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ABSTRACT 

 

Effective analysis is a key to the science of data analytics. Substantial advancement 

in data analytics and science has been made. Yet, there is still a rationale and validity for 

further research and more studies because the existing popular subgroup identification 

models, such as regression trees, are not effective in some cases. This dissertation is a 

serious endeavor to tackle those cases and devise better subgroup identification models.  

Regression tree models have been widely used for subgroup identification in 

various domains such as social sciences, education, and healthcare informatics. However, 

a direct application of regression trees cannot satisfy the specific needs and may miss 

actually existing subgroups or identify misleading subgroups, because of challenging 

situations in practice. This dissertation focuses on modifying and extending regression 

trees for subgroup identification to address some uncharted situations, including i) 

developing correlation trees for cases where correlation, instead of regression, is of interest, 

ii) developing robust logistic regression trees to address outlier problems, and iii) 

exploring the potentials of generalized extreme value regression trees and Firth's logistic 

regression trees for modeling imbalanced class data. 

This research is an interdisciplinary study on the interaction of advanced statistical 

modelling and machine learning approaches to identify heterogeneous subgroups to 

conquer the challenges in various fields and practices. The proposed models provide 

tangible insights, theories, and exploratory tools for subgroup identification. The research 

is expected to be widely applicable to various fields such as personalized medicine and 
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optimal psychological interventions where subgroup analysis is the main concern. The 

potential impact of this research is intended for academia and industry and society in 

general. 
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CHAPTER I  

INTRODUCTION  

 

I.1 Motivation 

Proper data collection and its pursuant effective analysis are keys to the science of 

data analytics. Substantial advancements in data analytics and science have been made. 

One of the advancements is to handle heterogeneity of observations in data. For example, 

in healthcare data, there is substantial heterogeneity of patients, together with a large 

number of variables and complex data structures. A global model is often not adequate to 

explain such complex data. This necessitates a revision of the comprehensive model so 

that the new model can be flexible enough to interpret and accommodate the heterogeneity 

to help policymakers and clinicians in making decisions tailored to the subpopulations.  

Many studies have been done for subgroup identification, but this topic is still an 

underdeveloped area and more research is needed to tackle special problems in reality. 

This dissertation is a serious endeavor to this area. 

The general topic of subgroup identification has attracted much attention in the 

clinical trial and biostatistics community [1]. Basically, subgroup identification aims to 

identify the right patients for a particular treatment and thus discover subpopulations that 

would have enhanced benefits from the treatment. Likewise, subgroup identification is 

able to find the right treatment for the particular patient and thus identify optimal treatment 

policy or plan for a given subpopulation. This implies that heterogeneous treatment effect 

exists and the effect can be characterized by the interaction of the treatment with patient’s 
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characteristics. For those purposes, a number of methods for subgroup identification have 

been developed in the field of personalized medicine and clinical drug development [2-

12]. 

However, the idea of subgroup identification is not limited to clinical trial 

applications. In manufacturing systems, we can identify the heterogeneous effects of the 

particular machine/process (i.e., the counterpart of treatment in clinical trial applications) 

on defective products with interactions of other machines/processes. Also, practitioners 

can discover sets of processes that benefit from a particular maintenance plan most, which 

can lead to substantial increase in yields in the manufacturing line. In healthcare 

applications, hospitals can single out groups of patients with different morbidities, 

mortalities or readmission rates and further achieve optimal resource allocation and best 

practices by group-specific care management. Thus, this dissertation does not confine 

subgroup identification to the topic of clinical trial applications, but instead aims to devise 

better subgroup identification models applicable to many other applications. 

This dissertation benchmarks regression trees for subgroup identification. As a 

class of decision trees, regression trees are able to handle nonlinear relationships and 

heterogeneity of data by recursively partitioning the covariate space into subgroups and 

fitting a regression model for each resulting subgroup. By identifying subgroup-specific 

regression models, a regression tree not only explains the data better, but also preserves 

the good interpretability of regression models. An example of regression tree is given in 

Figure I.1, where there are two split variables (gender and age), X is the predictors (e.g., 

patient’s risk factors), y is the response (e.g., outcome of medical procedure) and 𝑓(𝑿; 𝜽) 
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is a regression model with coefficients θ. Note that some regression trees use every 

covariate as both predictor and split variable, while others specify the role of covariates 

(only for splitting, only for regression, or for both splitting and regression). In this example, 

the split variables and predictors are exclusive with each other. In Figure I.1, the 

population is divided into three subgroups according to gender and age, producing three 

regression models with different coefficients. These subgroup-wise models reflect the 

heterogeneous effect of patient’s risk factors on outcomes of the medical procedure. 

 

Figure I.1 Illustrative example of regression tree 

Linear regression trees and logistic regression trees are two examples of regression 

trees. As mentioned above, these tree models have been widely used for subgroup 

identification in domains like social sciences, biomedical engineering and healthcare 

studies. However, existing regression trees are not able to cope with some special aspects 

of practical problems in those domains. In this dissertation, we consider three of those 

special issues and extend the existing tree models to solve them: 1) subgrouping based on 

correlation instead of regression, 2) addressing outlier problems, and 3) modelling 

imbalanced class data. 
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I.2 Research objective and challenges 

I.2.1 Correlation trees for subgroup identification in brain-behavior analysis 

Correlation is the most widely used measure for quantifying strength of the 

relationship between two variables. It is natural that correlation depends on the condition 

of other covariates. For example, in neural correlates study aiming to understand the neural 

basis of human experiences in cognitive processes, the brain-behavior correlation is a 

primary measure for study. As this correlation depends on subject-related covariates such 

as age and gender, it is common that simple subgroups (e.g., old vs. young and male vs. 

female) are specified according to common sense or prior knowledge from the literature. 

However, such a primitive approach of subgroup identification has many problems. First, 

it suffers from difficulties in forming subgroups by continuous covariates like age. The 

appropriate cutting point to different age groups (e.g., young vs. old) is usually not obvious 

and depends on the nature of the study. Second, a single covariate, either age or gender, is 

used in most studies, which is limited for explaining the correlation. Other related 

covariates (e.g., education, health conditions) should be considered for better subgrouping. 

Finally, interaction of covariates may also affect the brain-behaviour correlation and thus 

need to be considered. This study proposes an approach called correlation tree for 

automatic subgroup identification in such correlation analysis and provide meaningful 

objective functions to meet various needs in practice. 

I.2.2 Addressing outliers in subgroup learning for outcome data in healthcare 

Measuring healthcare outcomes has become highly essential for quality of care 

assessment, improvement and evidence-based practice. Outcome measures usually have 
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different relationships with covariates such as physiological and treatment variables 

among patients. Therefore, subgroup-wise modelling is indispensable for healthcare 

professionals. Logistic regression trees can serve this purpose by recursively partitioning 

the covariates space into a number of subgroups in such a way that a single logistic 

regression adequately fits the data in each subgroup. However, real-world data do not 

always conform to the familiar/normal structures and can be contaminated by aberrant 

observations such as outliers.  

Outliers often exist in real data. In general, outliers are defined as observations that 

are extremely deviated from the bulk of data (Hawkins, 1980). They may have substantial 

effect in regression analysis, especially when the least squares method is used for model 

fitting. The least squares method aims to minimize the sum of residuals, so it tends to 

avoid large residuals by nature. Consequently, outliers are accommodated at the expense 

of poor fit for the majority of data. To the best of our knowledge, the outlier problem has 

not been studied in the context of tree models. As mentioned before, tree models involve 

two aspects: covariate space splitting (i.e., subgroup identification) and model fitting for 

each subspace. The effect of outliers on the fitting aspect is similar to that in regression 

(i.e., causing a poor fit), but the effect of outliers on the splitting aspect is still unknown. 

It is believed that classification trees are relatively robust against outliers as their splitting 

criteria are functions of proportions of classes which are not highly sensitive to outliers. 

However, regression trees where the splitting is based on variance of data may be affected 

seriously. For example, they may fail to split a node that should be split due to outliers, 

resulting in misleading subgroups. This dissertation considers the outlier problem for 
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subgroup identification in logistic regression trees and develops a robust logistic 

regression tree approach against the outlier effect. 

I.2.3 Subgroup identification for imbalanced class data 

With years of quality improvement efforts in many applications, the number of 

adverse outcomes like mortality is gradually decreasing. It has been known that 

conventional binary outcome modelling methods are meant to favor the majority class and 

tend to underestimate the probability of the minority class in prediction. Thus, most 

methods have primarily prioritized the improvement on prediction accuracy of the 

minority class. However, the methods designed for improving prediction accuracy may 

not work well in the context of subgroup identification. This dissertation tries to better 

understand such an imbalanced class issue in the context of subgroup identification 

beyond prediction and proposes new binary regression trees for subgroup identification 

for imbalanced class data. 

I.3 Organization of the dissertation 

This dissertation is organized as follows. Chapter II develops a correlation tree for 

subgroup identification. The correlation tree automatically identifies subgroups with 

different correlations through systematic unbiased split variable selection and the 

estimation of the optimal cutpoint for the selected split variable. In particular, the proposed 

correlation trees handle both linear and non-linear correlation measures and provide three 

types of practical objective functions to meet needs in various applications. 
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Chapter III is dedicated to studies on the outlier problem in the context of 

subgrouping by logistic regression trees. This study is to reveal the effect of outliers on 

subgroup learning by simulation and propose a logistic regression tree robust to outliers. 

To demonstrate the effectiveness of the proposed robust logistic regression tree, we 

incorporate down-weighting and outlier detection method with logistic regression trees 

and compare the performance of the three methods. 

Chapter IV concerns the imbalanced class problem in subgroup identification. Two 

binary regression trees are proposed and their performance is compared with that of the 

conventional logistic regression tree under different degrees of balance by simulation. 

Through this study, we provide better understanding on the three methods and their 

advantages in modeling imbalanced class data. 

Chapter V summarizes this dissertation and highlights its contributions. We also 

discuss potential future directions of this dissertation study. 
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CHAPTER II  

A RECURSIVE PARTITIONING APPROACH FOR SUBGROUP IDENTIFICATION 

IN BRAIN-BEHAVIOUR CORRELATION ANALYSIS* 

 

In neural correlates studies, the goal is to understand the brain-behaviour 

relationship characterized by correlation between brain activation responses and human 

behaviour measures. Such correlation depends on subject-related covariates such as age 

and gender, so it is necessary to identify subgroups within the population that have 

different brain-behaviour correlations. The subgrouping is made by manual specification 

in current practice, which is inefficient and may ignore potential covariates whose effects 

are unknown in the literature. This study proposes a recursive partitioning approach, called 

correlation tree, for automatic subgroup identification in brain-behaviour correlation 

analysis. In constructing a correlation tree, the split variable at each node is selected 

through an unbiased variable selection method based on partial correlation test, and then 

the optimal cutpoint of the selected split variable is determined through exhaustive search 

under an objective function. Three types of meaningful objective functions are considered 

to meet various practical needs. Results of simulation and application to real data from 

optical brain imaging demonstrate effectiveness of the proposed approach. 

                                                 
*Reprinted with permission from “A recursive partitioning approach for subgroup 

identification in brain-behaviour correlation analysis” by Doowon Choi, Lin Li, Hanli Liu 

and Li Zeng, Pattern Analysis and Applications, 23(1), 161-177, Copyright ©  2019, 

Springer-Verlag London Ltd., part of Springer Nature. 
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II.1 Introduction 

Neural correlates is widely studied in disciplines like neuroscience, biomedical 

engineering, and brain research [13-15]. The brain is a complicated system comprised of 

an infinite number of neurons responsible for various tasks. The aspiration of neural 

correlates studies is to understand the neural basis of human experiences in cognitive 

processes such as decision making by revealing the brain-behaviour relationship. 

Typically, changes in brain parameters (e.g., blood flow, electrical signal) during a process 

are acquired by imaging techniques such as functional magnetic resonance imaging (fMRI) 

and electroencephalography (EEG), and then correlation between those data and human 

behaviour measures is studied. As the brain-behaviour correlation depends on subject-

related covariates such as age and gender, it is common in such studies that simple 

subgroups (e.g., old vs. young, male vs. female) are specified according to common sense 

or prior knowledge from literature, and correlation analysis is conducted for each 

subgroup separately [16-18]. This will reveal population heterogeneity in cognitive 

patterns as well as better explain the brain-behaviour correlation. 

This primitive approach of subgroup specification has many problems. First, it 

suffers from difficulties in forming subgroups by continuous covariates like age. The 

appropriate cutting point to different age groups (e.g., young vs. old) is usually not obvious 

and depends on the nature of the study; specification based on convention in the literature 

may not work. Second, a single covariate, either age or gender, is used in most studies, 

which is limited for explaining the correlation. Other related covariates (e.g., education, 

occupation, health conditions) should be considered for better subgrouping. In presence 
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of more than one covariates, an automatic approach is needed to select important 

covariates and group the population based on the selected covariates. Finally, interaction 

of covariates may also affect the brain-behaviour correlation and thus need to be 

considered. For example, it is often the case that certain difference between males and 

females depends on age, so incorporating the interaction of gender and age will make 

results more interpretable. In summary, there needs a general, advanced data analytics 

framework for automatic subgroup identification in the brain-behaviour correlation 

analysis. 

Recursive partitioning is a popular approach for subspace segmentation in 

regression and classification analysis, known as decision trees. Here we adapt it to the 

considered subgroup identification problem. The proposed approach, called correlation 

tree, identifies subgroups with different brain-behaviour correlations via recursive binary 

partitioning. In addition to the identified subgroups, this approach also provides a 

convenient and rigorous way to find important covariates, as split variables in the tree, 

associated with the correlation through an unbiased variable selection method. Moreover, 

we consider both linear and nonlinear correlations and three types of meaningful objective 

functions in tree splitting to meet various needs in practice. It is worth mentioning that 

although the proposed approach is illustrated using the neural correlates studies in this 

paper, it can be easily applied to other correlation analysis. 

The remainder of this paper is organized as follows. Section II.2 reviews related 

literature, including basics of correlation measures and concept and popular algorithms of 

decision trees. Section II.3 describes the proposed correlation tree. A simulation study is 
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presented in Section II.4 to validate the variable selection method as a critical component 

of the proposed approach. Section II.5 applies the approach to real data from an optical 

brain imaging study. Section II.6 concludes the chapter and discusses future research. 

II.2 Literature review 

II.2.1 Correlation measures 

Correlation is the most widely used measure for quantifying strength of the 

relationship between two variables. It is measured by a statistic called correlation 

coefficient which is a dimensionless quantity in the range [1, +1]. A zero correlation 

coefficient indicates that no relationship exists between the two variables, while a value 

being 1 or +1 indicates a perfect (negative or positive) relationship. If the correlation 

coefficient is positive, it means that when one variable increases or decreases, the other 

one also increases or decreases, i.e., they follow the same trend. A negative correlation 

coefficient means that they follow opposite trends. In neural correlate studies, the sign of 

correlation between brain parameter and behavior measure has a specific interpretation 

regarding human cognitive patterns, as shown in Section II.5. 

There are two types of correlation measures depending on the nature of the 

relationship: linear and nonlinear correlation measures. The first one measures how 

strongly two variables are linearly proportional to each other. A popular measure of this 

type is Pearson’s correlation coefficient. The second one concerns non-linear or general 

correlation. Examples of this type are Spearman’s rank correlation coefficient and 

Kendall’s Tau correlation coefficient [19]. They assess correlation using rank values of 
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variables and measure how well the relationship can be described by a monotonic function. 

The Spearman’s takes a similar form as Pearson’s correlation coefficient (i.e., covariance 

of the rank variables divided by their standard deviations), while the Kendall’s considers 

the concordance of the rank variables in every pair of observations. The more the 

concordant pairs are, the higher the correlation is. 

As an example, Figure II.1 illustrates the use of different correlation measures on 

simulated data of variables 𝑋1 , 𝑋2 . In Figure II.1(a) where the data exhibit a linear 

relationship, Pearson’s correlation coefficient (value = 0.811) and Spearman’s rank 

correlation coefficient (value = 0.792) are similar. In Figure II.1(b) where the data have a 

monotonic rather than linear trend, the Spearman’s (value = 0.842) is greater than the 

Pearson’s (value = 0.784). It is also robust to outliers as it is based on rank values.  

 

Figure II.1 Illustration of correlation measures 

II.2.2 Decision trees 

An example of decision tree is given in Figure II.2, where there are two predictors 

(age and blood pressure) and the response is outcome of surgery (D=died, A=alive). As 

shown in the left panel of Figure II.2, the decision tree splits the predictor space by age 
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and blood pressure such that the resulting subregions contain the most homogeneous 

surgical outcomes, and thus prediction can be performed within each subregion separately. 

The graphical representation of the tree model is shown in the right panel. The terminal 

nodes or leaves (i.e., nodes 2, 4, 5) represent the resulting subregions; the root node (i.e., 

node 1) and the internal node (i.e., node 3) indicate how the predictor space is split; and 

the segments of the tree that connect the nodes are called branches. In this example, the 

tree first splits the predictor space by blood pressure (less than or equal to 152 vs. greater 

than 152), and then further splits the region with blood pressure greater than 152 by age 

(younger than or equal to 58 vs. greater than 58), resulting in three subregions. 

The tree model is constructed through a recursive partitioning procedure that 

divides each node into two (or more) subnodes according to a cutpoint of certain predictor. 

In Figure II.2, the cutpoint of blood pressure is 152, while that of age is 58. Optimal 

splitting, including the optimal split variable and the optimal cutpoint of the variable, is 

involved in each iteration. It aims to improve an objective function that measures the 

fitting of data. The splitting stops when a pre-specified stopping rule is achieved. 

 

Figure II.2 Example of decision tree: recursively partitioned predictor space (left) and 

the graphical representation (right) 
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Depending on the type of the response variable, decision trees are categorized into 

two groups: classification trees for categorical response, and regression trees for 

continuous response. As the two variables involved in correlation analysis are continuous, 

regression trees are relevant to this study. There are two types of regression trees, 

piecewise-constant tree that uses a constant (i.e., mean of response values) for prediction 

in each subregion, and piecewise-linear regression tree that fits a linear regression model 

for the prediction. Popular algorithms of each type will be reviewed in detail in the 

following. 

The ancestor of piecewise-constant trees is the Automatic Interaction Detection 

(AID) algorithm [20]. By defining impurity as the sum of squared prediction errors at a 

node, AID iteratively searches the split variable that minimizes the sum of impurities at 

the two subnodes. The algorithm is terminated when the reduction in impurity is below a 

pre-determined fraction of the initial impurity. Classification And Regression Tree (CART) 

[21] is one of the most popular piecewise-constant trees. The tree learning approach is the 

same as in AID, except for a different way to control tree size. Rather than relying on 

stopping rules that prevent a tree from growing in advance, CART first grows a tree as 

large as possible, and then cuts it back to find a sub-tree that has the lowest cross-validation 

error. Note that controlling tree size through stopping criteria is called pre-pruning, while 

the approach CART uses is called post-pruning. Both are meant to improve the prediction 

performance and interpretability of the tree model. 

For piecewise-linear regression trees, Smoothed and Unsmoothed Piecewise 

POlynomial Regression Trees (SUPPORT) [22] is a typical algorithm. Rather than 
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simultaneously selecting split variable and its cutpoint as CART does, SUPPORT first 

goes through a variable selection step and then finds the optimal cutpoint of the selected 

variable. The advantage of such a two-step approach is that it can avoid selection bias for 

a split, i.e., variables with more possible cutpoints have higher chance to be selected, an 

intrinsic problem of CART and similar algorithms [23-26]. For the variable selection, 

SUPPORT first computes the residuals of a linear regression model at the node using all 

possible split variables and then divides data into two groups according to signs of 

residuals. Next, for each split variable, this algorithm compares its mean and variance in 

the two groups by two-sample t-test and Levene test [27]. The idea is that these parameters, 

which characterize the variable’s distribution, should not differ in the two groups if the 

fitted model is satisfactory. Finally, the variable that has most significant differences is 

chosen to split the node, and the cutpoint is the average of the two sample means. 

An extended version of SUPPORT is the Generalized, Unbiased, Interaction 

Detection and Estimation (GUIDE) algorithm [28] which can be used for both 

classification and regression. GUIDE can handle categorical predictors and interaction of 

predictors which are main limitations of SUPPORT. Unlike other regression trees, GUIDE 

first specifies the role of each predictor variable (only for splitting, only for regression, or 

for both splitting and regression) before starting tree building. For unbiased variable 

selection, GUIDE conducts chi-square independent test which allows split variables to be 

selected with equal probability. Specifically, at each node, a linear regression model is 

fitted using all predictor variables pre-defined only for regression or for both splitting and 

regression, and residuals are computed. Then, for each predictor variable that serves only 
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for splitting or for both splitting and regression, chi-square test is conducted to identify its 

association with the signs of residuals, which is essentially a lack of fit test. As chi-square 

test is designed for categorical variables, discretization is needed for continuous splitting 

variables in this step. The variable with the smallest p-value in the tests will be selected 

as the split variable, and the optimal cutpoint of this variable will be found by minimizing 

the total sum of squared residuals in the two subregions. 

II.3 The proposed approach 

Let 𝑋1 and 𝑋2 be two continuous variables, the correlation 𝜌 of which is of interest, 

and  𝐙 = {𝑍1 , 𝑍2 , … , 𝑍𝑘} be the set of covariates. For example, in neural correlates 

studies,  𝑋1 is a brain parameter (e.g., change in brain blood flow), 𝑋2 is a behaviour 

measure (e.g., response time to a stimulus), and 𝐙 consists of gender, age, education, etc. 

This study will build a correlation tree model using the covariates as split variables to 

identify subgroups with different correlations of 𝑋1 and 𝑋2. 

 

Figure II.3 Partitioning at each node in the proposed correlation tree 
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Like a regression tree, the correlation tree is constructed iteratively by splitting a 

node into several subnodes in each iteration. A binary splitting (i.e., two subnodes) is 

commonly used in regression trees literature, which will be followed in this study. The 

space partitioning at each node in the correlation tree is illustrated in Figure II.3. Formally, 

the problem is defined as follows: Given a split variable 𝑍𝑗, 1 ≤ 𝑗 ≤ 𝑘, and a cutpoint 𝑠 

of this variable, the current node (region) R is partitioned into two subregions 

𝑅1 = {𝐙|𝑍𝑗 ≤ 𝑠},   𝑅2 = {𝐙|𝑍𝑗 > 𝑠}. 

Assume  𝑛 samples {(𝑥11, 𝑥21, 𝐳1), (𝑥12, 𝑥22, 𝐳2), … , (𝑥1𝑛, 𝑥2𝑛, 𝐳𝑛)}  are available at the 

current node. Then data of 𝑋1 and 𝑋2 falling into these two regions are  

{(𝑥1𝑖, 𝑥2𝑖)}𝑖:𝐳𝑖∈𝑅1
,   {(𝑥1𝑖, 𝑥2𝑖)}𝑖:𝐳𝑖∈𝑅2

. 

Among all possible split variables and all possible cutpoints of each variable, we want to 

find the split variable and its cutpoint such that an objective function 

                                                               Ψ = 𝑓(𝜌1, 𝜌2)                                                (II.1) 

will be optimized, where 𝜌1 and 𝜌2 are correlations of 𝑋1 and 𝑋2 in the two subregions, 

and 𝑓 is a function of these two correlations which has meaningful interpretation (e.g., 

average of them). Examples of the objective function will be given in Section II.3.2.  

We will consider Pearson’s correlation coefficient and Spearman’s rank 

correlation coefficient as correlation measure. Pearson’s correlation coefficient 

of 𝑋1 and 𝑋2 is defined as 

𝜌 =  
𝐶𝑜𝑣(𝑋1, 𝑋2)

√𝑉𝑎𝑟(𝑋1) ∙ 𝑉𝑎𝑟(𝑋2)
, �̂� =

∑ (𝑥1𝑖 − �̅�1)(𝑥2𝑖 − �̅�2)𝑛
𝑖=1

√∑ (𝑥1𝑖 − �̅�1)2𝑛
𝑖=1 ∑ (𝑥2𝑖 − �̅�2)2𝑛

𝑖=1

. 
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Here 𝐶𝑜𝑣(𝑋1, 𝑋2) is covariance of 𝑋1 and 𝑋2 , and 𝑉𝑎𝑟(𝑋1) and 𝑉𝑎𝑟(𝑋2) are variances 

of 𝑋1 and 𝑋2.  �̂� is the estimate of the correlation at the current node using available data, 

where  �̅�1 and  �̅�2 are sample means of the two variables. Spearman’s rank correlation 

coefficient is simply the Pearson’s using rank data [29] 

𝜌 =
𝐶𝑜𝑣(𝑟𝑋1

, 𝑟𝑋2
)

√𝑉𝑎𝑟(𝑟𝑋1
) ∙ 𝑉𝑎𝑟(𝑟𝑋2

)

, �̂� =
∑ (𝑟𝑥1𝑖

− �̅�𝑥1𝑖
)(𝑟𝑥2𝑖

− �̅�𝑥2𝑖
)𝑛

𝑖=1

√∑ (𝑟𝑥1𝑖
− �̅�𝑥1𝑖

)
2𝑛

𝑖=1 ∑ (𝑟𝑥2𝑖
− �̅�𝑥2𝑖

)
2𝑛

𝑖=1

,  

where 𝑟𝑋1
and 𝑟𝑋2

 are the rank variables of 𝑋1 and 𝑋2. The tree is a linear correlation tree 

(LCT) when the Pearson’s is used and a non-linear correlation tree (NCT) when the 

Spearman’s is used. 

Our proposed algorithm solves the partitioning problem illustrated in Figure II.3 

in two steps: first selecting the optimal split variable 𝑍𝑗
∗ and then finding the optimal 

cutpoint 𝑠∗ of the selected variable. As in SUPPORT and GUIDE, the variable selection 

step is meant to eliminate selection bias on split variables. When a tree searches the 

optimal split variable and optimal cutpoint simultaneously, covariates with more possible 

cutpoints are favoured because they can generate bigger, finer solution spaces in 

optimization. For example, assume  𝑍1 is a continuous variable with  𝐿  distinct values 

and 𝑍2 is a categorical variable with 𝑀 categories. Then 𝑍1 has (𝐿 − 1) possible cutpoints, 

while 𝑍2 has (2𝑀−1 − 1) possible cutpoints. If (𝐿 − 1) >  (2𝑀−1 − 1), 𝑍1 is more likely 

to be selected than 𝑍2; otherwise 𝑍2 is more likely to be selected. To enable unbiased 

selection of split variables, a method based on partial correlation test is proposed to find 

the optimal split variable. The unbiasedness of this method is validated by simulations in 
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Section II.4. The optimal cutpoint of the selected variable will be obtained via exhaustive 

search to optimize a pre-defined objective function. Details of these two steps will be 

given as follows, together with how to control tree size to ensure good interpretability and 

an analysis of time complexity. 

II.3.1 Variable selection 

Intuitively, the optimal split variable 𝑍𝑗
∗ at each node should be the covariate in the 

set {𝑍1, 𝑍2, …, 𝑍𝑘} that explains the correlation of 𝑋1 and 𝑋2 most. The proposed method 

for variable selection uses partial correlation test to find this variable. Before elaborating 

this method, we first introduce the concept of partial correlation. For each covariate 𝑍𝑗, 

the partial correlation 𝜌𝑋1𝑋2 ∙𝑍𝑗
 measures strength of the relationship between 𝑋1 and 𝑋2 

after adjusting for the effect of 𝑍𝑗  [30]. More precisely, 𝜌𝑋1𝑋2 ∙𝑍𝑗
 is the correlation of the 

remaining parts of 𝑋1 and 𝑋2 after partialing out the effect of 𝑍𝑗 on them. One can regard 

that the partial correlation is the reciprocal information between  𝑋1 and 𝑋2 that is not 

explained by 𝑍𝑗 . Figure II.4 illustrates this idea, where the partial correlation 𝜌𝑋1𝑋2 ∙𝑍𝑗
 is 

represented by the blue area. 

Given the above definition of partial correlation, we can draw the following 

insights: If 𝜌𝑋1𝑋2 ∙𝑍𝑗
 is equal to the regular correlation  𝜌𝑋1𝑋2

, it means that  𝑍𝑗  is 

independent of the correlation of  𝑋1 and  𝑋2 . The higher  𝜌𝑋1𝑋2 ∙𝑍𝑗
 is, the less the 

covariate 𝑍𝑗  explains the correlation of 𝑋1 and 𝑋2, and vice versa. In other words, the 

magnitude of the partial correlation is inversely proportional to the extent to 

which 𝑍𝑗  explains the correlation of 𝑋1 and 𝑋2 which is represented by the red area in 
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Figure II.4. Therefore, the optimal split variable 𝑍𝑗
∗ is supposed to have the smallest degree 

of partial correlation (i.e., the smallest blue area, or equivalently, the largest red area). 

 

Figure II.4 Illustration of partial correlation 

Based on this idea, the optimal split variable can be found by the following steps: 

First, calculate the sample partial correlation coefficient  �̂�𝑋1𝑋2 ∙𝑍𝑗
 for each 

covariate  𝑍𝑗  using available data at the current node. Second, test whether the partial 

correlation is zero (i.e.,  𝐻0:  𝜌𝑋1𝑋2 ∙𝑍𝑗
= 0 𝑣𝑠. 𝐻1:  𝜌𝑋1𝑋2 ∙𝑍𝑗

≠ 0)  using  �̂�𝑋1𝑋2 ∙𝑍𝑗
. In 

general, the null distribution of  �̂�𝑋1𝑋2 ∙𝑍𝑗
is complicated, so there is no simple test directly 

based on it. To solve this problem, we can apply the Fisher’s 𝒵-transformation to the 

sample partial correlation 

𝒵 =
1

2
𝑙𝑛 (

1+ �̂�𝑋1𝑋2 ∙𝑍𝑗

1− �̂�𝑋1𝑋2 ∙𝑍𝑗

).    
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It is known that 

                                                         𝑊 = √𝑛 − 𝑑 − 3 ∙ 𝒵                                                         (II.2)                                                                                               

approximately follows a standard normal distribution, where n is the number of samples 

and d is the number of adjusting variables [31]. 𝐻0 is rejected if |𝑊| > Φ−1(1 − 𝛼/2), 

where Φ−1 is the inverse cumulative distribution function of the standard normal 

distribution and 𝛼 is the significance level. P-value of the test will be obtained. Finally, 

compare p-values of all covariates in the partial correlation test. The covariate with the 

largest p-value (indicating the least significant partial correlation) will be selected as the 

single optimal split variable. The algorithm is summarized in Table II.1. 

Table II.1 The proposed algorithm for split variable selection 

Algorithm 1  

1. Main effect test: For each covariate 𝑍𝑗, fit a linear regression model of 𝑋1 using 

it and compute the residuals 𝜖𝑋1~𝑍𝑗
; similarly, obtain the residuals of 𝑋2 , 

 𝜖𝑋2~𝑍𝑗
. 

2. Calculate the sample partial correlation coefficient  �̂�𝑋1𝑋2 ∙𝑍𝑗
 as the correlation 

of the two residuals.  

3. Compute the test statistic W in Equation (II.1) and its corresponding p-value 

from a  standard normal distribution.  

4. Interaction effect test: For a pair of two covariates  (𝑍𝑗 , 𝑍𝑙) , fit a linear 

regression model of  𝑋1 using their interaction and compute the residuals 

𝜖𝑋1~𝑍𝑗𝑍𝑙
; similarly, obtain the residuals of 𝑋2, 𝜖𝑋2~𝑍𝑗𝑍𝑙

. 

5. Calculate the sample partial correlation coefficient  �̂�𝑋1𝑋2 ∙𝑍𝑖𝑍𝑗
 as the 

correlation of the two residuals. 

6. Compute the test statistic W in Equation (II.1) and its corresponding p-value 

from a  standard normal distribution.  

7. Compare the p-values of all covariates and interactions, and select the 

covariate with the largest p-value as the optimal split variable. 
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Some related problems in implementing the algorithm are discussed as follows: 

 Calculation of partial correlation: The sample partial correlation coefficient can be 

obtained by [32] 

                                             �̂�𝑋1𝑋2 ∙𝑍𝑗
=

�̂�𝑋1𝑋2−�̂�𝑋1𝑍𝑗
�̂�𝑋2𝑍𝑗

√1−�̂�𝑋1𝑍𝑗
2 ∙√1−�̂�𝑋2𝑍𝑗

2
 ,                                                      (II.3) 

where  �̂�𝑋1𝑍𝑗
 is the sample correlation of  𝑋1 and  𝑍𝑗  and  �̂�𝑋2𝑍𝑗

 is that of  𝑋2 and  𝑍𝑗 . 

Algorithm 1 uses another way to find this quantity. It calculates the correlation of two 

residuals, 𝜖𝑋1~𝑍𝑗
, from regressing 𝑋1 on  𝑍𝑗 , and 𝜖𝑋2~𝑍𝑗

, from regressing 𝑋2 on 𝑍𝑗  [33]. 

Then, Equation (II.3) can be rewritten as 

     �̂�𝑋1𝑋2 ∙𝑍𝑗
=

∑ [{(𝑥1𝑖−𝒈𝒋𝒊
𝑇 �̂�1)−

1

𝑛
∑ (𝑥1𝑖−𝒈𝒋𝒊

𝑇 �̂�1)𝑛
𝑖=1 }{(𝑥2𝑖−𝒈𝒋𝒊

𝑇 �̂�2)−
1

𝑛
∑ (𝑥2𝑖−𝒈𝒋𝒊

𝑇 �̂�2)𝑛
𝑖=1 }]𝑛

𝑖=1

√∑ {(𝑥1𝑖−𝒈𝒋𝒊
𝑇 �̂�1)−

1

𝑛
∑ (𝑥1𝑖−𝒈𝒋𝒊

𝑇 �̂�1)𝑛
𝑖=1 }

2
𝑛
𝑖=1 ∑ {(𝑥2𝑖−𝒈𝒋𝒊

𝑇 �̂�2)−
1

𝑛
∑ (𝑥2𝑖−𝒈𝒋𝒊

𝑇 �̂�2)𝑛
𝑖=1 }

2
𝑛
𝑖=1

    (II.4) 

where 𝑥1𝑖, 𝑥2𝑖 and 𝑧𝑗𝑖 are the 𝑖𝑡ℎ observation of 𝑋1, 𝑋2 and 𝑍𝑗, 𝒈𝒋𝒊 = [1, 𝑧𝑗𝑖]
𝑇
, and �̂�1 

and �̂�2 are the least squares estimates of parameters in the linear regression model 

of 𝑋1 and 𝑋2 . Such a residual-based approach is more flexible than the formula in 

Equation (II.3) as it works for both continuous and categorical covariates. Note that 

when the covariate 𝑍𝑗  is a categorical variable, its correlation with 𝑋1 or 𝑋2 is not well 

defined, and thus Equation (II.3) cannot be used. In contrast, the residual-based 

approach relies on linear regression on  𝑍𝑗  which holds whether 𝑍𝑗  is continuous or 

categorical.  

 Partial correlation of categorical covariates: When 𝑍𝑗  is a categorical covariate, 

dummy coding should be applied in linear regression [34]. Suppose 𝑍𝑗  has three 



 

23 

 

categories A, B, C. Then, it can be replaced with two dummy variables (indicators), 

DA and DB, each taking two possible values (0 and 1). If the observation of 𝑍𝑗 is A, then 

DA is equal to 1, otherwise 0. The same applies for DB. Naturally both DA and DB equal 

to 0 indicates the third category C. Linear regression of 𝑋1 or 𝑋2 will be conducted 

using the two dummy variables as regressors. Note that for a categorical covariate with 

𝑀 categories,  𝑀 − 1 dummy variables will be used and thus d in Equation (II.2) takes 

a value of 𝑀 − 1. 

 Interaction effect test: To enhance the performance of variable selection, interaction of 

covariates can be considered. This poses three changes on Algorithm 1: First, to find 

the sample partial correlation adjusted by the interaction of two covariates 𝑍𝑗 and 𝑍𝑙 

using the residual-based approach, 𝑋1 and 𝑋2 should be regressed on the interaction 

𝑍𝑗𝑍𝑙. Second, d in Equation (II.2) takes a value of 1, 𝑀 − 1 and (𝑀1 − 1)(𝑀2 − 1) for 

interaction between two continuous variables, a continuous variable and a categorical 

variable with 𝑀 categories, and two categorical variables with 𝑀1 and 𝑀2 categories, 

respectively. Third, if an interaction has the largest p-value in the partial correlation 

test, the covariate in the interaction that has the larger p-value in the test for a single 

covariate will be selected.  

 Nonlinear correlation: Equations (II.3) and (II.4) apply for both the Pearson’s and 

Spearman’s correlations. To obtain the Spearman’s partial correlation, we simply 

transform the data into ranks and calculate the Pearson’s partial correlation using the 

rank data. Note that when there are multiple observations of the same value (i.e., ties), 
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they are assigned the average of their original orders in the rank transformation. For 

example, for observations {1, 2, 3, 3, 5}, the corresponding ranks are {5, 4, 2.5, 2.5, 1}. 

II.3.2 Finding optimal cutpoint 

Once the optimal split variable 𝑍𝑗
∗ is obtained, we will search the cutpoint 𝑠∗ of 

this variable to optimize the objective function  Ψ  in Equation (II.1). In general, the 

objective function depends on interest in the specific research context. To meet needs in 

different contexts, three types of meaningful objective function are considered in this 

study, definitions of which are listed in the first row of Table II.2. They are all under 

maximization scheme and pursue the highest degree of correlation in general sense.  

Let 𝑛1 and 𝑛2 be the sample sizes of the two subregions 𝑅1  and 𝑅2 , leading to 

correlations 𝜌1 and 𝜌2. The first type of objective function is a weighted average of 𝜌1
2 and 

𝜌2
2. Here the sample sizes are used as weights, and the squares of 𝜌1 and 𝜌2 are used to 

eliminate the sign effect (e.g., 𝜌1 > 0, 𝜌2 < 0). The aim of this objective function is to 

find a splitting that maximizes the overall correlation of 𝑋1 and 𝑋2 in the two subregions. 

The second type of objective function concerns the highest correlation among 𝜌1 and 𝜌2, 

where their absolute values are used to eliminate sign effect. The aim of this objective 

function is to identify a subgroup with the strongest correlation of 𝑋1 and 𝑋2. The third 

type of objective function focuses on the (absolute) difference between 𝜌1 and 𝜌2. This 

objective function aims to identify most distinguishable subgroups in correlations 

of 𝑋1 and 𝑋2. 



 

25 

 

Table II.2 Three types of objective function Ψ and corresponding stopping conditions 

 Type 1 Type 2 Type 3 

Objective 

function 
Ψ =

𝑛1𝜌1
2 + 𝑛2𝜌2

2

𝑛1 + 𝑛2
 Ψ = max {|𝜌1|, |𝜌2|} Ψ = |𝜌1 − 𝜌2| 

 Stopping 

condition 
Ψ − 𝜌2 < 𝜂1 Ψ − |𝜌| <  𝜂2 Ψ < 𝜂3 

II.3.3 Controlling tree size 

A correlation tree with complex structure (i.e., many branches and leaves) does 

not have easy interpretation. Thus, the size of tree should be controlled in tree building to 

favour small trees. In this study, two methods are used for this purpose. The first method 

is to specify some stopping conditions which signal the termination of splitting. The 

stopping conditions under the three types of objective function are given in the second 

row of Table II.2, where 𝜌 is the correlation at the current node. For Type 1 objective 

function, splitting stops if the improvement (i.e., difference between the value of objective 

Ψ and 𝜌2) is below a pre-specified threshold 𝜂1. For Type 2 objective function, splitting 

stops if the improvement (i.e., difference between the value of objective Ψ and |𝜌|) is 

below a pre-specified threshold 𝜂2. For Type 3 objective function, splitting stops if the 

value of objective Ψ is below a pre-specified threshold 𝜂3. The three thresholds 𝜂1, 𝜂2, 𝜂3 

are specified by the user, depending on their preference on tree size; larger values of them 

lead to smaller trees. Also, note that these thresholds are applied for differences between 

two correlations, and thus their values should be within (0, 1). To provide an example, 

𝜂1 = 0.1, 𝜂2 = 0.1, 𝜂3 = 0.25 are used in the case study. The second method specifies 

the minimum sample size per node (e.g., ten samples based on literature [35]) and 
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maximum tree depth (e.g., 3), i.e., the longest length from the root node to a terminal node, 

to achieve global control of tree size. 

We want to mention that the goal of tree size control in correlation trees is slightly 

different from that in decision trees. In decision trees, controlling tree size is mainly to 

avoid the overfitting problem in addition to improving interpretability of the tree model. 

Overfitting means that the fitted model follows random errors, or noises, too closely; as a 

result, it has excellent performance in training, but may perform badly in prediction. To 

address this problem, two kinds of pruning have been used in the literature. Pre-pruning 

stops tree growing before it is fully grown by applying stopping conditions such as a 

threshold in improvement and minimum number of samples in leaf nodes. Post-pruning 

cuts back the fully grown tree to a sub-tree whose leaf nodes have the lowest cross-

validation error. In contrast, correlation trees, designed for subgroup identification in 

terms of correlation instead of for prediction, are free of overfitting intrinsically. Thus, 

interpretability is the only motivation for controlling the size of a correlation tree, and the 

two pre-pruning methods used in this study are appropriate. 

II.3.4 Time complexity 

The learning process of correlation trees is the same as conventional decision trees, 

except for split variable selection. For linear correlation tree, the computational 

complexity is given by  

    {

𝒪(𝑛𝑙𝑜𝑔𝑛),       𝑓𝑜𝑟 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡                  

𝒪(1),                𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛                        

𝒪(𝑛),                𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛          
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where 𝑛 is sample size at a node. For splitting point, tree considers all possible conceivable 

partition points to optimize an objective function whose sorting complexity is equivalent 

to that of CART algorithm [36], which dominates runtime in this step. It is obvious that 

time complexity of comparison among partial correlations over a split variable is 𝒪(1). 

As to complexity of partial correlation over the split variable 𝑍𝑗, three components are 

involved: Least squares estimation on 𝑋1~𝑍𝑗, least squares estimation on 𝑋2~𝑍𝑗, and the 

Pearson’s correlation between 𝜖𝑋1~𝑍𝑗
 and 𝜖𝑋2~𝑍𝑗

. The complexity of least squares 

estimation is 𝒪(𝑛) since regression is performed with respect to a single predictor. The 

complexity of the Pearson’s correlation is 𝒪(𝑛) [37]. Thus, for 𝑘 split variables, the global 

time complexity of linear correlation tree becomes 𝒪(𝑘𝑛 + 𝑘 + 𝑛𝑙𝑜𝑔𝑛). In the case of 

nonlinear correlation tree, the complexity of partial correlation computation is tantamount 

to the computation of Spearman’s rank correlation whose complexity is 𝒪(𝑛𝑙𝑜𝑔𝑛) [38]. 

Thus, the global time complexity of non-linear correlation tree becomes 𝒪(𝑘𝑛𝑙𝑜𝑔𝑛 + 𝑘 +

𝑛𝑙𝑜𝑔𝑛). 

II.4 Simulation study 

A simulation study is done to validate the unbiasedness of the proposed split 

variable selection method. The basic idea is as follows: Generate data of two correlated 

variables 𝑋1, 𝑋2 and six different types of covariates {𝑍1, 𝑍2, … , 𝑍6} that are independent 

of 𝑋1 and 𝑋2; apply the proposed method to the simulated data and find the selected split 

variable; repeat this for a number of iterations and obtain the selection rate of each 

covariate (i.e., the percentage of iterations when that covariate is selected). Unbiased 
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variable selection is expected to yield similar selection rates among all covariates 

regardless of their types and distributions. An alternative method for split variable 

selection is to optimize split variable and cutpoint simultaneously like what CART does, 

which is known to suffer from selection bias towards variables with more possible 

cutpoints. Here we call it CART-like method for convenience. Performance of this method 

under the three types of objective function given in Section II. 3.2 will also be assessed in 

the simulation to compare with the proposed method. 

In the simulation, 𝑋1 and 𝑋2 follow a bivariate normal distribution with mean [
3
5

] and 

covariance matrix [
1.5 1.2
1.2 2.1

]. Among the six covariates, three are continuous and three 

are categorical. The setting of their distributions is given in Table II.3. Two scenarios are 

considered:  Case 1 where the Z’s are independent of each other and Case 2 where some 

of them are dependent. Various distributions are generated in each scenario to reflect 

situations in practice. Specifically, in Case 1,  𝑍1 follows a uniform distribution in [1, 

5], 𝑍2 follows an exponential distribution with mean 1,  𝑍3 follows a standard normal 

distribution, and 𝑍4, 𝑍5 and 𝑍6 follow a multinomial distribution with 2, 3, 6, respectively, 

categories of equal probabilities. In Case 2, 𝑍1, 𝑍2 and 𝑍5 follow the same distributions as 

in Case 1, 𝑍3 is a combination of 𝑍2 and a sample from standard normal distribution scaled 

by 0.2, 𝑍4 follows a Binomial distribution depending on 𝑍3, and 𝑍6 follows a six-category 

multinomial distribution depending on 𝑍5. 

Covariates 𝑍3, 𝑍4 and 𝑍6 are correlated with other variables in Case 2. Generating data 

of 𝑍3 is straightforward by adding data from the scaled standard normal distribution to 
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those of 𝑍2. Generating data of 𝑍4 and 𝑍6 which are categorical variables is not obvious. 

For 𝑍4, we rely on a procedure based on logistic regression as listed in Table II.3 to 

generate its samples. For 𝑍6, as 𝑍5 is also a categorical variable, a joint distribution of 

them is specified, and their samples are generated simultaneously from that distribution. 

Table II.3 Distributions of covariates in the simulation study 

 
Case 1 

(independent) 
Case 2 (dependent) 

𝑍1 Uniform Uniform 

𝑍2 Exponential Exponential 

𝑍3 Normal 𝑍2+0.2Normal 

𝑍4 Multinomial (2) Multinomial (2) depending on 𝑍3 

𝑍5 Multinomial (3) Multinomial (3) 

𝑍6 Multinomial (6) Multinomial (6) correlated with 𝑍5 

 Procedure to generate this distribution: 

Step1. Given 𝛽0 and 𝛽1, calculate the probability 𝑃(𝑍3) =
𝑒𝑥𝑝(𝛽0+𝛽1𝑍3)

1+𝑒𝑥𝑝(𝛽0+𝛽1𝑍3)
. 

Step 2. Generate a uniform random variable 𝑈 in the interval [0, 1]. 

Step 3. If 𝑃(𝑍3) < 𝑈, 𝑍4 is assigned to category 1; otherwise, category 2. 

1000 iterations are carried out in the study, with 1000 samples generated in each 

iteration. Results on selection rates in building LCT and NCT are shown in Figures II.5 

and II.6. In each Figure, the upper panel displays results in Case 1 and the lower panel 

displays those in Case 2. In each panel, “CART-like (Type 1)”, “CART-like (Type 2)”, 

and “CART-like (Type 3)” correspond to results of the CART-like method under the three 

types of objective function and “Proposed” refers to results of the proposed method. From 

Figure II.5, as expected, variables with more possible cutpoints are more likely to be 
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selected in the CART-like method in both cases, regardless of the objective function used. 

To be specific, the three continuous variables 𝑍1, 𝑍2 and 𝑍3 have much higher selection 

rates than the three categorical variables  𝑍4 , 𝑍5  and 𝑍6 . Among the categorical 

variables, 𝑍6, with the highest number (26−1 − 1 = 31) of cutpoints, has higher selection 

rates than 𝑍4 (1 cutpoint) and 𝑍5 (3 cutpoints). In contrast, the proposed method yields 

similar selection rates, around 1/6 = 0.166, among all the covariates. The same patterns 

exist when NCT is built according to Figure II.6. These results validate that the proposed 

split variable selection method is unbiased. 

 

Figure II.5 Selection rates of all covariates in linear correlation tree 
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Figure II.6 Selection rates of all covariates in non-linear correlation tree 

II.5 Application to real data 

II.5.1 Data description 

The proposed approach is applied to a dataset from an optical brain imaging study 

on risk decision-making [39]. In the study, each subject conducted a Balloon Analog Risk 

Task (BART) illustrated in Figure II. 7. The task contains 15 trials. In each trial, the subject 

sees virtual image of a balloon on the computer screen. He/she can choose to pump up the 

balloon or not under the risk that the balloon may explode. The trial ends up with two 

types of outcomes: win (the subject chooses to stop pumping and receives monetary 
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reward proportional to the size of balloon) and lose (balloon explodes). Essentially, this 

task measures the degree to which subjects are willing to take a risk. 

 

Figure II.7 Illustration of the optical brain imaging study 

The correlation between brain activation and behaviour measure of subjects during 

the task is of interest. The brain activation is represented by  ∆ HbO, change in the 

concentration of oxygenated haemoglobin (iron-containing protein in red blood cells 

which carries oxygen from the respiratory organs to the rest of the body), and the 

behaviour measure is #pumps, the average number of pumps in each trial. As shown in 

Figure II.7, ∆HbO was measured by functional near-infrared spectroscopy (fNIRS), an 

optical brain imaging technique. A positive correlation between ∆ HbO and #pumps 

implies a pattern of risk-taking, whereas a negative correlation implies a pattern of risk-

aversion. The constructed correlation tree will help identify subgroups who differ in such 

patterns. There are five covariates that will serve as split variables in the tree: Gender, 

Education (four categories: High school or below, College, M.S., and Ph.D.), Age, systolic 

blood pressure (SBP), and diastolic blood pressure (DBP). 
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For simplicity in data analysis, data of each subject are aggregated in terms of 

outcomes of BART trials (i.e., win and lose). That is, the observation of a subject under 

the win/lose case is the average of his/her data over all the trials with win/lose outcomes. 

The sample size in the win and lose case is 91 and 92, respectively. Linear and nonlinear 

correlation trees will be constructed in the two cases separately. 

Before building the trees, it is interesting to take a look at the brain-behaviour 

correlation in the whole space (i.e., using all data). Figure II.8 shows the scatter plots of 

∆HbO and #pumps in the win and lose cases. In the win case, the two variables have a 

positive correlation (Pearson’s = 0.513, Spearman’s = 0.386), indicating a risk-taking 

tendency. In the lose case, they exhibit a negative correlation (Pearson’s = 0.248, 

Spearman’s = 0.224), indicating a risk-aversion tendency. The values of correlation 

measures are not high in both cases, which makes interpretation of the brain-behaviour 

relationship difficult. A reason for this lies in that large variation exists in the data and 

some samples look like outliers against the main trend.  

 

Figure II.8 Brain-behaviour correlation using all available data 



 

34 

 

II.5.2 Results of linear correlation trees 

First, a linear correlation tree is constructed under each type of objective function. 

In the stopping conditions, the thresholds 𝜂1, 𝜂2 and 𝜂3 are set to be 0.1, 0.1 and 0.25, 

respectively. The minimum sample size per node is set to be 10, and the maximum tree 

depth is set to be 3 levels where the root node is defined as level 0. This setting of control 

parameters is based on our purpose to identify as many subgroups as possible while 

achieving good interpretability. 

Figures II.9 and II.10 show the constructed linear correlation trees in the win and 

lose cases. In the win case (Figure II.9), all LCTs select Age at the root node, while in the 

lose case (Figure II.10), all select Gender. The fact that the same variable is chosen in each 

case is not surprising, since the variable selection step is independent of the optimal 

cutpoint searching step; in other words, the first selected split variable is irrespective of 

the objective function used. Also, the selected variable in each case indicates that the trees 

are capable of identifying more significant covariates between Age and Gender. In fact, it 

is known that both Age and Gender play an important role in risk-decision making from 

the literature [39, 40]. However, existing studies do not point out relative importance of 

them. With an unbiased variable selection method, the proposed correlation tree can find 

the most significant covariate which provides additional useful information to understand 

the brain-behaviour relationship. Among the five split variables, three of them, Age, 

Gender, and SBP, appear in the trees. In particular, Age and Gender are involved in all the 

trees, suggesting that they are significant to define subgroups of brain-behaviour 
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correlation. This is consistent with the convention in neural-correlates literature where age 

and/or gender effects are often considered. 

 

Figure II.9 The constructed linear correlation trees (LCTs) in the win case 

In a general sense, correlation of two variables can be roughly categorized into 

four levels: neutral (0 < 𝜌 ≤ 0.1), weak (0.1 < 𝜌 ≤ 0.4), moderate (0.4 < 𝜌 ≤ 0.7) and 

high (0.7 < 𝜌 ≤ 1.0). Basically, in the win case, the identified subgroups exhibit a risk-

taking pattern of different degrees from weak to high. For example, under Type 2 objective 

function, people older than 40 are weakly, males younger than 28 are moderately, and 
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people older than 28 and younger than 40 are highly risk-taking. In contrast, subgroups in 

the lose case are inclined to avoid risk. For example, males older than 40 are highly risk-

averse under all the three types of objective function (Pearson’s = 0.884). 

 

Figure II.10 The constructed linear correlation trees (LCTs) in the lose case 

The objective function has an effect on the resulting subgroups. We will use the 

trees in the win case as examples to illustrate the effect. As mentioned in Section II.3.2, 

Type 1 objective function maximizes the overall squared correlations, and thus tends to 

produce similar subgroups (correlations of the three identified subgroups have magnitudes 
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of 0.580, 0.506 and 0.307). Type 2 objective function focuses on the highest correlation, 

and thus it produces the highest risk-taking subgroup (with a correlation of 0.928). Type 

3 objective function concerns most distinguishable subgroups, and thus it produces two 

pairs of subgroups in each of which one subgroup has almost zero correlation while the 

other has a large correlation. 

The trees in the lose case are interesting in that they have almost identical 

subgroups, with neutral (Pearson’s = 0.067, 0.032) and high (Pearson’s = 0.884) 

correlations. Considering the population correlation (Pearson’s = 0.224) shown in the 

right panel of Figure II.8, this indicates that the correlation tree successfully identifies 

hidden subgroups with strong correlation (males older than 40) or neutral correlation 

(males younger than 40 and all females), which lead to better interpretation of the brain-

behaviour relationship. The similarity of results under the three types of objective function 

also implies that the identified subgroups may be determined by the intrinsic structure of 

the population, if any, and not sensitive to the objective function. To be specific, when a 

dominating subgroup (males older than 40 in this case) is obscured in the population, this 

subgroup will always be detected whichever objective function is used. 

We want to point out that the resulting subgroups under a certain type of objective 

function may not be the most optimal in terms of the defined optimality. For example, in 

Figure II.9, Type 3 correlation tree is supposed to have the largest difference in correlation 

between a pair of subgroups. However, the actual largest difference in this tree is 0.604, 

which is smaller than 0.815 achieved by Type 1 correlation tree. This is because 

correlation trees, like decision trees, are subject to the inherent drawback of recursive 
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partitioning, i.e., it is defined to achieve local optimum in each partitioning and cannot 

guarantee global optimum at the terminal nodes. Generally speaking, all the objective 

functions seek for subgroups in the direction of maximizing correlation. Therefore, their 

resulting correlation trees can be used in a complementary manner. 

II.5.3 Results of non-linear correlation trees 

With the same setting of control parameters as in building the LCTs, non-linear 

correlation trees are applied to the data. The resulting NCTs in the win case and lose case 

are shown in Figures II.11 and II.12. The identified subgroups in the NCTs are analogous 

to those in the LCTs. Four covariates are selected as split variables, including the three 

involved in LCTs, Age, Gender, SBP, and one additional, Education. One interesting 

result is that, according to Type 3 tree, there is a substantial difference in the brain-

behaviour correlation of two education groups among people older than 40: those with 

college and more education are moderately risk-taking while those with less education do 

not have this trend. This indicates certain effect of education on human risk decision-

making patterns, which is new to the literature. 

However, the magnitudes of correlations in most NCTs are smaller than those in 

the LCTs. In particular, the differences are substantial in Type 1 and Type 2 trees in the 

lose case. This can be explained by the robustness of Spearman’s rank correlation 

coefficient against outliers. Note that there are some potential outliers in the data, which 

have large influence on the correlation of each subgroup, especially when the sample size 

of the subgroup is small. They have likely caused the high correlations in the LCTs. 
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Spearman’s correlation coefficient is based on ranks rather than the original data, thus 

being able to alleviate the influence of outliers.  

 

Figure II.11 The constructed non-linear correlation trees (NCTs) in the win case 
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Figure II.12 The constructed non-linear correlation trees (NCTs) in the lose case 
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II.6 Conclusion and discussion 

In this study, we propose a recursive partitioning approach for subspace 

partitioning in terms of correlation of two variables. This approach can find important 

covariates associated with correlation as well as identify hidden subgroups of interest. The 

simulation study validates the unbiasedness of the method for split variable selection. 

Application of the proposed approach to a real dataset demonstrates that it can produce 

meaningful subgroups and significantly improve interpretability in correlation analysis. 

This work is the first attempt to consider subspace partitioning with respect to 

correlation. The proposed correlation tree can identify subgroups of interest in an 

automatic and optimal way, which lays the foundation for a thorough understanding of the 

brain-behaviour relationship in neural correlates studies. Moreover, the proposed 

approach is not confined to neural correlates studies, but broadly applicable to other fields 

where correlation is a main concern. 

Here are some general guidelines on the use of the correlation tree in practice. First, 

about the three types of objective function: If the goal is to obtain multiple subgroups with 

strong correlations, Type 1 objective function is suggested. Type 2 objective function is 

used to identify the subgroup with the strongest correlation, while Type 3 objective 

function is used to identify the most distinguishable subgroups. It is recommended that 

the resulting correlation trees under the three types of objective function be used in a 

complementary manner. Second, about linear vs. nonlinear correlation measures: 

nonlinear measures such as Spearman’s rank correlation coefficient should be used if 

general correlation (not limited to linear form) is concerned and outliers are present. 
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Several interesting open problems remain in this study. First, missing values may 

exist in a dataset. In the literature on decision trees, some efforts have been made to solve 

this problem. For example, RPART [41] finds surrogate variables of a split variable and 

uses their data as substitute when the data of the split variable are missing. GUIDE [42] 

treats missing values as an additional category for a categorical variable, and sends all 

observations with missing values in the split variable to a subnode such that it leads to the 

greatest improvement on the objective function for a continuous variable. Those ideas 

could be adapted to handle missing values in correlation trees.  

Second, outliers may also exist in practice, which can mask the true relationship 

in subgroups [43]. This study shows that the Pearson’s is sensitive to, especially, 

univariate outliers (i.e., data points with unusual values in either  𝑋1 or  𝑋2 ), and the 

Spearman’s is robust in this case. Unfortunately, however, some outliers in this study are 

indeed bivariate outliers (i.e., data points with unusual values in both 𝑋1 and 𝑋2), and the 

Spearman’s is sensitive to such outliers because it rests on marginal distributions 

of 𝑋1 and 𝑋2, and thus does not capture the joint structure of the data [44]. Methods to deal 

with bivariate outliers in correlation trees will be investigated.  

Third, in high-dimensional environments, tree-based approaches may not work 

very well. Powerful clustering algorithms such as hierarchical SOM [45] and polar SOM 

[46] may be used in this situation. To find clusters of interest in this study, correlation of 

𝑋1 and  𝑋2  needs to be considered in the objective function of the chosen clustering 

algorithm. Moreover, as the identified clusters may not have easy interpretation as 

subgroups, some constraints need to be incorporated in clustering to guarantee 
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interpretability. Finally, this study produces a number of correlation trees, as shown in 

Figure II.9- II.12, some of which may not be very different from each other. To eliminate 

the redundancy in tree representations, we can compare and integrate the trees by 

transforming each tree into a vectorial representation [47, 48].   

 



 

44 

 

CHAPTER III  

ROBUST LOGISTIC REGRESSION TREE FOR SUBGROUP IDENTIFICATION IN 

HEALTHCARE OUTCOME MODELING* 

 

Outcome data are routinely collected in healthcare practices and used for quality 

of care assessment and improvement. Logistic regression trees are a popular method for 

subgroup identification for binary outcome data. Outliers often exist in healthcare data, 

and many studies have addressed this problem with respect to model fitting in logistic 

regression. However, outlier problems are more complex in the context of tree models, as 

they involve subgroup identification in addition to model fitting. This study considers the 

outlier problem in logistic regression tree modeling of outcome data. It reveals the effects 

of outliers on split variable selection in identifying subgroups and proposes a method to 

construct logistic regression trees that are robust to outliers. The effectiveness of the 

proposed method and its advantages over alternatives are demonstrated in a simulation 

study and case studies. 

III.1 Introduction 

Measuring health care outcomes has become very important due to the increasing 

attention to the quality of care and a call for evidence-based practice [49]. Examples of 

                                                 
*Reprinted with permission from “Robust logistic regression tree for subgroup 

identification in healthcare outcome modeling” by Doowon Choi, and Li Zeng, IISE 

Transaction on Healthcare Systems Engineering, 10(3), Copyright ©  2020, Taylor & 

Francis. 
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possible outcomes include patient mortality, adverse events, and hospital readmission, and 

all of these have been widely used as quality indicators for health services. For example, 

the Centers for Medicare and Medicaid Services (CMS) has undertaken a series of 

initiatives to reduce hospital readmission rates by penalizing hospitals with higher than 

expected rates and funding hospital-level improvements on reducing readmission [50]. 

Outcome data are routinely collected in healthcare practices [51, 52]. The analysis of such 

data aids healthcare customers in their decision-making and also increases the 

accountability of care providers and care quality.  

Outcome data for a care process typically include outcome measures and related 

covariates such as personal characteristics, diagnoses, and treatment variables for each 

patient. The relationship between the outcome and covariates is often modeled in order to 

understand the effects of covariates on the outcome, identify important covariates, predict 

outcomes for future patients, or set baselines for monitoring care providers’ performance 

in the long term. For binary outcomes (e.g., mortality) that are prevalent in healthcare, 

logistic regression is the most popular model due to its easy interpretability [53]. However, 

as the number of covariates increases, logistic regression becomes inadequate for 

modelling the complex relationship. 

Logistic regression trees can overcome this limitation of logistic regression. The 

basic idea of logistic regression trees is to divide the population into a number of 

subgroups according to the covariates, so that a simple logistic regression can adequately 

explain the data for each subgroup. Such models have several merits over logistic 

regression. First, the use of simple logistic regression at each leaf node retains the easy 
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interpretability of logistic regression. Second, the idea of subgroup-wise modeling is 

consistent with healthcare practices and easy for health professionals to understand. In 

addition, the nonlinear tree model fits the data more adequately than the linear logistic 

regression. For these reasons, logistic regression trees have been used in healthcare 

informatics to identify subgroups for binary outcome data [54-57]. The obtained 

subgroups will enable more accurate prediction of patient outcomes. Moreover, they lay a 

foundation for personalized medicine where optimal treatment is designed for each 

subgroup instead of the whole population. For example, the subgrouping of Type 2 

diabetes patients can help the design of culturally suitable intervention programs to 

improve their self-care behaviors [54]. 

Outliers often exist in healthcare data. In general, outliers are defined as 

observations that deviate extremely from the bulk of the data [58]. The huge heterogeneity 

among individual patients, errors in collecting patient-related data, and overdispersion of 

healthcare data [59] are possible reasons for the presence of outliers. Outliers can have 

substantial effects in regression analysis, where they are accommodated at the expense of 

a poor fit for the majority of the data. Many studies have been conducted to address outlier 

problems in linear and logistic regression [60-63]. These studies can be roughly divided 

into two categories: outlier diagnostics/detection and robust estimation. Outlier 

diagnostics aims to pinpoint potential outliers that will be corrected or removed from the 

dataset before the formal analysis, while robust estimation attempts to restrict the 

influence of outliers in model fitting by, e.g., down-weighting them or using robust metric 

to outliters. 
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To the best of our knowledge, the outlier problem has not been thoroughly studied 

in the context of tree models. Tree models differ from linear and logistic regression in two 

respects: They involve identifying subgroups (i.e., splitting the covariate space) and model 

fitting for each subgroup. The effect of outliers on model fitting is similar to their effect 

in regression (i.e., they result in a poor fit), but the effect of outliers on subgroup 

identification is still unknown. It is believed that classification trees are relatively robust 

to outliers, as their splitting criteria, which are typically a function of proportions of classes, 

are not highly sensitive to outliers. However, regression trees, in which the splitting is 

based on the variance of the data, may be seriously affected. For example, due to outliers, 

a tree may fail to split a node that should be split or split a node that should not be split. 

This will result in misleading subgrouping in healthcare applications and affect the 

subsequent prediction or treatment based on it. 

This study considers the outlier problem in logistic regression tree modeling of 

outcome data in healthcare. This problem is challenging in that it is difficult to quantify 

the effects of outliers on subgrouping. Moreover, the popular methods for addressing 

outliers in the regression literature, i.e., down-weighting and outlier detection, may not 

work for tree models. To conquer the problem, we first investigate, via a simulation, how 

outliers affect the identification of subgroups for building logistic regression trees. Based 

on the understanding gained from this investigation, we propose ideas to alleviate the 

outlier effect and make tree models robust to them. Our contributions are twofold:  

 We reveal the effects of outliers on subgroup identification by focusing on how 

outliers affect split variable selection, which is critical for finding subgroups. Among 
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the available algorithms for building logistic regression trees, we choose the MOdel-

Based (MOB) recursive partitioning algorithm [64] as a benchmark for illustrating 

our idea.  

 We propose a logistic regression tree that is robust to outliers. To demonstrate the 

effectiveness and advantage of the proposed method, we extend down-weighting and 

outlier detection to logistic regression trees and use them as reference in comparison. 

The case study validates that the proposed robust tree produces meaningful subgroups 

in presence of outliers. 

The remainder of this paper is organized as follows. Section III.2 reviews the 

literature on logistic regression trees, the MOB algorithm, and methods to address outliers 

in logistic regression. Section III.3 uses a simulation to examine the effects of outliers on 

split variable selection. Section III.4 describes the proposed robust logistic regression tree 

and the two alternative methods, and Section III.5 compares the performance of the three 

methods through a simulation. Section III.6 applies the proposed method to two healthcare 

datasets. Finally, Section III.7 concludes the paper and discusses future research directions. 

III.2 Literature review 

III.2.1 Logistic regression trees 

The first logistic regression tree was proposed by Chaudhuri et al. [65], who extend 

the SUPPORT (Smoothed and Unsmoothed Piecewise Polynomial Regression Trees) 

algorithm to binary responses. At each node, the probability that the response from a 

logistic regression will be 1 and a smoothed estimate of this probability using nearest-
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neighbor averaging [66] are calculated for each observation. The difference between the 

two is called a “pseudo-residual”, and the observations are divided into two groups by the 

signs of their pseudo-residuals. Then, for each covariate variable, the two groups are 

compared to see whether there is a significant difference between their means and 

variances using a two-sample t-test and the Levene test [27]. The variable with the smallest 

p-value is chosen as the split variable, and the average of the two group means with respect 

to the selected split variable is taken as the cutpoint. 

The LOTUS (Logistic Tree with Unbiased Selection) algorithm [67] adopts ideas 

that are similar to GUIDE (Generalized, Unbiased, Interaction Detection and Estimation) 

[28] for fitting logistic regression trees. Like GUIDE, LOTUS grows a tree by splitting 

each node in an unbiased fashion. It is known that covariates that allow more possible 

cutpoints are more likely to be selected as split variables when the splitting is based on 

minimizing the total sum of squared residuals or deviances at the two sub-nodes [68]. To 

nullify such a bias, LOTUS first selects the most significant unbiased split variable using 

a trend-adjusted chi-square test and then obtains the cutpoint by minimizing the sum of 

the deviances.  

Landwehr et al. construct the Logistic Model Tree (LMT), which learns a logistic 

regression model at each node in an incremental manner (i.e., by boosting) [69]. The idea 

is that LMT does not link log odds with a linear predictor at each node as standard logistic 

regression does, but instead uses a target function called the “committee”, which is formed 

by combining many weak learners. For splitting, LMT relies on the information gain ratio 

used in C4.5 [70] and selects the covariate with the maximum gain ratio as the split 
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variable. Lee and Jun improve the computational efficiency of LMT by adopting a least-

angle regression in the boosting process [71]. 

More recently, a theoretical advancement in logistic regression trees has been 

achieved by the MOB algorithm. MOB is a unified framework for constructing trees with 

a parametric model that can be fitted using M-type estimators (e.g., a least squares 

estimator and a maximum likelihood estimator) at each terminal node. MOB selects the 

split variable based on the score function of the M-estimation. The key advantage of this 

algorithm lies in its integration of recursive partitioning and statistical model 

estimation/variable selection, which sets a rigorous theoretical foundation. To find the 

optimal split variable for each node, MOB examines the change in model parameters with 

respect to each covariate using a parameter instability test [72]. The test makes use of the 

full model scores and considers all possible changes, which is an improvement over other 

algorithms that only use partial information such as the sign of the pseudo-residual and 

ad-hoc approximations of possible change points [64]. We use a logistic regression tree 

built by the MOB algorithm (hereafter an “MOB tree”) as our benchmark to study the 

effects of outliers. 

III.2.2 MOB logistic regression tree 

III.2.2.1 Basic concept 

Let 𝑌 be the binary outcome measure, 𝑋 the predictor in a logistic regression, and 

{𝑍𝑗: 1 ≤ 𝑗 ≤ 𝑙} the set of covariates. The predictor is used only for regression, while the 

covariates are used only for splitting the tree. By partitioning the covariate space, an MOB 

tree explores a piecewise logistic regression model {ℳ𝑏: 𝑌~𝐿𝐺(𝑋; 𝜽𝒃), 𝑏 = 1, … , ℬ} that 
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fits observations in each subgroup 𝑏 better than a global model {ℳ: 𝑌~𝐿𝐺(𝑋; 𝜽)}, where 

𝜽𝒃 and 𝜽 are respectively model parameters for the subgroup 𝑏 and the entire population, 

ℬ is the total number of subgroups, and “LG” is short for “logistic regression”. 

An example MOB tree is given in Figure III.1, where there are two split covariates 

(a patient’s age and gender) and one predictor (the patient’s risk score), and the response 

is the outcome of surgery (survival/death). At each terminal node, a logistic regression 

model 𝑙𝑜𝑔 (
𝑃

1−𝑃
) = 𝛽0 + 𝛽1𝑋  is fitted, where P is the probability of mortality after 

surgery and 𝑋 is the patient’s risk score. The model has two parameters: 𝛽0 is the intercept, 

which represents the mortality rate of healthy patients (i.e., 𝑋 = 0 ), and 𝛽1  is the 

coefficient of 𝑋, which represents the effect of a patient’s preoperative risk on the patient’s 

mortality rate. The tree divides the patient population into three subgroups, depending on 

their gender and age, and the fitted logistic regression models for the subgroups have 

different parameter values.  

 

Figure III.1 An example MOB logistic regression tree 



 

52 

 

The MOB tree is constructed by recursively partitioning the covariate space and 

fitting a logistic regression for each of the resulting subgroups. Two steps are involved in 

identifying the subgroups: split variable selection and cutpoint estimation. Specifically, at 

each node, the best split variable among the covariates {𝑍1, 𝑍2, … , 𝑍𝑙} is selected, and then 

the optimal cutpoint for the selected split variable for forming subgroups is found. Details 

of the two steps are provided next. 

III.2.2.2 Subgroup identification 

The split variable at each node 𝑅 is selected based on a parameter instability test, 

as illustrated in Figure III.2. The test is conducted for each covariate 𝑍𝑗, 1 ≤ 𝑗 ≤ 𝑙. There 

are two options: (i) A global model with parameter 𝜽 = 𝜽0 is adequate to explain the data 

at this node, and thus 𝑅 should not be split by 𝑍𝑗, as shown in the upper left panel of Figure 

III.2. In this case, the parameter is said to be stable with respect to 𝑍𝑗. (ii) A global model 

is inadequate, and it is better to split 𝑅 into two subgroups  

𝑅1 = {𝑋|𝑍𝑗 ≤ 𝑐}, 𝑅2 = {𝑋|𝑍𝑗 > 𝑐} 

using the cutpoint c and then fit two separate models to the subgroups with parameters 𝜽1 

and 𝜽2, as shown in the lower left panel of Figure III.2. In this case, the parameter is said 

to be unstable with respect to 𝑍𝑗. Based on this idea, whether node 𝑅 is split depends on 

which of these two options (i.e., not split vs. split) is more plausible or, equivalently, the 

test of parameter instability (i.e., stable vs. unstable.). Accordingly, the covariate that has 

the strongest evidence for unstable parameter will be selected as the split variable. 
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Figure III.2 Illustration of the parameter instability test for split variable selection 

Formally, the test for parameter instability can be formulated as the following 

problem: 

                              

𝐻0 ∶  𝑌𝑖~ 𝐿𝐺(𝑋𝑖; 𝜽0)   𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

𝐻1 ∶  𝑌𝑖~ {
𝐿𝐺(𝑋𝑖; 𝜽𝟏)     𝑖𝑓 𝑿𝑖 ∈ 𝑅1 

𝐿𝐺(𝑋𝑖; 𝜽𝟐)      𝑖𝑓 𝑿𝑖 ∈ 𝑅2 
   

,                                                   (III.1) 

where 𝑛 is the sample size of the data available at node 𝑅. This formulation is essentially 

a general form of change detection. Note that while regular change detection concerns 

change with respect to time, the change detection in Equation (III.1) concerns change with 

respect to the covariate variable 𝑍𝑗; that is, the data are indexed by the order of 𝑍𝑗, and the 

change point c for 𝑍𝑗 divides the data into two groups with different parameters. The p-

value of the test indicates the strength of the alternative hypothesis; a smaller p-value 
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means that it is more plausible to split the node. Thus, the covariate with the smallest p-

value in the test will be selected as the split variable for this node. 

The hypothesis test in Equation (III.1) is realized by a score-based test that is an 

adaptation of generalized M-fluctuation tests [73]. The rationale of the test is illustrated in 

the right half of Figure III.2. Given the data 𝒟 = {𝐷𝑖 = (𝑌𝑖, 𝑋𝑖), 𝑖 = 1, … , 𝑛} at node 𝑅, a 

global logistic regression model can be fitted by minimizing the negative log-likelihood 

ℓ(𝜽; 𝒟), yielding the maximum likelihood estimate 

                                  �̂� = argmin
𝜽

ℓ(𝜽; 𝒟)  = argmin
𝜽

∑ ℓ(𝜽; 𝐷𝑖),𝑛
𝑖=1                       (III.2) 

where 𝜽 = (𝜃1, … , 𝜃𝑘). The score function is defined as the partial derivatives of the 

objective function in the estimation 

                                          𝒔(𝜽; 𝐷𝑖) =
𝜕ℓ(𝜽;𝐷𝑖)

𝜕𝜽
= (

𝜕ℓ(𝜽;𝐷𝑖)

𝜕𝜃1
, … ,

𝜕ℓ(𝜽;𝐷𝑖)

𝜕𝜃𝑘
).                         (III.3) 

By the definition of the maximum likelihood estimate, 

                                                              ∑ 𝒔(�̂�; 𝐷𝑖)𝑛
𝑖=1 = 𝟎.                                                      (III.4) 

That is, the score function evaluated at the maximum likelihood estimate, i.e., 

𝒔(�̂�; 𝐷𝑖), 𝑖 = 1, … , 𝑛, has a zero mean. In other words, when a global model fits the data 

well (𝐻0  in Equation (III.1)), the scores 𝒔(�̂�; 𝐷𝑖) randomly fluctuate around zero, as 

shown in the upper right of Figure III.2. On the other hand, if the parameter changes with 

respect to 𝑍𝑗 (𝐻1 in Equation (III.1)), the scores will not fluctuate around zero but exhibit 

a certain pattern, e.g., most scores in subgroup 𝑅1  are negative while most scores in 

subgroup 𝑅2 are positive, as shown in the lower right of Figure III.2. 
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Based on this idea, the empirical cumulative score process over 𝑍𝑗 is constructed to 

capture the systematic pattern of the scores 

                                 𝑾𝑗(𝑡) = �̂�−1/2𝑛−1/2 ∑ 𝒔 (�̂�; 𝐷(𝑖|𝑍𝑗))
⌊𝑛𝑡⌋
𝑖=1 , 0 ≤ 𝑡 ≤ 1,                    (III.5) 

where �̂� is an estimate of the covariance matrix of the scores, ⌊𝑛𝑡⌋ is the integer part of 𝑛𝑡, 

and 𝐷(𝑖|𝑍𝑗)  is the observation corresponding to the 𝑖 th smallest value of 𝑍𝑗 . That is, 

𝒔 (�̂�; 𝐷(𝑖|𝑧𝑗)) is the rearranged 𝒔(�̂�; 𝐷𝑖) in Equation (III.3) according to the order of 𝑍𝑗. 

Given n finite observations, t can take the values {0,
1

𝑛
,

2

𝑛
, … ,

𝑛

𝑛
} , which represent the 

proportions of data up to the 𝑖th observation. Thus,  ∑ 𝒔 (�̂�; 𝐷(𝑖|𝑧𝑗))
⌊𝑛𝑡⌋
𝑖=1  is the overall lack 

of fit up to the ntth observation. The estimate of the covariance matrix 𝒋 ̂can be obtained 

by the outer product of the gradient (OPG) or the observed information matrix. The inverse 

square root of 𝒋̂ in Equation (III.5), i.e., �̂�−1/2, decorrelates the scores of the 𝑘 parameters 

𝜃1, … , 𝜃𝑘 so that we can inspect each parameter separately. 

Under the null hypothesis in Equation (III.1), 𝑾𝑗(𝑡) converges to a Brownian bridge 

𝑾0 by the functional central limit theorem [61]. A test statistic 𝒯 can be constructed by 

applying a scalar functional Λ to 𝑾𝑗(𝑡). Equations (III.6) and (III.7) are two specific 

forms of 𝒯, depending on the type of 𝑍𝑗: 

𝒯 = Λ (𝑾𝑗(𝑡)) = max
𝑖=𝑖,…,𝑖̅

(
𝑖

𝑛
∙

𝑛−𝑖

𝑛
)

−1

‖𝑾𝑗 (
𝑖

𝑛
)‖

2

2

  when 𝑍𝑗 is a continuous covariate, (III.6) 

𝒯 = Λ (𝑾𝑗(𝑡)) = ∑
|𝐼𝑞|

𝑛

−1

‖∆𝐼𝑞
𝑾𝑗 (

𝑖

𝑛
)‖

2

2

 𝑄
𝑞=1  when 𝑍𝑗 is a categorical covariate.    (III.7) 
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The statistic in Equation (III.6) is the maximum of the squared 𝐿2 norm of the cumulative 

score process scaled by its variance, (
𝑖

𝑛
∙

𝑛−𝑖

𝑛
), over the interval [𝑖 ,  𝑖 ̅], where 𝑖  is the 

minimal segment size to guarantee the least powerful test for change detection and 𝑖 ̅= 𝑛 −

 𝑖 . Typically, 𝑖  includes 10% of the entire set of observations [74]. The limiting 

distribution for this statistic is the supremum of a squared, 𝑘 -dimensional tied-down 

Bessel process [75]. The statistic in Equation (III.7) is the weighted sum of the squared 

𝐿2 norm of ∆𝐼𝑞
𝑾𝑗 (

𝑖

𝑛
), the increment of the cumulative score process over observations 

in category 𝑞 (with associated indexes 𝐼𝑞). Its limiting distribution is a χ2 distribution with 

𝑘(𝑄 − 1) degrees of freedom [76]. The test based on 𝒯 is conducted for each covariate 

𝑍𝑗, and the one with the smallest p-value that is less than a pre-determined significance 

level 𝛼 corrected for multiple (𝑙) testings is selected as the split variable. 

Once the split variable is determined, node 𝑅 is split into two subgroups at the 

cutpoint c. This cutpoint is expected to produce the most distinguishable subgroups with 

respect to parameter heterogeneity. The cutpoint can be estimated by an exhaustive search 

of all conceivable cutpoints of the split variable for the one whose resulting subgroups 

yield the maximal reduction of the negative log-likelihood. 

III.2.2.3 Tree size control 

In decision trees, the tree size is usually controlled to avoid overfitting and enhance 

the interpretability of the fitted tree model. The same consideration applies in fitting 

logistic regression trees. Specifically, the MOB tree relies on two ways to control the tree 

size. First, it uses a pre-pruning technique that prevents the tree from fully growing by 
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imposing a stopping criterion. The significance level 𝛼 in the parameter instability test 

naturally serves as such a criterion; a smaller 𝛼  leads to a smaller tree. Second, the 

minimum number of samples at each terminal node is also specified to further control tree 

size; the larger this number, the smaller the tree. 

III.2.3 Outlier diagnostics and robust estimation in logistic regression 

Several methods have been developed to detect outliers in logistic regression [62, 

77-81]. The basic idea of those methods is to use residual analysis. Usually, residual plots 

against the predictor variable or the fitted probability of the response being 1 are drawn to 

identify outliers with large residuals. In order to measure how “large” a residual is, it is 

necessary to find an approximate distribution of the residuals. 

Most studies on robust estimation of logistic regression impose down-weights on 

outliers to restrict their influence on model fitting. For example, Pregibon proposed 

resistant fitting methods that taper the deviance to limit the impact of extreme observations 

by using Huber’s weight function [82]. Stefanski et al. [83] and Kunsch et al. [84] adjusted 

the original score function to achieve bounded sensitivity, i.e., the maximum possible 

influence of a single observation. Morgenthaler replaced the 𝐿2 -norm in logistic 

regression with the 𝐿1 -norm, leading to a weighted score function [85]. Croux and 

Haesbroeck improved the Bianco and Yohai estimator by reducing the large leverage 

values using a proper weight [86]. Rather than down-weighting, Hobza et al. introduced 

a median estimator for the logistic regression [87]. Park and Liu [88] and Park and Konishi 

[89] proposed a robust logistic regression using regularization techniques. 
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It is worth noting that both outlier diagnostics and robust estimation rest on the 

assumption that all data are generated from a single model. In other words, the above 

methods will yield the most plausible single model fitting to the data in the presence of 

outliers. However, when heterogeneous subgroups exist, the effects of outliers become 

more complex, and direct application of these methods may no longer be effective. Thus, 

an investigation of the outlier effects in the logistic regression tree context is warranted. 

III.3 Effects of outliers on split variable selection 

III.3.1 Setup for the simulation 

For convenience, we consider a simple scenario where there is a predictor 𝑋 and a 

single covariate 𝑇 that represents time. In the example given in Figure III.1, this means 

that we are concerned with whether the parameters of the logistic regression model 

𝑙𝑜𝑔 (
𝑃

1−𝑃
) = 𝛽0 + 𝛽1𝑋 experience any change over time. Two scenarios are simulated, as 

illustrated in Figure III.3: one in which the parameters of the logistic regression remain 

constant over time and one in which the parameters change at a certain time point 𝑡∗; 

hereafter we call these the no-change case and the change case, respectively. For each 

scenario, a dataset is first generated from the assumed model, with random outliers added. 

Then the parameter instability test with the statistic in Equation (III.6) is conducted to 

decide whether to split the data by the covariate 𝑇. Consequently, the effects of outliers 

are obtained by assessing the performance of the parameter instability test in finding the 

true underlying scenario for the data. 
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Figure III.3 The two scenarios considered in the simulation study and the corresponding 

node splitting in the parameter instability test 

Specifically, 𝑋 follows a discrete uniform distribution over [1, 9]. In the no-change 

case, the parameter 𝜽0 = (𝛽0, 𝛽1) takes the value (−4.5, 0.775). In the change case, the 

pre-change parameter 𝜽1 is the same as 𝜽0, while the post-change parameter 𝜽2 takes a 

different value. Assuming the change occurs in 𝛽0 , six different values, 𝛽0 =

{−3.6, −3.9 − 4.2, −4.8, −5.1, −5.4}, are considered for 𝜽2  to reflect a wide range of 

possible changes. For convenience, the change point 𝑡∗ is assumed to be the middle point 

of the simulated period. The outliers are generated by forcing 𝑦  to be 0 when the 

probability that 𝑦 = 1 is high and forcing it to be 1 when that probability is low, which is 

equivalent to generating 𝑦 from parameters with the opposite signs [90]. The severity of 

the outlying is controlled by the proportion of outliers in the data; five different 

proportions, {2%, 4%, 6%, 8%, 10%}, are considered. For each proportion, the added 

outliers are distributed uniformly. 
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Different performance measures are used for the two scenarios. As shown in 

Figure III.3, in the no-change case, the parameter instability test is correct if it fails to 

reject the null hypothesis, which is that the data are not split. Thus, the performance of the 

test in this case can be measured by the probability of a Type I error or the false splitting 

rate, i.e., how likely it will incorrectly decide to split. In contrast, in the change case, the 

parameter instability test is correct if it rejects the null hypothesis, meaning that the data 

are split by 𝑇. Therefore, the performance of the test in this case can be measured by the 

probability of a Type II error or the miss splitting rate, i.e., how likely it will incorrectly 

decide not to split. To assess the performance in each scenario, 1000 runs were simulated, 

and the percentage of runs with false splitting or miss splitting was calculated. The results 

are summarized in the following two subsections. 

III.3.2 Effect of outliers in the no-change case 

 

Figure III.4 Results for the false splitting rate in the no-change case 
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Figure III.4 shows the results for the no-change case. The false splitting rate in the 

absence of outliers (i.e., the outlier proportion is 0%) is around 0.05, which is consistent 

with the specified significance level 𝛼 = 0.05 in parameter instability tests. However, 

seemingly counterintuitively, as more outliers are present in the data, the false splitting 

rate decreases somewhat, which implies that it is less likely that a node is falsely split. We 

can conclude that in the no-change case, outliers are beneficial insofar as they can help 

decrease the false splitting rate. 

 

Figure III.5 A simulated example to illustrate the outlier effect in the no-change case 

To provide an intuitive understanding of this effect of outliers, Figure III.5 gives a 

simulated example of scores in the parameter instability test in the no-change case, where 

observations with 𝑦 = 1 and 𝑦 = 0 are denoted by triangles and circles, respectively, and 

outliers are marked in red. Without outliers, the scores are randomly distributed around 

zero, indicating no parameter change over time. With outliers, the scores still randomly 

fluctuate around zero, but those near the center move away from the zero line while those 

on the edges move closer to the zero line. As a result, the scores become more similar to 
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each other and form a flatter pattern, which presents stronger evidence of parameter 

stability. In other words, the test is more likely to decide not to split the node, leading to a 

lower false splitting rate. 

The pattern in the right panel of Figure III.5 can be explained by the masking and 

swamping effects of outliers [91, 92]. It is known that when outliers exist, the model fitting 

tries to chase such atypical observations in order to fit all data well, and the resulting fitted 

line is likely to be close to outliers while deviating from the majority of the data. Thus, the 

outliers tend to have smaller or similar residuals compared to other observations and 

appear to be normal; in other words, the existence of outliers is masked. On the other hand, 

normal observations are swamped, that is, they have larger or similar residuals compared 

to the outliers. The masking and swamping effects of outliers produce the pattern of 

residuals in the right panel of Figure III.5. Since the scores are a function of residuals, they 

exhibit the same pattern. When the proportion of outliers in the data becomes larger, the 

effect of outliers becomes stronger, and thus the false splitting rate decreases. 

III.3.3 Effect of outliers in the change case 

Figure III.6 shows the results for the change case. The six panels represent 

different magnitudes of change. In each panel, the higher the proportion of outliers, the 

higher the miss splitting rate. We can conclude that in this case, outliers increase the miss 

splitting rate, meaning that the fitted tree tends to have fewer branches than needed (i.e., 

it is a smaller tree). It can also be seen in Figure III.6 that the miss splitting rate decreases 

when the magnitude of change increases, which is expected, as a larger change is easier 

to detect.  
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Figure III.6 Results for the miss splitting rate in the change case 

 

Figure III.7 A simulated example to illustrate the outlier effect in the change case 

This effect of outliers can also be explained by the masking and swamping effects 

of outliers. Figure III.7 provides a simulated example of scores to illustrate this. When the 

data contain no outliers, there is a clear structural pattern indicating a change in the 

parameter occurring around 𝑇 = 100. Note that the points with large scores (circled) 

before and after the change point are the main contributors to the evidence of change. In 
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this study, we call such points “change indicator points”. However, as a result of the 

masking and swamping effects, the scores for those change indicator points become 

smaller, while those for normal observations become larger, forming a flatter pattern that 

presents weaker evidence of change, as shown in the right panel of Figure III.7. 

Note that the increase in the miss splitting rate caused by outliers may be much 

more severe in practice when the number of covariates 𝑙  is large. As the parameter 

instability test for each covariate is conducted with a Bonferroni-corrected significance 

level of 𝛼 𝑙⁄ , a larger 𝑙 will lead to a smaller significance level and thus a higher miss 

splitting rate. The increase due to outliers in this case may make the miss splitting rate 

unacceptably high, even under large changes. 

III.4 Robust logistic regression tree 

The simulation study in Section III.3 shows that outliers slightly reduce the false 

splitting rate and considerably increase the miss splitting rate in split variable selection. 

We consider three methods to alleviate the increase in the miss splitting rate and make the 

subgroup identification more robust to outliers. The first two methods extend the 

conventional ideas for addressing outliers in logistic regression, i.e., down-weighting and 

outlier detection, to logistic regression trees. The third is our proposed method, which 

modifies the conventional outlier detection method. 

III.4.1 Down-weighting 

As mentioned in Section III.2.3, the idea behind down-weighting is to restrict the 

influence of outliers on model estimation by imposing down weights on them. The 
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application of this idea in logistic regression is called “robust logistic regression”. To build 

a down-weighted logistic regression tree, a robust logistic regression is first fitted at node 

𝑅, and then the scores of the fitted model are used in the parameter instability test for split 

variable selection. Among the available robust logistic regression methods, we chose the 

one proposed by Pregibon [70] for this study, as it uses Huber’s robust M-estimation, 

whose score function can be directly used in the parameter instability test. 

This method imposes weights on observations with large deviances, which are 

potential outliers, by using Huber’s loss function in the parameter estimation. The robust 

estimator for logistic regression is  

                                    �̂�𝑟𝑜𝑏𝑢𝑠𝑡 = arg min
𝜷

∑ ℎ(𝑋𝑖)𝑞 (
𝑑𝑖(𝑌𝑖,𝑿𝑖;𝜷)

ℎ(𝑿𝑖)
)𝑛

𝑖=1 ,                          (III.8) 

where 𝑞(𝑢) is a tapering function, ℎ(𝑋𝑖) is a factor that handles the leverage of each 

observation, i.e., that point’s degree of deviation from other points in the predictor space, 

and 𝑑𝑖 is the 𝑖th observation’s deviance. If  𝑞(𝑢) = 𝑢 and ℎ(𝑋𝑖) ≡ 1 in Equation (III.8), 

this estimator reduces to the standard maximum likelihood estimator. When ℎ(𝑋𝑖) ≡ 1, 

the tapering function is expressed as  

                                    𝑞(𝑑𝑖) = {
 𝑑𝑖                                𝑑𝑖 ≤ 𝐻        

2(𝑑𝑖𝐻)1/2 − 𝐻       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
,                              (III.9) 

where H is a predetermined threshold for deviance that often takes the value 1.3452 [93]. 

The derivative of the tapering function is  

                            𝑤(𝑑𝑖) =
𝜕𝑞(𝑑𝑖)

𝜕𝑑𝑖
= {

1                         𝑑𝑖 ≤ 𝐻         

(𝐻/𝑑𝑖)
1/2          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

.                                   (III.10) 
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The weight 𝑤 in Equation (III.10) is known as “Huber’s weight”.  It controls the undue 

influence of outliers by imposing a weight smaller than 1 that is inversely proportional to 

the square root of the deviance of a potential outlier. 

Once the robust parameter estimates are obtained, the robust version of the score 

function and the covariance matrix of scores in Equation (III.5) can be found by 

𝒔𝑟𝑜𝑏𝑢𝑠𝑡 = ∑ 𝑤𝑖𝑿𝑖{𝑌𝑖 − 𝑔−1(𝑿𝑖
𝑇�̂�𝑟𝑜𝑏𝑢𝑠𝑡)}𝑛

𝑖=1 ,                              (III.11) 

�̂�𝑟𝑜𝑏𝑢𝑠𝑡 =
1

𝑛
∑ (𝑌𝑖 − 𝑔−1(𝑿𝑖

𝑇�̂�𝑟𝑜𝑏𝑢𝑠𝑡))
2

(𝑤𝑖𝑿𝑖)(𝑤𝑖𝑿𝑖)
𝑇𝑛

𝑖=1 ,                 (III.12) 

where 𝑿𝑖 = [1 𝑋𝑖]
𝑇. The derivation is given in Appendix A.1. In these equations, 𝑔 is the 

logit link function and �̂�𝑟𝑜𝑏𝑢𝑠𝑡 is the OPG estimator of the covariance matrix [52]. The 

cumulative score process can be obtained by plugging Equations (III.11) and (III.12) into 

Equation (III.5), and then the parameter instability test statistic in Equation (III.6) or (III.7) 

can be calculated. 

III.4.2 Outlier detection 

The idea of outlier detection is to identify the outliers in the data at node 𝑅 and 

perform the parameter instability test after removing them. As mentioned in Section III.2.3, 

outlier detection is usually made through residual analysis. However, it is difficult to 

define the residual for logistic regression. The conventional definition, i.e., 𝑌𝑖 − �̂�𝑖, is not 

adequate due to the binary nature of the response variable [67]. Pearson’s chi-square 

residual [50, 65, 68], deviance residual [69], and binned residual [51] have been studied, 

but they rely on approximation of the residual distribution under special assumptions.  
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In this study, we use the Bayesian residual proposed by Albert and Chib [94] to 

detect outliers. The Bayesian residual is defined based on the latent-variable logistic 

regression [95]. This model is equivalent to the standard logistic regression. Table III.1 

compares the two models. In the standard model, Φ  denotes the logistic cumulative 

distribution function. In the latent-variable model, the latent variable 𝜉 is a linear model 

of the predictor with random error 𝜀, which follows a t distribution with 8 degrees of 

freedom to approximate the logistic link function. 𝑌  is assigned 1 if 𝜉 > 0 , and 0 

otherwise. 

Table III.1 Comparison of the two logistic regression formulations 

Standard logistic regression Latent-variable logistic regression 

𝑌 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 
 

𝑝(𝑌 = 1) = Φ(𝑿𝑇𝜷) 

𝜉 = 𝑿𝑇𝜷 +  𝜀,     𝜀~𝑡(8) 

𝑌 =  {
1   𝑖𝑓 𝜉 > 0 

0   𝑖𝑓 𝜉 ≤ 0 
 

The advantage of the latent-variable model is that by introducing a linear 

regression into the logistic regression, the well-defined residual analysis in linear 

regression can be extended to logistic regression. Specifically, the latent residual 𝜀 can be 

used to detect outliers. As 𝜉 is a latent variable, 𝜀 is estimated using the Bayesian method. 

In the Bayesian framework, the residual 𝜀𝑖 of each observation is a random variable, so 

the posterior distribution of the residual 𝑃(𝜀𝑖|𝒟) needs to be obtained. The estimation 

procedure for 𝑃(𝜀𝑖|𝒟) is given in Appendix A.2. Further, we can define the outlying 

probability, i.e., the probability of an observation being an outlier, as 

                                                    𝑝𝑖
𝑜𝑢𝑡 = 𝑃(|𝜀𝑖| > �̃�|𝒟),                                    (III.13) 
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where �̃� is a constant. Letting �̃� be a high percentile point of the prior of 𝜀𝑖  (i.e., a t 

distribution with 8 degrees of freedom), the outlying probability quantifies how far the 𝑖th 

observation deviates from the prior. For example, when �̃� is the 97.5th percentile of the 

prior, observations with an outlying probability exceeding 0.05 will be taken as outliers. 

III.4.3 The proposed method 

The underlying assumption of the above two methods is that all data at a node 

come from a single logistic regression model. Accordingly, these methods select outliers 

by applying a pre-specified threshold (Huber’s constant 𝐻 in Equation (III.10) and the 

percentile point 𝐾 in Equation (III.13)) for deviance or residual, and then assign smaller 

weights to or altogether remove them. This works when the data truly come from a single 

model, i.e., the no-change case. However, when there is parameter change in the data, the 

“outliers” selected by these methods may include not only the real outliers, but also non-

outliers, including change indicator points, as shown in Figure III.7. As a result, down-

weighting or removing the selected outliers may weaken the evidence of change or even 

make the change undetectable. Therefore, a robust logistic regression tree should work on 

real outliers while keeping the change indicator points unaffected. 

Based on this understanding, we propose a method that modifies the original 

outlier detection method in Section III.4.2. Our modifications are threefold. First, a new 

metric that is more effective than the outlying probability in Equation (III.13) is defined 

to measure the degree of outlying. Second, a decision rule is established for the proposed 

outlying metric to determine potential outliers. Finally, intrinsic extreme points of the data 
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are recovered from the selected outliers, and then the parameter instability test is 

conducted. The algorithm for the proposed method is summarized in Appendix A.3.  

III.4.3.1 The proposed outlying metric 

 

Figure III.8 Example of posterior latent residual distributions with similar outlying 

probabilities (left) and similar posterior means (right) 

The new outlying metric is defined as 

                                                     𝑀𝑖 = 𝑝𝑖
𝑜𝑢𝑡 × |𝐸[𝜀𝑖]|,                                       (III.14) 

where |𝐸[𝜀𝑖]| is the absolute posterior mean of the latent residual. The motivation for 

combining the outlying probability 𝑝𝑖
𝑜𝑢𝑡 and |𝐸[𝜀𝑖]| is illustrated in Figure III.8. In each 

panel of Figure III.8, the dashed curve denotes the prior of 𝜀𝑖 as the reference, and the two 

solid curves are posterior distributions. The outlying probability for each posterior is 

represented by the shadow area under the curve. In the left panel, the two posteriors have 

similar outlying probabilities but different means. It is obvious that posterior 𝔹 indicates 

more serious outlying than posterior 𝔸, as its mean is farther away from zero. In the right 

panel, the two posteriors have similar means but different outlying probabilities, and 
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posterior 𝔹 indicates more serious outlying due to its higher outlying probability. The two 

examples suggest that the outlying probability or posterior mean alone is not adequate to 

distinguish outliers of different degrees, and the proposed metric in Equation (III.14), 

which combines them, shows a better ability to represent outliers. 

III.4.3.2 The proposed decision rule 

The original outlier detection method uses a constant threshold, i.e., �̃�, to decide 

on outliers. This type of decision rule will not work for the proposed metric in Equation 

(III.14), as it is hard to find the metric’s distributional information. Moreover, as 

previously noted, a constant threshold, which is based on the single model assumption, 

may mistake non-outliers as outliers. In addition, determining the threshold value is 

challenging, as the appropriate setting depends on the specific scenario (e.g., no-change, 

small change, large change), which is unknown in practice.  

In this Section, we propose a decision rule for the proposed metric that can solve 

the above problems. The idea is to find the group of observations that deviate most from 

the others. Specifically, we first sort the values of the proposed metric {𝑀𝑖 , 𝑖 = 1, … , 𝑛} in 

descending order and calculate the adjacent differences between the sorted 

values {𝑀(𝑖), 𝑖 = 1, … , 𝑛}, where 𝑀(1) ≥ 𝑀(2) ≥ ⋯ ≥ 𝑀(𝑛): 

                                                    𝐶ℎ𝑎𝑠𝑚𝑖 = 𝑀(𝑖) − 𝑀(𝑖+1).                                 (III.15) 

Then we find the location of the largest adjacent difference:  

𝑖∗ = max
1≤𝑖≤𝑛−1

𝐶ℎ𝑎𝑠𝑚𝑖 . 
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This means that the biggest gap among the sorted metric values occurs between the group 

{𝑀(1), … , 𝑀(𝑖∗)}  and the remaining group {𝑀(𝑖∗+1), … , 𝑀(𝑛−1)} . Thus, the original 

observations corresponding to {𝑀(1), … , 𝑀(𝑖∗)}   are taken as potential outliers. 

Considering that the Bayesian residual takes a positive or negative sign depending on the 

value of 𝑌 (1 or 0), this procedure is applied separately for each value of 𝑌. 

The proposed decision rule is intuitive and convenient to use, as it does not require 

any distributional information. It is designed to select observations with the highest degree 

of outlying, which are most likely the real outliers, and thus minimize the chance of 

mistaking change indicator points as outliers. Moreover, it is less sensitive to the 

specification of �̃�, as the outliers are determined not directly by the value of �̃� but rather 

by the relative differences of the metric values. 

 

Figure III.9 Comparison of the outlier detection method and the proposed method 

A simulation example is presented in Figure III.9 to illustrate the difference 

between the proposed method and the original outlier detection method. The simulated 

data contain a change and 12 outliers. The dashed line in the left panel denotes the decision 
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threshold 𝑝𝑖
𝑜𝑢𝑡 = 0.05, with 𝐾 = 2.55 calibrated to have a false splitting rate of 0.05 in 

the corresponding no-change case, while the arrow in the right panel denotes the biggest 

chasm found through the proposed method. Observations above the dashed line in the left 

panel and those above the biggest chasm in the right panel are the selected sets of potential 

outliers. The proposed method obtains 12 outliers, which are all the real outliers that are 

simulated. In contrast, the original outlier detection method produces many more outliers, 

which include the actual outliers but also many change indicator points. 

III.4.3.3 Parameter instability test with recovery of intrinsic extreme points 

In general, any real dataset intrinsically contains some extreme points due to the 

stochastic nature of the data generation process [96]. In the no-change case, those points 

are important for guaranteeing accurate estimation, while in the change case, those points 

play the role of change indicators and thus are critical for ensuring the good performance 

of change detection. Unfortunately, outlier detection methods are in general not able to 

distinguish between such intrinsic extreme points and outliers. That means that the 

selected potential outliers resulting from the proposed decision rule in Section III.4.3.2 

may still include some intrinsic extreme points that should be recovered back to the data.   

Let 𝑟 be the number of intrinsic extreme points to be recovered from the selected 

set of potential outliers. A simple idea is to specify a value for 𝑟, randomly select 𝑟 

observations from the potential outliers, and return them to the normal samples. Then the 

parameter instability test is conducted using the updated normal samples. However, this 

overlooks the uncertainty in the number of intrinsic extreme points and the randomness in 

sampling. To take those into account, a range of values is considered for 𝑟, and multiple 
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samplings are conducted to select intrinsic extreme points from the outlier set. The overall 

statistic in the parameter instability test will integrate all these possibilities. 

The proposed procedure to conduct the parameter instability test with recovery of 

intrinsic extreme points is illustrated in Figure III.10. It is assumed that 𝐿 ≤ 𝑟 ≤ 𝑈, where 

𝐿 is the minimum possible number and 𝑈 is the maximum possible number of intrinsic 

extreme points. Without any prior knowledge, 𝐿 is set to 0 and 𝑈 is the total number of 

selected outliers. Under each value of 𝑟 , 𝑚  trials are conducted, in each of which 𝑟 

samples are randomly drawn from the outlier set and returned to the normal data, and the 

statistic 𝒯 in the parameter instability test is calculated using the updated normal data. 

Then the average of the 𝑚 statistics, 𝒯𝑟
𝑎𝑣𝑒 , is obtained. This will produce a series of 

statistics 𝒯𝐿
𝑎𝑣𝑒, 𝒯𝐿+1

𝑎𝑣𝑒,…, 𝒯𝑈
𝑎𝑣𝑒. To maximize the chance of detecting a change, the overall 

statistic is the maximal average: 

                                     𝒯𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = max
𝑟

{ 𝒯𝑟
𝑎𝑣𝑒 , 𝑟 = 𝐿, 𝐿 + 1, … , 𝑈  }.                       (III.16) 

 

Figure III.10 Illustration of the proposed procedure to conduct the parameter instability 

test with recovery of intrinsic extreme points 
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III.5 Performance comparison 

The performances of the methods described in Section III.4 are compared in this 

Section based on a simulation. It is interesting to see the differences that can be attributed 

to the recovery of intrinsic extreme points in the proposed method, so a total of four 

methods are compared: (i) down-weighting, (ii) outlier detection, (iii) the proposed 

method without recovery of intrinsic extreme points, and (iv) the proposed method with 

recovery. The original parameter instability test, i.e., using all data without addressing 

outliers, will be used as a reference in the comparison. 

The setup for the simulation is the same as in Section III.3. That is, two scenarios, 

a no-change case and a change case, are considered, and the false splitting rate and miss 

splitting rate are used as performance measures. In down-weighting, the threshold 𝐻 is set 

to be 1.3452. In outlier detection, the threshold �̃� is set to be 2.55 so that the false splitting 

rate in the corresponding no-change case is 0.05. In the proposed method, the value of �̃� 

is simply 2.306, the 97.5th percentile of the prior distribution, for convenience, and the 

number m of samplings for recovering extreme intrinsic points is 300. In the Bayesian 

posterior sampling, the number of samples is 10000 with 4000 burn-ins, which means that 

the first 4000 samples are discarded from the 10000 samples generated in each sampling. 

The results of the performance comparison in the no-change case are given in 

Figure III.11. In each plot, the blue bar denotes the original parameter instability test and 

the red bar denotes the corresponding method. All methods show a similar false splitting 

rate when there are no outliers and a higher false splitting rate than the original test when 

outliers are present. This is because they attempt to alleviate the effect of outliers, which 
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reduces the benefit of outliers in the false splitting rate described in Section III.3.2. One 

advantage of the three outlier-detection-based methods is that their false splitting rates are 

around the specified significance level 0.05 over all of the outlier proportions, making the 

parameter instability test quite stable and free of outlier influence. The reason is that these 

methods are able to identify most of the outliers and eliminate them from the data. Down-

weighting exhibits slightly lower false splitting rates because it does not get rid of outliers, 

so that the benefit of outliers in the false splitting rate is partially retained.  

 

Figure III.11 Results for the false splitting rate of the four methods in the no-change 

case, with the blue bar in each plot denoting the original parameter instability test as a 

reference 

Figure III.12 shows the performance of the four methods in the change case. 

Outlier detection yields a substantially higher miss splitting rate than the original test and 

the other methods in most cases because it removes change indicator points that are 

mistaken as outliers. Down-weighting has a larger miss splitting rate than the original test 
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when no outliers exist, as it reduces the contribution of change indicator points by down-

weighting them. In the presence of outliers, it has a similar or slightly lower miss splitting 

rate due to the restricted influence of outliers. The proposed method, with or without 

recovery of intrinsic extreme points, performs best in all cases because it preserves 

evidence of change while removing outliers. Regarding the two versions, the one without 

recovery has a similar miss splitting rate to the original test in the absence of outliers over 

all outlier proportions, implying that the proposed method can always successfully isolate 

real outliers from the data. The recovery of intrinsic extreme points further improves this 

performance. 

 

Figure III.12 Results for the miss splitting rate of the four methods in the change case 

Another point that deserves mention is the trend of the performances under 

different magnitudes of change. Down-weighting has a similar miss splitting rate to that 

of the original test when the change is small (i.e., in the center panels), and a smaller rate 
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when the change is large. The reason is probably that there are more change indicator 

points under a large change, and thus the weighting effect on the contribution of change 

indicator points becomes weaker. Like down-weighting, outlier detection performs 

similarly to the original test under small changes, but its performance under large changes 

is much worse because it removes most change indicator points from the data. The 

proposed method has a smaller miss splitting rate under all changes, and its advantage 

becomes more salient as the change becomes larger. 

III.6 Case studies 

This Section applies the methods to two healthcare datasets. The first dataset 

concerns hospital readmissions of chronic obstructive pulmonary disease (COPD) patients, 

and the second dataset concerns the mortality of patients in cardiac surgery. A logistic 

regression tree is built for each dataset using the five methods (regular MOB and the four 

methods addressing outliers) studied in Section III.5, and their results are compared. 

III.6.1 Application to COPD data 

COPD is the fourth leading cause of death in the world [97]. The dataset was 

collected during 2009–2012 and contains records for 420 patients [98]. The outcome 

measure is the readmission of a patient within 30 days after discharge, and 36 covariates 

are available, including patient baseline characteristics (e.g., demographics, comorbidities, 

and habitual behaviors), treatment variables (e.g., steroid usage, antibiotics), blood test 

results (e.g., hemoglobin, red blood cell distribution width), and history of health service 

utilization (e.g., the number of emergency room visits and hospitalizations). 
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When a single predictor for the outcome of interest is not specified, we first 

identify the important variables that affect the outcome among the pool of covariates. 

Since many covariates in this dataset are categorical variables, group LASSO is a suitable 

variable selection method. Seven variables are selected: ER visits (the number of 

emergency room visits), Hospitalization (the number of hospital stays), RDW (red blood 

cell distribution width), Age, LAMA (whether the patient was treated with long-acting 

muscarinic antagonists), Alcohol (whether or not the patient uses alcohol), and Antibiotic 

(whether the patient was treated with antibiotics). The predominant one, ER visits, is used 

as the predictor for logistic regression at each node, and other variables serve as split 

variables in the tree. In constructing the tree, the significance level for the parameter 

instability test is set to 0.05, the minimum sample size per node is set to 150, and the 

parameter settings of the proposed method are the same as in Section III.5. 

Figure III.13 shows the logistic regression trees constructed by the different 

methods. The two versions of the proposed method produce the same result, so only one 

tree is displayed here. All of the trees have a simple structure, with only one splitting. The 

selected split variable is Hospitalization for regular MOB, down-weighting, and the 

proposed method. According to the experience of medical professionals in this field, the 

number of hospital stays is an important indicator for patient readmission. So the 

subgrouping based on Hospitalization is reasonable. The outlier detection method splits 

the patients by RDW, which is not appropriate. These results validate that the proposed 

method is able to produce the correct subgrouping 
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Figure III.13 The logistic regression trees for the COPD data constructed by the 

different methods 

III.6.2 Application to surgical data 

The data were collected in a UK center for cardiac surgery during 1992–1998 and 

contain records for 6994 patients. The outcome measure is the 30-day mortality of a 

patient following the operation (survival/death), and six covariates are available: 

Parsonnet score, Age, Gender, Surgeon (there are seven different surgeons), Type (there 

are three types of surgery operations: elective, urgent, emergency) and Diabetes (whether 

or not the patient has diabetes). The Parsonnet score, which indicates the patient’s 

preoperative risk of death, is a well-known predictor for cardiac surgery mortality [99]. 

Many studies that use this dataset [100-104] fit a simple logistic regression with the 
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Parsonnet score as predictor. Here we will build a logistic regression tree using the 

Parsonnet score as predictor as well and other five covariates as splitting variables. As the 

true subgroups are unknown, we make a small modification to the original data to show 

the differences between the methods and effectiveness of the proposed method. 

Specifically, we first build a regular MOB tree using the original data. Treating this as the 

true model, we add some outliers at a node of the tree where change occurs. Then the five 

methods are applied to the modified data. The best method is the one that produces the 

true model regardless of the added outliers. The parameter settings of all the methods in 

tree building are the same as in the analysis of the COPD data. 

 

Figure III.14 The logistic regression trees for the surgical data constructed by the 

different methods 
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Figure III.14 shows the constructed trees. Outlier detection does not generate a tree. 

This is consistent with this method’s very high miss splitting rate in Figure III.12. Type 

and Surgeon are split variables in all of the other trees. The proposed method also splits 

the node associated with Type = {1} by Age, as shown in the dashed square, while the 

regular MOB tree and the down-weighting tree do not. The truth regarding this node is 

that there is a change in the parameters of the logistic regression over Age, so the node 

should indeed be split by Age. However, with the added outliers, the evidence of change 

is masked, and thus the regular MOB algorithm and down-weighting fail to split the node, 

and consequently, the opportunity to capture meaningful age-related subgroups is lost. 

This result validates the robustness of the proposed method to outliers. 

III.7 Conclusion and discussion 

Logistic regression trees provide a useful method for identifying heterogeneous 

subgroups in binary outcome modelling. This study first uses a simulation to investigate 

the effects of outliers on split variable selection in building logistic regression trees. It is 

found that outliers slightly decrease the false splitting rate but considerably increase the 

miss splitting rate. A robust logistic regression tree is proposed to remedy this problem. 

The simulation results show that the proposed method reduces the miss splitting rate and 

outperforms two alternative methods in this regard, and an application to healthcare data 

further validates its robustness. 

Another finding that deserves mention is that down-weighting and outlier 

detection widely used to address outliers in linear and logistic regressions, are partially 
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useful in the regression tree context. They cannot substantially reduce and might even 

increase the miss splitting rate. These two methods are based on the assumption that there 

is a single model, so they are effective in alleviating outlier effects when the data can be 

explained by a single model (i.e., no splitting is needed). However, when a single model 

is not adequate, they may mask the evidence of change, leading to more missed splits. 

Several interesting open problems related to this study remain. One problem is that 

outliers may also affect the cutpoint estimation after the split variable is selected. The 

cutpoint is found by minimizing the objective function, which involves estimating 

parameters for the resulting subgroups. Because outliers have an effect on parameter 

estimation, they may result in misleading cutpoints. We plan to explore how to treat 

outliers in cutpoint estimation in our future research. Another problem is how to extend 

the proposed robust logistic regression tree to random forests. Random forests are an 

ensemble method that is designed to improve the prediction performance of regular trees 

by generating a large number of trees and aggregating their predictions. In constructing a 

robust version of random forests, computational efficiency is a main concern. The method 

proposed in the present study involves Bayesian posterior sampling, which is 

computationally expensive. A recent study proposed a Bayesian logistic model using a 

Polya-Gamma latent variable that avoids analytic approximations and thus enhances the 

computational efficiency of Bayesian inference [105]. This model can also help reduce 

the proposed method’s computation time for the recovery of intrinsic extreme points. 

Incorporating this model in the proposed method will provide a potential direction 

regarding robust random forests. 
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CHAPTER IV  

BINARY REGRESSION TREES FOR IMBALANCED CLASS DATA 

With years of quality improvement efforts in many applications such as 

healthcare and manufacturing systems, the number of adverse outcomes like morality 

and defective product rate is gradually decreasing. It has been known that conventional 

binary outcome modelling methods are meant to favor the majority class, showing 

tendency to underestimate the probability of the minority class in prediction. To better 

understand such imbalanced class issue in the context of subgroup identification 

beyond prediction, this chapter proposes two binary regression trees for imbalanced 

class data. The performances of the two proposed regression tree are compared with 

those of logistic regression tree when outcomes of interests are (extremely) rare. This 

study summarizes findings from the simulation and discusses the potentials of 

regression trees for subgroup identification under class imbalance environment. 

IV.1 Introduction

Data not contaminated by outliers do not always guarantee the satisfactory 

performance in binary classification. There is another practical situation of binary 

response data where one class has significantly fewer samples than the other class, which 

is called rare event data or imbalanced class problem. Many real-world applications like 

fraud detection, medical diagnosis, and healthcare informatics suffer from this problem. 

Usually, the cost of misclassifying the minority class (e.g., cancer) is critical compared to 
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that of misclassifying the majority class (e.g., non-cancer) in those applications, so the 

prediction of the minority class is a primary concern in modelling this type of data. 

However, under the imbalanced class situation, most binary classification models 

underestimate the probability of the minority class since it favours the majority class like 

other binary data modelling methods. Thus, most of the research on this topic have focused 

on improving the detection of the minority class. 

The approaches to handle imbalanced class data in literature can be roughly 

divided into two categories: data-level approaches and algorithm-level approaches [106]. 

The basic idea of data-level approaches is to make the class distribution balanced by 

sampling the data such that the conventional classification methods perform in the most 

desirable circumstance. One can randomly under-sample observations with the majority 

class, or artificially create synthetic samples from the minor class instead [107, 108, 109, 

110]. In contrast, algorithm-level approaches adopt standard methods to treat the class 

imbalance. For example, different costs are assigned to different misclassification types 

in the objective function (e.g., cost-sensitive learning), or several models are learned from 

the training data and their evaluations are combined to make final prediction (e.g., 

ensemble methods). Sometimes, models attempt to learn the minority class samples alone 

(e.g., one-class classification, recognition-based methods) [111]. Neither of these two 

types of approaches dominates the other universally in terms of performance. In particular, 

cost-sensitive learning produces equivalent results to sampling methods, and it has been 

found that there is no difference between these two methods [112, 113].  
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About decision trees to handle imbalanced class data, most research have relied on 

sampling-based methods and cost-sensitive learning that usually jointly work with 

ensemble methods like random forest. Moreover, split criteria are modified or the decision 

boundary is adjusted to improve the predictive accuracy. For example, Drummond and 

Holte [114] show that the decision tree proposed by Dietterich et al. [115] improves the 

prediction power, which is originally devised to satisfy the Probably Approximately 

Correct (PAC) condition in tree learning. By investigating the influence of the imbalanced 

class on different impurity measures, Liu et al. [116] introduce a robust and insensitive 

measure to class distribution, Class Confidence Proportion (CCP), and Cieslak et al. [117] 

propose the Hellinger distance as the split criterion. Maszczyk and Duch [118] simply 

adopte the Renyi entropy as a split criterion and find that the Renyi entropy is effective in 

learning decision trees under imbalanced data with a proper choice of the order parameter 

𝛼 associated with the entropy. Park and Ghosh [119] extend the decision tree using the 

Renyi entropy under the ensemble learning framework by generating diverse trees with 

multiple parameters of 𝛼. Instead of using the constant 𝛼 across the whole tree, Hong et 

al. [120] adaptively decide the parameter 𝛼 at each node according to the class distribution. 

However, all of those methods have primarily prioritized the improvement on prediction 

accuracy alone, not on the subgroup identification. 

To handle imbalanced class issue for subgroup identification, the two approaches 

mentioned above may not work well in the context of regression trees. As described in the 

previous Chapter, MOB logistic regression tree pays attention to the change in parameters 

of logistic regression along with covariates, and such changes are the key to identify 
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hidden subgroups. However, the data-level approaches such as the sampling-based 

methods artificially reform the dataset to balance the class distribution, and thus lose the 

underlying structure of the original data. This may lead to misleading subgroups or fail to 

identify important subgroups. Regarding the algorithm-level approaches, they have to 

know the true class values for each observation to identify the misclassified observations 

and assign high cost for the observations in the learning process. If we apply the same idea 

for subgroup identification, we would obtain the so called misclassified subgroups. 

Unfortunately, subgroups are usually unknown from the beginning so that we are not able 

to define misclassified subgroups. In other words, the algorithm-level approaches cannot 

be applied for subgroup identification problem in any ways. 

This chapter proposes new binary regression trees for subgroup identification 

while maintaining the original imbalanced class structure of the dataset. Two binary 

regression trees are proposed. The first tree model is a logistic regression tree assisted with 

Firth’s method (called Firth’s logistic regression tree hereafter) and the second one is the 

generalized extreme value regression tree (called GEV regression tree hereafter). This 

study defines suitable performance measures to assess the effect of imbalanced class on 

split variable selection and compares the performance of three tree models, including the 

MOB logistic regression tree described in the previous Chapter, Firth’s logistic regression 

tree, and GEV regression tree, by simulation.  

The remainder of this chapter is organized as follows. Section IV.2 presents the 

imbalance class problem of logistic regression and related literature. Section IV.3 

introduces the two proposed tree models for imbalanced binary outcomes and Section IV.4 
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compares performance of the MOB logistic regression tree and the two proposed trees by 

simulation. Finally, Section IV.5 concludes the chapter and discusses future research 

directions. All supplemental materials are available in Appendix B. 

IV.2 Imbalance class problem in logistic regression 

Logistic regression is to estimate the probability of the occurrence of binary 

outcomes 𝑦 (e.g., survival/death) via a logistic function of 𝐾 dimensional predictor 𝑿. The 

probability 𝑃(𝑌𝑖 = 1|𝑿𝑖)  is expressed as 
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑝𝑋𝐾𝑖)

1+𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑋𝐾𝑖)
 with (𝐾 + 1) 

parameters. The unknown coefficients 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝐾)  are usually obtained by 

maximum likelihood estimation. The maximum likelihood estimator has very desirable 

properties in large samples such as asymptotical unbiasedness (i.e., 𝐸(�̂�𝑀𝐿𝐸) ≈ 𝜷𝑡𝑟𝑢𝑒) 

and efficiency (i.e., the asymptotic variance of the maximum likelihood estimate achieves 

the Cramer-Rao lower bound) [121]. However, when the binary outcomes are highly 

imbalanced, the maximum likelihood estimates have substantial bias [122]. Specifically, 

King and Zeng [122] point out that the asymptotic bias on the intercept is  

                                            𝐸(�̂�0) − 𝛽0 ≈
�̅�−0.5

𝑛�̅�(1−�̅�)
,                                                        (IV.1) 

where �̅� is the probability of the event (i.e., 𝑌𝑖 = 1) in the data. It is easy to see that �̅� as 

well as �̅�(1 − �̅�) have a very small value under highly imbalanced class data and thus the 

bias becomes substantially large according to Equation (IV.1). In order to reduce the bias, 

King and Zeng subtract the O(𝑛−1) term of bias from the maximum likelihood estimates. 

In fact, Firth [123] proposes the generalized approach for removing the O(𝑛−1) term in 
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the bias. Thus, Firth’s approach is similar to King and Zeng’s approach under imbalanced 

class data. Firth’s idea has also been implemented to solve the separation problem (i.e., 

the binary outcomes are completely separated by a single predictor) in logistic regression 

[124]. Such bias and its effect on predictive power are covered in several studies [125- 

127]. 

Owen (2007) studies logistic regression under the infinitely imbalanced case [128]. 

As the number of majority class (i.e., 𝑌 = 0) goes infinity with a fixed number of minority 

class (i.e., 𝑌 = 1), the estimate of intercept �̂�0 goes negative infinity and the estimated 

coefficients �̂�1, … , �̂�𝐾 will approach a meaningful limit 

                                                                   𝑋 =
∫ 𝑒𝑋𝑇𝛽𝑋𝑑𝐹0(𝑋)

∫ 𝑒𝑋𝑇𝛽𝑑𝐹0(𝑋)
,                                                 (IV.2) 

where  𝑋 is the mean of the sample 𝑋𝑖 corresponding to 𝑌 = 1 and 𝐹0 is the distribution 

of 𝑋 given 𝑌 = 0. Equation (IV.2) requires that 𝐹0 not be a heavy-tail distribution such as 

Cauchy distribution and  𝑋 be surrounded by 𝐹0. These conditions are called “overlap 

conditions” in the paper and they are derived in the light of Silvapulle’s results that 

characterize the existence and uniqueness of maximum likelihood estimates for logistic 

regression [129]. Equation (IV.2) implies that logistic regression only relies on the 

observations with 𝑌𝑖 = 1 via their average value of predictors in the infinitely imbalanced 

situation. The finding enables logistic regression to perform better by shrinking outliers 

toward 𝑋 or clustering 𝑋𝑖 with 𝑌𝑖 = 1 and thus fitting a logistic regression at each cluster 

under infinitely imbalanced class distribution. 
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Several logistic regression models have been developed to improve the accuracy 

of classification in imbalanced data. Rahayu [130] proposes AdaBoost Newton truncated 

regularized weighted kernel logistic regression and AdaBoost Newton truncated 

regularized logistic regression that show considerable improvement in the accuracy by the 

virtue of AdaBoost. Maalouf and Siddiqi [131] develop a rare event weighted logistic 

regression on large-scale imbalanced data, which performs better than the truncated 

regularized iteratively re-weighted least squares [132]. In addition, Maalouf and Trafalis 

[133] extend the weighted logistic regression assisted with a kernel method, which is 

suitable for small to medium sample size. Wang, Xu and Zhou [134] apply Lasso (least 

absolute shrinkage and selection operator) logistic regression to the unbalanced credit 

scoring problem. However, most of the methods focus on the fitting and predictive power 

of logistic regression, not logistic regression tree for subgroup identification. 

IV.3 Model description 

This chapter proposes two binary regression tree models for imbalanced class data. 

The proposed methods follow the similar learning procedure as in the previous chapter. 

Let 𝑌 be the binary response, 𝑿 be the vector of (𝐾 + 1) elements (𝐾 predictors with 1 in 

the first element) in the binary outcome regression model, {𝑍1, 𝑍2, … , 𝑍𝑙} be the set of 

covariates, and n is the sample size. Through partitioning the covariate space, the proposed 

regression tree explores a piecewise binary regression model {ℳ𝑏: 𝑌~𝐵𝑀(𝑿; 𝜽𝒃), 𝑏 =

1, … , ℬ}  that fits observations in each subgroup 𝑏  better than a global model 

{ℳ: 𝑌~𝐵𝑀(𝑿; 𝜽)} , where 𝜽𝒃  and 𝜽  are model parameters of subgroup 𝑏  and the 
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population, respectively, ℬ is the total number of subgroups, and “BM” stands for “binary 

regression model”. Two binary regression models are considered: Firth’ logistic 

regression (FL) and the generalized extreme value regression (GEV regression). For each 

model, two steps are involved in learning a tree: model parameter estimation and covariate 

space splitting. The covariate space splitting consists of two separate steps: split variable 

selection and cutpoint estimation. Details of the steps of each model are given as follows. 

IV.3.1 Firth’s logistic regression tree 

IV.3.1.1. Firth’s logistic regression 

As explained in Chapter III, the parameters of logistic regression 𝜽 are obtained 

via maximum likelihood estimation. Maximum likelihood estimates of the parameters are 

equivalent to the solution of the score function 𝒔(𝜽), i.e., the first partial derivative of the 

log-likelihood ℓ(𝜽; 𝒟)  given data 𝒟 = {𝐷𝑖 = (𝑌𝑖, 𝑿𝑖), 𝑖 = 1, … , 𝑛} . In a regular 

parametric model with parameter 𝜽 , the asymptotic bias of the maximum likelihood 

estimate �̂� can be expanded as 

                                             𝑏(𝜽) = 𝐸(�̂�) − 𝜽 =
𝑏1(𝜽)

𝑛
+

𝑏2(𝜽)

𝑛2 + ⋯,                                (IV.3) 

where 𝑛 is the sample size. In order to reduce the first-order term bias, 
𝑏1(𝜽)

𝑛
, in Equation 

(IV.3), Firth [123] proposes the modified score functions by using geometric and statistical 

property of the score function. The idea of the modification is illustrated in Figure IV.1. 

which is slightly modified from the original paper. 
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Figure IV.1 The idea of Firth’s modification on the score function 

In Figure IV.1, 𝜽∗ and  �̂� are the solution of the modified score function and the 

original score function, respectively, and 𝐼(𝜽) denotes Fisher information. Firth shows 

that if the maximum likelihood estimates  �̂� is subject to a positive first-order bias 
𝑏1(𝜽)

𝑛
, 

the bias can be removed by shifting the score function 𝒔(𝜽) downward such that the 

shifted score function has a solution at 𝜽∗. Using the property of Fisher information (i.e., 

the absolute value of the gradient of the score function), this idea is realized by shifting 

the score function 𝒔(𝜽) downward by an amount 𝐼(𝜽) 
𝑏1(𝜽)

𝑛
. Thus, the modified score 

function is expressed as 

                                                    𝒔∗(𝜽) = 𝒔(𝜽) − 𝐼(𝜽) 
𝑏1(𝜽)

𝑛
.                                               (IV.4) 

In logistic regression where  

                    Prob(𝑌𝑖 = 1|𝑋𝑖, 𝜽) = 𝜋𝑖 = [1 + 𝑒𝑥𝑝{−(𝜃0 + ∑ 𝑋𝑖𝑘𝜃𝑘
𝐾
𝑘=1 )}]−1,                (IV.5) 
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the first-order bias term in Equation (IV.4) takes the following form [135]:  

                                                       𝑏1(𝜽) = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝝃,                                           (IV.6) 

where 𝑿  is the design matrix, 𝑾  is an 𝑛 × 𝑛  diagonal matrix whose ith element is 

𝜋𝑖(1 − 𝜋𝑖), 𝑾𝝃 has ith element ℎ𝑖 (𝜋𝑖 −
1

2
), and ℎ𝑖 is the ith diagonal element of the “hat” 

matrix  

                                                       𝑯 = 𝑾
1

2𝑿(𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾
1

2.                                          (IV.7) 

Hence, by plugging 𝑏(𝜽) in Equation (4.6) and 𝐼(𝜽) = 𝑿𝑇𝑾𝑿 into Equation (4.4), the 

modified score function 𝒔∗(𝜽) becomes  

                                                                 𝒔∗(𝜽) = 𝒔(𝜽) − 𝑿𝑇𝑾𝝃                                      (IV.8) 

Given the kth component of the score function of logistic regression is ∑ (𝑌𝑖 − 𝜋𝑖)𝑋𝑖𝑘
𝑛
𝑖=1 , 

the modified score function in logistic regression is 

                  𝒔∗(𝜃𝑘) = ∑ {𝑌𝑖 − 𝜋𝑖 + ℎ𝑖 (
1

2
− 𝜋𝑖)} 𝑋𝑖𝑘,𝑛

𝑖=1          (𝑘 = 0, 1, … , 𝐾)                 (IV.9) 

The estimates �̂�  are obtained via the Fisher-scoring method (which is equivalent to 

iteratively reweighted least squares) until parameters are converged 

                                               𝜽(𝛾+1) = 𝜽(𝛾) + 𝐼−1(𝜽(𝛾))𝒔∗(𝜽(𝛾))                                 (IV.10) 

where 𝛾 refers to the 𝛾th iteration. 

It is worth noting that Firth’s idea can be understood as penalized likelihood 

estimation. For exponential family models such as logistic regression, the penalty term is 

specified by the square root of the determinant of the Fisher information evaluated at 𝜽 
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(i.e., |𝐼(𝜽)|
1

2), which is known as Jeffreys’ invariant prior in Bayesian framework [136]. 

The penalty term approaches zero as the sample size goes to infinity, while it removes the 

O(𝑛−1) term in bias in the maximum likelihood estimation for small and imbalanced 

samples. The penalized log-likelihood for logistic regression is represented as 

                                                 ℓ(𝜽; 𝒟)∗ = ℓ(𝜽; 𝒟) +
1

2
𝑙𝑛|𝐼(𝜽)|.                                   (IV.11) 

Then, the score function of the penalized likelihood is expressed as 

       𝒔∗(𝜽) =
𝜕

𝜕𝜽
(ℓ(𝜽; 𝒟) +

1

2
𝑙𝑛|𝐼(𝜽)|) = 𝒔(𝜽) +

1

2
𝑡𝑟𝑎𝑐𝑒 [𝐼(𝜽)−1 {

𝜕𝐼(𝜽)

𝜕𝜽
}],             (IV.12) 

which is equivalent to Equation (4.9) by simple algebra. It is known that Firth’s penalized 

maximum likelihood estimation shrinks the maximum likelihood estimates toward zero 

[137], and thus reduces both bias and variance in the estimation of imbalanced data [138]. 

Unfortunately, the direct use of Firth’s estimates is not possible in the parameter instability 

test for split variable selection, since Firth’s approach produces the penalized likelihood 

estimates, not maximum likelihood estimates. This implies that further modification is 

required to apply this approach in the parameter instability test, which will be described 

in the next Section. 

Once parameters are estimated at each node, the Firth’s logistic regression tree is 

constructed by following the same procedure of the MOB tree described in Chapter III: 

split variable selection and cutpoint estimation for subgroup identification. In the next 

Section, the procedure are briefly covered again in the context of Firth’s logistic regression 

tree. 
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IV.3.1.2. Covariate space splitting of Firth’s logistic regression tree 

Split variable is selected by parameter instability test. At the current node 𝑅, the 

test is conducted for each covariate 𝑍𝑗, 𝑗 = 1, … , 𝑙, to determine whether the node 𝑅 is 

split or not. If a global Firth’s logistic regression model with parameter 𝜽 = 𝜽0 fits the 

data well, the node 𝑅 is not split by 𝑍𝑗. The parameter is said to be stable with respect to 

𝑍𝑗 in this case. If a global Firth’s logistic regression model is inadequate to fit the data, the 

node 𝑅 should be better split into two subgroups 

𝑅1 = {𝑿|𝑍𝑗 ≤ 𝑐}, 𝑅2 = {𝑿|𝑍𝑗 > 𝑐}, 

by the cutpoint of c of 𝑍𝑗. Thus, two separate Firth’s logistic regression models are fitted 

into the subgroups with parameters 𝜽1 and 𝜽2. In this case, the parameter at the node 𝑅 is 

said to be unstable with respect to 𝑍𝑗. Naturally, the covariate with the most convincing 

evidence for unstable parameter is selected as split variable. 

The tree splitting at each node 𝑅 is formulated as the following hypothesis testing 

problem 

                                 

𝐻0  ∶  𝑌𝑖~𝐹𝐿(𝑿𝑖; 𝜽0)   𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

𝐻1 ∶  𝑌𝑖~ {
𝐹𝐿(𝑿𝑖; 𝜽𝟏)     𝑖𝑓 𝑿𝑖 ∈ 𝑅1

𝐹𝐿(𝑿𝑖; 𝜽𝟐)     𝑖𝑓 𝑿𝑖 ∈ 𝑅2
   

                                       (IV.13) 

where 𝑛 is the sample size of available data at node 𝑅. Essentially, this hypothesis testing 

is equivalent to the problem of change detection in parameter over covariate 

{𝑍1, 𝑍2, … , 𝑍𝑙}. In the test, the smaller p-value is, the more plausible the node 𝑅 should be 

split. Thus, the covariate with the smallest p-value is selected as the split variable at node 

𝑅. As we know, the parameter instability in Equation (IV.13) is assessed by a score-based 
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test, which belongs to the class of generalized M-fluctuation tests. At node 𝑅 , the 

parameters of the global Firth’s logistic regression model are estimated by minimizing the 

negative penalized log-likelihood ℓ(𝜽; 𝒟)∗ in Equation (IV.11), resulting in the penalized 

maximum likelihood estimate 

                                               �̂�∗ = argmin
𝜽

∑ ℓ(𝜽; 𝐷𝑖)∗,𝑛
𝑖=1                                       (IV.14) 

where 𝜽 = (𝛽0, 𝛽1, … , 𝛽𝐾)  and 𝐷𝑖 = (𝑌𝑖, 𝑿𝑖), 𝑖 = 1, … , 𝑛  are available data at node 𝑅 . 

This is equivalent to the solution of the modified score function in Equation (IV.8)  

∑ 𝒔∗(�̂�∗; 𝐷𝑖)
𝑛
𝑖=1 = 𝟎.                                         (IV.15) 

However, the modified score does not have an expectation of zero at the true 

parameter value. This means that Equation (IV.15) cannot be directly used for the 

parameter instability test. In other words, the empirical cumulative score process 𝑾𝑗(𝑡) 

based on the modified score function in Equation (IV.15) does not converge to a Brownian 

bridge 𝑾0 under the null hypothesis. To address this issue, this study uses the penalized 

maximum likelihood estimates �̂�∗ under the original score function 𝒔(�̂�∗; 𝐷𝑖). Note that 

�̂�∗ is not the solution of the original score function, so the sum of scores evaluated at �̂�∗ 

is no longer zero on all the observations, i.e., ∑ 𝒔(�̂�∗; 𝐷𝑖)𝑛
𝑖=1 ≠ 𝟎. This study applied a 

simple modification that subtracts the mean score from the individual scores, to make the 

resulting scores sum to zero. The corrected score function is  

               ∑ 𝒔𝒄(�̂�∗; 𝐷𝑖)𝑛
𝑖=1 = ∑ {𝒔(�̂�∗; 𝐷𝑖) −

∑ 𝒔(�̂�∗; 𝐷𝑖)𝑛
𝑖=1

𝑛
}𝑛

𝑖=1 = 𝟎                         (IV.16) 
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By leveraging the corrected score function in Equation (IV.16), the empirical 

cumulative score process of Firth’s logistic regression tree along with 𝑍𝑗 is established to 

detect systematic patterns of scores  

                   𝑾𝑗
𝐹𝑖𝑟𝑡ℎ(𝑡) = �̂�−1/2𝑛−1/2 ∑ 𝒔𝒄 (�̂�∗; 𝐷(𝑖|𝑍𝑗))

⌊𝑛𝑡⌋
𝑖=1 , 0 ≤ 𝑡 ≤ 1                    (IV.17) 

where �̂� is an estimate of the covariance matrix of the corrected scores, ⌊𝑛𝑡⌋ is the integer 

part of 𝑛𝑡, and 𝐷(𝑖|𝑧𝑗) is the observation with the ith smallest value of 𝑍𝑗. As explained in 

the Chapter III, ∑ 𝒔𝒄 (�̂�∗; 𝐷(𝑖|𝑍𝑗))
⌊𝑛𝑡⌋
𝑖=1  reflects the overall lack of fit up to the ntth 

observation in Firth logistic regression at node R. A suitable estimate of the covariance 

matrix 𝑗̂ can be outer product of gradient (OPG) or the observed information matrix. The 

inverse square root of the covariance matrix, i.e., �̂�−1/2, in Equation (IV.17) decorrelates 

the scores of the (𝐾 + 1) parameters, so that we can inspect the score of individual 

parameter separately. Thus, 𝑾𝑗
𝐹𝑖𝑟𝑡ℎ(𝑡) in Equation (IV.17) captures deviations from the 

null hypothesis (e.g., 𝐻0 in Equation (IV.13)) of parameter stability. 

The test statistic 𝒯 for the test in Equation (IV.13) can be derived in the same 

fashion as the MOB logistic regression tree by applying some scalar functional 𝜆  to 

𝑾𝑗
𝐹𝑖𝑟𝑡ℎ(𝑡). Depending on the nature of 𝑍𝑗, two specific forms of 𝒯 are given below: 

𝒯 = 𝜆 (𝑾𝑗
𝐹𝑖𝑟𝑡ℎ(𝑡)) = max

𝑖=𝐿,…,𝑈
(

𝑖

𝑛
∙

𝑛−𝑖

𝑛
)

−1

‖𝑾𝑗
𝐹𝑖𝑟𝑡ℎ (

𝑖

𝑛
)‖

2

2

  for a continuous 𝑍𝑗,       (IV.18) 

           𝒯 = 𝜆 (𝑾𝑗
𝐹𝑖𝑟𝑡ℎ(𝑡)) = ∑

|𝐼𝑞|

𝑛

−1

‖𝑾𝑗
𝐹𝑖𝑟𝑡ℎ (

𝑖

𝑛
)‖

2

2

 𝑄
𝑞=1  for a categorical 𝑍𝑗.          (IV.19) 
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The meaning of notations in both Equations (IV.18) and (IV.19) are the same as that of 

the MOB in Chapter III. The limiting distribution of the test statistics in Equations (IV.18) 

and (IV.19) is the supremum of a squared, (𝐾 + 1)-dimensional tied-down Bessel process, 

and χ2 distribution with (𝐾 + 1)(𝑄 − 1) degrees of freedom where 𝑄 is the number of 

classes in a categorical covariate 𝑍𝑗, respectively. Using appropriate test statistic 𝒯, the 

parameter instability test is performed for each 𝑍𝑗 and the covariate with the minimal p-

value less than a pre-determined significance level  𝛼 corrected for multiple (totally 𝑙) 

testings is selected as the split variable. 

After the split variable is determined, the optimal cutpoint c is computed to form 

two subgroups. This cutpoint will lead to the most heterogeneous parameter values 

between subgroups as much as possible. Over all conceivable cutpoints of the split 

variable, the optimal point can be obtained by locally optimizing the negative log-

likelihood, yielding maximal reduction in the negative log-likelihood before and after split. 

IV.3.2 Generalized extreme value regression tree 

IV.3.2.1. Generalized extreme value (GEV) regression 

A logistic regression model uses a symmetric link function whose rate of 

approaching each class is identical for modelling the response curve of probability. Such 

identical rate may not perform well in estimating the probability of the minority class. In 

order to overcome the issues, Calabrese and Osmetti (2013) [139] propose the generalized 

extreme value (GEV) regression model for imbalanced outcome. This model adopts the 

quantile function (i.e., the inverse of cumulative distribution function) of the GEV 
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distribution to model the probability response curve. It is known that the GEV distribution 

is very flexible with a shape parameter 𝜏 that controls the shape and the size of the tails of 

distribution, which essentially leads to an asymmetric link function that is able to handle 

imbalanced class data in a flexible way. The cumulative distribution function of the GEV 

distribution is given by 

𝐹𝑋(𝑥) = exp {− [1 + 𝜏 (
𝑥−𝜇

𝜎
)]

−1/𝜏

} , −∞ < 𝜏 < ∞, −∞ < 𝜇 < ∞, σ > 0        (IV.20) 

where τ is a shape parameter, while μ and σ are location and scale parameters, respectively. 

Depending on the sign and value of 𝜏, special cases can be recovered: Gumbel distribution 

(𝜏 → 0), Frechet distribution (𝜏 > 0), and Weibull distribution (𝜏 < 0). In particular, the 

cumulative Gumbel distribution is the log-log function in binary response modelling. Then, 

the probability 𝜋(𝑿𝑖) = 𝑃(𝑌𝑖 = 1|𝑿𝑖) in GEV regression model is defined as  

𝑃(𝑌𝑖 = 1|𝑿𝑖 , 𝜷) = 𝜋(𝑿𝑖) = exp{−[1 + 𝜏(𝑿𝑖
𝑇𝜷)]−1/𝜏}, 𝑖 = 1,2, … . , 𝑛              (IV.21) 

and the link function of the model is given by 

                                        
{−ln[π(𝑿𝑖)]}−𝜏−1

𝜏
= 𝑿𝑖

𝑇𝜷, 𝑖 = 1,2, … . , 𝑛                              (IV.22) 

where 𝜷 is the vector of regression coefficients (i.e., 𝜷 = [𝛽0, 𝛽1, … , 𝛽𝑝]
𝑇
) . 

For parameter estimation, maximum likelihood estimation is used. Let 𝜽 = (𝜷, 𝜏), 

then the log-likelihood function is  

𝑙(𝜽) = ∑ {−𝑌𝑖[1 + 𝜏(𝑿𝑖
𝑇𝜷)]−

1

𝜏 + (1 − 𝑌𝑖)ln [1 − exp [−[1 + 𝜏(𝑿𝑖
𝑇𝜷)]−

1

𝜏]]} .𝑛
𝑖=1   (IV.23) 
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Equation (IV.23) exists only for {𝑿𝑖: 1 + 𝜏(𝑿𝑖
𝑇𝜷) > 0} , and it is maximized by 

optimization algorithms with the specification of initial values. Since the Fisher 

information is not a diagonal matrix (i.e., the parameters 𝜷 and 𝜏 are dependent), 𝜷 and 𝜏 

have to be estimated simultaneously. The original paper suggests the following initial 

values for optimization: 𝜏∗ ≅ 0 , 𝛽𝑘
∗ = 0  for 𝑘 = 1, … , 𝑝  and 𝛽0

∗ = ln[−ln(�̅�)].   The 

Fisher information is given in Appendix B.1. 

The beauty of the GEV regression in the context of tree model is that it enables 

flexible modeling over different class ratios at different subgroups. In other words, GEV 

regression tree offers freedom for the choice of links according to the observations at each 

subgroup, so it accommodates the different degrees of imbalanced class. This flexibility 

lays the very foundation for constructing subgroup-specific models. 

After estimating the parameters of GEV regression, the remaining procedure for 

covariate space splitting is identical with the previous proposed tree model. Thus, we skip 

the general procedure of tree learning, but focus on the score functions of GEV regression 

tree and degree of the limiting distribution instead in the next Section. 

IV.3.2.2. Covariate space splitting of GEV regression tree 

The tree splitting at each node 𝑅 is formulated as the following hypothesis testing 

problem 

                              

𝐻0  ∶  𝑌𝑖~𝐺𝐸𝑉(𝑿𝑖; 𝜽0)   𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

𝐻1 ∶  𝑌𝑖~ {
𝐺𝐸𝑉(𝑿𝑖; 𝜽𝟏)     𝑖𝑓 𝑿𝑖 ∈ 𝑅1

𝐺𝐸𝑉(𝑿𝑖; 𝜽𝟐)     𝑖𝑓 𝑿𝑖 ∈ 𝑅2
   

                                        (IV.24) 
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where 𝑛 is the sample size of available data at node 𝑅 and 𝜽 = (𝜷, 𝜏) = (𝛽0, 𝛽1, … , 𝛽𝑝, 𝜏). 

For the parameter instability test in GEV regression, we should consider the score function 

of the shape parameter 𝜏 as well as that of parameters associated with predictors. As we 

know, the score function is defined as the partial derivatives of the (negative) log-

likelihood  

                                  𝒔(𝜽; 𝐷𝑖) =
𝜕ℓ(𝜽;𝐷𝑖)

𝜕𝜽
= (

𝜕ℓ(𝜽;𝐷𝑖)

𝜕𝜷
, … ,

𝜕ℓ(𝜽;𝐷𝑖)

𝜕𝜏
).                                   (IV.25) 

Specifically, the score functions of regression coefficient 𝛽𝑗  and shape parameter 𝜏 in 

GEV regression are given by 

                  
𝜕𝑙(𝜷,𝜏)

𝜕𝛽𝑘
= − ∑ 𝑋𝑖𝑘

ln[π(𝑿𝑖)]

1+𝜏(𝑿𝑖
𝑇𝜷)

𝑌𝑖−π(𝑿𝑖)

1−π(𝑿𝑖)
,𝑛

𝑖=1         𝑘 = 0,1, … , 𝐾,                         (IV.26) 

            
𝜕𝑙(𝜷,𝜏)

𝜕𝜏
= ∑ [

1

𝜏2 ln(1 + 𝜏𝑿𝑖
𝑇𝜷) −

𝑿𝑖
𝑇𝜷

𝜏(1+𝜏𝑿𝑖
𝑇𝜷)

]
𝑦𝑖−π(𝑿𝑖)

1−π(𝑿𝑖)
ln[π(𝑿𝑖)],𝑛

𝑖=1                  (IV.27) 

respectively, and �̂�  is the solution of the (𝐾 + 2)  score equations ∑ 𝒔(�̂�; 𝐷𝑖)𝑛
𝑖=1 = 𝟎 

associated with the 𝐾 predictors, one intercept, and the shape parameter 𝜏. 

Using the score function of GEV regression, the empirical cumulative score 

process along with 𝑍𝑗 is expressed as  

                     𝑾𝑗
𝐺𝐸𝑉(𝑡) = �̂�−1/2𝑛−1/2 ∑ 𝒔 (�̂�; 𝐷(𝑖|𝑍𝑗))

⌊𝑛𝑡⌋
𝑖=1 , 0 ≤ 𝑡 ≤ 1                       (IV.28) 

where �̂� is an estimate of the covariance matrix of the scores, ⌊𝑛𝑡⌋ is the integer part of 𝑛𝑡, 

and 𝐷(𝑖|𝑧𝑗) is the observation with the ith smallest value of 𝑍𝑗. Here, the inverse square root 

of the covariance matrix, �̂�−1/2, in Equation (IV.28) decorrelates the scores of the (𝐾 + 2) 

parameters so that we can inspect the score of individual shape parameter as well as 
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parameters associated with predictors separately. Likewise, 𝑾𝑗
𝐺𝐸𝑉(𝑡) in Equation (IV.28) 

captures deviations from the null hypothesis of parameter stability.  

The test statistic for the test in Equation (IV.24) is the same as that of the test in 

Firth’s logistic regression tree, which is given as follows: 

  𝒯 = 𝜆 (𝑾𝑗
𝐺𝐸𝑉(𝑡)) = max

𝑖=𝐿,…,𝑈
(

𝑖

𝑛
∙

𝑛−𝑖

𝑛
)

−1

‖𝑾𝑗
𝐺𝐸𝑉 (

𝑖

𝑛
)‖

2

2

 for a continuous 𝑍𝑗,         (IV.29) 

            𝒯 = 𝜆 (𝑾𝑗
𝐺𝐸𝑉(𝑡)) = ∑

|𝐼𝑞|

𝑛

−1

‖𝑾𝑗
𝐺𝐸𝑉 (

𝑖

𝑛
)‖

2

2

 𝑄
𝑞=1  for a categorical 𝑍𝑗          (IV.30) 

The only difference lies in the number of degrees in the limiting distribution of the 

test statistic, which is associated with the additional shape parameter. For a continuous 

covariate, the limiting distribution of test statistic is the supremum of a squared, (𝐾 + 2)-

dimensional tied-down Bessel process. For a categorical covariate, the limiting 

distribution of test statistic is χ2 distribution with (𝐾 + 2)(𝑄 − 1) degrees of freedom. 

Using appropriate test statistic 𝒯 and limiting distribution, the parameter instability test is 

performed for each 𝑍𝑗  and the covariate with the minimal p-value less than a pre-

determined significance level 𝛼 corrected for multiple (totally 𝑙) testings is selected for a 

split. The remaining step for finding the optimal cutpoint c is exactly the same as that of 

the MOB and Firth’s logistic regression tree. 
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IV.4 Performance comparison 

IV.4.1 Setup for the simulation 

The simulation setup for this study is similar as that of Chapter III. In this Chapter, 

we consider a scenario where there are three predictors 𝑿 = (𝑋1, 𝑋2, 𝑋3) and a single time 

covariate 𝑇. Unlike the setting of the previous Chapter where a single predictor is used in 

simulation, three predictors are considered here. This is to generate a little more 

complicated predictor spaces, which can avoid the complete separation problem in binary 

regression. Two scenarios are simulated, as illustrated in Figure IV.2: no-change case and 

the change case. For each scenario, a dataset is first generated from the logistic regression 

model 𝑙𝑜𝑔 (
𝑃

1−𝑃
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 with ten different degrees of class balance 

in binary outcomes. Then, the parameter instability test with the statistic in Equations 

(III.6), (IV.18) and (IV.29) is conducted for three tree models, including the MOB logistic 

regression tree, Firth’s logistic regression tree, and GEV regression tree, to decide whether 

to split the data by the covariate 𝑇. Consequently, the effects of degree of class balance 

are investigated by assessing the performance of the parameter instability test in finding 

the true underlying scenario for the data. 

Specifically, 𝑋1 follows a normal distribution with a mean of 0.7 and a standard 

deviation of 0.7, 𝑋2 follows a normal distribution with a mean of −0.5 and a unit standard 

deviation, and 𝑋3 follows a continuous uniform distribution over [0.5, 1. 2]. In the no-

change case, for the parameter 𝜽0 = (𝛽0, 𝛽1, 𝛽2, 𝛽3), 𝛽0 is used to control the degrees 

of balance, while 𝛽1, 𝛽2  and 𝛽3  take fixed values −1 , 0.5 and 0.5 , respectively. Ten 

different degrees of balance, {1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
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45%} , are considered, which is realized by the ten different values of parameter 

𝛽0 = {−4.02, −2.59, −1.85, −1.32, −0.98, −0.72, −0.36, −0.17, 0.06, 0.33} , on 

average. In the change case, the pre-change parameter 𝜽1 and post-change parameter 𝜽2 

take the same values in 𝛽1, 𝛽2 and  𝛽3 as the parameter 𝜽0, while 𝛽0 takes different values 

depending on the degrees of balance and change. Six different degrees of change, {5%,

10%, 20%, 40%, 60%, 80%} in 𝛽0, are considered,  and the performance is compared 

at each degree of balance. The parameter values of 𝛽0 in 𝜽1 and 𝜽2 over different degrees 

of balance are given in Appendix B.2. 

 

Figure IV.2 The two scenarios considered in the simulation study and the corresponding 

node splitting in the parameter instability test over different degrees of balance 

The same performance measures in Chapter III are used for the two scenarios: the 

probability of a Type I error or the false splitting rate for no-change case and the 

probability of a Type II error or the miss splitting rate for the change case. To assess the 

performance in each scenario, 1000 runs were carried out under the significance level of 



 

104 

 

0.05, and the percentage of runs with false splitting or miss splitting was calculated. The 

results are summarized in the following subsections. 

IV.4.2 Effect of class imbalance in the no-change case 

Figure IV.3 shows the results for the no-change case. In Figure IV.3, the Y-axis 

represents the false splitting rate, and the X-axis represents the degree of balance. Four 

parameter instability tests are compared in the simulation: 1) test of MOB logistic 

regression tree with respect to 𝛽0 (i.e., LRT with respect to 𝛽0), 2) test of Firth’s logistic 

regression tree with respect to 𝛽0 (i.e., FLRT with respect to 𝛽0), 3) test of GEV regression 

tree with respect to 𝛽0 (i.e., GEVR with respect to 𝛽0) and 4) test of GEV regression tree 

with respect to τ and 𝛽0 (i.e., GEVR with respect to 𝜏 and 𝛽0). Since the degree of balance 

is controlled by the intercept 𝛽0 in data generation, parameter instability tests should be 

carried out over 𝛽0 in each model. However, the shape parameter 𝜏 and the intercept 𝛽0 

(as well as parameters associated with predictors) are correlated in GEV regression as seen 

in Equation (IV.21). Thus, it is worthwhile to consider both the shape parameter 𝜏 and the 

intercept 𝛽0 in parameter instability tests. 

When the class in the data is highly imbalanced (i.e., low degree of balance), the 

false splitting rate of both MOB and Firth’s logistic regression tree are around 0.05, which 

is consistent with the specified significance level of 0.05 in the parameter instability test. 

However, parameter instability tests of GEV regression tree tend to have higher false 

splitting rate in this case. In particular, the false splitting rates of GEVR with respect to 𝜏 

and 𝛽0 are uniformly greater than those of MOB and Firth’s logistic regression tree, and 

they hit the highest point at the degree of balance of 1%. The false splitting rate of GEVR 
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with respect to 𝛽0 alone (i.e., red line) is around 0.05 when the degree of balance is equal 

to and greater than 5%, but it soars at the degree of balance of 1%. These indicate that the 

false splitting rate of the GEV regression tree is higher than the specified significant level 

in presence of highly imbalanced class. The next subsection provides intuitive 

explanations for this. 

 

Figure IV.3 Results for the false splitting rate of the four parameter instability tests in 

the no-change case 

IV.4.3 Evidence for high false splitting rate of GEV regression tree 

To provide an intuitive understanding of the high false splitting rate of the GEV 

regression tree in cases of highly imbalanced class, Figure IV.4 gives a simulated example 

of scores in the parameter instability test in the no-change case, where observations with 

𝑌 = 1 and 𝑌 = 0 are denoted by triangles and circles, respectively, and the scores from 

parameter instability tests with respect to 𝜏 are marked in red and the scores from the tests 

with respect to 𝛽0  are marked in blue, respectively. In Figure IV.4, both scores still 
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randomly fluctuate around zero, but the scores of 𝜏 exhibits larger variation compared to 

that of 𝛽0, leading to stronger evidence of parameter instability. As a result, the false 

splitting rate over the shape parameter 𝜏 is higher than that over the intercept 𝛽0. 

 

Figure IV.4 A simulated example to illustrate the high splitting rate of 𝝉 

Such high false splitting rate of the shape parameter 𝜏  is caused by the large 

variance of the estimated �̂� from maximum likelihood estimation. Figure IV.5 shows the 

collection of the estimated �̂�0 and �̂� whose values achieve the maximum likelihood or 

very close values to the maximum likelihood of the simulated data. From the optimization 

perspective, this high variability implies the existence of multiple optima. In the particular 

example, the likelihood function is highly flat around the maximum likelihood estimates, 

which can be captured by Fisher information evaluated at the maximum likelihood 

estimates. In other words, there are many other good estimates compared to the resulting 

optimum. In this case, the parameter instability test may falsely consider other candidates 

better than the current estimates and thus leads to large false splitting rate.  
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Figure IV.5 Empirical distribution of the estimates  �̂�𝟎 and �̂� 

In fact, the large variance of the maximum likelihood estimator in the generalized 

extreme value distribution has been discussed in the literature. When the shape parameter 

𝜏 is not zero, the support of the distribution depends on the parameters [140]. In this case, 

the maximum likelihood estimators are applicable, but tend to lose their asymptotic 

properties, which leads to very large variance of the estimates [141]. Based on the 

explanation above, such large variance in estimators results in the false splitting rate 

greater than 0.05 across all the degrees of balance. To be specific, when the absolute value 

of the shape parameter is greater than 0.5, the maximum likelihood estimators do not 

satisfy regularity conditions (i.e., non-regular condition) and do not always exist [142, 

143]. In our simulation, most of the absolute values of the estimated shape parameter in 

simulation are greater than 0.5 when data is highly imbalanced in class (i.e., degree of 

balance = 1%). Due to non-regular situation of the maximum likelihood estimates, the 

variance of the estimated shape parameter �̂� becomes so large, resulting in substantially 

high false splitting rate. Since the shape parameter and the intercept term are correlated in 
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GEV regression, the non-regular behavior of the shape parameter partially influences on 

the intercept as well. Thus, GEV regression with respect to 𝛽0 shows higher false splitting 

rate in highly imbalanced cases too. In summary, the high false splitting rate of GEV 

regression trees is essentially due to the fact that the estimation of the shape parameter 𝜏 

is unstable by nature. In other words, the shape parameter tends to be sensitive to the data 

and over-accommodate the degree of balance. 

IV.4.4 Effect of class imbalance in the change case 

Figure IV.6 shows the results for the change case. The six panels represent 

different magnitudes of change. In each panel, the miss splitting rates of LRT and FLRT 

are comparable over different degrees of balance. For smaller changes (i.e., degree of 

change = 5%, 10% and 20%), all models show high miss splitting rates. This is simply 

because it is hard to detect a small change by nature. Compared to LRT and FLRT, GEV 

regression tree (i.e., blue and red lines) show uniformly lower miss splitting rate across 

the entire degrees of balance. This means that GEV regression tree performs better in 

detecting lower changes compared to LRT and FLRT regardless of the degree of class 

balance in the data. Note that the lower miss splitting rates of GEV regression tree at the 

degree of balance of 1% are not due to its high detection power but due to the effect of 

undesirable maximum likelihood estimates (i.e., non-regular problem) mentioned in 

subsection IV.4.3. For larger changes (i.e., degree of change = 40%, 60% and 80%), when 

the proportion of the minority class is equal to and greater than 10%, the miss splitting 

rate of GEV regression with respect to 𝛽0 is close to or slightly higher than that of LRT 

and FLRT. Given that the false splitting rate of GEV regression tree over the intercept 𝛽0 
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is around 0.05 at these degrees of balance as shown in Figure IV.3, the GEV regression 

tree is recommended for identifying subgroups, especially when the proportion of the 

minority class is greater than 5%. 

 

Figure IV.6 Results for the miss splitting rate of the four parameter instability tests in 

the change case  
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IV.4.5 Summary of findings from the simulation 

This section summarizes the findings from the simulation and provides guidelines 

on the use of GEV regression tree in practice.  

1) Parameter instability tests of Logistic and Firth’s logistic regression for split variable 

selection are not influenced by the degree of balance under the no-change case. 

However, the tests of GEV regression tree with respect to 𝜏 and 𝛽0 produces higher 

false splitting rate across all degrees of balance. This is due to the large variance of 

the 𝜏 estimator in maximum likelihood estimation. 

2) When classes are extremely imbalanced (i.e., degree of balance = 1%), the absolute 

value of the estimated shape parameter �̂�  is greater than 0.5 in most cases. This 

situation makes the maximum likelihood estimator lose the desirable asymptotic 

properties (i.e., non-regular situation) and results in higher false splitting rate than 

otherwise. 

3) For miss splitting rate, MOB logistic regression tree and Firth’s logistic regression 

tree are comparable to each other regardless of the degrees of balance in class and 

degrees of change. 

4) GEV regression tree conducting parameter instability test over the intercept produces 

slightly lower miss splitting rate than those of MOB and Firth’s logistic regression 

trees when data is quite imbalanced and degree of change is quite low. For large 

changes, the three regression trees are comparable in terms of miss splitting rate. 
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5) With regard to the shape parameter, GEV regression tree should be used when the 

maximum likelihood estimate of the shape parameter is between ⎼0.5 and 0.5. In fact, 

it is known that the shape parameter usually lies in the range between ⎼0.5 and 0.5 in 

practice [144, 145, 146] and we should follow the same guidance when constructing 

GEV regression tree. Over the plausible range, GEV regression tree evaluates the 

legitimate heterogeneous effects of predictors on the probability of event in the 

imbalanced class situation and thus achieves flexible modelling over different class 

ratios at different subgroups. 

IV.5 Concluding remarks 

Our study proposes two binary regression trees for subgroup identification under 

imbalanced class data. We use a simulation to investigate the effects of the degree of 

balance in class on the performance of three regression trees: logistic regression tree, 

Firth’s logistic regression tree and generalized extreme value regression tree. It is found 

that false splitting rates of MOB and Firth’s logistic regression tree are not influenced by 

imbalanced class distribution. However, GEV regression tree shows high false splitting 

rate when classes are extremely imbalanced. For miss splitting rate, MOB logistic 

regression tree and Firth’s logistic regression tree are comparable across all degrees of 

balance, while GEV regression tree makes small improvement when data is quite 

imbalanced and degree of change is quite low. For large magnitudes of change, all three 

regression trees are comparable except for the GEV regression tree with the parameter 

instability test over the shape parameter and intercept. Through this simulation, we 
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recommend that the GEV regression tree should be constructed in the general case of class 

imbalanced data, and changes in the coefficients instead of the shape parameter should be 

considered when the GEV tree is used. 

There are several interesting future research directions on this topic. First, Wang 

and Dey [147] also propose the generalized extreme value distribution as a link function. 

Instead of using maximum likelihood estimation, they estimate parameters via the 

Bayesian framework using normal distributions as priors of model parameters. Since their 

approach does not rely on maximum likelihood estimation on parameters, they obtain 

viable estimate of the shape parameter in the situation where maximum likelihood 

estimation breaks down and thus incorporate a wide range of skewness and flexibility in 

modeling the binary response curve. With a proper method for split variable selection, 

Bayesian GEV regression tree can be potentially used for subgroup identification under 

imbalanced class data. Second, Agarwal et al. [148] find that the GEV link with log loss 

results in a non-convex optimization problem, so they propose a GEV link with canonical 

loss to guarantee convexity for any value of the shape parameter. Zhang et al. [149] also 

propose a GEV link with convex loss to handle imbalanced class issues. Those two models 

can be alternatives to the GEV regression used in this study and extended into the tree 

framework with residuals-based hypothesis testing for selecting split variables like 

GUIDE [28].  
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CHAPTER V  

CONCLUSIONS 

 

V.1 Summary of contributions 

The overarching goal of my scholarly work is to develop subgroup identification 

models based on the integration of statistical modelling and machine learning techniques. 

The proposed models in this dissertation can ferret out more informative data from the 

hidden subgroups for the population of interest. Specifically, this dissertation has been 

focused on handling special aspects of practical problems for subgroup identification. The 

main contributions are summarized as follows. 

V.1.1 Correlation tree for subgroup identification 

Correlation is the measure to quantify the strength of the relationship between two 

variables. It is natural that correlation depends on the condition of other covariates, so it 

is imperative to identify subgroups with different correlation measures in the population. 

However, the subgroup is discovered by manual specification in current practices, which 

is not efficient and may miss potential covariates whose effects are unknown. In Chapter 

II, we develop a correlation tree for automatic subgroup identification and provides 

meaningful objective functions to meet various needs in practice. The effectiveness of the 

correlation tree is demonstrated by the case study in neural correlate studies, but the 

proposed model is broadly applicable to other fields where correlation is a main concern. 
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V.1.2 Robust logistic regression tree for subgroup identification in healthcare outcome 

modeling 

Collecting outcome data is a routine in healthcare practices to assess and improve 

the quality of care providers. Outcome measures usually have different relationships with 

other covariates such as physiological and treatment variables of patients. Thus, subgroup-

wise outcome modelling is indispensable and logistic regression trees serve as this purpose. 

However, real-world data are often contaminated by aberrant observations such as outliers, 

and most studies have addressed outlier problems with respect to model fitting, not 

subgroup identification. In Chapter IV, this dissertation thoroughly investigates the outlier 

problem in the context of discovering subgroups by logistic regression trees. The 

contribution of this study is to reveal the effect of outliers on subgroup learning and 

develop robust logistic regression tree for identifying subgroups. By comparing the 

performance of the proposed method with two methods that extend the conventional ideas 

for addressing outliers in logistic regression to the tree context, this research provides deep 

understanding of the conventional ideas and demonstrates the effectiveness of the 

proposed method. 

V.1.3 Binary regression trees for imbalanced class data 

As quality improvement efforts have been made in many applications such as 

healthcare and manufacturing systems, the number of adverse outcomes is gradually 

decreasing. The imbalanced class problem becomes very common where one class has 

significantly fewer samples than the other class. Most approaches have addressed the 

problem with focus on the improvement on the prediction of the minority class. In Chapter 
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IV, this research proposes two binary regression trees in the context of subgroup 

identification beyond prediction, Firth’s logistic regression tree, and generalized extreme 

value regression tree. The potentials of the two proposed binary regression trees are 

investigated and compared with the logistic regression tree, which lays the foundation for 

developing effective subgroup identification models under the imbalanced class 

environment. 

V.2 Future directions 

This section describes three potential extensions of the dissertation work. The first 

direction is to improve the split variable selection step in the correlation tree in a 

statistically rigorous fashion. The second direction is to extend subgroup identification 

methods with diverse types of data and thus establish a subgroup surveillance scheme. The 

third one is to develop models that predict subgroups beyond identifying existing 

subgroups. Details of the future research are given as follows. 

V.2.1 Correlation instability test for split variable selection 

In the proposed correlation tree, the selected split variable is the one that has the 

largest p-value in the partial correlation test. However, the split variable selection test does 

not provide any information about how large the p-value is significantly meaningful. In 

other words, the test cannot rigorously evaluate how significantly the selected split 

variable explains the correlation of 𝑋1  and 𝑋2 . In this case, the test is more likely to 

generate larger and complex tree since the test always splits unless the correlation of 𝑋1 

and 𝑋2 is completely independent of the split variable. 
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This problem boils down to designing a rigorous hypothesis testing that 

investigates the association between correlation of 𝑋1 and 𝑋2 and the split variable 𝑍𝑗. To 

handle this issue, we will propose another test for split variable selection, called 

correlation instability test. The hypothesis testing is formulated as follows. 

                                   

𝐻0 ∶  𝐶𝑜𝑟(𝑿1𝑖, 𝑿2𝑖)~𝑆𝑁2(𝟎, 𝜌)   𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

𝐻1 ∶  𝐶𝑜𝑟(𝑿1𝑖, 𝑿2𝑖) ~ {
𝑆𝑁2(𝟎, 𝜌1)     𝑖𝑓 𝑿𝑖 ∈ 𝑅1

𝑆𝑁2(𝟎, 𝜌2)     𝑖𝑓 𝑿𝑖 ∈ 𝑅2

,                        (V.1) 

where 𝑆𝑁2 is the standard bivariate normal distribution. Essentially, the hypothesis testing 

is to conduct parameter instability test in the Chapter III over the standard bivariate normal 

density with parameter𝜌 . The test means that if the correlation of 𝑋1  and 𝑋2  is not 

statistically stable with respect to the covariate 𝑍𝑗, the node R is split by the covariate 𝑍𝑗. 

Given a significance level 𝛼, we can evaluate how significantly the covariate 𝑍𝑗 affects 

the correlation of 𝑋1 and 𝑋2, and thus decide whether the node R should be split or not. 

V.2.2 Subgroup identification and surveillance for optimal personalized treatment 

Through a subgroup identification model, my future research will lay the 

foundation for distinguishing groups of patients with different responses to treatments of 

interest. In particular, integrated with geospatial, text, image as well as clinical data, my 

future research aims to identify patients who are at a risk of diseases and need the more 

aggressive treatments from those who are less fitted to treatment because they already 

developed immunity or they will never progress. In a similar way, such personalized 

treatments can be extended to identify subpopulations of patients who can benefit more 

from a certain treatment over others. Furthermore, the current treatment plan at each 
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subgroup will be monitored to check if it maintains the acceptable level of efficacy. In this 

way, we can improve patient care by administrating the right treatment for the right 

patients at the right time. 

V.2.3 Real-time subgroup prediction model for effective control in healthcare 

Beyond subgroup identification from historical observations, my future research 

aims to predict subgroups that have not spawned yet. Current subgroups detected from 

historical data can diverge into distinct subgroups or rather can converge into a single 

subgroup in the future. Such dynamics and uncertainty in subgrouping can be captured 

and modeled by virtualizing the current community and testing the influences of potential 

changes on the virtual community with continuously tracked health information and 

lifestyle parameters from the real world. The potential contribution is to find groups of 

patients and potential carriers who should be given the highest priority for preemptive 

intervention by observing the evolution of subgroups under infectious disease. Finally, 

such adaptive interventions will enable the health authority to make informed strategic 

decision and manage the spread of epidemic by identifying optimal resource allocations 

in advance. 
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APPENDIX A  

SUPPLEMENTAL MATERIALS FOR CHAPTER III 

A.1 Derivation of Equations (III.11) and (III.12) 

The following is a well-known result on generalized linear models based on 

exponential family density: 

𝑓(𝑌𝑖|𝜃𝑖 , 𝜙) = 𝑒𝑥𝑝 {
𝑌𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎𝑖(𝜙)
+ 𝜑(𝑌𝑖, 𝜙)}, 

where 𝜃𝑖  is the canonical parameter, the functions b and 𝜑  are specific to individual 

distribution, and 𝜙 is the dispersion parameter common to all 𝑌𝑖. Given the log-likelihood 

function, 𝑙(𝑌𝑖|𝜃𝑖 , 𝜙) = log𝑓(𝑌𝑖|𝜃𝑖 , 𝜙), and the facts Ε (
𝜕𝑙

𝜕𝜃
) = 0 and Var (

𝜕𝑙

𝜕𝜃
) = −Ε (

𝜕2𝑙

𝜕𝜃2), 

we have 

Ε(𝑌𝑖) = 𝜇𝑖 = 𝑏′(𝜃𝑖), 

Var(𝑌𝑖) = 𝑎𝑖(𝜙)𝑏′′(𝜃𝑖) = 𝑎𝑖(𝜙)Var(𝜇𝑖) = 𝑎𝑖(𝜙)𝑉(𝜇𝑖). 

In addition, 𝜂𝑖 = 𝑔(𝜇𝑖) = 𝑿𝑖
𝑇𝜷, where 𝑔 is the known link function i.e., 𝜇𝑖 = 𝑔−1(𝑿𝑖

𝑇𝜷). 

Then, the 𝑘𝑡ℎ element of the score function in the generalized linear model is 

𝜕𝑙

𝜕𝛽𝑘
= ∑

𝜕𝑙

𝜕𝜃𝑖

𝜕𝜃𝑖

𝜕𝜇𝑖

𝜕𝜇𝑖

𝜕𝜂𝑖

𝜕𝜂𝑖

𝜕𝛽𝑘

𝑛

𝑖=1

= ∑
1

𝑎𝑖(𝜙)𝑉(𝜇𝑖)𝑔′(𝜇𝑖)
(𝑌𝑖 − 𝜇𝑖)𝑋𝑖𝑘

𝑛

𝑖=1

. 

Logistic regression is a special case of the exponential family under the following 

setting 
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𝜃𝑖 = log
𝜇𝑖

1 − 𝜇𝑖
, 𝑏(𝜃𝑖) = 𝑙𝑜𝑔(1 − 𝜇𝑖), 

  𝜑(𝑌𝑖, 𝜙) = 𝑙𝑜𝑔 ( 1
𝑌𝑖

) , 𝑔(𝜇𝑖) = 𝑙𝑜𝑔
𝜇𝑖

1−𝜇𝑖
, 𝑎𝑖(𝜙) = 1.   

Based on the above functions and weights 𝑤𝑖 in Eq. (10), the 𝑘𝑡ℎ element of the robust 

score function 𝒔𝑟𝑜𝑏𝑢𝑠𝑡(𝑌𝑖, 𝑿𝑖 , �̂�𝑟𝑜𝑏𝑢𝑠𝑡) is given by 

𝜕𝑙

𝜕𝛽𝑘
= ∑

𝑤𝑖

𝑉(𝜇𝑖)𝑔′(𝜇𝑖)
(𝑌𝑖 − 𝜇𝑖)𝑋𝑖𝑘

𝑛

𝑖=1

= ∑ 𝑤𝑖 (𝑌𝑖 − 𝑔−1(𝑿𝑖
𝑇�̂�𝑟𝑜𝑏𝑢𝑠𝑡)) 𝑋𝑖𝑘

𝑛

𝑖=1

 

which yields Equation (III. 11). For the robust version of covariance matrix in Equation 

(III.12), it is obtained by plugging the robust score function 𝒔𝑟𝑜𝑏𝑢𝑠𝑡 into the OPG estimator 

�̂� =
1

𝑛
∑ 𝒔𝒔𝑻.𝑛

𝑖=1    

A.2 Estimation of posterior distribution of latent residual 

The posterior distribution of the latent residual  𝑃(𝜀𝑖|𝒟) is obtained by calculating 

𝜀𝑖 = 𝜉𝑖 − 𝑿𝑖
𝑻𝜷 for a number of samples of  𝜉𝑖 and 𝜷 from their joint posterior distribution 

[94]. The joint posterior based on the t-link function is written as [95] 

           

𝑝(𝜉,  𝜷, 𝜆, 𝑣|𝒟) ∝ 𝑝(𝑣) ∏{1(𝜉𝑖 > 0)1(𝑌𝑖 = 1) + 1(𝜉𝑖 ≤ 0)1(𝑌𝑖 = 0)}

𝑛

𝑖=1

√𝜆𝑖/2𝜋

× 𝑒
(

−𝜆𝑖

2(𝜉𝑖−𝒙𝑖
𝑇𝜷)

2)

𝑐(𝑣)𝜆
𝑖

𝑣
2

−1
𝑒−𝑣𝜆𝑖/2,

               

where 𝑣 is the degrees of freedom of the t-link function, 𝑝(𝑣) is the prior of 𝑣,  𝜆𝑖 is an 

additional parameter to represent the t distribution as a scale mixture of normal 
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distributions, and 𝑐(𝑣) is[Γ(𝑣/2)((𝑣/2))
(𝑣/2)

]
−1

. Since 𝑣 is set to 8, we only have three 

unknown parameters, 𝜉, 𝜷, and 𝜆 . Given a uniform prior for 𝜷, the joint posterior of the 

three parameters can be obtained by Gibbs sampling that iteratively draws samples from 

the conditional posteriors as follows: 

            𝑆𝑡𝑒𝑝 1.    𝑝(𝜉𝑖|𝒟, 𝜷 , 𝜆) ~ 𝑁(𝑿𝑖
𝑇𝜷 , 𝜆𝑖

−1)            

  𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑏𝑦 0      𝑖𝑓 𝑌𝑖 = 1  
   𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑟𝑖𝑔𝑓𝑡 𝑏𝑦 0   𝑖𝑓 𝑌𝑖 = 0   

𝑖 = 1, … , 𝑛         

            𝑆𝑡𝑒𝑝 2.        
𝑝(𝜷|𝒟, 𝜉, 𝜆) ~ 𝑁(�̂�𝜉,𝜆,  (𝑿𝑻𝑾𝑿)−1)                               

where �̂�𝜉,𝜆 = (𝑿𝑻𝑾𝑿)−1𝑿𝑻𝑾𝜉 and 𝑾 = 𝑑𝑖𝑎𝑔(𝜆𝑖)
                                                               

            𝑆𝑡𝑒𝑝 3.        𝑝(𝜆𝑖|𝒟, 𝜉𝑖 , 𝜷) ~ 𝐺𝑎𝑚𝑚𝑎 (
9

2
,  

2

8+(𝜉𝑖−𝑿𝑖
𝑇𝜷)

2)                                                                                       

The maximum likelihood estimates of 𝜷 from a standard logistic regression and 𝜆𝑖 = 1, 

𝑖 = 1, … , 𝑛, can be used as initial values in Step 1. 
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A.3 Algorithm of the proposed method 

Algorithm 1.  

1.    Initialize 𝐾 = 2.306 

2.    Identify outliers in each class of Y 

           (a) Compute 𝑀𝑖, 𝑖 = 1, … , 𝑛  

           (b) Sort 𝑀𝑖s in descending order to obtain 𝑀(𝑖), 𝑖 = 1, … , 𝑛 

           (c) Compute adjacent differences 𝐶ℎ𝑎𝑠𝑚𝑖 of 𝑀(𝑖), 𝑖 = 1, … , 𝑛  

           (d) Find the location 𝑖∗ = max
1≤𝑖≤𝑛−1

𝐶ℎ𝑎𝑠𝑚𝑖 

          (e) Take original observations corresponding to {𝑀(1), … , 𝑀(𝑖∗)} as outliers 

3.    Conduct parameter instability test  

           (a) For 𝑟 = 𝐿, 𝐿 + 1, … , 𝑈: 

                (a1) Draw 𝑟 samples randomly from the outlier set and return them to the 

normal set  

                (a2) Calculate the original test statistic 𝒯 using the updated normal samples 

                (a3) Repeat Steps (a1) and (a2) m times 

                (a4) Calculate average of the test statistics 𝒯𝑟
𝑎𝑣𝑒 

           (b) Find the maximum among {𝒯𝐿
𝑎𝑣𝑒 , 𝒯𝐿+1

𝑎𝑣𝑒 , … , 𝒯𝑈
𝑎𝑣𝑒} as the overall test statistic  

           (c) Calculate the p-value of the test statistic 

           (d) Split the node if p-value < 0.05 and not split otherwise 
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APPENDIX B 

SUPPLEMENTAL MATERIALS FOR CHAPTER IV 

B.1 Fisher information matrix for parameters of GEV regression 

The Fisher information is the negative of the expectation of the second derivatives 

of the log-likelihood with respect to parameters. Using the chain rule of higher order 

partial derivatives, the second order partial derivatives of the log-likelihood with respect 

to 𝜷 and 𝜏 are defined as below 

𝜕2𝑙(𝜷, 𝜏)

𝜕2𝛽𝑗
= ∑

𝜕2𝑙𝑖(𝜋(𝑿𝑖) )

𝜕2𝜋(𝑿𝑖)
[
𝜕𝜋(𝑿𝑖)

𝜕𝛽𝑗
]

2

+
𝜕𝑙𝑖(𝜋(𝑿𝑖) )

𝜕𝜋(𝑿𝑖)

𝜕2𝜋(𝑿𝑖)

𝜕2𝛽𝑗

𝑛

𝑖=1

, 

𝜕2𝑙(𝜷, 𝜏)

𝜕2𝜏
= ∑

𝜕2𝑙𝑖(𝜋(𝑿𝑖) )

𝜕2𝜋(𝑿𝑖)
[
𝜕𝜋(𝑿𝑖)

𝜕𝜏
]

2

+
𝜕𝑙𝑖(𝜋(𝑿𝑖) )

𝜕𝜋(𝑿𝑖)

𝜕2𝜋(𝑿𝑖)

𝜕2𝜏

𝑛

𝑖=1

, 

𝜕2𝑙(𝜷, 𝜏)

𝜕2𝛽𝑗𝛽𝑘
= ∑

𝜕2𝑙𝑖(𝜋(𝑿𝑖) )

𝜕2𝜋(𝑿𝑖)

𝜕𝜋(𝑿𝑖)

𝜕𝛽𝑗

𝜕𝜋(𝑿𝑖)

𝜕𝛽𝑘
+

𝜕𝑙𝑖(𝜋(𝑿𝑖) )

𝜕𝜋(𝑿𝑖)

𝜕2𝜋(𝑿𝑖)

𝜕2𝛽𝑗𝛽𝑘

𝑛

𝑖=1

, 

𝜕2𝑙(𝜷, 𝜏, 𝑌𝑖 )

𝜕𝛽𝑗𝜕𝜏
= ∑

𝜕

𝜕𝛽𝑗
[
𝜕𝑙𝑖(𝜷, 𝜏)

𝜕𝜏
]

𝑛

𝑖=1

, 

where 

𝜕2𝑙𝑖(𝜋(𝑿𝑖) )

𝜕2𝜋(𝑿𝑖)
= −

𝑌𝑖

[𝜋(𝑿𝑖)]2
−

1 − 𝑌𝑖

[1 − 𝜋(𝑿𝑖)]2
, 

𝜕2(𝜋(𝑿𝑖) )

𝜕2𝛽𝑗𝛽𝑘
= 𝑋𝑖𝑗𝑋𝑖𝑘𝜋(𝑿𝑖)(1 + 𝜏𝑿𝑖

𝑇𝜷)−
1
𝜏

−2{1 + 𝜏 + ln[𝜋(𝑿𝑖)]} 

𝜕2(𝜋(𝑿𝑖) )

𝜕2𝜏
= 𝜋(𝑿𝑖)ln[𝜋(𝑿𝑖)]{𝐵1 + 𝐵2} 
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where 𝐵1 = [
1

𝜏2 ln(1 + 𝜏𝑿𝑖
𝑇𝜷) −

𝑿𝑖
𝑇𝜷

𝜏(1+𝜏𝑿𝑖
𝑇𝜷)

]
2

[ln[𝜋(𝑿𝑖)] + 1] and  

            𝐵2 = [−
2

𝜏3 ln(1 + 𝜏𝑿𝑖
𝑇𝜷) +

𝑿𝑖
𝑇𝜷+2𝜏(𝑿𝑖

𝑇𝜷)
2

+𝑿𝑖
𝑇𝜷(1+𝜏𝑿𝑖

𝑇𝜷)

𝜏2(1+𝜏𝑿𝑖
𝑇𝜷)

2 ]. 

Based on the second order partial derivatives and 𝐸 (
𝜕2𝑙𝑖(𝜋(𝑿𝑖) )

𝜕𝜋(𝑿𝑖)
) = 0, Fisher information 

is given as 

−𝐸 (
𝜕2𝑙(𝜷, 𝜏)

𝜕2𝛽𝑗
) = − ∑

1

𝜋(𝑿𝑖)[1 − 𝜋(𝑿𝑖)]
[
𝜕𝑙(𝜷, 𝜏)

𝜕𝛽𝑗
]

2𝑛

𝑖=1

 

−𝐸 (
𝜕2𝑙(𝜷, 𝜏)

𝜕2𝜏
) = − ∑

𝜕2(𝜋(𝑿𝑖) )

𝜕2𝜏

1

𝜋(𝑿𝑖)[1 − 𝜋(𝑿𝑖)]

𝑛

𝑖=1

 

−𝐸 (
𝜕2𝑙(𝜷, 𝜏)

𝜕𝛽𝑗𝜕𝛽𝑘
) = − ∑

1

𝜋(𝑿𝑖)[1 − 𝜋(𝑿𝑖)]

𝜕𝑙(𝜷, 𝜏)

𝜕𝛽𝑗

𝜕𝑙(𝜷, 𝜏)

𝜕𝛽𝑘

𝑛

𝑖=1

 

−𝐸 (
𝜕2𝑙(𝜷, 𝜏)

𝜕𝛽𝑗𝜕𝜏
) = − ∑ 𝑋𝑖𝑗

ln2[π(𝑿𝑖)]π(𝑿𝑖)

(1 + 𝜏𝑿𝑖
𝑇𝜷)[1 − 𝜋(𝑿𝑖)]

𝑛

𝑖=1

[
1

𝜏2
ln(1 + 𝜏𝑿𝑖

𝑇𝜷) −
𝑿𝑖

𝑇𝜷

𝜏(1 + 𝜏𝑿𝑖
𝑇𝜷)

] 
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B.2 The values of intercept used in the change-case in the simulation 

   Degree of change 

   5 % 10 % 20 % 40 % 60 % 80 % 

Degree of 

balance 

1 % 
𝜽1 −5.04 −5.00 −5.03 −5.06 −5.32 −5.58 

𝜽2 −5.02 −4.89 −4.81 −4.48 −4.45 −4.38 

5 % 
𝜽1 −3.51 −3.58 −3.78 −3.87 −4.18 −4.92 

𝜽2 −3.35 −3.31 −3.22 −3.16 −3.10 −3.01 

10 % 
𝜽1 −2.79 −3.04 −3.10 −3.22 −3.78 −4.18 

𝜽2 −2.83 −2.80 −2.71 −2.58 −2.47 −2.37 

15% 
𝜽1 −2.44 −2.55 −2.71 −3.01 −3.22 −3.87 

𝜽2 −2.41 −2.40 −2.37 −2.09 −1.95 −1.83 

20% 
𝜽1 −2.26 −2.30 −2.39 −2.60 −3.04 −3.72 

𝜽2 −2.17 −2.03 −1.93 −1.85 −1.69 −1.52 

25% 
𝜽1 −1.95 −1.96 −2.23 −2.50 −2.87 −3.55 

𝜽2 −1.94 −1.88 −1.73 −1.57 −1.32 −1.25 

30 % 
𝜽1 −1.83 −1.84 −1.93 −2.30 −2.60 −3.35 

𝜽2 −1.65 −1.63 −1.52 −1.34 −1.18 −0.95 

35 % 
𝜽1 −1.56 −1.65 −1.85 −2.15 −2.62 −3.07 

𝜽2 −1.54 −1.48 −1.34 −1.16 −1.01 −0.86 

40 % 
𝜽1 −1.45 −1.56 −1.69 −1.93 −2.39 −3.04 

𝜽2 −1.36 −1.26 −1.18 −1.01 −0.85 −0.65 

45 % 
𝜽1 −1.35 −1.43 −1.52 −1.88 −2.30 −2.96 

𝜽2 −1.13 −1.09 −0.95 −0.86 −0.65 −0.43 

 




