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ABSTRACT 

 

Large animal farms produce tremendous amounts of manure and manure are obvious 

sources of pathogenic bacteria. In addition, antibiotic consumption in modern livestock industry 

has significantly increased, resulting in a substantial presence of residual antibiotics in the 

manure and manure effluent. As a doctoral research dissertation, two methods using 1) the 

activated iron media (AIM) created from zero-valent iron (ZVI) and aqueous ferrous ion (Fe2+); 

and 2) cationic polymers, were investigated in terms of their ability to remove those 

contaminants in water system. The research is composed of two chapter: 1) effect of AIM on 

indicator bacteria removal and its bacterial removal mechanism; 2) effects of cationic polymers 

on manure separation, bacteria and antibiotic-resistant bacteria, and its synergistic effect against 

E. coli removal when the polymer is applied with hydrogel. The results obtained from this study 

will help us with better understandings of the fate of bacteria and antibiotics in animal farm 

industry.  
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Poly-gel Hydrogel Containing Polymer 

ROS  Reactive Oxygen Species 

RPM  Revolutions per minutes 

SA  Sodium Azide 

SAS  Sodium Azide Spiked 
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TEM  Transmission electron microscopic 

TSA  Tryptic Soy Agar 

TSB  Tryptic Soy Broth  

UV  Ultraviolet 
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CHAPTER I 

 INTRODUCTION 

 

I.1. Background: Microbial Contamination from Animal Feeding Operations and 

Implications for Water Quality 

American agriculture has significantly changed its structure since 1950. Across all farm 

operations and sectors have expanded, which means size of farms is getting larger but fewer in 

their number. This shift is most noticeable in the production of livestock (USEPA, 2013). For 

example, fully grown lactating cow produces approximately 68 L of manure daily (Lorimor et 

al., 2004). Based on this estimation, large dairy farms with 4,000 cows generates about 100,000 

m3 of manure each year (Liu et al., 2015). As a result, Over the past 70 years, the livestock 

production in the United States has more than doubled; however, the number of operations has 

decreased by 80% (Graham and Nachman, 2010). The reason of this increase is to meet the 

demands for meat and animal products from a growing human population in the U.S. and abroad. 

Historically, animal manure has been used as a great nutrient source and soil conditioner for crop 

production. Therefore, in the agricultural field, land application of manure effluent and solids is a 

common practice in crop production because livestock manure is an important agricultural 

resource that contains a high level of essential nutrients and organic matter (Islam et al., 2004; 

Ribaudo et al., 2003). However, as production has shifted to much larger farms, concentration of 

livestock has also increased, resulting in the need of more intensive management practice to treat 

increased concentration of animal manure because the excess land application of manure may 

exceed the needs of the plants and the crops. U.S. Department of Agriculture’s Economic 
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Research Service (USDA ERS) reported that greater than 70% of phosphorus and 60% of 

nitrogen in the manure cannot be assimilated in the crop land. In particular, runoff related to 

manure is considered a major contributor to widespread nutrient contaminations, resulting in 

water quality pollutions. 

While manure’s contributions to nutrient water quality impairment is a commonly 

recognized issue, contaminations caused by manure and livestock application also need to be 

considered. Manure often contains human and animal infectious pathogens, heavy metals, 

antimicrobials, and hormones that can be introduced to surface and ground water through runoff 

and permeation which can impact aquatic ecosystem and water conditions (Gullick et al., 2007; 

Rogers, 2011). In particular, applying manure with high levels of pathogens could pose health 

risks to animals and humans. There are numerous bacteria species present in manure, among 

which the most common pathogenic microorganisms found in manure include Salmonella, 

toxigenic Escherichia coli (E. coli), Yersinia and Campylobacter species, protozoa Giardia, and 

Cryptosporidium (Bicudo et al., 2003). Because disease outbreak caused by pathogens can pose a 

serious threat to public health, there have been many studies and researches on methods to 

reduce those pathogen levels in manure such as chemical treatment using synthetic polymers 

(Liu et al., 2016) or biological treatment such as activated sludge process (Vanotti et al., 2005). 

I.2 Active Iron Media 

Applying zero-valent iron (ZVI) to treat contaminated soils and groundwater have been 

becoming popular in the past two decades. Substantial experiences have been accumulated on 

kinetics of iron corrosion product/oxides and contaminant destruction. In addition, there also 

have been extensive researches on effect of ZVI performance, monitoring, modeling, and design 

(Blowes et al., 2000; Huang et al., 2003; Morrison et al., 2002; Shokes and Moller, 2000).  
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The known mechanisms of removing contaminants by ZVI in aquatic system were 

reduction, precipitation, and adsorption. Despite these well-known capabilities of ZVI and the 

underlying chemistries, applying ZVI for environmental remediation in the real field is much 

more difficult, mainly because surface passivation problems of ZVI, i.e., rapid loss of ZVI 

reactivity due to the tendency of forming passive iron oxide coatings on the ZVI grain surface 

once ZVI comes into contact with water and/or soils.  Fe0, a relatively strong reductant, can be 

readily reduced not only by the reactive target contaminants (such as nitrate, TNT), but also by 

O2, or even H2O (e.g., Fe0 + 2 H2O →Fe2 + 2 OH- + H2).  These redox reactions, accompanied by 

iron corrosion, will result in the formation of an iron rust coating that is often chemically passive 

to varying degrees and subsequently diminishes the overall reactivities of ZVI.  There have been 

extensive efforts to overcome the passivation problem. For example, addition of sand with ZVI 

can prevent iron passivation because contaminants compete against Fe (II) and Fe (III) generated 

from ZVI when the contaminants adsorbed onto sand particles; addition of MnO2 can prevent 

passivation through redox reaction (Fe (II) generated from ZVI oxidation are used for reducing 

MnO2 instead of producing iron corrosion products); activated carbon keeps ZVI reactivity as it 

is able to transfer electrons from iron corrosion products to contaminants (Btatkeu-K et al., 2014; 

Dos Santos Coelho et al., 2008; Luo et al., 2014; Noubactep et al., 2011; Scherer et al., 2000; Shi 

et al., 2014). 

In this dissertation, a specific technique to prevent iron passivation problem was used by 

pre-treatment (preconditioning) of the ZVI with nitrate and ferrous iron as it was developed in 

the previous study (Huang and Zhang, 2005). The previous study demonstrated that magnetite 

was the dominant corrosion product as a result of iron-nitrate redox reaction (preconditioning). 

The reaction during the ZVI preconditioning was described as (Huang and Zhang, 2005); 
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𝑁𝑂3
− + 2.82 𝐹𝑒0 + 0.75 𝐹𝑒2+ + 2.25 𝐻2𝑂 →  𝑁𝐻4

+ + 1.19 𝐹𝑒3𝑂4 + 0.50 𝑂𝐻−                    (1) 

 

The strategy of augmenting the ZVI system with externally added Fe2+ to overcome ZVI 

surface passivation was highly effective (Huang et al., 2012; 2013). The preconditioning process 

is to create a mixture of highly reactive iron-based media consisted of ZVI grains coated with a 

reactive iron oxide coating and a substantial amount of discrete and highly reactive iron oxide 

phase that features a magnetite-like structure with non-stoichiometric and flexible Fe(II)-Fe(III) 

compositions. The preconditioning process can overcome surface passivation of ZVI, thus 

enhance the reactivity of the ZVI and increase removal efficiency of contaminants. The previous 

study concluded that both Fe2+ and Fe3O4 (magnetite) generated from preconditioning process 

were important for pollutants degradation by ZVI (Huang et al., 2012; 2013; Tang et al., 2016). 

The effects of pre-treated ZVI (hybridized ZVI/Fe3O4/Fe2+, also known as the Activated Iron 

Media) on removal of various contaminant in water systems have been demonstrated. However, 

very importantly, its effect against bacteria levels in wastewater has not been evaluated yet. 

Although some studies have reported study results of bactericidal effect of zero valent iron, most 

of the studies have focused on the use of nano-scale ZVI particles, not micron-scale ZVI media 

that are used to create the activated iron media (Diao and Yao, 2009; Kim et al., 2010a; Lee et 

al., 2008a; Noubactep, 2011; Xu et al., 2013). The effect of the activated iron media on bacterial 

removal has not been assessed yet. 

I.3 Coagulation and Flocculation 

Some suspended particles cannot be removed completely by plain gravitational settling. 

Large, heavy particles settle out readily, but smaller and lighter particles settle very slowly or in 

some cases do not settle at all. Because of this, the sedimentation step is usually preceded by 
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adding chemical (coagulant)known as coagulation. Coagulants added to the water to bring the 

non-settling particles together into larger, heavier masses of solids called floc. Coagulation is 

usually accomplished in two stages, rapid mixing and slow mixing. Rapid mixing helps to 

disperse the coagulants so that the chemical can be homogenized in the water, and to ensure a 

complete chemical reaction. After the rapid mix, a longer period of gentle agitation is required to 

increase particle collisions and enhance the size of flocs. This slow mixing procedure to make a 

floc is called flocculation.  

Coagulation and flocculation occurs in consecutive steps, allowing particle collision and 

growth of floc. This is then followed by sedimentation. If coagulation is incomplete, flocculation 

step will be unsuccessful, and if flocculation is incomplete, sedimentation will be unsuccessful. 

Coagulant chemicals have charges opposite those of the suspended solids in the water to 

neutralize the negative charges on the solids surface. Once the surface charge of the particles is 

neutralized, the small-suspended particles can aggregate together.  

Flocculation, a gentle mixing stage, increases the particle size from submicroscopic 

microfloc to visible suspended particles. Microfloc particles collide, causing them to bond to 

produce larger, visible flocs called pinflocs. The pinflocs continues to build with additional 

collisions and interaction with added chemicals such as coagulant. Macroflocs are formed and 

high molecular weight polymers, called coagulant aids, may be added to help bridge, bind, and 

strengthen the floc, add weight, and increase settling rate. Once floc has reached it optimum size 

and strength, water is ready for sedimentation. 

I.4 Cationic Polymer 

A cationic polymer is a long chain molecule with repeating units such as acrylamide, 

which have a net external positive charge. As relatively high molecular weight polyelectrolytes, 
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polymers aid flocculation. It is believed that polymer molecules attach (or adsorb) to the surface 

of two or more particles by some specific chemical interaction and form bridges between them. 

Large polymers are needed to accomplish destabilization by this mechanism, because the 

polymer bridge has to span two diffuse layers (Benjamin and Lawler, 2013).  

Besides the function of polymer as coagulant, cationic polymers are promising 

antimicrobial agents (Carmona-Ribeiro and de Melo Carrasco, 2013). Positive charges of the 

polymer have been used as antimicrobial agents by themselves and/or in sophisticated 

formulations (Tapias et al., 1994). The following sequence of events occurs with microorganisms 

exposed to cationic agents: (i) adsorption and penetration of the agent into the cell wall; (ii) 

reaction with the cytoplasmic membrane (lipid or protein) followed by membrane 

disorganization; (iii) leakage of intracellular low-molecular-weight material; (iv) degradation of 

proteins and nucleic acids; and (v) wall lysis caused by autolytic enzymes (Salton, 1968; Denyer, 

1995).  

Larger farms are increasingly processing manure before land application in order to lower 

hauling costs, decrease environmental pollution risk from nutrient losses to water, and comply 

with federal and state regulations. Therefore, a comprehensive manure handling and treatment 

strategy is crucial on a large dairy farm. A typical manure management strategy is liquid/solid 

separations through a variety of operations such as screens, presses, or centrifuges to produce 

solids with rich nutrients and a liquid stream with low-nutrients/solids. The properly separated 

liquid can be used for irrigation or reused as process water to flush the barns. Closing the waste 

cycle on dairy farms worldwide can increase the sustainability of such operations; however, 

research into factors that could lead to “unforeseen” consequences from changes in management 

practices is essential to ensure the efficacy of such changes. 
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On large farms, physical separation methods such as centrifugation are often enhanced by 

chemical addition (Vanotti et al., 2002; Amuda and Alade, 2006; Liu et al., 2017) because 

physical separation alone is not suitable to remove fine suspended particles, which typically 

contain the majority of the nutrients, from recycled liquid streams (Liu et al., 2016). These 

chemicals bind and separate the smaller particles for efficient concentration of solids and 

nutrients (Zhang and Westerman, 1997). For example, the use of polyacrylamide (PAM) 

polymers, their homo-polymers, and their acrylamide/acrylic acid co-polymers, alone or in 

combination with various inorganic salts, have proven to be effective in enhancing concentration 

of solids and nutrients in the separation process (Vanotti et al., 2002). Despite the efforts of 

recent studies examining manure separation, there is still a lack of studies relating polymer effect 

on pathogen indicator reduction, as well as dairy manure characteristics such as the level of total 

solids, chemical oxygen demand (COD), and liquid-solid separation efficiency of raw manure. 

Furthermore, there is little information of the effects of polymers on bacterial concentration and 

especially on antibiotic resistant bacteria in a raw manure and in the liquid stream of polymer 

treated manure.  

I.5 Antibiotics in Manure 

In addition to the microbial contamination, plenty of many different pharmacologically 

active substances (e.g., antibiotics) have been being used annually to prevent and treat animal 

diseases. Antibiotics used in farm operations are specifically designed to control bacteria in 

animal production and treat diseases caused from bacterial infection (Timothy et al., 2012). For 

example, foot rot (or hoof rot) is a common microbial infection in livestock that causes swelling, 

fever, and inflammation on the hooves, resulting in severe lameness (AABP, 2016). Therefore, 

antibiotics have been essential in treating diseases caused by bacterial infection (Kumar et al., 
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2005). However, it has now become clear that the extensive use of antibiotics can cause various 

problems in both environmental and public health perspectives. The major concern is that excess 

use of antibiotics could lead to the appearance of new strains or mutated bacteria that are 

resistant to these antibiotics, thus threatening human health (Solomons, 1978).  

In terms of livestock operation, although most antibiotics are used for the treatment of 

infections, a significant portion of these are also used in animal feed as a supplement to promote 

growth. The use of antibiotics for animal growth promotion is not new; these pharmaceuticals 

were approved in the United States and United Kingdom in 1949 and 1953, respectively (Witte, 

2000). Antibiotics in animal feed helps increase the animal’s ability to absorb feed and thus 

reach market weight earlier. Khachatourians reported that even low amount of antibiotics could 

encourage the selection of antibiotic‐resistant gene (Khachatourians, 1998). However, these 

antibiotics-enhanced animal feeds often contain more than the recommended amounts (Dewey et 

al., 1997). Animals usually do not utilize all the antibiotics taken into their body.  Significant 

proportions of antibiotics are excreted through urine or manure (Levy, 1992), which end up in 

the manure and manure effluent, thus affecting manure quality as a fertilizer. Once excreted, 

these antibiotics can enter the terrestrial environment through land application of manure and 

potentially alter the soil microbial ecosystem. 

I.6 Traditional Treatment System 

Animal farms handle a large amount of manure and it needs particular infrastructure and 

equipment such as storage site. In most cases in animal operations, composting and lagoon 

system are the most widely adopted methods to treat solid and liquid manure, respectively. The 

main purpose of liquid manure treatment is to break down organic matters, remove settleable 

solids, and reduce odor so that the treated effluent can be used for irrigation or washing and the 
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treated solids are suitable for land-application (Liu and Wang, 2020). Lagoon creates an 

anaerobic environment which enables bacteria and other organisms to degrade organic matters in 

the fluid. This process also allows most of the suspended solids in the liquid manure to settle as a 

P-rich sludge (Worley, 2007).  As an alternative to anaerobic lagoon, facultative lagoon is also 

commonly used, which may achieve a closer to secondary treatment of liquid manure with 

enhanced oxygen supply. A facultative lagoon is typically designed with a depth shallower than 

that of an anaerobic lagoon.  

Using lagoon treatment system provide many advantages such as low cost construction, 

minimum operating cost, reduced labor, maximum convenience in handling and land spreading 

of manure, compatibility with modern flush cleaning systems and pit overflow systems. There 

are some drawbacks, however, such as bad odors, significant loss of manure nitrogen content, a 

need of periodic sludge removal, and forming mosquito habitat. The most important thing is the 

lagoon is the final process before land application. There is no economically feasible method of 

further treatment and lack of strict regulation on lagoon effluent. Therefore, lagoons should be 

designed to fit local weather conditions and other environmental factors along with 

developing/applying practical method to reduce contaminants of final lagoon effluent.   

In my dissertation for doctoral degree, I have focused on treating bacteria and antibiotics 

which can affect environment significantly. As treatment methods for these contaminants, zero-

valent iron (ZVI) and cationic polymers such as PolyDADMAC, Polyamines, and 

Polyacrylamide, were chosen. 
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*Reprinted with permission from “Bacterial indicator reduction in dairy manure using hybrid zero-valent iron (h-ZVI) system” by Sunghwa Han, Yongheng Huang, 

CHAPTER II 

BACTERIAL INDICATOR REDUCTION IN DAIRY MANURE USING 

ACTIVE IRON MEDIA*

II.1 Introduction

Animal manure is a great nutrient source and soil conditioner for crop production. 

However, improper application of animal manure causes environmental issues such as microbial 

contamination or eutrophication through excess of nutrient (Islam et al. 2004; Ribaudo et al. 

2003). In particular, applying manure with high levels of pathogens could pose health risks to 

animals and humans. Many studies reported that pathogen levels in manure can be reduced by 

chemical treatment using synthetic polymers (Liu et al. 2016) or biological treatment such as 

activated sludge process (Vanotti et al. 2005). There are numerous bacteria species present in 

manure with the most common pathogenic microorganisms found in manure being Salmonella, 

toxigenic Escherichia coli (E. coli), Yersinia and Campylobacter species, protozoa Giardia, and 

Cryptosporidium (Bicudo et al. 2003). Among those microorganisms, E. coli has been commonly 

used as an indicator organism of microbial contamination in a water system (S.C. Edberg et al. 

2000).  

Applying zero-valent iron (ZVI) to treat contaminated soils and groundwater have been 

becoming popular in the past two decades. Substantial experiences have been accumulated on 

kinetics of iron corrosion product/oxides and contaminant destruction. In addition, there also 

have been extensive researches on effect of ZVI performance, monitoring, modeling, and design 

(Blowes et al. 2000; Huang et al. 2003, 2013; Morrison et al. 2002; Shokes and Moller 2000). 

and Zong Liu, 2019. Environmental Science and Pollution Research, 26(11), 10790-10799, Copyright [2019] by Springer Nature BV 

_____________________
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The known mechanism of removing contaminants by ZVI in aquatic system were 

reduction, precipitation, and adsorption.  However, feasibility is the most challenging part, as 

applying ZVI into the real field is difficult because a surface passivation problem of ZVI in 

addition to the rapid loss of their reactivity by passivation. There have been thorough efforts to 

overcome the passivation problem. For example, addition of sand with iron can prevent iron 

passivation because contaminants compete with Fe (II) and Fe (III) generated from ZVI when 

they adsorbed onto sand; addition of MnO2 can prevent passivation through redox reaction (Fe 

(II) generated from ZVI oxidation are used for reducing MnO2 instead of producing iron

corrosion products); activated carbon keeps ZVI reactivity as it is able to transfer electrons from 

iron corrosion product to contaminants.  (Btatkeu-K et al. 2014; Dos Santos Coelho et al. 2008; 

Luo et al. 2014; Noubactep et al. 2011; Scherer et al. 2000; Shi et al. 2014). 

In this study, we utilized a specific technique to prevent iron passivation problem by pre-

treatment (preconditioning) of the ZVI with nitrate and ferrous iron as we developed in the 

previous study (Huang and Zhang 2005). The previous study demonstrated that magnetite was 

the dominant corrosion product as a result of iron-nitrate redox reaction (preconditioning). The 

reaction during the ZVI preconditioning was described as (Huang and Zhang 2005); 

𝑁𝑂3
− + 2.82 𝐹𝑒0 + 0.75 𝐹𝑒2+ + 2.25 𝐻2𝑂 →  𝑁𝐻4

+ + 1.19 𝐹𝑒3𝑂4 + 0.50 𝑂𝐻−                    (1)

The strategy of augmenting the ZVI system with externally added Fe2+ to overcome ZVI 

surface passivation was highly effective (Huang et al. 2012, 2012, 2013). The preconditioning 

not only enhanced a reactivity of ZVI, but increased removal efficiency of contaminants without 

surface passivation. The previous study concluded that both Fe2+ and Fe3O4 (magnetite) 

generated from preconditioning process were important for pollutants degradation by ZVI 

(Huang et al. 2012, 2013; Tang et al. 2016). The effects of pre-treated ZVI (hybridized 
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ZVI/Fe3O4/Fe2+, AIM) on removal of various contaminant in water systems have been 

demonstrated. However, very importantly, its effect against bacteria levels in wastewater has not 

been evaluated yet. Although some studies have reported study results of bactericidal effect of 

zero valent iron, most of the studies have focused on ZVI nano-particles (Diao and Yao 2009; 

Kim et al. 2010; Lee et al. 2008; Noubactep 2011; Xu et al. 2013). The effect of the pre-treated 

ZVI (AIM) in micron scale particle on bacterial removal has not been assessed yet. 

Based on the understanding of the substantial roles of Fe2+ and magnetite in overcoming 

ZVI surface passivation and sustaining ZVI system’s reactivity for contaminants reduction, we 

found that introducing the AIM into microbial contaminated aquatic system could effectively 

remove bacteria via adsorption and/or other possible mechanisms. The ultimate goals of this 

study were to: (1) estimate the effect of AIM system on bacterial attenuation, (2) demonstrate the 

bacterial removal mechanism, and (3) visualize the effects of AIM on bacteria. To achieve these 

objectives, we optimized the condition for ZVI preconditioning, modified reactors and designs 

for bacterial experiments, and conducted microscopic analysis for visualization. In addition, 

sonication method was used to determine the effect of AIM on adsorption. Our results from this 

study strongly suggests that AIM system can be used to treat water and wastewater where 

bacterial contamination is the major concern.  
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II.2 Material and Methods

II.2.1 Reagents

Zero valent iron (ZVI) grains of 20 µm (>99.2%, Johnson Matthey, UK) with a specific 

area of 0.690 m2/g were used in this study. The ZVI characteristics were measured by BET 

nitrogen absorption analysis (Quantachrome, USA). All reagents for ZVI preconditioning were 

prepared with deoxygenated and deionized (DDI) water (E-pure D4641, USA) and stored in an 

anaerobic chamber. The DDI water was prepared by purging with N2 for at least 30 minutes and 

stored in the anaerobic chamber for at least 24 hours to further remove residual O2 before use. 

Fe2+ stock solutions (50 mM) were prepared with FeCl2·4H2O (J.T. Baker, USA) and stabilized 

by adding HCl (1 mM). Nitrate stock solution was prepared at 140 mM with NaNO3 (Alfa Aesar, 

USA). Normal saline solution was prepared with 0.85% of NaCl (BDH, USA) in deionized (DI) 

water, followed by autoclave sterilization in 121°C for 15 minutes and stored in 4°C before use. 

All chemicals used in this study were analytical reagent grade. 

II.2.2 E. coli isolation, identification, and preparation

E. coli was isolated from raw dairy manure collected from regional livestock research

facility in central Texas. For bacteria isolation, 10 μL aliquot of raw manure was added to 

MacConkey agar media (Becton, Dickinson and Company, USA) using spread plate technique. 

The plates were incubated in 37°C for 24 hours. A single morphologically unique pink colony on 

the MacConkey media was transferred to a fresh plate by the streaking technique. A single 

colony from the second plate was transferred to MacConkey agar media to assure a pure bacteria 

strain was isolated. A physiological characterization of the bacteria was completed. 

Quanti-tray method was used to qualitatively determine if the isolated strain is coliform 

and E. coli by manufacturer's instruction. A single pink colony was transferred to Luria-Bertani 
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(LB) broth media and incubated for 24 hours. The cultured suspension was serially diluted to 

1/10,000 (v/v) using 99 mL of sterilized phosphate buffer saline (Hardy Diagnostics, USA) for 

Quanti-tray analysis. This method was also used to quantify bacterial concentration (total 

coliform and E. coli) of raw manure. The number of wells that showed color change after 

incubation were counted and compared with most probable number (MPN) table. The final 

concentration was showed in MPN/100 mL.  

The samples of isolated strain were sent to the Laragen, Inc. (California, USA) for 

genotype analysis. 16S ribosomal RNA gene sequence (Appendix I) was obtained and the result 

was compared with NCBI nucleotide BLAST search. The isolate was determined to have a high 

(~99%) 16S rRNA sequence similarity to E. coli strain NBRC 102203. The isolated bacteria was 

sub-cultured daily on the Tryptic Soy Agar (TSA, Becton, Dickinson and Company, USA) 

media. Bacterial stock was prepared with 60% sterilized glycerol and stored at -20°C for future 

use. 

For activation and enumeration, single colony of E. coli from the plate was collected and 

transferred to Tryptic Soy Broth (TSB) media and incubated at 37°C for at least 16 hours before 

each set of experiments. Bacterial concentration was determined by measuring optical density 

with spectrophotometer at wavelength of 600 nm (1.0 at OD600 equals to 8 × 108 colony forming 

unit (CFU)/mL). The bacterial suspension was serially diluted and inoculated into the reactor. 

Final concentration of bacteria in the reactor was 5~10 × 106 CFU/mL. 

II.2.3 AIM preparation

15-mL centrifuge tubes were used as the reactor for preparing the activated iron media.

As the first step, 0.5 ± 0.002 g of ZVI was added into the reactors, which was then transferred 

into the anaerobic chamber. Fe2+ and 𝑁𝑂3
− stock solution of designed volumes and DDI water
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were pipetted into the reactor to achieve a reactant solution of 10 mL in total (7 mM Fe2+ and 10 

mM 𝑁𝑂3
−). The reactors were sealed with a cap in the anaerobic chamber and then transferred

into a rotary tumbler for complete mixing at 30 rpm at 25 ± 2°C for 17 h in the dark.  

II.2.4 Bacterial reduction experiment

The bacterial reduction experiment was also conducted in 15-mL centrifuge tube 

(reactor). After 17 hours of preconditioning, the remaining liquid was separated using a magnet 

and discarded. The prepared AIM was then washed three times with DI water. Fe2+ was taken 

from prepared stock solution in an anaerobic chamber and added to the reactor at a desired 

concentration (0.1 mM) with an activated bacterial suspension concentration of 5~10 × 106 

CFU/mL. Total volume of the reactors was 10 mL. Subsequently, reactors were transferred and 

laid horizontally on the shaker. The cap of the reactor was not fully tightened for aeration. 

Reactors were shaken at 200 revolutions per minute (rpm) for desired reaction time. After 

reaction, the bulk phase (liquid phase) of each reactor was separated from AIM media using a 

magnet and collected to a fresh sterile bottle. Collected samples were serially diluted with 

normal saline solution and the live cell concentration was measured by the pour plate method.  

The remaining AIM solids were used to evaluate the concentration of attached bacteria. The 

solid media was washed three times with normal saline solution, then filled with the same 

volume (10 mL) as an initial volume. Each reactor was sonicated (Bransonic 220, USA) for 30 

seconds to desorb the attached E. coli. The supernatant of sonicated reactors was then collected 

and used to evaluate desorbed E. coli. In order to avoid any possible interference and osmotic 

stress to the bacteria, all experiments were performed in normal saline solution. The bacteria 

reduction experiments were all performed in duplicate and repeated three times. 
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II.2.5 Microscopic analysis

Fluorescence microscopy (Olympus BX41, USA) was used to visualize the effects of 

AIM media against E. coli viability. E. coli culture suspension was diluted with normal saline 

solution for CTC-DAPI double staining according to a modified technique of Coleman and 

Rodriguez (Coleman 1980; Rodriguez et al. 1992). 5-cyano-2,3-di-(p-tolyl) tetrazolium chloride 

(CTC, Sigma-Aldrich) and DNA-binding fluorochrome 4',6-diamidino-2-phenylindole (DAPI, 

Sigma-Aldrich) were used as a staining dye for live and total cells, respectively. 10 ppm of CTC 

(final concentration) was added to bacterial culture suspension and incubated for 3 hours at room 

temperature while shaking (100 rpm) in the dark. DAPI counterstaining dye was added after 

incubation. Counterstaining with DAPI allowed concurrent determination of total (i.e., viable 

plus nonviable) and respiring (i.e., cells exhibiting CTC-formazan fluorescence) cell counts in a 

single preparation. The stained bacterial cell was treated with the method described at section 2.4 

for desired contact time. Observations were conducted with a fluorescence light fitted with a 385 

nm excitation filter and a 455-nm dichroic mirror, allowing visualization of each dye. The 

emission wavelength was 420 nm and 580 nm for CTC and DAPI, respectively. 

Transmission electron microscope (JEOL 1200 EX, USA) was used to observe whether 

the bacterial membrane damage occurred. Both of treated and untreated samples were prepared 

and negatively stained for TEM analysis. For treated sample, both bulk and solid phase were 

observed to visualize the effect of AIM on E. coli. After 2 hours of reaction, 2 µL of each sample 

was collected and applied onto the observation grids (400 mesh copper grids with carbon support 

film). Subsequently, 2% aqueous uranyl acetate solution was applied to each of the sample grid. 

The samples were stored at room temperature for 15 minutes to air dry and were then observed. 
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II.2.6 Statistical analysis

Experiments were performed at least in triplicate throughout the study and all data are 

presented as the mean ± standard error of repeated values. Statistical significance was 

determined using Student's t-tests by evaluation of differences between treated and control 

groups; *p < 0.05 or **p < 0.01 were considered statistically significant based on the tests. JMP 

pro 13 was used as a tool for statistical analysis. 
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II.3 Results and Discussion

II.3.1 ZVI preconditioning

During the ZVI preconditioning process, all nitrate played a role as an electron acceptor 

and completely reduced to ammonia. The nitrate resulted in aqueous Fe2+ disappearance from 

solution and formation of a black oxide coating (magnetite). As long as Fe2+ is available in the 

aqueous phase, magnetite (Fe3O4) could be formed and coated onto the surface of ZVI (Huang 

and Zhang 2005; Huang et al. 2003; Tang et al. 2016). The actual amount of Fe3O4 produced 

from the preconditioning could be slightly higher due to the presence of other reducible 

compounds such as dissolved oxygen (Huang et al. 2013). The primary role of Fe2+ in the system 

was to facilitate ferric (hydr)oxides, the dominant passive corrosion products, transformation to 

magnetite. It was also demonstrated by previous studies that externally supplied Fe2+ can 

overcome ZVI surface passivation (Huang et al. 2012, 2013; Tang et al. 2016).  

II.3.2 Effects of AIM on E. coli removal

The effects of AIM on E. coli removal is shown in Fig. 1-a). E. coli concentration in the 

bulk liquid phase of the reactor was gradually decreased with reaction time and non-detected 

after 2 hours of reaction. Bacterial suspension in normal saline solution with and without Fe2+ 

was evaluated as a control and blank, respectively. 
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(a) 

(b) 

Figure 1. Effects of AIM and Fe2+ on E. coli removal in bulk phase: (a) Log reduction by AIM 

media; (b) Log reduction by blank (cell only) and control (0.1 mM Fe2+ only). 
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The mechanism of E. coli removal by AIM is likely a combination of adsorption and 

inactivation. The concentration of live bacterial cells adsorbed to the media decreased with time, 

which suggests that the adsorption is dominant on bacterial removal in earlier phase of the 

reaction, followed by inactivation. (Fig. 2). The control and blank tests showed that 0.1 mM of 

Fe2+ had limited effect on E. coli viability within 2 hours of reaction (Fig. 1-b). According to the 

control and blank tests, we could conclude that AIM, not Fe2+, is the major reason for E. coli 

removal in the system. 

Figure 2. Effect of sonication on E. coli viability with or without adsorption. 

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 0.5 1 3 5 10 20 30

L
o

g
 C

F
U

Sonication time, minute

Live cell with h-ZVI

Blank (cell only)

* 
* 

** 
** 

** 

** 



21 

Magnetite has a natural surface affinity for bacteria (Latour and Kolm 1976; Macrae and 

Evans 1983), but has limited effect on bacterial viability (< 0.1 log reduction) against E. coli 

(Lee et al. 2008). Therefore, the magnetite generated from ZVI preconditioning may play a key 

role in decreasing bacterial population via adsorptive immobilization from the bulk liquid system 

upon contact with media. A major factor in the adsorption of bacteria by magnetite is the positive 

surface charge on the magnetite particles at pH values lower than the isoelectric point (IEP). The 

IEP of magnetite is known as 7.9 (Tombácz et al. 2006). Typical gram negative bacteria 

including E. coli have been reported to have an IEP values between 2.0 to 3.0, which means that 

the bacteria should have a negatively charged cell surface in neutral pH (Rijnaarts et al. 1994). 

The zeta potential of E. coli cell particles in the system after reaction gradually decreased 

(getting more negative) with reaction time (Fig. 3), which could support the ability of magnetite 

on bacterial adsorption in the system. 

The effect of AIM against total coliform and E. coli in raw dairy manure was also 

evaluated. The removal efficiency of AIM on total coliform and E. coli significantly decreased in 

raw manure compared to the experimental condition (normal saline solution) used in this study. 

The removal efficiency of AIM against total coliform and E. coli were 92.44% and 88.12%,  

respectively (Fig. 4), when AIM was applied to raw manure. This is significantly lower bacterial 

removal efficiency compare to E. coli removal in a normal saline solution. The possible reasons 

of this discrepancy could be attributed to the presence of natural organic matters (NOM) and 

nutrients in the raw manure. Chen et. al demonstrated the effect of NOM on nano scale ZVI 

reactivity and the reactivity significantly decreased by NOM because of occlusion of reactive site 

on the surface of ZVI (Chen et al. 2011, Redman et al. 2002).  
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Figure 3. Change of zeta potential of E. coli particle with contact time. Blank: E. coli in normal 

saline solution; Control: E. coli in normal saline solution with 0.1 mM Fe2+. 

Another factor that can affect the bacterial removal efficiency is nutrients source in water 

samples. Raw manure is rich in bacterial growth nutrient such as organic carbon, nitrogen, 

phosphorus as well as potassium, calcium, magnesium, and other essential elements (Payne and 
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Figure 4. Effect of AIM on total coliform and E. coli of raw manure. 
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P which exceed the capacity of externally added Fe2+ (0.1 mM), resulted in reduction of removal 

efficiency. Other possible mechanisms that could affect the reaction between AIM and bacterial 

removal are not investigated in this study. 

II.3.3 Effects of AIM on bacterial adsorption

After reaction, sonication was applied on remaining AIM media (solid phase) in order to 

evaluate the mechanism of bacterial removal by AIM media. To determine the effect of 

sonication on E. coli attachment, the final concentration of E. coli in the reactor was measured 

after desired time of sonication was applied. The minimum contact time (5 minutes of contact) 

was chosen in order to minimize possible reactions which affects the bacterial viability. 

Sonication of bacteria without AIM media was also performed as a control (Fig. 2). The live E. 

coli concentration decreased with sonication time (Fig. 2) because the bactericidal reaction on E. 

coli occurred when AIM media presented during sonication. The longer sonication time, the 

greater chance of reaction between the media and bacteria, which would result in inhibition of 

bacterial viability. Therefore, we concluded the optimal sonication duration to be 30 seconds for 

the desorption experiment. In addition, results of control experiment confirmed that 60 Hz of 

sonication without AIM media does not affect E. coli viability until 30 minutes (Fig. 2).  

Fig. 5 showed the live E. coli concentration after sonication by contact time. As expected, 

the live E. coli concentration adsorbed to the media decreased with increase of contact time. At 

the contact time of 120 minutes, the live cells were completely removed/inactivated in the bulk 

phase, but adsorbed cells were not completely inactivated. Therefore, these results imply that the 

adsorption onto the surface of AIM media is dominant mechanism of bacterial removal in earlier 

phase of reaction (< 5 minutes) and bacterial inactivation by the AIM media is a slower process 

compare to the adsorption.  
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Figure 5. Effect of contact time on E. coli viability. 

II.3.4 Microscopic analysis

The interactions between E. coli cells and AIM media were visualized by fluorescence 

microscopic analysis. The results of E. coli adsorption and inactivation by AIM media were 

shown in Fig. 6 and Fig. 7. Fig. 6-a, b, and c showed the CTC-DAPI double stained fluorescence 

microscopic images of E. coli after 5, 30, and 2 hours of reaction, respectively. We could 

confirm from this image analysis that the adsorption was a rapid process. Majority of the cells 

were adsorbed within 5 minutes of reaction (Fig. 6-a). The decreasing red fluorescence in Fig. 6 

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

0 5 15 30 60 120

L
o

g
 C

F
U

Contact time, minute

Live adsorbed cell

*

* 



26 

can be interpreted as the E. coli was quickly adsorbed onto the surface of AIM media, followed 

by inactivated via redox reaction of AIM media. The longer reaction time, the less red 

fluorescence was emitted from CTC formazan, which is also consistent with the result of 

sonication desorption experiment. 

The fluorescence microscopic images suggest that adsorption was not the only 

mechanism responsible for bacterial removal in the AIM system. During the reaction, ZVI of the 

AIM system was oxidized, cytotoxic substances such as reactive oxygen species (ROS) were 

possibly produced from the media and affected bacterial cell viability (Keenan et al. 2009; 

Keenan and Sedlak 2008). The effect of AIM on bacterial inactivation was observed by TEM 

analysis.  

The samples for TEM analysis was divided into untreated (control) group and AIM 

treated group; the treated group was again divided into the bulk liquid phase and the solid media 

phase. The liquid phase was evaluated to determine whether bacterial inactivation could occur 

without adsorption to the media or not, while the solid phase was collected for observing cell 

activity and condition after adsorbed onto the media. E. coli cells from the control group showed 

intact shape without damage of cell membrane (Fig. 8-a). Comparing with control group, the 

TEM images of solid phase of treated group confirmed that the membrane of E. coli cells 

adsorbed to AIM media were damaged or destroyed (Fig. 8-b). 
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a) 5 minutes of contact

b) 30 minutes of contact

c) 120 minutes of contact

Figure 6. Overlapped CTC-DAPI double stained fluorescence microscopic images in different 

contact time: a) 5 minutes; b) 30 minutes; and c) 120 minutes of contact time. 
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(a) 5 minutes of contact, DAPI b) 5 minutes of contact, CTC

c) 30 minutes of contact, DAPI d) 30 minutes of contact, CTC

e) 120 minutes of contact, DAPI f) 120 minutes of contact, CTC

Figure 7. CTC-DAPI double stained fluorescence microscopic images in different contact time: 

a) 5 minutes; b) 30 minutes; c) 120 minutes of contact time.
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a) control

b) Solid phase

Figure 8. Negatively stained TEM image of a) intact E. coli cell; and b) solid phase after 120 

minutes of contact time. 



30 

As shown in the TEM image, AIM was found to inactivate E. coli within 2 hours by 

direct membrane damage which is likely caused by oxidation of iron. However, we could not 

observe inactivated E. coli cells in the bulk phase from TEM analysis (Fig. 9) because most of 

the cells were adsorbed onto the media. However, flagella fragments were found in the TEM 

images of bulk phase (Fig. 9), which can be an evidence of cell surface damage and destroyed 

membrane. The result of previous study by Kim et al. stated that the bactericidal performance of 

ZVI does not occur in the bulk phase (Kim et al. 2010). Therefore, we can conclude that direct 

contact between cell and media should be responsible for cell death via certain reactions inside 

the cell or the direct damage of the cell membrane through the ROS generation. 

Figure 9. Negatively stained TEM image of  bulk phase after 120 minutes of contact time. 
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These results suggest that bacterial can be removed not only by adsorption, but also by 

inactivation from AIM media oxidation. It is believed that the dominant mechanism responsible 

for bacteria inactivation is ROS generation. Previous studies have reported that ROS such as 

superoxide or hydrogen peroxide can be produced by oxidation of ZVI nano particle. The 

introduction of ZVI or Fe2+ to the system could produce a rapid burst of an oxidant. Superoxide 

and hydrogen peroxide were produced as the ZVI was oxidized (Keenan et al. 2009). Although 

the ZVI used in this study was not a nano scale particle, previous studies have demonstrated that 

the AIM media had strong redox capacity (Huang and Zhang 2005). The AIM could act as a 

strong reductant so that it significantly affects E. coli viability. In the AIM system, the ZVI, not 

Fe2+, plays a major role in a redox reaction, which means that ZVI is responsible for bacterial 

inactivation (Huang and Zhang 2005; Tang et al. 2016). 

Dissolved oxygen (DO) in the reactor can also affect bacterial removal efficiency. Lee et 

al. (2008) reported that a strong bactericidal effect of nano ZVI was found in the absence of 

oxygen. Previous study from our group demonstrated that AIM media can rapidly consume DO, 

result in anoxic environment at neutral pH condition (Huang and Zhang 2005). Although the 

mechanism for the bactericidal reaction of ZVI or Fe (II) is not yet fully understood, the presence 

of Fe (II) with ZVI likely induced oxidative stress by generating ROS through the Fenton 

reaction (Touati 2000). The reaction of the oxidant producing mechanism can be simplified as 

following reaction (Keenan et al. 2009): 

𝐹𝑒(𝑠)
0 + 𝑂2 + 2𝐻+  → 𝐹𝑒 (𝐼𝐼) +  𝐻2𝑂2      (2) 

𝐹𝑒(𝑠)
0 + 𝐻2𝑂2 + 2𝐻+  → 𝐹𝑒 (𝐼𝐼) +  2𝐻2𝑂      (3) 

𝐹𝑒 (𝐼𝐼) +  𝑂2 → 𝐹𝑒 (𝐼𝐼𝐼) +  𝑂2
−∙ (4)



32 

𝐹𝑒 (𝐼𝐼) +  𝑂2
−∙  + 2𝐻+ → 𝐹𝑒 (𝐼𝐼𝐼) +  𝐻2𝑂2      (5) 

𝐹𝑒 (𝐼𝐼) +   𝐻2𝑂2  → 𝑜𝑥𝑖𝑑𝑎𝑛𝑡      (6) 

Based on the information from the previous study, we postulated that bacteria might be 

inactivated by oxidative stress during ROS generation. Following-up studies of our group will be 

conducted to determine which ROS species are directly responsible for the bacterial inactivation 

in the AIM media system. 
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II.4 Implication

This study is the first attempt to discover AIM’s impact on bacterial removal, especially 

in animal wastewater. AIM has been widely used for wastewater treatment facilities, mainly 

focuses on heavy metal removal by its redox capacity. AIM technology has suggested effective 

solution to overcome the problems of normal ZVI has such as passivation. The highlight of this 

study is to evaluate the extended ability of AIM media on removal and inactivation of fecal 

bacterial indicator. In addition, particle size of ZVI used in this study was micron scaled particle 

which is more feasible in terms of field scale application comparing to ZVI nanoparticles. As 

shown in Fig. 4, high concentration of fecal indicator presents in raw manure, and it’s a potential 

risk for disease outbreaks animal herds offsite users (Liu et al. 2015). Therefore, appropriate and 

cost-effective treatment method is one of the most important things in agricultural wastewater 

treatment and the industry have always required proper technology. This study demonstrated that 

AIM can be a supplement treatment at manure or wastewater treatment facilities where pathogen 

contamination is concerned.  
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II.5 Conclusion

This study suggests that AIM can significantly reduce fecal indicator organism. The

following conclusions can be drawn: 

• ZVI is coated with magnetite (Fe3O4) by preconditioning, resulted in preventing

passivation of ZVI.

• Magnetite is responsible for adsorptive removal of fecal indicator, but does not affect

bacterial viability.

• Adsorption between AIM media and bacteria is very rapid process and inactivation is

occurred after adsorption by iron oxidation.

• Fluorescence and electron microscopic images confirm the effects of AIM on bacterial

removal and inactivation in contact time dependent manner.

• AIM system can be used for wastewater treatment facilities where microbial

contamination is concerned such as manure effluent.
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II.6 Summary

Novel and efficient animal wastewater treatment technologies of bacteria reduction are 

needed for preventing disease outbreak in animal herds and safeguarding environmental health. 

Zero-valent iron (ZVI) has been used to treat bacterial contaminated water for past decades, but 

its passivation issue has been a major challenge. In this study, batch tests were performed to 

evaluate the effect of AIM or a mixed ZVI/Fe3O4 media system on reduction of Escherichia coli 

(E. coli) levels. The AIM media was created through a wet chemical process that uses nitrate to 

oxidize ZVI in the presence of externally added Fe2+ (aq.). Transforming ZVI into a AIM system 

could overcome the passivation of ZVI and increase the reactivity of the media. The results 

demonstrated that E. coli cells in the bulk phase were removed rapidly by AIM media. Majority 

of E. coli was attached (or adsorbed) to the surface of AIM media within a few minutes, which 

suggested that adsorption was the dominant mechanism for bacterial removal in initial phase. 

This adsorption was confirmed by fluorescence microscopy with CTC-DAPI double staining and 

transmission electron microscopic (TEM). Increasing contact time steadily inactivated of E. coli; 

all cells were inactivated after 120 minutes of contact. The TEM results indicated that AIM 

inactivated E. coli by causing direct damage on bacterial cell membrane. The results of this study 

strongly suggest that AIM treatment can be used in water treatment industry where bacterial 

contamination is concerned. 



36 

CHAPTER III 

STUDY ON THE BACTERIAL INACTIVATION MECHANISM OF 

ACTIVE IRON MEDIA 

III.1 Introduction

Applying zero-valent iron (ZVI) to treat contaminated soils and groundwater have been 

becoming popular in the past two decades. Substantial experiences have been accumulated on 

kinetics of iron corrosion product/oxides, contaminant destruction, and their effects on 

performance, monitoring, modeling, and design and extensive researches have been assessed to 

investigate degradations of a variety of contaminants by ZVI (Blowes et al. 2000; Huang et al. 

2003; Huang et al. 2013; Morrison et al. 2002; Shokes and Moller 2000). 

Several studies have reported the inactivation of microorganisms using iron-based media 

such as iron oxide, micro-sized iron granules, and nano particulate zero-valent iron (n-ZVI, 𝐹𝑒0)

(Lee et al. 2008; Kim et al. 2010). Several mechanisms may contribute to the antimicrobial 

activity of iron-based compounds, including oxidative stress from the reactive oxygen species 

(ROS) generated by the reaction of these compounds with 𝑂2 or 𝐻2𝑂2, as well as direct physical 

and chemical interactions between the compounds and the organisms (Dayem et al. 2017). 

Fenton’s reagent (i.e.,  𝐹𝑒2+/𝐻2𝑂2) is known to produce oxidants which are capable of

oxidizing organic compounds in aqueous solution. Iron, as a partner of the Fenton reaction, 

potentiates oxygen toxicity (Touati 2000). Strict regulation of iron metabolism, and its coupling 

with regulation of defenses against oxidative stress, is an essential factor for living organisms in 

the presence of oxygen. Despite the fact that ROS, such as singlet oxygen, superoxide anion, 
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hydrogen peroxide, and hydroxyl radical, resulting from the transfer of energy or electrons to 

oxygen, are essential intermediates in certain physiological processes (e.g., photosynthesis, 

respiration, and cell signaling), and their levels within cells are well controlled via enzymes or 

antioxidants, exposure to high level of these ROS can be potentially harmful to living organisms 

(Ray et al. 2012). There are some known mechanisms of ROS generation from ZVI including 

homogenous reaction, non-radical mechanism for the homogeneous Fenton’s reaction, the 

Haber-Weiss reaction, homogeneous  𝐹𝑒2+ autooxidation, and homogeneous auto-scavenging

reaction (Wu et al. 2014). 

Mixed ZVI/𝐹𝑒3𝑂4 media or hybrid ZVI (AIM) media is a specific technique to prevent 

passivation problem by pre-treatment (or preconditioning) of the ZVI with nitrate and ferrous 

iron. The strategy of augmenting the ZVI system with externally added  𝐹𝑒2+ to overcome ZVI

surface passivation was highly effective (Huang et al. 2003; Huang, et al.  2013; Huang et al. 

2012). The preconditioning of ZVI not only enhanced a reactivity of ZVI, but also increased 

removal efficiency of contaminants without surface passivation issues. It has been concluded that 

both 𝐹𝑒2+ and magnetite (𝐹𝑒3𝑂4) generated from preconditioning process were very important

for pollutants degradation by ZVI (Huang et al. 2013; Huang et al. 2012; Tang et al. 2016).  

In the previous research, we demonstrated the effect of mixed ZVI/𝐹𝑒3𝑂4 media or hybrid ZVI 

media (AIM) on removal of Escherichia coli (E. coli) isolated from raw manure in aquatic 

condition (Han et al. 2019). This study is a continuing study; the objective of current study is to 

investigate the bacterial inactivation mechanism of AIM against E. coli.  
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III.2 Materials and Methods

III.2.1 Reagents

Zero valent iron (ZVI) grains of 5 µm (> 99.2%, Johnson Matthey, UK) was used in this 

study. All reagents for ZVI preconditioning were prepared with deoxygenated and deionized 

(DDI) water (E-pure D4641, USA) and stored in an anaerobic chamber. The DDI water was

prepared by purging with 𝑁2 gas for at least 30 minutes and stored in the anaerobic chamber for 

at least 24 hours (h) to further remove residual 𝑂2 before use.  𝐹𝑒2+ stock solutions (50 mM)

were prepared with 𝐹𝑒𝐶𝑙2·4𝐻2𝑂 (J.T. Baker, USA) and stabilized by adding 𝐻𝐶𝑙 (1 mM). 

Nitrate stock solution was prepared at 140 mM with 𝑁𝑎𝑁𝑂3 (Alfa Aesar, USA). Normal saline 

solution was prepared with 0.85% of 𝑁𝑎𝐶𝑙 (BDH, USA) in deionized (DI) water, followed by 

autoclave sterilization in 121°C for 15 minutes and stored in 4°C before use. All chemicals used 

in this study were analytical reagent grade. 

Dimethyl sulfoxide (DMSO) (J.T. Baker, USA), sodium azide (SA) (Amresco, USA), 

and Manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) chloride (Calbiochem, USA) 

were used as a specific scavenger for hydroxyl radical, singlet oxygen, and superoxide anion, 

respectively. Stock solution of each reagent was prepared with deionized (DI) water in a 

concentration of 10 mM, 2.8 M, 10 mM, and 1 mM, respectively. MnTBAP chloride stock 

solution was stored at -20°C by manufacturer’s instruction, and other three are stored at 4°C 

before use. 

III.2.2 E. coli isolation, identification, and preparation

E. coli was isolated from raw dairy manure collected from regional livestock research

facility in central Texas. The isolation and identification were conducted in the previous study14 

and the detailed procedure is described in the material part of Chapter II. The isolated bacteria 
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was sub-cultured daily on the Trytic Soy Agar (TSA) (Becton, Dickinson and Company, USA) 

media. Bacterial stock was prepared with 60% sterilized glycerol and stored at -20°C for future 

use. For activation and enumeration of isolated E. coli, single colony from the agar plate was 

collected and transferred to Tryptic Soy Broth (TSB) media and incubated at 37°C for at least 16 

h before each set of experiments. Bacterial concentration was determined by measuring optical 

density with spectrophotometer at wavelength of 600 nm (1.0 at OD600 equals to 8 × 108 colony 

forming unit (CFU)/mL). The bacterial suspension was serially diluted and inoculated into the 

reactor. Final concentration of bacteria in the reactor was 0.5~1.0 × 106 CFU/mL. 

III.2.3 AIM preparation (preconditioning of ZVI)

15-mL centrifuge tubes with cap were used as the reactor for preparing the activated iron

media. As the first step, 0.5±0.002 g of ZVI was added into the reactors, which was then 

transferred into the anaerobic chamber. Desired volumes of  𝐹𝑒2+, 𝑁𝑂3
−, and DDI water were

pipetted into the reactor to achieve a reactant solution of 10 mL in total (7 mM  𝐹𝑒2+ and 10 mM

𝑁𝑂3
−). The reactors were sealed with cap to in the anaerobic chamber to block oxygen, and then

transferred into a rotary tumbler for complete mixing at 30 rpm at 25 ± 2°C for 17 h in the dark. 

III.2.4 ROS scavenger assay

After preconditioning, the remaining liquid was separated discarded using a magnet. The 

prepared AIM was then washed three times with DI water. 𝐹𝑒2+ and each scavenger were taken

from prepared stock solution and added to the reactor at a desired concentration with activated 

bacterial suspension concentration of 0.5~1.0 × 106 CFU/mL. Total volume of the reactors was 

10 mL. Subsequently, reactors were transferred and laid horizontally on a shaker. The cap of the 

reactor was not fully tightened for aeration. Reactors were shaken at 200 revolutions per minute 

(rpm) for desired reaction time (~ 6 h). After reaction, the bulk phase (liquid phase) of each 
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reactor was separated from AIM media (solid phase) using a magnet and collected into a fresh 

sterile bottle. Collected samples were serially diluted with normal saline solution and the live E. 

coli concentration was measured. 

The remaining AIM solids were used to evaluate the concentration of adsorbed bacteria. 

The solid media was washed three times with normal saline solution, then filled with the same 

volume (10 mL) of fresh normal saline. Each reactor was applied sonication (Bransonic 220, 

USA) for 30 minutes to desorb the attached E. coli. The liquid in the sonicated reactors was then 

collected and used to evaluate desorbed E. coli. In order to avoid any possible interference and 

osmotic stress to the bacteria, all experiments were performed in normal saline solution. The 

bacteria reduction experiments were all performed in duplicate and repeated at least three times. 

III.2.5 ROS measurement

Experimental design for ROS measurement was the same method as ROS scavenger 

assay except for addition of each reagent for measuring hydroxyl radical, superoxide anion, and 

singlet oxygen, instead of bacterial suspension. Liquid (bulk phase) samples were collected after 

6 h of reaction and used for ROS measurement. All the reagents for measuring ROS were freshly 

prepared before experiments. 

Aqueous hydroxyl radical can be trapped by sodium benzoate (BA) and make a complex 

called 4-hydroxybenzoic acid (p-HBA) (Cheng et al. 2016). Therefore, hydroxy radical was 

measured indirectly by analyzing p-HBA. p-HBA was measured by high pressure liquid 

chromatography (HPLC, Agilent) equipped with a UV detector and C-18 column (4.6 x 250 

mm). The mobile phase was a mixture of 0.1% trifluoroacetic acid aqueous solution and 

acetonitrile (65:35, v/v) at a flow rate of 1 mL/min, with the detection wavelength at 255 nm. 
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Superoxide radical (𝑂2
−∙) production was quantified by 2,3-bis (2-methoxy-4-nitro-5-

sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction method (Erdim et al. 2015). The 

reduction of XTT by 𝑂2
−∙ results in the formation of XTT-formazan, which has a unique

absorbance at 470 nm and the formazan was measured by UV–vis spectrophotometer. 

Singlet oxygen concentration was measured by using furfuryl alcohol (FFA) as an 

indicator (k (FFA + 1O2) = 1.2 x 108 M-1S-1) (Erdim et al. 2015) and measured by gas 

chromatography-mass spectrometry (GC-MS, Shimadzu) equipped with capillary column (SH-

Rxi-tsil MS, 30 m x 0.25 mm x 0.25 µm, Shimadzu). The injector was operated in the split mode 

at a ratio of 1:50, and helium was used as carrier gas, and flow rate of the gas was 1 mL/min. 

To prepare samples for FFA analysis, 5 mL of ethyl acetate was added to 5 ml aliquot of the 

collected bulk phase sample for liquid-liquid extraction. Extraction time was determined to 20 

minutes with shaking at 200 rpm since there was no increase in FFA concentration when longer 

than 20 min of extraction was applied (data not shown). After extraction, 1 ml of ethyl acetate 

layer was collected to GC vial and analyzed. In order to maintain the loss of FFA in first-order, it 

is necessary to limit initial [FFA] < 30 ppm (Erdim et al. 2015). In addition, we confirmed that 

there was a linear relationship between initial FFA concentration in water and FFA concentration 

in ethyl acetate after liquid-liquid extraction only when the FFA concentration was not higher 

than 30 ppm. Therefore, 20 ppm of initial FFA was selected as optimum concentration for this 

study. In addition, the reaction of 1O2 and FFA is known to be independent of pH between 5-12 

(Hou and Jafvert 2009). 

III.2.6 pH,  𝑭𝒆𝟐+and total Fe (𝑭𝒆𝑻) measurement

After reaction, part of suspension (bulk phase) was filtered through a 0.25 μm syringe 

filter for  𝐹𝑒2+ and 𝐹𝑒𝑇measurement. The residual suspension was used for pH measurement.
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Aqueous  𝐹𝑒2+ and 𝐹𝑒𝑇were measured by 1,10-phenanthroline method. The partial filtrate was

collected in a colorimetric tube and acidified using 0.1 mL 6.0 M HCl for the analysis. pH, 

 𝐹𝑒2+, and 𝐹𝑒𝑇 were analyzed instantly for all samples to avoid further oxidation or interference.

III.2.7 Statistical analysis

Experiments were performed at least three times throughout the study and all data are 

presented as the mean ± sample standard deviation of repeated values. Statistical significance 

was determined using Student's t-tests by evaluation of differences by comparing to control or 

blank groups and analysis of variance (ANOVA) test; *p < 0.05 or **p < 0.01 were considered 

statistically significant based on the tests. JMP pro 13 was used as a software tool for statistical 

analysis. 
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III.3 Results

III.3.1 Effects of AIM and ROS scavengers on E. coli removal

In the previous study, we demonstrated the effect of AIM against E. coli removal (Han et 

al. 2019). To better understand the inactivation mechanism of AIM, ROS scavenger assay was 

conducted in this study. The initial concentration of each scavenger was 0.28 M, 5 mM, and 100 

μM for DMSO, SA, and MnTBAP, respectively, and 3 h of reaction time was given (Han et al. 

2019). Fig. 10 (a) shows that AIM removed significant amount of bacteria (> 4 log) in bulk 

phase without scavengers (control). In addition, addition of DMSO and MnTBAP, which are 

scavenger of hydroxyl radical and superoxide anion, respectively, have negligible effects on 

bacterial removal by AIM. However, SA significantly inhibited the bacterial removal efficiency 

of AIM in bulk phase (Fig. 10 (a)).   

Sonication (30 minutes) was applied to residual AIM solid phase after reaction in order to 

analyze adsorbed live E. coli. No effect was observed on E. coli viability by sonication itself 

within 30 min (Han et al. 2019). Fig. 10 (b) shows that E. coli was not detected in solid phase 

after sonication in DMSO or MnTBAP added group, and negligible live cells (< 10 CFU/ml) 

were observed in control. However, it was observed that SA inhibited the bactericidal activity of 

AIM in the solid phase (Fig. 10 (b)). In addition, concentration of SA also affected the AIM 

performance. Fig. 11 shows that the inhibition of bacterial removal was increased with the 

concentration of SA added into the system in both solid and liquid phase. These results suggested 

that there is a high possibility of singlet oxygen generation during oxic reaction of AIM, and the 

singlet oxygen generated from AIM could be responsible for bacterial inactivation.  
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III.3.2 Effects of reaction time with SA on singlet oxygen generation

Fig. 12 indicates the effect of reaction time of AIM depending on availability of SA on E.

coli removal in a bulk phase. At the initial phase of the reaction (less than 1 min), significant 

amount of E. coli (2.5-2.8 log) was removed by adsorption (Han et al. 2019). After the initial 

reduction, the E. coli concentration did not significantly decrease in the SA treated group until 

360 min of reaction. 

(a) Bulk phase

 

Figure 10. Effect of ROS scavengers on bacterial removal. (a): Bulk phase and (b): Solid phase. 

Statistical significance was determined by evaluation of differences by comparing to (a) blank or 

(b) control; *p < 0.05 or **p < 0.01 were considered statistically significant based on the tests.
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(b) Solid phase

Figure 10. Continued. 
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(a) Liquid phase

(b) Solid phase

Figure 11. Effect of sodium azide concentration on E. coli removal by AIM; (a) liquid phase and 

(b) solid phase.
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There was up to 2.04 log scale different live E. coli cells in bulk phase between with and 

without SA addition, and this difference increased with reaction time. Addition of 0.1 mM 𝐹𝑒2+

with 5 mM SA (control) did not show a significant effect (less than 1 log scale) on E. coli 

viability during 6 h (Fig. 12). We could not add more than 5 mM of SA because greater than 5 

mM of SA has a toxicity on E. coli (data not shown). Therefore, 5 mM of SA was chosen for the 

further experiments in this study.  

Figure 12. Effect of reaction time of AIM and singlet oxygen scavenger on E. coli viability. 
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III.3.3 ROS generation by ZVI,  𝑭𝒆𝟐+, and AIM media

Fig. 13 (a) indicates singlet oxygen generation by reaction of ZVI, 𝐹𝑒2+, and AIM within

6 h in the presence of oxygen. Singlet oxygen concentration was determined indirectly by FFA 

concentration change and represented as Ct/C0 ([FFA]t / [FFA]initial). The FFA concentration was 

significantly reduced (C6h/C0 = 0.66) when 3 mM of 𝐹𝑒2+ was externally added with AIM.

However, there was no decrease in FFA concentration from pure ZVI. 𝐹𝑒2+ itself showed slight

reduction of the FFA (C6h/C0 = 0.94), and this change was statistically significant in 95% 

confidence level (p-value = 2.1%) compared to blank. When singlet oxygen scavenger (5 mM 

SA) was added, the FFA concentration change was significantly inhibited (C6h/C0 = 0.87).  

The effect of reaction time on singlet oxygen generation is shown in Fig. 13 (b). The 

concentration of externally added 𝐹𝑒2+ was 1.5 mM since the result in Fig. 14 (a) showed that

there was no increase in singlet oxygen generation when greater than 1.5 mM 𝐹𝑒2+ was added.

The time course result shows that the singlet oxygen was gradually generated with reaction time 

in 6 h duration (Fig. 13 (b)). 

Effect of externally added 𝐹𝑒2+ concentration was also investigated. 0 – 3.0 mM of 𝐹𝑒2+

was added and reacted with AIM media for 6 h. The results showed that the AIM reduced FFA 

without additional 𝐹𝑒2+ (C6h/C0 = 0.87) and the concentration of FFA decreased with increase of

𝐹𝑒2+ concentration up to 1.5 mM (Fig. 14 (a)). There was no significant difference in FFA

concentration when greater than 1.5 mM of 𝐹𝑒2+ was added. When ZVI was applied without

preconditioning, there was no reduction in FFA concentration for 6 h duration (95% confidence 

level ANOVA test, p-value = 45.3%), even in the highest dosage of 𝐹𝑒2+ in the experimental

condition (Fig. 14 (b)).  
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Effect of AIM on ROS generation besides singlet oxygen was investigated because previous 

studies reported superoxide anion and hydroxyl radical can be generated by ZVI nano particle 

(NP) (Kim et al. 2010). However, any evidence for these ROS (superoxide anion and hydroxyl 

radical) generation was not found with AIM in the experimental condition (data not shown).  
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(a) Comparison of singlet oxygen generation by different iron media

Figure 13. (a) Comparison of singlet oxygen generation by different iron media and (b) effect of 

reaction time on singlet oxygen generation by AIM media. Statistical significance was 

determined by evaluation of differences by comparing to (a) blank or (b) initial (0 h); *p < 0.05 

or **p < 0.01 were considered statistically significant based on the tests. 
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(b) Singlet oxygen generation by AIM in time dependent manner

Figure 13. Continued. 
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(a) AIM

(b) ZVI

Figure 14. Effect of externally added Fe (II) concentration on singlet oxygen generation. (a): 

AIM, (b): ZVI without preconditioning. Statistical significance was determined by evaluation of 

differences by comparing to blank; *p < 0.05 or **p < 0.01 were considered statistically 

significant based on the tests. 

0.5

0.6

0.7

0.8

0.9

1.0

Blank 3 mM Fe2+

Only

AIM + 0 mM

Fe(II)

AIM + 0.5 mM

Fe(II)

AIM + 1.5 mM

Fe(II)

AIM + 3 mM

Fe(II)

[F
F

A
] 

(C
6
h
/C

0
)

* 

* 

** 

** ** 

0.5

0.6

0.7

0.8

0.9

1.0

Blank 3 mM Fe2+

only

ZVI + 0 mM

Fe(II)

ZVI + 0.5  mM

Fe(II)

ZVI + 1.5  mM

Fe(II)

ZVI + 3  mM

Fe(II)

[F
F

A
]

(C
6
h
/C

0
)

*



53 

III.4 Discussion

Previous studies reported that magnetite was the dominant corrosion product as a result 

of iron-nitrate redox reaction (Huang et al. 2003; Huang et al. 2005). Once magnetite coated on 

the source iron grains, negligible nitrate reduction occurred if the solution contained a limited 

amount of 𝐹𝑒2+. In the experimental system in our study, nitrate played a role as an electron

acceptor and assumed to be completely reduced to ammonia during preconditioning process. In 

addition, externally added 𝐹𝑒2+ helps to form of a black oxide coating (magnetite) (Huang et al.

2003; Huang et al. 2005). As long as 𝐹𝑒2+ is available in the aqueous phase, magnetite could be

formed and coated onto the surface of ZVI (Huang et al. 2013; Huang et al. 2012; Tang et al. 

2016). The reaction during the ZVI preconditioning can be summarized as following (Han et al. 

2019; Huang et al. 2005): 

𝑁𝑂3
− + 2.82 𝐹𝑒0 + 0.75 𝐹𝑒2+ + 2.25 𝐻2𝑂 →  𝑁𝐻4

+ + 1.19 𝐹𝑒3𝑂4 + 0.50 𝑂𝐻−

The major finding and advantage of creating AIM through preconditioning method is 

producing a magnetite coating on the ZVI surface, which allows more favorable reaction status 

of iron oxide (Huang et al. 2005). The primary role of 𝐹𝑒2+ in the system was to facilitate ferric

(hydr) oxides, the dominant passive corrosion products, transformation to magnetite (Huang et 

al. 2013; Huang et al. 2012; Tang et al. 2016). In this manner, ZVI preconditioning could 

overcome ZVI surface passivation and keep reactivity of the core ZVI. In terms of bacterial 

removal efficiency, magnetite itself has limited bactericidal activity but has great adsorption 

capacity (Lee et al. 2008). These characteristics of magnetite allowed the AIM to effectively 

remove and inactivate bacteria by simultaneous adsorption and redox reaction (Han et al. 2019). 

The purpose of this study was to evaluate the mechanism of bacterial inactivation of AIM, 

focused on ROS generation during AIM oxic reaction. 
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According to studies have been reported, main ROS products caused by ZVI (or ZVI NP) 

oxic reaction are superoxide anion, hydroxyl radical, or ferryl radical (Wu et al. 2014; Kim et al. 

2010). These radicals are known as the major factors affecting bacterial viability. For this reason, 

ROS scavenger assay was performed in this study in order to elucidate whether a specific ROS 

generated from AIM is responsible for bactericidal inactivation. As shown in Fig. 10, 5 mM of 

SA, the singlet oxygen scavenger, significantly inhibited bacterial removal by AIM. Superoxide 

anion and hydroxyl radical scavenger did not reduce the bacterial removal efficiency. Since SA 

is known as a specific singlet oxygen quencher (Li et al. 2001; Bancirova 2011), this inhibition 

can be interpreted that SA quenched singlet oxygen generated from AIM reaction. In another 

word, it could be concluded that singlet oxygen is the main reason of bacterial inactivation in the 

AIM system. 

Kim et al. demonstrated that ROS generated from ZVI NP was not directly related to 

bacterial viability in the bulk phase (Kim et al. 2010). The authors of this study suggested that a 

limitation on a diffusion of ROS scavengers to the interface of ZVI and bacteria particles could 

be a possible reason. Because of this reason, it was difficult to show the effect of scavengers in a 

short period of experimental condition. To minimize this diffusion limitation issue and confirm 

the effect of scavenger in the bulk phase more accurately, we added each scavenger (DMSO and 

MnTBAP) from the beginning of bacterial culture stage. DMSO and MnTBAP were added to 

TSB at the same concentration as the experimental condition, and repeated the scavenger assay 

with the bacteria came from scavenger included media. We assumed that this experimental 

design could provide enough time to overcome the diffusion limitation. However, any scavenger 

effect was not observed even in this experimental condition (Fig. 15). This result demonstrates 
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that superoxide anion and hydroxyl radical were not generated and/or directly related to the 

bactericidal effects in AIM system. 

Figure 15. Effect of scavengers for hydroxyl radical and superoxide anion on bacterial removal. 

Each scavenger was added into the media from the bacterial culture suspension in order to 

prevent a diffusion issue of the scavengers. 

In this study, because relatively high concentration of sodium (SA) was added as a 

scavenger, it could increase an ionic strength and result in decrease of bacterial adsorption. Thus, 

zeta potential of E. coli particle after reaction was measured in order to verify whether the effect 

of  SA on bacterial reduction is caused by singlet oxygen quenching or reduced adsorption capacity. 
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Fig 16 shows the zeta potential differences of bacteria particle in different reaction conditions. 

There was no significant difference between two groups, “AIM + Fe (II)” and “AIM + Fe (II) + 

SA” (p-value = 11.6%), which supports that there is negligible effect on adsorptive removal of 

bacteria caused by addition of SA. Therefore, we could conclude that the major factor of 

bactericidal effect of AIM is singlet oxygen. As shown in in Fig. 12, there was a significant  

Figure 16. Effect of sodium azide on zeta potential of bacterial cell particles. 
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bacterial reduction (~ 2.2 log) within 1 min of reaction in both of control and scavenger 

treatment then, bacterial reduction rate decreased substantially in the scavenger treatment group. 

This result also supports that SA did not affect bacterial adsorption. In addition, we could 

confirm that bacterial adsorption by AIM is very rapid process followed by inactivation. When 5 

mM of SA was added, the bacterial concentration slightly decreased after 6 h reaction compared 

to initial reaction phase (Fig. 12), and FFA concentration after 6 h in the scavenger group is also 

slightly lower than blank or 𝐹𝑒2+ only group (Fig. 13 (a)). These results indicate that 5 mM of

SA was gradually consumed by singlet oxygen during the reaction, resulted in losing singlet 

oxygen quenching ability at longer reaction time. This could be another evidence that singlet 

oxygen is the major factor of bacterial inactivation in AIM system. Experiments with higher 

dosage of SA could confirm this evidence, but we could not add greater than 5 mM of SA 

because of the toxicity of SA itself against E. coli in higher concentration.  

On the contrary to the result of AIM, there was no evidence of singlet oxygen generation 

with oxic reaction without preconditioning (Fig. 13 (a) and 14 (b)) even in the highest 

concentration of additional 𝐹𝑒2+. These findings suggest that magnetite and externally added

𝐹𝑒2+ have a crucial role in singlet oxygen generation. ZVI oxidation has been proved to produce

ROS under ambient condition, however, this metabolism is substantially limited by other 

competing reactions, which results in loss of reactive iron species (ferrous and ferric ions) in the 

form of iron corrosion products, such as iron oxides and hydroxides (Bancirova 2011; Joo et al 

2005). These competing reactions in oxygenated systems rapidly reduce the efficiency of the n-

ZVI through passivation of ZVI surfaces by corrosion products, result in decrease of the electron 

transfer rate. Recently, it has been reported that in ZVI systems the efficiency of electron transfer 

processes and the yield of ROS production could be enhanced using ligands (e.g., 
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ethylenediaminetetraacetate (EDTA)), electron shuttles (e.g., polyoxometalate; a metal–oxygen 

anion), or natural organic matter (Davenport et al. 2000; Keenan and Sedlak 2008; Lee et al. 

2008). Thus, results of this study indicate it is possible that magnetite can be act as an electron 

shuttle during ZVI oxidation. 

Fig. 17 indicates the result of singlet oxygen generation by oxic reaction of magnetite 

(commercially purchased) with additional 𝐹𝑒2+. Because the purchased magnetite powder

(Alpha chemical) was not stored in anoxic condition, the surface can be oxidized and lose its 

reactivity. Thus, magnetite was activated with deoxidized DI water and 7 mM of 𝐹𝑒2+ before

use. Magnetite surface activation was conducted similar method to the ZVI preconditioning 

method. Fifteen (15) mL centrifuge tubes with cap were used as the reactor for preparing the 

activated magnetite. As the first step, 0.5 ± 0.002 g of magnetite was added into the reactors, 

which was then transferred into the anaerobic chamber. 7 mM of  𝐹𝑒2+ and DDI water were

pipetted into the reactor to achieve a reactant solution of 10 mL in total. The reactors were sealed 

with cap in the anaerobic chamber and then transferred into a rotary tumbler for complete mixing 

at 30 rpm at 25 ± 2°C for 48 h in the dark. As shown in Fig. 17, there were negligible change in 

FFA concentration with activated magnetite regardless of 𝐹𝑒2+ concentration. It is known that

magnetite is the end product of iron oxides in the experimental condition and stable (Huang and 

Zhang 2005), as well as there is no other electron donor (i.e. ZVI), there should be not enough 

redox energy for producing singlet oxygen by magnetite itself.  
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Figure 17. Effect of activated magnetite on singlet oxygen generation. The singlet oxygen was 

analyzed by measuring FFA and the result was indicated as C6h/C0 ([FFA]6h / [FFA]initial). 

Singlet oxygen refers to singlet electronic excited states and the singlet states of oxygen 

are higher in energy than the triplet ground state of oxygen. Typically, it is known that ground 

state oxygen can be transited to excited energy state by external photoenergy such as ultraviolet 

and/or visible light (Kang and Choi 2009). Other studies found that chemical energy (i.e. 

chemiluminescence) is also able to generate singlet state oxygen (Fu et al. 2014). Energy 
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required to elevate oxygen to singlet states is 1270 nm (= 0.976 eV), and 𝐹𝑒0 → 𝐹𝑒3+ oxidation

can generate greater than 0.976 eV in neutral pH (Koppenol 1976; Saito and Nosaka 2014). 

Therefore, singlet oxygen generation by redox reaction of ZVI is thermodynamically allowed 

process and it is possible that redox reaction of AIM could be closely related to singlet oxygen 

generation. 

Aqueous 𝐹𝑒2+ concentration and 𝐹𝑒2+/𝐹𝑒𝑇 ratio were measured after AIM oxic reaction.

Fig. 18 (a) and (b) show the change of aqueous 𝐹𝑒2+ concentration and 𝐹𝑒2+/𝐹𝑒𝑇 ratio by

reaction time. The aqueous 𝐹𝑒2+ concentration slightly decreased at the beginning stage (~ 10

ppm) and kept stable until end of reaction (24 h). This result corresponds to the previous result 

(Huang and Zhang 2005) and represents that major electron donor of the AIM reaction is ZVI, 

not aqueous 𝐹𝑒2+.

Comparing the 𝐹𝑒2+/𝐹𝑒𝑇 ratio change caused by reaction of AIM, activated magnetite,

and ZVI (Fig. 18 (b), Fig. 19 (a), and (b), respectively), the aqueous 𝐹𝑒2+/𝐹𝑒𝑇 ratio of AIM after

24 h was significantly lower those that of activated magnetite and ZVI. Since the aqueous 𝐹𝑒2+

did not directly involved in the AIM redox reaction, these results suggest that ZVI oxidized to 

𝐹𝑒3+ and this oxidation energy is the main source for excitation of ground state oxygen.

Therefore, we could conclude that the magnetite was not involved in redox reaction directly, 

magnetite coating helps to keep a reactivity of ZVI and transfer electrons from ZVI, result in 

giving higher redox power in the system. Because of the fact that AIM could be acted as buffer 

(Tang et al. 2016), we were able to eliminate the other pH effect on iron redox reaction in the 

system. Indeed, pH of solution was stable in near neutral during the reaction (Fig. 18 (c)) 
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(a) (b) 

(c) 

Figure 18. (a) Aqueous Fe (II) concentration; (b) Fe (II) / FeT ratio, and (c) pH change by AIM 

oxic reaction with 1.5 mM Fe (II). 
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 (a) 

(b) 

Figure 19. Aqueous  𝐹𝑒2+/𝐹𝑒𝑇 ratio after 24 h oxic reaction of  (a) activated magnetite and (b)

ZVI. 
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In terms of thermodynamic energy, ZVI to 𝐹𝑒3+ oxidation process might be a possible

factor for singlet oxygen generation. Main iron oxide products of ZVI oxidation in standard 

condition is lepidocrocite (γ-FeO(OH)) and maghemite (γ-𝐹𝑒2𝑂3) (Huang and Zhang 2005). 

Because AIM is coated by magnetite, which has lower band gap energy, it makes easier electron 

transfer (Huang and Zhang 2005), which means AIM has higher redox potential compared to 

regular ZVI. Therefore, singlet oxygen may not be generated or less amount was generated under 

detection limit in regular ZVI. In addition, considering the fact that hydroxyl radical and 

superoxide anion were not detected in experimental condition of this study, and the results of 

FFA concentration change of normal ZVI and AIM (Fig. 4), it can be concluded that singlet 

oxygen would be a major cause of the bactericidal effect in the AIM system. 
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III.5 Implication and Further Discussion

In this study, lower 𝐹𝑒2+/𝐹𝑒𝑇 value from AIM reaction compared to the value from regular

ZVI strongly suggests that oxidation of ZVI is closely related to singlet oxygen formation. There 

were several articles related to singlet oxygen generation without external photo energy (Yesilgul 

et al. 2017; Saito and Nosaka 2014; Corey et al. 1987). One possible mechanism for singlet 

oxygen formation without light source is superoxide disproportionation. The authors of these 

study suggest following mechanism (proton assisted singlet oxygen formation) (Saito and 

Nosaka 2014; Corey et al. 1987);

(1) Superoxide protonation to form 𝐻𝑂𝑂 •

𝑂2
− + 𝐻+  → 𝐻𝑂𝑂 •

(2) 𝐻𝑂𝑂 • reduction by superoxide or;

𝐻𝑂𝑂 •  + 𝑂2
− →  𝐻𝑂4   → 1𝑂2

(3) Disproportionation

2 𝐻𝑂𝑂 • + 𝐻2𝑂 →  𝐻2𝑂4  →  𝐻2𝑂2 + 𝐻2𝑂 + 1𝑂2

(4) The overall reaction

2 𝑂2
− + 2 𝐻+ → 𝐻2𝑂2 + 1𝑂2

According to the above reaction, hydrogen peroxide and singlet oxygen is generated as 

the final products in the overall reaction. Accordingly, an additional scavenger assay was 

performed using 10 mM of sodium pyruvate, a hydrogen peroxide scavenger as shown in Fig. 

20. The scavenger assay results in the Fig. 20 indicates that hydrogen peroxide is also involved
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in the bacterial removal mechanism of AIM against E. coli. However, these results alone do not 

distinguish whether hydrogen peroxide is directly involved in bacteria removal or indirect 

mechanism by inhibition of Fenton reaction of AIM in the aqueous system. Prior to the 

scavenger assay, experiments to evaluate the effects of AIM amount on bacterial removal were 

conducted in order to exclude other bacteria removal mechanisms such as adsorptive removal, 

and to maximize the results of bacterial inactivation of ROS.  

Fig. 21 shows the time dependent bacterial removal efficiency in different amount of 

AIM. As a result, the following experiment was conducted using AIM of 0.05 g, which is 10% of 

the amount used in the previous experiment. Fig. 20 and Fig. 12 show that the initial bacterial 

removal, which is caused bacterial adsorption, was significantly reduced when a smaller amount 

of AIM was used. In addition, in order to maintain the initial SA concentration in the SAS group 

(Sodium Azide Spiked group), a concentrated SA solution was spiked every 1.5 hour as a 

compensation for the consumption of SA as the reaction time progressed. The results indicate 

that the bacteria removal efficiency of the SAS group was significantly inhibited compared to the 

control or SA group. This is a clear and direct evidence showing that SA is consumed according 

to the reaction time. In addition, since SA is known as a specific quencher of singlet oxygen, this 

result can be regarded as conclusive evidence that singlet oxygen is a direct cause of bacterial 

elimination of AIM. 
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Figure 20. Effect of scavengers for hydrogen peroxide and singlet oxygen on bacterial removal. 

*BL, Blank (Bacterial only); SP, 10 mM sodium pyruvate; SA, 5 mM sodium azide; SAS, 5 mM

sodium aziade spiked every 1.5 hour; CT, control (without scavenger).
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Figure 21. Effect of the amount of AIM against E. coli removal. 

This study focused on E. coli inactivation mechanism of AIM, which has been 

investigated in our research group with interesting findings. The main advantage of making ZVI 

into AIM is controlling ZVI surface passivation by changing iron oxides and coating magnetite 
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AIM on bacterial removal and confirmed that there were both of bacterial adsorption and 

inactivation. Although the exact chemical mechanism of singlet oxygen generation remains 

uncertain, the most remarkable finding of this study is that singlet oxygen can be generated by 

AIM without external photo energy, and the singlet state oxygen is the main reason for 

bactericidal effect of AIM system.  
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III.6 Conclusion

This study focused on the mechanism of bacterial reduction caused by AIM oxic reaction in

water system. The following conclusions can be drawn: 

• AIM could significantly reduce E. coli in water system.

• Singlet oxygen scavenger inhibited the bacterial removal effect of AIM, but other

scavenger showed negligible effect.

• Singlet oxygen scavenger, SA, did not affect absorption onto a surface of the media.

• According to the 2) and 3), it can be inferred that singlet oxygen is the main reason for

bacterial inactivation in AIM system.

• Magnetite coating on the surface could keep a reactivity of core ZVI, and this could be a

key factor for exciting singlet state by chemical energy.
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III.7 Summary

Active Iron Media (AIM) or mixed ZVI/𝐹𝑒3𝑂4 media system is a result of ZVI 

preconditioning which is made by additional 𝐹𝑒2+and 𝑁𝑂3
− in anoxic condition. Previous study

demonstrated that AIM media effectively removed bacteria in the aqueous system. This study is 

to discover bacterial inactivation mechanism in terms of reactive oxygen species (ROS) 

generation during oxic reaction of the AIM media. ROS scavenger assay was performed in order 

to elucidate the effect of ROS generation on bacterial inactivation. As a result, singlet oxygen 

scavenger, sodium azide, significantly inhibited the bactericidal effect of AIM in both bulk and 

solid phase. Singlet oxygen was measured by quantifying a furfuryl alcohol (FFA) concentration 

and the concentration of singlet oxygen increased with a reaction time of AIM and the 

concentration of additional 𝐹𝑒2+. However, pure ZVI (without preconditioning) did not produce

a singlet oxygen even in the presence of the highest concentration of 𝐹𝑒2+. The 𝐹𝑒2+/𝐹𝑒𝑇 ratio

in the aqueous phase with AIM at the end of the reaction was significantly lower than that of 

normal ZVI reaction. The results of this study suggest that the bactericidal effects of AIM is 

caused by singlet oxygen generation in a consequence of redox of AIM in oxic condition, and 

magnetite (𝐹𝑒3𝑂4) which is coated on the surface of ZVI has a crucial role in singlet oxygen 

generation.
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*Reprinted with permission from “Impact of Dairy Manure Processing Using Polyacrylamide on Antibiotic-

Resistant Bacterial Level” by “Sunghwa Han, Sharon C. Long, Troy Runge, Cuihua Dong, and Zong Liu, 2019.

CHAPTER IV 

IMPACT OF DAIRY MANURE PROCESSING USING 

POLYACRYLAMIDE ON ANTIBIOTIC RESISTANT BACTERIAL 

LEVEL* 

IV.1 Introduction

In rural areas near dairy or other animal farming facilities, groundwater is the most 

common source of drinking water (Kenny et al. 2009; Morris et al. 2003). Therefore, maintaining 

sustainable agricultural practices and developing science-based strategies for using antibiotics in 

dairy operations are of critical importance for protecting drinking water resources as well as food 

and worker’s safety. However, such efforts are often hampered by a gap of understanding of 

bacteria occurrence and antibiotic resistance in dairy operations. 

Applying antibiotics as a growth promoter at sub-therapeutic doses to cattle, swine, 

poultry, and even fish (Angenent et al. 2008; Kemper et al. 2008) is an essential part of the farm 

animal and fish production. Antibiotic consumption in modern livestock industry has increased 

significantly with one study reporting that the quantity of antibiotics used in 2004 was 108 times 

higher compared to that used in 1950 (Massé et al. 2014). About 91% of livestock facilities in 

the USA use over-the-counter antibiotics as growth promoters annually, amounting to a 

staggering 11.2 million kg antibiotics used annually (Sarmah et al. 2006; Shea. 2003; Arikan et 

al. 2009; National Research Council, 1999). A variety of antibiotic classes are used in the 

Water, Air and Soil Pollution, 230, 58, Copyright [2019] by Springer Nature

___________________________
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livestock industry, with the more common classes including β-lactams, Macrolides, and 

Sulphonamides (Mellon et al. 2001). The fate of these applied antibiotics ultimately becomes an 

animal waste issue, as the animals excrete a significant proportion of those antibiotics, 17-90% 

for livestock (Bound and Voulvoulis 2004; Kumar et al. 2005; Pathak 2010), directly through 

their urine and feces, unchanged or as active metabolites such as epimers or isomers of the parent 

compound (Mackie et al. 2006). Antibiotic use, including treating sick cows on dairy farms, has 

contributed to the spread of antibiotic resistance as a consequence of the release of antibiotics, 

antibiotic resistant bacteria, and antibiotic resistance genes into the environment (Martinez 

2009), which could cause antibiotic-resistant bacteria presence in dairy manure (Esiobu et al. 

2002). Dairy manure is an excellent soil conditioner and fertilizer because of its organic carbon 

content originating from undigested lignocellulosic fiber, nitrogen content from urea and 

degraded proteins, in addition to the essential nutrients for plants growth, such as phosphorus 

(Liu et al. 2016). However, larger farms are increasingly processing manure before land 

application in order to meet lower hauling costs, decrease environmental concerns around 

nutrient losses to water, and satisfy federal and state regulations. Therefore, a comprehensive 

manure handling and treatment strategy is crucial on a large dairy farm. A typical manure 

management strategy is liquid/solid separations through a variety of operations such as screens, 

presses, or centrifuges to produce a nutrient-rich in solids and a low-nutrient/solids in liquid 

stream. The properly separated liquid can be used for irrigation or recycled to use as process 

water to flush the barns. Closing the waste cycle on dairy farms worldwide can increase the 

sustainability of such operations; however, research into factors that could lead to “unforeseen” 

consequences from changes in management practices is essential to ensure the efficacy of such 

changes. 
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On large farms, physical separation methods such as centrifugation are often enhanced by 

chemical addition (Vanotti et al. 2002; Amuda and Alade 2006; Liu et al. 2017) because physical 

separation alone is not suitable to remove fine suspended particles, which typically contain the 

majority of the nutrients, from recycled liquid streams (Liu et al. 2016). These chemicals bind 

and separate the smaller particles for efficient concentration of solids and nutrients (Zhang and 

Westerman 1997). For example, the use of polyacrylamide (PAM) polymers, their homo-

polymers, and their acrylamide/acrylic acid co-polymers, alone or in combination with various 

inorganic salts, have proven to be effective in enhancing concentration of solids and nutrients in 

the separation process (Vanotti et al. 2002). Despite the efforts of recent studies examining 

manure separation, there is still a lack of studies relating polymer effect on pathogen indicator 

reduction, as well as dairy manure characteristics such as the level of total solids, chemical 

oxygen demand (COD), and liquid-solid separation efficiency of raw manure. Furthermore, there 

is little information of the effects of polymers on bacterial concentration and especially on 

antibiotic resistant bacteria in a raw manure and in the liquid stream of polymer treated manure.  

The objectives of this study were to evaluate the occurrence of antibiotic resistant bacteria in a 

raw dairy manure and determine the effect of commercial polymer treatment on the removal of 

those resistant bacteria in a raw manure for potential liquid reuse or recycling. In this paper, we 

evaluated the effect of manure treatment with polymer coagulation/flocculation on liquid phase 

pathogen indicator reduction. In addition, the occurrence of antibiotic-resistant bacteria among 

total live bacteria against four different types of representative antibiotic typically used in dairy 

facilities (tetracycline, penicillin, florfenicol, and cephalosporin) was evaluated by an antibiotic 

scoring method which was developed from this study. 
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IV.2. Materials and Methods

IV.2.1 Sample Collection and Reagents

Raw manure samples used in this study were collected from a dairy farm in eastern 

Wisconsin. Sample collection was conducted at several sampling points using 250 mL freshly 

sterilized polypropylene containers and then promptly transferred to a sealed cooler with ice. The 

inside temperature of the cooler was kept at 4℃ before analysis. A bacterial analysis was 

performed within 12 hours after we collected the raw manure samples. Remaining samples after 

bacterial analysis were kept frozen in -20℃ freezer until used for other experiments. To conduct 

chemical experiments, frozen samples were thawed at room temperature.  

All reagents used in this study were reagent grade unless otherwise specified and stored 

through manufacturer’s instructions. The polymer reagents (cationic polyacrylamide) were 

obtained from Soil Net LLC, Belleville, WI. A total of 8 polymer samples were evaluated in this 

study for manure separation, coagulation, and flocculation. Polymer stock solutions were 

prepared freshly for every experiment. Each polymer sample was diluted to 1% (v/v) with 

deionized (DI) water with mixing. The mixed emulsion was added to manure at a ratio of 3:100 

(v/v). 

IV.2.2 Manure Treatment and Separation

For the solid settling time/velocity test, jar tests were performed in order to evaluate the 

raw manure clarification efficiency of each polymer. The jar test was divided into a control 

group (raw manure) and an experimental group (centrifuge with/without polymer addition) and 

performed by the following procedure. Identical 400 mL low form Griffin beakers were used for 

the jar test. Six mL of diluted polymer emulsion of each polymer was applied to each of 200 mL 

manure sample. The manure samples were mixed using a magnetic stir bar on stir plates and the 
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settling time was measured. Measurement began after the mixing was stopped. The settling 

distance was measured at desired time intervals using a calibrated graduated scale (minimum 

detection limit of 0.5 mm) marked on each beaker. The clarification efficiency was calculated 

using the volumetric ratio of clear liquid volume (after polymer treatment) to the initial volume. 

The solids content of manure samples was measured gravimetrically in accordance with 

American Public Health Association (APHA) Standard Methods 2540 (2005). 

IV.2.3 Bacterial Indicator Analysis

Total coliforms and Escherichia coli (E. coli, a subset of total coliforms that are closely 

associated with mammalian fecal matter), are frequently used as indicators of the potential for 

pathogen presence in animal manure since they are typically present in higher densities than any 

single pathogen (Garzio-Hadzick et al. 2010). In this study, the Colilert™ method (IDEXX, 

Westbrook, ME) was used for simultaneous detection of total coliforms and E. coli. A non-

nutritive but biologically gentle matrix (Dilu-Lok phosphate buffer with magnesium chloride, 

Hardy Diagnostics, Santa Maria, Cal.) was used for dilution. To enumerate the cells, each sample 

was serially diluted by applying 1 mL to 99 mL of buffer, making a 10-2 dilution of the original 

sample. Up to 10-8 of subsequent serial dilutions were applied as needed in order to estimate a 

detectable concentration of the bacteria. A packet of Colilert™ reagent was added to the diluted 

samples and well mixed. The entire content of each sample was poured into a Quanti-Tray/2000 

(IDEXX Laboratories, Westbrook, ME), sealed, and was then ready for incubation. The trays 

were incubated for 24 to 28 h at 35°C ± 0.5°C. After incubation, the results were examined by 

observing and counting the wells; yellow color for total coliforms; and fluorescence emission 

under ultraviolet light for E. coli. The most probable number (MPN) of total coliforms and E. 
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coli was determined according to the manufacturer’s instructions and was based on the statistical 

Poisson distribution of positive and negative wells. 

IV.2.4 Antibiotic Resistance Test

Four representative antibiotic classes (Tetracycline, β-lactams (Penicillin), amphenicols 

(Florfenicol), and Cephalosporin) were chosen for the antibiotic resistance evaluation since those 

four classes are the most commonly used in a dairy farm management. Lower and higher dose of 

each antibiotic was applied based on their known minimum inhibitory concentration (MIC) 

values in order to estimate the percentage of antibacterial resistant bacteria in a raw manure and 

separated manure samples. The concentration information of each antibiotic reagent is 

summarized in Table 2. For estimating a ratio of antibiotic resistant bacteria, 1 mL of raw 

manure and a liquid stream of centrifuge/centrifuge with polymer separated samples were 

inoculated into a normal tryptic soy agar (TSA) plate and TSA plates containing lower and 

higher concentration of each antibiotic and incubated in 35℃ for 24 hours. After incubation, 

colonies of the antibiotic containing plates were counted and compared to those of the control 

TSA plates.  

The resistance levels of the tested bacteria were indicated using a scoring method. Every 

single colony on the antibiotic containing plate was transferred to 8 individual media (a lower 

and a higher concentration of each of the 4 different antibiotics). Each of the eight media were 

poured into a 100 x 15 mm and 6 x 6 square grid TSA plate, each single colony was replica 

transferred and all plates were incubated in 35℃ for 24 hours. For example, a single colony from 

a 12.5 ppm TSA plate was taken and transferred to each plate containing the four different 

antibiotics of lower and higher concentrations. After incubation, the colonies on each space were 

counted. The result was indicated by a score of 0 or 1 for absent or presence of growth, 
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respectively. The score range of each colony (bacterial strain) would be between 0 to 4 since we 

did not double count if a colony was formed in both of lower and higher concentration plates of 

the same antibiotic.  
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IV.3 Results and Discussion

IV.3.1 Separation efficiency of PAM

Dairy manure with high solids (higher than 4%) content can take several weeks to months 

to separate into high-solid and low-solid phases in settling tanks without any 

flocculent/coagulant addition or other treatment such as without accelerated separation such as 

centrifugation. In the previous study (Liu et al. 2017), screening tests were conducted with a 

variety of PAMs in order to select a suitable polymer for optimum solid-liquid separation of raw 

manure. The efficiency was indicated as a clarify efficiency (%) of the liquid stream after each 

desired settling time. The polymer screening results suggest that several PAM polymers had a 

significant effect on improving the manure separation and settling characteristics. PAM 3 was 

chosen as for the remainder of experiments since PAM 3 showed the best separation efficiency 

among 8 PAM samples used in this study as shown in Fig. 22. Results of control group 

represented that no separation was observed within 1 h settling without any polymer additive. As 

high as 28% of separation efficiencies were achieved within 1 h when polymers were added. 

IV.3.2 Effects of polymer treatment on solids content and bacterial reduction

Bench-scale centrifugation study was conducted for a better understanding of the effects 

of a centrifuge and chemical additives on manure solids separation and bacteria reduction. 

Because of the low solid-separation and bacterial indicator level reduction efficiencies of large 

scale centrifuge, higher speed centrifugation and longer retention time were applied in the lab 

scale experiments. In the previous study, the effect of the centrifuge on bacterial reduction was 

investigated (Liu et al. 2017), and we concluded that the centrifugal speed of 2,000 g does not 

affect bacterial concentration significantly. Therefore, we selected 1 minute centrifuge time with 
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Figure 22. Liquid-solid separation efficiency by different polymers. 

a speed of 2,000 g to evaluate the sole effect of PAM, excluding effects of the centrifuging, on 

solids content and bacterial reduction.  

Results presented in Table 1 indicated that PAM 3 has an effect on reducing solids 

content and bacterial concentration in the liquid stream of raw manure. The result showed that 

the PAM 3 treatment significantly reduced solids content in the resultant liquid, which means 
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that the PAM 3 has a crucial impact on liquid-solid separation of raw manure. The PAM 3 used 

in this study was determined to possess a low charge density (0.93 meq/g) high molecular weight 

(6000 kDa) cationic polymer with 88.8% solids content. Since most of natural organic matter or 

bacteria are known to have a negative charged at neutral pH, the positively charged polymer 

could effectively coagulate the suspended solids in the liquid stream (Liu et al. 2016; Liu et al. 

2017).  

Table 1. Effects of PAM treatment of raw manure on solids content and bacterial indicator level. 

In addition, the high molecular weight of PAM may be operating through a bridging 

flocculation mechanism in addition to charge neutralization. Flocculated materials which are 

formed via bridging flocculation stay apart when broken up since polymer tails and loops 

Treatment Solids Content (%) 

Bacterial Indicator (MPN/mL) 

Fecal coliform E. coli

Raw Manure 3.11 ± 0.036 48,800 35,000 

Centrifuge w/o PAM 3 3.01 ± 0.008 49,500 38,400 

Centrifuge w/ PAM 3 2.17 ± 0.137 30,100 22,600 
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bridging across two or more particles are physically separated apart by the shearing forces 

(Wong et al. 2006).  

The effect of PAM 3 on bacterial reduction is summarized in Table 1. The treatment of 

PAM 3 removed 61.7% and 64.5% of fecal coliforms and E. coli, respectively, from the liquid 

stream. In a previous study, we confirmed that there was no significant effect of PAMs on 

changes in the number of E. coli cells in the nutrient rich condition, even at the highest 

concentration of the polymer dosage (Liu et al. 2016). Therefore, this result suggests that PAM 3 

could reduce bacteria in the liquid stream of raw manure by coagulation and flocculation process 

without affecting the viability of the bacteria. The centrifuge without PAM treatment under our 

experimental conditions did not decrease bacterial indicator levels (Table 1), which confirms that 

PAM 3 has a major role in bacterial removal. 

IV.3.3 Analysis of antibiotic resistant bacteria

The information and results of antibiotics, concentration, and the effect of PAM treatment 

on antibiotic resistant bacterial concentration is summarized in Table 2. The antibiotic resistant 

bacterial percentage was represented as the ratio of the number of colonies on the antibiotic 

containing TSA plate against number of colonies on the normal TSA plate. The result showed 

that raw manure has 37%, 17%, 20%, and 33% of antibiotic resistance bacteria against 

tetracycline, penicillin, florfenicol, and cephalosporin, respectively. The results were only taking 

account for the aerobic bacteria which can be grown on tryptic soy medium. 

As shown in Table 1 and 2, PAM treatment decreased the total number of bacteria in raw 

manure, however, the percentage of antibiotic resistant bacteria increased for all types of 

antibiotics. The increase of antibiotic resistant bacteria could be caused by the attenuation of 
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antibiotic levels by an effect of polymer coagulation. Choi et. al, reported that the effect of 

coagulation on the antibiotics in water (Choi et al. 2008). For example, functional groups of 

Antibiotics Concentration 
Antibiotic resistant bacteria (%) 

Raw PAM w/o PAM 

Tetracycline 

12.5 µg/mL 37 46 34 

25 µg/mL 40 23 31 

Penicillin 

100 U/mL 17 35 17 

200 U/mL 23 19 7 

Florfenicol 

8 µg/mL 20 31 14 

64 µg/mL 3 0 0 

Cephalosporin 
2 µg/mL 33 54 59 

10 µg/mL 30 42 28 

Table 2. Antibiotic resistant bacteria percentage in raw manure. 

tetracycline are known as tricarbonyl, dimethylamine, and β-diketone. Tetracycline is negatively 

charged above pH 3 as a result of the dissociation constants of those functional groups (Qiang 
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and Adams 2004). Therefore, tetracycline in the raw manure should be present with a negative 

charge since the pH of raw manure is near neutral to weakly alkaline. Therefore, positively 

charged polymer can easily attract the tetracycline, results in the bacteria actually being exposed 

to a reduced amount of antibiotics. 

Based on the results of this study, florfenicol showed the least number of antibiotic resistant 

bacteria in raw manure used in this study. Florfenicol is bacteriostatic, and its mechanism of 

action is similar to that of chloramphenicol (Keyes et al. 2000). The mechanism of resistance to 

florfenicol is unknown but is associated with the flo determinant, a highly conserved gene 

sequence detected in Salmonella enterica serovar Typhimurium DT104 (Bolton et al. 1999) and 

in the fish pathogen Pasteurella piscicida (Photobacterium damselae) (Kim and Aoki 1996). 

The flo gene confers resistance to both chloramphenicol and florfenicol (Keyes et al. 2000). 

IV.3.4 Antibiotic resistant level scoring

Resistant bacteria (including multi-resistant bacteria), such as E. coli, Pseudomonas 

aeruginosa, Acinetobacter spp. and Enterobacteriaceae are present in many municipal 

wastewater plants (Kümmerer 2009). However, reliable data on production and consumption of 

the antibiotics are challenging to be estimated, as it varies with time and country (Bouki et al. 

2013; Diaz-Cruz et al. 2003). It is agreed upon that major sources of antibiotic exposure to 

environment are from human excretion, farm animals, and direct disposal of medical and 

industrial wastes. Although some antibiotics are removed by natural degradation or sorption, not 

all antibiotics cannot be completely removed or degraded naturally (Batt et al. 2006; Giger et al. 

2003). The antibiotic residue in the environment can be major route for the development of 

resistance in bacterial pathogens (Salters et al. 2004; Chee-Sanford et al. 2009). Therefore, there 
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are higher possibilities of presence of antibiotic resistant gene and bacteria in solid wastes and 

wastewater from the industries where are using plenty of antibiotics, such as animal farms. 

In a raw manure, it has been reported that half-lives of various antibiotics are shorter than the 

anticipated storage period of the manure, which can result in significant degradation of antibiotic 

molecules before land application (Boxall et al. 2004). However, the amount of antibiotic 

resistant bacteria and genes do not correspond to the concentrations of antibiotic compounds in 

the environment (Bouki et al. 2013). For example, β-lactams have been found in the environment 

at very low concentrations and they are easily hydrolyzed (Helland et al. 2010; Längin et al. 

2009), whereas resistant bacteria and genes encoding resistance against certain β-lactams have 

been detected in municipal wastewater treatment plants (Kümmerer 2009). The presence of 

vancomycin resistant bacteria was reported in waters in Europe, even though only small 

quantities of vancomycin are used in the region (Kümmerer 2009). Therefore, measuring only 

residual antibiotics without an analysis of actual resistant bacteria will not be enough for 

understanding a profile of actual bacterial resistance levels. Land application of animal manure, 

with its high concentration of microbes, can be directly related to an introduction of new bacteria 

into the environment, including potential pathogens and some harmful viruses. The persistence 

and transport of these organisms in the environment continues to be a concern for environmental 

safety, food safety, as well as human and animal health. The longer an antibiotic persists in the 

soil in an active form, the greater the potential for native soil bacterial populations to be affected 

(Gavalchin and Katz 1994). For these reasons, it is essential to understand and estimate a 

contamination of antibiotics as well as antibiotic resistant bacteria. 

In order to more deeply understand the antibiotic resistant bacterial levels, quantify the 

number of resistant bacteria in raw manure, and investigate a portion of multi-resistant bacteria, 
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the scoring method was performed in this study. The number of total colonies on the TSA plates 

after incubation were 30, 26, and 29 colonies, for raw manure, PAM treated, and centrifuged 

sample, respectively. Each colony on the plates was transferred to 8 different 36 grid plates as 

described in the material and methods section, and the number of colonies after incubation were 

counted. For the scoring algorithm, we assumed each colony represents a different organism. 

That is, there are 30, 26, and 29 different aerobic bacterial strains in each group. It is recognized 

that in nutrient rich habitats, such as that of manure, the material may be colonized by clonal 

communities. However, this work is the first step in understanding the prevalence of antibiotic 

resistant bacteria in manure and the effects of polymer separation in controlling those 

populations. This simplifying assumption does not negatively affect our findings. 

Fig. 23 summarizes the results of the antibiotic resistance scoring test. The average 

resistance score was 1.13, 1.65, and 1.28, for raw manure, PAM treated, and centrifuged group, 

respectively. The score of 2 or more represents that the bacterial isolates possess multidrug 

resistance. The result indicated that the number of antibacterial resistant bacterial isolates were 

19 out of 30 in raw manure (66.33%), 17 out of 26 in PAM treated manure (65.38%), and 20 out 

of 29 in centrifuged manure (68.97%) against the four antibiotics used in this study. Among 

those resistant bacterial isolates, 11 (39.29%), 13 (54.17%), and 12 (44.44%) isolates 

demonstrated multidrug resistant, in the raw, PAM treated, and centrifuged manure, respectively. 

Overall, the liquid stream from PAM treated manure contained less bacteria in terms of the 

number of total bacteria, however, the remaining bacteria possessed a higher portion of antibiotic 

resistance. The reason for the higher percentage of antibiotic resistant bacteria and higher 

multidrug resistance in PAM treated manure may be explained by removal of the activity of 

PAM against antibiotics, as described previously.  
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IV.4 Implications 

Use of antibiotics in humans and animals carries an inherent risk of selecting for 

antibiotic resistance genes. These genes are often found in bacteria with other genes promoting 

resistance to other potentially harmful chemicals (Alekshun and Levy 1999). The transmission of 

antibiotic resistant bacteria and genes from animals to humans has been demonstrated in the 

literature (Khanna et al. 2008; Smith et al. 2013). On-farm transmission of antibiotic resistance 

has been characterized in the literature for a wide range of animals. A recent review of the 

academic literature that addresses the issue of antibiotic use in agriculture suggests that only 7 

studies (5%) argued that there was no link between antibiotic consumption in animals and 

resistance in humans, while 100 studies (72%) found evidence of a link (Singer et al. 2016). The 

other 32 studies (23%) presented the fact that the authors recognized the concerns of using 

antibiotics, but there was an uncertainty between usage of antibiotics and presence of 

antimicrobial resistance. Therefore, the degree to which the transmission from animals to 

humans, as well as the enumeration of bacteria in the real manure sample is of great interest and 

has significant implications for public and animal health.  
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(a) 

 

(b) 

 

(c) 

 

Figure 23. Antibiotic scoring of (a) non-treated raw manure; (b) centrifuged without polymer; 

(c) centrifuged with polymer. 
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If use of antibiotics in farm management is to continue at current or increased levels, 

appropriate treatment of the farm waste should be required to prevent discharge of the 

antibiotics, resistant bacteria, pathogens, and resistant pathogens. Application of PAM along with 

centrifugation could be one method to treat the animal waste since it showed an effect on 

bacterial populations in raw manure. In particular, the resistant level scoring test used in this 

study could be one factor that represents an antibiotic resistant level and will help to understand 

the presence of antibiotic resistant bacteria in a farm water system. Although, further studies 

should be conducted such as identification of resistant bacteria or genetic studies for resistant 

bacteria, this study can give a direction for an appropriate treatment of raw manure.  
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IV.5 Conclusion 

Effects of PAM addition with centrifuge were investigated in this study using a 

systematic factorial experimental design. The impacts of both centrifugation and polymer 

addition on lowering the bacterial indicator levels in the liquid stream of the manure were 

measured. PAM 3 significantly increased manure liquid/solid clarification fraction but had 

negligible effects on solids reduction and indicator bacteria reduction when centrifuged was 

applied without polymer addition. 

A percentage of antibiotic resistant bacteria in manure sample was investigated by 

comparing the number of colonies on agar media containing with/without 4 different types of 

antibiotics that commonly used in a real farm. 65.38% of aerobic bacterial isolates in the raw 

manure showed antibiotic resistance against antibiotics used in this study, and 40% of total 

bacterial isolates showed multidrug resistance. The results from this study suggested cationic 

polymer treatment could be considered during manure solid/liquid separation if improving 

pathogen reduction is a concern on the farm. Further investigation using genetic approaches in 

conjunction with polymers known to have biocidal activity or effect of polymer on the reduction 

of antibiotics could lead to improved and more effective manure processing and recycling 

approaches. 
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IV.6 Summary 

This study investigates levels bacteria through population indicators as well as the levels 

of antibiotic-resistance bacteria in dairy manure. Although overall bacteria levels may be 

reduced during manure processing, it is of interest whether changes in management practices 

could lead to increased levels of antibiotic-resistance bacteria, which are becoming more 

prevalent in agricultural soils, groundwater, and surface water. Appropriate manure treatments 

are needed not only to reduce the potential risk of exporting antibiotic resistant bacteria to an 

environment, but also reduce antibiotic resistant bacteria exposure to animals if processed water 

is recycled. Results from this research revealed manure separation under relatively low speed 

centrifuge with 100 ppm polyacrylamide (PAM) emulsion addition reduced bacteria indicators 

population such as total coliforms and Escherichia coli (E. coli) significantly in the liquid stream 

compared to no PAM added. However, the percentages of antibiotic resistant isolates in liquid 

stream after centrifuge with PAM were higher compared to raw manure and no PAM added. 

Antibiotic resistance (cephalosporin, florfenicol, penicillin, or tetracycline) was observed or 

65.38% of bacterial isolates in manure from a large dairy farm in Wisconsin and 39.29% of 

isolates demonstrated multidrug resistance. The results from this study strongly suggest that 

appropriate manure treatment is essential in order to help minimize the abundance of antibiotic 

resistance in our water environment.  

 

  



 

91 

 

 

 

CHAPTER V 

SYNERGISTIC EFFECTS OF HIGH POSITIVE CHARGED POLYMER 

AND HYDROGEL ON BACTERIA INDICATOR REDUCTION 

 

V.1 Introduction 

Infections by pathogenic microorganisms are of great concern in many fields. These 

infectious diseases could kill worldwide more people than any other single cause (Muñoz-

Bonilla and Fernández-García. 2012). In particular, in agricultural field, pathogenic 

contamination could be worse because manure has been used often as a fertilizer. Treating and 

utilizing manure can be a challenging mission for modern animal feeding operations specialized 

in intensive production. These systems produce a considerable excess of manure, which has a 

high risk of becoming a source of air, water, and soil pollution, especially it could be a major 

source of bacterial contamination of our environment (Liu and Wang, 2020).  

Solid/liquid separation of the manure have become a common process in manure 

treatment since this process produces a nutrient-rich solid, a low-nutrient, and low solids liquid 

stream, which is a desirable condition in manure management (Vanotti et al. 2002). Mechanical 

separation alone is not suitable to remove fine suspended particles since raw manure typically 

contains a majority of the nutrients; thus a fair amount of nutrients remains in the liquid stream 

unless additives are used to enhance their removal (Liu et al. 2016). Chemicals to flocculate the 

smaller particles are used to effectively concentrate manure solids and nutrients during 

separation (Szögi et al. 2006). Charged polymers are often used as a coagulant/flocculant in the 

agricultural wastewater treatment.  
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Typically, the polymer addition has some advantages such as lower dosage requirement 

and less environmental impact compared to conventional chemical coagulants (i.e. Fe2(SO4)3 and 

Al2(SO4)3) (Liu et al. 2016). There has been a trend in using polyacrylamide (PAM), its 

homopolymers and its acrylamide/acrylic acid copolymers to effectively separate solids from 

wastewater (Garcia et al. 2007). It is well-known that most bacterial cell walls are negatively 

charged in standard condition (Han et al. 2019) because it contains phosphatidylethanolamine as 

the major component; therefore, the polymers that have an antibacterial effect are mostly cationic 

(Muñoz-Bonilla and Fernández-García. 2012). In this reason, polymers have a quaternary 

ammonium functional groups are well studied in terms of its biocidal characteristics (Kenawy et 

al. 2002).  

It is generally accepted that the mechanism of the bactericidal action of the polycationic 

biocides involves destructive interaction with the cell wall and/or cytoplasmic membranes (Liu et 

al. 2016; Kenawy et al. 2002). Agar is a heterogeneous mixture of two polysaccharide 

components: agaropectin and agarose, which share the same galactose-based backbone 

(Williams and Phillips. 2000). Agaropectin is modified with acidic side groups, such as sulphate 

and pyruvate, while agarose has neutral charge and possesses longer chains (Freile-Pelegrin and 

Murano. 2005; Blanco-Fernandez et al. 2011).  

Agar has been being used not only for experiment but also for food, pill coating, 

cosmetics, and so on. However, the use of agar is barely used for water treatment, and there have 

been no study of the synergistic effect of agar combined with polymers. The purpose of this 

study was originally to investigate the water treatment efficacy and bacterial removal efficiency 

of polymer when it applied with hydrogel in a gel form. However, during the course of the 

research, we accidently discovered a synergistic effect of polymer on bacterial removal and/or 
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inactivation, when it is applied with hydrogels such as agar and/or agarose. Therefore, the 

purpose of this study is to study 1) the antibacterial performance of polymer, 2) the study of 

water-treatment of polymergel, and 3) the synergistic effect of hydrogel and its components with 

polymer on bacterial removal.  
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V.2 Materials and Methods 

V.2.1 Reagents 

All reagents used in this study prepared or diluted with deionized (DDI) water (E-pure 

D4641, USA) and stored by following manufacturer’s instruction. Polymer samples used in this 

study were obtained from SnF Holdings Co., Inc. Normal saline solution was prepared with 

0.85% of 𝑁𝑎𝐶𝑙 (BDH, USA) in deionized (DI) water, followed by autoclave sterilization in 

121°C for 15 minutes and stored in 4°C before use. All chemicals used in this study were 

analytical reagent grade. 

V.2.2 Polymer and polymer gel sample preparation 

Polymer samples used in this study were emersion type and some of them were not easily 

diluted with water. Thus, samples should be diluted first for conducting experiment using 

polymer. Polymer samples were diluted 1% (v/v) first by adding 1 mL of each polymer sample 

into 99 ml of autoclaved DI water with rapid mixing (greater than 600 rpm). At least 10 minutes 

of mixing time were given to each polymer samples for complete mixing. After polymers were 

diluted and mixed, each sample was further diluted with autoclaved DI water to desired 

concentration. Autoclaved 125 mL flasks were used as a reactor.  

Agar and Agarose were used as gelling agents for making hydrogel in this study. 

Concentration of 0.5 - 3% (w /v) of agar or agarose were used to make hydrogel containing 

polymer (poly-gel). To make poly-gel, desired concentration of agar/agarose powder were added 

to DI water, followed by autoclaving the gel for dissolving and sterilization. The liquefied 

hydrogel was cooled down at room temperature until it reached 40 - 45°C. Desired amount of the 

prepared polymer samples (1%, v/v) were added to the liquefied gel to make target concentration 

of polymer. The gel – polymer mixture was then gently shaken by hand to make the polymer gel 
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homogeneous and to prevent foaming. Well mixed poly-gels were solidified at room temperature 

for at least 1 h. Final volume of the gel was 20 mL. 

V.2.3 Bacterial experiment 

V.2.3.1 E. coli isolation, identification, and preparation 

E. coli was isolated from raw dairy manure collected from regional livestock research 

facility in central Texas. The isolation and identification of the bacteria used in this study was 

performed in the previous study and the detailed procedure is described in the Chapter III. The 

isolated bacteria was sub-cultured daily on the Trytic Soy Agar (TSA, Becton, Dickinson and 

Company, USA) media. Bacterial stock was prepared with 60% sterilized glycerol and stored at -

20°C for future use. For activation and enumeration of isolated strain, single colony from the 

agar plate was collected and transferred to Tryptic Soy Broth (TSB) media and incubated at 37°C 

for at least 16 h before each set of experiments. Bacterial concentration was determined by 

measuring optical density with spectrophotometer at wavelength of 600 nm (1.0 at OD600 equals 

to 8 × 108 colony forming unit (CFU)/mL).  

V.2.3.2 Effect of Polymer-gel on bacterial removal 

To estimate the effect of poly-gel on bacterial removal, 50 mL of normal saline solution 

was added on the gel to make final volume of 70 mL (20 mL of gel and 50 mL of normal saline). 

Subsequently, the bacterial suspension was serially diluted with normal saline solution (0.85% 

NaCl) and inoculated into the water. Final concentration of E. coli in each reactor was 5~10 × 

106 CFU/mL. Reactors were shaken at 200 revolutions per minute (rpm) for desired reaction 

time (~3 h) at room temperature. After desired reaction time, liquid phase of each reactor was 

collected. Collected samples were serially diluted with normal saline solution and the live cell 
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concentration was measured by the pour plate method. The bacteria reduction experiments were 

all performed in duplicate and repeated at least three times. 

V.2.4 Synergistic effect of Polymer with hydrogel on bacterial removal 

To evaluate a synergistic effect of polymer with a gel component, the bacterial reduction 

abilities were compared between following experimental group: blank (bacteria only); control 

(polymer addition only without gel); polymer-gel phase (hydrogel containing polymer); and 

polymer-gel-liquid phase (liquid phase after 24 hour of polymer-gel release).  

To make polymer-gel-phase and polymer-gel-liquid phase, concentrations of 0.5 - 3% 

agar/agarose containing amount of 0.5 - 5 mL polymer were prepared followed by addition of 50 

mL of normal saline solution. Each reactor was given by reaction time of 24 hr in room 

temperature for polymer release. After 24 hour of releasing time, the half of liquid phase (25 mL) 

from each reactor was collected (polymer-gel-liquid phase) and the remaining 25 mL liquid + 

polymer-gel was considered as polymer-gel phase. E. coli was inoculated to these two group at 

the final concentration of 2-5 x 105 CFU/mL. 

In addition, to deeper understanding of the synergistic effect of the hydrogel on bacterial 

removal, a comparative experiment was also conducted on the agar-release control / agar-

release-polymer-addition group. Agar (or agarose) gels with a concentration of 0.5-3% without 

addition of polymer were prepared first and then shaken for 24 hours to allow the components of 

agar (or agarose) to soak in water. After that, only the liquid phase was separated and collected. 

Polymer was added to this liquid phase to prepare the [gel-release-polymer addition group]. E. 

coli were inoculated into these two groups and bacterial removal efficiency was compared. Since 

the main component of agar / agarose used in hydrogel is polysaccharide, the synergistic effect 
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of sucrose (at the same concentration as gelling agent) and polymer was also compared in 

parallel with the above experiments. 

V.2.5 Evaluation of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal 

Concentration (MBC) 

In vitro susceptibility tests were performed in sterilized 15 mL centrifuge tube to 

determine MICs of polymer samples against E. coli. The MIC and MBC were evaluated using 

the modified method described in the guidelines of CLSI M7-A6. Two-fold dilution of polymer 

was performed to make a different concentration range of polymer (512 to 0.5 ppm (v/v)). Two 

control reactors: one contains only bacteria without polymer, and the other is blank (only 

bacteria) were compared to see bacterial contamination, and bacterial condition, respectively. 

Reactors were incubated at 37°C for 24 h. The MIC was defined as the lowest concentration of 

sample that resulted in the complete inhibition of visible growth. Normal saline solution was 

used for bacterial dilution. MBCs were determined by removing the bacterial suspension from 

each of MIC reactor that showed no visible growth and sub culturing onto TSA plates. The plates 

were incubated at 37°C for 24 h until growth was seen in the growth control plates. MBC was 

interpreted as the lowest concentration of sample that showed no growth of bacteria.  

 V.2.6 Statistical analysis 

Experiments were performed at least in three times throughout the study and all data are 

presented as the mean ± standard error of repeated values. Statistical significance was 

determined using Student's t-tests by evaluation of differences by comparing to control or blank 

groups and analysis of variance (ANOVA) test; *p < 0.05 or **p < 0.01 were considered 

statistically significant based on the tests. JMP pro 13 was used as a software tool for statistical 

analysis. 
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V.3 Results and Discussion 

V.3.1 Effect of polymer gel on E. coli removal and selection of final candidate 

Fig. 24 shows the results of removal efficiency of polymer-gel containing 39 different 

polymer samples against E. coli. As shown in Fig. 24, the bacterial removal performance of 

polymer gel varied from 0 to 6.85 log scale reduction when compared to control group. The 6.85 

log reduction indicates complete removal at this experimental condition (as the final bacterial 

concentration of the control group after 24 hr reaction was 6.85 log). Among the three different 

polymer types (polyacrylamide, polyamines, and polyDadmac) used in this study, polyamine 

showed the best bacterial removal performance, followed by polyDadmac and polyacrylamide. 

The relative molecular weight of each polymer could be estimated by the number in each 

polymer name. For example, in the polyamine group, the FL 3250 has higher molecular weight 

than FL 2250. Although the relationship between polymer molecular weight and bacterial 

removal efficiency is not perfectly linear trend, but higher molecular weight polymers tend to 

exhibit higher bacterial removal performance. According to the screening result, the final 

candidate we chose in this study was FL3050 in the polyamine group. FL4620 and FL4520 from 

polyDadmac, and FL3249 and FL2650 from polyamine showed similarly high bacterial removal, 

but the FL3050 had following two major advantages; 1) FL3050 showed the largest removal 

efficiency against phosphorus (data not shown), which is the largest water quality issues in the 

agricultural field. 2) because of the lowest viscosity, it was the easiest to handle. These 

characteristics can be a great advantage not only in the experimental condition, but also in 

applications.  

The alphanumeric code following the number of each polymer name indicates the branch 

type of the polymer molecular structure and the degree of different positive charge.  
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Figure 24. Effect of polymer-gel on E. coli removal. 39 different polymers of different types 

(PolyDadmac, Polyamines, and Polyacrylamide) were used to make polymer gel and their 

bacterial removal efficiency were evaluated.  
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The exact information about physical and chemical properties of the polymer cannot be 

provided in this article because it is confidential. However, it can be concluded that the branch of 

the polymer could have a huge impact on the bacterial removal activity. For example, for 

polyacrylamide 840, there are four samples which have different branch to the polymer (TBD, 

LOB, LH, and CT). LOB and LH showed considerably higher bacterial removal activity, but 

bacteria were not removed at all for TBD sample (Fig. 24). The effects of molecular 

characteristics on bacterial removal might be important data for the study of the bacterial 

removal mechanism of polymers, but it will not be consistent with the scope of this study. The 

bacterial removal in water system could be considered as physical action such as sedimentation 

by coagulation or bacterial inactivation caused by cytotoxicity of the agent used for water 

treatment. For the cationic polymer, previous studies have demonstrated that polymer itself has a 

bactericidal effect.4 

V.3.2 Effect of polymer concentration and reaction time on E. coli removal 

The E. coli removal efficiency depending on the amount of polymer addition in the gel is 

shown in Fig. 25 (a). This result is based on 24 hours of reaction at room temperature and the 

concentration of hydrogel is 1% (m/v). As shown in Fig. 25 (a), a significant increase in bacterial 

removal effect occurred when the amount of polymer addition is increased from 0.5 mL to 0.75 

mL. Also, when greater than 1.5 mL of polymer was added, the bacteria were completely 

removed in 24 hours. There was approximately 2-log scale of bacteria increased in the control 

group (control group - agarose gel only) from initial and blank group (blank - bacterial only). 

This increase may be caused by the components of the hydrogel. Agar is a mixture of 

agaropectin and agarose, which is class of polysaccharide.  
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(a) 24 hr reaction time 

 

(b) Time-kill curve 

 

 

Figure 25. Effect of amount of polymer in poly-gel on E. coli removal. 
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These components can act as a nutrient for bacterial growth, resulted in increase of 

bacterial concentration in the control group. Therefore, the bacterial removal efficiency of the 

polymer-gel was calculated by comparing bacterial concentration to the control, not blank. 

Although 0.5 mL of polymer added to the control showed a slight decrease in bacterial count 

compared to control, it is not considered to have removed the bacteria because it is about 2 log 

scale higher than blank. 

The bacterial removal effect depends on the reaction time is shown in Fig. 25 (b). The 

higher concentration of polymer was applied, the faster the bacterial removal rate was shown. 

After 4 hours of reaction, significant bacterial clearance was observed compared to control, but 

no significant change was observed after 8 hours of reaction. The results indicated that bacterial 

removal by polymer-gel requires at least 4 hours of reaction time and 0.75 mL of polymer on 

order to see significant bacterial reduction.  

V.3.3 Effect of hydrogel on E. coli removal 

The following two hypotheses can be considered for the bacterial removal mechanism by 

poly-gel: 1) the polymer in the gel releases into the water and reacts with the bacteria; 2) or, 

adsorption of negatively charged bacterial cell is onto the gel, results in microbial inactivation in 

the gel. To demonstrate these hypotheses, the experiment mentioned in section 2.4.3 of Material 

and Methods was designed. Fig. 26 shows the effect of hydrogel on microbial removal. As 

shown in the Fig. 26 (a) and (b), there was a significant difference in the bacterial removal 

efficiency of the polymer depending on the presence or absence of hydrogel.  
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(a) With gel 

 

(b) Without gel 

 

Figure 26. Physical effect of hydrogel on bacterial reduction. 
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(c) Poly-gel and poly-gel-liquid phase 

 

 

Figure 26. Continued. 

 

 

In the case of polymer-gel, the significant bacterial removal was observed after 4 hours of 

reaction, and all the bacteria was completely removed after 24 hours, which was corresponding 

to the result of Fig. 25 (b). 

Whereas, without gel, only 2 logs of bacterial removal were shown even at the highest 

concentration. These results suggest that hydrogel itself may have a great impact on the bacterial 

removal mechanism by polymer. At this point, we concluded that the mechanism of bacterial 
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concentration on bacterial removal efficiency was conducted in order to confirm the hypothesis. 

Because this experiment was to confirm the effect of gel itself, the amount of polymer was fixed 

at 1 mL and the gel concentration was varied from 1% to 5% (w/v). The difference from the 

previous experiment was that 24 hours of time was given to the polymer-gel in order to allow 

releasing of its component into the normal saline solution. After 24 hours of extraction, half of 

the normal saline solution (25 mL) was collected, and same concentrations of E. coli was 

inoculated into the liquid (polymer-gel-liquid phase) and gel + liquid (polymer-gel phase) 

groups. Fig. 26 (c) shows the removal efficiencies of polymer-gel group and polymer-gel-liquid 

phase on E. coli depends on agar concentration. 

In both polymer-gel phase and polymer-gel-liquid phases, the higher the concentration of 

hydrogel, the lower the bacterial removal efficiency was shown. In gels with agar concentration 

of 3% or more, both gel and liquid lose their ability to remove bacteria.   

In 2% agar gel, the removal efficiency against E. coli was greater than 99.9% (3 log reduction), 

but the removal efficiency in the liquid phase was significantly lower compared to the gel phase. 

This result indicates that the physical and/or chemical properties of hydrogel play an important 

role in the removal of bacteria in water. As shown in the control group experiments (Fig. 26), 

hydrogel itself has no effect on bacterial removal, but rather it has a positive impact on bacterial 

viability. If so, what characteristics of the gel can affect the removal of the polymer from the 

bacteria? At this point I have made two more hypotheses about the role of hydrogel: 3) due to the 

physical properties of the gel, bacterial cells are captured in the pores of the gel to induce 

bacterial removal with the polymer in the gel (effect of physical property of gel); or 4) some 

specific components of the agar used as a hydrogel are released into water with the polymer, then 

these two substances work together to make a synergistic effect to inactivate the bacteria. 
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Hypothesis 3 could be confirmed by fluorescent microscopic analysis with DAPI staining 

of E. coli cells. After DAPI-stained bacterial cells were reacted with polymer-gel for 24 hours, 

the both bacteria in the gel and liquid phase were observed by a fluorescence microscopic 

analysis. Fluorescence microscopy showed that a certain number of bacterial cells could 

penetrate the gel after 24 hours of mixing. However, there was no substantial difference in the 

number of entrapped bacterial cells or remaining bacteria in the liquid depending on the hydrogel 

concentration or amount of polymer added (data not shown). Therefore, taking the results 

together, we concluded that the removal of bacteria by polymers and hydrogels can be attributed 

to the release of both components and polymers of the agar used in the hydrogel.  

V.3.4 Synergistic effect of hydrogel and FL3050 against E. coli removal 

To confirm that components of agar or agarose have a synergistic effect with the 

polymer, we compared the effect of agar-release-control and agar-release-polymer addition 

groups to remove bacteria. Fig. 27 (a), (b), and (c) showed that the higher the concentrations of 

agar, agarose and sucrose, the faster the bacterial removal rate. Comparison of agarose and agar 

showed greater removal of bacteria for agar than agarose. The reason for this result is 

coagulation effect when the higher the concentration of agar was applied. When higher 

concentration of agar was applied, aggregation of particles in the water was observed (data not 

shown) when the polymer was added to the liquid phase after 24-hour release time. Therefore, 

the higher bacterial removal in agar release can be inspired that the bacterial killing and 

coagulation effects are combined. 

Fig. 26 (c) showed that the polymer-gel and liquid lost their ability to remove bacteria in both 

gel and liquid phases when higher concentration of hydrogel was applied. However, when 

comparing the results of Fig. 26 (c) and Fig. 27 (a), it can be deduced that the agar component 
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can release in water even in 3% gel because bacterial removal was occurred in the agar-release-

polymer addition group. In 3% polymer-gel, it can be assumed that the polymer components or 

molecules could not release due to too small pore size of the hydrogel or chemical crosslinking 

between polymer and agar.  

(a) Agar 

 

 

 

 

Figure 27.  Chemical effect of hydrogel on bacterial reduction. 
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(b) Agarose 

 

 Sucrose 

(c) Sucrose 

 

 

Figure 27.  Continued. 
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Components of agar and agarose are all polysaccharides. We assumed that these 

polysaccharides could have a synergistic effect with the polymer in bacterial removal. To 

confirm the synergistic effect of sugar, sucrose was chosen to evaluate its synergistic effect. As 

shown in Fig. 27 (c), sucrose also has similar level of synergistic effects to other hydrogels on 

bacterial removal. The synergistic effect of sugar and polymer can be explained by the attraction 

or affinity of sugar and bacteria. Under normal conditions, bacteria are present as negatively 

charged particles, which not only have as an attractive force with a cationic polymer, but also a 

repulsion. However, sugars can more easily interact and crosslink with the polymer, and sugar 

can be more easily linked to bacteria. This continuous action is expected to make it easier for 

bacteria, including sugars, to affect the polymer.  

Another possible parameter affecting polymer on bacterial removal is temperature. Fig. 

26 (b) and polymer only plot of Fig. 27 indicates that the bacterial removal efficiency of 24 hours 

of reaction were 2 log and 1 log reduction, respectively. Although the experimental conditions of 

the polymer only sample are completely the same in both experiments, the reaction temperature 

can be considered as the possible reason for this difference. Because all of the previous 

experiments were conducted at room temperature except for bacterial culture for plate counting, 

there might be seasonal temperature differences even at a temperature-controlled laboratory. 

MIC and MBC result supports the difference depending on the temperature difference. As shown 

in Fig. 28, the MIC of the polymer treated at room temperature and 37°C shows a substantial 

difference of > 512 ppm and 1 ppm, respectively. Numbers on the plate in the Fig. 28 indicate 

the concentration of polymer in ppm (mg/L). 
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The synergistic effect of polymer against bacterial removal with sugar also occurred in 

different reaction temperature. As shown in Fig. 29, the bacterial removal ability of polyamine 

FL3050 was significantly decreased at 2°C, and the removal activity of the polymer was 

significantly increased as the reaction temperature increased. When 2% sugar and polymer were 

added together, the bacterial removal efficiencies were enhanced by 0.9 and 2.44 log scale at 2°C 

and 20°C (room temperature), respectively compared to when only polymer was added. Under 

high-temperature reaction conditions, synergistic effects could not be observed because all 

bacteria were killed for 24 hours in both the polymer group and the group containing the polymer 

and sugar together. 

 

 

(a) Room temperature    (b) 37°C  

 

 

 

 

 

 

 

 

 

Figure 28.  MIC and MBC of polymer in different temperature. 
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Figure 29. Synergistic effect of FL-3050 and sucrose against E. coli removal in different 

temperature. * BL, blank – bacteria only; P, polymer only; PS, polymer with sugar. 

 

 

The curves in Fig. 30 shows the time dependent bacterial inactivation bacteria removal rate 

in different reaction temperature during 48 hours of reaction period. As shown in the Fig. 30, the 

sample containing sugar and polymer showed faster bacteria removal performance. Even at 

37°C, although all bacteria were killed in both groups within 24 hours, the time kill results show 

that the combination of sugar and polymer showed a significant higher rate of bacterial 

inactivation. From these results, it can be confirmed that polysaccharides components such as 

sucrose or agarose promote the bacterial killing effect of polyamine FL3050, which is considered 

to be a great discovery in the agriculture, irrigation using agricultural wastewater, or water 

treatment industry using polymers. 
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(a) 2°C  

 

 

 

Figure 30. Time dependent synergistic effect of FL-3050 and sugar against E. coli removal in 

different temperature. (a), 2°C; (b) 20°C (room temperature); and (c) 37°C. *BL, blank – 

bacteria only; P, polymer only; PS, polymer with sugar. 
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(b) 20°C 

 

 

(c) 37°C 

  

 

Figure 30. Continued. 
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V.4 Conclusion 

This study suggests that using polymer with hydrogel or polysaccharides can significantly 

increase bacterial reduction. The following conclusions can be drawn from this study: 

• Some positively charged polymer has an ability to remove bacterial in a water system. 

• Bacterial removal efficiency of polymer could be enhanced when the polymer is applied 

with hydrogel. 

• Components of hydrogel, in particular, polysaccharides have a synergistic effect on 

bacterial removal. 

• The synergistic effects are caused by chemical properties of hydrogel, not physical 

properties. 

• The poly-gel can be used for water treatment where microbial contamination is concerned 

such as manure effluent. 
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V.5 Summary 

Polymers have been widely used as coagulant / flocculant in water treatment process. In 

this study, the effects of polymer and polymer containing hydrogel (poly-gel) on bacterial 

removal were evaluated. The types of polymer used in this study were polyacrylamide, poly-

DADMAC, and polyamines. These polymers were applied by combining with hydrogels such as 

agar or agarose. The effect of 39 different cationic poly-gels were estimated in terms of their 

bacterial removal efficiency. A polymer that showed the highest bacterial removal (FL3050, 

polyamine) was selected as the final candidate for further study. During the experiments, it was 

discovered that the poly-gel exhibited remarkably higher bacterial removal performance than the 

polymer itself was applied. It was demonstrated that bacterial removal efficiency was more than 

5 log-scale higher when the polymer was applied with hydrogel. To confirm the synergistic 

effect of hydrogel and polymer on bacterial removal, different experimental groups (polymer-

gel, polymer-gel-liquid, and gel-release-polymer addition) were compared in terms of its 

bacterial removal ability. The result implies that some common components such as 

polysaccharides in agar and agarose have a strong synergistic effect with FL3050 on bacterial 

removal in water. This study focused on the bacterial removal ability of polymers, and our poly-

gel strategy is not only easily applied directly to water, but also has a stronger bacterial removal 

effect. The results of this study suggest that the poly-gel can be applied to treat bacterial 

contamination in the water environment. 
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CHAPTER VI 

SUMMARY 

 

The research areas lie in water quality improvement, agricultural wastewater (manure and 

manure effluent) treatment, water microbiology, and application of novel techniques for better 

water quality on and around CAFOs. In particular, agricultural wastewater (lagoon effluent) has 

been widely used as irrigation water in neighboring farms, but there are no strict regulations 

regarding the water quality of this effluent. Therefore, there have not been enough studies on the 

quality of agricultural wastewater. In dairy operation, natural manure treatments such as lagoon 

system is commonly used especially in Texas. Lagoon water is rich in nutrients suitable for 

microorganism’s growth such as nitrogen and phosphorus, there is a high risk of microbial 

contamination in the surrounding environment if used without proper treatment or management. 

The purpose of this study is to solve this problem and manure water quality, particularly focused 

on reducing microbial contamination. 

The research is entitled “Investigation on Methods and Mechanisms of Bacteria 

Reduction in Agricultural Wastewater”. Through two interrelated sub-studies, the research 

examines, first, the use of activated iron media (AIM) for reducing pathogen indicator and its 

bactericidal mechanism. In this study, I evaluated the effect of AIM on indicator organism 

reduction and its bacterial removal mechanism. AIM removed the bacterial indicator very 

effectively. It was confirmed that AIM removes bacteria through a combination of adsorption 

and inactivation in the water system. Bacterial adsorption was confirmed to be a very rapid 

process at the beginning of the reaction, which could be determined by fluorescence microscopy. 
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Bacterial inactivation was explained by the ROS reaction which was generated by AIM 

oxidation. Through TEM images and ROS scavenger assay, it was confirmed that ROS directly 

damages the cell membrane, and in particular, it was found that singlet oxygen plays a critical 

role in the bacterial inactivation mechanism of AIM. 

Second, I examined the use of cationic polymer as a water treatment material. A novel 

approach in polymer application was studied, and the synergistic effect of polymer and hydrogel 

on bacterial removal was assessed. A total of 39 polymers from three different types (PAM, 

PolyDADMAC, and Polyamine) were evaluated in terms of their bacterial removal abilities, and 

among them, FL3050 (polyamine), which had the best bacteria removal effect, was finally 

selected for further research. In this study, it was confirmed that positively charged polyamine 

has a very significant synergistic effect when it is in combination with a polysaccharide. Also, it 

is confirmed that the synergistic effect is not because of the physical properties of the hydrogel, 

but because of a chemical synergistic effect between the gel component and polysaccharide. It is 

expected that the synergistic effect is due to higher affinity with the gel component and the 

polymer than bacterial cell and polymer. Therefore, it is strongly suggested that  

application of the positively charged polymer to treat bacteria in the water system, it is a very 

good strategy to apply polymer with hydrogel, which can reduce side effects caused by the 

polymer addition, and increase the bacteria removal performance. 

As the quality of human life improves, the production of various types of dairy products 

is required, and according to the demands, the development of various types and large-scale 

dairy operations have been developed. However, with the creation of such a large facility 

resulted in an increase of the waste generated from the facility. In addition, considerations on the 



 

118 

 

 

 

treatment of waste generated from dairy farm operations such as livestock manure were not well 

developed and managed. 

The Ph.D. dissertation research focused on the treatment of wastewater produced from 

animal farm, which is a very representative waste in the livestock industry, and I mainly focused 

on a method to reduce microbial contamination in the water system. In particular, the focus was 

on lagoon water treatment, the most widely used treatment method in Texas, and the target of 

this study can be said to be a plan to reduce microbial contamination of lagoon effluent. As a 

method to reduce microbial contamination, two methods using 1) AIM and 2) Cationic Polymer 

were investigated. The results from this study showed that both methods had excellent effects on 

microbial removal in the water system. In addition, research was conducted on the bacterial 

removal or inactivation mechanism of the applied methods against a bacterial indicator 

organism. Although there is a limitation in applying it to the actual field solely depends on the 

results of this study since this study was conducted on a lab scale, and its economic evaluation 

must also be demonstrated because it can be an extra step of the operation which can be incurred 

at an additional cost, the results obtained in this study showed very positive perspective in terms 

of reducing potential environmental pollution. 
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APPENDIX I 

 

16S rRNA sequence information of isolated bacterial strain 

 
TGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGTAACGTCAATGAGC 

AAAGGTATTAACTTTACTCCCTTCCTCCCCGCTGAAAGTACTTTACAACC 

CGAAGGCCTTCTTCATACACGCGGCATGGCTGCATCAGGCTTGCGCCCAT 

TGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTC 

AGTTCCAGTGTGGCTGGTCATCCTCTCAGACCAGCTAGGGATCGTCGCCT 

AGGTGAGCCGTTACCCCACCTACWAGCTAATCCCATCTGGGCACATCCGA 

TGGCAAGAGGCCCGAAGGTCCCCCTCTTTGGTCTTGCGACGTTATGCGGT 

ATTAGCTACCGTTTCCAGTAGTTATCCCCCTCCATCAGGCAGTTTCCCAG 

ACATTACTCACCCGTCCGCCACTCGTCAGCGAA 

 

 

 

 

 

 

 

 

 

 

 




