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ABSTRACT

Today, hardware accelerators are widely accepted as a cost-effective solution for emerging ap-

plications in computing platforms from servers to mobile devices. Servers often leverage manycore

accelerators such as Graphics Processing Units (GPUs) to achieve high performance gain by ex-

ploiting simple yet energy-efficient compute cores. The tremendous computing power of GPUs

shows great potential to keep up with the emerging applications that demand heavy computation

on a large volume of data. However, scaling up single-chip GPUs is challenging due to strict chip

power constraints. The data movement overhead over the Network-on-Chip (NoC) becomes a key

performance bottleneck in large-scale GPUs that degrades both overall performance and energy ef-

ficiency. Mobile devices are inherently even more restricted by energy constraints than servers so

that they often leverage low-power accelerators for particular functionalities including inference in

Deep Neural Networks (DNNs). However, the emerging applications that typically rely on DNNs

require considerable computation due to complex algorithmic operations, which becomes a key

energy bottleneck.

To tackle the performance and energy bottlenecks fundamentally, we propose three approaches

that focus on minimizing unnecessary data movement and computation. First, we propose a packet

coalescing mechanism to coalesce redundant packets over the NoC of GPUs and transfer the co-

alesced packet in a multicast. Second, we present a packet compression mechanism to directly

reduce the packet size based on a dual-pattern compression technique with data preprocessing

capability. Third, we propose an optimization methodology for a convolutional neural network

(CNN) that uses an early prediction and reduces the complexity of compute kernels in CNNs by

guiding them to compute critical features only. In our analysis, the packet coalescing and packet

compression approaches show 15% and 33% IPC improvements in a large-scale GPU on average

across various modern applications. Besides, the network optimization methodology reduces the

inference energy cost of CNNs by 77% on average with an ignorable accuracy drop in a time-series

classification problem.
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1. INTRODUCTION

Modern computing systems have been continuously innovated with new computing paradigms.

In the computing history, we witnessed exponentially increasing performance in succeeding gener-

ations of chips for many decades, which was gained due to reduction in transistor size that allows

faster operation. With the end of Dennard Scaling, increasing frequency merely was not effective

any more due to excessive energy cost. Homogenous multi-core processors have been utilized

as an alternative paradigm for decades-until now, but they rarely keep up with recent emerging

applications requiring massive processing power. Today, heterogeneous multi-core architecture

that exploits accelerators specialized for complex computation such as GPUs [1] and customized

hardwares (e.g. FPGA or ASIC) [2] is widely accepted as a cost-effective way to improve overall

performance of computing system. Accelerators are becoming more prevalent in a diverse range

of systems from servers to mobile devices.

Servers often leverage many-core accelerators such as GPUs to gain high throughput perfor-

mance for complex compute kernels by exploiting simple yet energy-efficient compute cores and

high-bandwidth memory systems. The emerging applications require even more throughput per-

formance to process a large volume of data. Scaling up of single chip accelerators is challenging

due to limited power budget. Power supply voltage scaling is not effective due to leakage power

constraints. The scaling of transistors with reduced process size gives only limited improvement

in power efficiency [3]. Consequently, it is hard to scale up accelerators without breaking the

power budget, although the advanced process technology can place more components on a chip.

Therefore, energy-efficient architecture is fundamentally essential.

On the other hand, mobile devices utilize low-energy accelerators specialized for important

functionalities including inference in DNNs. The accelerators are inherently constrained by strict

energy budget under battery-powered mobile devices. Furthermore, the power-efficiency of accel-

erators becomes even more critical as the emerging applications often relying on DNNs that require

heavy computation due to complex algorithmic operations. This will be continued for a long term
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due to the state-of-the-art performance that DNNs have shown in many applications. Fundamental

decrease in the computational complexity of DNNs is desirable to reduce energy envelope.

To improve energy efficiency in modern accelerators fundamentally, we explore three mech-

anisms that directly reduce data movement and heavy computation load in a wide-range of ap-

plications. After analyzing architectural behaviors of many applications, we identify unnecessary

data communication and computation patterns. The proposed mechanisms attempt to minimize the

overhead intelligently, thereby reducing overall energy cost.

We first propose a packet coalescing mechanism that minimizes redundant packets over the

NoC of GPUs that share the same data. Graphics Processing Units (GPUs) have been widely

accepted for diverse general purpose applications due to a massive degree of parallelism. The

demand for large-scale GPUs processing a large volume of data with high throughput has been

rising rapidly. Many executions on the GPUs place heavy stress on the memory system, creating

network bottlenecks near memory controllers. We observe that data redundancy in communication

traffic is commonplace across various applications, called inter-core locality. To exploit the data

redundancy, we propose a packet coalescing mechanism to alleviate the network bottlenecks by

directly reducing the traffic volume. The key idea is to coalesce multiple packets into one without

increasing the packet size when they carry redundant cache blocks. To ensure that the coalesced

packets are delivered to their respective destinations, we adopt multicast routing for GPUs’ in-

terconnection network. Our coalescing approach yields 15% IPC improvement (up to 112%) in

a large-scale GPU with 2D mesh across various GPU applications by reducing average memory

access time (AMAT) by 15.5% (up to 65.2%) and obtaining network bandwidth savings by 13%

(up to 37%).

Second, we introduce a packet compression mechanism that directly reduces the size of pack-

ets over NoC of GPUs each carrying redundant data values. The packet coalesing mechanism is

effective but limited to the applications with inter-core locality, which motivates us to explore a

more general data compression solution applicable for a wide range of applications. Compres-

sion techniques are a practical remedy to effectively increase network bandwidth by reducing data
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size transferred. We propose a new simple compression mechanism, Dual Pattern Compression

(DPC), that compresses only two patterns with very low latency. The simplicity of compres-

sion/decompression is achieved through data remapping and data-type-aware data preprocessing

which exploits bit-level data redundancy. We demonstrate that our compression scheme effectively

mitigates the network congestion in a large-scale GPU. It achieves IPC improvement by 33% on

average (up to 126%) across various benchmarks with average space savings ratios of 61% in

integer, 46% (up to 72%) in floating-point, and 23% (up to 57%) in character type benchmarks.

Last, we propose a network optimization methodology that reduces the computation cost of

CNNs. Convolutional Neural Networks (CNNs) have become immensely popular in many ap-

plications due to their state-of-the-art prediction power. While GPUs in desktops or servers are

typically chosen as first-choice-hardware for training CNNs, artificial intelligence (AI) acceler-

ators specialized for CNN inference are adopted in mobile devices. However, high energy cost

caused by considerable computation is a major hindering factor in leveraging CNNs in the Internet

of Things (IoT) devices with a limited power source. In our proposal, an original CNN is trans-

formed into a CNN with early-prediction capability based on Gradient Boosting Trees (GBTs)

that make a prediction with features from each feature extraction network layer. Motivated by the

observation that some important features are only necessary for early prediction, our methodol-

ogy reduces an input size for complex compute kernels (e.g., convolution)) enough to compute

important features only. A genetic algorithm finds the best hyperparameters as well as input sizes

that maximize the energy-efficiency of inference with an ignorable accuracy drop. Our method-

ology reduces the energy-consumption of CNNs by 77% with an ignorable accuracy drop in the

benchmarks of human activity recognition on average.

The rest of this dissertation is organized as follows. We discuss our packet coalescing and com-

pression proposals for many-core accelerators (GPUs) in Chapters 2 and 3, respectively. Next, we

describe a CNN optimization proposal for AI accelerators in Chapter 4. We review the background

before detailing a proposal in each chapter. Finally, we draw conclusions in Chapter 5.
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2. PACKET COALESCING EXPLOITING DATA REDUNDANCY1

2.1 Introduction

Modern GPGPUs, equipped with a large number of computation units, provide energy-efficient

executions for a wide variety of high throughput data parallel applications. GPGPUs consist of

multiple Streaming Multiprocessors (SMs), each comprising multiple compute units, and a set of

on-chip Memory Controllers (MCs) connected via scalable Networks-on-Chip (NoCs) [5] [6] [7].

An enormous amount of parallel thread executions in GPGPUs place heavy stress on the memory

systems causing the memory bandwidth to become the critical performance bottleneck [5] [6] [7].

The memory bottleneck leads to long memory access latencies in GPGPUs, which are hidden by

fine-grained thread context switching [8] [9] [10].

As technology scales, the number of MCs in the GPGPUs does not scale with the SMs due

to on-chip pin bandwidth limitation [3]. This exacerbates the memory bottleneck and renders the

latency hiding less effective, due to increased AMAT, eventually leading to significant overall sys-

tem performance degradation. A considerable portion of AMAT is caused by the MC bottlenecks

where a large amount of reply data from MCs to SMs cannot be injected into the network due to

restricted terminal bandwidth at the MC routers even when the data is ready to be sent [5]. The MC

bottlenecks are even more aggravated by network hotspots in the NoC near the MCs that cannot

transfer a large volume of traffic fast enough due to limited network bandwidth [6]. Therefore, it

is critical to explore solutions in the NoC to alleviate the MC bottlenecks.

There have been previous studies on designing NoCs tailored to GPGPUs. Bakhoda et al. [5]

proposed to provide additional terminal bandwidth using a multiport router design for the MC

nodes. Such a design can alleviate the congestion problem at the MC routers by providing addi-

tional injection/ejection capabilities but does not reduce the underlying traffic directly. This design

also becomes cost-ineffective as the GPGPUs scale up, thereby aggravating the MC router con-

1©2017 ACM. Reprinted, with permission, from K. H. Kim, R. Boyapati, J. Huang, Y. Jin, K. H. Yum, and E. J.
Kim, Packet coalescing exploiting data redundancy in GPGPU architectures, 07/2017 [4]
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gestion. Recent work has attempted to investigate the issues of virtual channel (VC) allocation for

request/reply traffic, MC placement, routing algorithm and network topology to find the optimal

NoC design for GPGPUs [6] [7]. However, none of these studies tried to solve the MC bottleneck

issue in the standpoint of reducing the traffic volume, which we believe is critical to address the

issue.

We propose a packet coalescing mechanism that reduces NoC traffic volume by exploiting

data redundancy in the GPGPU communication traffic. The proposed mechanism coalesces mul-

tiple packets that exhibit data redundancy into a single packet without increasing the packet size,

thereby reducing the number of packets injected into the network. Data redundancy in GPGPU

communication stems from data sharing among multiple SMs, called inter-core locality [11]. We

introduce a packet coalescing unit (PCU) in the MCs which captures a group of memory requests

with inter-core locality from multiple SMs, and generates a single read reply packet destined for

the requesting SMs. To make sure that the single packet is delivered to all the SMs, we adopt an

existing multicast routing for GPGPUs. In this paper, we make the following contributions.

• We propose a new packet coalescing mechanism that alleviates the MC bottlenecks through

traffic volume reduction.

• We adopt a multicast routing algorithm that delivers coalesced packets to SMs. To the best of

our knowledge, this is the first work showing a good use of multicast in GPGPU applications.

• We analyze the MC bottleneck issue and inter-core locality common across various applica-

tions and characterize applications with inter-core locality.

• We comprehensively evaluate the proposed coalescing technique across various applications

from GPGPU-SIM [12], Rodinia [13], Mars [14], Polybench [15], and Parboil [16] bench-

mark suites. Our coalescing approach yields 15% IPC improvement on average in a large-

scale GPGPU with 2D mesh by reducing AMAT by 15.5% and obtaining network band-

width savings by 13%. Also, our coalescing approach achieves 7% IPC improvement in the

NVIDIA Fermi architecture with the crossbar.
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Figure 2.1: Data Redundancy across 29 Benchmarks in 2DMesh

2.2 Motivation

In this section, we explain the MC bottleneck issue in a GPGPU with a 2D mesh/crossbar

interconnect and motivate our proposed mechanisms based on the observation of widely common

data redundancy in GPGPUs.

2.2.1 MC Bottleneck

A large amount of parallelism in GPGPUs places heavy stress on the limited number of MCs

on the chip, especially because L2 cache banks are located only in the MC nodes, and hence every

L1 cache miss access is destined for one of the MCs through an interconnection network. The

communication patterns in GPGPUs are many-to-few in the request network from many SMs to a

few MCs, and reversely few-to-many in the reply network from a few MCs to many SMs [5].

To understand the key reason of the MC bottlenecks, we analyze L1 cache miss penalty of

AMAT in two different scales of GPGPUs. We model a large-scale GPGPUs of 56 SMs and 8

MCs with 2D mesh [6], while we do NVIDIA Fermi architecture of 15 SMs and 6 MCs with

the crossbar [17]. Through these experiments, we see severe bottlenecks occur in both GPGPU

models and the bottlenecks are mainly due to a large volume of traffic highly skewed toward the

reply network.
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Figure 2.2a2 shows the breakdown of L1 cache miss penalty measured for all memory requests

across 29 benchmarks. The penalty is divided into three latencies: request packet latency, memory

latency, and reply packet latency. The request and reply packet latencies are calculated from the

time packet’s flits are created to the moment when its tail flit is accepted in the final destination. The

memory latency is from the time a request packet is accepted by an MC to when a corresponding

reply packet is created.

The MC bottlenecks are presented in the request packet latency that is asymmetrically longer

than the reply latency. The average request latency is 10 and 2 times higher than the reply latency

in 2D mesh and crossbar, respectively. It is due to the backpressure from the highly congested

reply network to the request network. Once reply data is read from memory systems, it stays in

MC reply queue placed between MC and its Network Interface (NI) input queue, waiting for being

sent to the network. As the reply network gets more congested, the MC NI input queue is full, and

thus reply data cannot be sent immediately and keeps waiting in MC reply queue. When the reply

queue becomes full, an L2 cache cannot accept a request in MC request queue that stores new

memory requests from SMs. It is because the reply queue has no more space to store reply data

when the request hits the L2 cache. Then, request packets continue to wait in the request network

until the MC request queue has available space, resulting in a long request latency.

To quantify the severity of MC bottlenecks, we measure the ratio of average MC stall time out

of the total execution time for each benchmark. We count the stall time when MCs cannot inject

packets due to the MC NI input queue being full. The average MC stall time ratio in 2D mesh is

40.4% as shown in Figure 2.2b. Such frequent MC stall has been also observed by earlier GPGPU

NoC design work [5]. Interestingly, MCs in the crossbar incorporated by modern GPGPUs also

stall 25.1% of execution time, particularly in memory-intensive applications. Consequently, the

MC bottleneck increases AMAT and, in turn, degrades the overall system performance. Therefore,

it is crucial to reduce the stalls by fundamentally reducing the number of packets sent to the MC

2To analyze MC bottlenecks in the interconnect perspective, we present the L1 cache miss penalty rather than SM
stall cycles. Due to severe response delay by the bottlenecks, the performance is highly affected by the miss penalty,
although GPGPUs are designed for hiding latency.
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Figure 2.2: MC Bottlenecks in GPGPUs across 29 Benchmarks (T1: 2DMesh, T2: Crossbar)

NI input queue.

2.2.2 Data Redundancy

Data Sharing among SMs. Inter-core locality occurs when multiple SMs send requests to

the same cache block within a relatively short period of time. In order to quantify its potential

and temporal locality, and identify its sources, we analyze cache block access patterns in each MC

across a wide-range of applications.

Once a read request arrives at an MC router, it is sent to L2 cache. Between them, we capture

all read requests that are going to access the same cache block. To do this, we maintain a table

where a cache block address is associated with the number of accesses in each entry. If a cache

block address of a request does not exist in the table, a new entry is allocated, storing the block

address and initializing the number of accesses to one. The entry is deallocated after a fixed-length

time window. If a block address of a request does exist, the number of accesses increases by one.

To capture all requests, the number of entries is assumed to be unlimited. Five time windows such

as 120, 240, 480, 960 and 1920 cycles are adopted by taking multiples of the minimum L2 hit

latency (i.e. 120 cycles) [17]. An entry has inter-core locality when it records multiple accesses.

The inter-core locality ratio is measured by the percentage of the total number of accesses in all

8



entries with inter-core locality out of the number of all read requests. As shown in Figure 2.1a,

31% of the requests have inter-core locality on average, when the time window is set to 120 cycles.

As the time window is increased to 1920 cycles, the inter-core locality ratio increases up to 51.7%.

Figure 2.1b shows the distribution of access types with inter-core locality at the time window

of 960 cycles. Inter-core locality mainly occurs from L1 data (L1D) cache misses by 75% where

read-only data takes 43% and read-write data takes 32%. Modern GPGPUs do not support cache

coherence protocols among SMs [17], but synchronization method among SMs is often used to

avoid data race circumstances on the read-write data. Other sources of inter-core locality are cache

misses from read-only caches such as L1 instruction (L1I), constant (L1C) and texture (L1T) cache

, which take 16%, 2.8% and 7%, respectively.

Characterization of Applications. The inter-core locality associated with L1D cache misses

occurs when an application is written to run many threads accessing shared data structures. We

characterize the applications in terms of their computation characteristics on the shared data as

follows.

• Pair-wise Computation. In MapReduce framework applications, Map stage passes a list of

key and value pairs to Reduce stage. Group stage between them sorts the output of Map stage

by keys. In the sorting process, threads fetch and compare data elements. When the elements

that each SM needs exist in a cache block, inter-core locality occurs. Similarly, SC, CUTCP,

HISTO and SpMV have inter-core locality due to pair-wise computation features.

• Graph Data Computation. In applications using graph data such as BFS, BT, NN and BP,

a data node is explicitly connected with neighboring nodes. In their computation flow, they

usually involve checking or obtaining previous data nodes. The inter-core locality occurs

when multiple nodes processed by different SMs need data from the same previous node.

• Stencil Computation. Applications compute a data point by using neighboring data points.

Although SMs are assigned a distinct data tile, the boundary regions, called halo regions [18],

around the data tile are redundantly accessed by multiple SMs. HS, PF, SRADV2, 3DCONV,

2DCONV and LPS belong to this type.
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Figure 2.3: GPGPU Architecture Incorporating Proposed PCUs

• Computation with Row-wise and Column-wise Dependency. Applications such as LUD, GE

and 2MM access row and column data points associated with a data point, to compute the

point. As a large dataset cannot be fit in the shared memory of an SM, such row/column data

is necessary for multiple SMs.

2.3 Packet Coalescing Unit

In this section, we explain our packet coalescing units (PCUs) that reduce the number of pack-

ets by combining multiple packets into one without increasing the packet size.

2.3.1 Overview

Figure 2.3 shows the overall GPGPU architecture integrating PCUs to MCs. In each SM, mem-

ory accesses from threads of a warp are combined into fewer accesses by a memory coalescer [17].

When they have L1 cache misses, memory read or write requests packets are sent to MCs through

an interconnection network. The MCs respond to them with read reply or write reply packets,

respectively. The read reply packets, which are a key factor of MC bottleneck, are coalesced by

a PCU, before being injected into the network. A PCU coalesces packets by up to the number of

all SMs. To deliver the packet to final destinations, the interconnection network requires multicast

capability that we will discuss in Section 2.4. In the following, we explain the details of a PCU.
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2.3.2 Coalescing Mechanism

The proposed coalescing mechanism has two key features. First, multiple packets are coalesced

into a single one without packet size increase. To coalesce packets one may think of appending

packets back-to-back, but it does not attain our goal of reducing traffic volume. Instead, to exploit

inter-core locality described in Section 2.2, we attempt to merge only read reply packets carrying

the same cache block into a single one. The packet header and payload store multiple destinations

and the cache block, respectively. As the unused space of a packet accommodates the destinations,

the packet has the same size as a normal (i.e. uncoalesced) packet.

Second, coalescing is performed with low latency overhead. One way of coalescing is to keep

track of cache blocks in the MC reply queue and merge ones with the same contents, while they

are in the queue. Thus, the longer the packet stays in the queue, the more packets can be coalesced.

However, adding extra waiting time to earlier packets is not desirable since it increases end-to-end

latency. We determine a group of reply packets to be coalesced when their corresponding requests

arrive at an MC. This process is called Request Grouping. Once a cache block for a group of

requests returns from memory systems, we provide information such as the cache block and SM

ids with NI to generate a packet destined for the SMs. This process is called Reply Merging. The

request grouping leads to low latency overhead for identifying requests accessing the same cache

block, while the reply merging does no overhead.

Suppose that a request to a cache block arrives at an MC from SM 1 and there were no requests

to the block so far. The request grouping allows the request to access memory systems and records

SM 1 as a requesting SM. Until the accessed block returns, if subsequent requests to the same

block are sent from SM 2 and 3 to the MC, the request grouping records SM 2 and 3, and it does

not allow them to access memory systems. When the block returns, the reply merging sends all

recorded SM ids (i.e. 1, 2 and 3) and the cache block to NI that creates a packet destined for the

SMs. Now we describe the details of request grouping and reply merging

Request Grouping. The request grouping is performed in a static time window that depends

on memory access time. When a request forms a new request group, it is sent to memory systems.
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The request group continues to capture all subsequent requests that access the same cache block as

the first one does. The number of accesses to the same cache block is bound by the number of SMs

since the redundant accesses from each SM are blocked by MSHRs of L1 cache. This grouping is

terminated when a cache block for the first request returns. This operation is similar to miss status

holding register (MSHR) mechanism of an L2 cache. However, we introduce the request grouping

mechanism before L2 cache separately to capture more requests with inter-core locality. GPGPU

has a long L2 cache access time (120 cycles [17]) due to the delay of raster operation (ROP) unit

coupled with an L2 cache. The request grouping can use it as the minimum time window when a

request hits L2 cache. Upon miss in an L2 cache, the request grouping can make use of DRAM

access time in addition to the L2 cache access time, which is the maximum time window. The

accesses that do not access the main memory are frequently captured by request grouping with the

minimum time window due to their temporal locality shown in Figure 2.1a.

To implement the request grouping, we introduce a Request Grouping Register (RGR) which

groups requests with inter-core locality by storing a cache block address and their requesting SM

ids. RGR has 1-bit valid field, 41-bit block address field, and 64-bit destination bits field where

each bit position indicates the location of a requesting SM. The RGR that stores requests with

inter-core locality has multiple bits of destinations bits field set to ones.

We design the request grouping in two stages to perform the grouping while the MC request

queue is full. To send read requests to L2 cache in their arriving order, we maintain the PCU pointer

ring-buffer where the locations of RGRs are stored according to their allocation order. The PCU

head/tail pointers are used to read RGRs in that order. The request grouping mechanism operates

in the following manner.

• Stage 1. When there is an available RGR, a read request is accepted by PCU. For the read

request, all valid RGRs are sequentially accessed to find a match on the block address. If

there is a hit in a valid RGR, the requesting SM id is stored in the destination bits field and the

request is dropped (not sent to MC request queue). If an RGR miss occurs, an empty RGR

(the valid field is zero) is located. The requesting SM id is stored in the destination bits field
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of the RGR. The accessing address is also stored in the block address field. The PCU head

pointer is set to next available space in the PCU pointer buffer. The RGR location is stored at

the space.

• Stage 2. Next read request is selected based on an RGR pointed by the PCU tail pointer.

When the PCU head and tail pointers are the same, no read request is available. If MC reply

queue has available space, a request selector chooses either a read request from the selected

RGR or a write request in a write buffer in a round-robin way. When the read request is se-

lected, the block address of the RGR is sent to MC request queue and the PCU tail pointer is

set to next valid RGR.

Reply Merging. We introduce Merge unit that combines multiple replies in a single reply.

Merge unit stands between L2 cache and MC reply queue. When a cache block returns from L2

cache, the Merge unit obtains the destination bits by accessing the corresponding RGR. Both the

cache block and the destination bits are sent to the MC reply queue. At this point, the RGR is

reset by clearing its valid field for new RGR allocation. The cache block is packetized by NI as

a reply packet for SMs encoded in the destination bits field. A flit that stores a packet header

accommodates the destination bits in its unused space (e.g. 8B in 2D mesh). If the destination

bits field encodes a single destination, a reply packet is sent to the destination as a unicast packet.

Otherwise, the reply packet is a multicast packet sent to all requesting SMs, which we will discuss

details in the next section.

2.4 Multicast Support in NoC

In this section, we detail multicast support for both large-scale and NVIDIA Fermi-style GPGPU

architectures.

2.4.1 Overview

First, we present an overview of the NoC architectural details for both large-scale and NVIDIA

Fermi-style GPGPUs. NVIDIA Fermi architecture uses a global crossbar interconnection network
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with destination tag routing [17]. For large-scale GPGPU architectures, we propose to use a 2D

mesh interconnection topology among various NoC topologies as in [19] [6] because the global

crossbar is not a practical solution due to the complexity of layout and huge power consump-

tion [7]. The efficiency of the proposed packet coalescing mechanisms, which exploit the appli-

cation behavior of inter-core locality, is independent of the underlying interconnection network

topology. For the global crossbar, the request and reply networks are separated by two different

crossbar switches. For the 2D mesh, a single network is used for both request and reply commu-

nication. To avoid protocol deadlocks, the network is divided into two virtual subnetworks for the

respective communication, where VCs are evenly dedicated to each subnetwork [12].

2.4.2 Multicast in Crossbar

To support multicasting in the crossbar, flit replication capability is primarily needed. To en-

able replication with high throughput, we manifest the matrix-crossbar in the Fermi architecture

into a mux-based crossbar. In earlier multicast studies like VCTM [20], replication is performed

by reading the same flit out of a VC and sending it to each output port one-by-one upon successful

allocation. This has an advantage of a simple crossbar design but incurs serialization delay to mul-

ticast flits. Hence, we adopt a mux-based crossbar used by RPM [21] that supports high throughput

at the cost of higher energy consumption.

2.4.3 Multicast in 2D Mesh

For multicast support in the 2D mesh topology, we adopt a multicast router supporting tree-

based routing, similar to VCTM [20], RPM [21], BAM [22] and Whirl [23]. The routing algorithms

in these routers have been optimized for the traffic patterns in Chip MultiProcessors where core-

to-core communications are frequent. Jang et al [6] has shown that a Dimension Order Routing

(DOR) is simple but effective in GPGPU due to the traffic patterns occurring between SMs and

MCs only. Therefore, the multicast router in this paper implements DOR.

We use a 3-stage lookahead router as the baseline router. A traditional NoC router has four

stages: Routing Computation (RC), VC Allocation (VA), Switch Allocation (SA) and Switch
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Figure 2.4: Multicast Router Architecture

Traversal (ST). To reduce the pipeline depth, the 3-stage lookahead router performs the routing

computation for next hop router in the VA stage [24].

To support multicast routing in the baseline router, we incorporate a replication unit and looka-

head multicast RC units as depicted in the shaded units in Figure 2.4. The replication unit copies a

multicast packet at a replication point to different directions to make sure that the packet arrives at

all final destinations. The multicast RC units decide the output port list to which replicated packets

are directed, based on DOR. For each replica, it also splits a destination list of an original packet

into a subset being routed via the same output port. Then, VC allocator uses the output port list

to get an available VC from the downstream routers for replica packets. As a replica gets a free

VC, it goes to the SA stage and a packet is replicated to an output port at the ST stage, storing the

destination list for the replica in replica’s header [21].

We use multiple RC units to support lookahead routing decision for replicas.When a packet

is replicated to multiple directions, we need to make sure that the lookahead routing decision is

performed for each replicated packet, which causes additional complexity. For all replicas, each

input port is required to have lookahead RC capability for all immediate neighboring routers. Since

the multiple RC units work in parallel, they can be overlapped with the VA stage without increasing

the critical path.

As a replication scheme, we choose an asynchronous replication scheme [21] where flits tar-
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geted for different destinations are forwarded independently. Then VA, SA and ST are done for

each flit individually. An input VC keeps storing a flit until it copies the flit to all target out-

put ports [21] [22]. Replicating a packet to multiple output ports may have conflicts with other

normal packets already in the router. Replicated flits are handled like normal flits for the VA/SA

stages without giving priority on the replicated flits. To enable replication with high throughput,

we choose the mux-based crossbar inside the multicast router discussed in Section 2.4.2.

2.5 Evaluation

2.5.1 Methodology

To evaluate the proposed packet coalescing we integrate PCUs into a cycle-accurate GPGPU

simulator, GPGPU-Sim 3.2.2 [12]. We modify Booksim [25], the NoC simulation component of

GPGPU-Sim, to simulate multicast for crossbar and 2D mesh. To see the impact of routing to

coalescing performance, we use two routing algorithms for 2D mesh, XY-XY and XY-YX, where

both uses XY routing in the request network, and use XY and YX routing, respectively for the

reply network. The number of RGRs that affect coalescing performance is set to 128 for each

PCU. We use CACTI model 6.5 [26] to measure latency and energy overhead of RGR. Table 4.1

shows the detailed system parameters we use to model the baseline GPGPU architecture.

We select a variety of applications from multiple benchmark suites: AES, LPS, MUM, NN,

NQU, RAY and STO from GPGPU-Sim [12], BFS, BP, B+tree (BT), Discrete Wavelet Trans-

form (DWT), Gaussian Elimination (GE), HS, KM, LUD, NW, Path Finder (PF), SC and SRAD2

from Rodinia [13], CUTCP, HISTO, and SpMV from Parboil [16], PVC, PVR, SS and WC from

Mars [14], and 2DCONV, 2MM and 3DCONV from Polybench [15]3. We choose a mix of com-

pute bound and memory bound benchmarks so as to show the prevalence of data redundancy across

diverse applications.

Memory coalescing has a significant effect on reducing the number of memory requests be-

cause memory accesses from many threads are merged into smaller ones. Thus, we evaluate our

packet coalescing mechanism in the presence of an intra-warp memory coalescer [17]. Also, we

3We use abbreviations of benchmarks as presented in their literatures
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System Parameters Details
Shader Core 56 / 15 Cores, 1.4Ghz
Memory Model 8 / 6 MCs, 924 MHz
Warp Scheduler Greedy-Then-Oldest (GTO)
L1I, L1T, L1C Cache 2KB, 12KB, 8KB
L1D Cache, Shared Memory 16KB, 48KB
L2 Cache 64KB
Min L2, DRAM latency 120, 220 cycles
Topology 8 x 8 Mesh / Crossbar
Virtual Channel 4 VCs per Port (8-Flit Buffer)
Routing DOR / Destination Tag
Flow Control Wormhole, Credit-based
Channel Width 128 Bits / 256 Bits

Table 2.1: System Configuration Parameters

compare ours against a novel inter-warp memory coalescer (Warppool) [27] which merges more

memory accesses from different warps on top of the intra-warp memory coalescing. As a result,

Warppool can be used as an effective means to mitigate the MC bottlenecks. For fair comparison,

we implemented the FIFO request selection policy both in our mechanism and in our implementa-

tion of Warppool. Note that Warppool also uses prioritization policy proposed by MRPB [28].

2.5.2 IPC Improvement Analysis

Figure 2.5a compares the normalized IPC of all benchmarks when Warppool is used with rout-

ing algorithm XY-YX, and PCUs are used with XY-XY and XY-YX. Each IPC is normalized over

the baseline using the corresponding routing combination. Since the request grouping and reply

merging in each PCU work together as a mechanism for packet coalescing, we do not show benefit

for each separately.

We make two major observations in the IPC performance analysis. First, the proposed coa-

lescing approach is more effective than Warppool. In XY-YX routing, our approach provides 15%

IPC improvement on average, while Warppool does IPC performance degradation by 3%. With

Warppool, only 8 out of 29 benchmarks (28%) have more than 5% IPC improvement, while others
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Figure 2.5: System and Coalescing Performance

have performance degradation or minor improvement. Warppool is a novel idea, but the overhead

of merging requests from different warps causes performance degradation in the benchmarks with

limited inter-warp locality. Especially, since the merging process is on the critical path of cache ac-

cesses, the performance degradation appears more severe for benchmarks with low L1 data cache

miss rates (e.g. PF and BT).

Second, the proposed coalescing approach becomes more effective when a better routing algo-

rithm that mitigates reply network hotspots is used. As XY routing in the reply network causes

network hotspots near MCs with bottom MC placement, YX routing has been shown more effec-

tive [6]. Our approach achieves the highest IPC improvement 15% with XY-YX routing, while it

does 12% with XY-XY routing. Such performance gap arises due to worse coalescing performance

in XY-XY routing, which is shown in benchmarks such as LPS, HS, SpMV, PF and PVC. Reply

packets under XY routing are delivered with delay due to the network hotspots. After the reply

packets are accepted by SMs, next requests with inter-core locality are sent to MCs with worse

temporal locality, so PCUs are limited in involving more requests in request grouping.

Synergetic Effect of PCU and Warppool. Both PCU and Warppool synergetically improve

the overall IPC performance when they work together, as shown in Figure 2.6. We simulate both

mechanisms for benchmarks benefitting from Warppool. Both mechanisms achieve IPC improve-
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ment by 41% on average, while PCU and Warppool do by 22% and 21%, respectively. Such

synergetic effect is due to the difference in the target that each mechanism works for. Warppool

attempts to reduce unnecessary memory requests caused by inefficient use of an L1 cache (e.g.

cache thrashing), but necessary requests to fill the L1 cache are sent and these still cause the MC

bottlenecks. By reducing traffic volume of the corresponding replies with inter-core locality, the

benefit from PCU keeps valid with Warppool. However, SC is more effective with PCU only.

When Warppool is used only, the requests are waiting in SMs due to the backpropagation of MC

bottlenecks, so Warppool effectively works since the latency overhead of merging requests is hid-

den. However, as our packet coalescing is introduced, this latency hiding is less effective since

requests do not wait, thereby degrading the performance.
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2.5.3 Packet Coalescing Analysis

The IPC performance improvement is mainly attributed to AMAT reduction by packet coalesc-

ing. We first analyze coalescing performance according to routing algorithms, then discuss the

MC bottlenecks alleviated by the coalescing, and finally discuss memory regions with inter-core

locality on two applications.

Coalescing Performance. We measure the coalescing performance based on the actual inter-

core locality ratio measured by the percentage of the number of coalesced packets out of the total
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number of reply packets. In this analysis, we make two conclusions. First, the coalescing perfor-

mance is affected by routing algorithms. As shown in Figure 2.5b, the actual inter-core locality

ratio is 38.9% under XY-YX on average, while it is 35% under XY-XY. As discussed in Sec-

tion 2.5.2 and [6], XY-XY routing suffers from more severe bottleneck than XY-YX in the reply

network. It causes reply packets to be delivered to each SM with more delay between them. Ac-

cordingly, next requests with a potential inter-core locality are sent from each SM more sparsely.

As a consequence, some requests lose a chance of grouping under XY-XY routing. However, there

are some outliers that have slightly higher inter-core locality under XY-XY. For instance, SC has

34.5% and 29.4% inter-core locality ratio in XY-XY and XY-YX, respectively. Coalescing perfor-

mance in SC is less sensitive to the temporal locality of accesses due to its long memory latency

caused by high L2 cache miss rate (97%). The high MC bottleneck favorably gives larger time

window for grouping, so extra requests are additionally grouped to existing RGRs backed up by a

higher average number of coalesced packets in XY-XY than XY-YX.

Second, PCUs capture most of the requests with inter-core locality (88.4%) by using memory

access time as its time window. To understand this, we conservatively compare the actual inter-core

locality ratio to the potential ratio of 960-cycle time window in Figure 2.1a because the average

memory latency is 649 cycles under XY-YX. The potential inter-core locality ratio is 44.0% on

average, while the actual inter-core locality is 38.9%. By giving extra time to PCU’s time window,

PCUs are able to capture 5% more requests. However, the extra time becomes as a delay overhead

to AMAT of 38.9% requests. This offsets the benefit of AMAT reduction by packet coalescing,
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thereby gaining no performance improvement.

Impact of Coalescing. We summarize two conclusions. First, our packet coalescing reduces

AMAT by 15.5% and saves network bandwidth by 13%. As the packet coalescing merges multiple

packets into one, the number of packets injected into the reply network is reduced by 19.7% on

average, which alleviates MC stall time by 24.5% and finally leads to L1 cache miss penalty

reduction by 16.3%, as shown in Figure 2.7. As a consequence, AMATs for L1I, L1C, L1T and

L1D caches are reduced by 16.1%, 15.9%, 3.8% and 26.2%, respectively on average. The average

AMAT reduction of all L1 caches is 15.5%.

Second, SC shows an interesting result where the MC stall time increases by 88% but L1 cache

miss penalty is reduced. The impact of the increased stall time is minimal. The MC stall time

ratio is 1.3% in the baseline as shown in Figure 2.2b, and increases to just 2.5% when coalescing

is used. However, PCUs helps to alleviate bottlenecks caused by long memory latency. While

requests accepted by MC keep waiting for their turn for memory accesses in the queue from L2

to DRAM, these backpressures back the MC request queue to be frequently full. MC node in the

baseline cannot accept new requests, leaving them to wait in the request network, which makes

a bottleneck. However, PCUs continue to accept requests for grouping, while MC is busy with

reading data from DRAM. As a result, 29.4% requests are grouped and L1 cache miss penalty is

reduced by 49.2%.

Memory Region with Inter-core Locality. Figure 2.8 depicts the entire memory region used

by two applications, SS and LUD where the normalized degree of inter-core locality for all cache

blocks is illustrated as a heatmap. To measure the degree, the number of requests with inter-core

locality for each cache block is counted. Its normalized degree of inter-core locality is calculated

as the count value of each block divided by the maximum count value among all cache blocks.

To locate each cache block on the plot, the x and y axes indicate the row-wise and column-wise

offsets from the base address of a global memory (i.e. 0x80000000).

Figure 2.8a shows almost all cache blocks that store an input matrix have high inter-core local-

ity. It is because LUD kernels have many dependencies on row-wise and column-wise data [13].
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LUD has three kernels such as lud_diagonal, lud_perimeter and lud_internal. Among accesses

with inter-core locality, 88% and 12% occurs in lud_internal and lud_perimeter, respectively. In-

terestingly, cache blocks on the top-left region have higher inter-core locality than others. As LUD

diagonally processes a matrix from top-left to bottom-right direction over multiple iterations, a

range of data that a kernel needs to compute shrinks and thus the number of running SMs gets

decreasing. Thus, the data on left side is accessed by more SMs, thus showing a higher degree of

inter-core locality.
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Figure 2.8: Memory Region with Inter-core Locality

SS usually has inter-core locality in two memory regions associated with Map and Group stage,

respectively in the MapReduce framework as shown in Figure 2.8b. In the framework for SS, Map

stage computes similarity scores for all pair-wise documents by using their feature vectors, while

Group stage sorts the pair-wise similarity scores. As such pair-wise computation is performed

through multiple thread blocks for large input data, Map stage running across multiple SMs needs

to access feature vectors of redundant documents, which appears on the top in Figure 2.8b. 71%

of inter-core locality occurs in this stage. Similarly, Group stage also needs to perform a pair-wise

comparison between two scores to sort a series of similarity scores. 29% inter-core locality is

related to Group stage, which is shown in the middle of Figure 2.8b. As Group stage is necessary
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for MapReduce-based applications, PVC, PVR and WC also have inter-core locality in this stage.

While the sorting process in the stage requires frequent data movement [14], our coalescing unit

effectively eliminates the bottlenecks caused by the data movement.

2.5.4 Sensitivity Analysis

Impact of RGR Size. We evaluate IPC performance and coalescing performance across all

benchmarks as varying the number of RGRs: 64, 128, 256, 512 and 1204. Our coalescing tech-

nique achieves 39.4% inter-core locality ratio on average and 19% IPC improvement with 1024

RGRs across all benchmarks. Most benchmarks achieve saturated IPC performance at 128 RGRs

except four benchmarks shown in Figure 2.9. While three benchmarks such as SC, SpMV and

SS gain saturated performance at 256 RGRs, MUM obtains a monotonically increasing IPC im-

provements until 1024 RGRs are used. As the number of RGRs grows from 128 to 1024 in MUM,

the inter-core locality ratio increases from 4% to 16% as shown in Figure 2.9, and the IPC im-

provement does from 15% to 88%. This happens because MUM has higher memory intensity than

others [13].

Impact of L2 Hit Latency. To exploit a long hit latency of L2 cache for request grouping,

we place PCUs before L2 cache as discussed in Section 2.3.2. We study the impact of a shorter

L2 hit latency on coalescing performance. We model the L2 cache hit latency as 2 cycles based

on CACTI model [26]. Figure 2.10 shows the normalized IPCs when the minimum L2 hit latency

is set to 120 and 2 cycles, respectively. The IPC values of two configurations are normalized

against the baseline with corresponding L2 latency. It also plots inter-core locality ratio as a line

for each latency case. The IPC improvement increases up to 24% on average at 2-cycle hit latency,

while it is 15% at 120-cycle hit latency. However, the average inter-core locality ratios do not show

noticeable differences, which are 39% and 37% in the 120-cycle and 2-cycle latencies, respectively.

As the cache access time is reduced in the 2-cycle case, the injection rate of reply packets becomes

higher, which causes more severe MC stalls. Our coalescing becomes relatively more effective as

a bottleneck alleviator in the 2-cycle case, resulting in higher IPC improvement.

Impact of MC Placement. We compare four configurations such as bottom, top-bottom, edge
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and diamond MC placements studied in the previous literature [6]. The IPC values of all different

configurations are normalized against the baseline with corresponding MC placements and XY-YX

routing. Our coalescing technique achieves similar average IPC improvements, 15%, 15%, 14% in

bottom, top-bottom and edge MC placements, while it does lower improvement, 11% in diamond

(unplotted). The diamond MC placement is commonly known as the optimal placement [29], but

it is not when multicast is used. When MC nodes serve as a replication point of multicast packets,

it causes contention between replicated packets and injected packets. As a result, it offsets the

benefit of the MC bottlenecks lessened by our coalescing technique.
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2.5.5 Coalescing in the Global Crossbar

We choose 17 benchmarks with MC bottlenecks under the crossbar such as MUM, KM, 2MM,

SC, 3DCONV, 2DCONV, LPS, WC, SpMV, SS, BT, HISTO, SRAD2, GE, BFS, PVC and PVR.

Our coalescing technique achieves 30.3% of inter-core locality ratio and yields 7% IPC improve-

ment on average (unplotted). On the other hand, Warppool obtains 28% performance degradation

on average and only shows IPC improvement for a few benchmarks such as KM, SC, SS and PVC

by 21%, 6%, 10% and 23%, respectively.
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2.5.6 Hardware Cost

Coalescing Overhead. We analyze the area overhead incurred by the proposed PCUs. Since

a PCU uses 128 RGRs and PCU pointers which take 14B and 7 bits, respectively, a PCU per MC

incurs the total overhead 1904B. As shown in Table 4.1, an SM has 86KB L1 caches and an MC

has 64KB L2 cache. Compared to the total cache infrastructure of 56 SMs and 8 MCs, the total

overhead incurred is just 0.28%. The overheads of RGR are summarized in Table 2.2.

Size Access Time (ns) Energy (J) Leakage Pwr (W)
64 0.19 3.66E-12 2.92E-04
128 0.20 6.50E-12 5.37E-04
256 0.21 1.41E-11 1.07E-03
512 0.22 2.56E-11 2.14E-03
1024 0.26 4.16E-11 4.18E-03

Table 2.2: RGR Overhead

Multicast Overhead. The hardware overhead of a DOR-based multicast router has two parts.

First, multiple RC units incurs an overhead to support lookahead routing. 3 ∼ 4 RC units per each

input port are added to the baseline router. A multicast RC unit needs at most 59 OR gates for 64

destination nodes, so a router needs 944 OR gates which accumulate to the total area overhead of

0.40% per router based on DSENT [30]. Second, we adopted the mux-based crossbar that has been
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used by several multicast routers such as RPM [21] and BAM [22], to avoid serialization delay of

replication in the matrix-crossbar. The mux-based crossbar has been analyzed to consume more

energy than the matrix-crossbar [23]. However, our mechanism can be built on energy-efficient

crossbar, mXbar that supports single-cycle replication with small energy overhead or even better

energy efficiency compared to the matrix-crossbar [23].

2.6 Related Work

There are previous studies for improving network bandwidth in GPU. Bakhoda et al. [5] pro-

posed a cost-efficient checkerboard router design with multi-ported routers for MCs to increase

MC network injection bandwidth, for many read replies. Jang et al. [6] introduced a bandwidth

efficient network design for GPU traffic through VC monopolization and partitioning. Ziabari et

al. [7] explored asymmetric NoC designs where the reply subnetwork is provided with larger chan-

nel width. However, ours differs because we directly reduce the heavy reply traffic exploiting data

redundancy. Hsu et al. [31] proposed a packet coalescing mechanism, but this study is applied to

request network to rearrange memory requests for enhancing row buffer hits in DRAM. It improves

DRAM bandwidth but does not reduce traffic volume in reply network as our coalescing approach.

Reducing memory requests is a promising approach to increase network bandwidth, which

eventually reduces reply network traffic. To alleviate high demand on global memory system,

an intra-warp memory coalescer [17] and an inter-warp memory coalescer (Warppool) [27] were

proposed, which has been compared to our technique. Jia et al. [28] proposed memory request

prioritization method for effective caching, but it is limited to cache-sensitive applications. Dong-

dong et al proposed a DRAM scheduler exploiting inter-core locality to reduce memory access

latency [11], which is orthogonal to our packet coalescing technique.

Data compression is the most relevant to our packet coalescing in that it directly reduces data

size. Pekhimenko et al addressed a problem of increased dynamic energy caused by frequent com-

munication switching of compressed data traffic [32]. To alleviate the off-chip memory bandwidth

bottleneck, Sathish et al applied both lossless compression and lossy compression [33]. The data

compression is complementary to our coalescing technique because ours reduce the number of
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packets, while compression mechanism reduces the size of each packet.

GPGPU performance has been improved by novel warp scheduling policies. Narasiman et

al proposed two-level scheduling that increases core utilization [34], and Jog et al proposed OWL

scheduler that improves both L1 hit rate and DRAM bandwidth utilization [35]. As a homogeneous

scheduling policy works across SMs, the inter-core locality patterns are maintained, so that the

novel schedulers with our packet coalescing can synergetically improve performance.

2.7 Conclusions

In this paper, we identify that the performance of GPGPU applications is significantly impacted

by MC bottlenecks near the MCs. To address this issue, we propose to reduce the traffic volume

in the reply network from MCs to SMs by introducing PCUs in MCs. The key idea is to coalesce

read reply packets in MCs when they deliver the same cache block to multiple SMs. To ensure

that the coalesced packets arrive at the respective requesting SMs, we support multicast for the

interconnection network. To the best of our knowledge, this is the first work showing a good

use of multicast in GPGPUs. Our extensive evaluations across a wide range of benchmarks show

that PCUs coupled with XY-YX routing obtain 15.5% AMAT reduction (up to 65.2%) and 13%

network bandwidth savings (up to 67.8%) in a large-scale GPGPU with 2D mesh, and thus improve

overall IPC by 15% (up to 112%) on average. Also, our coalescing approach achieves 7% IPC

improvement in a GPGPU with the crossbar.
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3. DUAL PATTERN COMPRESSION USING DATA-PREPROCESSING4

3.1 Introduction

GPUs have been extensively used in a variety of general purpose applications due to their

tremendous computing power. Modern applications require an even more powerful computation

capability to process a large volume of data with high throughput. The rising demands have been

satisfied by the continuing development of GPUs. In fact, an NVIDIA Fermi GPU (GTX480) [17]

released in 2010 started with 480 cores, and the recently released NVIDIA Titan-XP incorporates

3840 cores [1]. Even these GPUs are not sufficient for rapidly evolving AI applications that tackle

large datasets [37], so multiple GPUs are often used together to facilitate faster processing [38].

Thus, it is essential to design a large-scale GPU with higher degrees of parallelism.

GPUs are designed to hide long memory access time by overlapping the computation time of

active cores with the memory access time of idle cores. However, it has been well-known that

long memory latency cannot be hidden due to limited resources in memory [39], cache [40] and

network [5] [6]. As more cores are used, the network bandwidth becomes a more critical limiting

factor [4] since the network is seriously overwhelmed by excessive memory requests. Most studies

have optimized the use of network resources, adapting to unique communication patterns rather

than reducing the volume of transferred data [5] [6] [7]. To enhance network bandwidth, it is

necessary to devise a cost-effective approach that can fundamentally minimize network traffic.

Data compression is an essential approach for improving effective network bandwidth by re-

ducing packet size (i.e. payload) before being sent through a network. Several compression

schemes have been studied, but they entail limitations on their applicability to packet compres-

sion. Dictionary-based compression schemes encode data words into corresponding short codes

in a dictionary [41–43]. By compacting frequently appearing data words, they obtain high com-

pressibility but are not suitable for packet compression due to insufficient scalability, complex

4©2019 IEEE. Reprinted, with permission, from K. H. Kim, P. Devpura, A. Nayyar, A. Doolittle, K. Yum, and E.
J. Kim, Dual pattern compression using data-preprocessing for large-scale gpu architectures, 09/2019 [36]
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dictionary synchronization, and high latency overhead. On the other hand, pattern-based compres-

sion schemes encode data purely based on the occurrences of predefined patterns in the data words.

Due to their simplicity, they are inherently amenable for packet compression by reducing latency

overhead [39] [44] [45]. However, they lack compressibility for various data types (especially

floating-point and character types) and extendability to new data patterns.

In this paper, we propose a compression scheme, called Dual Pattern Compression (DPC), that

consists of data preprocessing modules and dual pattern encoders. We observe that value similarity

naturally resides in the same bit-positions across meaningful data elements of input data. Our

key idea for compression is to exploit this bit-level redundancy. For higher compressibility, the

proposed scheme starts by first utilizing data operation mechanisms, defined for three primitive

data types, which manipulate input data to artificially create more bit-level redundancy. Then, the

preprocessed data is rearranged through data remap mechanisms that create compressible patterns

by exploiting bit-level redundancy. Finally, the dual pattern encoder compresses only two patterns

(i.e. all ones or zeros) into a single bit. Our DPC shows consistently decent compressibility across

various applications by supporting data remapping and data-type-specific preprocessing. The low

latency and high compressibility of this scheme also give it the potential to be used in a variety of

compression domains.

Our contributions in this paper are summarized as follows:

• We observe that bit-level redundancy is prevalent across various applications and propose

a new dual-pattern compression mechanism that exploits the bit-level redundancy with low

latency overhead and high compressibility.

• We propose data preprocessing mechanisms that can enhance compressibility by converting

integer, floating-point and character data into new format with sufficient data redundancy.

• We address the severe network bottleneck problem of a large-scale GPU by compressing

packets with the proposed schemes, thereby achieving an IPC improvement of 33% (up to

126%) on average across various benchmarks.

• To the best of our knowledge, this is the first work that attempts to compress floating-point
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and character data types in a pattern-based compression approach. We achieved a 49%∼72%

space-savings ratio in real-world floating-point datasets and a 32%∼57% ratio in text datasets.

The remainder of this paper is organized as follows. In Section 3.2, we present the background

of compression techniques and describe the overview of our approach. Section 3.3 discusses a

basic compression scheme composed of a data remap function and a dual pattern encoder, and

we enhance the scheme by adding data operations for three data types in Section 3.4. Section 3.5

describes our evaluation methodology. We analyze the performance results in detail in Section 3.6.

Finally, we draw conclusions in Section 3.7.

3.2 Background and Approach

This section starts by summarizing prior study on hardware-based data compression. Then, we

motivate our research and describe our overall approach.

3.2.1 Hardware-Based Compression

Data compression algorithms have been applied in various domains: all levels in the memory

hierarchy, Network-On-Chip (NoC) and memory links. Several studies for data compression have

been conducted in GPU architecture for register file compression [46], cache compression [40] and

off-chip memory interface [39] [33]. Unlike these previous studies, we will explore the role of data

compression on NoC performance in GPUs.

Packet compression is a cost-effective approach for providing fast and efficient data transfer on

a NoC. Packet compression has been well-studied in Chip-Multiprocessors (CMPs) to achieve net-

work latency reduction and power savings in NoCs. Das et al. showed a packet compression based

on static compression patterns [47]. Jin et al. proposed a scalable dictionary-based compression

scheme that compresses dynamic redundancy patterns [48]. In contrast, the importance of packet

compression for advancing NoC architecture of next generation GPUs has not been studied well.

Recently, Kim et al. proposed a packet coalescing mechanism to reduce packets with inter-core

locality in GPUs [4], but data compression is orthogonal to this approach.
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3.2.2 Compression Algorithms and Motivation

Several data compression algorithms have been proposed under two major approaches: dictionary-

based and pattern-based. Now we describe the algorithms and discuss their restrictions on packet

compression. Later, we compare the key features and target domains of the compressors in Ta-

ble 3.1.

First, the dictionary-based approach maintains frequent data values in a dictionary table and

encodes the values with short codes. C-pack [43] leverages a dictionary dynamically updated with

the most frequent values. SC2 [41] maintains a dictionary where common values are associated

with variable-length codes according to the degree of their occurrence. FPH [42] is designed for

compressing 64-bit double-type data by referring to a dictionary with Huffman codes for repetitive

exponent and mantissa fields. DISH [49] effectively compacts contiguous cache blocks by sharing

a dictionary among them for a compressed cache. In this approach, the compressibility is a primary

design factor at the consequence of high de/compression latency overhead.

However, the dictionary-based compressors have fundamental limitations inappropriate for

packet compression in three aspects.

• A dictionary-based compressor is not a scalable solution for packet compression. In packet

compression, all N nodes in a network compress packets they want to send. Each receiver

node decompresses the packets coming from other N-1 nodes. To correctly restore them, a

decompressor in each receiver node needs to maintain N-1 dictionaries.

• Synchronizing dictionaries between a compressor and a decompressor requires an expensive

hardware cost. The bulk data transfer for a dictionary created at the training phase is neces-

sary from a compressor to a decompressor [41] [42] or synchronization protocols should be

introduced for dynamic dictionary update [43] [48].

• The hardware dependency on a dictionary in compressor/decompressor inherently causes seri-

alized process for each input. In particular, a compressor with long latency overhead adversely

becomes a bottleneck for next waiting packets in a highly dense network.

Second, the pattern-based compression approach encodes data matching predefined static pat-
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terns into a compressed format with low latency and decent compressibility. FPC [45] compresses

data with common value patterns including frequent zeros. BDI [44] observed that high value

locality exists among neighboring data, so it compresses them by keeping their difference (called

delta-value) against common base values. BPC [39] developed DBX transformation that increases

the run-length of repeated zeros and adopted run-length encoding for compressing data.

The pattern-based compressors are more amenable to packet compression, but the following

limitations prevent them from being an effective solution for various applications.

• They mainly work well with integer or image data, but their compressibility on floating-point

data is limited.

• Despite the rising importance of text processing applications in the area of bioinformatics and

data mining, none of the compressors deal with character data.

• The complexity of compressors for gaining high compressibility (e.g. BPC) weaken their

applicability in latency-sensitive packet compression.

Compressors Latency Comp.
Ratio

Data Type Applied
DomainInt FP Ch

Dict-
based

C-pack high high O X X CC/MLC
SC high high O X X CC

FPH high high X O X CC

Pattern-
based

FPC mid mid O X X CC/PC
BDI low mid O X X CC
BPC high high O X X MLC
DPC low/mid high O O O PC

Table 3.1: Qualitative Comparisons of Compressors (CC,MLC,PC: Cache, Memory-Link, Packet
Compression)

3.2.3 Approach

Our objective is to design a practical compression scheme that can compress multiple types of

data with low latency overhead. Figure 3.1 shows an overview of the proposed compression ap-

proach. The compression phase consists of a two-level data preprocessing module and dual pattern
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encoders. Unlike data compressors that usually exploit data redundancy inherent in data only, we

introduce data operation functions that first manipulate input data into a new form to artificially

create more data-type-specific data redundancy. The data type is identified during runtime by

hardware. Then, data remap functions reorganize the manipulated data into compression-friendly

patterns by leveraging bit-level redundancy. Finally, our proposed encoder compacts the prepro-

cessed data by finding the occurrence of two simple patterns. The simplified patterns minimize the

latency overhead of de/compression. Similarly, the decompression phase first decodes the encoded

data and then restores the decompressed data into the original form in the postprocessing phase.

Dual 
Pattern

Encoders

Compressed 

Data
Data Remap

Functions
Data Operation

Functions

Data Preprocessing

Input 

Data

Figure 3.1: Compression Flow with Data Preprocessing and Encoding

3.3 Compression Mechanisms

We first present the data preprocessing mechanism using natural data redundancy, and then we

present a simple compression algorithm.

3.3.1 Preprocessing Using Natural Data Redundancy

Data compression is a technique that encodes data into a smaller format by reducing data redun-

dancy. We briefly summarize the common data redundancy according to data types in Table 3.2.

First, for an integer type, zeros and repeated values are widely present in the variables initialized

by a program. Narrow values with frequent zeros in high-order bits also often appear when vari-

ables in a program store a value smaller than the size of a data type. Second, for a floating-point

type, redundancy exists in the sign and exponent fields across neighboring floating-point variables

when they have similar magnitude with the same sign. Pixel values are stored as either an integer
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or a floating-point type, and they tend have redundancy due to their color closeness. Third, for

a character type, the bit-level redundancy is present across characters. For instance, lower case

letters in ASCII are coded from 6116 to 7a16, so their highest three bits are consistently same as

0112. We call the inherent redundancies caused by common program behaviors or data properties

natural data redundancy in this paper.

Type Redundant Data Patterns
Integer Zeros, Repeated values, Narrow values, Pixel values

Floating-point Values with similar magnitude, Pixel values
Character Consecutive lowercases or uppercases

Table 3.2: Summary of Natural Data Redundancy

We observe that the existing pattern-based compression algorithms do not adequately eliminate

the natural data redundancy in their compressed format. Figure 3.2 illustrates the compressed data

by BDI and FPC for 32-byte (32B) pixel values (eight 4B elements) taken from an application,

Heart Wall Tracking (R.HW). For simplicity, the examples do not show the encoding pattern type

bits. BDI takes two bases: an explicit one (427016) and an implicit one (000016). Then it obtains

two 1B-delta values for each element by subtracting the two bases from high and low 2B, respec-

tively. It compresses the data by keeping the explicit base and the delta values, and we can observe

that zeros redundancy still exists in the 1B-deltas computed by the implicit base. Unlike BDI,

FPC successfully eliminates the zeros by using its supporting pattern (prefix 1002) [45]. However,

the same byte (4216), classified as Pixel values redundancy, remains in the compressed data. In

both examples, 50% of compressed data are still redundant. To gain better compressibility, it is

desirable to fully exploit the remaining data redundancy for further compression.

Preprocessing. To exploit all possible redundancy in compression, we attempt to preprocess

input data through a data remap function. We observe that input data is often composed of data

elements with a homogeneous natural redundancy type and is within a similar value range. These

data elements tend to have an identical value in the same bit position, called bit-level redundancy
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42700000 42640000 425C0000 42500000

4270 00

Input Data (Image Data)

00 F4 00 EC 00 E0 00

Compressed Data by BDI (Pattern Name: Base2-∆1)

Base (2B) 1B-∆ by encoded base 1B-∆ by implicit zero base

4270 4264 425C 4250 Encoded data

Compressed Data by FPC (Pattern Prefix: 1002)

42440000 42640000 42440000 423C0000

E6 00 F4 00 E6 00 CC 00

4244 4264 4244 423C

Figure 3.2: Illustration of Data Redundancy Remaining in Compressed Data by BDI and FPC

in this paper. The sequence of bit-values at the same bit position is called a bit-plane in the image

processing domain, which has been widely used for compressing an image in a lossy or loss-

less way [50]. This approach has been taken in an architectural compressor, BPC through DBX

transformation. Unlike these approaches, we found that the values on the bit-planes are directly ex-

ploitable for compression because consecutive zeros or ones are prevalent in the bit-planes, taking

37% of a cache block on average.

The data remap function statically reorganizes input data as a sequence of the segments that

group each bit at the same bit position across different data elements of a cache block. Therefore,

we create segments with two compressible patterns, consecutive zeros or ones, which will be

shortened by our proposed compression algorithms. Figure 3.3 illustrates an example of a data

remap function that rearranges the input data of Figure 3.2. For simplicity, we show an example of

the data remapping for an input data of 32B. The data remap function creates a byte by grouping

the bit-values at the position from 1 to 32 individually. For instance, the most-significant-bits

(MSBs) from eight elements form 0016. The final remapped data have the total compressible data

of 27B. As a result, unlike BDI and FPC, all redundancies can be considered for compression due

to the data remap function.

Postprocessing. The rearranged bits are restored into an original form in the postprocessing.

The remap function relocates each bit j in each bit-plane i to the ith bit-location of the jth element.
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3.3.2 Compression/Decompression Algorithms

Our dual pattern compression algorithm takes remapped data (128B) as an input, decomposes

it into 32 segments (4B granularity), and compresses it on a segment-by-segment basis. A segment

is compressed into an encoded data and an encoding status bit. The encoded data stores a single bit,

zero or one, if a segment matches consecutive zeros or ones (00..0016 or ff..ff16), respectively.

Otherwise, it stores the original 4B value of the segment. The encoding status bit records if each

segment is compressed or not by storing one or zero, respectively. For a given input data, the

algorithm produces a compressed output represented as a compression flag (C), a sequence of

encoding status (ES), and a sequence of encoded data (ED). The compression flag is used to

distinguish if the output is compressed (1) or not (0). A compression example for the remapped

data in the previous section is depicted in Figure 3.3.

The decompression algorithm is also straightforward. If the compression flag of input data

is set to zero, it produces the remaining data without the flag as an output. Otherwise, it starts

decompressing a segment by checking the corresponding encoding status bit. If the encoding status

is one, a segment is recovered as 4B consecutive zeros or ones according to its encoded data (zero

or one). Otherwise, the segment is restored as its 4B encoded data. All the segments are restored

in the same manner. The restored data is converted to the original data after postprocessing.

3.4 Data Operation Mechanisms

The compressor assisted by the data remap function only shows limited compressibility when

the datasets have low natural data redundancy. To consistently gain high compressibility across

diverse applications, we extend the scheme by introducing the data operation mechanisms for

three data types.

3.4.1 Floating-Point Data

The common data redundancy in floating-point datasets is rarely found except for two represen-

tative datasets with image/video data and a small set of redundant floating-point data. Our proposed

DPC algorithm, as already discussed, effectively compresses image/video data by exploiting their
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0 1 0 0 0 0 1 0 0 1 1 1 … 0 0 0

0 1 0 0 0 0 1 0 0 1 1 0 … 0 0 0

0 1 0 0 0 0 1 0 0 1 0 1 … 0 0 0

0 1 0 0 0 0 1 0 0 1 0 1 … 0 0 0

0 1 0 0 0 0 1 0 0 1 0 0 … 0 0 0

0 1 0 0 0 0 1 0 0 1 0 0 … 0 0 0

0 1 0 0 0 0 1 0 0 1 0 0 … 0 0 0

0 1 0 0 0 0 1 0 0 0 1 1 … 0 0 0

MSB LSB

Bit Values

Input Data (32B)

42700000
42640000
425C0000
42500000
42440000
42400000
42440000
423C0000

≡

00 ff 00 00 00 00 ff 00 00 fe c1 b1 2b 6b 00 …. 00
Remapped Data (32B)

compressible patterns

18 zeros

Remapping for bits 
at 32th positions

Compressed Data

Data 
Remap

Encoding

0100001002 fec1b12b6b 0…02111111111000001…121

C Encoded Data (ED)Encoding Status (ES)

Figure 3.3: Example of Data Remap Function and Compression

natural data redundancy. FPH deals with the datasets where a small set of floating data repeat by

using Huffmann-based dictionary [42], although it is not suitable for latency-sensitive applications

due to its long latency (See our evaluation).

Unlike these datasets, we observe that the short floating-point (SFP) values with a small in-

teger and a fraction with limited digits often appear in the real-world datasets of data mining and

finance applications (e.g. 12.4 meters and $127.25). It is because real-world measurement data

(e.g. speed, weight, length, area) and finance data (e.g. currency) do not need full precision. To

compress such floating-point data with high compressibility, lossy compression is taken as an al-

ternative [33], but it is highly risky for finance data because a minor error can cause catastrophic

financial loss. Thus, it is essential to find a way of compressing SFP values losslessly.

Preprocessing. The data redundancy among SFPs is seldom exhibited under IEEE-754 stan-

dard. To create compressible patterns, we introduce a floating-point representation conversion

function that converts an IEEE-754 standard into a new representation composed of a 1-bit sign

field (s), a 23-bit integer part (di) based on a binary code, and a 8-bit fractional part (df ) based
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on a binary-coded-decimal (BCD) code. This representation helps to create frequent zeros in the

integer part, while packing the fractional part losslessly. For example, 12.40 and 127.25, which

are encoded as 4146666616 and 42fe851f16 under IEEE-754 representation, are transformed into

00000C.40 and 00007f.25 which now become a good target for our compressor.

The representation conversion is carried out by decomposing an IEEE-754 input data into a

sign bit, a binary integer and a binary fraction after denormalization, encoding the binary fraction

to BCD, and finally concatenating the sign bit, the binary integer and the BCD fraction. How-

ever, it is challenging to design the encoding hardware from a binary fraction to a BCD fraction

with low latency since it requires a sequential process. In the previous example, a binary fraction

0.011001100110011001102 should be transformed to be 0.4016. Thus, we exploit a lookup table

where 10-bit binary values are associated with the respective BCD code. Our exhaustive analysis

for all numbers in the scope of SFP shows that the high 10-bits in the binary fraction after de-

normalization are sufficient to distinguish all different cases. The preprocessed data created by

this conversion is considered for compression if an input data stores a SFP value and is ignored,

otherwise (e.g. very large di ≥ 224).

Runtime SFP Detection. Another important challenge is how to detect if an input data stores a

SFP value. One way is to rely on programmers’ annotation on SFP-typed data, which can weaken

practicality. Thus, we propose a runtime SFP detection mechanism that examines if the SFP format

obtained after the representation conversion can be recoverable to an original IEEE-754 input data

by testing the validity of integer and fraction parts.

The SFP detection mechanism works as follows. First, it checks if an IEEE-754 input data has

a small integer value enough to be encoded in an integer part (di) of a SFP format. A SFP-typed

data stores a value from 120 to 140 in the exponent field (e), which corresponds to the exponent

range of SFP values from the minimum (0.01) to the maximum (9999.99). Second, the mechanism

verifies if the BCD fraction (df ) of a SFP format recovers the binary fraction decomposed from an

IEEE-754 input data. The binary fraction of a SFP-typed data is exhibited as a substream of the

binary fraction reversely encoded from the BCD fraction. The algorithm for encoding the BCD
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fraction (i.e. decimal fraction) to a binary one is straightforward [51] but requires a nontrivial

latency overhead in its directly mapped hardware. To address this issue, the detector also uses the

lookup table that associates a BCD code with a pregenerated 31-bit stream, which is necessary for

the worst case (i.e. 0.01) that has a 31-bit binary fraction after its IEEE-754 format is decomposed.

dis

Denormalization

Decomposition

000000000000000000011000

Concatenation
0…1100

0..01100 . 0110011001100110011…

df

01000000

0

00000000002
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01100110012 4016
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Figure 3.4: Data Operation for Short Floating-Point Data (e.g. 12.4)

Figure 3.4 illustrates the detailed steps of our conversion function and SFP detection with

an example of 12.4 (4146666616 in IEEE-754 format). First, in the conversion process ( A ), an

input data is separated into a binary integer part (orange color) and a binary fraction part (green

color) after denormalization. The BCD-code, 4016 is obtained by searching high 10 bits of the

binary fraction (01100110012) in Bin2BCD table. Finally, the sign bit (0), the binary integer part

(00..11002) and the BCD fraction part (010000002) are concatenated to create a new representation.

Second, in the detection process ( B ), the exponent field of an input (100000102) is confirmed to

be between 120 and 140. Also, the 31-bit stream in BCD2Bin table associated with the BCD-code,

4016 is verified to include a binary fraction part (green color).
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Postprocessing. We restore the decimal floating-point representation to IEEE-754 format with-

out loss. First, the function separates the integer value and fraction BCD based on their fixed

positions. Second, the function converts the BCD into binary format, which follows the same pro-

cess described in the SFP detection process. Third, the binary value concatenating the integer and

fraction part is normalized to IEEE-754 format.

3.4.2 Character Data

Semantically meaningful character words (e.g. English words) have variable lengths unlike

numerical data with a fixed size per type. While software-level text compressors readily compress

them due to abundant resource and looser latency constraint, it is not trivial to design an architec-

tural compressor for the variable-length words. Our survey shows that a good range of modern ap-

plications such as bioinformatics and data mining often use text datasets such as a small-character

style (e.g. DNA and Protein data) and a word-based style (i.e. bag-of-word), while others use

a sentence-based style (e.g. natural language). In this paper, we aim to design an architectural

compressor mainly targeting the first two types.

Preprocessing. Our compression approach for character data exploits the bit-level redundancy

across 1B characters. A bag-of-word style datasets usually store a sequence of words with low-

ercase characters. The bit-level redundancy across them naturally exist in the three highest bits,

since ASCII table assigns sequential code for them. However, since control characters such as

null (0016), tab(0916), line feed (0a16), carriage return (0d16) and white space (2016) often coexist

between the words so that it interferes with creating the bit-level redundancy.

To seamlessly create the bit-level redundancy, we introduce a code conversion function that

converts the frequently used interfering code into the rarely used lowercase and vice versa. We

define a static code table with five one-to-one mappings from the interfering codes to (6016, 7b16,

7c16, 7d16, 7e16), respectively. Also, five reverse mappings are added to allow reciprocal transfor-

mation for avoiding the aliasing between transformed data and same real data. For instance, real

data ’00’ is transformed to ‘60’ code, and real data ‘60’ is transformed to ’00’ code. If a given input

character has no matching, the function skips the conversion by directly using the input character
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as an output. A detailed example about the code conversion as well as the data remapping for a

data from String Match (M.SM), “tee\r\n\0te” is illustrated in Figure 3.5.

Postprocessing. The postprocessing function for character data maintains the same code table

shown in Figure 3.5. Thus, it restores an original data by performing the code conversion operation

in the same manner.
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Figure 3.5: Example of Data Preprocessing for Character Data

Dynamic Code Conversion. When text datasets use a small number of alphabets only, the

code conversion function replaces the alphabets with sequential codes to increase the bit-level

redundancy. For instance, in a DNA sequence dataset, A (4116), C (4316), G (4716), and T (5416)

are transformed into 0116 to 0416, respectively. Then, as every character has zeros in the five

higher-order bits, 62% of an input cache block becomes compressible.

To support this conversion, we introduce a runtime code detector. The detector examines M

input characters (e.g. 1024 characters) on execution of an application and stores unique characters

in a dynamic code table that stores the mappings from characters to sequential codes and their

reverse mappings, similarly to a static table in Figure 3.5. If the number of collected characters is
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Figure 3.6: Compression Pipeline for a 128B Cache Block

not more than the maximum number of characters (e.g. 8), the code conversion function switches

to use the dynamic table and otherwise, the static table.

3.4.3 Integer Data

Applications often use negative integers with small magnitude that have frequent leading ones

due to their two’s complement representations. When they are coexist with positive integers in a

cache block, our data remap function cannot create compressible patterns (i.e. consecutive zeros

or ones). We address this problem by introducing bitwise exclusive-OR (XOR) function that

transforms a negative integer to have frequent zeros, while keeping a positive integer having its

leading zeros as it is. Given an integer (bit31, .. , bit0), the function in the preprocessing side

creates a new integer (bit′31, .. bit′0) by performing biti+1

⊕
biti for a new bit′i and directly using

bit31 as a new MSB (bit′31). Reversely, the postprocessing function recovers the preprocessed data

element back into an original one by converting an input biti to bit′i
⊕

recovered bit′i+1 and using

bit′31 to bit31.

3.4.4 Data Selector

So far we have discussed three data operation functions per data type that preprocesses an input

data to have more bit-level redundancy. To allow our dual pattern encoders to proceed compression,

data selector chooses one of different preprocessed data or an original data by verifying which

one has the most compressible patterns. In this manner, the integer and character type data are

implicitly classified. As discussed in Section 3.4.1, the preprocessed SFP data is considered by
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the data selector only when an input data is verified as SFP type by SFP detector. An original

input data can have more compressible patterns, although the remapped data often does in most

benchmarks. For instance, a benchmark, R.KM, uses a dataset with frequent zeros and a few

non-zeros. The ones in the non-zeros hinder the data remap function from creating compressible

patterns, while the zeros in the original data is directly compressible. While the selected data is

compressed by dual pattern encoders, its data type is encoded in the header of a compressed data

to help the postprocessing side to recover the original data accurately.

3.4.5 Hardware Design and Cost

We implement our DPC compression and decompression schemes as a fully-pipelined mod-

ule. Figure 3.6 illustrates a four-stage compression pipeline that compresses a 128B cache block.

The data preprocessing functions are designed through the first two stages, as discussed in Sec-

tion 3.3.1, 3.4.1, 3.4.2, 3.4.3. The dual pattern compression is implemented in the next two stages.

32 dual pattern encoders compact the respective 4B data segment of the preprocessed data in par-

allel as described in Section 3.3.2. The encoded outputs (i.e. status and data) are concatenated

hierarchically. Due to the simplicity of dual patterns, the concatenation logic is implemented with

low latency overhead.

We synthesize our designs using Synopsys Design Vision [52] with 45nm TSMC standard cell

library [53] at 1.4 GHz. A 35% margin of the clock period is used to model uncertainties and wire-

load delays. DPC has 2 cycles for the compression: one cycle for both dual-pattern encoding and

data remapping part and one cycle for concatenation logic. DA-DPC extends DPC with prepro-

cessing logic and a data selector, which needs two more cycles, so its total compression latency is

4 cycles. The decompression latencies for DPC and DA-DPC are 2 and 3 cycles, respectively. The

overall area for DPC and DA-DPC compressors is 43250 µm2 and 118749 µm2 respectively, which

are roughly equivalent to 60K and 164K 2-input NAND gates, respectively. The area overhead of

the runtime code detector is 9339 µm2. 8 compressors and 56 decompressors are integrated, so the

area overhead caused by DPC and DA-DPC versions is just 0.07% and 0.3% against the overall

GPU area [54], respectively.
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3.5 Evaluation Methodology

Since compression is a fundamental technique that is not architecture-dependent, it can be

applied to diverse domains. We choose the packet compression on a NoC of a GPU as a case

study to show the effectiveness of a DPC-like compressor that strikes a good balance between

compression latency and compressibility. Moreover, using packet compressors/decompressors in a

network interface (NI) as a plugin module is practical. We first describe the reason why the packet

compression is crucial in a GPU. Then we explain how to integrate compressors with the GPU.

Finally we detail our evaluation methodologies.

3.5.1 Network Bottleneck in a GPU

A GPU is composed of streaming multiprocessors (SMs) and MCs that are connected with

each other through a NoC. For effective memory accesses, each SM uses cache memories: L1 data

cache (L1D), constant cache (L1C), texture cache (L1T) as well as a shared memory. Each MC

is also coupled with an L2 cache. For the NoC, we use a 2D mesh topology due to its scalability,

simplicity and regularity [4–6]. To prevent a protocol deadlock, we build a single network with two

separate virtual channels (VCs) for the request network from SMs to MCs and the reply network

from MCs to SMs. The detailed configurations are summarized in Table 4.1.

A large-scale GPU system has been designed in two directions collaboratively. Multi-GPUs

(e.g. Tesla-P100) are utilized as a good time-to-market strategy keeping up with fast growing

emerging applications. The scaling up for a single GPU has been also performed. The initial GPU

model, NVIDIA Fermi with 15 SMs has been evolved as the most recent NVIDIA Titan-XP with

30 SMs. However, the current GPU relies on a crossbar with a fundamental limit on scalability,

and thus how to design a scalable and practical interconnect for a large-scale GPU is still an open

question.

As a key research problem, we observe that a severe reply network congestion takes place in a

large-scale GPU due to a heavy volume of packets as studied in prior work [4–6]. Figure 3.7 shows

MC stall time ratio, the ratio of the time that MCs stall out of the total execution time across 30
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System Parameters Details
Shader Core 56 SMs, 1.4Ghz, GTO Scheduler
L1 Cache L1I(2KB), L1D(16KB), L1T(12KB), L1C(8KB)
L2 Cache 1024KB
Interconnect 8 x 8 Mesh, 1.4Ghz, 2-Cycle Router
Virtual Channel 4 VCs per Port (8-Flit Buffer)
Routing Dimension-Order Routing (XY)
Flow Control Wormhole, Credit-based
Channel Width 128 bits
MC Placement Diamond [5]
Memory Model 8 MCs, 924 Mhz, FR-FCFS scheduling
Min L2, DRAM latency 120, 220 cycles

Table 3.3: GPU Configuration Parameters

benchmarks (see details about benchmarks in Section 3.5.3). We measure the MC stall time when

MCs cannot inject new reply packets due to nearby NI input buffers being full. MCs stall 47%

out of the entire simulation time on average across 30 benchmarks. This problem is caused by the

overwhelming memory requests from many SMs. We also observe 32% of MC stall ratio even in

NVIDIA Fermi with a crossbar (See Section 3.6.5). Therefore, we apply the packet compression

to the reply network as a fundamental solution that mitigates the network congestion regardless of

underlying NoC topologies.
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3.5.2 GPU with Packet Compressors

Figure 3.8 illustrates a GPU architecture where compressors and decompressors are integrated

into an MC NI and an SM NI, respectively. SMs access data from memory through four different

types of memory requests depending on their associated cache memories: global, local, texture,

constant memory. The packet compression only targets the global and texture accesses which rep-

resent the majority of reply memory traffic. To hide compression latency overhead, a compression

queue is introduced after a compressor as illustrated in Figure 3.8. The MC reply queue is set to

hold eight replies in the baseline. To keep the same area budget, the MC reply queue and the com-

pression queue are set to store four replies, each. The decompression side is also designed in the

same manner. Other replies, such as incompressible write replies and instruction replies, bypass

both compression and decompression pipelines to obviate unnecessary latency overhead.
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3.5.3 Methodology

Our DPC scheme is implemented in a cycle-accurate GPU simulator, GPGPU-Sim 3.2.2 [12].

We evaluated two versions of our compressors: DPC that uses a data remap function and dual

pattern encoders only (Section 3.3), and data-type-aware-DPC (DA-DPC) that integrates three

data operation functions on top of DPC (Section 3.4).

We compare our compression techniques to four closely related compressors: BDI, FPC, BPC

and FPH. We simulated them based on the latency overhead reported in their literature. The com-

pression/decompression latencies of BDI, FPC, BPC and FPH are 2/1, 3/5, 7/11 and 8/20 cycles,

respectively. Note that the latency overhead of BPC was obtained at 800 Mhz, but we optimistically

take it even though a GPU operates at 1.4 GHz. We also optimistically measure the compression

latency for FPH based on CACTI 7.0 [26], excluding the concatenation time. The statistics about

repeated words are collected over 20M instructions. The mantissa field is divided into 10-bit and

13-bit for Mantissa-High and Mantissa-Low, respectively and VFT tables of 256 entries are used.

We evaluate a complete set of CUDA applications from the Rodinia [13] and Mars [14] bench-

mark suite, and Black Schole (N.BS) from CUDA SDK [55]. We abbreviate the benchmarks of

Rodinia and Mars by appending their respective prefix R and M to the original abbreviations used
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in their literature. We measure the system performance as instruction per cycle (IPC) and the com-

pression performance as the space savings ratio defined as (1− compressed size
uncompressed size)×100. To collect the

performance results, we run the benchmarks to the end or until they reach one billion instructions.

To evaluate the compression performance, datasets should be carefully selected. We first use

the datasets of the benchmark suites. To get a deeper insight about the compressibility, we also

use real-world datasets from a variety of fields: floating-point datasets (Ecoli/Hepatitis/Iris [56],

Enb2012 [57], Forest [58], Nsl-kdd [59] and Sales [60]) and text datasets (Amazon/Nysk/NIPS [56],

Tweet [61], Email [62], SentAnal [63], Ngrams [64], URL [65], Proteins/DNA [66], Para [67] and

Chr1 [68]).

3.6 Evaluation

We evaluate the effects of six compression schemes on IPC performance and their compression

performance in a large-scale GPU using 2DMesh. Then, we analyze the effectiveness of our data-

type-aware preprocessing and the energy-savings in a NoC achieved by our scheme. Last, we

analyze the effectiveness of our packet compression in GPU with a crossbar.

3.6.1 Effect on IPC Performance

Figure 3.9 (a) shows the normalized IPC when different compressors are used. Each IPC value

is normalized against the baseline with no packet compression. We make three conclusions.

First, a full-fledged compressor, DA-DPC achieves a noticeable improvement by 34% on av-

erage compared to other compressors, DPC, BDI, FPC and BPC that obtain 26%, 13%, 16% and

11%, respectively. The improvement of DA-DPC is correlated to a good balance between its high-

est average space savings ratio, 47% and its low latency overhead. The compressed packets result

in directly reducing in-flight flits and eventually mitigate the network bottleneck, which is sup-

ported by a MC stall time reduction in Figure 3.7. The average MC stall time ratio is reduced from

47% in the baseline to 25% and 16% with DPC and DA-DPC, respectively.

Second, our light-version compressor, DPC achieves higher IPC performance than BDI and

FPC; The IPC improvements of DPC, BDI and FPC are 25%, 12% and 15%, respectively. It is
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because DPC exhibits high compressibility across broader applications consistently due to the data

remap function, while BDI and FPC show biased good compressibility toward some applications.

We also observe that DPC is even better than the hybrid compressor (BDI+FPC) choosing the

best performing one between BDI and FPC per benchmark that achieves 20% IPC improvement.

This result implies that DPC with low latency overhead is a good candidate for latency-sensitive

domains where either BDI or FPC are often adopted.

Third, BPC and FPH are not suitable for packet compression due to the latency overhead caused

by complex compressor design. BPC, as reported, gains higher space savings ratio than BDI and

FPC but shows worse performance improvement. FPH stands in stark contrast to other compressors

by adversely degrading the overall performance by 9% due to its low space savings ratio at the

expense of high latency overhead.

3.6.2 Compression Performance Analysis

Now we discuss the detailed compression performance per data type. Figure 3.9 (b) compares

the space savings ratios among the evaluated compressors across all benchmarks. We categorize the

benchmarks into three groups according to their dominant data types. The average space savings

ratio for each group is plotted as well as the average ratio for all cases. In this analysis, we make

three conclusions.

First, DA-DPC and BPC achieve the highest space savings ratio in integer data oriented bench-

marks, around 60%, while DPC, BDI, FPC and FPH achieve 46%, 43%, 43% and 22%, respec-

tively. DA-DPC also achieves high compressibility, and its improvement from DPC is due to

preprocessing for negative integers. For instance, DPC achieves 4% space savings ratio in R.NW,

while DA-DPC does 74%. BPC shows comparable compressibility, but it does not effectively

improve IPC performance due to its overhead as discussed in Section 3.6.1.

Second, DA-DPC outperforms other compressors in floating-point data oriented benchmarks

by achieving, 47% space savings ratio on average, while BPC, DPC, FPH, FPC, and BDI achieve

38%, 33%, 23%, 19%, and 17%, respectively. Six benchmarks, R.LC, R.GE, R.KM, R.LMD,

R.NN and R.MM have SFP data. For example, the space savings ratios for R.NN and R.GE are
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improved from 6% to 80% and from 2% to 29%, respectively by SFP preprocessing. In R.KM,

FPC makes an exception by outperforming DA-DPC by 6% since the dataset (KDD_CUP) has

highly skewed zeros. FPH, originally designed for floating-point data, shows high performance for

benchmarks using dominant floating-point data as expected, but the benchmarks rarely gain IPC

improvement due to the latency overhead of FPH.

Third, DA-DPC and FPH are the most effective in character oriented benchmarks. They

achieve an average space savings ratio 22%, while BDI, FPC, BPC and DPC do 1%, 10%, 5%, and

10%, respectively. Five benchmarks, R.MUM, M.II, M.PVC, M.SM and M.WC have the memory

requests about character data by 16%, 95%, 76%, 99% and 91% of all compressible memory re-

quests, respectively. Their space savings ratios for character data only are 52%, 14%, 16%, 26%

and 13%, respectively. R.MUM achieves better performance due to its dataset using a small num-

ber of alphabets. Interestingly, FPH, designed for floating-point, compresses character data quite

well since the value locality of character data is exhibited in the locations of float-point subfields.

3.6.3 Impact of Preprocessing on Compression

To get more insights on the impact of our preprocessing operations, we evaluate the compres-

sion performance with various real-world and synthetic datasets involving short floating-point and

character data. The six-different synthetic datasets of SFP values are denoted as IxFy where x and

y are the number of digits in the integer and fraction parts, respectively.

Figure 3.10 shows that DA-DPC achieves 59% space savings ratio on average in R.KM (Kmeans)

in all groups of data, while FPH and BPC are limited to 45% and 19%, respectively. For the short

floating-point patterns, DA-DPC is more effective due to its low encoding overhead. FPH works

effectively when a small number of floating-point data values frequently appear. We have opti-

mistically evaluated FPH by excluding its zero-compression ratio during the training phase. DPC

achieves 12% space savings ratio on average since it compresses the natural redundancy of the

exponent field only. BDI and FPC also show low space savings ratios, 1% and 13%, respectively.

Figure 3.11 shows the space savings ratio in M.SM using 12 datasets. The compression perfor-

mance is characterized by three groups of datasets with different alphabet sizes as follows. First,

50



0
10
20
30
40
50
60
70
80

S
p

a
c
e
 S

a
v

in
g

s
 R

a
ti

o
 

BPC
FPH
DPC
DA-DPC

Group 1 Group 2 Group 3 Group 4

Figure 3.10: Effects of Floating-Point Data Operation in R.KM With 7 Real-World Text Datasets
and 6 Synthetic Datasets

DA-DPC with the runtime code detection (See +CodeDet) obtains 31%∼57% space savings ratio

in the datasets with 4∼20 alphabets (Group 1), while it obtains 20%∼36% space savings ratios

without the code detection (See DA-DPC). Second, DA-DPC gains around 32% in bag-of-words

datasets (Group 2). The effectiveness of the code conversion function is clearly presented in that

DA-DPC shows better performance than DA-DPC without code conversion (-CodeConv). Third,

DA-DPC achieves 13%∼18% space savings ratio in the natural language dataset with a larger

number of alphabet (Group 3), which is out of scope in this paper, and we leave further improve-

ment on this scope as our future work. BPC as well as BDI and FPC rarely compress character

data.
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3.6.4 Energy Analysis

In this section we provide an analysis on the energy savings when our proposed techniques are

adopted in a GPU. We first measure the energy cost of our synthesized compression and decom-

pression schemes. DPC requires 0.046 nJ and 0.029 nJ for compressing and decompressing a cache

block, respectively. DA-DPC needs 0.23 nJ for compression and 0.103 nJ for decompression. Es-

pecially, our DPC shows 4x and 2x better energy efficiency in compression and decompression

than BDI [40] commonly accepted as the lightest compressor.

Next, we evaluate the energy consumption in a NoC by integrating DSENT [30] in GPGPU-

Sim and including the energy costs of DPC and DA-DPC. Figure 3.12 shows the normalized dy-

namic and static energy costs of baseline, DPC and DA-DPC. In each benchmark, an energy cost

52



is normalized against the total energy consumption of its baseline. DA-DPC achieves 21% (up

to 53%) total energy savings on 2DMesh by reducing both in-flight flits by 38% and the total

execution time by 23% on average. DPC also achieves 18% energy-savings.

3.6.5 Packet Compression under Crossbar

We observe that the bottleneck consistently appears in a GPU with a crossbar. Figure 3.13a

shows that NVIDIA Fermi suffers from 32% MC stall ratio on average across all benchmarks

(AV G.all), even though it is a small-scale GPU with 15 SMs. Especially, network-bandwidth

sensitive applications ranging from M.II to R.KM, exhibit high stall ratio 56% (up to 82%) on

average (AV G.ns) due to their high memory intensity (e.g. R.KM, R.LC, R.MUM, and R.CFD),

irregular memory access patterns (e.g. R.GE and R.BFS) and map-reduce operations (e.g. M.SS,

M.PVC and M.PVR). Although the crossbar is featured by high bandwidth, a number of reply data,

generated by bursty and frequent memory requests from SMs, create a bottleneck state in the

NIs and contentions in the network. This implies that the bottleneck stems from the architectural

characteristics of GPUs that execute many threads simultaneously.

Figure 3.13b shows the normalized IPC when DPC and DA-DPC are adopted in NVIDIA

Fermi. Our DA-DPC effectively addresses the bottleneck problem, thereby accomplishing 23%

(up to 64%) IPC improvement for the network-bandwidth sensitive benchmarks (GM.ns). The

bottleneck is relieved due to the reduced data volume, which is explained by MC stall time ratio

reduction from 56% in the baseline to 26% (AV G.ns) as shown in Figure 3.13a. Similarly, our

DPC also effectively achieves 19% IPC improvement (up to 64%).

3.7 Conclusions

In this paper, we present a simple but effective DPC compression scheme with data prepro-

cessing capability. We observe that the bit-level redundancy naturally exists in cache blocks across

various applications. Our DPC scheme preprocesses a cache block to artificially create more bit-

level redundancy for three primitive data types. Then, our scheme creates two frequent patterns

by transposing the preprocessed cache block in a bit-wise manner and compresses them into a
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single bit. Our evaluation shows that DPC scheme effectively improves the network bandwidth of

a highly congested NoC in a large-scale GPU by achieving 47% average space savings ratios and

33% IPC improvement across a number of benchmarks. Hence, we conclude that DPC is an effec-

tive compression scheme for a variety of compression domains due to its low latency overhead and

high compressibility, and we believe that DPC can serve as a versatile compressor by extending

data preprocessing layers as per applications.
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4. ENERGY-EFFICIENT CNN INFERENCE EXPLOITING FEATURE CRITICALITY

4.1 Introduction

The emerging paradigm of the Internet of Things (IoT) recently penetrates many diverse areas

of our daily lives. One of the widely-recognized areas is wearable computing systems for hu-

man activity recognition (HAR) adopted in many domains such as healthcare [69], home behavior

analysis [70] and smart home [71]. Human activities are identified based on the signals collected

from on-body sensors which are practically more preferable than cameras due to their properties

such as privacy-preservation, power-efficiency and wide use in popular IoT devices (e.g. smart-

watch) [72]. The sophisticated data analysis on the time series data from the sensors is a key factor

in the success of HAR.

Nowadays, HAR leverages a convolutional neural network (CNN) as an inference method due

to its state-of-the-art prediction quality [72]. Unlike traditional machine learning techniques that

often rely on handcrafted and domain-specific low-level features (e.g. statistical information),

CNNs achieve high-quality prediction by exploiting internally extracted high-level features essen-

tial for identifying complex activities. However, the feature extraction requires heavy computa-

tions in CNNs (e.g. convolution operation), inevitably leading to high energy expenditure, which

is undesirable for the IoT devices with a limited energy source [72].

To support an energy-efficient inference, we design an early-prediction-based CNN architec-

ture that performs classification by selectively exploiting different levels of features according to

the difficulty of input instances. The low-level features extracted at an earlier convolutional layer

are sufficient for easy input instances, while the high-level features at later convolutional layers are

essential for difficult ones. Therefore, unlike a CNN that typically makes a final prediction with the

features from the last feature extraction layer, the early-prediction-based CNN completes a final

prediction at different levels of feature extraction layers depending on inputs through a classifier

added at each layer. For any given input instance, if a classifier at a layer produces a confident
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prediction result, the inference ends with the result. Otherwise, a classifier at the next layer takes

over the inference. In this manner, the inference is attempted in the order of layers until the last

layer is reached.

There are three difficulties in designing an early-prediction-based CNN architecture. First,

it is challenging to improve the power-efficiency of a general classification task at each layer.

The previous proposals focused on constructing an early classifier by exploiting all possible fea-

tures [73] [74], but our goal is to use critical features only to reduce unnecessary computation

cost. To construct a powerful early classifier, how to choose a good combination of critical fea-

tures among numerous candidates becomes a key challenge. Second, it is also difficult to determine

whether or not the prediction result at a certain layer is confident enough to terminate an inference

early. Typically, the confidence level is measured by a classifier during runtime, which is compared

against a user-defined threshold found manually offline [73] [74]. However, to choose the best clas-

sifier among many candidates each coupled with different set of critical features, it is essentially

required to automatically find the threshold level for each candidate. Third, it becomes even more

difficult to address the above two challenges in the context of constructing early classifiers for

multiple layers which interdependently affect the performance of the early prediction network. It

is essential to strike a good balance among the early classifiers, which globally maximizes the

inference energy-efficiency without a large accuracy drop compared to an original CNN.

To guide the design of an energy-efficient early-prediction network, we propose the optimiza-

tion methodology that determines three key information per layer based on a genetic algorithm:

a feature subspace, critical features, and a confidence threshold. We define a feature subspace

per layer with a subset of an output feature map. We adopt gradient boosting trees (GBTs) as

an early classifier where trees are incrementally constructed based on critical features within the

feature subspace. A genetic algorithm searches for the least feature subspace, determines critical

features by choosing the best size of GBTs, and finds the best confidence threshold. We evaluate

our proposal by implementing an inference engine based on low energy design principles. The

result shows that we achieve 77% energy-savings with 0.003 accuracy loss on average in six HAR
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benchmarks.

4.2 Background and Motivation

4.2.1 System Overview

In this paper, we propose a CNN-based network that facilitates early predictions with crit-

ical features for energy-efficient classification as illustrated in Figure 4.1. We build our pro-

posed network by augmenting the baseline CNN comprising three repetitions of a stack of a 1D-

convolutional layer and a maxpooling layer for feature extraction, followed by a single-layered

fully-connected network. Initially, the baseline CNN is trained to completion. The proposed net-

work redesigns the feature extraction layers into more power-efficient layers by reducing the input

dimension for each layer (i.e. an output dimension of a previous layer), that is called a feature

subspace. As a result, the computation load per layer is reduced. Unlike the weight pruning [75],

we adopt the trained filters of convolutional layers in the baseline as it is. Moreover, our network

introduces a gradient boosting tree (GBT)-classifier at every feature extraction layer, so it performs

an early prediction by exploiting critical features in a feature subspace. The early prediction pro-

cess produces not only a predicted class (hard-label) but also a confidence level (soft-label). The

prediction processes in six layers are sequentially executed by an early prediction controller. If the

predicted class is confident enough at a certain layer, an inference ends, skipping the processes in

the remaining layers. Otherwise, an early prediction process in the next layer is activated. The

hyperparameters (e.g. tree size) necessary to configure our network are found through our offline

optimization method based on a genetic algorithm.

4.2.2 Motivation

To see the feasibility of the early prediction with critical features, we conduct a motivation

study by evaluating the accuracy of the GBT-classifier as varying the number of trees (1∼200)

in all layers and measure the ratio of features used by each GBT-classifier among all features in

ADL-S benchmark. Given a set of features (i.e. featuremap) as input, a gradient boosting method

constructs trees by choosing discriminative features first where a feature corresponds to each scalar
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Figure 4.1: Illustration of a 1D-convolutional network coupled with GBTs exploiting critical fea-
tures for early predictions

data of a featuremap. (See the detailed configuration in Section 4.5.1).

In this study, we made two key observations. First, the classifications at different layers reach

the best achievable layerwise accuracy without using all input features. When a gradient boosting

method adds more trees, some new features can be chosen or some previously selected features

are reused. As shown in Figure 4.2(b), the ratio of used features increases but becomes saturated

as the number of trees increases. Likewise, the accuracy improvement according to the number of

trees follows the same trend as shown in Figure 4.2(a). When a GBT-classifier uses the maximum

number of trees, 70%, 84%, 65%, 74%, 74% and 86% of features are used in conv1, pool1, conv2,

pool2, conv3 and pool3, respectively. Second, low-level features are discriminative enough to

perform accurate predictions for a good range of inputs without relying on the high-level features

at the last layer. This is derived from the best achievable accuracy difference (9%) between the

first layer and the last layer in Figure 4.2(a).

To understand the actual contribution of features to classification, we evaluate the feature crit-

icality with the maximum GBTs (i.e. 200). The feature criticality (Fscore) is measured based on

the number of times that each feature is used to split nodes in a decision tree. Figure 4.3 shows the

distribution of features according to their criticality in ADL-S where the criticality range is evenly
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Figure 4.2: Accuracy and the ratio of used features in a featuremap according to tree numbers

divided into ten bins denoted from C0 to C9. C0 is the group of features that are never chosen for

the decision trees, whereas C9 is a group of the most critical features that are frequently selected.

The result shows that reasonably good accuracy at each layer is achieved even though 81% of the

entire featuremap (i.e. C0 and C1) on average are identified as unimportant. Similar observations

are captured from different benchmarks UCI-S and ACT-S, which show 79% and 51%, respec-

tively. This motivates us to see the potential of exploiting a subset of features for designing a more

energy-efficient feature extraction network.
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4.3 Early Prediction with Critical Features

4.3.1 Feature Subspacing

Our observation on feature criticality implies that only some features are important for predic-

tion at each layer, which directly helps to reduce unnecessary computation cost by focusing on the

important features only. However, it is not sufficient to compute them only because of layer-to-

layer data dependency. As a multi-layered feature extraction network is designed in a feed-forward

manner, a layer has data dependency on a previous layer. Therefore, even though some features

are not immediately used for the early prediction at the current layer, they can be a necessary input

for the next layer to compute its critical features.

Figure 4.4 illustrates an example of necessary feature computation when pool1 depends on

conv1. Suppose that a group of features, A and C are known most discriminative in a given

featuremap for early prediction at conv1, and E and F for pool1. Computing E and F at pool1

requiresB andD at conv1 as input, which needs to be produced by conv1 even though they are not

directly used for prediction in the layer. An important observation is that to save the computation

cost at conv1, it is desirable that GBTs1 at conv1 use B and D rather than A and C. In other

words, we can guide a gradient boosting method to first choose features within B and D when

constructing GBTs initially. In practice, it is feasible because many different feature combinations

eventually show very close classification power.

Therefore, we propose a feature subspacing method that divides the featuremap in all layers

into N feature segments subject to global layer-to-layer data dependency. We can reduce the

energy cost for feature extraction by choosing a feature subspace, only K segments (K < N )

sufficient for early prediction and skipping computation for non-selected segments. As the layers

in a feed-forward feature extraction network has a data dependency toward a backward direction,

our subspacing method does not arbitrarily partition an output featuremap at each layer. Instead,

it determines the segments per layer in a backward manner sequentially. First, the featuremap at

the last layer is divided into a set of segments. Next, the input regions (i.e. an output region at
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Figure 4.4: Illustration of a feature computation example under the data dependency between
conv1 and pool1 layers.

the second last layer) that the last layer needs to compute each segment is set as segments for the

second last layer. We repeat the same process until we get the segments at the first layer.

Figure 4.5 illustrates an example of creating a feature segment in a backward manner from

pool3 to conv1. A featuremap at every layer consists of a time dimension and a channel dimension

(C). We first partition a 16×64 featuremap at layer 6 (pool3) in the time dimension into feature

segments. The tth segment at the time dimension in layer l is denoted as Sl
t. In this example,

16 segments (S6
t , t = 1, .., 16) of shape 1×64 are created. For each segment S6

t , we search for a

corresponding segment, S5
t in the featuremap from conv3 that S6

t depends on. Since S5
t is necessary

data that pool3 needs for computing S6
t , the shape of S5

t depends on the pooling size which is an

input window in the time dimension for a pooing operation. Moreover, the start location of S5
t in

the time dimension depends on the stride size of pool3 which is an offset between consecutive input

windows. This example uses a pooling size 4 and a stride size 2, so the shape of S5
2 is 4×64 and

its time dimension range is from 2 to 5. In the same manner, the subspace searching is recursively

conducted until S1
2 is found for the first layer (conv1). We complete the feature subspacing by

repeating this process for all S6
t (t = 1, .., 16) in pool3. As a result, 16 feature segments are created

in every layer. How to choose a subset of segments (i.e. K segments) will be detailed later in

Section 4.3.3.
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4.3.2 Layerwise Early Prediction

Given an input instance, an inference phase is performed through sequential layerwise pre-

dictions from conv1 to pool3 and ends when it obtains a confident result at any layer. To reduce

the overhead of the layerwise predictions, we adopt GBTs consisting of T decision trees of depth

6 requiring simple comparison logics and a softmax function as a classifier, unlike other studies

that adopt a fully-connected network requiring numerous expensive multiply operations [73] [74].

A GBT-classifier works as follows. Given an input instance, a set of the final prediction scores

summed from GBTs, each for a target class is produced, and then it is computed into a set of

corresponding probabilities through a softmax function. The class label with the highest proba-

bility is chosen as a prediction result (hard-label) while the probability (soft-label) is chosen as

a confidence level of the prediction result. If a soft-label is below a certain threshold level (δ),

meaning that the prediction result obtained from the currently processing layer is not confident,

the hard-label is not taken as a final prediction result, so a new prediction is attempted in the next

layer. Otherwise, the inference terminates at the current layer by taking the hard-label as a final

prediction result.
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4.3.3 Hyperparameter Optimization

To maximize the energy-efficiency of our early-prediction network without a large accuracy

drop, it is critical to optimize the following three types of hyperparameters. First, the feature

segments are parameterized as a vector (FSV ), [I1, I2, .., IN ] where N is the number of feature

segments and It is set to one if the tth segment of a layer is selected, and zero otherwise. Since

the segments are configured based on the global layer-to-layer data dependency, all layers have the

same N segments which are parameterized as a single FSV , which simplifies the complexity of

parameter searching. Second, the parameter vector for layerwise classifiers, EPV is summarized

as [δ1, .., δL, T1, .., TL] where L is the number of layers in the feature extraction network and δl is

a probability threshold and Tl is the number of trees for the lth layer. δl confirms that a hard-label

obtained at the lth layer is confident if a corresponding soft-label is greater than δl. We set δL

to 0 to make sure that the last layer covers the inputs for which the earlier layers do not make a

confident prediction.

Overall Algorithm. Finding the best N+2L-1 parameters with naive exhaustive search is im-

practical. Instead, we present an iterative heuristic that jointly searches for FSV that minimizes

the number of necessary segments and EPV that yields the best energy-efficiency without accu-

racy loss. A key idea of our algorithm is to find the best EPV while eliminating a segment at each

iteration from FSV that is initially set to use allN segments. The overall algorithm is summarized

in Alg 1.

Assume that the baseline network is first trained. The algorithm chooses the best EPV when

N -1 segments are selected at the first iteration. There are N candidates of FSV each choosing a

unique combination of N -1 out of N available segments. For each FSV candidate, we generate

the features in the selected segments by running the baseline feature extraction network with a

training dataset and train GBTs (up to max trees) per layer by using the features as input. We

find the best EPV with a genetic algorithm and validate the EPV by evaluating an accuracy loss

and an energy-savings with a validation dataset. By choosing the FSV candidate that yields the

lowest accuracy loss with its best EPV , we determine N -1 segments available for the second
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Algorithm 1: Hyperparams (FSV, EPV) Optimization
1 FSVbest = [1, .., 1], EPVbest = [0, .., 0]
2 for i← N -1 to 0 do
3 Generate new FSVs
4 for j ← 0 to |FSV s|-1 do
5 Train GBTs in N layers with FSVs[j]
6 EPV[j]← Generate the best EPV with GA
7 AL[j]← Evaluate EPV[j]
8 end
9 k← argmin(AL)

10 if AL[k] > δuser then
11 return FSVbest, EPVbest
12 end
13 FSVbest← FSV[k], EPVbest← EPV[k]
14 end
15 return FSVbest, EPVbest

iteration where the FSV candidate with N -2 segments is selected in the same manner. We repeat

this process until the validated accuracy loss is beyond a user-defined acceptable loss value (e.g.

0.01). Our algorithm takes the last valid FSV candidate and the best EPV found under the FSV

as final parameters.

Genetic Algorithm to Generate EPV. To efficiently find the best EPV at each iteration,

we use a general optimization technique, genetic algorithm (GA). The algorithm starts with a

population of potential solutions (commonly expressed as individuals in GA), but it makes random

changes (i.e. crossover and mutation) to the solutions to reproduce a new population of better

solutions. The quality of each solution is evaluated with respect to a fitness function. Our genetic

algorithm finds the best parameters that minimize the fitness score. After repeating this process

many times, it tends to converge on a good solution. This algorithm is well-suited for finding a

solution EPV . Initially, a population of EPV s is generated with random numbers. We perform

crossover and mutation with a probability of 0.5 and 0.2, respectively but implement them in two

approaches depending on data types of parameters. First, T s of an integer type use a single-

point crossover and a uniform random mutation with integer numbers from 0 to 200. Second,
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δs of a floating-point type adopt a simulated binary crossover and a polynomial mutation with

real numbers from 0 to 1.0, while using a distribution index 30.0 and 20.0, respectively [76]. We

implement our GA by using an open-source framework [77] and choosing a population size, 300,

and a fixed generation size, 200 where a solution is converged to a stable point.

Fitness Function. The fitness function computes a score that combines an accuracy loss and an

energy-savings for given an EPV candidate with six sets of GBTs trained under a FSV candidate.

The accuracy loss (AL) is calculated by Acnn − Aepn where Acnn and Aepn are the accuracy of

a baseline CNN and an early-prediction network, respectively. The energy-savings (ES) is 1 −

Eepn/Ecnn where Eepn and Ecnn are the energy cost of an early-prediction network and a baseline,

respectively. Suppose that a user-acceptable accuracy loss threshold (δuser) is given. If AL meets

a constraint of δuser (i.e. AL < δuser), we calculate a score with an equation, AL/ES, which is

for obtaining EPV that gains higher energy-savings. Otherwise, we calculate a score based on

AL*ES, which guides the parameter searching in an opposite direction.

4.4 Hardware Implementation

4.4.1 Functional Primitives

The full-custom hardware implementation for different benchmarks based on the selected FSV

and EPV requires enormous efforts. To make the hardware design more practical, we modular-

ize the key functions into hardware primitives each of which covers 1D-convolution, maxpooling,

fully-connected network, GBT, softmax, and an early-prediction controller. The primitive is im-

plemented to produce a single scalar output. Moreover, we adopt low energy design principles

such as the data flow model and power gating [78]. Each layer is implemented with a group of

primitives that run in parallel.

For instance, to implement an early-prediction network, we build a feature extraction network

by choosing convolution or pooling primitives that compute the features in the selected feature

segments based on Is parameters. Similarly, a GBT-classifier is built with GBT primitives based

on T s parameters. An early-prediction controller uses δ parameters.
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In specific, we implement the functional primitives based on fixed-point floating numbers con-

sisting of a 16-bit integer and a 16-bit fraction and verify their correctness with Verilog Compile

Simulator (VCS). We also use SAIF files that record switching activities for accurate power esti-

mation. To evaluate the power overhead, we synthesize the functional primitives using Synopsys

Design Vision [52] based on Synopsys SAED32nm EDK Digital Standard Cell Library [79] at a

16 MHz clock frequency.

4.5 Evaluation

4.5.1 Benchmark and Model Selection

We evaluate our proposal in a challenging time series classification problem, HAR with three

publicly available datasets: ADL [80], ACT [81], UCI [82] where time-series data such as triaxial

acceleration and/or triaxial angular velocity is collected from human subjects carrying a smart-

phone embedding accelerometer and gyroscope sensor while they perform daily activities. The

dataset is divided for training, validation, and test by 50%, 25%, and 25%, respectively. The train-

ing set is for training a baseline CNN and GBTs, the validation set for searching the best FSV and

EPV , and the test set for final evaluation reported in this section.

As for our baseline network, we carefully choose a non-over-parameterized CNN consisting

of three convolutional and maxpooling layers followed by a fully-connected layer as illustrated in

Figure 4.1. The filter size and pooling size are 4 and the stride sizes for convolution and pooling are

1 and 2, respectively. We design two scales of networks for three datasets where a small network

(each with a suffix -S) uses 64 filters all convolutional layers and a large network (each with a

suffix -L) uses 64, 128, and 256 filters at conv1, conv2 and conv3, respectively.

Table 4.1 summarizes the parameters of our early-prediction network found by our algorithm

in Section 4.3.3 under δuser set to 0.01. Due to space limit, FSV is shortened as a bitstream where

I1 is at the leftmost position and the last I at the rightmost one.
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Feat Subspace (Is) Number of Trees (T s) Thresholds (δs)
ACT-S 010000001010 [144,79,16,200,135,178] [0.970,0.959,0.742,0.891,0.881]
ADL-S 1000000100000100 [7,69,35,188,6,98] [0.401,0.910,0.830,0.786,0.384]
UCI-S 0101000000001000 [115,24,16,124,94,49] [0.992,0.923,0.755,0.942,0.999]
ACT-L 010000011000 [139,10,68,195,132,150] [0.975,0.587,0.956,0.974,0.643]
ADL-L 1000000001000100 [2,60,200,156,188,115] [0.72,0.915,0.988,0.855, 0.949]
UCI-L 0000000100011000 [2,15,54,3,3,199] [0.650,0.939,0.820,0.997,0.556]

Table 4.1: Parameters for early-prediction network

4.5.2 Evaluation Result

Energy Efficiency. Figure 4.6 shows both energy savings and accuracy loss of our early-

prediction networks against the baseline. The energy savings of two types of early-prediction

networks each configured without or with feature subspacing are presented in Figure 4.6(a). The

accuracy loss of early-prediction networks configured with feature subspacing is shown in Fig-

ure 4.6(b).

We make two observations as follows. First, the early-prediction network achieves 77% energy

savings with 0.003 accuracy loss on average when the feature subspacing is used. In specific, the

energy use is reduced by 79%, 77%, 74%, 80%, 79%, 76% in ACT-S, ADL-S, UCI-S, ACT-L,

ADL-L, and UCI-L, while accuracy losses are allowed by 0.003, -0.003, 0.004, 0.003, 0.003, and

0.009, respectively. 23%, 13%, 17%, 29%, 4%, 13% of tested inputs are predicted at conv1, pool1,

conv2, pool2, conv3 and pool3, respectively on average in six benchmarks.

Second, using our feature subspacing results in higher energy savings by 54% than when it is

not used as shown in Figure 4.6(a). It is because the subspacing method not only reduces the power

cost spent for feature extraction at each layer but also assists the effective parameter searching of a

genetic algorithm. When the feature subspacing is not used, the genetic algorithm converges to the

EPV that mainly activates the early prediction at conv3 and pool3 with more powerful high-level

features to preserve accuracy quality. In contrast, the use of our feature subspacing excludes more

features from the later layers due to the backward data dependency, causing the layers to have

weaker classification power. Therefore, the genetic algorithm is guided to find EPV that allows a
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good amount of inputs to be predicted at earlier layers.
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Figure 4.6: Energy savings (a) and accuracy (b) of the early-prediction network against the base-
line.

Figure 4.7 shows the energy savings according to the layer of early prediction against the

previous studies [73] [74]. The energy cost of early prediction at ith layer sums all energy costs

spent from the 1st layer to ith layer. To highlight the true benefit of our proposal, we focus on

the energy cost of feature extraction only because our GBT-classifier is more energy-efficient than

fully-connected network adopted in [73] [74]. Our proposal achieves the energy savings, 23% at

layer 1 and 2, 32% at layer 3 and 4, and 46% at layer 5 and 6, respectively on average. The energy

savings becomes higher at later layers. It is because the earlier layers are required to compute more

features than the later layers due to the layer-to-layer data dependency as discussed in Section 4.3.1,

resulting in the lowest power savings at conv1 and the highest one at pool3.
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Figure 4.7: Energy savings according to layer of early prediction
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Feature Criticality Analysis. Figure 4.8 visualizes the criticality of features in the layerwise

feature maps shown with the time dimension (x-axis) and the filter dimension (y-axis). In the

colored heatmap for six layers of ADL-S, the feature data points closer to black are less critical,

whereas the ones closer to white are more critical. While the features within a feature subspace

are presented with various criticality levels, the others are shown as contiguous black regions. In

addition, the result shows that our proposal effectively excludes unnecessary feature computation

by having C0 ratios, 38%, 30%, 53%, 53%, 70%, and 83% in conv1, pool1, conv2, pool2, conv3,

pool3, respectively, which are higher than our motivation study shown in Figure 4.3. Furthermore,

there are still high C1 ratios, 51%, 51%, 31%, 26%, 14%, and 4% in the six layers. This implies

that there is a potential to achieve more energy savings through finer-grained subspacing, which

we leave as our future work.
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Figure 4.8: Heatmap of layerwise feature criticality in ADL-S

Inference Time. We observe that our early-prediction network reduces the worst inference

69



time due to simple GBT-based classifiers, even though our main focus is on improving energy-

efficiency. It is natural to reduce the average inference time due to easy input instances for which

inference is finalized in the intermediate layers. Furthermore, in the worst case that need high-

level feature at the last layer, our proposed network has less inference time than the baseline due to

simple GBT classifiers, which cannot be easily achieved in the previous studies based on multiple

fully-connected layers [73] [74]. The latency overhead of all GBT-classifiers added in every feature

extraction layer is less than a FC layer in the baseline implemented with the data flow model

consisting iterative multiply operations. The time reduction ratio of the worst case classification

in ACT-S, ACT-S, ACT-S, ACT-L, ADL-L, and UCI-L are 25%, 49%, 47%, 68%, 75% and 79%,

respectively on average in six benchmarks.

4.6 Related Work

There are two main approaches to reduce the energy cost of complicated CNNs by optimizing

models. First, compressing CNNs is the most common approach that prunes unimportant model

parameters [75], which can skip the computations relevant to the removed parameters. In contrast,

ours chooses critical features only while keeping model parameters intact, which can synergetically

reduce energy cost with the pruning approach. Second, the prediction adapting to input difficulty is

another approach to reduce the average energy cost [73] [74]. Unlike this approach, ours performs

early prediction with critical features only and relevant parameters are found automatically.

Our proposal is also relevant to the feature selection that chooses a subset of features for tra-

ditional learning models whose performance is substantially impacted by the quality of input fea-

tures [83]. Unlike the previous studies, our proposal shows a good use of feature selection to

reduce the computation overhead of a feature extraction network in CNNs.

4.7 Conclusions

The energy-efficient inference is critical for IoT devices with limited battery life. We propose

a design methodology that transforms a CNN into an early-prediction network exploiting critical

features to reduce the energy cost for inference. This is achieved by the feature subspace and the
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early-prediction parameters that are intelligently chosen by a genetic algorithm to maximize the

energy-efficiency without an accuracy drop. We demonstrate the effectiveness of our proposal by

showing 77% energy-savings against a baseline CNN with an ignorable accuracy drop on average

in six HAR benchmarks.
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5. CONCLUSIONS

Hardware accelerators are becoming more critical than ever as a cost-effective computing plat-

form for emerging applications from servers to mobile devices. Servers often leverage many-core

accelerators such as GPUs to achieve high performance gain by exploiting simple yet energy-

efficient compute cores. Larger-scale GPUs are essential for the emerging applications that require

the process of a considerable amount of data. However, it is challenging to scale up single-chip

GPUs. In specific, the data movement overhead over the GPUs’ NoC becomes a critical perfor-

mance bottleneck in large-scale GPUs. Unlike servers, mobile devices often leverage low-power

accelerators for inference in DNNs. The energy efficiency of the accelerators is critical in mobile

devices, but they are required to compute complex algorithms of DNNs, which becomes a key

energy bottleneck. In this dissertation, we explore the solutions to address the performance bottle-

neck incurred by unnecessary data movement in GPUs and the energy bottleneck caused by heavy

computation in AI accelerators.

First, we propose a packet coalescing mechanism that minimizes redundant packets over the

NoC of GPUs [4]. Massive multi-threading in GPUs place heavy stress on the memory system,

creating network bottlenecks near memory controllers. We observe frequent inter-core locality

across various applications where data redundancy in communication traffic is commonplace. We

propose a packet coalescing mechanism that coalesces multiple redundant packets into one without

increasing the packet size. The coalesced packets are delivered to their respective destinations

through multicast routing. Our coalescing approach yields 15% IPC improvement (up to 112%) in

a large-scale GPU with 2D mesh across various GPU applications by obtaining network bandwidth

savings by 13% (up to 37%).

Second, we propose a simple compression mechanism, Dual Pattern Compression (DPC), that

compresses only two patterns with very low latency [36]. Unlike our packet coalescing pro-

posal that reduces the number of packets [4], this compression approach reduces every single

packet’s size by compressing redundant values among data carried by a packet. Our compres-
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sion/decompression is designed with simpler logic than the previous proposals but gives higher

compressibility due to data remapping and data-type-aware data preprocessing which exploits bit-

level data redundancy. We demonstrate the effectiveness of our proposal in a large-scale GPU by

showing IPC improvement by 33% on average (up to 126%) across various benchmarks with av-

erage space savings ratios of 61% in integer, 46% (up to 72%) in floating-point and 23% (up to

57%) in character type benchmarks.

Last, we propose a network optimization methodology that reduces the energy cost of CNNs

caused by considerable computation. The proposed methodology transforms an original CNN into

a new CNN with early-prediction capability based on GBTs classifiers that make a prediction with

important features only from each feature extraction network layer. A genetic algorithm finds the

best hyperparameters that maximize the energy-efficiency of inference with an ignorable accuracy

drop for the early-prediction-based CNN. We achieve the energy-savings by 77% on average over

the baseline CNN with an ignorable accuracy drop in human activity recognition benchmarks.
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