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ABSTRACT 

This study examines logit models applied to the truck route choice problem with data 

from the Dallas metropolitan area. Instead of assuming a fixed coefficient of a variable 

in the conventional multinomial logit model, the proposed model assumes a certain 

probability distribution for each coefficient, typically called the mixed C-logit, in an 

attempt to better reflect the preference heterogeneity. Three Bayesian approaches with 

different hierarchy levels are introduced and are solved by the mean-field variational 

inference with the implementation of the block coordinate algorithm. The associated 

models are tested on two subnetworks in two scenarios, the first of which has toll 

alternatives while the other does not. It is found that all the three proposed models 

notably outperform the conventional multinomial logit model, which conforms to the 

behavior indicated in the simulation test.  

Generally, our study finds that travel time is the most significant factor considered in 

truckers’ route choices in both scenarios. The relative importance of attributes in 

affecting truckers’ route choices differs between scenarios. In Scenario 1, travel time 

dominates other attributes. However, in Scenario 2, with a less dense network than in 

Scenario 1, it is found that using a route that entirely consists of state or interstate 

highway segments is as essential as using a route with a short travel time for most 

drivers. Additionally, the truck drivers’ preference for roadway delay and network 

density is found to vary widely in the numerical test. In contrast, their preference for 

travel time and roadway designation is relatively consistent.  
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1. INTRODUCTION

1.1. Background 

Trucking operations are an essential component of freight transportation. In 

2018, trucks carried the largest proportion of shipments that covered less than 1,000 

miles. From a supply chain perspective, trucks transport the majority of tonnage and 

value of the top 10 commodities, ranging from high-valued electronics to low-valued 

miscellaneous manufactured products (USDOT FAF4, 2019). Additionally, 59.4% of the 

tonnage and 62.8% of the value of hazardous materials are shipped by truck. Being a 

dominant mode in multimodal freight transportation that is integrated with rail, water, 

and airways, truck transportation accounts for more than half of the total intrastate 

shipments for most states and 79.7% of intrastate shipments (USDOT BTS, 2019a).  

Economic development and population increases have boosted business practices 

and employment, and freight has shifted from other modes to trucks due to their 

flexibility. According to the freight analysis framework, it is predicted that in 2035 the 

truck shipment share will be 66.9%, whereas in 2007, this number was 59.7% (USDOT 

FHWA, 2007a). In this context, the past decade has seen rapid growth in the truck 

industry. From 2008 to 2018, the total number of registered trucks has increased by 

21.7%, and the vehicle miles traveled have increased by 13.2% (FHWA, 2020). On the 

one hand, the growth of the truck industry brings remarkable economic benefits, as can 

be seen from its direct contribution to the gross domestic product of the United States. In 

2014, private trucks contributed about $135.7 billion, and for-hire trucks contributed 
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equally, with $135.4 billion. In 2018, this number increased to $190.9 billion for private 

trucks and $163.7 billion for for-hire trucks (USDOT BTS, 2019b).  

On the other hand, the increased demand for trucks, especially long-haul trucks, 

exacerbates the congestion of inner-city networks. Since commercial trucks are business 

oriented, they tend to avoid heavily congested local sites for operational efficiency and 

productivity, impeding regional economic development (USDOT FHWA, 2008). 

Nationwide, even though trucks make up only 7% of traffic, they account for 11% of the 

total annual congestion costs, with a total of $20 million in wasted time and fuel 

(Schrank et al., 2019). Highway traffic is heavily affected by congestion. Recurring 

peak-period congestion involved over 10,600 miles of the national highway system 

(NIS), with an additional 6,700 miles of stop-and-go traffic (USDOT FHWA, 2007b). 

However, such a problem prohibits the establishment of an efficient and smooth flow of 

trucks, for which on-time deliveries are of particular importance. 

In addition to traffic congestion, the impact of medium- and heavy-duty trucks on 

the environment and energy is notable. Specifically, medium- and heavy-duty trucks 

make up 5% of the traffic, whereas they account for over 20% of transportation 

emissions (EESI, 2015). Moreover, trucks are of vital consideration for highway safety 

and infrastructure. For instance, trucks that exceed the legal mass limit may potentially 

lead to an increase in traffic accidents and pavement deterioration (Jacob and Feypell-de 

La Beaumelle 2010). As operational characteristics distinguish trucks from passenger 

cars, different regulatory procedures are necessary to plan truck traffic. To facilitate 

urban transportation planning, numerous studies have concerned various aspects of truck 
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operations, including mobility, infrastructure, safety, and travel demand (Apronti et al. 

2019; Sathaye, Horvath, and Madanat, 2010; X. [Cara] Wang and Zhang, 2017; Z. 

Wang, Goodchild, and McCormack, 2016). Truck routing behavior, however, has not 

been fully studied due to modeling difficulty and insufficient data. 

1.2. Motivation 

Trucking operations exist primarily to serve the business needs of carriers and 

shippers. These needs have many attributes such as shipping size, pickup and delivery 

time windows, and others, which have much to do with truck route choice behavior. A 

truck operation's complexity may also explain the heterogeneity of route choice 

behaviors of the same individuals under different circumstances. There are two types of 

shipping options for urban truck freight transportation: truckload shipping and less-than-

truckload shipping. In truckload shipping, shipments take the full truckload and are 

directly transported to the destination without a distribution process. When a shipment 

takes up space that is less than a full 48-foot or 52-foot standard trailer, it is called a less-

than-truckload shipment. Less-than-truckload shipping allows carriers to operate at their 

maximum capacity by combining shipments and is thus cost efficient and 

environmentally friendly. Loads are first collected at a terminal and then are distributed 

by location and transported to regional terminals for delivery. Both types of shipping 

include short-haul delivery such as within a city and long-haul delivery such as interstate 

transports.  

Trucking route choice is a complicated process for several reasons. First, there is 

a combination of stakeholders in the decision-making process. The route choice decision 
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for a truck may be jointly made by the driver, the company manager, and the receiver, 

compared to the route decision of a passenger car, which is straightforward and purely 

made by the driver (Jiang and Zhang 2019). Second, many short-haul fleets serve an 

urban area. The operation of such delivery trucks may need to consider local regulations 

about road use, delivery time, or parking site restrictions. For example, in New York, 

trucks and trailers are required to park at specific sites. Trucks are limited to use only 

certain routes in the city, and some of their deliveries are limited to off-peak hours (NYC 

DOT - Trucks and Commercial Vehicles). In San Francisco, truck routes are also 

restricted, and their inner-city trips need to be advised (San Francisco MTA). 

Additionally, there may be specific time windows for trucks required by the customers. 

For long-haul delivery, trucks are required to follow the hours-of-service limit 

regulations from the Federal Motor Carrier Safety Administration (FMCSA, USDOT). 

Among the regulations, drivers have to take a mandatory 30-minute break by the eighth 

hour of driving, and the total driving duration needs to be less than 11 hours, including 

stops for fuel and breaks. After a 14-hour maximum service time, a mandatory 10 hours 

off duty is required. The regulation of service time motivates carriers to pay for saving 

driving time and other operating costs such as fuel and labor costs. This regulation also 

affects the truckers’ planning of trips since rests or pick-up/delivery sites need to be 

included in their service time. As mentioned earlier, many cities have local regulations 

on the access of inner-city parking spots for trucks; limitations on parking sites and 

service time regulations have increased the complexity of planning and operating urban 

truck fleets. 
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Moreover, the route choice of drivers may also be affected by cooperation among 

industries. For example, drivers may use a gas station that provides membership 

discounts. Consequently, the modeling difficulty of truck route choice attributes all of 

the aforementioned factors that affect the route choice of commercial carriers and 

shippers. 

A thorough understanding of the truck routing behavior can soundly guide 

policymakers on budgeting transportation infrastructure and developing strategic 

regulations and procedures to alleviate traffic congestion and maintain highway system 

performance. Specifically, with strategic planning, delivery travel time can be reduced 

and so can the corresponding emissions, potential crashes, and noise. In addition, a 

proper logistic operation will reduce local congestion and thus encourage economic 

activities and save energy. Many private enterprises think that participating in planning 

studies as well as market assessment studies results in sharing proprietary information 

(Dowling et al., 2014). This misconception limits the amount and quality of data, 

especially the stated preference survey data available for truck traffic research. It is 

pointed out that for carriers, understanding truck routing helps them improving operating 

efficiency. Cooperating with the public sector in the study of route choice behavior 

benefits an enterprise with saved vehicle operating and human resource costs and 

increased fleet productivity and on-time deliveries. Moreover, a good knowledge of 

route choice helps carriers make quick re-routing decisions in emergencies (Luong, 

Tahlyan, and Pinjari 2018). 
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However, the lack of understanding of the preference heterogeneity of truckers’ 

route choice has prevented practitioners from understanding truck traffic well. The term 

“preference heterogeneity” refers to the variation in evaluating observable factors across 

a group of individuals in different situations. Models such as latent class models and 

mixed logit models that explicitly consider individual variation of preferences appear to 

have gained popularity in recent years due to their superior performance in capturing 

choice makers’ decisions compared to traditional models such as multinomial logit 

models.  

The literature that explicitly considers preference heterogeneity has been mainly 

in the area of studying passenger travel. In theory, the frameworks therein shed light 

directly on the study of truck travel behavior. Thus far, the literature on truck route 

choice has mainly resorted to multinomial or binary logit models with various 

extensions. The data used is typically from two categories: stated preferences or revealed 

preference. The stated preferences are obtained typically through surveys using 

hypothetical situations. In contrast, the revealed preferences are obtained today mainly 

through GPS tracking records, such as the click data recorded from GPS devices with 

minimal time intervals. In an effort to reveal preference heterogeneity with survey data, 

two types of models are applied in existing studies, namely, the latent class model and 

the mixed logit model, to the stated preference surveys. Feng, Arentze, and Timmermans 

(2013) address heterogeneity with the latent class model, assuming that truck route 

choice priorities are distinct between subgroups. Rowell, Gagliano, and Goodchild 

(2014) apply item response theory and latent class analysis, allowing the latent variables 
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that affect the sensitivity of truck route choice to external factors to be continuous and 

discrete, respectively. The applications of the mixed logit model are only found in 

Arentze et al. (2012) and Toledo et al. (2013). Both only consider random error terms 

associated with certain variables, with road pricing and congestion in the former and 

tollway usage indicators and toll price in the latter. An application of the ordered probit 

model is given by Poulopoulou, Spyropoulou, and Antoniou (2015). The correlation of 

responses from the same individual was captured by random effects included in the 

model. However, to the best of the author’s knowledge, empirical evidence about truck 

drivers’ choice heterogeneity from a revealed preference source (GPS data) remains 

unveiled.  

GPS data from truckers are used to construct route trajectories in this study. It 

has high precision in vehicle location, and therefore the vehicle trajectories indicated in 

it are reliable and accurate. However, the GPS data has noise because it records every 

location of the truck. Some locations recorded are irrelevant to truck driving such as rest 

and gas station visits. As a result, it requires a great effort in data cleaning and 

processing, including identification of origin-destination (O-D) pairs, the combination of 

sub-trips into one complete trip, removing sub-trips from existing trips, and extraction of 

actual travel time with break time cleared. The data used in this study is from a GPS 

dataset that contains more than 1.6 billion GPS data points and 29 million trips for the 

Dallas metropolitan area in Texas. It is observed from this dataset that many trips have 

intermediate destinations during their main trips, which is mentioned as a sub-trip issue 

in this study and needs to be addressed with the map-matching process. The map-
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matching process refers to matching the cleaned trajectories to the network topology and 

identifying the driver’s trajectories. A series of existing truck route choice studies have 

adopted a binary choice setting, which avoids the impact of network complexity on map-

matching (Arentze et al., 2012; Knorring, He, and Kornhauser 1923; Sharma, Snelder, 

and van Lint 2019). From a network perspective of truck route choice, however, the 

map-matching procedure is usually oversimplified. The only study that has included a 

map-matching process is from Oka et al. (2019), which matched GPS points by 

calculating a cost that corresponds to distance and which identified the only actual route 

as the one with the minimal total cost for each pair of O-D. This study provides a map-

matching process that addresses the data’s sub-trip issue with a clustering method.    

In this study, we construct choice sets of truck drivers’ routes for their O-D 

travels by extracting the O-D trajectories from the processed data in the Dallas-Fort 

Worth area, with unused routes by the truckers excluded for the purpose of modeling. 

The models are tested on these extracted alternative sets, with individual attributes 

recorded in the GPS data. These attributes include the instantaneous travel time, the 

annual truck delay per lane, the roadway designation, the toll as well as the commonality 

factor (CF), which is described in detail in Section 3.2. A similar way of modeling route 

choice behavior for passenger cars is available in the studies by Frejinger and Bierlaire 

(2007); Haghani, Sarvi, and Shahhoseini (2015); Lue and Miller (2019); Tang et al. 

(2020); Yang, Zhang, and Grembek (2016); and Madadi et al. (2019). 
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1.3. Problem statement 

The study problem is about truck route choice-making and can be summarized as 

follows. There is a group of truck drivers who each need to travel from an origin to a 

destination. There are a set of alternative routes for each driver, and each route is 

characterized by a set of known attributes, including travel time, which is comprised of 

the travel times on the roadway segments that the trip traverses, tolls,1 truck delays due 

to congestion, roadway designations, and the CF. The truck drivers make their route 

choice based on these known attributes. Specifically, the roadway designation refers to 

roadway classifications such as arterial, collector or local. In this study, the roadway 

designation is a binary indicator variable, which takes zero when the alternative does not 

contain local road segments and one otherwise. The CF is an adjustment factor to the 

utility function that accounts for network overlapping, and in that, it represents the 

network density.  

This study proposes the utility function and estimates the values (distribution) of 

the associated coefficient for each variable (i.e., attribute) included. The goal is that the 

calibrated utility function will be able to predict truck travel choices as reflected in 

reality. In addition, the calibrated utility model would allow practitioners to evaluate the 

relative importance of the attributes considered in the truckers’ route choice decision-

making. In particular, the study problem is modeled with a mixed C-logit model via a 

Bayesian estimation method, which allows random coefficients in the utility function 

that conforms to certain distributions. The model is evaluated by the maximum deviation 

 

1 If an alternative does not contain any toll segment, the toll price is set to zero. 
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of the predicted probability from the true probability of each alternative route which is 

used for a specific O-D pair under various choice situations. 

1.4. Contributions 

Two contributions arise in this study.  

First, the study has applied the Bayesian estimation method to calibrate the utility 

function for the first time for the truck route choice problem. In particular, a mixed C-

logit model is proposed, which includes a CF to account for overlapping routes in the 

network. As described earlier, the coefficients of the explanatory variables in the utility 

function are generally assumed to be random, whose parameters for the probabilistic 

distribution is estimated by the proposed Bayesian method. Each random coefficient can 

be partitioned into a fixed mean term plus a random term which follows the same 

distribution, but has a mean of zero and the same variance. Then the error component of 

the mixed logit model can be reformed by combining this random term and the error 

term in the utility function, which is assumed to be i.i.d. Gumbel distributed. With this 

new formulation, the mixed logit model can thus be called the error component model. 

The applied Bayesian approach is capable of addressing the correlation of the variance 

of the error component in the utility function and consequently accounts for the 

preference heterogeneity (Hess & Train, 2017). Specifically, three Bayesian approaches 

with different levels of hierarchy were applied and evaluated in both simulation tests and 

the numerical test with real-world data.  

Second, as stated earlier, many trips have multiple en-route visits between their 

origin and destination pair. In theory, a route between two visits is considered a trip; 
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however, the sequential trips in this situation may be somewhat correlated (at least there 

is such a likelihood of suspicion). In an attempt to separate such trips from those that are 

defined by directly travel to the destination without en-route visits, we apply a clustering 

method to identify trips that have common intermediate destinations, which is a minor 

contribution of this study. 

1.5. Overview 

This dissertation consists of seven sections. In Section 1, an overview of the 

study background, motivations, problem statement, and the contributions of the work is 

presented. In Section 2, the decision rules of route choice, commonly used models for 

route choice and the variational inference that is used for solving the proposed methods 

are reviewed in detail. In Section 3, the proposed C-logit model and three Bayesian 

calibration methods are specified in detail. In Section 4, the proposed model is applied to 

a three-route network in two simulation tests. The first simulation test compares the 

proposed model to the existing mixed path size logit, the mixed logit, and the 

multinomial logit for a detailed evaluation of the model performance in probability 

prediction and parameter estimation. The second simulation test explores the model 

performance with different amounts of data input. In Section 5, a comprehensive data 

processing procedure, which includes the map-matching process, is introduced. In 

Section 6, the predicted probability and the parameter estimation results are documented 

and analyzed. This dissertation closes with conclusions and a discussion in Section 7.  
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2. LITERATURE REVIEW 

 

2.1. Decision rules of route choice models 

2.1.1. Random utility theory 

The underlying assumptions of random utility theory are that the individual 

decision-making process is rational by maximizing the perceived utilities of alternatives, 

in which there is a random utility term that reflects the heterogeneity among travelers. 

The utility theory is a disaggregate theory that builds on individual travelers. Each 

individual is endowed with a finite choice set of available routes, denoted by 𝐽 and 

indexed by 𝑗. The practical models in either the form of logit or probit all assume i.i.d. 

for the random error term. The property of i.i.d. implies that individual decisions are 

independent of each other. The decision-makers have a perceived utility for each 

alternative 𝑎𝑗, denoted by 𝑈𝑗, and this utility is assumed to be characterized by a finite 

number of measurable attributes that may contain alternative-specific and individual-

specific factors.  

With the definitions above, the fundamental hypothesis of random utility theory 

can be expressed as 

 𝑃(𝑗|𝐴) = 𝑃(𝑈𝑗 ≥  𝑈𝑗′), ∀ 𝑗′ ≠ 𝑗. (2.1) 

According to Manski (1977), there are four different sources of uncertainty for 

the decision-making process: unobserved alternative attributes, unobserved individual 

characteristics or unobserved taste variations, measurement errors, and proxy, or 

instrumental, variables. Considering those uncertainties, for individual 𝑛, the individual 
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perceived utility 𝑈𝑛𝑗 is modelled as a random variable, which contains a systematic part 

𝑉𝑛𝑗 and a stochastic part 휀𝑛𝑗.  

The systematic part, or deterministic part of the utility 𝑉𝑛𝑗, is expressed as a 

function of attributes relative to each alternative. Although the functional form of 

attributes is flexible, the most commonly used one is linear. Let 𝑋𝑛 denote the attributes 

matrix for each individual, where 𝑛 index the number of total decision-makers of the 

study; 𝑋𝑛𝑗 is the 𝑗th row of 𝑋𝑛 and denotes the vector of attributes with respect to 

alternative 𝑗. Let 𝛽 denote the vector taste parameters to be estimated. The linear form of 

systematic utility can therefore be written as 

 𝑉𝑛𝑗 = 𝛽𝑇𝑋𝑛𝑗. (2.2) 

To model the stochastic part of the utility or the random error 휀𝑛𝑗, different 

statistical distributions are applied. Among the variety of potential distributions reported 

in the existing literature, Gumbel and Normal are the most popular choices. With the 

Gumbel distribution (generalized extreme value distribution type II) assumption, the 

probability density function and the cumulative density function of the random error are 

 
𝑓(휀𝑛𝑗) =

1

𝛼
𝑒−(

𝜀𝑛𝑗−𝜇

𝛼
+𝑒

−
𝜀𝑛𝑗−𝜇

𝛼 )
 (2.3) 

and 

 
𝐹(휀𝑛𝑗) = 𝑒−𝑒

−(𝜀𝑛𝑗−𝜇)/𝛼

 (2.4) 

where 𝜇 is the location parameter and 𝛼 is the scale parameter. This assumption brings in 

the logit family of route choice models, which is further specified in Section 2.1. 
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2.1.2. Other decision rules 

Besides the mainstream random utility decision rule, other decision rules have 

been proposed for discrete choice models. A famous alternative is random regret 

minimization (RRM). The convectional linear-additive utility in a random utility model 

shows full compensation among attributes, while the random regret in RRM is defined 

with a non- or semi-compensatory scheme. RRM assumes that individuals would choose 

an alternative with a minimum of anticipated regret. A line of research compares the 

parameters such as the value of time given by the two decision rules (C. Chorus 2012; 

Masiero, Yang, and Qiu 2019). Many studies have explored the performance of different 

route choice models and the corresponding network assignment problem under RRM (Li 

and Huang 2017). Some shed light on the generalization form, where both RUM and 

RRM properties are considered (Chorus, 2014).   

Bounded rationality is another alternative for route choice. Both RUM and RRM 

assume that the traveler chooses the optimal option (i.e., perfect rationality). However, 

the lack of accurate information or the complexity of real-world situations makes people 

boundedly rational, and their decision may thus be a satisfactory choice. For a detailed 

review of concepts, formulations, and methods on boundedly rational route choice, see 

Di and Liu (2016). Moreover, it is shown that the route choice decision is affected by 

inertia, which is understood as the reluctance to adjust the current choice. In other words, 

individuals would change their route choice only if the perceived utility of other choices 

significantly outweighed that of the current one (J. Zhang and Yang 2015).  
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2.2. Logit family of models 

The logit family model documented in this section is based on random utility 

theory. The stochastic part of utility is assumed to be Gumbel distributed with mean 0. 

Statistically, this distribution is characterized by a location parameter 𝜇 and a scale 

parameter 𝛼, that is, 휀𝑛𝑗  ~ 𝐺𝑢𝑚𝑏𝑒𝑙(𝜇, 𝛼). To reflect the zero-mean assumption, this 

distribution is rewritten as 휀𝑛𝑗  ~ 𝐺𝑢𝑚𝑏𝑒𝑙(−𝛼𝛾, 𝛼), where 𝛾 is the Euler-Mascheroni 

constant. In this case, each random utility 𝑈𝑛𝑗 can be viewed as a Gumbel variable with 

mean 𝑉𝑛𝑗.  

2.2.1. Binary logit and multinomial logit 

In binary logit, there are only two alternatives in the choice set, that is, 𝐽 =

{𝑗1, 𝑗2}, and the outcome of discrete choice 𝑌𝑛 is a binary variable, which only takes a 

value of 0 or 1. The individual 𝑛 chooses an alternative 𝑎1 if and only if 𝑈𝑛1 ≥ 𝑈𝑛2. The 

Gumbel distribution is stable with respect to maximization, which is one of the critical 

reasons that logit family models are popular. The maximum of independent Gamble 

variables with the same scale parameter 𝛼 is also a Gumbel variable with scale 

parameter 𝛼 and with the mean being the expected maximum perceived utility. 

Therefore, the probability of choosing alternative 𝑎1 is 

 
𝑃𝑛(𝑎1) =

exp (𝑉𝑛1/𝛼)

exp (𝑉𝑛1/𝛼) + exp (𝑉𝑛2/𝛼)
 . (2.5) 

Using the linear functional form of the systematic utility and combining the scale 

parameter with the taste parameter, one gets 

 
𝑃𝑛(𝑎1) =

1

1 + exp (𝛽𝑇𝑋𝑛)
. 

(2.6) 
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Then, the probability of choosing 𝑎2 is simply 1-𝑃𝑛.  

When the choice set contains multiple choices, the binary logit progresses to the 

multinomial logit model, which is the simplest and most popular discrete choice model. 

With the i.i.d. assumption where the stochastic error is independent and identically 

Gumbel distributed, the probability of individual 𝑛 choosing alternative 𝑗 is written as 

 
𝑃𝑛𝑗 =

exp (𝛽𝑇𝑋𝑛𝑗)

∑ exp (𝛽𝑇𝑋𝑛𝑗′)𝑗′≠𝑗
. (2.7) 

2.2.2. Path size logit 

In real transportation network applications, the independence of irrelevant 

alternatives (IIA) property limits the performance of the multinomial logit model due to 

shared links in the roadway network. The stochastic part of the perceived utility is not 

independent, but is correlated when alternative routes contain shared links. Path size 

logit is a remedy to correlated error components by implementing an adjustment or 

correction factor that is proportional to the degree of roadway overlapping in the 

perceived utility. This adjustment factor is named the path size, with a generalized form 

proposed by Ramming (2001), specified as follows: 

 
𝑃𝑆𝑗 = ∑ (

𝑙𝑎

𝐿𝑗
𝑎∈Γ𝑖

∗
1

∑  (
𝑙𝑎

𝐿𝑗
)𝛾 𝛿𝑎𝑗𝑗∈𝐽

) 
(2.8) 

where 𝑙𝑎 denotes the length of link 𝑎 , 𝐿𝑗 denotes the length of path 𝑗, and Γ𝑗  denotes the 

set of links in path 𝑗. Further, 𝛿𝑎𝑗 is the link-path incidence dummy, and 𝛿𝑎𝑗 = 1 if path 

𝑗 otherwise uses link a and 0. When the parameter 𝛾 = 0, the formulation of the path 

size reduces to the first formulation proposed by Ben-Akiva and Bierlaire (1999).  
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Recent studies have revealed the pros and cons of the parameter 𝛾, which is 

designed for penalizing extremely long routes in the choice set. According to Bekhor et 

al. (2006), a positive value of the parameter 𝛾 can improve model fit empirically. 

However, Frejinger and Bierlaire (2007) have pointed out that the utility adjustments 

with a positive 𝛾 may be questionable and thus the corresponding path probabilities may 

be unrealistic and illogical. 

To avoid theoretical confusion, the basic formulation of path size is adopted in 

this paper, which takes the form 

 
𝑃𝑆𝑗 = ∑ (

𝑙𝑎

𝐿𝑗
𝑎∈Γ𝑖

∗
1

∑ 𝛿𝑎𝑗𝑗∈𝐽
) . (2.9) 

 

The path size logit model is given by 

 
𝑃𝑛𝑗 =

exp (𝛽𝑇𝑋𝑛𝑗 + ln (𝑃𝑆𝑗))

∑ exp (𝛽𝑇𝑋𝑛𝑗′ + ln (𝑃𝑆𝑗′))𝑗′≠𝑗
. (2.10) 

As the value of the path size is between 0 and 1, the logarithm makes the utility 

adjustment factor non-positive. Precisely, the perceived utility of a unique route will not 

be adjusted while the perceived utility of a partially overlapped route is reduced based 

on the degree of overlapping. 

It is shown by a handful of studies that the path size logit (PSL) performs well in 

addressing network overlaps and thus is widely used in route choice modeling and large-

size traffic assignment problems (Prashker and Bekhor 2004). The current research 

effort is a direct application of PSL and generalized PSL to different travel modes and 

trip purposes to reveal factors that are significant to route choice. 
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Broach et al. (2012) applied PSL in bicycle route choice. The GPS data used was 

collected from 164 cyclists in Portland, Oregon. It is noted that the parameter of the path 

size term should not be arbitrarily set to 1. Instead, the coefficient of the path size from 

the model estimation is 1.8, which is significantly different from 1. Moreover, the model 

statistical fit is significant with estimated parameters. Lue and Miller (2019) modeled 

pedestrian route choice using PSL with smartphone GPS data. The generalized 

formulation of path size was used with gamma equal to 14. Model results showed that 

the parameter of the logarithm of path size is 1.5. The model also included a stochastic 

alternative route generation process that accounts for the randomness that a path would 

be included in the choice set, with the consideration of limited route information. 

Due to the closed-form formulation of the choice probability and simple 

analytical form, the path size term can be flexibly embedded in many logit family 

models. Yang et al. (2016) applied a nest logit model to modeling the route choice of 

battery electric vehicles. In route selection, the choice of charging or no charging makes 

two nests of the model, and alternatives under the second nest are modeled by a path size 

logit. The empirical results of the study demonstrated the effectiveness of the nested 

structure.  

Dalumpines and Scott (2017) applied path size logit to the network of Halifax, 

Canada which contains 21,782 nodes and 26,917 links. This study compared route 

choice under different trip purposes (work and shopping) with 13-month GPS 

trajectories. Results show that the adjustment factor for utility and other parameters 

should separate for different trip purposes. Moreover, the path size factor captures 
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overlaps in route alternatives, but its effect may be reduced by other latent factors that 

affect the route choice behavior.  

However, Duncan et al. (2020) have pointed out the key issue of path size logit. 

Without consideration of choice probability, all routes in the choice set contributed 

equally to the path size term. This results in the path size term of routes that are likely to 

be used being negatively affected by the routes that are not likely to be used. This issue 

is not solved with the generalized form. Since the parameter lambda is meant to punish 

long routes, the path size term is heavily affected by link length when lambda is large. 

This formulation is internally inconsistent in the assessment of feasibility and scaling 

parameters. The proposed adaptive path size logit solves these problems by setting the 

link contribution to the path size term proportional to choice probability ratios. It is 

shown that the proposed model can be reduced to a fixed-point problem; thus, a unique 

solution is guaranteed.  

2.2.3. C-logit 

The availability of computation powers and the emphasis on behavioral aspects 

make the random utility model the mainstream method of route choice models. With the 

consideration of network topologies, the probit model has been proposed where the 

stochastic random errors are assumed to be normally distributed and correlated among 

overlapped alternatives. However, the probit model cannot be solved explicitly like logit 

family models; instead, the Monte Carlo method is necessary to estimate choice 

probabilities. As a result, the application of the probit model in the path enumeration and 

network assignment is limited by the computation burden from the Monte Carlo draws 
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and straightforward behavioral interpretations. From the point of improving computation 

and calibration efficiency, a C-logit formulation is proposed by Cascetta, Russo, and 

Vitetta (1997), with the overlapping alternatives deal with a punishing term to the 

systematic utility named as a CF. The authors give three analytical formulations; only 

the one used for this paper is displayed, which is expressed as 

 
𝐶𝐹𝑗 = −𝜃ln ( ∑

𝑙𝑎

𝐿𝑗
𝑎∈Γ𝑖

∗ 𝑁𝑎) (2.11) 

where 𝑁𝑎 = ∑ 𝛿𝑎𝑗𝑗∈𝐽 , 𝛿𝑎𝑗 is the link-path incidence dummy, and 𝛿𝑎𝑗 = 1 if path 𝑗 uses 

link a and 0 otherwise. 

The choice probability is given by 

 
𝑃𝑛𝑗 =

exp (𝛽𝑇𝑋𝑛𝑗 + 𝐶𝐹𝑗)

∑ exp (𝛽𝑇𝑋𝑛𝑗′+𝐶𝐹𝑗′)𝑗′≠𝑗
 . (2.12) 

The direct application of C-logit is limited due to a lack of theoretical guidance 

to the proper functional form of the CF.  

Tests of network performance of the C-logit model see the following. Russo and 

Vitetta (2003) formulate a link-based assignment model with C-logit and propose a 

solution algorithm called D-C-logit that can provide closed-form path choice 

probabilities and avoids explicit path enumeration. Zhou, Chen, and Bekhor (2012) 

provide the route length-based and congestion-based stochastic user equilibrium with 

two formulations of the CF: a flow-dependent cost form and a flow-independent form. 

Results show that the CF can effectively overcome the overlapping issue. The 

equilibrium flow of the multinomial logit model is significantly different from that of 
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length-based C-logit and congestion-based C-logit, with a slight difference observed 

between the last two models.  

2.2.4. Nested logit and cross nested logit  

The nested or hierarchical logit is an extension of multinomial logit designed for 

nested choice sets. The multinomial logit model is characterized by the IIA with the 

independent error term. According to Hall (1999), this property is described as “Where 

any two alternatives have a non-zero probability of being chosen, the ratio of one 

probability over the other is unaffected by the presence or absence of any additional 

alternative in the choice set.” Since the IIA property guarantees independence among 

alternatives, it fails in addressing the situation with correlated choice alternatives. One 

option to account for the overlapping route problem is to add a correction or adjustment 

factor to the systematic utility, leading to path size logit and C-logit. The second option 

is to address the problem with correlated errors, which includes the multinomial probit 

model, the mixed logit model, and part of the family of generalized extreme value 

models such as the nested logit, cross-nested logit, and the paired combinatorial logit 

model.  

Distinguished from other models in the generalized extreme value model family 

that have a single-level structure, the nested logit model is characterized by a two-level 

tree structure. The choice set is first clustered or grouped to several subsets called nests, 

denoted by 𝐶1, 𝐶2, … , 𝐶𝑚, … 𝐶𝑀, and the MNL model is then applied to each of the nest, 

which brings in the probability of choosing alternative 𝑗𝑐 in nest 𝐶𝑚: 
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𝑃𝑛(𝑐, 𝑗𝑐) = 𝑝(𝑗𝑐|𝐶𝑚)𝑝(𝐶𝑚|𝐽) =

exp (𝜇𝑉𝐶𝑚
)

∑ exp (𝜇𝑉𝐶𝑚′
)𝑚′

∗
exp (𝜇𝑚𝛽𝑇𝑋𝑛𝑗)

∑ exp (𝜇𝑚𝛽𝑇𝑋𝑛𝑗′)𝑗𝑐′∈𝐶𝑚

 (2.13) 

where 𝜇 and 𝜇𝑚 are scaled parameters and 𝑉𝐶𝑚
 is the composite utility of nest 𝐶𝑚. The 

cross nested logit model is a direct extension to the nested model, with the relaxation 

that one alternative is allowed to be assigned in more than one nest. For applications, see 

Abbe, Bierlaire, and Toledo (2007); Lai and Bierlaire (2015); and Papola (2004). 

2.2.5. Mixed logit or error component logit 

Unlike path size logit and C-logit, which is a direct extension of the multinomial 

logit model with a utility adjustment factor, the mixed logit model is designed to capture 

individuals’ preference heterogeneity by the combined structure of error terms or by 

random parameters. There are two formulations of random utilities for the mixed logit 

model: random parameters formulation and error component formulation. The first 

formulation is written as 

 𝑈𝑛𝑡𝑗 = 𝛽𝑛
𝑇𝑥𝑛𝑡𝑗 + 휀𝑛𝑡𝑗 . (2.14) 

Within a mixed logit setting, each individual would face a set of different choice 

situations, denoted by 𝑇 and indexed by 𝑡. Note that the taste parameter is no longer the 

same for all individuals. Instead, it is defined as a random variable, whose behavior is 

reflected by some statistical distributions. The other formulation of the random utility is 

expressed as 

 𝑈𝑛𝑡𝑗 = 𝛼𝑇𝑥𝑛𝑡𝑗 + 𝑑𝑛
𝑇𝑥𝑛𝑡𝑗 + 휀𝑛𝑡𝑗 (2.15) 

where 𝛼 denotes the vector of fixed variables and 𝑑𝑛 denotes the vector of random 

variables with 0 means. The relationship between the two formulations is then revealed 
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by decomposing the random parameter 𝛽𝑛 to a mean of 𝛼 and deviation 𝑑𝑛. By 

substituting the decomposition of 𝛽𝑛 to the first formulation, it is shown that these two 

formulations are mathematically equivalent.  

The probability of the mixed logit model is given by the mixed distribution 

 
𝑃𝑛𝑗 = ∫

exp(𝛽𝑛
𝑇𝑋𝑛𝑗)

∑ exp(𝛽𝑛
𝑇𝑋𝑛𝑗′)𝑗′≠𝑗

𝑓(𝛽𝑛)𝑑(𝛽𝑛) (2.16) 

where 𝑓(𝛽𝑛) is the probability density function of 𝛽𝑛. Since the behavior of 𝛽𝑛 is 

unknown, different probability distributions are assumed to represent 𝑓(𝛽𝑛). The most 

commonly used ones are normal distribution, log-normal distribution (when parameters 

are restricted to a specific sign), uniform distribution, and triangular distribution. 

Interested readers are referred to Hensher and Greene (2003) for a detailed case study to 

compare the performance of those distributions.  

Growing attention to the prevalence of heterogeneity that influences discrete 

choice behavior has led to a line of research with the application of the mixed logit 

model. The preference heterogeneity or taste heterogeneity is observed in that 

individuals consider different attributes or perceive the same attributes differently when 

making choices, which is captured by this model’s random parameter setting. In the 

freight industry, drivers’ taste heterogeneity in mode choice is represented by data 

categorization according to industry activities or commode types. Within each category, 

the mode choice is assumed to be homogeneous and thus modeled with multinomial 

logit or nested logit. However, Arunotayanun and Polak (2011) have pointed out that, 

although a strong difference is shown between categories, a substantial amount of inter-
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individual heterogeneity remains among carriers. This conclusion is reached with a 

comparison between a multinomial logit and a mixed logit that are applied respectively 

in each category. The other point of the study was reached from a latent class analysis, 

which indicates that commodity type is not necessarily the determining factor in the 

context of taste heterogeneity. Instead, a combination of different attributes provides 

better justification.  

Due to the complexity of human thought in decision making, an extension of the 

mixed logit model has been developed as a treatment for intra-individual taste 

heterogeneity. The random parameters in the model are then specified by each user in 

each choice situation. A detailed exploration of the performance of mixed logit models 

in recovering inter- and intra-individual preference is given by Hess and Train (2011). 

The simulation results have shown that model performance in retrieving the true patterns 

of heterogeneity would be limited by the number of choice situations. The model that 

includes intra-personal specification provides excellent recovery of heterogeneity, yet 

requires high computation time. There are other modeling procedures within a mixed 

logit framework that aim at deriving the taste heterogeneity. Hong et al. (2017) modeled 

the random taste parameters with a joint probability density function instead of assuming 

that they are independent of each other. It is indicated that both mean standard error and 

mean absolute error were reduced with this modeling procedure.  

Another type of heterogeneity is called scale heterogeneity. Since the 

mathematical form of the utility function only includes observable attributes, the effect 

of unobservable factors on an individual’s choice behavior is indicated by scale 
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heterogeneity. Specifically, if an individual’s choice behavior is dominated by 

observable attributes, a massive magnitude of the coefficient of utility attributes is 

determined. In contrast, if the individual’s choice behavior is dominated by unobservable 

factors, a small magnitude of coefficients should be used instead. Such a phenomenon is 

called “scale heterogeneity,” which is reflected by the magnitude of utility parameters 

and is inversely and analytically proportional to the error component’s standard 

deviation. Greene and Hensher (2010) compared several forms of multinomial logit, 

which include the multinomial logit, the standard mixed logit, the mixed logit with 

extension to include scale heterogeneity, and the generalized mixed logit model (Fiebig 

et al. 2010), with both taste and scale heterogeneity included. It is found that a model 

that only includes scale heterogeneity performs worse than both the standard mixed logit 

model and the generalized mixed logit model. Recently, Hess and Train (2017) have 

further examined the source of correlations among utility parameters. The latent class 

and scale-adjust latent class (Magidson, Vermunt, and Madura 2004) are included in 

comparison, except for the mixed logit and the generalized mixed logit. The mixed logit 

model with full covariance allows all correlation forms and captures both scale and 

preference heterogeneity, as does the scale-adjusted latent class model. It is noted that 

the model specification does not necessarily include all sources of correlation and should 

be data specified.  

The mixed logit model is also characterized by its high flexibility. On the one 

hand, with the error component formulation, an appropriate choice of variables for the 

error components makes the mixed model approximation of other logit family models. 
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For example, with an indicator variable categorizing the nests, the mixed logit is an 

analog of the nested logit. If the error components are defined for each alternative, the 

mixed logit is then an analog of heteroskedastic logit (Train 2003). On the other hand, 

variables that enter the error components have random parameters, whereas variables 

that sit in the utility function’s systematic part have a fixed parameter, which allows for 

flexible parameter structures. Tsirimpa, Polydoropoulou, and Antoniou (2007) examined 

traveler’s behavior using three different mixed logit models with variables specific to the 

departure time change, route change, and no change entering the error component. These 

models realistically predicted the traveler’s pattern of switching departure time and the 

route and were shown to outperform the multinomial models in goodness-of-fit with the 

same setting. Zimmermann et al. (2018) applied a recursive formulation of the utility 

function using the Bellman equation to model activity-travel scheduling decisions. The 

current location and activity are defined as state, and combinations of activity, location, 

and transport modes are defined as actions. The mixed structure is reflected by the 

random parameter of different travel modes. 

Moreover, various model specifications make the mixed logit model widely 

applied in modeling discrete choice. The 𝑛 in the model, for instance, can be either 

defined as each individual or as groups of individuals from a broad scope. An example is 

given by Han, Ren, and Bao (2020). They used a mixed distribution of three groups of 

individuals (low-income, medium-income, and high-income) to model the market share 

of railway modes (𝑛 = 3 in this case).  
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Similar to the multinomial logit, the mixed logit cannot address the overlapping 

route alternative issue when modeling route choice. Extensions such as mixed path size 

logit, mixed paired combinatorial logit (Shahhoseini, Haghani, and Sarvi 2015), and the 

mixed nested logit (Haghani, Sarvi, and Shahhoseini 2015) have been proposed as 

remedies for this issue. Tang et al. (2020) modeled taxi route choice with mixed path 

size logit using GPS trajectory data. With the customer generation process incorporated, 

five periods in the context of different times of day were modeled respectively with five 

models. It is worth mentioning that the parameter settings (fixed or random) were 

different for each model, even though the attributes were the same. The mixed path size 

logit was shown to be superior to path size logit and multinomial logit.  

2.3. Parameter estimation procedure of mixed logit models 

2.3.1. Maximum simulated likelihood 

Simulation is the most commonly used method for solving the mixed logit 

model. Specifically, the parameter estimation results from maximizing the simulated 

likelihood, which is derived from the average of numerous sequences of draws. For 

cross-sectional data, where each individual is faced with one choice situation (i.e., 𝑡 =

1), the simulated likelihood is expressed as 

 

𝑆𝐿𝐿 = ∑ ln (
1

𝑅
∑ 𝑃𝑛(𝑗|𝛽𝑟,𝑛)

𝑅

𝑟=1

)

𝑁

𝑛=1

 (2.17) 

where 𝑟 = 1,2, … 𝑅 denotes the 𝑟th simulation draws, with 𝑅 being the total number of 

draws. Additionally, 𝑃𝑛(𝑗|𝛽𝑟,𝑛) denotes the choice probability logit probability of 

individual 𝑛 choosing choice 𝑗 given 𝛽𝑛 on the 𝑟th draw.  
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For penal data, where each individual is faced with a set of choice situations (i.e., 

𝑡 > 1), the simulated likelihood is written as 

 

𝑆𝐿𝐿 = ∑ ln (
1

𝑅
∑(∏ 𝑃𝑛,𝑡(𝑗|𝛽𝑟,𝑛)

𝑇

𝑡=1

)

𝑅

𝑟=1

)

𝑁

𝑛=1

. (2.18) 

Here, 𝑃𝑛,𝑡(𝑗|𝛽𝑟,𝑛) denotes the choice probability logit probability of individual 𝑛 

choosing choice 𝑗 in choice situation 𝑡 given 𝛽𝑛 on the 𝑟th draw. 

More details of the sampling procedure for different settings of mixed logit 

models with cross-sectional or penal data can be found in Train (2003) and Hess and 

Train (2011).   

2.3.2. Variational Bayes inference 

The choice probability from the mixed distribution can be solved with Bayesian 

analysis. Instead of directly assessing the value of the high-dimensional integration, the 

Bayesian procedure approximates the true value interested through the establishment of 

Bayesian inference. The first step is introducing the latent variables or hidden variables, 

denoted by φ, which bridges the gap between the observed data and the unknown 

parameters interested. With Bayes’ theorem, the conditional probability of latent 

variables, given the observed data, also known as the posterior distribution, is then 

derived as 

 
p(φ|data, λ) =

p(data|φ, λ)p(φ, λ)

p(data, λ)
 (2.19) 

where λ represents unknown parameters to be estimated. 
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The evaluation of the posterior distribution is called the Bayesian inference 

problem. Explicit analytical form for the prior joint distribution p(φ, λ) and the 

likelihood (i.e., the conditional probability of an unknown parameter given observed 

data p(data|φ, λ)) is addressed by construction, leaving the main difficulty of Bayes 

inference in the computation of marginal density of the data and the evidence. 

Mathematically, this density is computed by integrating the latent variables: 

 
p(data, λ) = ∫ p(data|φ, λ)  p(φ, λ)dφ. (2.20) 

However, in many cases of interest, this integral is high dimensional and is thus 

intractable. As a result, the assessment procedure of this integral falls into two 

categories: a sampling-based procedure and variational inference procedure. The 

sampling-based Monte Carlo method, particularly the Markov Chain Monte Carlo 

(MCMC) simulation, is an established paradigm in estimating the posterior density. The 

general idea of MCMC is to evaluate the density of interest stochastically with the 

stationary distribution of an ergodic Markov chain, which enables repeated sampling 

from the joint posterior distribution. The final empirical estimate of the posterior density 

is based on the subset of samples collected. By construction, the sampling approach 

returns an unbiased estimation and converges toward the true posterior with increased 

dependent samples. Consequently, the MCMC algorithm has been widely investigated 

and a handful of state-of-art developments has been proposed such as the Metropolis-

Hastings algorithm and Gibbs sampler. 

Notwithstanding that the exactness of the solutions is guaranteed with the 

MCMC algorithm, it is not always easily applicable when the model is complicated or 
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when the dataset is large due to the slow convergence rate, high storage requirement, and 

long computation time under such circumstances. According to Depraetere and 

Vandebroek (2017), the assessment of convergence of the Markov chain remains open. 

However, the variational inference procedure is characterized by computational 

efficiency and scalability to large datasets compared to the sampling procedure. Instead 

of directly assessing the joint posterior density, variational inference constructs an 

approximated posterior density deterministically with an explicit and tractable analytical, 

usually parametric, form. The critical problem of variational inference is to find an 

approximate density as close as possible to the true posterior, where the closeness is 

measured by the Kullback-Leibler (KL) divergence. Since the KL divergence is non-

negative, the minimization of the KL divergence is transferred into the maximization of 

the evidence lower bound (ELBO) that is restricted by the marginal data likelihood. In 

this case, the variational inference procedure is also called an optimization-based 

procedure (Zhang et al., 2019). Without a sampling process, the variational inference 

does not require a large memory for samples, and computation time is reduced 

accordingly.  

The development of variational inference fosters a wide application, including 

computational biology, neuroscience, computer vision, robotics, and text processing and 

recognition (Blei, Kucukelbir, and McAuliffe 2017). As it is a machine learning process, 

recent research interests are to achieve the scalability for large data sets, to relax the 

limitation on the class of models, to improve the accuracy of posterior approximation, to 

change the model structure with a neural network embedded, and to extend its 
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application on Bayesian deep learning (C. Zhang et al. 2019). One of the most 

commonly used types of variational inferences is the mean-field variational inference 

(MFVI). The variational density (i.e., density chosen as an approximation of the true 

posterior) is factorized by the density of each group of latent variables. It is assumed that 

latent variables are independent of between groups, with each group expressed by a 

tractable family of densities, which is recognized by the exponentiated partial 

expectation of the log joint density. Braun and McAuliffe (2010) first applied the MFVI 

in the mixed logit discrete choice models, with two formulations of the Bayesian 

structure. The empirical Bayes formulation only assumes a prior distribution of the taste 

parameter, while the hierarchical Bayes formulation additionally assumes hyperprior 

distributions for both the mean and variance of the prior distribution of the taste 

parameter. The results showed that MFVI has significantly reduced the computation 

times of both models for all scenarios compared to the MCMC algorithm, yet it does not 

suffer in prediction accuracy.  

Following this trend, Tan (2017) extended the MFVI in the mixed logit model 

that applies to large datasets with a stochastic gradient ascent algorithm. In the context of 

parameter updates, three methods are compared, namely, Laplace approximations for the 

variational density, fixed point update via variational message passing, and stochastic 

linear regression. Moreover, the half-t distribution was used as the hyperprior 

distribution of the taste parameter’s standard deviation and was shown to practically 

perform better than the inverse Wishart distribution that was used in the study of Braun 

and McAuliffe (2010) and Huang and Wand (2013). The stochastic linear regression was 



 

32 

 

the most accurate and stable one among the three methods. The accuracy of variational 

message passing closely follows the stochastic linear regression, yet failure in 

convergence was encountered. Using the same hierarchical Bayes formulation as used 

by Braun and McAuliffe (2010), Depraetere and Vandebroek (2017) explored the 

approximation and bounding method for evaluating the log-sum exponential term of the 

ELBO. Results implied that the approximation method was more accurate than the 

bounding method, and the proposed quasi-Monte Carlo approximation performed 

equally well as the second-order Taylor series approximation used in Braun and 

McAuliffe (2010).  

The other line of research focuses on the application of MFVI on various types of 

mixed logit models. Bansal et al. (2020) developed the MFVI process for the mixed logit 

model with a combination of fixed and stochastic parameters. Krueger et al. (2020) 

constricted this process for mixed models with inter-and intra-individual heterogeneity.
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3. TRUCK ROUTE CHOICE MODELING 

 

3.1. Model formulation 

In this section, a mixed C-logit model is introduced, which is solved via the 

establishment of three different formulations, resulting in three Bayesian approaches: 

BMCL, HBMCL1, and HBMCL2, respectively. First, we introduce a generalized form 

of the mixed logit model with the utility adjustment factor, named the adjusted mixed 

multinomial logit model (AMML). Next, we show that the proposed mixed C-logit is a 

specific type of AMML. The Bayesian formulations and the numerical tests included in 

this dissertation are then based on the proposed mixed C-logit model. In what follows, 

the AMML is specified in detail. 

 Let 𝑁 denote the set of individuals and |𝑁| be the total number of individuals. 

The set of available alternatives for a trucker’s O-D travel is denoted by 𝐽, which is 

indexed by 𝑗, and the total number of available routes is |𝐽|. In this mixed setting of 

route choice, each individual 𝑛 ∈ 𝑁 will make multiple trips on the same O-D pair with 

each trip associated with a choice situation, denoted by 𝑇𝑛. In addition, each faces a total 

of |𝑇𝑛| choice situations. In this study, a choice situation corresponds to a traffic 

situation, characterized by observed attributes of the route alternatives, such as the travel 

time, the toll price, and others.  

Let 𝑋 denote the set of attributes matrixes. Each individual 𝑛 ∈ 𝑁, under choice 

situation 𝑡 ∈ 𝑇𝑛, is endowed a matrix of attributes 𝑥𝑛𝑡 ∈ 𝑋, with 𝑥𝑛𝑡𝑗 representing its 𝑗th 



 

34 

 

row. Analytically, the utility function of alternative 𝑗 for an individual given some 

choice situation is written as  

 𝑈𝑛𝑡
𝑗

= 𝛽𝑛
𝑇𝑥𝑛𝑡𝑗 + 𝜃𝑛𝑗 ∗ 𝑎𝑗 + 휀𝑛𝑡

𝑗
. (3.1) 

The term 𝑈𝑛𝑡
𝑗

 in Equation 3.1 is the perceived utility of route 𝑗 of the 𝑛th driver in 

under the 𝑡th choice situation. Further, 𝛽𝑛 denotes the 𝐾 ∗ 1 coefficient for choice 

attributes, where 𝐾 is the total number of explanatory variables considered in this study. 

In some studies, this term is named as the taste parameter, because it reflects the 

individual preferences or tastes of the decision-makers for the observed attributes. 

It is worth noting that the most significant difference between the multinomial 

logit model and the mixed logit model is the specification of the taste parameters. In the 

multinomial logit model, the taste parameter 𝛽 is assumed to be constant over 

individuals, whereas in the mixed logit model, the taste parameter 𝛽𝑛 is individual based. 

It is assumed, in this study, that 𝛽𝑛 only contains random coefficients. The preference 

heterogeneity of individuals is then reflected by the interaction between the random 

coefficient and its covariate. Mathematically, the preference heterogeneity around the 

mean of a random parameter is equivalent to its coefficient of variation.  

Additionally, 𝑥𝑛𝑡 denotes the |𝐽| ∗ 𝐾 attribute matrix where the term 𝑥𝑛𝑡𝑗 in 

Equation 3.1 denotes the 𝑗th row that contains attributes for calculating part of the 

systematic component of the utility of the 𝑗th alternative. 

To account for the roadway overlapping in the network, this study adopted a 

utility adjustment factor 𝑎𝑗. The detailed mathematical form of this term is discussed in 

the following section. In Equation 3.1, it is a fixed value for all drivers 𝑛 ∈ 𝑁 in all 
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choice instances 𝑡 ∈ 𝑇𝑛 of alternative 𝑗. Additionally, 𝜃𝑛𝑗  is the coefficient of the utility 

adjustment factor, and it is assumed to be random instead of a fixed value.  

The last term in Equation 3.1, 휀𝑛𝑡
𝑗

 represents the random component of the utility 

function of choice 𝑗, which is assumed to be stochastic for each individual in each 

situation. This term can also be called the stochastic random error and is assumed to be 

Gumbel (generalized extreme value type II) distributed in this model. 

3.1.1. The utility adjustment factor and choice probability 

Network topology characteristics are necessary considerations for route choice 

models. One efficient and straightforward procedure to include the roadway correlation 

information in modeling is adding a utility adjustment factor to the deterministic part of 

the utility. In Equation 3.1, we show a generalized form of the utility adjustment factor, 

𝑎𝑗. In the literature, there are two alternatives to the mathematical form of this term. One 

form is the CF. The substitution of the CF with the 𝑎𝑗 leads to an extension of the classic 

logit model, the C-logit model. The other form is the path size, which leads to the 

extension of the path size logit. Both models have been used for modeling route choices, 

yet seldom have studies compared the performance of the two models due to the various 

functional forms proposed for the CF. Only Ben-Akiva et al. (2004) have shown a small 

discrepancy in model goodness of fit with the two alternatives. Moreover, the path size 

logit has been extended to a mixed setting, named the mixed path size logit model in 

existing studies, while there is no such extension for the C-logit model. In this case, this 

study adopts a properly selected form of the CF. Applied to a mixed setting where each 
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individual faces a certain number of choice situations, the proposed model is thus named 

the mixed C-logit model. 

In our model, with a necessary reformulation, the term CF is defined with the 

following functional form: 

 
𝐶𝐹𝑗 = −ln ( ∑

𝑙𝑎

𝐿𝑗
𝑎∈Γ𝑗

∗ 𝑁𝑎)  (3.2) 

where 𝑙𝑎 is the length of link 𝑎, 𝐿𝑗 is the length of path 𝑗, 𝑁𝑎 = ∑ 𝛿𝑎𝑗𝑗∈𝐽  and 𝛿𝑎𝑗 

is the link-path incidence dummy, and 𝛿𝑎𝑗 = 1 if path 𝑗 uses link a and 0 otherwise. 

Theoretically, 𝑁𝑎 is the number of paths trespassing the link 𝑎; it represents a weight to 

the link, and Γ𝑗  is the set of links in path 𝑗. 

When the CF is substituted into Equation 3.1, it becomes 

 𝑈𝑛𝑡
𝑗

= 𝛽𝑛
𝑇𝑥𝑛𝑡𝑗 + 𝜃𝑛𝑗 ∗ 𝐶𝐹𝑗 + 휀𝑛𝑡

𝑗
. (3.3) 

This model is referred to as the mixed C-logit model from now on.  

For a thorough understanding of the utility adjustment term, the other alternative 

to the path size is also provided here, even though it is not examined in the numerical 

tests. The path size is defined as follows: 

 
𝑃𝑆𝑗 = ∑ (

𝑙𝑎

𝐿𝑗
𝑎∈Γ𝑗

∗
1

∑ 𝛿𝑎𝑗𝑗∈𝐽
) (3.4) 

where the 𝑙𝑎, 𝐿𝑗, Γ𝑗, and 𝛿𝑎𝑗 are the same as C-logit. In both Equation 3.2 and 3.4, a 

larger number of paths trespassing a link result in a smaller term in the utility function. 

They each represent a different way to consider the negative effect of the commonality 

of a shared link. 
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It is pointed out that the existing mixed path size logit uses a single fixed 

parameter for its path size term. As a contrast, in the mixed C-logit model proposed in 

this study, 𝜃𝑛𝑗  is assumed to be a random variable that follows a certain probability 

distribution, which is estimated for other coefficients.  

The conditional probability of the mixed C-logit with utility adjustment factor is 

given by 

 
𝑃(𝑦𝑛𝑡

𝑗
= 1|𝛽𝑛, 𝑥𝑛𝑡𝑗 , 𝜃𝑛𝑗 , 𝐶𝐹𝑗) =

𝑒𝑥𝑝(  𝛽𝑛
𝑇𝑥𝑛𝑡𝑗  + 𝜃𝑛𝑗  ∗ 𝐶𝐹𝑗)

∑ 𝑒𝑥𝑝( 𝛽𝑛
𝑇𝑥𝑛𝑡𝑗′  + 𝜃𝑛𝑗  ∗ 𝐶𝐹𝑗′)𝑗′∈𝐽

 (3.5) 

where 𝑥𝑛𝑡 denotes the 𝐾 ∗ |𝐽| attributes matrix for driver 𝑛 ∈ 𝑁 in his or her choice 

event 𝑡 ∈ 𝑇; 𝑥𝑛𝑡𝑗
𝑇 is the 𝑗th row vector, and 𝑦𝑛𝑡 is the observed choice vector of 

individual 𝑛 at situation 𝑡. The input matrix is given by [𝑥𝑛𝑡  𝑎] with dimension (𝐾 +

1) ∗ |𝐽|. 𝑎 = [𝑎1 … 𝑎𝑗]. The marginal probability of individual 𝑛 at situation 𝑡 may be 

calculated in the following way: 

 
𝑃(𝑦𝑛𝑡

𝑗
= 1|𝑥𝑛𝑡𝑗, 𝐶𝐹𝑗) = ∬

𝑒𝑥𝑝(  𝛽𝑛
𝑇𝑥𝑛𝑡𝑗  + 𝜃𝑛𝑗 ∗ 𝐶𝐹𝑗)

∑ 𝑒𝑥𝑝( 𝛽𝑛
𝑇𝑥𝑛𝑡𝑗′  + 𝜃𝑛𝑗 ∗ 𝐶𝐹𝑗′)𝑗′∈𝐽

𝑑𝛽𝑛𝑑𝜃𝑛𝑗 . (3.6) 

 

3.1.2. Bayesian modeling procedure 

To solve the proposed mixed C-logit model stated in the previous section with a 

utility function of Equation 3.3, we develop a Bayesian procedure that specifically deals 

with this particular utility function to address the truckers’ route choice decision. With 

the different levels of hierarchy, three Bayesian formulations are introduced in this 

section: BMCL, HBMCL1, and HBMCL2. 
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In Bayesian modeling, the information contained in the priors affects the 

performance of model prediction. Theoretically, a strong informative prior would have 

better performance if the prior belief is close to the fact. However, the prior guess can be 

vague and non-informative when there is little prior information available. In this case, 

we applied different priors for the coefficients to explore how the informativity of the 

prior affects the posterior prediction of the mixed C-logit model. The informativity of 

priors is revealed by the correlation among the coefficients. A weak correlation would 

result in a distribution with a high level of dispersion, while a strong correlation would 

lead to a concentrated distribution for the coefficients. Since HBMCL1 has additional 

assumptions for the mean and variance of the coefficients, the correlation among its 

coefficients would be thus stronger than BMCL would be, and thus the HBMCL1 would 

be more informative than would BMCL. Similarly, with more assumptions for the 

hyperparameters, HBMCL2 is more informative than are HBMCL1 and the BMCL. As a 

strongly informative prior would result in a more complicated model, the examination of 

different priors would also shed light on the balance between model complexity and 

prediction precision. The distributions for the priors are chosen empirically.  

First, we introduce a basic formulation with two levels of hierarchy. The 

coefficient 𝛽𝑛 is assumed to follow a 𝑘-dimensional multivariate Gaussian distribution 

with mean 𝜉 and variance Ω. The term 𝜃𝑛 is assumed to follow a Laplace distribution 

with the location parameter 𝑐 and the scale parameter d. The following summarizes the 

above assumptions: 

𝜃𝑛|𝑐, d ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐, d) 
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𝛽𝑛|𝜉, Ω ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑘(𝜉, Ω) 

𝑦𝑛𝑡|𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛~𝑀𝑁𝐿(𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛) 

The first model is named the Bayesian mixed C-logit (BMCL) model in this 

dissertation. Graphically, the structure of this model is shown in Figure 3.1. The top-

level parameters 𝜉, Ω, and c, d describe the distribution of individual preferences of the 

population. 

 

 

 

Figure 3.1 Modeling structure for BMCL. 

 

 

Compared to the first model, the mean and variance of 𝛽𝑛 is further assumed to 

have additional distributions, leading to an additional hierarchy in the second model. 

Specifically, 𝜉 is assumed to follow another 𝑘-dimensional multivariate Gaussian 

distribution with mean 𝜉0 and variance Ω0, and Ω follows an inverse Wishart distribution 
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with scale matrix 𝑠 and degree of freedom 𝜈. This full Bayesian model can be written as 

follows: 

Ω|𝜈, s ~ 𝐼𝑊𝑘(𝜈, s−1) 

𝜉|𝜉0, Ω0~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑘(𝜉0, Ω0) 

𝜃𝑛|𝑐, d ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐, d) 

𝛽𝑛|𝜉, Ω ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑘(𝜉, Ω) 

𝑦𝑛𝑡|𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛~𝑀𝑁𝐿(𝑥𝑛𝑡𝑗 , 𝛽𝑛, 𝑎, 𝜃𝑛) 

The second model is named the hierarchical Bayesian mixed C-logit model with inverse 

Wishart prior for the variance (HBMCL1). The graphic modeling structure is displayed 

in Figure 3.2.  

 

 

 

Figure 3.2 Modeling structure for HBMCL1. 
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Another popular prior distribution for the variance of 𝛽𝑛 is Huang’s half-t 

distribution. With this prior, the third model provided for this dissertation is summarized 

as follows: 

g|𝐺𝑘~ 𝐼𝐺𝑘 (0.5,
1

𝐺𝑘
2) , 𝐺 = [𝐺1, 𝐺2 … 𝐺𝑘]𝑇 

 Ω|𝜈, g ~ 𝐼𝑊𝑘(𝜈 + 𝑘, 2𝜈𝑑𝑖𝑎𝑔(𝑔)), 𝑔 = [𝑔1, 𝑔2 … 𝑔𝑘]𝑇 

𝜉|𝜉0, Ω0~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑘(𝜉0, Ω0) 

𝜃𝑛|𝑐, d ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐, d) 

𝛽𝑛|𝜉, Ω ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑘(𝜉, Ω) 

𝑦𝑛𝑡|𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛~𝑀𝑁𝐿(𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛) 

In this case, the third model in this dissertation is named hierarchical Bayesian 

adapted mixed multinomial logit model with Huang’s half-t prior for the variance 

(HBMCL2). The graphical display of the model structure is illustrated in Figure 3.3. 

Compared to the HBMCL1, where the Ω is assumed to follow an inverse Wishart 

distribution, HBMCL2 defines the scale matrix as a diagonal matrix with the diagonals 

following an inverse gamma distribution with a shape parameter 
1

2
 and a scale parameter 

1

𝐺𝑘
2.  
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Figure 3.3 Modeling structure for HBMCL2. 

 

 

3.2. Mean-field variational inference  

After reformulating the mixed C-logit model with different prior distributions for 

the parameters of interest, the next step is to find out their posterior distributions, that is, 

𝑝(𝛽𝑛, 𝜃𝑛|𝑑𝑎𝑡𝑎, 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) for each model. Since there are no closed forms 

for those full conditional posterior distributions, the variational Bayesian inference is 

applied to estimate those posteriors.  

The variational inference estimates distributions by finding tractable densities 

that are close to the true density. The closeness is measured by the KL divergence. The 

KL divergence is a positive value, with a smaller value indicating a better estimation. 

Let 𝜑 denote the parameters to be estimated, let 𝑞(𝜑) define the variational distribution 

selected for estimating parameters, and let 𝑝(𝜑|𝑑𝑎𝑡𝑎) define the true posterior density. 

The KL divergence is given by 
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𝐾𝐿[𝑞(𝜑)||𝑝(𝜑|𝑑𝑎𝑡𝑎)] = 𝐸𝑞(𝜑) 𝑙𝑜𝑔

𝑞(𝜑)

𝑝(𝜑|𝑑𝑎𝑡𝑎)

= 𝐸𝑞(𝜑) log(𝑞(𝜑)) − 𝐸𝑞(𝜑) log(𝑝(𝜑, 𝑑𝑎𝑡𝑎))

+ 𝐸𝑞(𝜑) log(𝑝(𝑑𝑎𝑡𝑎)) . 

(3.7) 

Interested readers are referred to, for example, Blei, Kucukelbir, and McAuliffe (2017) 

for a detailed description of the KL divergence.  

Then the ELBO is defined as 

 𝐸𝐿𝐵𝑂 = 𝐸𝑞(𝜑) log(𝑝(𝜑, 𝑑𝑎𝑡𝑎)) −𝐸𝑞(𝜑) log(𝑞(𝜑)). (3.8) 

By introducing the ELBO, we can simplify the problem by getting rid of the 

marginal distribution of the data 𝑝(𝑑𝑎𝑡𝑎), which is a constant that does not affect the 

minimization of the KL divergence. Eventually, the minimization of the KL divergence 

is equivalent to the maximization of the ELBO. Analytically, this problem can be written 

as 

 𝜑∗ = 𝑎𝑟𝑔 min
𝜑

𝐾𝐿[𝑞(𝜑)||𝑝(𝜑|𝑑𝑎𝑡𝑎)] = 𝑎𝑟𝑔 max
𝜑

𝐸𝐿𝐵𝑂. (3.9) 

With the MFVI, the joint distribution of parameters 𝑞(𝜑) can be represented as a 

factorized distribution of each parameter, as parameters are assumed to be independent 

of each other. In this case, the variational probabilities, as well as the ELBOs of the 

aforementioned Bayesian models, can be defined with closed forms. The maximization 

problem can then be solved with the block coordinate ascent algorithm. In what follows, 

we explain the variational inference for the three Bayesian models posed in the previous 

section in detail. In Section 3.3, we explain the corresponding block coordinate ascent 

algorithm for those models. 
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3.2.1. Variational inference of BMCL 

As mentioned, the variational inference finds the posterior distribution by 

approximating it with a factorized distribution. For BMCL, a family of factorized 

distributions 𝑄 is defined as 𝑄 = { 𝑞(𝜆|𝜑′): 𝜆 ∈ Λ, 𝜑′ ∈ Φ′} where 𝑞(𝜆|𝜑′) =

∏ 𝑞(𝜆𝑛|𝜑′
𝑛

)𝑛∈𝑁 . Additionally, 𝜑′
𝑛

∈ Φ′ are variational parameters that represent 𝑞(∙), 

and Φ′ denotes the set of variational parameters. This section specifies the distribution of 

each 𝜑′
𝑛

∈ Φ′ for BMCL. 

The formulation of BMCL has the simplest structure among the three models, 

with a one-level prior distribution for 𝛽𝑛 and 𝜃𝑛, respectively. Its posterior distribution is 

written as 

 
𝑝(𝛽𝑛, 𝜃𝑛|𝑑𝑎𝑡𝑎, 𝜉, Ω, c, d) =

𝑝(𝜆, 𝑦𝑛𝑡|𝑥𝑛𝑡 , 𝐶𝐹, 𝜑)

𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡, 𝑎, 𝜑)

= ∏
𝑝(𝜃𝑛|𝑐, d )𝑝(𝛽𝑛|𝜉, Ω ) ∏ 𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡, 𝛽𝑛, 𝐶𝐹, 𝜃𝑛)𝑇

𝑡=1

∫ 𝑝(𝜃𝑛|𝑐, d )𝑝(𝛽𝑛|𝜉, Ω ) ∏ 𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡 , 𝛽𝑛, 𝐶𝐹, 𝜃𝑛)𝑇
𝑡=1 𝑑 𝛽𝑛𝑑𝜃𝑛𝑑𝑐𝑑𝑑

𝑁

𝑛=1
 

(3.10) 

where 

𝜆 ∈ Λ and Λ is the set of taste parameters to be estimated: Λ = {𝛽1:𝑛, 𝜃1:𝑛}. 

𝜑 ∈ Φ and Φ is the set of modeling parameters: Φ = {𝜉, Ω, c, d}. 

The variation inference requires a proper section of densities to each variational 

parameter. For each variational factor 𝑞(𝜆𝑛|𝜑′
𝑛

), the optimal density is proportional to 

the exponentiated expectation of the logarithm of the joint density of 𝑦 and other 

variational parameters (Krueger et al., 2020). With this procedure, the corresponding 
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optimal density of each variational parameter in Φ′ is listed in Table 3.1; Φ′ =

{𝜇𝑛, Σ𝑛, 𝑐𝜃, 𝑑𝜗}. 

 

 

Table 3.1 List of variational parameters (BMCL). 

Parameters to 

be estimated 𝜆𝑛 

Modeling 

parameter 
Distribution 

Variational 

parameters 𝜑′
𝑛

 
Distribution 

𝛽1:𝑛 𝜉, Ω Gaussian(𝜉, Ω) 𝜇𝑛, Σ𝑛 Gaussian(𝜇𝑛, Σ𝑛) 

𝜃1:𝑛 𝑐, 𝑑 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐, 𝑑) 𝑐𝜃, 𝑑𝜗 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐𝜃, 𝑑𝜗) 

 

 

The variational joint density can then be written as 

 

𝑞(𝜆|𝜑′) = 𝑞(𝛽1:𝑛, 𝜃1:𝑛|𝜇𝑛, Σ𝑛, 𝑐𝜃, 𝑑𝜗) = ∏ 𝑞(𝛽𝑛|𝜇𝑛, Σ𝑛) ∏ 𝑞(𝜃𝑛|𝑐𝜃, 𝑑𝜗)

𝑁

𝑛=1

𝑁

𝑛=1

. (3.11) 

The ELBO of BMCL is 

 

𝐸𝐿𝐵𝑂𝐵 = ∑ 𝐸𝑞(𝜑𝐵) log(𝑞(𝜑𝐵)) +

𝑁

𝑛=1

∑ 𝐸𝑞(𝜑𝐵) log(𝑝(𝛽𝑛|𝜉, Ω ))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐵) log(𝑝(𝜃𝑛|𝑐, d ))

𝑁

𝑛=1

+ ∑ ∑ 𝐸𝑞(𝜑𝐵) log(𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛))

𝑇

𝑡=1

𝑁

𝑛=1

. 

(3.12) 

The first term of Equation 3.12 is the sum of the information entropy of 

𝑞(𝛽1:𝑛|𝜇𝑛, Σ𝑛) and 𝑞(𝜃1:𝑛|𝑐𝜃, 𝑑𝜗), which is 
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∑ 𝐸𝑞(𝜑𝐵) log(𝑞(𝜑𝐵)) = 𝐻(𝑞(𝛽1:𝑛|𝜇𝑛, Σ𝑛)) + 𝐻(𝑞(𝜃1:𝑛|𝑐𝜃, 𝑑𝜗))

𝑁

𝑛=1

=
1

2
∑ log((2𝜋𝑒)𝐾|Σ𝑛|) + log(2𝑑𝜗𝑒)

𝑁

𝑛=1

. 

(3.13) 

The second term of Equation 3.12 is the negative cross-entropy or relative 

entropy of 𝑝(𝛽𝑛|𝜉, Ω) relative to 𝑞(𝛽1:𝑛|𝜇𝑛, Σ𝑛), which can be written as −𝐻(𝑞, 𝑝) =

−𝐻(𝑝) − 𝐾𝐿(𝑞||𝑝). More specifically, 

 

∑ 𝐸𝑞(𝜑𝐵) log(𝑝(𝛽𝑛|𝜉, Ω ))

𝑁

𝑛=1

= −
𝑁

2
log ((2𝜋)𝐾|Ω|) −

1

2
𝑡𝑟{Ω−1 ∑(Σ𝑛 + (𝜇𝑛

𝑁

𝑛=1

− 𝜉)(𝜇𝑛 − 𝜉)𝑇)}. 

(3.14) 

Similar to the second term, the third term of Equation 3.12 is negative cross-

entropy of 𝑝(𝜃𝑛|𝑐, d ) relative to 𝑞(𝜃1:𝑛|𝑐𝜃, 𝑑𝜗), which is 

 

∑ 𝐸𝑞(𝜑𝐵) log(𝑝(𝜃𝑛|𝑐, d )) =
𝑑

𝑑𝜗
𝑒

−|𝑐−𝑐𝜃|
𝑑

𝑁

𝑛=1

+ log (
𝑑𝜗

𝑑
) − 1 −

1

𝑑𝜗

|𝑐 − 𝑐𝜃|

− log(2𝑑𝑒) 

(3.15) 

 

where 𝐵 in the subscript is short for BMCL. 

With the functional forms listed above, the estimation of the ELBO has a closed-

form except for the last term. Braun and McAuliffe (2010) provided the application of 
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first-order delta estimation of the expectation of the log-sum-exponential term, and we 

adopt this estimation in this study. The last term in Equation 3.12 is 

 

∑ ∑ 𝐸𝑞(𝜑𝐵𝐺) log (𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡𝑗 , 𝛽𝑛, 𝑎, 𝜃𝑛))

𝑇

𝑡=1

𝑁

𝑛=1

= ∑ ∑[[𝜇′
𝑛

𝑇
 𝜇𝜃][𝑥𝑛𝑡 𝑎]𝑦𝑛𝑡

𝑇

𝑡=1

𝑁

𝑛=1

− log (∑ 𝑒[𝑥𝑛𝑡𝑗
𝑇 𝑎𝑗][𝜇′

𝑛
𝑇

 𝜇𝜃]𝑇

𝐽

𝑗=1

) −
1

2
𝑡𝑟(𝑥𝑛𝑡

𝑇(𝑑𝑖𝑎𝑔(𝑧𝑛𝑡)

− 𝑧𝑛𝑡𝑧𝑛𝑡
𝑇)𝑥𝑛𝑡Σ𝑛)] 

(3.16) 

where  

 
𝑧𝑛𝑡 =

𝑒[𝑥𝑛𝑡 𝑎][𝜇′𝑛
𝑇  𝜇𝜃]𝑇

1𝑇𝑒[𝑥𝑛𝑡 𝑎][𝜇′
𝑛

𝑇
 𝜇𝜃]𝑇

 (3.17) 

where 𝜆∙ denotes the set of unknown parameters to find out for each model and 𝜑∙ 

denotes the set of variational parameters. In addition, 𝜇𝑛 = [𝜇′
𝑛

𝑇
 𝜇𝜃]𝑇; let 𝜇𝜃 be the 

mean of 𝜃𝑛 and 𝜇′𝑛 be the mean of 𝛽𝑛. 

3.2.2. Variational inference of HBMCL1 

Similar to BMCL, the joint distribution of variational parameters is represented 

by 𝑄 = { 𝑞(𝜆|𝜑′): 𝜆 ∈ Λ, 𝜑′ ∈ Φ′}, and the joint distribution can be factorized according 

to the basic assumption of the MFVI that the variational parameters are mutually 

independent. The posterior distribution of HBMCL1 is 
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𝑝(𝛽𝑛, 𝜃𝑛, 𝜉, Ω|𝑑𝑎𝑡𝑎, 𝑐, 𝑑) =

𝑝(𝜆𝐻1, 𝑦𝑛𝑡|𝑥𝑛𝑡, 𝐶𝐹, 𝜑𝐻1)

𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡, 𝑎)

=
𝑝(𝜉|𝜉0, Ω0)𝑝(Ω|𝜈, s) ∏ 𝑝(𝜃𝑛|𝑐, d )𝑁

𝑛=1 ∏ 𝑝(𝛽𝑛) ∏ 𝑝(𝑦𝑛𝑡)𝑇
𝑡=1

𝑁
𝑛=1

∫ 𝑝(𝜉)𝑝(Ω) ∏ ∫ 𝑝(𝜃𝑛|𝑐, d )𝑁
𝑛=1 ∏ ∫ 𝑝(𝛽𝑛) ∏ 𝑝(𝑦𝑛𝑡)𝑑𝛽𝑛𝑑𝜃𝑛𝑑𝜉𝑑Ω𝑇

𝑡=1
𝑁
𝑛=1

 

(3.18) 

 

where 

𝜆𝐻1 ∈ Λ𝐻1, and Λ𝐻1 is the set of parameters to be estimated: Λ𝐻1 = {𝛽1:𝑛, 𝜃1:𝑛, 𝜉, Ω}. 

𝜑𝐻1 ∈ Φ𝐻1, and Φ𝐻1 is the set of modeling parameters: Φ𝐻1 = {c, d, 𝜉0, Ω0, 𝜈, s}. 

The subscript in 𝜆𝐻1, 𝜑𝐻1, Λ𝐻1, and Φ𝐻1 is short for HBMCL-1. 

Additionally, 𝜑𝐻1
′ ∈ Φ𝐻1

′ are variational parameters, and Φ𝐻1
′ is the set of 

variational parameters. Further, Φ𝐻1
′ = {𝜇𝑛, Σ𝑛, 𝜇𝜉 , Σ𝜉 , 𝜔, Υ−1, 𝑐𝜃, 𝑑𝜗}. The 

corresponding optimal density of each variational parameter in Φ𝐻1
′ is listed in Table 

3.2.  

 

 

Table 3.2 List of variational parameters (HBMCL1). 

Parameters to 

be estimated 

𝜆𝐻1 

Modeling 

parameter 
Distribution 

Variational 

parameters 

𝜑𝐻1
′ 

Distribution 

𝛽1:𝑛 𝜉, Ω Gaussian(𝜉, Ω) 𝜇𝑛, Σ𝑛 Gaussian(𝜇𝑛, Σ𝑛) 

𝜉 𝜉0, Ω0 Gaussian(𝜉0, Ω0) 𝜇𝜉 , Σ𝜉 Gaussian(𝜇𝜉 , Σ𝜉) 

Ω 𝜈, s IW(𝜈, s) 𝜔, Υ IW(𝜔, Υ−1) 

𝜃1:𝑛 𝑐, 𝑑 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐, 𝑑) 𝑐𝜃, 𝑑𝜗 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐𝜃, 𝑑𝜗) 

 



 

49 

 

Then the joint density of the variational parameters listed above is 

 𝑞(𝜆𝐻1|𝜑𝐻1) = 𝑞(𝛽1:𝑛, 𝜃𝑛, 𝜉, Ω|𝜇𝜉 , Σ𝜉 , Υ, 𝜔, 𝜇𝑛, Σ𝑛, 𝑐𝜃, 𝑑𝜗)

= 𝑞(𝜉|𝜇𝜉 , Σ𝜉)𝑞(Ω|Υ−1, 𝜔) ∏ 𝑞(𝜃𝑛|𝑐𝜃, 𝑑𝜗)

𝑁

𝑛=1

∏ 𝑞(𝛽𝑛|𝜇𝑛, Σ𝑛)

𝑁

𝑛=1

. 

(3.19) 

With the joint density of both true posterior distribution 𝑝(𝛽𝑛, 𝜃𝑛, 𝜉, Ω|𝑑𝑎𝑡𝑎, 𝑐, 𝑑) 

and its approximation 𝑞(𝜆𝐻1|𝜑𝐻1) defined above, the ELBO of HBMCL1 can be 

expressed as the following: 

 

𝐸𝐿𝐵𝑂𝐻1 = ∑ 𝐸𝑞(𝜑𝐻1) log(𝑞(𝛽𝑛|𝜇𝑛, Σ𝑛)) + ∑ 𝐸𝑞(𝜑𝐻1) log(𝑞(𝜃𝑛|𝑐𝜃, 𝑑𝜗))

𝑁

𝑛=1

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻1) log (𝑞(𝜉|𝜇𝜉 , Σ𝜉))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻1) log(𝑞(Ω|Υ−1, 𝜔))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻1) log(𝑝(𝛽𝑛|𝜉, Ω )) + ∑ 𝐸𝑞(𝜑𝐻1) 𝑙𝑜𝑔(𝑝(𝜃𝑛|𝑐, 𝑑 ))

𝑁

𝑛=1

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻1) log(𝑝(𝜉|𝜉0, Ω0)) +

𝑁

𝑛=1

∑ 𝐸𝑞(𝜑𝐻1) log(𝑝(Ω|𝜈, s ))

𝑁

𝑛=1

+ ∑ ∑ 𝐸𝑞(𝜑𝐻1) log(𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛))

𝑇

𝑡=1

𝑁

𝑛=1

. 

(3.20) 

Each term of Equation 3.20 is specified as follows. 

The first two terms are similar to the first term of 𝐸𝐿𝐵𝑂𝐵:  



 

50 

 

 

∑ 𝐸𝑞(𝜑𝐻1) log(𝑞(𝜑𝐻1)) =  𝐻(𝑞(𝛽1:𝑛|𝜇𝑛, Σ𝑛)) + 𝐻(𝑞(𝜃1:𝑛|𝑐𝜃, 𝑑𝜗))

𝑁

𝑛=1

= 
1

2
∑ log((2𝜋𝑒)𝐾|Σ𝑛|) + log(2𝑑𝜗𝑒)

𝑁

𝑛=1

. 

(3.21) 

The second and third terms are each the sum of the information entropy of 𝑞(𝜉|𝜇𝜉 , Σ𝜉) 

and 𝑞(Ω|Υ−1, 𝜔), which is 

 

∑ 𝐸𝑞(𝜑𝐻1) log (𝑞(𝜉|𝜇𝜉 , Σ𝜉))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻1) log(𝑞(Ω|Υ−1, 𝜔)) = 𝐻(𝑞(𝜉|𝜇𝜉 , Σ𝜉))

𝑁

𝑛=1

+ 𝐻(𝑞(Ω|Υ−1, 𝜔))

=
1

2
𝑙𝑜𝑔((2𝜋𝑒)𝐾|Σ𝜉|) −

𝜔 − 𝐾 − 1

2
𝐷(𝜔, 𝛶) +

𝜔𝐾

2
 + 𝐴𝜔(𝛶) 

(3.22) 

where  

 

𝐷(𝜔, 𝛶) = 𝐾𝑙𝑜𝑔(2) + log(|𝛶|) + ∑ Ψ(
𝜔 − 𝑖

2
)

𝐾−1

𝑖=0

 (3.23) 

and  

 
𝐴𝜔(𝛶) =

𝜔𝐾

2
log(2) + log(Γ𝐾(𝜔)) + 

𝜔

2
log(|𝛶|). (3.24) 

The Ψ(∙) is the digamma function, and Γ(∙) is the multivariate gamma function 

where Γ𝐾(𝜔) = π𝐾(𝐾−1)/4 ∏ Γ((𝜔 − 𝑖)/2)𝐾−1
𝑘=0  and Γ(∙)denotes the standard gamma 

function. 
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The fourth and fifth terms are similar to the second and third terms of the 

𝐸𝐿𝐵𝑂𝐵: 

 

∑ 𝐸𝑞(𝜑𝐻1) log(𝑝(𝛽𝑛|𝜉, Ω )) + ∑ 𝐸𝑞(𝜑𝐻1) 𝑙𝑜𝑔(𝑝(𝜃𝑛|𝑐, 𝑑 ))

𝑁

𝑛=1

𝑁

𝑛=1

= −
𝑁

2
log((2𝜋)𝐾) +

𝑁

2
𝐷(𝜔, 𝛶) −

𝜔

2
𝑡𝑟 {𝛶−1𝑁Σ𝜉

+ 𝛶−1 ∑ (Σ𝑛 + (𝜇𝜉 − 𝜇𝑛)(𝜇𝜉 − 𝜇𝑛)
𝑇

)

𝑁

𝑛=1

} +
𝑑

𝑑𝜗
𝑒

−|𝑐−𝑐𝜃|
𝑑

+ log (
𝑑𝜗

𝑑
) − 1 −

1

𝑑𝜗

|𝑐 − 𝑐𝜃| − log(2𝑑𝑒). 

(3.25) 

The sixth and seventh terms are the sum of cross-entropy of 𝑝(𝜉|𝜉0, Ω0) to 𝑞(𝜉|𝜇𝜉 , Σ𝜉) 

and 𝑝(Ω|𝜈, s ) to 𝑞(Ω|Υ−1, 𝜔), which is 

 

∑ 𝐸𝑞(𝜑𝐻1) log(𝑝(𝜉|𝜉0, Ω0)) +

𝑁

𝑛=1

∑ 𝐸𝑞(𝜑𝐻1) log(𝑝(Ω|𝜈, s ))

𝑁

𝑛=1

= − 
1

2
log((2𝜋)𝐾|Ω0|)

−
1

2
𝑡𝑟{Ω0

−1 (Σ𝜉 + (𝜇𝜉 − 𝜉0)(𝜇𝜉 − 𝜉0)
𝑇

)} − 𝐴𝜈(𝑠−1)

+
𝜈 − 𝐾 − 1

2
𝐷(𝜔, 𝛶) +

𝜔

2
𝑡𝑟(𝑠−1𝛶). 

(3.26) 

The last term is the same as the last term in 𝐸𝐿𝐵𝑂𝐵. 

3.2.3. Variational inference of HBMCL2 

Similarly, to get the variational distributions for the HBMCL2, we first specify 

its posterior distribution, which takes the form of 
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𝑝(𝛽𝑛, 𝜃𝑛, 𝜉, Ω, 𝑙|𝑑𝑎𝑡𝑎) =

𝑝(𝜆𝐻2, 𝑦𝑛𝑡|𝑥𝑛𝑡, 𝐶𝐹, 𝜑𝐻2)

𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡, 𝑎)

=
∏ 𝑝(𝑙)𝐾

𝑘=1 𝑝(𝜉|𝜉0, Ω0)𝑝(Ω|𝜈, s) ∏ 𝑝(𝜃𝑛)𝑁
𝑛=1 ∏ 𝑝(𝛽𝑛) ∏ 𝑝(𝑦𝑛𝑡)𝑇

𝑡=1
𝑁
𝑛=1

∫ ∏ 𝑝(𝑙)𝐾
𝑘=1 ∫ 𝑝(𝜉)𝑝(Ω) ∏ ∫ 𝑝(𝛽) ∏ ∫ 𝑝(𝜃) ∏ 𝑝(𝑦)𝑑𝛽𝑑𝜃𝑑𝜉𝑑Ωd𝑙𝑇

𝑡=1
𝑁
𝑛=1

𝑁
𝑛=1

 

(3.27) 

where 

𝜆𝐻2 ∈ Λ𝐻2, and Λ𝐻2 is the set of parameters to be estimated. 

Λ𝐻2 = {𝛽1:𝑛, 𝜃1:𝑛, 𝜉, Ω, 𝑙1:𝐾}, 𝜑𝐻2 ∈ Φ𝐻2, and Φ𝐻2 is the set of modeling parameters. 

Φ𝐻2 = {c, d, 𝜉0, Ω0, 𝐺 = [𝐺1, 𝐺2 … 𝐺𝑘]𝑇 , 𝜈}. 

The subscript in 𝜆𝐻2, 𝜑𝐻2, Λ𝐻2, and Φ𝐻2 is short for HBMCL2. 

The joint distribution of variational parameters is represented by 𝑄 =

{ 𝑞(𝜆𝐻2|𝜑𝐻2
′): 𝜆𝐻2 ∈ Λ𝐻2, 𝜑𝐻2

′ ∈ Φ𝐻2
′}, where 𝜑𝐻2

′ ∈ Φ𝐻2
′ are variational parameters 

and Φ𝐻2
′ is the set of variational parameters. In this model, Φ𝐻2

′ =

{𝜇𝑛, Σ𝑛, 𝜇𝜉 , Σ𝜉 , ℎ𝑘, 𝑔 = [𝑔1, 𝑔2 … 𝑔𝑘]𝑇 , 𝜔, 𝛶, 𝑐𝜃, 𝑑𝜗}. The correspondence between 

variational parameters and modeling parameters are displayed in Table 3.3.  
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Table 3.3 List of variational parameters (HBMCL2). 

Parameters 

to be 

estimated 

𝜆𝐻1 

Modeling 

parameter 
Distribution 

Variational 

parameters 𝜑𝐻1
′ 

Distribution 

𝛽1:𝑛 𝜉, Ω Gaussian(𝜉, Ω) 𝜇𝑛, Σ𝑛 Gaussian(𝜇𝑛, Σ𝑛) 

𝜉 𝜉0, Ω0 Gaussian(𝜉0, Ω0) 𝜇𝜉 , Σ𝜉 Gaussian(𝜇𝜉 , Σ𝜉) 

𝑙1:𝐾 𝐺 𝐼𝐺 (0.5,
1

𝐺𝑘
2) 

ℎ𝑘 , 𝑔

= [𝑔1, 𝑔2 … 𝑔𝑘]𝑇 
𝐼𝐺(ℎ𝑘 , 𝑔𝑘) 

Ω 
𝜈, 𝐺 IW(𝜈 + 𝐾

− 1,2𝜈𝑑𝑖𝑎𝑔(𝐺)) 
𝜔, 𝛶 IW(𝜔, 𝛶) 

𝜃1:𝑛 𝑐, 𝑑 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐, 𝑑) 𝑐𝜃, 𝑑𝜗 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑐𝜃, 𝑑𝜗) 

 

 

With the mutual independence assumption of the MFVI, the variational 

distribution can be factorized as follows: 

 𝑞(𝜆𝐻2|𝜑𝐻2) = 𝑞(𝛽1:𝑛, 𝜃1:𝑛, 𝜉, Ω, G|𝜇𝑛, Σ𝑛, 𝑐𝜃, 𝑑𝜗 , 𝜇𝜉 , Σ𝜉 , 𝜔, ℎ𝑘 , 𝑔𝑘)

= 𝑞(𝜉|𝜇𝜉 , Σ𝜉)𝑞(Ω|𝜔, 𝛶) ∏ 𝑞(𝑙|ℎ𝑘, 𝑔𝑘)

𝑘+1

𝑘′=1

∏ 𝑞(𝛽𝑛|𝜇𝑛, Σ𝑛)

𝑁

𝑛=1

∏ 𝑞(𝜃𝑛|𝑐𝜃, 𝑑𝜗)

𝑁

𝑛=1

. 

(3.28) 

The ELBO for HBMCL2 can then be described as 
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𝐸𝐿𝐵𝑂𝐻2 = ∑ 𝐸𝑞(𝜑𝐻2) log (𝑞((𝛽𝑛|𝜇𝑛, 𝛴𝑛)))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log (𝑞((𝜃𝑛|𝑐𝜃, 𝑑𝜗)))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log (𝑞(𝜉|𝜇𝜉 , Σ𝜉))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log(𝑞(Ω|𝜔, 𝛶)) + ∑ 𝐸𝑞(𝜑𝐻2) log(𝑞(𝑙|ℎ𝑘 , 𝑔𝑘))

𝑘+1

𝑘=1

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log(𝑝(𝛽𝑛|𝜉0, Ω0 ))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log(𝑝(𝜃𝑛|𝑐, d ))

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log(𝑝(𝜉|𝜉, Ω)) + ∑ 𝐸𝑞(𝜑𝐻2) log (𝑝 (𝑙|
1
2 , 𝐺𝑘))

𝑘+1

𝑘′=1

𝑁

𝑛=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log(𝑝(Ω|𝜈, 𝐺 ))

𝑁

𝑛=1

+ ∑ ∑ 𝐸𝑞(𝜑𝐻2) log(𝑝(𝑦𝑛𝑡|𝑥𝑛𝑡, 𝛽𝑛, 𝑎, 𝜃𝑛))

𝑇

𝑡=1

𝑁

𝑛=1

. 

(3.29) 

 

Each term in Equation 3.29 is specified as follows. The first two terms are the 

same as the first two terms of 𝐸𝐿𝐵𝑂𝐻1. The third term is the entropy of the normal 

distribution with mean 𝜇𝜉 and variance Σ𝜉, which is 
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∑ 𝐸𝑞(𝜑𝐻2) log (𝑞(𝜉|𝜇𝜉 , Σ𝜉)) =  
1

2
𝑙𝑜𝑔((2𝜋𝑒)𝐾|Σ𝜉|)

𝑁

𝑛=1

. (3.30) 

The fourth and fifth terms are  

 

∑ 𝐸𝑞(𝜑𝐻2) log(𝑞(Ω|𝜔, g)) + ∑ 𝐸𝑞(𝜑𝐻2) log(𝑞(𝑙|ℎ𝑘, 𝑔𝑘))

𝑘+1

𝑘=1

𝑁

𝑛=1

= − 
𝜔 − 𝐾 − 1

2
𝐷(𝜔, 𝛶) +

𝜔𝐾

2
+ 𝐴𝜔(𝛶)

+ ∑ log (𝑔𝑘

𝐾

𝑘=1

) + K(ℎ𝑘 + log(Γ(ℎ𝑘)) − (ℎ𝑘 + 1)Ψ(ℎ𝑘)). 

(3.31) 

The sixth, seventh, and eighth terms are the same as the fifth, sixth, and seventh 

terms of 𝐸𝐿𝐵𝑂𝐻1. The ninth and tenth terms are the negative relative entropies of 

𝑝 (𝑙|
1

2
, 𝐺𝑘) to 𝑞(𝑙|ℎ𝑘, 𝑔𝑘) and 𝑝(Ω|𝜈, 𝐺 ) to 𝑞(Ω|𝜔, 𝛶). Explicitly, 

 

∑ 𝐸𝑞(𝜑𝐻2) log (𝑝 (𝑙|
1
2 , 𝐺𝑘))

𝑘+1

𝑘=1

+ ∑ 𝐸𝑞(𝜑𝐻2) log(𝑝(Ω|𝜈, 𝐺 ))

𝑁

𝑛=1

=

=
𝜈 − 𝐾 − 1

2
𝐷(𝜔, 𝛶) − log(𝛤𝐾(𝜈 + 𝐾 + 1))

− ∑ (𝜈𝜔𝛶𝑘𝑘
−1 +

1

𝐺𝑘
2)

ℎ𝑘

𝑔𝑘

𝐾

𝑘=1

−
𝜈 + 𝐾 + 2

2
∑ (log(𝑔𝑘) − Ψ(ℎ𝑘))

𝐾

𝑘=1

+
(𝜈 + 𝐾 − 1)𝐾

2
log (𝜈)

− ∑ log(𝐺𝑘)

𝐾

𝑘=1

− Klog (Γ (
1

2
)) 

(3.32) 

where 𝛶𝑘𝑘 is the 𝑘th diagonal term in 𝛶. 
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3.3. Block coordinate ascent algorithm 

With the MFVI formulation of the ELBO as in Equation 3.8 of Section 3.2, the 

variational parameters in BMCL, HBMCL1, and HBMCL2 can be solved by the block 

coordinate ascent algorithm, which is described in detail below. It goes through 

iterations. In each iteration of the algorithm, parameter estimations are updated through 

the maximization of the ELBO with respect to each parameter while keeping other 

variables fixed. For example, one iteration of the BMCL is the following: We first 

update the 𝜇1:𝑛, using Σ1:𝑛 𝜉, 𝑐𝜃, 𝑑𝜃 and Ω from the last iteration, and then we update the 

Σ1:𝑛, using the updated 𝜇1:𝑛 and 𝜉, 𝑐𝜃, 𝑑𝜃, Ω from the last iteration. We continue the 

procedure for each variable until all of them get updated. Then the algorithm moves on 

to the next iteration.  

According to Braun and McAuliffe (2010), the concavity of the ELBO simplifies 

the maximization process of each parameter. For BMCL, the ELBO shows concavity on 

𝜉, 𝑐𝜃, 𝑑𝜃 and Ω−1; the updates of 𝜉, 𝑐𝜃, 𝑑𝜃 and Ω are thus derived using the first-order 

condition of this unconstrained convex optimization problem with closed forms. 

Similarly, for HBMCL1 and HBMCL2, the updates for 𝜇𝜉 , Σ𝜉 , 𝜔, Υ, 𝑐𝜃, 𝑑𝜃, 𝑔 are also 

derived from the first-order conditions in which the nonnegativity of Σ𝜉 is guaranteed 

(Braun and McAuliffe, 2010). There is no closed-form solution for 𝜇𝑛 and Σ𝑛; thus, their 

updates are derived directly from 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐿𝐵𝑂 by the use of the Broyden-Fletcher-

Goldfarb-Shanno optimization solver from Python SciPy Library (Jones et al., 2001).  
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Figure 3.4 Block coordinate algorithm. 
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To evaluate the convergence of this algorithm, the following criterion is used. 

First, we define a vector that contains the parameters of interest for each model. Then we 

evaluate its difference between two consecutive iterations. When this difference is 

negligible, the convergence is considered to have been reached, and the algorithm will 

stop.  

Specifically, for BMCL, HBMCL1, and HBMCL2, we define 𝜗 =

[𝜉𝑇 , 𝑑𝑖𝑎𝑔(Ω), 𝑐𝜃, 𝑑𝜗]𝑇, 𝜗 = [𝜇𝜉
𝑇 , 𝑑𝑖𝑎𝑔(Σ𝜉), 𝑑𝑖𝑎𝑔(Υ), 𝑐𝜃, 𝑑𝜗]𝑇 and 𝜗 =

[𝜇𝜉
𝑇 , 𝑑𝑖𝑎𝑔(Σ𝜉), 𝑑𝑖𝑎𝑔(Υ), g𝑇 , 𝑐𝜃, 𝑑𝜗]𝑇 , respectively, with each element being the 

average over the last five iterations. In addition, 𝜗𝑖
𝜏 denotes the 𝑖th element at iteration 𝜏. 

The algorithm stops when 𝑎𝑟𝑔𝑚𝑎𝑥𝑖
|𝜗𝑖

𝜏+1−𝜗𝑖
𝜏|

𝜗𝑖
𝜏 < 0.001. 

3.4. Performance evaluation  

In the simulation study documented in Section 4, we evaluated the Bayesian 

models from the perspective of parameter estimation and prediction precision. 

The model performance in the parameter estimation is assessed by the root mean 

squared error (RMSE) for each interested parameter. The RMSE is defined as follows: 

 

𝑅𝑀𝑆𝐸(𝜗) = √
1

𝑀
(�̂� − 𝜗)𝑇(�̂� − 𝜗) (3.33) 

where �̂� is the estimates of 𝜗 and 𝑀 is the total number of scalar parameters in 𝜗. In 

HBMCL1 and HBMCL2, the estimation accuracy of 𝜇1:𝑛 and Σ1:𝑛 is evaluated through 

their mean �̅� =
1

𝑁
∑ 𝜇𝑛

𝑁
𝑛=1  and 𝑐𝑜𝑣(𝜇1:𝑛) =

1

𝑁
∑ (𝜇𝑛 − �̅�𝑁

𝑛=1 )(𝜇𝑛 − �̅�)𝑇. 
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The prediction error is measured by mean and maximum error, which are written 

as 

 
𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 =

1

|𝐽|
∑ |𝑃𝑡𝑟𝑢𝑒(𝑦𝑛𝑡

𝑡𝑒𝑠𝑡 = 𝑗|𝑋𝑛𝑡
𝑡𝑒𝑠𝑡)

𝑗∈𝐽

− 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑦𝑛�̂� = 𝑗|𝑋𝑛𝑡
𝑡𝑒𝑠𝑡, 𝑦𝑛𝑡

𝑡𝑒𝑠𝑡)| 

(3.34) 

and  

 𝑚𝑎𝑥 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥𝑗∈𝐽 (|𝑃𝑡𝑟𝑢𝑒(𝑦𝑛𝑡
𝑡𝑒𝑠𝑡 = 𝑗|𝑋𝑛𝑡

𝑡𝑒𝑠𝑡)

− 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑦𝑛�̂� = 𝑗|𝑋𝑛𝑡
𝑡𝑒𝑠𝑡, 𝑦𝑛𝑡

𝑡𝑒𝑠𝑡)|) 

(3.35) 

where 𝑃𝑡𝑟𝑢𝑒(∙) denotes the true probability of individual 𝑛 selecting the 𝑗th choice in 

situation 𝑡, while 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(∙) denotes the corresponding predicted probability. The 

calculation for each posterior predicted probability is through the MC integration with 

1,000,000 draws. According to Braun and McAuliffe (2010), when the number of draws 

is sufficiently large, the predicted probability from the sample would converge to the 

true value. Thus, with the MC integration, it is claimed that the difference between the 

predicted probability and the true probability would be only from the model formulation 

and the mean field variational inference procedure; no error results from the calculation 

of the predicted probability. 

In Section 6, the proposed models are applied to real data. For model selection 

and evaluation, a 10-fold cross-validation procedure was applied to each part of the data 

to compare the proposed Bayesian models and other machine learning models such as 

the support vector machine and random forests. The main idea behind cross-validation is 

to split the dataset into different subsets in which the training sample and the testing 
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sample are drawn independently. With multiple training and testing processes, the model 

that outperforms others in regards to the selected assessment method is then selected as 

the best model. The creation of cross-validation dates back to the 1930s, to noticing the 

problem of training and testing models using the same dataset, which would cause over-

optimistic results. A detailed introduction of the cross-validation procedure is given by 

Arlot and Celisse (2010). The accuracy assessment method used in the cross-validation 

is 1 − 𝑚𝑎𝑥 𝑒𝑟𝑟𝑜𝑟. 

 



 

61 

 

4. TWO CASE STUDIES ON A THREE-PATH NETWORK 

 

4.1. Simulation setting of Test 1 

Two simulation tests are included in this section and Section 4.2 for a thorough 

examination of the performance of the proposed models using a three-path network, as 

shown in Figure 4.1. In this network, Node 0 is the origin, and Node 6 is the destination. 

The numbers next to the links are link distances, which are also displayed in Table 4.1. 

The CF and the path size are calculated using Equation 3.2 and 3.4 from Section 3. To 

simulate data for this test, three attributes are considered in this case study, which are the 

travel time, the toll indicator, and the highway indicator.  

 The travel time of the three path alternatives, which are continuous variables, are 

generated from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(120,180), 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(130,200), and 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(100,160), 

respectively. The toll indicator and the highway indicator are binary variables and are 

randomly generated. We set 𝑐 = −1.5 and 𝑑 = −0.5 in each formulation. For BMCL, 

the 𝛽𝑛s are generated from multivariate Gaussian distribution 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜉, Ω), where 

𝜉 = 𝑑𝑖𝑎𝑔(𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦3) and Ω =
1

2
𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦3. For HBMCL1 and HBMCL2, 𝜉 =

𝑑𝑖𝑎𝑔(𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦3) is set the same as BMCL, while Ω~𝐼𝑊3(𝜈, s−1), 𝜈 = 5 and s−1 =

𝑖𝑛𝑣[(𝜈 + |𝑁|) ∙ 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦3] for HBMCL1 and Ω~𝐼𝑊3(𝜈 + 𝐾, 2𝜈𝑑𝑖𝑎𝑔(𝑔)), 𝑔 =

3

2
𝑑𝑖𝑎𝑔(𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦3) for HBMCL2.  
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Figure 4.1 Example network. 

 

 

Table 4.1 Example Summary. 

Path 1 

0-1-2-4-6 

Link distance 

𝑙01=1.8 𝑙12=1.2 𝑙24=0.8 𝑙46=1.8 

Commonality factor: -0.49643688632 

Path size: 0.67857142857 𝑙𝑛(𝑃𝑆) =−0.38776553101 

Path 2 

0-1-3-4-6 

Link distance 

𝑙01=1.8 𝑙13=0.8 𝑙34=1.2 𝑙46=1.8 

Commonality factor: -0.49643688632 

Path size: 0.67857142857 𝑙𝑛(𝑃𝑆) =−0.38776553101 

Path 3 

0-5-6 

Link distance 

𝑙05=2.6 𝑙56=3   

Commonality factor: 0 

Path size: 1 𝑙𝑛(𝑃𝑆) = 0 
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The error is generated from 𝐺𝑢𝑚𝑏𝑒𝑙(0,1); |𝑁| = 500 and |𝑇| = 50 are used. 

When simulating the true utility adjustment factor, a fixed value of -0.435 and a group of 

stochastic values that are drawn from 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(−0.435,0.5) are used.  

4.2. Results of Test 1 

This test aims at exploring the performance of the proposed mixed C-logit model 

with the utility function displayed in Equation 3.3, with different Bayesian formulations. 

Three models are compared in this test, namely, the proposed mixed C-logit model 

(MCL), which has a random coefficient for the CF term; the mixed path size logit model 

(MPSL), which only uses a fixed coefficient for the path size term; and the original 

mixed logit model (MXL), which contains no utility adjustment factor. All mixed 

models are respectively formulated with the three proposed Bayesian structures, which 

leads to a total of nine mixed models.  

By solving the MFVI solution provided in Section 3, 20 replications are 

conducted for each model. The RMSE of the parameters of interest (𝜉, Ω, 𝑐, 𝑑, 𝛽1:𝑛) and 

the mean error and max error in predicting probabilities of each route are displayed in 

Table 4.2, with mean and variances (in parentheses) over the 20 replications. The 

corresponding prediction error of the classic multinomial logit is also included for 

comparison.  

The RMSE represents the accuracy of parameter estimation. A smaller RMSE 

indicates a slight deviation from the true parameter, and thus the corresponding model 

provides a more precise parameter prediction. In general, HBMCL2 outperforms 

HBMCL1 and BMCL in parameter estimation. The RMSE of ξ and Ω reduces 
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significantly with the increase of formulation complexity. For example, the RMSE of ξ 

with HBMCL2 is approximately 0.08, which is approximately the same as the HBMCL1 

and 0.04 smaller than that of BMCL. The RMSE of Ω indicates a similar performance of 

HBMCL2 and HBMCL1; both are superior to the BMCL. The RMSEs of 𝑐, 𝑑, and 𝛽1:𝑛 

among HBMCL2, HBMCL1, and BMCL are close to each other.  

Besides, a smaller variance of the RMSE reflects a more concentrated estimation 

value of a parameter. It is observed that HBMCL1 provides the most concentrated 

estimations, followed closely by HBMCL2 and then by BMCL. Take ξ as an example. 

The variance of ξ’s RMSE for most of the models with HBMCL2 and HBMCL1 is 

smaller than that for the models with the BMCL.  

Another trend that is clear in the results comes from the comparison between the 

MXL, MPSL, and the proposed MCL. It is noted that in most cases, the MCL provides 

more reliable parameter estimation than the MPSL, and both outperform the MXL. 

The prediction error of each model is one of the key concerns for model 

selection. Obviously, the mixed models with all Bayesian formulations outperform the 

classic multinomial logit model, with evidence in both mean and maximum prediction 

errors. The smallest mean error is given by HBMCL1, closely followed by HBMCL2. 

Since the BMCL is inferior to these two formulations in parameter estimation, a higher 

mean and maximum predicting error are expected. It is shown, by comparing each mixed 

model within the same formulation, that the proposed mixed C-logit model is superior to 

other mixed models. For example, in HBMCL1, the mean prediction errors of the MCL 

are approximately 0.003 smaller than that of the MPSL and 0.013 smaller than that of 
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MXL; and the MCL mean errors are 0.004 and 0.012 smaller than that of the MPSL and 

that of the MXL in HBMCL2. The maximum prediction error displays a similar trend as 

the mean prediction errors, with MCL in the HBMCL1 and HBMCL2 outperforming 

MCL in BMCL and the MCL outperforming other models with the same formulation.  

To summarize, using a random parameter for the utility adjustment factor 

achieves better performance in parameter estimation and prediction accuracy, as shown 

by the outperformance of the MCL over the MPSL, MXL, and the MNL. Additional 

structures with hyperparameters strengthen model performance, which is indicated by 

the outperformance of HBMCL2 and HBMCL1 over BMCL.    

 

 

 

Figure 4.2 Computation time of each model. 
(A) MCL using data simulated. (B) MPSL using the same data as with (A). (C) MXL using the 

same data as with (A).  

 

 

 

The other concern in model comparison is the computational efficiency, usually 

evaluated by the total computation time, which is shown in Figure 4.2 by the number 

displayed on the top end of each shaded bar.  
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It is shown in Figure 4.2 (A) and (B) that the computation time of the three 

formulations all notably decreased when the coefficient of the utility adjustment factor 

changes from a random value with a Laplace distribution to a fixed value. Specifically, 

when an additional Bayesian structure associated with this random coefficient is applied 

to each formulation, the computation time of each model ends with the longest time, 

636.32, of HBMCL-2 and the shortest time, 499.96, of BMCL. The computation time of 

HBMCL1 falls in the middle, with a value of 614.50. 

Through comparison of Figure 4.2 (B) and (C), it is found that an additional 

attribute (the path size) with a fixed coefficient in the utility function does not 

necessarily result in a longer computation time. For example, in BMCL, without the 

utility adjustment factor, the computation time is 340.46 and reduces to 261.14 when the 

path size attribute was added to the model. In contrast, increases in the computation time 

have been observed in both HBMCL1 and HBMCL2 when the path size term is added to 

the model.   

The error bars in each plot show the standard deviation of the computation time 

in 20 replications, in which shorter error bars reflect higher model stability. It can be 

seen, from Figure 4.2 (A) and (B), that the HBMCL2 has the smallest error bar, followed 

closely by the HBMCL1, and that the BMCL has the largest error bar. This indicates that 

even though the random coefficient of the utility adjustment factor costs increased the 

computation time, it helps in the stability of model performance. Similarly, in Figure 4.2 

(B) and (C), the HBMCL2 is the most stable Bayesian formulation.  
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Figure 4.3 Number of iterations of each model. 
(A) MCL using data simulated. (B) MPSL using the same data as with (A). (C) MXL using the 

same data as with (A).  

 

 

The number of iterations of each model is displayed in Figure 4.3. Overall, the 

HBMCL2 requires the greatest number of iterations to converge, which conforms to its 

long computation time shown in Figure 4.2. Generally speaking, adding a utility 

adjustment factor with either a fixed coefficient or a random coefficient does not affect 

the number of iterations, which is observed in the similarity between Figure 4.3 (A) and 

(B). From the perspective of stability, which is shown by the error bars in Figure 4.3, 

both HBMCL1 and HBMCL2 are more stable than is BMCL. Specifically, HBMCL-2 

requires approximately 14 iterations, and BMCL requires five to nine iterations to 

converge with each formulation in each setting. 
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Table 4.2 RMSE of parameters and prediction errors, Test 1. 

Formulation Model RMSE (ξ) RMSE (Ω) RMSE (c) RMSE (d) RMSE (β) 
Max predicted 

error 

Mean predicted 

error 

BMCL 

MCL 
0.1065 

(0.0279) 

0.1224 

(0.0009) 

0.003 

(0.0293) 

0.1066 

(0.005) 

0.3364 

(0.0101) 

0.0126 

(0.0015) 
0.0077 (0.001) 

MPSL 
0.1097 

(0.0275) 

0.1242 

(0.0005) 
    

0.3402 

(0.0095) 

0.0166 

(0.0015) 
0.0111 (0.001) 

MXL 
0.1454 

(0.0256) 

0.1259 

(0.0003) 
    

0.356 

(0.0088) 

0.0262 

(0.0024) 

0.0174 

(0.0016) 

HBMCL1  

MCL 
0.079 

(0.0148) 

0.0823 

(0.0191) 

0.0044 

(0.0223) 

0.1113 

(0.0046) 

0.3353 

(0.0043) 

0.0122 

(0.0011) 

0.0084 

(0.0007) 

MPSL 
0.0843 

(0.0156) 

0.0755 

(0.0217) 
    

0.3387 

(0.0045) 
0.016 (0.0014) 

0.0107 

(0.0009) 

MXL 
0.1276 

(0.0286) 

0.0948 

(0.9231) 
    

0.3766 

(0.0683) 

0.0243 

(0.0019) 

0.0162 

(0.0013) 

*Variance in parenthesis. 
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Table 4.2 Continued. 

HBMCL2 

MCL 
0.0766 

(0.0222) 

0.0828 

(0.0269) 

0.0012 

(0.0093) 

0.1237 

(0.0069) 

0.3788 

(0.0169) 
0.0123 (0.003) 0.0082 (0.002) 

MPSL 
0.0828 

(0.0211) 

0.0794 

(0.0274) 
    

0.386 

(0.0169) 

0.0157 

(0.0038) 

0.0105 

(0.0025) 

MXL 
0.1173 

(0.0214) 

0.1513 

(0.0171) 
    

0.402 

(0.0168) 

0.0265 

(0.0065) 

0.0176 

(0.0043) 

MNL           0.0649 (0.013) 
0.0974 

(0.0196) 

*Variance in parenthesis. 
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Table 4.3 RMSE of parameters and prediction errors, Test 2. 

Model RMSE (𝜉) RMSE (Ω) RMSE (𝑐) RMSE (𝑑) Max error 

BMCL Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

N=10 0.3078 0.0100 0.4765 0.0776 0.3374 0.0022 0.1213 0.0024 0.0392 0.0003 

N=50 0.1816 0.0041 0.1690 0.0066 0.0623 0.0003 0.1179 0.0026 0.0206 0.0000 

N=100 0.1318 0.0026 0.1537 0.0032 0.0043 0.0000 0.1180 0.0001 0.0185 0.0001 

N=200 0.1219 0.0004 0.1364 0.0050 0.0026 0.0000 0.1175 0.0001 0.0174 0.0000 

N=500 0.1029 0.0001 0.1089 0.0018 0.0015 0.0000 0.1187 0.0001 0.0171 0.0000 

HBMCL1   

N=10 0.2989 0.0089 0.4029 0.0532 0.0874 0.0003 0.1071 0.0012 0.0364 0.0001 

N=50 0.1711 0.0054 0.1630 0.0037 0.0244 0.0000 0.1237 0.0004 0.0189 0.0001 

N=100 0.1310 0.0028 0.1235 0.0040 0.0194 0.0000 0.1226 0.0001 0.0169 0.0000 

N=200 0.1239 0.0005 0.1156 0.0010 0.0078 0.0000 0.1246 0.0001 0.0159 0.0000 

N=500 0.0914 0.0002 0.0739 0.0003 0.0082 0.0000 0.1236 0.0000 0.0157 0.0000 
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Table 4.3 Continued. 

HBMCL2   

N = 10 0.3088 0.0097 0.4933 0.0501 0.1843 0.0009 0.1308 0.0038 0.0364 0.0004 

N = 50 0.1698 0.0050 0.1722 0.0064 0.0340 0.0000 0.1039 0.0005 0.0225 0.0001 

N = 100 0.1130 0.0009 0.1220 0.0024 0.0335 0.0000 0.1024 0.0000 0.0164 0.0000 

N = 200 0.1170 0.0003 0.1033 0.0022 0.0113 0.0000 0.1127 0.0001 0.0159 0.0000 

N = 500 0.1001 0.0001 0.0601 0.0006 0.0039 0.0000 0.1381 0.0001 0.0156 0.0000 

 

 

Table 4.4 Max errors of the C-logit. 

N 10 50 100 200 500 

Mean 0.0968 0.0960 0.1086 0.0912 0.0959 

Variance 0.0009 0.0007 0.0001 0.0001 0.0000 
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4.3. Simulation setting of Test 2 

The second simulation study is designed to test the performance of the proposed 

model with different numbers of individuals. In this test, 𝑛 = 10, 50, 100, 200, and 500 

are used. The network used for this test is the same as in Test 1. Three attributes are 

considered in this test. The first variable is the travel time, which is continuous and is 

generated from Lognormal (4.72,0.12), Lognormal (4.75,0.08), and Lognormal 

(4.68,0.08), respectively for each alternative. The second variable is the toll indicator, 

which is a random binary variable. The third variable is the highway indicator, and it is a 

categorical variable with values [0,1,0] for each alternative. Other settings are the same 

as in Test 1. The simulation results displayed in the following subsection are 

summarized from 10 replications for each case.  

4.4. Results of Test 2 

The RMSEs for variables to the interest are displayed in Table 4.2. A clear trend 

that can be observed is that both the precision of the parameter estimation and the 

prediction accuracy increased with the growth of the number of individuals. The RMSE 

of 𝜉 and Ω drastically reduces when 𝑁 increases from 10 to 100. Additionally, it 

becomes relatively stable when 𝑁 is over 100. The RMSE of 𝑐 and 𝑑 is small, compared 

to the RMSE of 𝜉 and Ω. Similarly, the maximum error of each model becomes stable 

when 𝑁 is over 200.  
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Figure 4.4 Number of iterations and computation time.  
(A) Number of iterations of each model with various numbers of N. (B) Computation time of 

each model with various numbers of N. 
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It is shown by the maximum prediction error that the HBMCL1 and the 

HBMCL2 perform equally well and that both outperform the BMCL. As a comparison, 

the prediction errors of the classic C-logit model with a fixed parameter for the CF term 

are displayed in Table 4.3 with various values of N. The precision of the proposed 

models is notably superior to that of the C-logit.  

The number of iterations until convergence as well as the computation time of 

each model is displayed in Figure 4.4 (A) and (B). Model computation time is heavily 

affected by the number of iterations. BMCL generally needs the greatest number of 

iterations to converge and thus has the longest computation time. The number of 

iterations until convergence is not heavily affected by the number of individuals, but 

when N is large, the algorithm is more stable. The computation time is proportional to 

the number of individuals for all three models.  

It is concluded from the second simulation test that additional structures on the 

variance of the taste parameters contribute to the prediction accuracy and computation 

time, as shown by the outperformance of HBMCL1 and HBMCL2. With more 

hyperparameters included, the initial guesses of HBMCL1 and HBMCL2 are closer to 

the global optimal solution than is the BMCL, which notably reduced the number of 

iterations for the block coordinate algorithm. Moreover, the increase in the number of 

individuals enhances model reliability and stability. When N is less than 200, diverting 

cases are observed for each model, while most of the cases end with a converged 

solution when N is over 200.  
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To summarize, two simulation tests were conducted via a three-path network, 

which is documented in Section 4.1 and 4.2. In the first simulation test, Test 1, it is 

found that the proposed mixed C-logit model had better performance in prediction 

precision and coefficient estimation compared to the mixed path size logit model with a 

fixed coefficient for the path size term and the classical mixed logit model without a 

utility adjustment factor. The second finding in Test 1 is that in the proposed Bayesian 

formulations for the mixed C-logit model, HBMCL2 slightly outperforms HBMCL1, 

and both outperform BMCL, yet they have a longer computation time. In Test 2, it is 

found that when the number of individuals in the model exceeds 200, the convergence of 

all three Bayesian models becomes stable.   
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5. DATA PROCESSING 

 

5.1. Overview of data processing 

The GPS data utilized in this study is from INRIX, which was collected from 

January to April, 2016, in the Dallas metropolitan area in Texas. Figure 5.1 displays an 

overview of this dataset. 

 

 

Figure 5.1 GPS dataset overview. 
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Figure 5.2 Flow chart of the data processing procedure. 

 

 

The data processing procedure is shown in Figure 5.2 above. The first step of 

data processing is the identification of origins and destinations using the density-based 

spatial clustering of application with noise (DBSCAN) method based on the longitudes 

and the latitudes. This spatial data clustering algorithm provides the total number of 

clusters and how many data points fall in each cluster and thus makes it possible to 

capture the most frequently traveled O-D pairs. The second reason to use this clustering 

procedure is that the recorded start points and end points of trips that start from the same 

location are usually close to but do not overlap with each other. In this case, direct 

extraction of O-D pairs using recorded longitudes and latitudes would end with 

incomplete trip selection.  
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After applying the DBSCAN method for origins, the origin where most trips 

started is selected. The associated destinations of the selected origins are shown in 

Figure 5.3. 

 

 

 

Figure 5.3 Illustration of destinations. 

 

 

Next, this clustering procedure is applied to the selected destinations. The final 

results yield two O-D pairs for this study, which are shown in Figure 5.4. The selected 

O-D pair represent the two scenarios of this study. In the first scenario, the decision-

makers are faced with alternatives that contain a toll road. In addition to other factors, 

their decisions reflect their willingness to use the toll road to save their travel time and 
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their willingness to pay for the time savings. In the second scenario, decision-makers 

only need to select among freeways, informed by the route characteristics such as the 

travel time. 

5.2. Difficulty in the data processing 

The main difficulty in data processing comes from trajectory cleaning and map-

matching. With the O-D pair selected, the corresponding subnetwork that only contains 

relevant and realistic alternatives with respect to this O-D pair can thus be constructed, 

using common choice set generation algorithms. In this study, we applied the k shortest 

travel time algorithm. Specifically, for each interested O-D pair, the subnetwork is 

determined by applying the k shortest travel time algorithm on the whole network, with 

the parameter 𝑘 being sufficiently large to cover all possible alternatives that drivers 

may use. However, when 𝑘 is very large, the subnetworks will resemble the ones 

displayed in Figure 5.5. The over-detailed network would significantly reduce the 

computational efficiency of the map-matching process and would result in imprecise 

capture of reasonable trajectories.  
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Figure 5.4 Selected O-D pairs.  

 

 

 

Figure 5.5 Original subnetworks of selected O-D pairs. 
(A) Subnetwork of Scenario 1, before reduction. (B) Subnetwork of Scenario 2, before 

reduction.  
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Moreover, the extracted GPS trajectories of selected O-D pairs contain sub-trips. 

Three types of sub-trips are identified in the dataset, which is displayed in Figure 5.6. 

The first type of sub-trip contains very short detours that are negligible compared to the 

whole trip, which is named “no detour.” The second type of sub-trips has an extended 

detour, but the driver has returned to the same link before the detour. These two types of 

sub-trips affect the travel time only by the detours, such that the trajectory cleaning 

process is straightforward, with GPS points out of the main trip removed. The cleaning 

process of the third type of sub-trips requires additional procedures, where the sub-trip 

starts and ends at different links of the main trip. As a remedy, we first remove the sub-

trips’ trajectory points and then fill in the gap on the main trip left in the first step by 

GPS points on the smallest cost path in the gap.  

 

 

 

Figure 5.6 Illustration of sub-trip type. 
(A) Type 1 sub-trip: no detour. (B) Type 2 sub-trip: detour and return to the main trip. (C) Type 

3 sub-trip: detour and use of a different route. 
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To this end, the first goal of this study is to find a map-matching method to 

identify the used trajectory and address the sub-trip issue of this dataset. The following 

section introduces the map-matching process used in this dissertation. 

5.3. The map-matching process 

In this section, we introduce the map-matching process that can address the sub-

trip issue.  

There are two inputs for the map-matching process: the extracted trajectory GPS 

points and the reduced network. Since the generated k shortest travel time path should 

cover all possible routes that have been used, the number k would be huge if applied to 

the original network shown in Figure 5.5. The reduced subnetworks are shown in Figure 

5.7 (A) and (B). Node 1 is the origin of both subnetworks, and Node 34 is the destination 

of Subnetwork 1, while Node 17 is the destination of Subnetwork 2. Each link in the 

reduced subnetworks contains one or multiple segments in the original network, and 

therefore, the link attributes are the averages of the included segments weighted by their 

length.    
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Figure 5.7 Reduced subnetworks. 
(A) Subnetwork 1 after reduction. (B) Subnetwork 2 after reduction.  

 

 

Applying the NetworkX Python library, the k shortest time paths are derived 

using the travel time as the weight. It is worth pointing out that the number k should be 

large enough to cover all GPS trajectory points to avoid wrong matches. In this study, 

for Scenario 1, k is set to 300, with consideration of the combination of interstate and 

state highways, local highways, and toll roads. For Scenario 2, k is set to 75. With the 

proper least time path generated, the GPS trajectory points are then matched to those 

paths. The paths identified for each trajectory is determined using the steps as follows: 

1. Each GPS point of a trip is assigned a distance to all alternative routes. 

2. The route with the shortest cumulative distance for a trip is identified as the path 

used for this trip.  
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3. After the used path has been determined for the trip, it is checked whether there 

is any GPS point that has a distance of over 60 feet. Such points would then be 

labeled as sub-trips. 

The threshold is determined to be 60 feet based on the maximum number of lanes. The 

maximum number of lanes among all segments is five in this study, and we consider 12 

feet for each lane, which gives the threshold of 60. The flow chart of this process is 

displayed in Figure 5.8. 

 

 

 

Figure 5.8 Flow chart of the map-matching process. 

 

 

This procedure labeled the trajectories that belong to sub-trips. The travel time of 

each trip that contains sub-trips will be adjusted by removing the travel time during the 
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sub-trip. However, simply removing the time on the sub-trip results in imprecise travel 

times for trips that contain a Type 3 sub-trip. As the driver used a different link to return 

to the main trip, there are missed travel distances and time intervals between the start 

point and the end point of the sub-trip.  

In this case, after removing all the labeled points, the distance between the points 

that are not consecutive is checked. If this distance is longer than the link average 

speed/60, in other words, the missed travel time between the two points is longer than 1 

min, this trip is identified as containing a Type 3 sub-trip. Then we add the travel time 

between the nonconsecutive points using the average travel time of the missed link 

length. With the missed travel time for all trips that contain the Type 3 sub-trip 

calculated, we adjust the travel time of those trips by adding their missed travel time.  

As shown in the data, that the majority of the trips contain a sub-trip, the route 

choice pattern of truckers in this study would be heavily affected by the delivery purpose 

in addition to factors considered for this study. To address this issue, one efficient 

method is to cluster the route according to its network geometry using the CF. Taking 

Scenario 1 as an example, it is shown in Figure 5.10 that clustering using the CF clearly 

grouped the routes according to their geometric locations. Since the intention of 

fulfilling the sub-trip leads to the fact that longer travel time routes or a lower level of 

service routes have been used, route clustering will narrow down the whole choice set 

into subsets, in which only alternatives that can effectively reach the intermediate 

destinations of sub-trips are considered. Consequently, routes that fall in the same cluster 



 

86 

 

should be viewed as the effective potential alternatives that the trucker considers when 

making route decisions.  

However, suppose we cluster using the CF and jointly with the travel time or 

other route level of service attributes, such as the number of lanes, average truck speed, 

annual average daily traffic (AADT), and annual average daily truck traffic. In that case, 

the full choice set cannot be effectively divided into subsets, as shown in Figure 5.9. In 

contrast to the clustering results with the CF only, many routes fall into multiple subsets 

that do not meet the goal of classifying sub-trips. It can be seen from Figure 5.11 and 

5.12 that when using travel time as well as other route attributes in clustering, the 

algorithm tends to emphasize travel time over the CF. Thus, the cluster pattern is clearly 

observed in travel time instead of in the path.  

Figures 5.13 to 5.16 display the clustering results for Scenario 2, which shows 

the same conclusion as for Scenario 1, that using the CF only as clustering input can 

effectively filter out trips that have the same sub-trips and that using a combination of 

multiple attributes cannot reach this goal. The CF cannot directly reflect the location of 

the intermediate pickup/delivery stops. However, using the CF as the input for the 

clustering algorithm can split the entire network into different parts. The pick/delivery 

stops will then be included in each part. 
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Figure 5.9 Clustering results using travel time, AADT, truck AADT, truck speed, and CF, by path (Scenario 1). 
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Figure 5.10 Clustering results using CF only, by path (Scenario 1). 
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Figure 5.11 Clustering results using travel time, AADT, truck AADT, truck speed, 

and CF, by the time of day (Scenario 1). 

 

 

Figure 5.12 Clustering results using CF only, by the time of day (Scenario 1). 
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Figure 5.13 Clustering results using travel time, AADT, truck AADT, truck speed, 

and CF, by path (Scenario 2). 

 

 

Figure 5.14 Clustering results using CF only, by path (Scenario 2). 
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Figure 5.15 Clustering results using travel time, AADT, truck AADT, truck speed, 

and CF, by the time of day (Scenario 2). 

 

 

Figure 5.16 Clustering results using CF only, by the time of day (Scenario 2).
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The classic k-mean cluster is used for both scenarios. The value of k is 

determined using the “elbow” method, which determines the optimal k value using the 

within-cluster sum of squared distance (SSD). Analytically, the sum of the squared 

distance is 

 
𝑆𝑆𝐷 = ∑ ∑ ∑ (𝑥𝑖𝑗 − 𝑥𝑘𝑗̅̅ ̅̅ )2

𝑃

𝑗=1𝑖∈𝑐𝑘

𝐾

𝑘=1
 (5.1) 

where 𝑥𝑖𝑗 is observation 𝑖 at the 𝑗th variable, 𝑐𝑘 is the set of observations in the 

𝑘th cluster, and 𝑥𝑘𝑗̅̅ ̅̅  is the 𝑘th cluster center at the 𝑗th variable. Figure 5.17 (A) displays the 

sum of squared distance for Scenario 1. It can be seen from this figure that when k = 3, 

the slope of the SSD curve begins to reduce, and when k = 5, the slope remains stable. If 

k = 3 is used, one of the clusters would have 20 routes. Considering that there are only 

several dominant routes, if the number of routes is too high in one cluster, the probability 

of many routes may close to 0, which affects the model’s accuracy.  

 

 

Figure 5.17 Elbow plots of both scenarios. 
(A) Elbow plot for Scenario 1. (B) Elbow plot for Scenario 2. 
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We use k = 5 for the first scenario, where Cluster 0 contains 12 routes, Cluster 1 

contains 8 routes, Cluster 2 contains 3 routes, and Cluster 4 and Cluster 5 contain 1 

route.  

For Scenario 2, as shown in Figure 5.9 (B), k = 3 is the optimal number of 

clusters. The number of routes that are in Cluster 0, Cluster 1, and Cluster 2 is 5, 5, and 

4, respectively. The adjusted travel time for later analysis is shown in Figure 5.18 (A) 

and (B). 

 

 

 

Figure 5.18 Histogram of travel time by path. 
(A) Travel time for Scenario 1, by path. (B) Travel time for Scenario 2, by path. 
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6. RESULTS 

 

This section documents the results of modeling with the GPS dataset cleaned in 

Section 5. Applied to the GPS dataset, the results of model precision compared to other 

machine learning methods, the estimated parameters, the VTTS as well as the predicted 

probabilities are documented in this section. In Section 6.1, the data used for this 

dissertation is summarized by clusters. The cross-validation results of the proposed 

models as well as other machine learning techniques are compared. In Section 6.2, the 

detailed parameter estimation results are displayed, and the preference heterogeneity 

reflected by the proposed models is analyzed. Section 6.3 describes the estimated VTTS. 

The last section, Section 6.4, shows the predicted percentages of road use.  

6.1. Cross-validation results 

After the map-matching process, routes that are used in subnetwork 1 are 

clustered into five clusters. The number of trip counts in each cluster and the 

corresponding probability that each cluster takes is shown in Table 6.1.  

The total number of trips collected for Scenario 1 and 2 is 9,040 and 13,304, 

respectively. With a mixed experimental setting, the total number of drivers in each 

cluster is displayed in the third column of Table 6.1. The number of drivers in each 

scenario is approximately 160 and 240, respectively; each driver in both scenarios have a 

fixed choice set size of 50. Drivers who have less than 50 choices observed are removed 

in the data cleaning process.  
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Table 6.1 Data summary. 

Scenario Cluster N Probability 

Travel time 

mean variance min max 

Scenario 

1 

Cluster 

0 
110 0.6115 101.6770 97.1350 68.0530 165.4000 

 
Cluster 

1 
24 0.1398 110.5362 46.5266 80.0000 139.1170 

 
Cluster 

2 
37 0.2100 101.0561 88.5803 69.5650 159.0930 

 
Cluster 

3 
 0.0042 131.3765    

 
Cluster 

4 
 0.0345 100.5309    

Scenario 

2 

Cluster 

0 
26 0.1757 43.1784 26.3379 18.0667 108.7000 

 
Cluster 

1 
76 0.2865 38.4301 33.9807 30.0000 111.3330 

 
Cluster 

2 
143 0.5377 44.3662 29.7483 31.0991 102.4790 
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Table 6.1 Continued. 

Scenario Cluster 

Delay per lane Toll S/IS CF 

min max count count min max 

Scenario 

1 

Cluster 

0 
1,020.4003 1,532.7228 6 1 -4.9664 -4.8946 

 
Cluster 

1 
1,086.2630 1,539.5200 8 0 -4.8921 -4.8342 

 
Cluster 

2 
1,086.1660 1,087.5340 0 2 -4.8927 -4.8848 

 
Cluster 

3 
310.7956 0 0 -3.2266 

 
Cluster 

4 
1,084.1845 0 0 -4.8631 

Scenario 

2 

Cluster 

0 
292.9980 450.4120 0 1 -3.0585 -2.8741 

 
Cluster 

1 
971.8600 1,035.1300 0 2 -2.2361 -2.0609 

 
Cluster 

2 
75.1582 90.7710 0 1 -2.8274 -2.8762 
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Table 6.2 Toll price of each link. 

Nodes 
Toll rates 

(2-axle) 

Toll rates (3-

axle) 
Station begin Station end 

From To Sam Rayburn Tollway 

28 30 0.47 0.94 Lake Vista Old Denton 

30 31 1.62 3.24 Old Denton  Parkwood 

31 32 2.24 4.48 Parkwood US 75 

From To President George Bush Turnpike 

42 45 0.6 1.2 Belt Line W** SH 114/Royal 

45 46 0.31 0.62 SH 114/Royal 
IH 635/Valley 

View/Las Colinas 

46 47 1.04 2.08 
IH 635/Valley View/Las 

Colinas 

IH 35E/Sandy 

Lake/Old Denton 

27 26 1.31 2.62 
IH 35E/Sandy Lake/Old 

Denton 
DNT 

26 25 1.41 2.82 DNT US 75/Alma/Plano 

From To Dallas North Tollway 

9 8 1.65 3.3 
IH 

35E/Oaklawn/Wycliff 
Walnut Hill/Royal 

8 23 0.43 0.86 Walnut Hill/Royal IH 635 

23 26 1.18 2.36 IH 635 PGBT 

26 31 1.05 2.1 PGBT SRT 
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With the aim of finding out the VTTS on commercial truckers’ route choices, 

two O-D pairs corresponding to two scenarios are included in this study, where five out 

of 25 routes in Scenario 1 are associated with different toll prices according to the 

distance traveled on the tollway, while no tollway is available in Scenario 2.  

 

 

Table 6.3 Toll price of each route. 

Cluster 0 Cluster 1 

Path Toll price Path Toll price 

28 4.46 3 8.66 

42 0.86 43 6.54 

60  0 64 9.34 

86  0 107 2.1 

106 3.3 117 10.48 

120 8.66 119 3.9 

134  0 184 7.72 

192  3.3 185 10.48 

198 8.66     

263  0     

282  0     

289 3.3     
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Among all the alternatives in Scenario 1, Cluster 2 has the least mean travel time, 

while Cluster 1 has the longest travel time with the smallest variance. Routes in Cluster 

0 dominate the trips from Node 1 (the origin) to Node 34 (the destination), in which both 

maximum and minimal travel times have fallen. In Scenario 2, routes in Cluster 2 cover 

more than half of the trips while having the longest mean travel time. Cluster 1 has the 

shortest mean travel time with the largest variance. Instantaneous travel time in Cluster 0 

is the most stable, with the smallest variance. The delay per lane tells a different story 

than does the travel time. In Scenario 1, the per-lane truck delay varies widely from 

approximately 1,000 to 1,500 minutes for Cluster 0 and 1. However, routes in Cluster 2 

all have similar delays. In Scenario 2, a similar truck delay was observed in routes for 

each cluster. 

The probability column in Table 6.1 shows the percentage of each cluster that 

takes in the total number of trips of each scenario. As each link may be used repeatedly 

in a multi-O-D network setting, the predicted probability of each link is thus the 

aggregated route probabilities in which this link is included. 

Consequently, for each scenario, the final probability of route usage will then be 

calculated with a nested structure 

 𝑃(𝑗𝑐𝑖
) = 𝑃(𝑗𝑐𝑖

|𝑐𝑖) ∗ 𝑃(𝑐𝑖)  ∀𝑗𝑐𝑖
∈ 𝑐𝑖, 𝑖 ∈ {0,1,2 … } (6.1) 

where the probability that a route has been used 𝑃(𝑗𝑐𝑖
) equals the product of the 

probability of the route being used in its cluster 𝑃(𝑗𝑐𝑖
|𝑐𝑖) and the probability of the 

cluster 𝑃(𝑐𝑖). For instance, the probability that Route 60, which is in Scenario 1, Cluster 

0, has been used is 0.8960 * 0.6115 = 54.79%. The true and estimated probabilities of 
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each route are listed in Appendix 1. Meanwhile, in Scenario 1, since there is only one 

route in Cluster 3 and 4, the probability that the only alternative in the two clusters is 

0.42% of Route 222 and 3.45% of Route 20, respectively.   

The cross-validation process provides a large picture of the model prediction’s 

accuracy and stability among all clusters in our two study scenarios. In addition to our 

proposed mixed C-logit model with three Bayesian formulations, namely BMCL, 

HBMCL1, and HBMCL2, nine additional models are included in the 10-fold cross-

validation model evaluation process. The error displayed in Figure 6.1 is the maximum 

error, which is the maximum discrepancy between the predicted probability and the real 

probability among potential alternatives in each cluster. The constructions of the 

additional models are derived from the Python library scikit-learn 0.23.2, all with the 

default setting. 
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Figure 6.1 Cross-validation error. 
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Overall, the outperformance of BMCL, HBMCL1, and HBMCL2 over machine 

learning procedures is obvious, judging from the high prediction accuracy of these three 

models. All other models perform badly in Scenario 2, Cluster 0, with accuracy varying 

between 0.68 and 0.78. The linear discriminant analysis (LDA) reported the lowest 

accuracy of 0.69, with little variance indicated by the error bar in the figure. This was 

followed by the multi-layer perceptron classifier (MLP), which had an average accuracy 

of 0.70, yet a huge variance was observed for this classifier. In all clusters of Scenario 2 

and Cluster 2 of Scenario 1, the accuracy of the LDA and of the random forest classifier 

(RF) are notably inferior to other classifiers and the logit models. Except for the LDA, 

RF, and MLP that differ significantly in the performance of different clusters, other 

models are relatively stable in model performance over six clusters. It is observed that 

the C-logit model performs equivalently to the Lasso classifier in all clusters. Both have 

a higher accuracy than the classification and regression tree (CART) classifier, and both 

perform slightly worse than the k-nearest neighbors (KNN) classifier. Among all the 

machine learning methods listed in the figure above, the support vector machine (SVM) 

and the naïve Bayes (NB) classifier are the best classifiers for truck route choice in both 

performance stability and prediction accuracy.  

Comparing the three Bayesian formulations, HBMCL1 outperforms BMCL and 

HBMCL2, which have similar performance in four out of six cases. The only situation 

where BMCL notably outperform HBMCL1 and HBMCL2 is Scenario 2, Cluster 2, yet 

the latter is still remarkably superior to other classifiers and the C-logit model. 
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Moreover, the proposed model shows a more significant variance in performance 

compared to the path size logit and machine learning classifiers. In Scenario 2, Cluster 2, 

all three Bayesian models have large variances in the accuracy reported from the 10 

cross-validation tests. In other clusters, however, HBMCL2 is distinct with its high 

variance. 

6.2. Estimated parameters and the preference heterogeneity 

After the evaluation of the model performance using the maximum prediction 

error with a 10-fold cross-validation process, this section analyzes the predicted 

parameters from the proposed BMCL, HBMCL1, and HBMCL2. We run the proposed 

model on the whole dataset with an 80%-20% split for each cluster’s training set and test 

set. The parameter estimation and probability prediction are all based on this final test 

(Section 6.2, 6.3, and 6.4). Results for each cluster are shown in Table 6.5 to 6.10 in this 

section.  

6.2.1. Estimated parameters for Scenario 1 

In Scenario 1, it can be seen, from the magnitude of parameters, that the travel 

time is the first consideration in a trucker’s route choice no matter the existence of a toll 

alternative. Among all clusters in Scenario 1, the parameter of travel time has a mean 

over 2.5 in the absolute value, while the parameters of the S/IS indicator are smaller than 

2, except in Cluster 0, where the parameter of the S/IS road indicator has a value of 2.7 

from BMCL. Compared to the S/IS road indicator, the delay per lane attribute is slightly 

more significant and generally has the largest variance. The range between differences in 

the absolute value of parameters from each model in Cluster 0 and 2 is about 1.4 and 
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0.64, respectively. Among all clusters in Scenario 1, the CF is the least significant one, 

whose value varies from -0.11 to -0.63, with the smallest variance.  

 

 

Table 6.4 Estimated parameter, Scenario 1, Cluster 0. 

Model BMCL HBMCL1 HBMCL2 

Variable Mean Variance Mean Variance Mean Variance 

Travel 

time (min) 
-5.4734 5.4131 -3.9002 1.6961 -4.1575 1.3298 

Delay per 

lane 
-1.5160 4.5838 -1.0132 1.6768 -1.5727 8.4855 

Toll price -2.8555 4.7323 -2.1415 1.8007 -2.0669 1.6971 

S/IS 

indicator 
-0.2856 2.1916 -0.6403 1.1676 -0.3961 1.1044 

CF 0.1208 1.5279 0.1206 1.8301 0.1161 1.8259 

Hyper- 

parameter 

HBMCL1 

𝜇𝜉 [-3.89, -1.01, -2.14, -6.39e-01] 

Σ𝜉 [2.08e-03, 2.21e-03, 2.11e-03, 2.13e-03] 

𝑑𝑖𝑎𝑔(𝛶) [9.43e-02, 8.85e-02, 9.28e-02, 9.18e-02] 

HBMCL2 

𝜇𝜉 [-4.34, -1.81, -2.35, 0.435] 

Σ𝜉 [8.36e-02, -2.78e-01, 2.62e-01, 1.27e-01] 

𝑑𝑖𝑎𝑔(𝛶) [1.24e+00, 1.035e+00, 8.99e-01, 5.12e-01] 

𝑔 [1.59e+03, 1.32e+03, 1.14e+03, 6.54e+02] 
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Figure 6.2 Kernel density of 𝜷𝑻𝒓𝒂𝒗𝒆𝒍 𝑻𝒊𝒎𝒆 for Scenario 1, Cluster 0. 

 

 

Figure 6.2 shows the kernel density of the coefficient of travel time, 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 

for Scenario 1, Cluster 0. Overall, the BMCL and the HBMCL2 provide more disperse 

density of estimated taste parameters than does HBMCL1. For the coefficient of travel 

time, the 95% confidence interval (CI) from BMCL, HBMCL1, and HBMCL2 is (-0.80, 

10.00), (-2.95, -4.78), and (-1.15, -7.63), respectively. In some studies, the 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 

is modeled with a log-normal prior distribution for restricting a negative sign of the 

estimated value. However, this asymmetric prior suffers from low precision in 
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estimating the mean and variance parameters of interest (Hensher and Greene 2003). The 

normal prior that has been used for this study well addressed this sign consideration. It 

can be seen that the bulk of the density of 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 from three models is negative, 

with all bounds of confidence intervals being negative.  

 

 

 

Figure 6.3 Kernel density of 𝜷𝑨𝒏𝒖𝒂𝒍 𝒕𝒓𝒖𝒄𝒌 𝒅𝒆𝒍𝒂𝒚 for Scenario 1, Cluster 0. 

 

 

The kernel density of 𝛽𝐴𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 for Scenario 1, Cluster 0 is displayed in 

Figure 6.3. HBMCL1 provides the most concentrated density of 𝛽𝐴𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 

compared to the HBMCL2 and the BMCL, with density from the former relatively more 
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concentrated than that from the latter. The confidence interval of the three models is (-

2.65, 5.80) in BMCL, (-1.94, -0.082) in HBMCL1, and (-5.21, 1.49) in HBMCL2. Both 

the confidence intervals from HBMCL2 and the BMCL1 included 0, whereas the 

confidence interval from HBMCL1 has both bounds less than 0.    

 

 

 

Figure 6.4 Kernel density of 𝜷𝑻𝒐𝒍𝒍 𝒑𝒓𝒊𝒄𝒆 for Scenario 1, Cluster 0. 

 

 

Similar to the 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 and 𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦, Figure 6.4 shows that the 

HBMCL1 provides the least dispersed distribution for the coefficient of toll price 

compared to the other two models. The 95% confidence interval of HBMCL1 is (-1.17, -
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3.07), which is negative. Both the 95% confidence interval of BMCL and of HBMCL1 

contain both a negative value and positive value, (-7.11, 1.48) and (-5.73, 0.943).  

 

 

 

Figure 6.5 Kernel density of 𝜷𝑹𝒐𝒂𝒅𝒘𝒂𝒚 𝒅𝒆𝒔𝒊𝒈𝒏𝒂𝒕𝒊𝒐𝒏 for Scenario 1, Cluster 0. 

 

 

The kernel density of the coefficient of roadway designation shows the greatest 

difference among models, more than other coefficients. According to Figure 6.5, the 

95% confidence interval of each model is (-4.88, 4.14), (-0.798, -0.480), and (-3.75, 

2.73), respectively. The confidence interval of HBMCL1 is significantly smaller than 

that of BMCL and HBMCL2. 
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Figure 6.6 Kernel density of 𝜽 for Scenario 1, Cluster 0. 

 

 

Since each model’s CF is estimated using the Laplace distributions for the prior, 

the resulting kernel density for the coefficient of CF is different from other coefficients. 

Generally, all the three models have provided a similar density for 𝜃, with BMCL giving 

a slightly more concentrated one than do the other two. The means of the densities are all 

close to 0, and variances are similar. In particular, the 95% confidence interval of 

BMCL, HBMCL1, and HBMCL2 is (-4.43, 4.68), (-5.27,5.61), and (-5.37, 5.82), 

respectively.  
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To reveal the relationship between the predicted parameters, the pairwise scatter 

plot of the coefficient of each attribute is presented, based on a Gibbs sampler with 

10,000 draws.  

 

 

 

Figure 6.7 Pairwise scatter plot of parameters for BMCL. 

 

 

Figure 6.7 displays the scatter plot of parameters for BMCL. As indicated by the 

model structure, each predicted parameter is not correlated with each other, with all the 

correlations less than 0.02.  

In HBMCL1, the means of the taste parameters are assumed to follow a k-

dimensional distribution, with k being the number of attributes considered for the model. 
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The variances, however, are assumed to follow an inverse Wishart distribution, which 

resulted in the correlation between the coefficients.  

 

 

 

Figure 6.8 Pairwise scatter plot of parameters for HBMCL1. 

 

 

It can be seen from Figure 6.8 that mild correlations are observed in the first four 

parameters of the HBMCL1. Since 𝜃 is assumed to follow a distinct Laplace 

distribution, the correlation between 𝜃 and each 𝛽 is negligible.  

In addition to assuming that the variance of the taste parameters follows an 

inverse Wishart distribution in HBMCL1, the HBMCL2 future assumes an inverse 

gamma prior to this inverse Wishart prior, which makes Huang’s half-t prior. In this 
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case, the parameters in HBMCL2 have a much stronger correlation between each other, 

which can be as high as 0.961, as indicated in Figure 6.9.  

 

 

 

Figure 6.9 Pairwise scatter plot of parameters for HBMCL2. 
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The estimated parameters of Scenario 1, Cluster 1 are listed in Table 6.5. Since 

all the routes in this cluster do not contain any local segments, the roadway designation 

S/IS indicator is not included in the model.  

 

 

Table 6.5 Estimated parameter, Scenario 1, Cluster 1. 

Model BMCL HBMCL1 HBMCL2 

Variable Mean Variance Mean Variance Mean Variance 

Travel 

time (min) 
-2.8676 8.2319 -2.1529 4.0826 -2.3158 2.8952 

Delay per 

lane 
1.5644 4.5985 1.2989 3.0713 1.4520 5.8408 

S/IS 

indicator 
-1.3400 6.2264 -0.9850 3.3914 -1.0311 1.4721 

CF 0.3700 1.2826 0.3128 0.7840 0.3289 1.0582 

Hyper- 

parameter 

HBMCL1 

𝜇𝜉 [2.13, 0.564, -1.09] 

Σ𝜉 [2.62e+00, 5.71e+00, 3.87e+00] 

𝑑𝑖𝑎𝑔(𝛶) [7.13e-02, -3.72e-01,8.04e-01] 

HBMCL2 

𝜇𝜉 [-2.30, 1.45, -1.03] 

Σ𝜉 [1.57e-01, 1.55e-02, 7.53e-02] 

𝑑𝑖𝑎𝑔(𝛶) [2.46e-02, 1.07e-02, 6.61e-02] 

𝑔 [3.16e+01, 1.38e+01, 8.45e+01] 
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Figure 6.10 Kernel density of 𝜷𝑻𝒓𝒂𝒗𝒆𝒍 𝑻𝒊𝒎𝒆 for Scenario 1, Cluster 1. 

 

 

Figure 6.10 shows the density of 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 for this cluster. Similar to Cluster 

0, the HBMCL1 provides the most concentrated distribution. Both HBMCL1 and 

HBMCL2 have a negative 95% confidence interval, which is (-2.61, -1.62) and (-3.22, -

1.41). However, the confidence interval of BMCL is (-8.46, 2.81), which suggests that 

the estimation of 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 is unrealistic since this interval includes part of the 

positive values.  
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Figure 6.11 Kernel density of 𝜷𝑨𝒏𝒖𝒂𝒍 𝒕𝒓𝒖𝒄𝒌 𝒅𝒆𝒍𝒂𝒚 for Scenario 1, Cluster 1. 

 

 

As shown by Figure 6.11, the mean of 𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 estimated by the two 

hierarchical Bayesian models is different, yet the mean of this coefficient estimated by 

the BMCL and the HBMCL2 is close. The 95% confidence interval for BMCL, 

HBMCL1, and HBMCL2 is (-2.70, 5.80), (-0.559,1.65), and (0.938, 1.96). All three CIs 

have both positive and negative parts, indicating that drivers have fluid opinions about 

the annual truck delay when making route choices.  
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Figure 6.12 Kernel density of 𝜷𝑻𝒐𝒍𝒍 𝒑𝒓𝒊𝒄𝒆 for Scenario 1, Cluster 1. 

 

 

The coefficient of the toll price of Cluster 1 in Scenario 1 displays a similar 

density of the coefficient of travel time, judging from the similarity of Figure 6.10 and 

6.12. The 95% CIs of 𝛽𝑇𝑜𝑙𝑙 𝑝𝑟𝑖𝑐𝑒 BMCL, HBMCL1, and HBMCL2 are (-4.82, 2.19), (-

1.61, -0.559), and (-1.72 and -0.326). The BMCL is not recommended to use for this 

scenario since it reported a positive upper bound of the CIs for both 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 and 

𝛽𝑇𝑜𝑙𝑙 𝑝𝑟𝑖𝑐𝑒.  
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Figure 6.13 Kernel density of 𝜽 for Scenario 1, Cluster 1. 

 

 

The density of the coefficient of the CF in Cluster 1, Scenario 1 is illustrated in 

Figure 6.13, which shows similarity to the density of θ in Cluster 0 of this scenario. The 

estimated means of θ from the three models are the same, with the 95% CIs being (-3.51, 

4.12), (-2.06, 2.63), and (-2.84, 3.63). The mean of θ from the three models is close to 0, 

indicating that the network density is not a priority consideration in the truckers’ route 

choice.  
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The estimated parameters for the third cluster of this scenario are shown in Table 

6.6. Overall, compared to Cluster 1, the importance of travel time in affecting truck 

drivers’ route choice is notable.  

 

 

Table 6.6 Estimated parameter, Scenario 1, Cluster 2. 

Model BMCL HBMCL1 HBMCL2 

Variable Mean Variance Mean Variance Mean Variance 

Travel 

time (min) 
-2.5511 5.6776 -1.6376 1.6786 -1.6840 1.8090 

Delay per 

lane 
-0.0638 0.1374 0.0445 0.0317 -0.0588 0.0718 

S/IS 

indicator 
-0.0597 0.1723 -0.0681 0.0214 -0.0528 0.0342 

CF 0.6383 1.8776 0.5268 2.5678 0.5383 2.5511 

Hyper- 

parameter 

HBMCL1 

𝜇𝜉 [-1.64 4.52e-02 6.76e-01] 

Σ𝜉 [1.11e-03 7.10e-03 7.73e-04] 

𝑑𝑖𝑎𝑔(𝛶) [2.00e-01 3.25e-02 2.68e-01] 

HBMCL2 

𝜇𝜉 [-1.74 -4.61e-02 6.61e-02] 

Σ𝜉 [3.97e-03 9.86e-03 6.24e-03] 

𝑑𝑖𝑎𝑔(𝛶) [3.27e-01 1.20e-01 8.64e-01] 

𝑔 [4.17e+02 1.53e+02 1.10e+03] 



 

119 

 

 

 

Figure 6.14 Kernel density of 𝜷𝑻𝒓𝒂𝒗𝒆𝒍 𝑻𝒊𝒎𝒆 for Scenario 1, Cluster 2. 

 

 

The distribution of this cluster’s coefficient of travel time displays a similar trend 

as for Cluster 0 and 1. Additionally, the 95% CIs for the three models are (-7.18, 2.15), 

(-0.795, -2.47), and (-0.0863, -3.44). The 95% CI of BMCL has a positive upper bound, 

which indicates that this model is not a good choice for modeling the truck route choice 

of this cluster.  
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Figure 6.15 Kernel density of 𝜷𝑨𝒏𝒖𝒂𝒍 𝒕𝒓𝒖𝒄𝒌 𝒅𝒆𝒍𝒂𝒚 for Scenario 1, Cluster 2. 

 

 

The 95% CIs for the coefficient of the annual truck delay from the three models 

are (4.82, -5.11), (0.426, -0.320), and (-1.75, 1.62). Figure 6.15 shows a strong contrast 

of the predicted densities of 𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 among the three models. The variance of 

𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 with HBMCL1 is much smaller than with HBMCL2 and BMCL, with 

the former smaller than the latter. The annual truck delay does not affect truck drivers’ 

opinions much, as can be seen from the mean from three models being all close to 0.   
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Figure 6.16 Kernel density of 𝜷𝑹𝒐𝒂𝒅𝒘𝒂𝒚 𝒅𝒆𝒔𝒊𝒈𝒏𝒂𝒕𝒊𝒐𝒏 for Scenario 1, Cluster 2. 

 

 

The impact of road designation on affecting drivers’ route choice in Cluster 2 is 

mild, compared to the travel time, while being slightly greater than the annual truck 

delay, according to the estimated mean of 𝛽𝑅𝑜𝑎𝑑𝑤𝑎𝑦 𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛. Specifically, both 

BMCL and HBMCL reported a mean value close to 0, yet HBMCL1 shows that the 

mean is approximately 0.5. In addition, the 95% CIs for the coefficient of the roadway 

designation from the three models are (-3.93, 3.84), (-0.295, 1.64), and (-1.63, 1.74), 

respectively.  
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Figure 6.17 Kernel density of 𝜽 for Scenario 1, Cluster 2. 

 

 

The 95% CIs for the coefficient of the annual truck delay from the three models 

are (-5.10, 5.99), (-6.88, 8.23), and (-6.97, 8.03), as shown in Figure 6.17. The estimated 

distribution of θ is similar across clusters of this scenario, with BMCL1 having a smaller 

variance than the other two models.  

6.2.2. Estimated parameters for Scenario 2 

In Scenario 2, where all alternatives are freeways, the travel time attribute is no 

longer the most significant factor in truckers’ perceived utilities. For example, in Cluster 

1, the parameter of the S/IS road indicator has means of 2.99, 1.95, and 2.12 from each 

model, yet the mean of the travel time parameter has absolute values of 2.49, 1.71, and 

1.97. The absolute value of delay per lane is between 0.65 and 1.32.   
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Table 6.7 Estimated parameter, Scenario 2, Cluster 0. 

Model BMCL HBMCL1 HBMCL2 

Variable Mean Variance Mean Variance Mean Variance 

Travel 

time (min) 
-1.3843 7.0109 -0.8165 1.4568 -1.0094 2.7116 

Delay per 

lane 
-1.5094 6.8204 -0.9497 1.7365 -1.1204 2.5347 

S/IS 

indicator 
1.1585 3.2178 1.1983 1.2935 1.1748 1.3231 

CF -0.0700 1.1585 -0.0900 1.3843 -0.0725 1.2011 

Hyper- 

parameter 

HBMCL1 

𝜇𝜉 [-0.9594 -1.1822 0.9902] 

Σ𝜉 [ 0.0024 0.0022 0.0012] 

𝑑𝑖𝑎𝑔(𝛶) [0.0919 0.1025 0.1721] 

HBMCL2 

𝜇𝜉 [-1.1348 -1.1804 1.0263] 

Σ𝜉 [ 7.14e-03 5.79e-03 6.04e-01] 

𝑑𝑖𝑎𝑔(𝛶) [4.13e-02 2.12e-01 2.28e-01] 

𝑔 [5.29e+01 2.71e+02 2.92e+02] 
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Figure 6.18 Kernel density of 𝜷𝑻𝒓𝒂𝒗𝒆𝒍 𝑻𝒊𝒎𝒆 for Scenario 2, Cluster 0. 

 

 

The estimated density of 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 in Scenario 2 is different from that of 

clusters in Scenario 1, according to Figure 6.18. Generally, HBMCL1 and HBMCL2 

have similar estimations of the coefficient of the travel time; both are significantly more 

concentrated than BMCL. The corresponding 95% confidence interval of the three 

models are (-1.52, -0.402), (-1.74, -0.518), and (-5.23, 2.50). Since BMCL has a positive 

upper bound of the confidence interval, it is not suggested to use it for modeling this 

cluster.  
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Figure 6.19 Kernel density of 𝜷𝑨𝒏𝒖𝒂𝒍 𝒕𝒓𝒖𝒄𝒌 𝒅𝒆𝒍𝒂𝒚 for Scenario 2, Cluster 0. 

 

 

Similar to the 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 , the 𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 also indicates that both 

hierarchical models perform better than BMCL does. HBMCL1 provides a 95% 

confidence interval of (-1.79, 0.606). The 95% CI of HBMCL2 is (-1.77, -0.568), and 

the 95% CI of BMCL is (-5.33, 2.36).  
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Figure 6.20 Kernel density of 𝜷𝑹𝒐𝒂𝒅𝒘𝒂𝒚 𝒅𝒆𝒔𝒊𝒈𝒏𝒂𝒕𝒊𝒐𝒏 for Scenario 2, Cluster 0. 

 

 

Different from 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 and 𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦, the 𝛽𝑅𝑜𝑎𝑑 𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 shows 

that HBMCL1 provides a density with the smallest degree of dispersion, compared to 

BMCL and HBCML2. The corresponding 95% CIs of the three models are (0.248,1.75), 

(-2.36, 4.69), and (-2.36,4.69), which is shown in Figure 6.20. Figure 6.21 displays the 

estimated density of 𝜃. The 95% CIs of BMCL, HBMCL1, and HBMCL2 are (-

3.55,3.60), (-4.27, 4.11), and (-4.35,4.07), respectively.  
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Figure 6.21 Kernel density of 𝜽 for Scenario 2, Cluster 0. 
 

 

Parameters estimated in Cluster 2 have a similar pattern as from Cluster 1, for 

which the existence of an S/IS road takes a larger share in the perceived utility, as shown 

in Table 6.8. Even though the parameters of travel time and delay per lane in Cluster 2 

are in a smaller magnitude compared to Cluster 1, the travel time is indeed more 

significant than delay per lane, as judged from the relative ratio between the two factors’ 

parameters. Travel time, delay per lane, as well as the S/IS road are of similar 

importance in affecting trucks’ route choice. Variances of all parameters except the CF 

range from 1.45 to 9.29. In addition, consistent with results in Scenario 1, the road 

network geometry factor in Scenario 2 is also the lowest priority when selecting routes.  
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Table 6.8 Estimated parameter, Scenario 2, Cluster 1. 

Model BMCL HBMCL1 HBMCL2 

Variable Mean Variance Mean Variance Mean Variance 

Travel 

time (min) 
-2.4934 6.4543 -1.7091 3.0109 -1.9749 2.4169 

Delay per 

lane 
-1.3186 7.2611 -0.6540 1.5204 -0.8105 1.5873 

S/IS 

indicator 
2.9975 5.6455 1.9549 3.2178 2.1239 2.7396 

CF 0.1050 1.4934 0.0890 1.3186 0.1054 1.0166 

Hyper- 

parameter 

HBMCL1 

𝜇𝜉 [-1.82 -7.21e-01 2.22] 

Σ𝜉 [1.32e-01 2.80e-01 1.11e-01] 

𝑑𝑖𝑎𝑔(𝛶) [1.54e-01 8.65e-02 1.81e-01] 

HBMCL2 

𝜇𝜉 [-2.02e+00 -8.17e-01 4.03e+01] 

Σ𝜉 [-7.03e-02 -2.11e-02 2.33e-02] 

𝑑𝑖𝑎𝑔(𝛶) [5.74e-01 2.65e-01 8.46e-01] 

𝑔 [7.32e+01 3.39e+01 1.07e+02] 
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Figure 6.22 Kernel density of 𝜷𝑻𝒓𝒂𝒗𝒆𝒍 𝑻𝒊𝒎𝒆 for Scenario 2, Cluster 1. 
 

 

The corresponding 95% confidence intervals of the three model are (-2.82, -

0.821), (-2.88, -1.16), and (-6.38, 1.43). Different from Cluster 1 and all clusters in 

Scenario 1, 𝛽𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒  estimated with HBMCL2 have the lowest degree of dispersion, 

compared to other models. The 𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 indicate similar performance of the 

models. HBMCL1 provides a 95% confidence interval of (-1.89, 0.439). The 95% CI of 

HBMCL2 is (-1.55, -0.0815), and the 95% CI of BMCL is (-5.22, 2.52), as displayed in 

Figure 6.23.  
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Figure 6.23 Kernel density of 𝜷𝑨𝒏𝒖𝒂𝒍 𝒕𝒓𝒖𝒄𝒌 𝒅𝒆𝒍𝒂𝒚 for Scenario 2, Cluster 1. 

 

 

 

Figure 6.24 Kernel density of 𝜷𝑹𝒐𝒂𝒅𝒘𝒂𝒚 𝒅𝒆𝒔𝒊𝒈𝒏𝒂𝒕𝒊𝒐𝒏 for Scenario 2, Cluster 1. 
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Figure 6.24 shows the density of 𝛽𝑅𝑜𝑎𝑑 𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 . It is noted that the estimated 

means of the 𝛽𝑅𝑜𝑎𝑑 𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 from each of the three models are different from each 

other, with the largest value from HBMCL1 and the smallest from HBMCL2 and BMCL 

in between, from which the 95% CIs are (1.23, 3.21), (3.30, 4.76), and (-0.374, 6.49). 

Figure 6.25 below shows the density of 𝜃.  

 

 

 

Figure 6.25 Kernel density of 𝜽 for Scenario 2, Cluster 1. 
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Table 6.9 Estimated parameter, Scenario 2, Cluster 2. 

Model BMCL HBMCL1 HBMCL2 

Variable Mean Variance Mean Variance Mean Variance 

Travel 

time (min) 
-0.9335 5.9556 -0.7034 2.9456 -0.7234 1.2727 

Delay per 

lane 
-0.1419 0.7211 -0.0782 0.1917 -0.0761 0.1211 

S/IS 

indicator 
3.2197 5.7544 2.7979 4.1738 3.1538 3.1637 

CF -0.1753 1.2099 -0.0924 0.6248 -0.1634 1.2689 

Hyper- 

parameter 

HBMCL1 

𝜇𝜉 [-7.14e-01 -8.40e-02 2.92] 

Σ𝜉 [2.48e-02 2.45e-02 7.41e-02] 

𝑑𝑖𝑎𝑔(𝛶) [1.17e-01 1.16e-01 2.64e-01] 

HBMCL2 

𝜇𝜉 [-9.01e-01 -2.88e-01 3.48e+00] 

Σ𝜉 [1.84e-02 1.26e-02 2.93e-02] 

𝑑𝑖𝑎𝑔(𝛶) [2.53e-01 1.18e-01 1.73e-01] 

𝑔 [3.23e+01 1.51e+01 2.21e+01] 

 

 

 

 

 

The estimated parameters of Cluster 2 in Scenario 2 are documented in Table 6.9. 

Generally speaking, both Cluster 2 and 1 show that HBMCL2 provides a slightly more 
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aggregated density than HBMCL1, with both significantly more aggregated than BMCL. 

In this scenario, the roadway designation is the dominant attribute that heavily affects 

drivers’ route choice, followed by the travel time, which is the second more important 

factor. The roadway congestion situation represented by the S/IS indicator and the 

network density are less important factors to consider. Figure 6.26 shows the density of 

𝛽𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 . The 95% CIs from each model are (-5.73, 3.84), (-1.39, -0.0153), and (-

1.43, -0.376). The estimated densities of 𝛽𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦, 𝛽𝑟𝑜𝑎𝑑𝑤𝑎𝑦 𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑖𝑜𝑛 , and 𝜃 

are shown in Figure 6.27, 6.28, and 6.29.  

 

 

 

Figure 6.26 Kernel density of 𝜷𝑻𝒓𝒂𝒗𝒆𝒍 𝑻𝒊𝒎𝒆 for Scenario 2, Cluster 2. 
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Figure 6.27 Kernel density of 𝜷𝑨𝒏𝒖𝒂𝒍 𝒕𝒓𝒖𝒄𝒌 𝒅𝒆𝒍𝒂𝒚 for Scenario 2, Cluster 2. 

 

 

 

Figure 6.28 Kernel density of 𝜷𝑹𝒐𝒂𝒅𝒘𝒂𝒚 𝒅𝒆𝒔𝒊𝒈𝒏𝒂𝒕𝒊𝒐𝒏 for Scenario 2, Cluster 2. 
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Figure 6.29 Kernel density of 𝜽 for Scenario 2, Cluster 2. 

 

 

To summarize, the 95% confidence interval of the estimated density for the 

coefficients can be used for model validation. If the predicted 95% CI for the coefficient 

of travel time contains a large proportion of positive values, then the model prediction is 

questionable since the coefficient of travel time should be negative in most cases. There 

are situations in which the coefficient of travel time is a positive value where the driver 

has used a path with a long travel time. This can be addressed by the right proportion out 

of the 95% CI in the estimated density. From this point of view, HBMCL1 and 

HBMCL2 are preferred. 
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6.2.3. The preference heterogeneity 

As mentioned earlier, preference heterogeneity refers to the variation of an 

individual’s taste in evaluating information when making decisions. In our model, the 

truckers’ preference heterogeneity is shown by the relative variation of the mean of a 

random coefficient to its standard deviation, which is the coefficient of variation. The 

mathematical form for the coefficient of variation cv is 𝑐𝑣 =
𝜎

|𝜇|
, where 𝜎 is the standard 

deviation of a random variable and |𝜇| is the absolute mean. For a better illustration of 

the preference heterogeneity, Table 6.10 lists the value of it.  

The magnitude of the cv for each coefficient indicates the consistency among 

drivers’ preferences of the corresponding attribute. A large value of cv shows that 

drivers’ opinions vary largely on this attribute, whereas a small value of cv represents 

consistent ideas among drivers. Combining the results from the previous section, if an 

attribute is significant with a small cv of its coefficient, it is concluded that this attribute 

is considered critical for most drivers. In contrast, if an attribute is not significant and 

has a large cv, it is concluded that it is only considered important by a minority.  
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Table 6.10 The coefficient of variation for each parameter. 

  Scenario 1 Scenario 2 

Attributes Model 
Cluster 

0 

Cluster 

1 

Cluster 

2 

Cluster 

0 

Cluster 

1 

Cluster 

2 

Travel 

time 

BMCL 0.4251 1.0005 0.9340 1.9128 1.0189 2.6142 

HBMCL1 0.3339 0.9385 0.7912 1.4783 1.0153 2.4400 

HBMCL2 0.2774 0.7347 0.7987 1.6313 0.7872 1.5594 

Truck 

delay per 

lane 

BMCL 1.4123 1.3707 5.8075 1.7302 2.0436 5.9860 

HBMCL1 1.2780 1.3492 3.9966 1.3876 1.8854 5.5986 

HBMCL2 1.8522 1.6644 4.5597 1.4210 1.5545 4.5750 

Toll price 

BMCL 0.7618 1.8621     

HBMCL1 0.6266 1.8696     

HBMCL2 0.6303 1.1767     

S/IS 

indicator 

BMCL 5.1837  6.9578 1.5484 0.7927 0.7450 

HBMCL1 1.6875  2.1470 0.9491 0.9176 0.7302 

HBMCL2 2.6531  3.5005 0.9791 0.7793 0.5640 

CF 

BMCL 10.2355 3.0609 2.1468 10.9355 11.6378 6.2738 

HBMCL1 11.2201 2.8310 3.0416 11.3289 12.9023 8.5500 

HBMCL2 11.6432 3.1277 2.9673 11.5974 9.5685 6.8941 
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Generally, in all clusters of Scenario 1, the travel time has the lowest coefficient 

of variation. In other words, truckers’ preference for travel time is the least 

heterogeneous compared to attributes considered in this study. With a combination of the 

results from Tables 6.4 to 6.9, this implies that travel time is an essential factor for most 

truck drivers when making route choice decisions. In Cluster 0, Scenario 1, the truckers’ 

preference for toll alternatives only shows slight heterogeneity. In contrast, truckers’ 

preference in Cluster 1 of this scenario shows notable heterogeneity on the use of 

tollways. Additionally, the truck drivers’ preference for using a road that does not 

contains any local road segments displays tremendous heterogeneity in Scenario 1.  

Compared to Scenario 1, most of the truckers in Scenario 2 think that using a 

route that only contains interstate highways or state highways is important, shown by the 

last three columns in Table 6.10. The preference of travel time displays slightly higher 

heterogeneity than the highway indicator.  

Additionally, the preference of truck drivers varies drastically on the CF, which 

indicates that drivers’ preference diverges largely on whether to use a route with many 

shared segments. In summary, it is found that the most significant attribute has the least 

preference heterogeneity while the least significant parameter has the most remarkable 

preference heterogeneity.   

6.3.  The estimated value of travel time savings  

This part analyzes the value of travel time savings (VTTS) from the proposed 

models. The kernel densities of the VTTS reflected by the random coefficient in each 

model are listed in Figure 6.30. Since the kernel density has a very long right tail, the 
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density shown in the graph is truncated, with records that fall out of the 0.5th and 99.5th 

percentile removed for a better representation of the majority. In Scenario 1, Cluster 0, 

three models reported a similar mean estimation of the VTTS while the estimated 

variance displays a large discrepancy.  

 

Figure 6.30 Kernel density of value of travel time savings. 

(A1-A3) Kernel density of VTTS for Scenario 1, Cluster 0. (B1-B3) Kernel density of 

VTTS for Scenario 1, Cluster 1. The red dashed line in each subplot displays the mean 

of each density. 

 

 

The mean VTTS from BMCL is $110.3056 per hour, and the variance is 

205,771.3. The mean VTTSs from HBMCL1 and HBMCL2 are $112.3983 per hour and 

$113.4255 per hour, with a variance of 794.5488 and 30,444.79, respectively.  
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In contrast to Cluster 0, the discrepancy in the mean VTTS reported by each 

model in Cluster 1 varies notably. The mean and variance in BMCL are $70.20283 per 

hour and 457,290.2. The mean VTTS reported by HBMCL1 is $122.3652 per hour and 

$152.5073 per hour. Similar to Scenario 0, the variances in VTTS from each model in 

Scenario 1 differ from each other, which are 457,290.2, 1,275.678, and 5,524.264, 

respectively.  

Moreover, with a comparison of Figure 6.2 (A1), (A2), and (A3), it is pointed out 

that HBMCL2 and HBMCL1 have a much more concentrated distribution of the VTTS 

than does BMCL, which indicates that adding additional hierarchy to the variance of the 

Bayesian model contributes to smaller variances of the estimated parameters.  

6.4. Predicted percentages of road use 

This section displays the predicted road use percentages of BMCL, HBMCL1, 

and HBMCL2, which are exhibited in Figure 6.31 and 6.32. As shown in the cross-

validation process that the proposed model outperforms the C-logit model, each route’s 

predicted probabilities among all clusters of the proposed models are closer to the true 

probability, compared to the C-logit model with fixed parameters. In each figure, the 

black bar stands for the true probability, and bars with different colors stand for models 

used. In the first cluster of Scenario 1, even though 12 routes are included, 

approximately 90% of the trips are on route 60. The HBMCL1 provides the closest 

prediction of the route probability, followed by the HBMCL2.  

All the proposed models give the highest predicted percentage on route 60. The 

main difference among those three models is the probability of route 42, 86, and 198. 
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Since there are 12 routes in this cluster, even though the C-logit did not perform well in 

probability prediction, the maximum prediction error is still close to the proposed 

models.  

 

 

 

Figure 6.31 Probability by path (Scenario 1). 

(A) Predicted probability, Cluster 0.  
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Figure 6.31 Continued. 

(B) Predicted probability, Cluster 1.  (C) Predicted probability, Cluster 2. 
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Cluster 1 shows a similar trend as shown by Cluster 0. The most notable 

difference between the true probability and the predicted probability is observed in 

Cluster 2. The four routes in Cluster 2 have a similar probability of being used, yet the 

C-logit provides a distinct prediction on their probabilities. Route 12, for example, is 

significantly underestimated with a predicted probability close to 0, whereas the true 

probability is about 25%. In Scenario 2, the HBMCL1 provides more accurate 

predictions than other models do in Cluster 0 and 1. The BMCL, however, has the most 

precisely predicted probability in Cluster 2.  

 

 

 

Figure 6.32 Probability by path (Scenario 2). 

(A) Predicted probability, Cluster 0.  
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Figure 6.32 Continued. 

(B) Predicted probability, Cluster 1. (C) Predicted probability, Cluster 2. 
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Among the proposed models, the HBMCL1 performs the best with five over six 

clusters, followed by the HBMCL2. One possible reason that HBMCL2 did not perform 

as well than did HBMCL1 is that the starting value of hyperparameters is far from the 

true value, making the algorithm converged to a local optimum that is not close to the 

global optimum. Consequently, considering the implementation difficulty and the fact 

that the HABMXL2 does not converge in two cases (Scenario 2, Cluster 2 and Scenario 

1, Cluster 0), it is highly recommended that the proposed HBMCL1 model be used by 

practitioners. 
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7. CONCLUSION AND DISCUSSION 

 

This study has adopted a mixed C-logit model to study the truck route choice 

problem and introduced Bayesian models for the first time to calibrate the parameters in 

the utility function. Three Bayesian models are proposed with different hyperparameters, 

namely, BMCL, HBMCL1, and HBMCL2, and they are applied to the GPS dataset 

collected in Dallas, Texas. By using the calibrated utility function, truck route choice 

probabilities may be calculated. A unique feature of this study is that the coefficient of 

each attribute is a random variable and is assumed to follow a predetermined probability 

distribution. The dispersion of the random coefficients can thus reflect drivers’ 

preference heterogeneity, which is the primary contribution of this study. The secondary 

contribution of this study is the application of a clustering method to the map-matching 

process in preprocessing the trip itinerary data. The major findings and limitations of this 

study are specified below.  

First, the 10-fold cross-validation process is used when comparing the proposed 

model to other machine learning methods. Even though the block coordinate ascend 

algorithm of the mean-field variational Bayesian inference procedure cannot guarantee a 

global maximization of the ELBO, it still provides superior performance in prediction 

accuracy. The result shows that even though the third model has the most informative 

prior, it does not always perform best with the GPS dataset used in this study. The 

reason is that for real datasets, one usually cannot derive a proper guess for the prior. 

Using a strongly informative prior is thus risky in such a situation since a strongly 
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informative prior that is not close to the truth would impede the model prediction. 

Consequently, a complex model does not always result in better performance; the 

tradeoff between the model complexity or informativity of priors and model prediction 

needs to be considered for practitioners. 

Additionally, the all-random parameter setting of the mixed C-logit model 

introduced in this paper strengthens the model stability. The preference heterogeneity is 

a major consideration for this study. According to Hess and Train (2017), the mixed 

logit models with fully correlated utility coefficients account for scale heterogeneity and 

other correlation sources. The scale preference refers to the individual preference 

variation on the relative weight of attributes that are not included in the utility function 

to attributes that are included. With a random parameter setting, the proposed model can 

address both scale and preference heterogeneity. We have found that drivers have a 

consistent preference for travel time, toll price, and the S/IS indicator. In contrast, the 

taste for truck delay and network density varies greatly among truckers.  

Second, among all the attributes that affect truck drivers’ perceived route 

utilities, travel time and road classification are equally crucial in route selection. 

Generally, in this study, truckers tend to use a path with a short travel time and without 

local segments. Three of five clusters indicate that travel time is more significant than 

the existence of local segments. This finding is in line with most of the existing studies, 

such as Sharma et al. (2019), Feng et al. (2013), and Tsirimpa et al. (2019). The truck 

delay per lane is correlated to truck AADT. Both positive and negative effects are 

observed in the results, which shows that the drivers did not display a specific persistent 
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preference for the number of trucks on the route. The CF, which shows the truckers’ 

preference for network density, has the smallest effect on the perceived utility, compared 

to other attributes. By comparing the results of Scenario 1 and of Scenario 2, it is 

concluded that when toll price is included, the importance of the route level of service in 

perceiving route utility is reduced.   

Third, after the proposed models are applied independently of each cluster, the 

mean VTTS of the drivers varies from $70 per hour to $150 per hour. The freight value 

of travel time savings according to the Federal Highway Administration range from $25 

per hour to $200 per hour, based on the commodity type and other factors (FHWA, 

2001). The mean values of travel time savings from this study are generally above the 

national freight carriers’ average level. It is observed from the kernel density of the 

VTTS that the HBMCL1 provides the most concentrated density, followed closely by 

the HBMCL2. The kernel density of the VTTS from BMCL displays a large dispersion 

with heavy tails on both sides of the density.   

Last but not least, the implement of the k-mean clustering procedure in the map-

matching process shows that using the CF as clustering input can effectively part the 

whole choice set into subsets in which only sub-trip relevant alternatives are included, 

and therefore it notably reduces the effect of sub-trips of the route choice model. A sub-

trip is a section of a trip with intermediate stops for fueling, breaks, or drop-offs/pick-

ups. The clustering method can avoid splitting single trips at intermediate destinations 

and thus reduces the number of O-D pairs, compared to the way that each sub-trip is 
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treated an independent trip. Eventually, each O-D pair’s probabilities can be calculated 

with a nested structure. 

This study has several limitations. First, the drivers’ number of choice situations 

is pre-set to be 50, resulting in the incomplete use of the data. In future studies, the 

algorithm may be modified to allow for a flexible number of individuals. Second, the 

starting values of the variational parameters as well as the guess for the priors are 

arbitrarily determined. As the block coordinate algorithm converges to local maximums, 

results need to be derived with multiple trials.   

Third, the maximum prediction error reported in the model application to the 

GPS dataset is larger than that of the simulation test, which implies that attributes that 

are assumed to affect the perceived utilities in this study may not be complete. The 

availability of data limits the scope of this study. Generally speaking, truck operations 

are complicated processes, and the route choices of truckers vary with context. State and 

local regulations, shipping options, commodity types as well as requirements from 

different stakeholders all contribute to the routing of truckers. Future studies are 

encouraged for further exploration of truck route choice with comprehensive 

consideration of the operating context.  
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APPENDIX A 

CROSS VALIDATION ERROR 

 

 

Table A-1 Error of cross-validation of Scenario 1. 

Model 

  

Scenario1 

Cluster0 Cluster1 Cluster2 

mean variance mean variance mean variance 

C-logit 0.9095 0.0028 0.8298 0.0066 0.8179 0.0003 

Lasso 0.9095 0.0028 0.8298 0.0066 0.8179 0.0003 

LDA 0.9010 0.0040 0.8844 0.0039 0.7777 0.0289 

KNN 0.9298 0.0024 0.9152 0.0082 0.8642 0.0142 

CART 0.9149 0.0054 0.8837 0.0075 0.8374 0.0144 

NB 0.9316 0.0025 0.9339 0.0055 0.9178 0.0101 

SVM 0.9310 0.0024 0.9308 0.0049 0.9204 0.0131 

RF 0.9052 0.0014 0.8552 0.0085 0.8222 0.0302 

MLP 0.9239 0.0033 0.9176 0.0064 0.7561 0.1039 

BMCL 0.9196 0.0055 0.9557 0.0081 0.9474 0.0169 

HBMCL1 0.9380 0.0026 0.9609 0.0103 0.9794 0.0126 

HBMCL2 0.9306 0.0345 0.9480 0.0409 0.9776 0.0124 
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Table A-2 Error of cross-validation of Scenario 2. 

Model 

Scenario2 

Cluster0 Cluster1 Cluster2 

mean variance mean variance mean variance 

C-logit 0.8070 0.0065 0.9182 0.0041 0.8793 0.0053 

Lasso 0.8070 0.0065 0.9182 0.0041 0.8793 0.0053 

LDA 0.7416 0.0257 0.8852 0.0065 0.7300 0.0195 

KNN 0.8122 0.0072 0.9155 0.0049 0.8858 0.0073 

CART 0.7527 0.0078 0.8927 0.0070 0.8664 0.0053 

NB 0.8327 0.0071 0.9290 0.0068 0.8966 0.0057 

SVM 0.8302 0.0068 0.9255 0.0062 0.8973 0.0061 

RF 0.8094 0.0019 0.8841 0.0011 0.7854 0.0096 

MLP 0.7489 0.0020 0.9203 0.0070 0.8874 0.0064 

BMCL 0.9056 0.0198 0.9582 0.0156 0.9420 0.0285 

HBMCL1 0.9154 0.0151 0.9634 0.0191 0.9442 0.0403 

HBMCL2 0.9121 0.0107 0.9691 0.0183 0.9444 0.0459 
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APPENDIX B 

PREDICTED PROBABILITIES 

 

Table B-1 Predicted probabilities for Scenario 1. 

Path True 

probability 

Predicted probability 

Cluster0 BMCL HBMCL1 HBMCL2 C-logit 

28 0.0024 0.0073 0.0024 0.0073 0.0000 

42 0.0201 0.0404 0.0245 0.0257 0.0332 

60 0.5479 0.4892 0.5100 0.5039 0.4856 

86 0.0137 0.0196 0.0257 0.0147 0.0488 

106 0.0051 0.0122 0.0061 0.0049 0.0019 

120 0.0001 0.0000 0.0000 0.0000 0.0000 

134 0.0001 0.0000 0.0000 0.0000 0.0000 

192 0.0016 0.0000 0.0024 0.0024 0.0000 

198 0.0068 0.0159 0.0159 0.0122 0.0365 

263 0.0056 0.0171 0.0086 0.0073 0.0033 

282 0.0022 0.0049 0.0086 0.0098 0.0000 

289 0.0059 0.0049 0.0073 0.0232 0.0021 
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Table B-1 Continued. 

Cluster1  

3 0.0069 0.0092 0.0048 0.0055 0.0225 

43 0.0055 0.0067 0.0078 0.0078 0.0058 

64 0.0272 0.0313 0.0302 0.0308 0.0422 

107 0.0007 0.0000 0.0006 0.0000 0.0000 

117 0.0040 0.0022 0.0062 0.0050 0.0027 

119 0.0878 0.0805 0.0814 0.0801 0.0653 

184 0.0035 0.0081 0.0034 0.0050 0.0000 

185 0.0043 0.0017 0.0056 0.0056 0.0013 

Cluster2  

8 0.0398 0.0370 0.0403 0.0395 0.0141 

11 0.0561 0.0504 0.0529 0.0521 0.0865 

12 0.0505 0.0487 0.0495 0.0529 0.0027 

69 0.0636 0.0739 0.0672 0.0655 0.1067 

Cluster3  

222 0.0042 0.0042 

Clurste4  

20 0.0345 0.0345 
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Table B-2 Predicted probabilities for Scenario 2. 

Path True 

probability 

Predicted probability 

Cluster0 BMCL HBMCL1 HBMCL2 C-logit 

2 0.0096 0.0120 0.0112 0.0112 0.0018 

12 0.0089 0.0130 0.0116 0.0116 0.0105 

16 0.0167 0.0193 0.0200 0.0186 0.0346 

17 0.0170 0.0246 0.0246 0.0267 0.0410 

24 0.1235 0.1068 0.1083 0.1076 0.0878 

Cluster1  

0 0.0126 0.0149 0.0158 0.0120 0.0183 

5 0.0006 0.0011 0.0032 0.0029 0.0000 

6 0.0312 0.0282 0.0309 0.0260 0.0593 

7 0.0158 0.0275 0.0201 0.0275 0.0128 

9 0.2264 0.2148 0.2166 0.2181 0.1961 

Cluster2  

19 0.1136 0.0710 0.1118 0.1226 0.2201 

31 0.0568 0.0258 0.0484 0.0430 0.0324 

33 0.0422 0.0280 0.0355 0.0409 0.0096 

37 0.3252 0.4130 0.3420 0.3312 0.3025 

 

 

 




