almost identical. Both 93Nb and 121Sb relaxation peaks have very similar magnitudes further

confirming the mechanism of long-range dipolar interaction with dilute local magnetic spins in

NbFeSb and validating the previous results.

NbFeSb has a significant Knight shift for both nuclei. In Ref. [145], both 93Nb and 121Sb chemi-

cal shifts were extracted by studying a series of Ti-substituted samples (Nb1−xTixFeSb). Assuming

that the chemical shift is linearly dependent on Ti-substitution level for these semiconductors, the

chemical shifts were then obtained by a fitting model with measured shifts composed of carrier-

density-dependent Knight shift and substitution-fraction-dependent chemical shift. As a result, it

also turned out that both 93Nb and 121Sb also have significant Knight shifts in the undoped material.

This is consistent with the measured much larger 1/T1T compared to other half-Heusler materials:

for example, underlying the paramagnetic peak [Fig. 6.4(c)] it can be seen that the baseline 1/T1T

is on order of 121(1/T1T ) ≈ 15× 10−3 (s K)−1.

6.4.5 DFT computed shifts

Fig. 6.5 is the comparison between experimental shifts and DFT calculated chemical shifts (δ)

for the half-Heusler materials, including results for all nuclei (93Nb, 59Co and 121Sb) measured

in this work. The experimental values plotted are the temperature-independent shifts (identified

as K1), extracted as discussed above, with the effects of thermally excited carriers (ZrCoSb) or

Curie-Weiss contributions (NbCoSn, TaFeSb) removed. While these values generally contain

Knight shifts and chemical shifts (K ≡ Kc + δ), where possible, I have identified the Knight

shift contributions and these are generally small perturbations, as discussed below. I also include

TiCoSb [22], another member of this general family for which NMR studies have been reported,
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[146]

[146]

[145]

[145]

[22]

Figure 6.5: Comparison between experimental shifts and DFT calculated chemical shifts. NbFeSb
chemical shifts are from Ref. [145], with error bars based on the subtraction of Knight shift contri-
bution as described there, TiCoSb shift from Ref. [22] and Y(La)NbO4 from Ref. [146]. Vertical
bars without caps for the other compositions show the estimated range of chemical shifts after sub-
traction of Knight shift based on Korringa relation. Additional errors corresponding to uncertainty
in measured shift values are smaller than the visible symbols. Dashed lines are guides to the eye.

and for NbFeSb the values are fitted values of δ alone with K removed based on composition-

dependent results (Chapter 4). The red line in Fig. 6.5 corresponds to perfect agreement between

experiment and calculation. Since measured chemical shifts are generally reported relative to NMR

shift standards having unknown absolute shift contributions, a computational reference can be used

to calibrate the absolute DFT shifts. For 93Nb NMR shift, the calibrating references are YNbO4

and LaNbO4. For 59Co and 121Sb for which no comparable materials with well-defined chemical

shift are available, I discuss here the relative shifts.

The Korringa relation is an important tool to understand metallic behavior, which is character-

ized by a T -independent Knight shift (Kc) and a constant 1/T1T . Often [137], the product K2
cT1T

is found to be very close to K2
cT1T = (h̄γ2

e )/(4πkBγ
2
n),where γe and γn are the gyromagnetic

ratios of the electron and nucleus. However, since other mechanisms can contribute to 1/T1 and

generally increase the rate, here I can consider that 1/T1T serves to provide an upper limit esti-
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mate for Kc. For example, in substituted NbFeSb a significant orbital contribution was shown to

contribute to the relaxation rate [145]; however, this term does not contribute to Kc [145], and as

noted above, paramagnetic contributions due to local moments can in some cases also contribute

to 1/T1. For 121Sb, based on the standard product K2
cT1T = 4.5 × 10−6 s K, the low temperature

121(1/T1T ) values correspond to 20 ppm for ZrCoSb, and 130 ppm for TaFeSb. The small con-

tribution for ZrCoSb, and a similar small contribution estimated from the 59Co relaxation rates,

justifies putting those values on the red line in Fig. 6.5, and using these values to calibrate the

relative 59Co and 121Sb chemical shifts. For NbCoSn, the mean observed 93(1/T1T ) = 1.5× 10−3

(s K)−1 is 10 times smaller than the Korringa 93(1/T1T ) extracted for the NbFeSb sample studied

here [40], hence I estimate that 93Kc may be
√

10 times smaller than the extracted Knight shift

for NbFeSb, or about 230 ppm. The 59(1/T1T ) values for NbCoSn are somewhat smaller than

for 93Nb, but Kc in both cases is expected to be negative, due to the negative core-polarization

hyperfine fields corresponding to the d states which dominate the electronic behavior at the band

edges for these ions. I have placed vertical bars on the NbCoSn points in Fig. 6.5, to represent the

corresponding Kc contributions which may be present, and hence showing the range of underlying

chemical shifts which can be deduced from the experimental results. These estimated uncertainties

have been included in Fig. 6.5 as simple vertical lines. For the case of NbFeSb, as described above

measurements of Ti-substituted materials were previously used to extract the chemical shifts [145],

and the corresponding statistical error bars from this fit are displayed in Fig. 6.5.

6.4.6 Discussion and analysis

The actual size of the bulk gap in ZrCoSb is believed to be much larger than the fitting result

described above (for example a calculated value near 1 eV has been reported [169, 170], and the

observed Seebeck coefficient peak [161] for this sample also points to a gap that is significantly

larger than what is apparent from the NMR results), indicating that a defect level locates above the

valence band forming an impurity band in the bulk gap, similar to NbFeSb [15] (see Chapter 4).

In Ref. [15], NbFeSb has also exhibited a very small gap ∼30 meV, shown to indicate an impurity

band rather than a real band gap. By analogy, this small gap for ZrCoSb is likely to indicate the

70



existence of an impurity band, which is a narrow band of states within a semiconductor energy gap

due to the combined effect of a relatively large density of impurity states. The n-type carrier type

suggests that the impurity band is right below the conduction band, different from NbFeSb. Note

also that 1/T1T for both nuclei measured in ZrCoSb is very small, especially at low temperatures.

As discussed below, it can be concluded that the extracted K1 values have very little contributions

due to free carriers (hence small Knight shifts, Kc). Thus, I analyze the fitted K1 for ZrCoSb

as representing the chemical shift. A similar argument can be applied to the previously reported

results for TiCoSb [22], as further discussed below.

Comparing to ZrCoSb, the narrow line width of NbFeSb indicates a particularly strong ten-

dency for local ordering in NbFeSb, for which the observed 1/T1T peak provides evidence of a

small density of independent magnetic moments. On the other hand, both TaFeSb and NbCoSn

exhibit Curie-Weiss behavior, which can be understood as due to interacting Fe or Co antisites,

owing to stoichiometry differences. The off-stoichiometry for TaFeSb is probably driven by diffi-

cult synthesis conditions due to the high melting temperature of Ta, while compared with TaFeSb,

the broader line width of NbCoSn corresponds to its larger tendency for off-stoichiometry, and is

reasonably consistent with the 2% Co excess measured by energy dispersive X-ray spectroscopy

(EDS) [162].

The DFT computed shifts capture the general trend of the experimental shifts rather well, as

seen in Fig. 6.5. Although there are Knight shifts involved in some of the measured shifts, as dis-

cussed above their estimated magnitudes are relatively small compared to the very large chemical

shifts. This gives further confidence that WIEN2k can provide good predictions of chemical shift

for these half-Heusler materials, and that the very large range of observed shifts is indeed intrin-

sic to these materials. For ZrCoSb, I showed that both the 59Co and 121Sb NMR measured shifts

include very small Knight shifts, with a Korringa-type contribution that is essentially negligible.

Similarly, TaFeSb also falls close to the red line in Fig. 6.5. However, a trend can be seen by which

the larger shifts are enhanced relative to the expected values; this is emphasized by the dashed lines

in Fig. 6.5. Note also that these larger shift values (93Nb shift for NbFeSb and NbCoSn; 121Sb shift
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for NbFeSb and TiCoSb) are out of the established ranges of chemical shifts for 93Nb [122] and

121Sb [171] NMR.

These paramagnetic shifts can be understood as due to the paramagnetic susceptibility of nearly

degenerate d bands split into the conduction and valence bands. The mechanism is closely related

to the Van Vleck susceptibility, χVV, which measures the macroscopic orbital paramagnetism. A

general form of the NMR orbital shift can be expressed [172] as

Korb =
2e2

m2c2

∑ 〈Ψ|Lz|Ψ′〉〈Ψ′|Lz/r3|Ψ〉
∆E

+ c.c., (6.3)

where Ψ is an occupied state, Ψ′ is an excited state, and the sum of angular momentum matrix

elements across the semiconducting gap is an integration throughout momentum space of vertical

transitions, associated with the bands as a whole rather than being dominated by the band edges.

The multiplicity and larger angular momentum of d states separated by the gap, along with a rel-

atively small ∆E [172], can lead to a large orbital shift contribution. Since the sum is unaffected

by small additions of charger carriers at the band edge, this shift also has little temperature depen-

dence.

As noted above, in Fig. 6.5 it can be observed that the experimental shift has the trend of

exceeding the calculated chemical shift, as the shift values become large. This is seen most clearly

for 121Sb and 93Nb shifts, illustrated by dashed lines. A likely explanation for this behavior is

described in Refs. [159,173,174], indicating that the Van Vleck susceptibility can be enhanced by

electron-electron interactions as well as the more familiar enhancement of the Pauli susceptibility.

There is also a predicted increase due to spin-orbit interactions, with the example [159] being

Sr2RuO4, for which the spin-orbit strength should be comparable in magnitude to NbFeSb, and the

effect relies upon inter-orbital interactions, and thus requires orbital degeneracy within the band.

Thus, tentatively I ascribe the orbital dominated Van Vleck shift enhancement in the half-Heuslers

to e-e interactions in nearly degenerate d orbitals.

The correlation between chemical shifts and the electronegativities of neighboring ions is a
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Figure 6.6: Experimental shifts vs mean electronegativity. Mean electronegativity is the mean
value of Pauli electronegativities of three elements in each ternary half-Heusler sample. Dashed
curves are guides to the eye. Inset: Co and Sb shifts vs half-Heusler lattice constant.

comparison that is often made in NMR spectroscopy. In a study of main-group half-Heusler ma-

terials [175], it was also recently shown that the metal-atom chemical shifts increase nearly lin-

early with the anion electronegativity. Such a comparison between anions cannot be made for the

transition-metal half-Heusler materials studied here, since most of the corresponding compounds

containing other pnictogen or carbon-group anions are not stable in the same structure. However,

a regular trend can be seen by comparing the chemical shifts to the mean Pauli electronegativities

of the 3 elements comprising each compound, as shown in Fig. 6.6.

The general trend displayed in Fig. 6.6 is an increase in shift vs mean electronegativity. Since

in each series the atom corresponding to the nucleus being measured is held constant, increasing

mean electronegativity implies that the observed nucleus experiences a nominal decrease in on-

site charge. Thus, this is the same trend observed vs anion substitution in main-group half-Heusler

compounds [175]. However, whereas in proton NMR a decrease in on-site charge will increase

shift because the electron density contributes most significantly to the diamagnetic NMR shielding,

here the large positive NMR shifts seen here are clearly paramagnetic shifts dominated by a Van

Vleck mechanism as discussed above. The results are not completely linear, in fact for 59Co and

121Sb the upward trend observed for large shifts is the same as the trend identified in comparison to

73



the DFT results discussed here, with large chemical shifts becoming enhanced in magnitude over

what is expected.

Along with the electronegativity trend, there is generally a corresponding decrease in shift vs

increasing lattice constant, a, shown in the inset of the Fig. 6.6. (The 93Nb shifts are not plot-

ted since they are for compounds with the same lattice constant.) This trend can be connected to

changes in hybridization, which will increase as a decreases, and contribute a greater mix of d

orbitals in the conduction and valence bands, which as noted above produces the large observed

paramagnetic chemical shifts by the Van Vleck mechanism. This also helps to understand the elec-

tronegativity trend, since moving to the right and upward on the periodic table, in the direction of

increasing electronegativity, also corresponds to more compact orbitals and enhanced hybridiza-

tion. Thus, the observed experimental trends and large NMR shifts can be understood as relating

to an enhanced mix of orbitals in these compounds.

To investigate whether this might be due to effects such as stoichiometry or site disorder, we

performed a volume minimization for these materials, using the PBE functional in WIEN2k, and

obtained 5.948 ± 0.004 Å for TaFeSb and 5.961 ± 0.003 Å for NbFeSb. The calculated lattice

constant difference between TaFeSb and NbFeSb is in a good agreement with the experimental

difference, and it is also similar to other recently reported calculated values [176] indicating that

the smaller size of TaFeSb lattice is an intrinsic feature. As noted above the significantly larger

paramagnetic chemical shift observed in NbFeSb relative to TaFeSb is in agreement with DFT re-

sults based on the experimental results. With these large shifts dominated by hybridization among

d orbitals, the TaFeSb shift is smaller despite the more diffuse 5d orbitals which might be expected

to lead to enhanced hybridization. This result is likely caused by the presence of the 4f electrons

on Ta, and the resulting contraction and energetic favoring of the Ta 6s over the 5d electrons, thus

reducing the number of occupied d orbitals which can interact with the applied field.

6.5 Summary

In this chapter, I have investigated various half-Heusler thermoelectric materials (ZrCoSb,

NbCoSn, TaFeSb and NbFeSb) using NMR as a local probe combined with DFT calculations. For
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ZrCoSb, both 59Co and 121Sb shift and spin-lattice relaxation measurements show consistent results

indicating the excitation of carriers and the existence of impurity band right below the conduction

band. For NbCoSn and TaFeSb, both show Curie-Weiss-like behavior revealing paramagnetic-

type defects. The constant spin-lattice relaxation rates represent the partial Fermi-level DOS of

the probed site, indicating the metallic behavior at measured temperature range. 121Sb NMR spin-

lattice relaxation result for NbFeSb shows a clear peak due to long range dipolar interaction with

local magnetic defects, confirming previous published 93Nb NMR results for NbFeSb. These para-

magnetic shifts can be understood as degenerate d bands splitting and mixing in the conduction

and valence bands. The observed trends of chemical shift vs electronegativity and lattice constant

can be connected to variations in the d-electron hybridization in half-Heuslers. The DFT computed

results give an overall reasonable prediction of NMR chemical shifts for half-Heusler materials.

The largest shifts are observed to exceed what is predicted, and I discuss a likely mechanism due

to electron-electron enhanced Van Vleck susceptibility.
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7. SKUTTERUDITE THERMOELECTRIC MATERIALS∗

7.1 Introduction

In this chapter, I describe results for BaxYbyCo4Sb12 and AxCo4Sb12 (A = Ba, Sr), combined

with transport measurements using NMR as a powerful technique to detect the electronic properties

of semiconductors and thermoelectric materials. The results provide new information about the

electronic behavior and the importance of defects, very close in energy to the conduction band

edge in these n-type filled skutterudites. The materials were prepared by Prof. Uher’s group

at University of Michigan and measured partially by my former labmate Dr. Ali A. Sirusi and

partially by myself in our lab at TAMU.

7.2 Sample Preparation and Experimental Methods

Skutterudites (space group Im3, shown in Fig. 7.1, visualized with VESTA [115]) of nomi-

nal composition Ba0.1Yb0.2Co4Sb12, Ba0.2Co4Sb12, and Sr0.2Co4Sb12 were prepared by a melting-

annealing-spark plasma sintering method. The high-purity elements were weighed and mixed in

the stoichiometric ratio, loaded into graphite-coated quartz tubes, and sealed in vacuum. These

were placed in a furnace and heated to 1373 K at the rate of 1 K min−1 and held for 10 h to ensure

thorough mixing of the constituents. The temperature then decreased to 1013 K at the rate of 4

K min−1 and held for 10 days. The furnace was then turned off and cooled to room temperature.

The resulting ingots were ground to fine powders and pressed by a cold press into pellets, which

were then loaded into quartz tubes again, sealed in vacuum, heated to 1013 K at the rate of 4

K min−1, and held for 2 weeks to form a pure skutterudite phase. The furnace was then turned off

and cooled to room temperature. The ingots were ground again to a fine powder and loaded into

a graphite die for spark plasma sintering. The final sintering (for densification) was carried out at

903 K for 15 min. Ba0.1Yb0.2Co4Sb12 is the same sample prepared as reported in Ref. [41] with

∗Part of this chapter is reprinted from Ref. [13] (Y. Tian, A. A. Sirusi, S. Ballikaya, N. Ghassemi, C. Uher, and J.
H. Ross, Jr., “Charge-carrier behavior in Ba-, Sr- and Yb-filled CoSb3: NMR and transport studies”, Phys. Rev. B,
vol. 99, no. 12, p. 125109, 2019.) with permission from AIP Publishing.
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Sb

Co

guest atom

or unfilled site

Figure 7.1: Crystal structure of filled skutterudites, M zT4X12, where M is a guest atom (0 ≤ z ≤
1).

Table 7.1: Nominal composition, actual composition (from EPMA analysis), and n-type carrier
concentration nH derived from Hall measurements at room temperature.

Nominal Actual nH (1020 cm−3)

Ba0.1Yb0.2Co4Sb12 Ba0.07Yb0.067Co4Sb11.94 2.29

Ba0.2Co4Sb12 Ba0.036Co4Sb11.77 1.80

Sr0.2Co4Sb12 Sr0.041Co4Sb11.87 1.00

zT approaching 1 at 800 K.

Electron probe microanalysis (EPMA) measurements including wavelength dispersive spec-

troscopy were performed to measure the compositions. Results indicate uniform skutterudite

phases with very small composition variations. The actual compositions are listed in Table 7.1.

Compared to the nominal compositions, filling fractions are smaller than the starting compositions,

which is typical for CoSb3-based skutterudites [177], with remaining filling elements expected to

form small oxide particles. In this work, we denote Ba0.1Yb0.2Co4Sb12 as sample Ba(0.1)Yb(0.2),

Ba0.2Co4Sb12 as sample Ba(0.2) and Sr0.2Co4Sb12 as sample Sr(0.2). Based on the filler atom

densities, and assuming ion charges Yb3+, Ba2+ and Sr2+, the measured compositions correspond

to n = 4.6, 1.0, and 1.1 × 1020 cm−3, for Ba(0.1)Yb(0.2), Ba(0.2) and Sr(0.2), respectively, if
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the ionized charges are donated to the conduction band. However, these can be reduced by native

defects, mostly due to departure from CoSb3 stoichiometry. The measured compositions indi-

cate Co excess and Sb deficit typical for these materials, and comparable to the concentrations of

filler ions, although note that these composition differences are on the same order as the absolute

accuracy of the microprobe. Magnetic measurements were performed using a Quantum Design

superconducting quantum interference device magnetometer. The magnetic results are shown in

the Appendix indicating that the samples are non-magnetic with a dilute paramagnetic response

attributed to native defects, as well as Yb3+ moments in the case of sample Ba(0.1)Yb(0.2).

NMR measurements were carried out by applying a custom-built system at magnetic field 9 T

from 4 K to 450 K. 59Co (nuclear spin I = 7/2) NMR spectra were obtained using a spin echo

sequence with aqueous K3[Co(CN)6] as shift reference. The spin-lattice relaxation times at the

central transition lines were determined from fitting to a multi-exponential function for inversion

recovery. QuadFit [178] was used to fit the spectra. High-temperature transport measurements

were carried out under dynamic argon flow in the range 300 to 800 K. Carrier concentrations

and Seebeck coefficients were measured using a home-made apparatus with a standard four-probe

configuration. Room-temperature carrier concentrations of all samples from Hall measurements

are also listed in Table 7.1. As opposed to the p-type behavior of pure CoSb3, all samples show

n-type behavior due to electron donation from filler atoms.

7.3 Experimental Results

7.3.1 NMR measurements

7.3.1.1 Line shapes

Fig. 7.2 shows the 59Co NMR spectrum of sample Ba(0.1)Yb(0.2) at 290 K. The powder spectra

exhibit the characteristic sequence of edge singularities due to the ∆m = 1 nuclear transitions. The

quadrupole frequency is defined as νQ = 3eQVzz/[2I(2I − 1)], where Q is the nuclear quadrupole

moment and Vzz is the maximum principal value of the electric field gradient (EFG) tensor. The

other two principal values Vxx and Vyy are equal due to the axial Co site symmetry. Compared to

78



Figure 7.2: 59Co NMR spectrum for sample Ba(0.1)Yb(0.2) at 290 K. The dashed line is a fit for
the overall spectrum. The inset shows spectra at 4.2 K, 77 K, and 290 K, normalized to the same
peak intensity.
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CoSb3 with νQ = 1.18 MHz [179], the fitted room-temperature spectra (dashed line in Fig. 7.2)

have νQ = 1.11±0.01 MHz for all 3 samples. The chemical shift anisotropies for Ba(0.1)Yb(0.2),

Ba(0.2) and Sr(0.2) are 1250 ppm, 1200 ppm and 1220 ppm, respectively (given as the span,

Ω = δ11 − δ33). This is in good agreement with the value Kax = −0.039% (corresponding to

Ω = 1170 ppm) for CoSb3 reported by Lue et al. [180]. The reduction in νQ due to filler atoms is

similar to the behavior of CaxCo4Sb12 and LaxCo4Sb12 [180, 181]. The inset of Fig. 7.2 displays

spectra for sample Ba(0.1)Yb(0.2) at 4.2 K, 77 K, and 290 K, demonstrating the shift to lower

frequencies along with increasing line width upon cooling. Fig. 7.3 shows a comparison of spectra

for all three samples at room temperature and 77 K.

Note that in the measured frequency range, 121Sb signals coexist with those of 59Co, however

with very large line widths. Based on NQR in La-filled CoSb3, a large νQ of 38.8 MHz has been

reported [182]. Similar results for the present materials will lead to a central transition for 121Sb

∼1200 times wider than the 59Co central transition, or about 10 MHz, and the spectral intensity

correspondingly reduced by a very large factor.

7.3.1.2 Knight shifts

Fig. 7.4 shows the temperature-dependent 59Co NMR isotropic shift obtained for the three

samples by calculating the center of mass of the central transition (−1/2 ↔ +1/2) portion of the

spectrum. The shift is composed of two main contributions: Knight shift and chemical shift. The

Knight shift, due to unpaired spins of charge carriers and defects, provides the large temperature

dependence for these samples. Thus, for simplicity, in the plot K is used to represent the entire

shift, similar to what has been reported for LaxCo4Sb12 [181]. It can be seen that the total shift

is negative, becoming more positive with temperature increasing. In Sec. 7.4, we will discuss a

theoretical model for this temperature dependence in terms of increasing carrier density vs. tem-

perature. Due to the increasing shift and broadening, close to 4 K the central transition and satellite

transitions peaks merge for all three samples, which makes it difficult to isolate the shift at very

low temperatures.
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Figure 7.3: 59Co NMR spectra for samples Ba(0.1)Yb(0.2), Ba(0.2) and Sr(0.2) in (a) 290 K and
(b) 77 K. The data are offset vertically for clarity.
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Figure 7.4: Temperature-dependent 59Co NMR shift for samples Ba(0.1)Yb(0.2), Ba(0.2) and
Sr(0.2). The dotted lines are fits based on the model described in the text.
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7.3.1.3 Spin-lattice relaxation rates

The 59Co spin-lattice relaxation rate was measured using the inversion recovery method, based

on the integrated spin echo fast Fourier transform of the 59Co (I = 7/2) lines. We irradiated

only the central portion of the spectra corresponding to the peak intensity of the −1/2 ↔ +1/2

transitions, well known to give a multi-exponential recovery. Similar to the shift data, this was

done only at 77 K and above, due to the merging of the central transition with satellite transitions

at low T . For the central transition with I = 7/2, the recovery of the nuclear magnetization due to

spin excitations can be expressed as

M(t)−M(∞)

M(∞)
= −2α(0.012e

− t
T1 + 0.068e

− 6t
T1 + 0.206e

− 15t
T1 + 0.714e

− 28t
T1 ). (7.1)

Here, α is a fractional value derived from the initial conditions, M(t) is the nuclear magnetization

at time t, and M(∞) represents the asymptotic signal. Each experimental value was obtained by a

fit to Eq. (7.1). The resulting 1/T1 values are shown in Fig. 7.5.

7.3.2 Transport measurements

Carrier concentrations (nH) for samples Ba(0.2) and Sr(0.2) obtained by Hall measurements

from 4 K to 300 K are plotted in Fig. 7.6, with the inset showing data from room temperature

to 773 K of sample Ba(0.1)Yb(0.2) extracted from Ref. [41]. Fig. 7.7 shows the Seebeck coeffi-

cients of all samples from 300 K to 800 K. Both of these sets of results have the expected sign

corresponding to n-type materials. Although the increase in nH of Fig. 7.6 could be attributed to

excitation of holes and electrons across a very small band gap on order of 30-50 meV, the Seebeck

results generally support non-compensated behavior with a larger band gap consistent with other

experimental results [183, 184] and calculations [185–187], with negligible hole contribution at

temperatures of the NMR measurements. The decrease in S above 400 K observed for the Ba-

and Sr-filled samples could possibly indicate the excitation of holes above this temperature [188],

although there are also alternative explanations for this behavior as will be discussed in Sec. 7.5.
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Figure 7.5: 1/T1 vs. T for samples Ba(0.1)Yb(0.2), Ba(0.2) and Sr(0.2). The dashed lines are fits
as described in the text.

Figure 7.6: Carrier concentration vs. T from 4 K to 300 K for samples Ba(0.2) and Sr(0.2). Inset
shows nH vs. T for sample Ba(0.1)Yb(0.2) from room temperature to 773 K [41]. Solid curves:
conduction-band carrier concentration (nCB); model described in text.

84



Figure 7.7: Seebeck coefficient vs. T from 300 K to 650 K for samples Ba(0.1)Yb(0.2), Ba(0.2)
and Sr(0.2). Theoretical curves are shown superposed on each plot.
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7.4 Theoretical Modeling and Analysis

To analyze the experimental data, we developed a formalism for the interaction between nuclei

and carriers in the conduction band, allowing for arbitrary carrier densities rather than treating

the extreme metallic or non-degenerate limit. The model assumes that all carriers reside in the

conduction band.

The Knight shift (K) reflects the local effective magnetic field at the nuclei due to conduction

electrons, given by

K =
∆ν

ν0

=
HHFχ

e
s

µB
, (7.2)

where HHF represents a hyperfine field. Note that conduction band edge has been shown to be

dominated by Co d-states [189]. If the interaction is Fermi contact, this is defined by HHF =

8π
3
〈|ϕk(0)|2〉EFµB, however, since d electrons are dominant here, HHF is instead the core polariza-

tion hyperfine field [190, 191]. For 59Co, we used the measured value of this field, −21.7 T [192].

χes is the electron spin susceptibility which can be calculated according to the average carrier con-

centration per Co atom Natom(µ) = n(µ)× Vatom,

χes
∼=
µB
2H

(g∗µBH)
∂Natom

∂µ
=
g∗

2

∂Natom

∂µ
µ2
B, (7.3)

in which Vatom is the average volume per Co atom and µ is the chemical potential. n(µ) is defined

by

n(µ) ≡
∫
g(E)f(E, µ)dE, (7.4)

where the conduction band density of states is given by

gCB(E) =


√

2Nm∗3/2

π2h̄3

√
E − EC , E ≥ EC

0, E < EC

(7.5)

withN the number of minima andm∗ the effective mass in the band edge, assumed to be parabolic.
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The Fermi function is,

f(E, µ) =
1

e
E−µ
kT + 1

. (7.6)

By substituting Eqs. (7.3), (7.4), (7.5) and (7.6) into Eq. (7.2) and letting x = E − EC , we can

derive

K = K0 +
A1

T

∫ ∞
0

√
xe−

EC−µ+x

kT

(e−
EC−µ+x

kT + 1)2
dx, (7.7)

with A1 = HHFg
∗µBNVatomm

∗3/2/
√

2π2h̄3k and the constant term K0 representing an additive

chemical shift and background Knight shift.

The T1 relaxation process can be understood on the basis of scattering from initial occupied

electron states to final unoccupied states. Note, there has been speculation that localized anhar-

monic modes (or "rattling" modes) affects the thermal conductivity in these skutterudites, although

recent evidence [193] points to other intrinsic mechanisms for the low thermal conductivity. We

find no evidence for a "rattling" contribution to the T1 [14, 194], and show here that a purely elec-

tronic mechanism explains the T1 results very well. According to Fermi′s golden rule, the transition

rate from state i to state f is given by [172]

Γi→f =
2π

h̄
|〈f |V |i〉|2δ(Ef − Ei), (7.8)

where V = HHFγnh̄I · S is the interaction providing the scattering mechanism. As a result, 1/T1

can be expressed by [195]

1

T1

=
1

2

∫∫
Γi→f

(
gCB(Ei)f(Ei)

)(
gCB(Ef )[1− f(Ef )]

)
dEidEf , (7.9)

where Ei ≈ Ef represent initial and final states, respectively. By substituting Eqs. (7.5), (7.6) and

(7.8) into Eq. (7.9),
1

T1

=
1

T1C

+ A2

∫ ∞
0

xe−
EC−µ+x

kT

(e−
EC−µ+x

kT + 1)2
dx, (7.10)

with A2 = 8H2
HFµ

2
BN

2V 2
atomm

∗3γ2
n/π

3h̄7γ2
e and 1/T1C representing other contributions to the re-
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laxation rate. Note that in the highly degenerate limit (µ − EC � kT ), these results can easily

be shown to simplify to K = const. and 1/T1 ∝ T , as often seen for heavily doped semiconduc-

tors [47]. Here, we consider the more general case, since µ − EC ≈ kT for much of the range

considered here.

The carrier concentration in the conduction band, nCB, can be derived by substituting Eqs. (7.5)

and (7.6) into Eq. (7.4),

nCB =

√
2Nm∗

3/2

π2h̄3

∫ ∞
0

√
x

e
EC−µ+x

kT + 1
dx. (7.11)

Also the Seebeck coefficient can be calculated by S = − 1
eT

L (1)

L (0) , which contains the function,

L (α)
ij ≡ e2

∫
d3k
4π3 (− ∂f

∂E
)τvivj(E − µ)α [139]. By substituting Eqs. (7.5) and (7.6), the Seebeck

coefficient is expressed as

S = − 1

eT

∫
(df/dE)g(E)τ(E)E(E − µ)dE∫

(df/dE)g(E)τ(E)EdE

= − 1

eT

∫ ∞
0

e−
EC−µ+x

kT

(e−
EC−µ+x

kT + 1)2
τ(x)x3/2(x− µ)dx

∫ ∞
0

e−
EC−µ+x

kT

(e−
EC−µ+x

kT + 1)2
τ(x)x3/2dx

,

(7.12)

where the second form assumes explicitly that gCB ∝ (E − EC)1/2. Typically, τ(E) is considered

proportional to (E − EC)r with −3/2 ≤ r ≤ 1/2 depending on the scattering mechanism [196].

Fig. 7.8 shows the simple model for g(E) found to give consistent agreement with the results,

with shallow defect states assumed to be represented by a single Dirac delta function due to a

superposition of isolated in-gap states at energy ED. This leads to the low-temperature increase

in nH , with µ in the conduction band at T = 0 due to electrons donated by the filler atoms. The

conservation of total charge, nD(0) + nCB(0) = nD(T ) + nCB(T ), determines the temperature

dependence of the chemical potential µ, where nD represents the electron concentration in shallow
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Figure 7.8: The general model for the total density of states used here. EC , ED and µ are the
positions of conduction band minimum, shallow defect state and chemical potential, respectively.
nCB represents the carrier concentration in the parabolic conduction band. For simplicity this is
pictured for T = 0 for which nCB(0) is the limiting value. nD represents the electron concentration
in shallow defect states (light gray area), with available level density ND, assumed to be a Dirac
delta function.
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Table 7.2: Parameters of theoretical fittings for samples Ba(0.1)Yb(0.2), Ba(0.2) and Sr(0.2). ED
(meV) is the position of defect state relative to EC , ND (1020 cm−3) the concentration of defect
state, nCB(0) (1020 cm−3) the CB carrier concentration at 0 K, meff = N2/3m∗ (me) the thermo-
dynamic effective mass, g∗ the effective g-factor, K0 (ppm) the addictive shift and 1/T1C (s−1) the
spin-lattice relaxation rate at 0 K.

Sample ED ND nCB(0) meff g∗ K0 1/T1C

Ba(0.1)Yb(0.2) −26 15 0.5 3.8 −8 −3560 61

Ba(0.2) −35 6 0.4 3.4 −8.5 −2570 12

Sr(0.2) −38 4.5 0.3 3.2 −9 −2230 30

defect states (light gray area shown in Fig. 7.8). The relationship of µ and T is thus given by

ND + nCB(0) =

∫
NDδ(E − ED)f(E)dE + nCB

= ND
1

e
ED−µ
kT

+1
+ nCB,

(7.13)

where ND = nD(0) and nD(T )/ND are the concentration of shallow states and the filled fraction

at a given T , respectively, and nCB(0) is the carrier concentration at T = 0. Then for each temper-

ature, the corresponding chemical potential can be obtained by numerically solving Eq. (7.13).

Figs. 7.4-7.7 show fitted theoretical curves based on this model. Since the numerical solution

of several integral equations is required, we cannot least-squares fit all parameters at once. How-

ever, we find that the carrier concentration is much more sensitive to effective mass than the other

quantities, so the thermodynamic effective mass, meff = N2/3m∗ and nCB(0) were fitted to the

carrier concentration with values shown in Table 7.2. Both for Ba(0.2) and Sr(0.2), nH exhibits

a decrease below about 50 K, apparently a trend toward localization at the temperatures, so we

fitted the data above this temperature. The results for meff are in close agreement with each other,

as might expected for rigid-band filling of states at the CB edge. Then by fitting K and 1/T1 to-

gether, ED, ND and, g∗ were optimized, giving the results also listed in Table 7.2. Values of g∗

are between −8 and −9, comparable to that of the holes, with smaller m∗, having g∗ = −10.1 as

reported by Arushanov et al. [197].
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While the gradual increase of Knight shift and 1/T1 vs. temperature can be understood in terms

of an increasing number of carriers excited into CB, the terms K0 and 1/T1C can be interpreted as

due to the susceptibility of electrons in the localized levels. To the extent that Coulomb interactions

allow unpaired spins within these states, a Curie-type susceptibility contribution is expected at low

temperatures, the presence of which is confirmed by the large negative NMR shifts at helium

temperatures in all three samples. These shifts are responsible for the overlapping of transitions

at low temperatures, which prevented separation of the central transition shifts in this limit as

discussed above. Note that the mechanism involves contact with Co d-states through the negative

HHF for Co, as opposed to dipole coupling for dilute local moments which provides an additional

broadening mechanism for Yb3+ moments in sample Ba(0.1)Yb(0.2), but no net shift contribution

[15]. Other contributions to the shifts include differences in chemical shift, and above 77 K we

find that an added constant term (K0) can best fit the temperature dependence of these shifts.

The localized-electron contribution to 1/T1 can be modeled directly in terms of the dynamical

susceptibility of such localized spins. From general considerations, it is often found [198, 199]

that 1/T1 ∝ kBTχ0τ , where χ0 is the DC susceptibility and τ is an electron spin lifetime. For

sufficiently concentrated localized spins, τ can approach a constant due to spin diffusion, even

for carriers which do not contribute to the electrical conductivity, and with χ ∝ 1/T , this gives a

constant contribution to 1/T1. Similar results are obtained for Si:P near its metal-insulator transi-

tion [195, 199]. The term (1/T1C) is thus expected to be due to such a contribution, and it seems

reasonable that sample Ba(0.1)Yb(0.2), for which we obtained the largest density of localized

states (ND), this contribution to 1/T1 is found to be the largest.

The resulting theoretical transport curves for all three samples are shown in Figs. 7.6 and 7.7.

With the chemical potentials solved by Eq. (7.13) plugged into Eq. (7.11), the theoretical curves

describe the temperature-dependent nH quite reasonably. The deviation of the theoretical nH from

the experimental data above 600 K for sample Ba(0.1)Yb(0.2) is likely due to carriers excited

to a second band in higher temperature with a corresponding increase in effective mass [200].

With no adjustable parameters, the theoretical curves for Seebeck coefficient were drawn directly
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from Eq. (7.12) as shown in Fig. 7.7. For these plots, τ(E) was taken to be proportional to

(E − EC)r = (E − EC)−1/2 due to the acoustic phonon deformation potential mechanism. This

mechanism is shown to provide a good agreement for materials with complex structures and multi-

valley Fermi surfaces [201], although there are indications that in some substituted skutterudites

the mechanism and exponent r may change vs. T [141]; this would have the effect of scaling the

resulting S(T ) curves vertically. A distribution of defect energies (ED) would also explain the

softer turn-on apparent in the S(T ) data, however, our simple model successfully predicts both the

sub-linear temperature dependence and the approximate magnitudes of S(T ), without adjustment

of the parameters.

7.5 Discussion

The model of Fig. 7.8 provides a consistent picture of both the transport and NMR results

and thus indicates the importance of states near the conduction band edge in filled CoSb3. This

differs from unfilled CoSb3, for which native deep acceptor states are believed to dominate the

behavior [54, 59], although recent experimental evidence also indicates n-type behavior for the

case of large Sb deficit [55].

In our model, the valence band is completely filled with negligible hole density over the mea-

sured temperature range. Thus we do not probe the band gap from VB minimum to CBM min-

imum directly. However, from our results it appears that previous results showing evidence for

excitation across a gap of order tens of milli-electron volts [179, 197, 202] are likely also dom-

inated by defect levels close to the CB, while the relatively larger band gaps obtained by other

techniques [183, 184, 203–205] are consistent with what we propose. Computational results based

on DFT and more advanced techniques generally indicate a band gap in the range 0.2 to 0.6 eV

for CoSb3 [59, 200, 206] with relatively small changes due to filler atom densities comparable to

those in our samples [185, 207]. Our results thus demonstrate that a larger gap combined with the

presence of additional donor states can explain previous inconsistencies in the reported band gap.

Note that while the calculated chemical potential positions in this model dip toward the CB edge

as the temperature rises, they remain far above the VB edge, such that our assumption of negligible
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hole density remains valid. With the VB effective mass ratio reported to be m∗h/me = 0.24 [179],

we obtained hole densities by direct integration (e.g. similar to Eq. (7.11)) for the Sr(0.2) sample,

which in the numerical results has the smallest chemical potential. At 300 K, for a band gap at the

low end of the range quoted above (0.2 eV) we obtain a hole density 1 × 1016 cm−3, and orders

of magnitude smaller as the gap increases. Thus over the range of expected behavior the VB has a

negligible contribution to the transport and NMR behavior.

Regarding the origin of the defect states shown to sit near the conduction band edge, com-

putational results give a possible explanation based on the presence of composite defects. While

off-stoichiometric CoSb3 is usually p-type because of acceptor-like defects, Co interstitial pairs

are also proposed as n-type [59] or p-type [54] defects. These pairs are believed to form only at

temperatures below that of typical processing conditions, however Hu et al. recently indicated that

La filling combined with Sb di-vacancies can form shallow defect states near the conduction band

minimum [207]. By analogy with this result, it seems likely that the defects observed here are

associated with composite defects induced by the filler atoms (Ba, Sr, and Yb). The fitted values in

Table 7.2 bear this out; donor charges ND approximately three times larger than the expected filler

atom charges point to such composite defects making up the donor states rather than the charges

associated with the filler atoms themselves. The difference is comparable to the density of Co

excess/Sb deficiency, and thus it appears that the filler atoms tie up these native defects, producing

the donor states observed here.

The effective masses for all three samples are quite close to each other and in good agreement

with the predicted meff ≈ 3.4me from modeling and experimental results for n = 1 × 1020 cm−3

as reported by Caillat et al. [184]. In Ref. [200], a slightly smaller meff ≈ 2.8me was obtained

for n = 2× 1020 cm−3, but note that this was derived from Seebeck coefficient results assuming a

degenerate limit. However, we find that all samples begin to deviate from this limit, along with a

non-constant nH , above room temperature.

As one of the most promising thermoelectric systems, a clear picture of the overall electronic

structure of CoSb3-based materials can give a better understanding of the transport results, which
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will directly help to design high-zT thermoelectric materials. Also, since carrier donation from

filler atoms is needed to optimize thermoelectric performance, a good understanding of defect

states and impurity bands will be significant for thermoelectric device design. In addition, as we

have shown, NMR can be a very effective tool for such analysis.

7.6 Summary

In this chapter, NMR and transport results of filled skutterudites BaxYbyCo4Sb12 andAxCo4Sb12

(A = Ba, Sr) are reported to demonstrate the existence of a shallow defect level below conduction

band minimum. To fit the experimental results, a simple but effective theoretical model was es-

tablished by assuming the defect states to be represented by a single narrow peak in the density

of states. The NMR and transport results were analyzed in a very general way allowing the Hall

effect as well as Knight shift and T1 results to be fitted numerically as the carriers slowly changed

from metallic to non-degenerate situation. These fits yielded an effective mass in good agreement

with predicted values and indicated that the gradual changes in Hall coefficient observed at low

temperatures in filled CoSb3 are associated with a defect state positioned close to the conduction

band minimum. In addition, Seebeck coefficient data were also treated within the same general

model and found to agree with parameters derived from the other measurements.

94



8. TOPOLOGICAL CHALCOGENIDE ZrTe5
∗

8.1 Introduction

In this chapter, I describe 125Te NMR measurements supported by electronic structure calcu-

lations, characterizing the 3D Dirac topological nature of ZrTe5. The material was prepared and

measured by myself in our lab at TAMU. The DFT calculations were done by my labmate Dr.

Nader Ghassemi. The found phase transition is shown to proceed from WTI to STI with increas-

ing temperature associated with the bulk gap closing and reopening, while direct evidence of band

inversion at the topological phase transition is established based on NMR shift measurements,

demonstrating a significant capability for probing quantum materials.

8.2 Sample Preparation

Figs. 8.1(a)-(b) show the ZrTe5 crystal structure, which can be treated as ZrTe3 chains con-

nected by Te2 bridging atoms. ZrTe5 single crystals were prepared by chemical vapor transport

(CVT). A ZrTe5 precursor was prepared by reacting stoichiometric amounts of Zr (99.9%) and Te

(99.999%) in evacuated ampules at 500 ◦C, then mixed with 5 mg/cm3 iodine and sealed in a quartz

ampule under vacuum. The ampule was held in a 530 to 470 ◦C gradient for one week, yielding

needlelike single crystals.

8.3 Experimental and Computational Methods

Cameca SXFive microprobe measurements indicated a uniform phase ZrTe5.02±0.02, equivalent

within resolution to the stoichiometric composition, and larger Te content than in some other re-

ports [208, 209]. No I or Hf was detected. Transport measurement showed a resistance anomaly

at ∼125 K, typical for CVT samples. NMR experiments utilized a custom-built spectrometer at a

fixed fieldH0 ≈ 9 T, aligning many crystals withH0 parallel to a. Note thatH0 ‖ aminimizes mag-

netic quantum effects [208], providing a probe of an essentially unperturbed electronic structure.

∗Part of this chapter is reprinted from Ref. [96] (Y. Tian, N. Ghassemi, and J. H. Ross, Jr., “Dirac electron behavior
and NMR evidence for topological band inversion in ZrTe5,” Phys. Rev. B, vol. 100, no. 16, p. 165149, 2019.) with
permission from APS.
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Figure 8.1: (a) Crystal structure of ZrTe5. Te sites include apical (Tea), dimer (Ted), and zigzag
(Tez) with occupation ratio 1:2:2. (b) a-c plane view showing the long dimension of the needlelike
crystals (a-axis) coinciding with the applied NMR field (H0).

125Te shifts were calibrated by aqueous Te(OH)6 and adjusted for its δ = 707 ppm paramagnetic

shift to the dimethyltelluride standard [210]. Density functional theory (DFT) calculations were

performed with WIEN2k [113] using Perdew, Burke, and Ernzerhof (PBE) exchange-correlation

potential, with spin-orbit coupling, a k-point grid of 15 × 15 × 4, and atom positions from ex-

periment [211]. Calibration of calculated 125Te chemical shifts was based on the computed ZnTe

shift [212].

8.4 Experimental Results

8.4.1 Line shapes and shifts

Fig. 8.2(a) shows a room-temperature 125Te NMR spectrum (I = 1/2), with peaks labeled

corresponding to the three Te sites: apical (Tea), dimer (Ted), and zigzag (Tez) [Fig. 8.1]. Fig. 8.2(b)

displays spectra vs temperature. Note that the number of nuclei in the expected topological edge

states is negligible compared with that of the bulk so that the spectra represent the bulk. Fig. 8.2(c)

shows shifts obtained by fitting to three Gaussian peaks. Site assignments aided by DFT will be

discussed below.

While the Ted and Tea sites show similar behavior, steadily decreasing with temperature, Tez

behaves somewhat differently, with a consistently larger line width, and about 25% smaller spectral
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Figure 8.2: (a) Aligned crystal room-temperature 125Te NMR spectrum for ZrTe5. (b) Temperature
dependence to 4.2 K. Dashed lines: guides to the eye. (c) Fitted shift vs temperature for 3 sites.
(d) Calculated band gap at Γ and chemical shifts vs b and c crystal dimensions. Dashed line
represents band inversion position. (e) Band structures calculated just below inversion point and
for experimental lattice parameters.

area than expected. With the ZrTe3 chain believed to act as a rigid frame [211], small separations

and distortions of the layers apparently affect most strongly the zigzag sites causing the enhanced

broadening.

8.4.2 Spin-lattice relaxation

Spin-lattice relaxation, measured by inversion recovery, could be well fitted to a single ex-

ponential M(t) = (1 − Ce−t/T1)M(∞), giving 1/T1T values shown in Fig. 8.3. The observed

minimum can be regarded as indicating a density of states minimum at EF for this temperature. In

metals, 1/T1T is often dominated by s-electron Fermi contact and proportional to g2(EF ). How-

ever, with Dirac and band-edge states in ZrTe5 dominated by Te p states [75], core polarization and

dipolar hyperfine coupling would be expected to play more important roles. In most cases, these

terms cause significant site dependence. Instead, the behavior shown in Fig. 8.3 is independent of

site near the minimum.
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Figure 8.3: 1/T1T vs temperature for Ted site. Upper curve: Eg = 0, that is, gapless Dirac
semimetal in the whole temperature range, which overestimates 1/T1T except near the Lifshitz Tc.
Lower curve: Eg = 60 meV, which matches the data far from Tc. Inset: 1/T1T vs temperature for
all sites, showing similar relaxation characteristics.

8.5 Discussion

8.5.1 Relaxation in Dirac electron system

A recent model of spin-orbit-based NMR relaxation in 3D Dirac and Weyl systems accounts

for this behavior very well. In this theory [213,214], fluctuations in Dirac-type orbital currents are

responsible for the relaxation. The orbital hyperfine interaction introduces a 1/k2 contribution to

the momentum sum determining 1/T1T [102, 213], thus connecting to fluctuations that are more

extended in space than the typical local contributions, explaining the site-independence. The result

is a quadratic 1/T1T minimum vs chemical potential (µ) in the zero-T limit as the Dirac point is

traversed. This model was also applied to TaP [102], where µ pinned to a Weyl point leads to T 2

behavior. Here I show that this applies to the analogous case of Dirac electrons with a small gap,

with µ steadily advancing through the Dirac point.
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For massive Dirac fermions, the orbital contribution is [214]

1

T1T
=

2π

3
µ2

0γ
2
ne

2c∗4 ×
∫ ∞
−∞

dE

[
− ∂f(E, µ)

∂E

]
g2(E)

E2
ln

2(E2 −∆2)

ω0|E|
, (8.1)

with E = ±
√
c∗2k2 + ∆2. In addition, f(E, µ) is the Fermi function, and g(E) is the Dirac

electron density of states,

g(E) =
|E|
√
E2 −∆2

2π2c∗3
θ(E2 −∆2), (8.2)

with θ(E2 −∆2) a step function enforcing no states in the Eg = 2∆ gap. The result is

1

T1T
=
µ2

0γ
2
ne

2kBβ

6π3c∗2h̄3 ×
∫

|E|≥∆

dE
(E2 −∆2) ln[2(E2 −∆2)/h̄ω0|E|]

4kBT cosh2[(E − µ)/2kBT ]
, (8.3)

where β is an overall scale factor [102] accounting for details of the Bloch wavefunctions.

8.5.2 T-dependent band gap

In fitting 1/T1T , I assumed µ is positioned in the conduction band at low temperature, and

advances through the Dirac point as T increases, consistent with the observed n- to p-type change

[208,215] as well as ARPES measurements [89]. By numerically integrating Eq. (8.3), I found that

a linear decrease in µ vs T gives results that agree with the higher-temperature data, but only with

the gap set to 2∆ ≈ 60 meV. However, close to the minimum, the smaller curvature indicates a gap

approaching zero. This is illustrated in Fig. 8.3 for the Ted site with gapless and gapped (Eg = 60

meV) cases shown by the labeled curves, with a very small 1/T1T = 0.009 s−1 K−1 term added to

account for other relaxation contributions. In the calculation, I replaced c∗3 by the product of the

three experimental Fermi velocities reported by Tang et al. [74], leading to c∗ = 2.1 × 105 m/s.

The fitting at high temperatures gives β = 5.6 × 106, which can be compared to β = 8.6 × 106

reported for the Weyl case for TaP [102]. β and c∗ appear only in the prefactor of Eq. (8.3); their

variation leads to a small scaling of the overall Eg results without affecting the final results in a

significant way.

Within this model, I set µ = α(T − Tc) and fitted ∆ vs T . This yielded α = −5kB, Tc = 85
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Figure 8.4: (a) Fitted band gap vs temperature obtained from 1/T1T for Ted and Tea sites. Solid
curves: guides to the eye. (b) Schematic of T -dependent chemical potential and band structure. (c)
Relation between resistance and electronic structure, with WTI (shaded region) and STI as labeled.
The boundary is the Dirac semimetal state. (d) Phase diagram obtained by DFT calculations.
Symbols are calculated points, shaded according to band inversion. Arrow indicates experimental
thermal increase of lattice parameters and boundary corresponds to the topological phase transition.
Circled point: room temperature lattice parameters [211].
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K, and Eg vs temperature shown in Fig. 8.4(a), clearly indicating a gap closing and opening. The

closing point occurs at or very near Tc, where µ crosses between bands. Results for Ted and Tea

sites are quite similar as shown in the plot. The Tez shift crossover prevented T1 measurement in

the immediate vicinity of Tc, although its behavior away from Tc is similar to that of the other sites.

These results agree well with those of Xu et al. [88], although I find a larger high-T gap. Also note

that the fit shows that µ is positioned in the Dirac bands, rather than in the gap both above and

below Tc.

For ZrTe5, it is well-known that its carrier type changes from n to p type when temperature

increases [208], which is also strongly related with a Lifshitz transition [216]. However, µ(T ) ap-

pears to have larger T -dependence than expected for such a case with a small carrier concentration

change and fixed density of states. The reason behind it is unclear, and it is possibly due to a great

temperature sensitivity in Van der Waals layered structure of ZrTe5.

8.5.3 Topological phase transition

There have been several recent reports [74, 83, 84, 86, 89, 217] from Berry phase and surface

imaging showing that the low-T phase is a weak, rather than strong, TI. Based on these results, I

can infer that the Lifshitz transition observed here corresponds to a change from WTI to STI as

temperature increases. This is the reverse of what was initially proposed [77, 78], and provides a

clearer picture of the topological phase transition.

DFT calculations confirm that the inversion proceeds from WTI to STI as T increases. I ini-

tially scaled only b, and obtained DFT results equivalent to those of Ref. [77], with a gap closing

at b = 14.8 Å, and reopening with reversed parity at Γ. It was shown [77] that this corresponds to

a change from STI to WTI with increasing b. Similar results were obtained in Ref. [78]. However,

I note that the experimental thermal expansion [211] for b and c are essentially equal and much

smaller for a. Thus, I examined the case of b and c scaled equally with a held constant. The result,

shown in Fig. 8.2(d), is that the gap closes at b = 14.31 Å, c = 13.51 Å, for smaller instead of

larger b. Fig. 8.4(d) shows schematically an inferred phase boundary connecting the two inversion

points identified this way. The parity of the band edges at Γ is reversed at both inversion points.
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With the STI to WTI transition already demonstrated for the horizontal path in Fig. 8.4(d), the

second inversion at Γ also requires a change of the strong Z2 index and thus transition between

STI and WTI [218].

Between 293 and 10 K, b changes from 14.53 to 14.47 Å [211], with a corresponding reduction

of c. This range does not include the predicted crossing, however use of other exchange potentials

may lead to adjustment of the predicted crossing point [75]. In addition strongly n-type CVT

crystals are reported to have smaller lattice constants [208] making it appear likely that thermal

expansion indeed drives the topological transition illustrated in Fig. 8.4(d). This explains why

the topological transition appears at higher temperatures in n-type materials with reduced lattice

parameters. It also suggests that p-type crystals, reported to be semiconducting at all temperatures

[208, 216], are also STI down to zero temperature.

8.5.4 Two-band model

The difference between the Lifshitz transition temperature Tc and n-p transition temperature

Tp can be well explained by a two-band model [208, 216] as shown in Fig. 8.4(b). While the

Lifshitz transition occurs when µ passes through the Dirac point, carriers are also transferred to

other minima, especially the one between Y and X , which is nearly degenerate with the Dirac

point [Fig. 8.2(e)]. This is illustrated in Fig. 8.4(c) along with the measured resistance anomaly:

(i) Below Tc, there is n-type metallic behavior with µ in the Dirac and secondary conduction bands.

(ii) At Tc, µ is at the Dirac point, which transits to a gapless semimetal state. With µ also crossing

the secondary band edge, the carriers remain n-type due to states at the parabolic minimum. (iii) µ

moves away from the secondary conduction band edge, giving the n-p transition and the resistance

anomaly. (iv) Increasing temperature produces metallic p-type behavior.

The carriers in the secondary minima will induce NMR Knight shifts (K) through their on-site

spin interactions. However, based on the observed resistivity maximum, it can be estimated [208]

that our crystals have n ≈ 1 × 1018 cm−3. For such carrier densities I estimate a contribution to

K which is negligible compared to the observed T -dependent shifts; see for example computed

Te shifts for Bi2Te3 in Ref. [219]. Thus, the observed T -dependence must be caused by Knight
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shifts associated with Dirac electron spins, and/or on-site chemical shifts (δ) due to the induced

paramagnetic response of the valence band.

For Dirac electrons, it was recently shown [213] that a significant dipole-generated K could

be expected. The limiting contribution is proportional to µ away from the Dirac point, thus linear

in T for the present case, with sign changing as the Dirac point is traversed. The dipole hyperfine

field includes an angle-dependence which can lead to different magnitudes on each site, however,

it seems likely that the nearly equivalent linear-T behavior for the Ted and Tea shifts is due to the

Dirac electrons, with a smaller contribution for Tez. Since these contributions vanish at Tc where

µ goes through zero, the underlying chemical shifts can be identified from the shifts at this point.

8.5.5 DFT calculation on chemical shift

DFT calculations of δ are shown in Fig. 8.2(d), vs changes in b and c. The shifts for Ted and

Tez are nearly identical, while for Tea the result is about 500 ppm more negative. This agrees with

the observed shifts at Tc, except for an overall negative shift. Although exchange potentials such as

mBJ are expected to better reproduce the experimental shifts as opposed to PBE [212], the relative

positions are thus rather close to what is observed. The calculated change in δ vs lattice expansion

is relatively small, indicating that Dirac electrons are the dominant source for the observed linear

T dependence. However, the step-like change in Tez shift at the inversion point is reproduced in

the calculation of δ, which helps to confirm the site identification of NMR lines.

With δ associated with a local Van Vleck-type susceptibility due to partially filled Te p states

[172], the step-like change in δ also indicates a rearrangement of filled orbitals at Tc. The proposed

band inversion was originally explained [75] in terms of a change in stabilization of p orbitals on

Tez and Ted sites. An associated change in orbital occupation thus will modify δ, and this demon-

strates that the NMR shifts in this case provide a direct measurement of the topological inversion,

and thus further confirmation of the orbital interchange involved in the ZrTe5 transformation. There

are few techniques providing a local measurement of atomic symmetry; thus this can be a signifi-

cant capability for probing quantum materials.
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8.6 Summary

In this chapter, NMR techniques combined with DFT calculations are used to explore the elec-

tronic structure and topological nature of ZrTe5. Results show a temperature dependence of the

band gap of ZrTe5. The Dirac band gap closes and reopens at a Lifshitz transition (about 85 K)

with temperature increasing, which corresponds to a topological phase transition from weak to

strong topological insulator. Besides reporting the results of ZrTe5, it also shows that the NMR

technique such as spin-lattice relaxation results can provide a very sensitive measure of the Dirac

electrons involved in this transition. DFT calculations give further details about this band inversion,

providing a better understanding of the topological phase transition. The observed shift change of

Tez site at Tc give direct evidence of the band inversion of symmetry occurring at the topological

phase transition point.
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9. TOPOLOGICAL CHALCOGENIDE ZrTe2
∗

9.1 Introduction

In this chapter, I have studied ZrTe2 using NMR techniques combined with DFT computations,

revealing its topological nature and electronic properties as a quasi-2D topological dichalcogenide.

The material was prepared and measured by myself in our lab at TAMU. The DFT calculations

were done by my labmate Dr. Nader Ghassemi. The measured shifts and spin-lattice relaxation

rates for both B ‖ c and B ⊥ c orientations have been measured, which show that the layered

dichalcogenide ZrTe2 presents Dirac quasi-2D features associated with a nodal line extending in

the direction perpendicular to the layers.

9.2 Sample Preparation

The ZrTe2 single crystals (crystal structure shown in Fig. 9.1) were prepared using chemical

vapor transport. The stoichiometric mixture of Zr and Te powder was sealed in a quartz tube with

iodine being used as transport agent (2 mg/cm3). Plate-like single crystals with metallic luster were

obtained via vapor transport growth with a temperature gradient from 950 ◦C to 850 ◦C. Cameca

SXFive microprobe measurements indicate a uniform phase Zr0.99Te2.

9.3 Experimental and Computational Methods

NMR experiments utilized a custom-built spectrometer at a fixed field B ≈ 9 T. Many indi-

vidual crystals were stacked with the c axes aligned and the sample was measured with the field

parallel to c (B ‖ c) and in the basal plane (B ⊥ c). The a axis orientation was not identified for

these crystals. 125Te (nuclear spin I = 1/2 and gyromagnetic ratio γ = −8.51 × 107 rad s−1 T−1)

shifts were calibrated by aqueous Te(OH)6 and adjusted for its δ = 707 ppm paramagnetic shift to

the dimethyltelluride standard [210].

The band structure and density of states calculations were carried out in the framework of the

∗Part of this chapter is reprinted from Ref. [220] (Y. Tian, N. Ghassemi, and J. H. Ross, Jr., “Topological nodal
line in ZrTe2 demonstrated by nuclear magnetic resonance,” Phys. Rev. B, vol. 102, p. 165149, Oct 2020.) with
permission from APS.
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Figure 9.1: Crystal structure of 1T-ZrTe2 with P-3m1 space group, showing van der Waals-bonded
layered structure.

density functional theory (DFT) by employing the APW plus local orbital (APW+lo) method [221]

with the PBE potential [165] as implemented in the WIEN2K code [113]. A mesh of 1000 k-

points was employed in the irreducible wedge of the hexagonal Brillouin zone [see Fig. 9.4(d)]

corresponding to the grids of 10 × 10 × 10 in the Monkhorst-Pack [222] scheme. The cutoff

parameter of kmax = 7/RMT inside the interstitial region was used for the expansions of the wave

functions in terms of the plane waves.

9.4 Experimental and Computational Results

9.4.1 Shift

Consistent with the single local environment for Te in the 1T-ZrTe2 structure, there is only one

peak observed in the 125Te spectra as shown in Fig. 9.2(a). The angular dependence of the NMR

shift (with θ defined between the ab layer and the magnetic field B) is shown in Fig. 9.2(b). The

room-temperature shift was fitted [red curve in Fig. 9.2(b)] to

K = Kiso +
3 cos2 θ − 1

2
·∆K, (9.1)
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(c)

(d)

(a) (b)

Figure 9.2: (a) 125Te lineshapes of ZrTe2 at room temperature. (b) Angular dependence of shift
at room temperature. The red solid curve is a fit to Eq. (9.1). Shift vs temperature for (c) B ‖ c
(magnetic field perpendicular to the layers) with linear and ln(T ) curves as guides to the eye and
(d) B ⊥ c (magnetic field parallel to the layers).

whereKiso = 2767±3 ppm is the isotropic shift and ∆K = −530±4 ppm. By symmetry, the shift

will not depend on orientation in the basal plane, which is confirmed by the absence of additional

inhomogeneous line broadening for this orientation [Fig. 9.2(a)]. Ref. [223] gives δiso = 1825

ppm with Te(OH)6 as reference, which corresponds to 2532 ppm, a similar shift as reported here,

considering the large width measured in Ref. [223].

Figs. 9.2(c) and 9.2(d) show the temperature dependence of the 125Te shift for B ‖ c and B ⊥ c

(K‖c and K⊥c), respectively. The shifts were obtained by identifying the highest intensity position

of the measured single-peak 125Te spectra. Both K‖c and K⊥c decrease monotonically vs T , with

Kiso corresponding to the linear fits [shown in Figs. 9.2(c) and 9.2(d)] changing by 0.34 ppm/K.

At low T , K‖c shows a sharp decrease as T approaches zero, while for K⊥c, there is a clear change

in the opposite direction close to 50 K, where the shift is nearly temperature independent. These

results are indicative of quasi-2D Dirac-node behavior as is discussed in Sec. 9.5.1.

The carrier concentration shown in Ref. [93] is in the order of 1019 cm−3, which presents the

fact that the large measured shifts are mostly chemical shifts due to electronic states away from

the Fermi energy (εF ); however, the temperature-dependence is dominated by Knight shifts due to
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Figure 9.3: 1/T1T vs T for both orientations B ‖ c (perpendicular to the layers) and B ⊥ c
(parallel to the layers). Inset: 1/T1T vs T in log scale.

carriers at εF , and for convenience I label observed shift, which is the sum of these shift terms, as

K.

9.4.2 Spin-lattice relaxation

Spin-lattice relaxation results, measured by inversion recovery, could be well fitted to a sin-

gle exponential M(t) = (1 − Ce−t/T1)M(∞), giving 1/T1T values shown in Figs. 9.3(a) and

9.3(b). The results decrease rapidly at low temperatures as T increases, especially (1/T1T )‖c,

which changes rather quickly at temperatures near 15 K. Near 50 K, which is also the tempera-

ture at which K⊥c exhibits a change in behavior, the relaxation results also exhibit a characteristic

change, with 1/T1T leveling off, and 1/T1T exhibiting a minimum near 40 K and then steadily

increasing. In metals, 1/T1T is often dominated by s-electron Fermi contact and proportional to

g2(εF ). However, similarly to ZrTe5 [75] I find that the Dirac states in ZrTe2 are dominated by Te

p-orbitals, along with Zr d-states, as confirmed by the DFT results which are described in the next

section. These produce a dominant orbital contribution to the 1/T1T , and I will further demonstrate

that the largest term is due to the high-mobility Dirac carriers.
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pz px + py

Figure 9.4: Band structures of ZrTe2 with spin-orbit coupling, with superposed circles showing
weights for (a) px+py and (b) pz Te orbitals. The dashed lines represent the Fermi level. The circle
size represents the partial state density of Te. (c) Density of states for ZrTe2. (d) 3D view of the
hexagonal Brillouin zone with high-symmetry points. (e) Sketch of discrete nodal line between Γ
and A.

9.4.3 DFT computations

From reports by several groups [91–93,99–101], there have been some conflicts about the topo-

logical nature of ZrTe2 as detected in DFT results. Ref. [101] suggests a semimetallic state of ZrTe2

without any topological nature. Ref. [93] suggests ZrTe2 is a topological semimetal, consistent with

its ARPES results. Both Refs. [92, 93] indicate a Dirac point at Γ with the Dirac node close to the

chemical potential and an electron pocket at M in the conduction band. The lattice parameters

used in Ref. [93] are about 1-2% expanded from experimental values. However, these parameters

were obtained from a DFT energy optimization, and they provided an approximate match for the

reported ARPES results, with the calculated Dirac node roughly 0.5 eV higher in energy than what

is actually observed by ARPES, and with larger calculated overlaps of the pockets at L and M than

what is observed. Ref. [101] included a correction for the van der Waals interaction, leading to a

much smaller overlap at the L and M points; however, a large gap opened throughout the Brillouin

zone, in seeming contradiction with magnetotransport results [224] as well as APRES results [93].

It is likely that the well-known difficulty in predicting band energies near the gap in standard GGA

functionals such as PBE is responsible for the discrepancies between the calculated results and the
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observation. In TMDCs specifically DFT is well-known to underestimate the band gaps [225,226].

For further investigation I used the lattice parameters of Ref. [93] (a = 3.909 Å and c = 6.749 Å)

for DFT calculations, with the understanding that the εF position is much closer to the Dirac node

than predicted.

Results of the DFT calculations, with spin-orbit coupling included, are shown in Figs. 9.4(a)-

(c). The nearly-dispersionless band from Γ to A connects to Dirac-like features at Γ (as previously

identified [92, 93]) and also at A, and this band is doubly degenerate except for a gap of about 20

meV very close to Γ, identified [93] as associated with a band inversion. The mapping in reciprocal

space, and a schematic of the nodal line between Γ and A, are demonstrated in Figs. 9.4(d) and

9.4(e). Note that this differs from the "nodal loop" pictured in Fig. 1.3; the closed-loop Dirac

node is sometimes also called a nodal line. Here the nodal line is straight and extends across the

Brillouin zone. Also note that the partial DOS results show that Te p-orbitals mostly locate at these

Dirac bands away from the node while Zr d-orbitals dominate at the node itself, and the Zr orbitals

dominate the electron pockets at L and M. There is also a separate high-dispersion band crossing

Γ just below the node energy.

As an estimate of the Fermi velocity for the Dirac nodal line, I analyzed the linear slope in the

Γ-M and A-L directions leading up to the nodal line according to ε = h̄vFk, and obtained 6.9 and

6.5 × 105 m/s. Based on these values, which are typical for Dirac semimetals [72], I will use the

mean value, 6.7 × 105 m/s, for further analysis of the Dirac-carrier behavior. A similar value was

estimated for the monolayer case [92]. The extra pockets at L and M contain ordinary electrons,

and the existence of both Dirac and ordinary electrons at εF leads to additional complexity in this

case, although experimental indications [92, 93] point to a much smaller overlap between the M

pocket and the Dirac valence band than what is calculated. With the
√
ε type density of states near

εF dominated by the M pocket I fitted to g(ε) =
√

(2ε(m∗)3)/(π2h̄3) and obtained an estimate of

m∗ = 1.7me for this pocket. In the model discussed in Sec. 9.5.1, the position of Fermi level is

near the edge of this pocket, and very close to the nodal line.
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(a) (b) (c)

Figure 9.5: (a) Sketch of Dirac band and electron pocket. (b) Simulated shifts for both orientations.
Inset: chemical potential vs T . (c) W = 1/2T1 is the dipolar and orbital relaxation rates divided
by 2π(γeγnh̄

3/2)2g2(εF )kBT 〈r−3〉2. α is the mixture of orbitals (px + py) vs pz.

9.5 Discussion and Analysis

9.5.1 Knight shift

As shown in Figs. 9.2(c) and 9.2(d), there is an obvious difference between the measured shifts

of B ‖ c and B ⊥ c orientations, especially at low temperatures. The observed low-T divergence

for K‖c follows approximately a ln(T ) curve, characteristic of the divergent orbital susceptibility

for Dirac semimetals [102,214], although the absence of the corresponding behavior forK⊥c points

to a quasi-2D Dirac semimetal rather than 3D point-node behavior.

To analyze this situation, first I note that the shifts will be largely due to the dominant p-

electrons for Te in ZrTe2, contributing a combination of core polarization and spin-dipolar shifts,

which are due to electron spin mechanisms, as well as orbital shifts, with the latter likely dominated

by the large bulk orbital response of the Dirac electrons rather than due to local orbitals. The core

polarization mechanism normally contributes an isotropic shift (the same sign for both orientations)

and the spin-dipolar, anisotropic shift [second term in Eq. (9.1)]. However, the absence of divergent

behavior for B ⊥ c points to a different physical mechanism for the two orientations rather than

shift anisotropy, and thus, I analyze the B ‖ c divergence in terms of the spin response of quasi-2D

Dirac electrons due to the separation of Landau levels with B ‖ c, plus an orbital shift dominated
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by quasi-2D orbital currents confined to the basal plane.

For quantitative comparison, first I consider the case of a 3D point node. The Knight shift due

to the orbital interaction in a 3D massless Dirac electron case can be expressed as [214],

K = K0 −
[
µ0vF e

2

6π2h̄
ln

(
W

max{kBT, |µ|}

)]
(1−ND), (9.2)

where K0 is a T -independent term, µ is the chemical potential measured from the Dirac node,

W is a bandwidth cutoff and ND is demagnetizing factor. ND can be significant for the orbital

hyperfine contribution of extended Dirac carriers, and in fact in the pure 2D limit the shift due to

this mechanism will vanish [227]. Note this is the low field case. For vF , I used vF = 6.7 × 105

m/s from the DFT results (Sec. 9.4.3). Considering the demagnetizing effect, the overall sample

size (around 2 × 2 × 0.5 mm3) implies a demagnetizing factor of approximately ND = 0.8 for

such a bulk-susceptibility contribution for the B ‖ c orientation. Using these values, and assuming

that kBT dominates in the logarithm of Eq. (9.2), I obtain a difference in shift of less than 1 ppm

between the temperatures 10 K and 100 K, much less than what is observed. Or, if changes in µ

are on the order of kBT , the results will be similarly small.

9.5.2 Quasi-2D model for Knight shift

As alternative I consider the shift due to the diamagnetic currents of a Dirac nodal line oriented

along the c direction. In this quasi-2D case, currents are confined to the basal plane, and the

diamagnetic response is equivalent to that of a 2D Dirac gas, for which I follow the treatment

used for graphene [228]. Also note that the effect vanishes for B ⊥ c, due to the absence of

high mobility circulating currents perpendicular to the plane. For ZrTe2 I modeled this system as

including a quasi-2D Dirac line, with the addition of a normal electron pocket crossing the node

energy (εnode), as indicated by DFT calculations and by ARPES measurements [93].

First, I calculate the chemical potential (µ). For the normal electron pocket I assumed an effec-

tive mass m∗/me = 1, close to the estimate for the pocket at M in DFT calculations (Sec. 9.4.3).

Also for the perpendicular Fermi velocity I used the result obtained from DFT, v⊥ = 6.7 × 105
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m/s, which in the 9 T NMR field perpendicular to the layers gives Landau-level energies εLL(N) =

±
√

(2eh̄v2
⊥B|N |) = ±73

√
(|N |) meV, and a volume density of carriers per spin level nLL =

B/(Φ0c) = 3.3 × 1018 cm−3, where Φ0 = 4.14 × 10−15 T m2 is the magnetic flux quantum. The

gyromagnetic ratio is not known for these carriers, so I assumed g = 2. Also I assumed that a fixed

density of carriers ntotal = 1019 cm−3 estimated from ARPES results [93] is divided between these

band features. To solve for the chemical potential I specified,

ntotal =

∫ ∞
0

f(ε, µ)gCB(ε)dε+

1/2∑
s=−1/2

∞∑
N=−∞

nLLf(εN , µ)− nLL −
1/2∑

s=−1/2

−1∑
N=−∞

nLL, (9.3)

where gCB(ε) =
√

(2εm∗3)/(π2h̄3) is the density of states in the normal-carrier pocket with its

minimum set to ε = 0, εN = εnode + µBgBs + εLL(N) represents the Landau level energies,

and f(ε, µ) = 1/[1 + e(ε−µ)/kBT ] is the Fermi function. The extra term nLL comes about because

the lower N = 0 level is derived from the hole states, and I apply level quantization only to the

Dirac states for which the large vF pushes these states into the quantum limit. In the finite sums,

I chose a very large cutoff for which the sums are numerically well-converged. In the B ⊥ c case

for which the Landau levels collapse, I replaced the sum over Landau levels in Eq. (9.3) with an

integral over the 2D Dirac density of states gD(ε) = |ε−εnode±µBgBs|/[πc(h̄v⊥)2] per spin, also

normalized for hole states similarly to the last term in Eq. (9.3). Solving for µ(T ), I obtained the

results shown in the inset of Fig. 9.5(b), for the case εnode = 12 meV. Because of the significant

carrier density nLL at each Landau level energy including N = 0, the B ‖ c field tends to pull µ

into εnode at low temperature [229], as can be seen from the results shown in the inset of Fig. 9.5(b).

Recently anomalous magnetotransport effects were also identified in a layered Dirac material due

to field-induced alignment of the chemical potential [230].

I next calculate the diamagnetic susceptibility, χ = µ0∂M/∂B, and its contribution to the

NMR shift, K = χ(1−ND). The magnetization for B ‖ c is M = −(1/V )∂Ω/∂B [228] with the
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grand potential volume density given by

Ω/V = −kBTnLL

m∑
N=−m

ln[1 + e(εN−µ)/kBT ], (9.4)

with m a numerical cutoff for the sum. For numerical calculation of the B derivative, I adopted the

method described in Ref. [228] to normalize for the B-dependence caused by the numerical cutoff

m. Using the µ(T ) results shown in the inset of Fig. 9.5(b), I thus arrived at an estimation of χ for

the B ‖ c case. For the B ⊥ c case, the diamagnetic contribution is zero since there is no splitting

into Landau levels. Using the demagnetizing factor ND = 0.8 estimated for our sample for B ‖ c,

I arrived at the bulk-diamagnetic contribution to K‖c shown by the dashed curve in the main plot

of Fig. 9.5(b). Note that in the B-derivative of Ω/V I included changes in nLL and εLL(N), but not

in the numerical solutions µ(T ). The difference should be small, since for most of the temperature

range the CB pocket determines the position of µ, while at low temperatures the results have the

linear-T behavior equivalent to the case that µ is fixed at εnode [228], due to the pulling effect of

the magnetic field.

To calculate the spin contribution to the shift, I first calculated the Dirac-electron spin density

as

nspin =

1/2∑
s=−1/2

2s
∞∑

N=−∞

nLLf(εN , µ), (9.5)

both for B ‖ c and B ⊥ c using the corresponding µ(T ) values shown in the inset of Fig. 9.5(b).

Assuming the core-polarization hyperfine contribution dominates for the Te p-electrons participat-

ing in the Dirac node, I used the estimated [137] hyperfine field BHF
cp = −15 T in calculating the

spin shift as Kspin = nspin(BHF
cp /9 T)(Vcell/2), with 9 T the applied NMR field and the sample vol-

ume per Te atom given by Vcell/2 = 50 Å3. The results were added to the calculated T -dependent

diamagnetic orbital shift, giving the spin+orbital result plotted in Fig. 9.5(b) (lowest curve). The

results are comparable to the observed shift behavior and have the same general temperature de-

pendence. Since there is considerable likelihood that g differs from 2 [231–234], I did not attempt

a quantitative fitting; however, it appears that this model correctly captures the low-T behavior,
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and that a combination of spin susceptibility and orbital diamagnetism, both strongly enhanced in

the quantum limit for the B ‖ c orientation, are responsible for the observations.

Comparing to the 3D case discussed earlier [Eq. (9.2)], I can thus understand the enhanced

effect for the quasi-2D case as due to two effects. First, the lack of Landau level dispersion in

2D means that the density of states is changed considerably by the field, which allows for a large

spin polarization since a large number of states is concentrated at discrete energies. Secondly, this

concentration of states in energy also enhances the diamagnetic response obtained from Eq. (9.4).

Also note that the estimated µ(T ) obtained from Eq. (9.3) [Inset of Fig. 9.5(b)], should be little

changed in the 3D case because of the large role of gCB(E), and indeed these changes in µ(T ) are

on order of kBT , confirming the estimate in Sec. 9.5.1 of the small expected shift in that case.

Note that in the DFT results (Fig. 9.4), a small dispersion appears in the nodal line, with the

changes covering a range of approximately 20 meV between Γ and A. To model the effect of this

behavior, I added a simple linear dispersion to the εnode position. This was done by modifying the

sum over Landau level numbers N in Eqs. (9.3)-(9.5), replacing the summands having fixed εnode

by an integrated square distribution covering a range εnode ± 10 meV, and repeating the numerical

calculations described above with otherwise identical parameters. This yielded the spin+orbital

shift result shown in the dotted curve in Fig. 9.5(b): the main effect is a softening of the spin

contribution as T approaches zero; however, the calculated magnitude is similar to that of the

completely dispersionless case.

9.5.3 Relaxation mechanisms

The low-T 1/T1 results exhibit an anisotropy and temperature dependence which does not

match the corresponding behavior of the measured shifts. Thus, I expect the T1 behavior is not a

result of a Korringa-type spin contribution [172] which would be expected in that case. However,

in contrast to the spin contribution, the orbital shift and T1 are not governed by a Korringa relation

[102], and the behavior in the low-T limit matches what is predicted [214, 235] for the quasi-2D

orbital case due to a mechanism governed by high-mobility carriers which I denote here as the

extended orbital mechanism, since carriers far from the nucleus dominate this process. For the
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quasi-2D free-electron gas (i.e., metallic layers where the electrons behave as a 2D free-electron

gas), Lee and Nagaosa obtained the relaxation rates due to this mechanism when the magnetic

field is applied parallel and perpendicular to the layers [235], which corresponds to a ratio between

(1/T1T )‖c and (1/T1T )⊥c of 2:3. As shown in Fig. 9.3, excluding a T -independent background,

the low-T (1/T1T )‖c and (1/T1T )⊥c reaches a ratio close to 2:3. Thus, the low-T behavior can be

modeled using the extended orbital scenario.

For a quasi-2D Dirac system, the extended orbital contribution can be expressed as [214]

(
1

T1T

)
⊥c

=
3

2

(
1

T1T

)
‖c

=
µ2

0γ
2
ne

2kB
(4π)2

∫
|E|>∆

dE

[
− ∂f(ε)

∂ε

]√
ε2 −∆2

h̄2cvF
ln

2(ε2 −∆2)

h̄ω0|ε|
, (9.6)

with ε = ±
√
vF 2k2 + ∆2 and c the distance between nearest neighbor layers. In addition, f(ε) is

the Fermi function and Eg = 2∆ is the gap. In the low-T limit assuming ∆ is small, this readily

evaluates to (µ0γne)2

(4π)2
kBµ
h̄2cvF

ln( 2µ
h̄ω0

). Comparing to the result [214] for a 3D point node in the same

limits, 8π
3

(µ0γne)2

(4π)2
kBµ

2

h̄3v2
F

ln( 2µ
h̄ω0

), 1/T1T for the quasi-2D case is the same as the 3D case multiplied

by a factor 3
8π

h̄vF
µc

. Taking µ = 10 meV, vF = 0.67 × 106 m/s, and c = 6.7 Å for ZrTe2, this is a

factor of 7, with the quasi-2D situation enhanced essentially because of the increased phase space

for the scattering phenomena leading to Eq. (9.6), which can include events with ∆k covering the

entire Brillouin zone in the direction perpendicular to the layers. With the low-T (1/T1T )⊥c larger

by a factor of about 10 as compared to that of the comparable point-node material ZrTe5 [96], this

indeed makes it plausible that the extended-orbital mechanism for high-mobility Dirac electrons is

the dominant mechanism at low temperatures. In the low-T limit, the ratio (1/T1T )⊥c/(1/T1T )‖c

is smaller than the expected 3/2 given by this model; however, note that Eq. (9.6) was derived in the

low-field limit, and it seems possible that such effects might renormalize the (1/T1T )‖c results. In

addition, while the normal-electron pocket at M is strongly dominated by Zr d-orbitals, a nonzero

contribution due to Te states might also lead to a slowly varying background contribution to 1/T1T .

As shown in Fig. 9.5(b), I determined that Dirac spins can give a considerable contribution to

Knight shift due to core polarization combined with Landau level splitting for B ‖ c. However,
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I expect the core polarization mechanism to give a rather negligible contribution to 1/T1T . This

can be seen from the Korringa relation [137] which can provide an approximate upper limit for the

spin 1/T1T . For 125Te, the Korringa relation will be, (1/T1T )spin = K2
spin/[2.6 × 10−6 (s K)−1],

and with |Kspin| at low temperatures determined to be somewhat less than 100 ppm, choosing 100

ppm yields a limiting value (1/T1T )spin = 4 × 10−3 (s K)−1. This is considerably smaller than

what is observed. Note also that in the low-T limit where the Dirac spins are heavily polarized, the

probability of spin-flip scattering can be reduced, further limiting 1/T1T . However, the extended

orbital 1/T1T due to high-mobility electrons is not connected to the shift via a Korringa relation,

and from these considerations I determine that the spin-lattice relaxation rate of ZrTe2 is dominated

by this orbital contribution. These results will extend across the whole temperature range.

As the temperature increases past 10 K, (1/T1T )‖c drops rather suddenly, reaching a minimum

at about 40 K. This also coincides with a reported drop in the Dirac-carrier mobility, before the

high-T regime sets in with different behavior [224]. I believe that the change in (1/T1T )‖c can be

understood in terms of carrier scattering effectively reducing the dimensionality of the relaxation

mechanism. Ref. [156] shows that the orbital 1/T1T process due to high-mobility electrons, which

relies upon a logarithmic divergence in the hyperfine coupling mechanism at large distances, will

begin to cut off at a distance corresponding to the mean free path (`) as the scattering rate increases,

so that 1/T1T becomes proportional to ln(`). With little or no dispersion for the nodal-line carriers

in the direction perpendicular to the layers, the mean free path will certainly be highly anisotropic.

Once this length becomes considerably reduced, 1/T1T will go over to the 2D case, for which the

extended orbital (1/T1T )⊥c is unchanged but (1/T1T )‖c in this mechanism vanishes [214, 227].

This is not to say that the layers become completely decoupled; a large reduction in mean free path

is sufficient for this change to occur.

Above the minimum, (1/T1T )‖c again starts to increase. As seen in the inset of Fig. 9.5(b),

the increase vs T is also accompanied by a drop in chemical potential to maintain charge balance

given the large gCB(ε) contribution. As shown in Figs. 9.4(a) and (b), there is a split-off band at Γ

just below the Dirac node, which is more strongly dominated by Te p-electrons. As µ decreases,
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holes will begin to appear in these states, with a significant effect on the 125Te NMR because of

their orbital weight. Aside from the 1/T1T changes, there is also a change of character for the

T -dependence of K, with a small increase in shift appearing for B ⊥ c. This behavior matches

the observed change in magnetotransport behavior at these temperatures [224], which I believe is

a Lifshitz transition corresponding to the chemical potential meeting this split-off band edge. To

understand the increase in (1/T1T )‖c at high temperatures, I show in the Appendix that in addition

to the extended orbital contribution, there is local orbital contribution [156] to 1/T1T , which does

not rely on logarithmic divergence at extended distances which will be larger for the B ‖ c orien-

tation as long as the Te pz contribution exceeds the Te px and py contributions [Fig. 9.5(c)], which

seems to be the case here. Therefore, the high-temperature behavior can be understood in terms of

an enhanced local-orbital contribution of 1/T1T , dominated by the split-off band which comes into

play at higher temperatures, while the extended orbital contribution decreases as a consequence of

the large decrease in carrier mobility.

9.6 Summary

In this chapter, mainly NMR techniques were used to investigate the electronic and topological

properties of ZrTe2. The topological nature of transition metal dichalcogenide ZrTe2 is revealed

here as a quasi-2D Dirac semimetal with a nodal line between Γ and A. For magnetic fields per-

pendicular to the ZrTe2 layers, the measured shift can be well-modeled by a combination of orbital

shift and spin shift due to high mobility Dirac carriers. I also show that the low-temperature behav-

ior of the spin-lattice relaxation rate can be explained through a quasi-2D Dirac electron model.

In the intermediate temperature range, an increase in scattering of the Dirac carriers is applied to

interpret the observed fast drop of the spin-lattice relaxation rate for the B ‖ c orientation. With

temperature further increasing, the local orbital contribution starts to dominate the spin-lattice re-

laxation rate with the significant contribution of a split-off band.
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10. SUMMARY AND CONCLUSIONS

This dissertation describes studies of several materials which are of considerable current inter-

est. For this work, NMR studies have been used as the primary experimental tool, combined with

a number of additional experimental and computational techniques, as a highly sensitive way to

investigate the electronic behavior of these systems, providing for example a better understanding

of the band crossing behavior in topological chalcogenides, and the response of charge carriers

near the band edge in advanced thermoelectric materials. These studies may be used to design

improved materials for important practical applications such as enhanced thermoelectric cooling

or new quantum electronic devices.

The first studied family of thermoelectric materials is half-Heusler. I have applied various

techniques, mainly NMR spectroscopy including 93Nb, 59Co and 121Sb measurements, with the

support of magnetic, specific heat, Mössbauer measurements and DFT calculations. For pure

NbFeSb sample, the NMR shift and T1 results are consistent with heavily doped p-type behavior

at low temperatures. Below 200 K, NbFeSb shows a Korringa-type NMR response, and a Kondo-

related behavior below 80 K due to the interaction of carriers and local moments. Above 280 K, the

enhanced Knight shift and T−1
1 indicate increased carrier density across a very small gap of about

0.03 eV, which is associated with an empty impurity band due to acceptor states located a small

distance above the valence band maximum, with native p-type doping giving the low-temperature

metallic behavior.

For NbFeSb-based Ti-substituted Nb1−xTixFeSb samples, the measured spin-lattice relaxation

results are well-modeled in terms of an orbital contribution in good agreement with DFT calcula-

tions for NbFeSb. With increasing x, a deviation from the expected behavior was observed, which

is due to resonant valence band levels without contributing to transport results. NMR shift vs

x are also well-explained by a model combining carrier-concentration-dependent Knight shift and

composition-dependent chemical shift. The T -dependence of the satellite peak in the unsubstituted

NbFeSb Mössbauer spectrum provides a direct measure of charging of acceptor states in an im-
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purity band located around 30 meV above valence band edge, which is consistent with previously

measured NMR results.

Besides NbFeSb series, I have also investigated other unsubstituted half-Heusler samples (Zr-

CoSb, NbCoSn, and TaFeSb) using NMR as a local probe combined with DFT calculations. For

ZrCoSb, both 59Co and 121Sb shift and spin-lattice relaxation measurements show consistent results

indicating the excitation of carriers and the existence of impurity band right below the conduction

band. For NbCoSn and TaFeSb, both show Curie-Weiss-like behavior revealing paramagnetic-

type defects. The constant spin-lattice relaxation rates represent the partial Fermi-level DOS of the

probed site, indicating the metallic behavior across the measured temperature range. The param-

agnetic shifts can be understood as degenerate d bands splitting and mixing in the conduction and

valence bands. The observed trends of chemical shift vs electronegativity and lattice constant can

be connected to variations in the d-electron hybridization in half-Heuslers. The DFT computed

results give an overall reasonable prediction of NMR chemical shifts for half-Heusler materials.

The largest shifts are observed to exceed what is predicted, and I discuss a likely mechanism due

to electron-electron enhanced Van Vleck susceptibility.

The other thermoelectric family studied here is skutterudite. 59Co NMR and transport results

of filled skutterudites BaxYbyCo4Sb12 and AxCo4Sb12 (A = Ba, Sr) demonstrate the existence of

a shallow defect level below conduction band minimum. The NMR and transport results were

analyzed in a very general way allowing the Hall effect as well as Knight shift and T1 results

to be fitted numerically as the carriers slowly changed from metallic to non-degenerate situation.

These fits yield an effective mass in good agreement with predicted values and indicate that the

gradual changes in Hall coefficient observed at low temperatures in filled CoSb3 are associated

with a defect state positioned close to the conduction band minimum. Additionally, the measured

Seebeck coefficient data were also treated within the same general model and found to reasonably

agree with parameters derived from the other measurements.

Two topological chalcogenides included in this dissertation are ZrTe5 and ZrTe2. NMR is

shown to be an effective technique to reveal useful information, such as topological and electronic
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properties about topological materials. For the first topological chalcogenide material ZrTe5, its

electronic structure and topological nature were investigated using 125Te NMR technique combined

with DFT calculations. Results for the B ‖ a orientation show that the Dirac band gap closes and

reopens at a Lifshitz transition with temperature increasing, which corresponds to a topological

phase transition from weak to strong topological insulator. I also show that the NMR T1 results

provide a very sensitive measure of the Dirac electrons involved in this transition. DFT calculations

give further details about the band inversion, providing a better understanding of the topological

phase transition. The observed shift change of Tez site at Tc give direct evidence of the band

inversion of symmetry occurring at the topological phase transition point.

For transition-metal dichalcogenide ZrTe2, the topological nature of transition metal dichalco-

genide ZrTe2 is revealed here as a quasi-2D Dirac semimetal with a nodal line between Γ and A.

For magnetic fields perpendicular to the ZrTe2 layers, the measured shift can be well-modeled by

a combination of orbital shift and spin shift due to high mobility Dirac carriers. At low tempera-

tures, the measured spin-lattice relaxation rates can be explained through a quasi-2D Dirac electron

model. In the intermediate temperature range, the observed fast drop of the spin-lattice relaxation

rate for the B ‖ c orientation is shown to correspond to an increase in scattering of the Dirac

carriers. With temperature further increasing, the local orbital contribution starts to dominate the

spin-lattice relaxation rate with the significant contribution of a split-off band.
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APPENDIX A

STRETCHED-EXPONENTIAL SPIN-LATTICE RELAXATION ANALYSIS

This work includes an analysis of the stretched-exponential NMR T1 behavior due to paramag-

netic impurities combined with a single-exponential relaxation process. A full description of this

analysis procedure is as follows:

Tse and Hartmann [129] originally demonstrated that dilute paramagnetic impurities could

produce a relaxation function of the form S(t) = S0 exp[−(t/τ1)1/2], a result which is valid in the

long-time limit. This behavior is due to an inhomogeneous distribution of fluctuating fields due to

random positioning of paramagnetic defects. A given nucleus thus undergoes statistical behavior

corresponding locally to ordinary exponential relaxation. This superposition of nuclear responses

can be written,

S(t) = S0 exp[−(t/τ1)1/2] = S0

∑
i

ci exp[−t/(T1s)i], (A.1)

where the ci are a set of weighting factors corresponding to the distribution of exponential relax-

ation times (T1s)i, and the summation in Eq. (A.1). represents a discrete approximation to the

continuous inhomogeneous distribution.

We examine the situation where this is combined with a second uniform relaxation process due

to metallic electrons, which alone would produce a relaxation function S(t) = S0 exp[−(t/T1,exp)].

Since for locally exponential processes the rates will add, we obtain the combined relaxation func-

tion,

S(t) = S0 exp[−(t/T1,exp)]
∑
i

ci exp[−t/(T1s)i]. (A.2)

To obtain the parameters for the summation in Eq. (A.1), we chose seven (T1s)i values which

were initially logarithmically distributed over 4 orders of magnitude, and fitted to the stretched

exponential exp[−(t/τ1)1/2] by performed a least squares minimization of the parameters (T1s)i

and ci, the result being a sum of exponentials with single effective parameter τ1 which could be
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Figure A.1: Saturation-recovery plots for three temperatures, (a) 151 K, (b) 155 K, and (c)
160 K, with fitted curves described in text. Stretched exponentials alone (fitted curves with
exp[−(t/T1,exp)] removed) are also shown for comparison.

varied by scaling all (T1s)i values by an identical factor.

Results of the fitting process are shown in Fig. A.1, for the three temperatures near the observed

relaxation peak. As explained in the main text, we obtained τ1 from the paramagnetic impurity

density and moment determined in this work, using Eq. 4.3 in Chapter 4, which contains the

function [ωτc/(1 + ω2τ 2
c )]1/2 ≡ F (ω, τc), containing τc which is the spin-lattice relaxation time

for the local moment. Since the temperature dependence of τc is not known, F (ω, τc) cannot be in

general be evaluated except at its maximum point (ω = τ−1
c ) where F (ω, τc) = 2−1/2. Therefore,

the fitting process was carried out for temperatures only at the apparent peak of the exponential-

fitted NMR relaxation rate vs temperature. With τ1 fixed the fitting to [S0 − S(t)] involved two

parameters, S0 and T1,exp, for each temperature. Since the stretched-exponential recovery function

is not valid at very short times during the initial recovery process, the fitting was limited for these

curves to t ≥ 200 ms, for which S(t)/S0 < 0.5.
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APPENDIX B

MAGNETIC MEASUREMENTS OF SKUTTERUDITES

The DC susceptibility as a function of temperature, χ(T ), was obtained at a fixed magnetic

field of 1000 Oe using a Quantum Design SQUID magnetometer. The data from 2 K to 300 K for

samples Ba(0.1)Yb(0.2) and Ba(0.2) is shown in Figs. B.1a and B.1b.

It has been shown previously that pure skutterudite CoSb3 is diamagnetic [49, 236], therefore

the magnetization can be analyzed in terms of paramagnetic filler atoms or defects in a diamagnetic

host. For the case of Yb filler atoms, recent work [237] reveals that Yb atoms exist in the 4f 13 state

(Yb3+) in concentrated YbxCo4Sb12, for x as large as 0.2, and exhibit paramagnetic behavior with

no ordering detected down to helium temperature.

We thus fit the high-T Ba(0.1)Yb(0.2) data from 150 K to 300 K to a Curie-Weiss function

according to the standard relationship,

χ(T ) =
CCW

T + ΘCW

+ χ0, (B.1)

with fitting results CCW = 0.427 K emu mol−1, ΘCW = 45 K and χ0 = −2.4 × 10−4 emu mol−1,

calibrated per mole of BaxYbyCo4Sb12 formula units. The Curie constant can also be defined by

CCW = NAc
p2

effµ
2
B

3kB
, (B.2)

where NA is Avogadro constant, c is the concentration of magnetic ions per formula unit and peff

is the effective moment. Assuming the paramagnetic response to be due to Yb3+ ions, and using

the known theoretical effective moment peff = g
√
J(J + 1) = 4.54µB with g = 8/7 and J =

7/2, the corresponding paramagnetic defect concentration is c = 0.164 per formula unit. This is

larger than the fitted x = 0.067 measured Yb filler-atom concentration, with the difference likely

due to the combined influence of paramagnetic shallow defect states as well as Yb2O3 due to a
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(a) (b)

Figure B.1: DC susceptibility measured from 2 K to 300 K in a magnetic field of 1000 Oe for (a)
Ba(0.1)Yb(0.2) and (b) Ba(0.2). Symbols: measured data. Solid curves: Curie-Weiss fits.

portion of the unreacted Yb source material remaining in the sample [41]. The presence of this

small secondary phase is indicated by the small maximum found near 2.3 K which is the known

antiferromagnetic transition temperature of Yb2O3 [238]. This separate phase will have very little

influence on the 59Co NMR results. Note also that the fitted ΘCW at high temperature includes

typically a significant contribution due to crystal fields experienced by the Yb3+ ions [239].

Fig. B.1b shows that there is a smaller magnetic contribution in sample Ba(0.2). We can also

fit the high-T data from 150 K to 300 K to a Curie-Weiss law [Eq. (B.1)] with CCW = 0.091

K emu mol−1, ΘCW = 31 K and χ0 = −3.2 × 10−4 emu mol−1. Assuming the paramagnetic

defects have spin 1/2, Eq. (B.2) leads to a paramagnetic defect concentration ∼0.22 per formula

unit. This can be attributed to the shallow defect states as discussed in the main text. As a volume

density this defect concentration would correspond to a shallow defect concentration ∼5.8 × 1020

cm−3, which is in good agreement with the density of occupied shallow defects (nD = ND−nCB)

obtained in the analysis. The small upturn at low temperature could be due to a small amount

of surface states or other impurity states. The background diamagnetism is consistent with the

range [49] of −1.6 × 10−4 to −3.6 × 10−4 emu/mol found for CoSb3 single crystals with various
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carrier concentrations.
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APPENDIX C

SPIN-LATTICE RELAXATION DUE TO ORBITAL AND DIPOLAR INTERACTIONS

The local orbital contribution to 1/T1T is the mechanism typically associated with orbital hy-

perfine coupling in normal metals. As opposed to the extended-orbital mechanism [156, 235], the

local contribution is expected to be limited to orbitals belonging to the atom containing the nucleus

being measured. Following the treatment of Obata [155], here we extend the calculation of 1/T1T

to p-electrons in the tetragonal symmetry corresponding to the 3-fold uniaxial symmetry for Te

sites in ZrTe2 (Chapter 9).

In the tight-binding approximation, the Bloch eigenfunctions are built up from localized atomic

functions. For p-electrons, there are three independent orbital functions px, py and pz. With mag-

netic field B along a certain direction, in our case x and z, here are the mixed wavefunctions for

uniaxial symmetry (omitting the product spin states):

Ψ =


α1/2pz + (1− α)1/2 1√

2
(px + py), B ‖ c

α1/2py + (1− α)1/2 1√
2

(pz + px), B ⊥ c

(C.1)

where α is a parameter specifying the relative amount of E symmetry (px and py) vs A1 symmetry

(pz) for magnetic field along z (similarly for B ⊥ c with Ψ rotating correspondingly). For B ‖ c,

when α = 0, the wavefunction contains only px and py. With α = 1, only pz remains. For both

dipolar interaction and orbital interaction contributions, we can thus determine the expressions

of the corresponding spin-lattice relaxation rates, starting with a golden-rule relation, for which

1/T1 = 2W = 4π/h̄kBT 〈|Ψ|H|Ψ〉|2g2(εF ), whereH is the orbital or dipolar hyperfine interaction

Hamiltonian [155], both of which are proportional to 1/r3 allowing the relative magnitudes to be

readily compared. Also g(εF ) denotes the partial density of states at εF for the Te p-orbitals,

which are assumed to appear in the relevant band according to the amplitudes given in Eq. (C.1).
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We obtain the following for the case for dipolar interaction:

Wdip =
4π

5
C

(∣∣∣∣ ∫ 2π

0

∫ π

0

ΨΨ∗
1

2
Y 0

2 sin θdθdφ

∣∣∣∣2 +

∣∣∣∣ ∫ 2π

0

∫ π

0

ΨΨ∗
√

3

2
Y −1

2 sin θdθdφ

∣∣∣∣2
+

∣∣∣∣ ∫ 2π

0

∫ π

0

ΨΨ∗
√

3

2
Y −2

2 sin θdθdφ

∣∣∣∣2)

=


C

50
(9α2 − 12α + 5) (B ‖ c)

C

200
(9α2 + 6α + 5) (B ⊥ c),

(C.2)

where Ψ is the wavefunction from Eq. (C.1). Here C = 2π(γeγnh̄
3/2)2g2(εF )kBT 〈r−3〉2, where

〈r−3〉 comes from the radial parts of the integrations which are not displayed in Eq. (C.2). The

integrals can be analytically evaluated giving the results also shown in Eq. (C.2). For the case of

the orbital interaction, the corresponding relations are

Worb =
C

2
|〈Ψ|l−1|Ψ〉|2 =


2Cα(1− α) (B ‖ c)
C

2
(1− α2) (B ⊥ c).

(C.3)

These results are shown in Fig. 9.5(c) in the main text. As anticipated [155] the orbital term

dominates in almost all cases. Also there is a crossing of terms at α = 1/3 which represents an

equal mixture of orbitals, as expected since such a mixture becomes isotropic. When α is larger

than 1/3, the local orbital contribution for B ‖ c exceeds that for B ⊥ c.
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