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ABSTRACT  

 

As the focus in additive manufacturing shifts to manufacturing parts in load 

bearing applications, microstructure and composition become of critical importance.  In 

this work, we aim to enhance our understanding of the relationship between the process 

parameters, composition and the resulting microstructure of the additively manufactured 

parts, utilizing the structure-processing relationships. These relationships will be 

examined utilizing a combination of computational and experimental approaches. The two 

major questions we will explore are the compositional relationship of functional gradients 

to their printability and the relationship of thermal histories on porosity formation. The 

first question explores the compositional effects of diffusion, phase formation, and 

evaporation; while the second question explores the relationship of melting, evaporation, 

and process thermal history on defect formation. 

The integrity of functional gradients in alloys tends to be compromised by the 

presence of brittle phases. Recently, CALPHAD-based thermodynamics tools have been 

used to generate isothermal phase diagrams that are in turn utilized to plan gradient paths 

that completely avoid these phases. However, existing frameworks rely extensively on the 

(limited) ability of humans to visualize and navigate high-dimensional spaces. To tackle 

this challenge, a Machine Learning approach was used and validated by designing and 

additively manufacturing a functional gradient in bulk samples from 316L stainless steel 

to pure chromium with a multi-material direct laser deposition system. The compositional 



 

iii 

 

space was then increased from three powder feedstock to four, and a functional gradient 

from Fe9Cr to W was fabricated. 

Porosity is an expensive and pervasive problem in additively manufactured parts. 

To minimize materials waste and save time we propose a machine learning algorithm that 

can address the likelihood of porosity formation based on thermal signatures to feed into 

a process plan optimization methodology. The proposed scheme combines extensive cross 

sectional optical microscopy data from a laser powder bed fusion printed Ti-6Al-4V 

cylinder with a discrete thermal heat source model that produces a thermal signature at 

specific locations within an additively manufactured component. Experimentally 

determined porosity distributions are used to train and test a machine-learning algorithm 

to identify the likelihood of porosity formation at a given location. The effectiveness of 

this methodology is assessed and the overall link between porosity formation and thermal 

signatures is discussed. 
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1. INTRODUCTION  

Materials science relies on the understanding and analysis of the process-structure-

property relationship. The process-structure-property relationship is complex, and a 

substantial investment of time and money is required to research this relationship in newer 

manufacturing techniques, such as metallic additive manufacturing. 

While metal additive manufacturing (AM) has been around since the 80’s; for 

much of its existence, the industry focused on creating geometrically accurate parts for 

non-load bearing applications [1]–[4].  Achieving geometric accuracy moved  the focus 

to using powder bed fusion AM techniques to create fine details and geometrically 

accurate parts with little to no post processing [5]–[8]. Many advancements were made 

for the manufacturing of prototype quality parts and creating molds for mass market 

production [9]–[11]. In recent years, focus has again  shifted from using additive parts as 

molds for mass manufacturing to creating additive parts for direct use. Direct use of 

additive parts requires that these parts are able withstand stress critical situations, high 

temperature, and harsh environments. 

To meet these requirements and demands, parts must be manufactured from 

materials with accurate microstructure and precise compositions. Largely dismissed until 

recent years, research focusing on how to control compositional homogeneity or 

compositional heterogeneity on demand and porosity is vital. In order to create 

components with precise chemistries, microstructures and specific properties, engineers 

must understand how to control process parameters to tailor these properties by revealing 

process-structure relationships. Traditional post-processing cannot eliminate all 
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fabrication and microstructural problems that result during additive manufacturing [13]–

[15]. Therefore, chemical and microstructural tailoring must be completed during printing 

the part.   

In this work, we look to further our understanding of the relationship between the 

process parameters and the resulting metallic microstructure.  The two major questions we 

will address are the accurately controlling the local composition in functional gradients by 

controlling processing history and the relationship between process thermal histories and 

porosity. The first question explores the compositional effects of diffusion, phase 

formation, and evaporation; while the second question explores the relationship of 

melting, evaporation, and process thermal history on defect formation. 
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2. FUNCTIONALLY GRADED MATERIALS THROUGH ROBOTICS-INSPIRED 

PATH PLANNING*  

2.1. Introduction 

Additive manufacturing (AM) enables many opportunities for design by 

exceeding the capabilities of conventional manufacturing, specifically with respect to part 

shape and material composition [1–4]. One rapidly expanding area of research in AM is 

the utilization of location-dependent composition control to create Functionally Graded 

Materials (FGMs) [5–9], characterized by the gradual variation in composition and 

microstructure, on a location-by-location basis, resulting in corresponding changes in the 

properties/behavior of the material. Much research has been done on the use of locational 

composition/structure control in polymers [10–14], but less attention has been paid to 

compositional grading in metals [9, 15]. While there are multiple ways to achieve a 

functional gradient, a common approach is to vary the composition of the manufactured part 

on a layer-by-layer basis by making use of direct energy deposition (DED)-based 3D 

printers with multi-powder capabilities [1–4,16–18]. By independently controlling the 

feeding rate for different powders the corresponding composition of the deposited metal 

can be controlled [4]. However, even though this methodology provides the ability to 

create functional gradients, the process does not always result in functional/reliable parts 

[2, 3]. Challenges that can cause the failure of an FGM part/component include 

 

* O. V. Eliseeva et al., “Functionally Graded Materials through robotics-inspired path planning,” Materials 

& Design, vol. 182, p. 107975, Nov. 2019, doi: 10.1016/j.matdes.2019.107975. 
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mismatched lattices, differences in thermal expansion coefficients, and difficulty in 

optimizing printing parameters for multiple materials simultaneously. Even if all of these 

difficulties are accounted for, part failure can still occur from the formation of 

detrimental, often brittle, phases [4]. It is thus important to minimize the possibility of 

failure and maximize performance given the interest in these materials in risk-averse 

industries like defense and aerospace [1, 6].  

Many earlier works have established that the formation of deleterious phases is a 

common occurrence in the creation of gradient alloys. Carroll et al. [3] employed DED 

to manufacture a gradient from 304L stainless steel to Inconel 625. However, 

microcracks were observed to form in the gradient due to the presence of carbides. After 

analysis, these carbides were shown to be predicted by CALculation of PHAse Diagram 

(CALPHAD) software [19,20]. Reichardt et al. [2] attempted to plan a gradient between 

Ti-6Al-4V to 304L stainless steel by including a Vanadium interlayer but observed 

cracking due to the formation of brittle intermetallics that were also predicted by 

CALPHAD-based phase stability calculations. In Bobbio et al. [4], brittle intermetallics 

led to significant cracking in a gradient from Ti-6Al-4V to Invar 36. These works show 

that although deleterious phases are often encountered in FGMs, they can be consistently 

predicted by CALPHAD-based methods, provided suitable thermodynamic databases are 

available. 

Hofmann et al. [1,6] proposed an approach to prevent the formation of 

detrimental phases along linear composition gradients in which CALPHAD-based 

predictions of isothermal ternary sections were used to visualize the regions where 
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detrimental phases were likely to form, defining then a gradient path that circumvented 

these regions. Figure 1 provides an example of this process. After using computational 

thermo- dynamics software (based on CALPHAD Gibbs energy parameterizations) to 

generate an isothermal phase diagram of the relevant system, detrimental phases can be 

located in composition space. Subsequently, gradient paths can be planned such that 

these regions of the phase diagram are avoided. However, this technique is limited to 

visualizing three elements (or two degrees of freedom in the composition space) at a 

Figure 1. An example of how an isothermal ternary phase diagram can be used to 

design Functionally Graded Materials (FGMs), as proposed by Hofmann et al. [1,2]. 

Consider γ phase to be a detrimental phase that appears in ternary alloys composed 

of elements X, Y, and Z. The linear gradient (shown in red) between alloy 1 and 2 

will develop a significant amount of γ phase, while a gradient (shown in yellow) that 

follows the Y-Z and X-Y binaries will not develop any γ phase. Some other gradient 

(shown in green) might also avoid γ phase, while requiring less deviation from the 

linear gradient. 
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time at a single temperature. As such, it becomes increasingly cumbersome as the 

number of elements increases and the temperature of the process fluctuates. Moreover, 

since the analysis is limited to isothermal sections, existing frameworks are incapable of 

predicting none equalibrium detrimental phases at intermediate temperatures prevalent 

during the fabrication process, as well as during post-processing treatments, such as hot 

isostatic pressing (HIP) as well as homogenization or stress relief heat treatments. 

The present work demonstrates the feasibility of a novel computational design 

method for FGMs that plans compositional gradients such that detrimental phases are 

avoided, as detailed in Kirk et al. [21]. This method improves upon previous works by 

encoding the proposed design methodology algorithmically, enabling FGM gradient 

paths to be planned in high-dimensional spaces and optimized with respect to some cost 

function. With the ability to plan gradient paths in high-dimensional spaces, FGMs 

consisting of any arbitrarily large number of elements can in principle be designed. The 

method consists of two major steps. First, machine learning techniques are used to map 

regions in the multi-dimensional composition-temperature space that contain detrimental 

phases over a range of temperatures. This is followed by the use of a motion planning 

algorithm adapted from the robotics community to plan a compositional gradient path 

that optimizes a given cost function. Regions of detrimental phases identified during the 

first step are considered to be ‘obstacles’ to be avoided during path planning. This results 

in designed gradient pathways that are more robust to manufacturing temperatures, 

cooling rates, or post-fabrication heat treatment. Selection of an appropriate cost 

function is essential to guarantee FGM robustness. For example, using a path planning 
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objective of maximizing compositional distance from detrimental phase regions would 

increase robustness to uncertainty in phase diagram predictions or compositional 

variance in the manufacturing process. 

To assess the feasibility of the method, FGM gradient paths were designed from 

austenitic 316L steel to 100% chromium while avoiding two detrimental phases (CrNi2 and 

σ phases). Paths were optimized to increase the chance of success under the constraints 

given by manufacturing limitations. Using a Laser Engineered Net Shaping (LENS) DED 

system with four powder hopper capabilities, the designed FGMs were created and 

compositionally and microstructurally evaluated to determine the effectiveness of the 

design method in eliminating detrimental phases. For a more in-depth explanation of the 

algorithm used refer to Appendix 1. 

2.2.  Experimental Procedure 

To fabricate bulk samples and validate the designed functionally gradient path 

between 316L stainless steel (SS) and 100% chromium, three different types of powders 

were utilized: 316L stainless steel, pure nickel and pure chromium in order to sample the 

different regions of the Fe-Ni-Cr ternary phase diagram. The bulk samples were 

fabricated using an Optomec LENS MR 7 direct energy deposition (DED) AM system. 

The powders were fabricated using gas atomization in argon and had spherical shapes. 

The stainless steel and nickel powders were commercially obtained from LPW 

Technology and the chromium powder was fabricated by TLS Technic. The powders 

had a size distribution ranging from 44μm to 106μm, with an average particle size or the 

d50 of around 84μm. 
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Before loading the powders into the powder feeders and printing, all powders 

were dried for 12 h at 80 °C in an argon-controlled atmosphere to remove any remaining 

moisture from manufacturing and handling. The powders were then transferred into the 

hoppers of the LENS system while still inside the argon-controlled atmosphere (in a 

glove box), in order to minimize oxidation and moisture contamination, which cause 

clumping and inconsistent flow rates from the powder feeders. 

A 304L stainless steel plate was used as the substrate for printing, which was 

solution heat treated at 850 °C for 6 h and water quenched to remove preferential 

orientation, precipitate phases, and any residual stress that may exist. The substrate was 

then polished to remove the oxide layer and coated with a thin layer of carbon dry 

lubricant to prevent back reflection under the laser. The Optomec LENS MR 7 printer 

has 4 separate hoppers, 3 of which were employed for these experiments. Before printing 

the gradient structures, a process parameter selection procedure was followed in order to 

fabricate defect free cubes from the three initial powders selected. Cubes from each 

powder were printed using a systematic parameter sweep. The parameters examined 

were the laser power at 300 W, 350 W, 400 W, the hatch spacing of 0.25 mm, 0.38 mm, 

0.50 mm (hatch spacing: the distance between the centers of the subsequent laser 

passes), and the platen speed of 25.4 cm/min, 38.1 cm/min, 50.8 cm/min.  
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Figure 2. Backscattered electron images of the three different powders used in 

this study, showing the surface roughness and satellites of individual powders 

before printing. 
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The total of 27 pillars of 5 mm diameter and 5 mm length were printed for each 

material. The above parameters were selected based on the suggested printing 

parameters provided by the LENS vendor. From the sets of samples that resulted in the 

greatest density, the following parameters were identified as optimum for each material 

powder: 350 W laser power, 38.1 cm/min platen speed, and 0.38 mm hatch spacing for 

stainless steel, 400 W laser power, 38.1 cm/min platen speed, and 0.38 mm hatch 

spacing for chromium, and 325 W laser power, 38.1 cm/min platen speed, and 0.38 mm 

hatch spacing for nickel. Since these parameters are the same for hatch spacing and 

platen speed, and only slightly different in laser power, the final printing parameters of 

350 W laser power, 38.1 cm/min platen speed, and 0.38 mm hatch spacing were 

selected. The last parameter to be determined was the flow rate used in each of the 

feeders. As flow rate is not directly controlled in the existing LENS system, the rotation 

rate of the internal disk in the hoppers, that allow the powder to pass through powder 

channels, was used to indirectly control the flow rates. Preliminary prints of the 

functionally graded samples revealed that if the same powder flow rate was used for all 

three powders during the mixing, the Cr content in the mix was depressed relative to the 

rest of the powders.   

Upon examination of the powders under scanning electron microscopy using 

backscattered electron mode (Figure 2), it was observed that the Cr powder was 

perfectly spherical and lacked satellites as compared to other powders. The lack of 

satellites increases packing ability and decreases flowability. Therefore, while a 
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maximum rotation rate of 6 rpm was used for Ni and stainless steel, 7 rpm was used for 

Cr powder, to overcome the flowability differences.   

Two different functionally graded samples were fabricated in bulk: a linear 

gradient sample going directly from 316L SS to 100% Cr on a linear path in the 

compositional space (Figure 3, the black dashed line), and the planned gradient sample 

with the compositional path having the maximum distance from the deleterious phase 

boundaries (Figure 3b). The linear gradient sample had the dimensions of 22 mm × 10 

mm × 10 mm and the planned gradient sample was a 12.7 mm × 12.7 mm × 12.7mm 

cube.  

These samples were created in a computer aided design software (AutoCAD 

2018), which was then converted and sliced into layers using the vendor's field 

Figure 3. a) The decision tree created by the RRT*FN algorithm (see text for 

details) when minimizing the path length to go from 316L stainless steel to pure 

chromium in the Fe-Cr-Ni phase map, estimated by the Constraint Satisfaction 

Algorithm, while  avoiding both CrNi2 and σ phases. The optimal path is shown in 

blue.  b) The decision tree created by the RRT*FN algorithm when maximizing the 

distance from the undesirable phase regions. The optimal path is shown in blue. 

The numbered points represent the vertices of the simplified path used for 

experimental validation. 
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converter. A gradient path design software, provided by the LENS vendor, was used to 

create the process parameters to print the desired gradients. The software takes the 

desired starting and end flow rates (i.e. rotation rates) as well as the user defined number 

of layers to achieve the gradient into account. Then, each horizontal layer, measuring 

roughly 0.0254 cm in thickness, in the gradient structure has a single composition that is 

calculated within the program by taking the final rotation speed, subtracting the starting 

rotation speed, and dividing by the number of layers specified by the user. While this is a 

simple task for the linear gradient samples, it is more difficult for the planned, non-linear 

paths employed in this study. In the latter case, the 4 critical points, as shown in Figure 

3b, were calculated and a linear path was drawn between these points, starting from the 

initial condition of 100% stainless steel and ending at the final condition of 100% Cr. 

This allowed for the planned, fragmented paths to be calculated in a similar way to the 

linear path. 

After the fabrication, the functionally graded samples were cut using wire 

electrical discharge machining (EDM) in 2 mm slices with the normal axis of the slices 

perpendicular to the long axis (z axis), which is parallel to the built direction, such that 

each slice includes all layers in the gradient. One of the slices from each functionally 

graded sample was then embedded in epoxy mount and mechanically polished down to a 

0.01μm surface finish, first using Si carbide paper from 600 grit to 1200 grit, followed by 

diamond paste polishing from 6μm to 0.05μm, and finished off with a Si slurry with 

0.01μm particle size. The phase structures of the gradient samples were then determined 

using a Bruker-AXS D8 X-ray diffractometer with Cu Kα (wavelength λ = 0.154 nm) 
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radiation. The microstructure of the samples was examined using a JEOL JSM-7500F 

scanning electron microscope (SEM) equipped with an Oxford Energy Dispersive 

Spectroscopy (EDS). More detailed local chemical analysis was performed using a 

Cameca SX Five Electron Microprobe Analyzer (EPMA) using wavelength dispersive 

spectroscopy (WDS), operated at 15 keV and 20 mA. Another slice for each gradient 

case was polished down to 100μm thickness, and 3 mm discs were mechanically 

punched from the foils for transmission electron microscopy (TEM) investigation. These 

discs were electrolytically polished in a Struers TenuPol-5 twin jet electro-polisher using 

a solution of 10% perchloric acid in methanol at 12 V and −30 °C. The samples were 

then examined in a FEI Tecnai G2 F20 transmission electron microscope (TEM) 

operating at 200 kV accelerating voltage. 

2.3. Results and Discussion 

A functionally graded bulk sample was first fabricated using the linear gradient 

path from 316L SS to pure chromium, as shown in Figure 4 (the black line). Each layer 

was a discrete step between the starting composition and the final composition divided 

by the number of layers. This specimen acted as a baseline to understand the formation 

kinetics of σ phase. As shown in Figure 4, most of the linear path is within the predicted 

σ phase region and the path directly intersects the single-phase σ region. As such, it is 

expected that more σ phase will be present in this sample than the σ phase in the sample 

fabricated using the planned gradient path. The linear gradient path resulted in a distinct 

vertical crack in the sample along the build direction, as shown in Figure 5a. It was 

hypothesized that the relatively large volume fraction of σ phase should be responsible 
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for cracking during printing as the material cannot accommodate the process induced 

residual stresses, due to the presence of brittle phases [24]. The σ phase formation results 

in higher hardness values and degrades both elongation to failure and toughness in steels 

[24]. To explore whether or not σ phase was responsible for the cracking seen in the 

sample with the linear gradient path, SEM images were taken around the cracks. While 

the backscattered electron images, as shown in Figure 5b, did not show distinct contrast 

around the cracks, indicative of σ phase, elemental analysis via EDS revealed the 

chemical composition around cracks were in fact consistent with the composition of the 

σ phase. While it is impossible to unequivocally state whether the σ phase caused the 

crack without further characterization, the inherent brittle nature of the phase combined 

with the composition around the crack being well within the σ region, may indicate that 

the σ phase contributed to the crack initiation and/ or propagation. Note that the 

spherical dark region in Figure 5b is rich in Cr which might be an unmelted Cr particle.  
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Figure 4. The linear gradient as well as the nominal and experimental paths for the 

planned gradient are shown in the composition space in order to fabricate 

functionally graded samples starting from 316L stainless steel and ending at pure 

chromium while avoiding the detrimental phases (CrNi2 and σ). Also shown is the 

maximum phase fraction encountered from 300 to 1100 K for both CrNi2 and σ 

phase. 
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Figure 5. a) An optical image of the functionally graded sample; additively 

manufactured using the linear gradient path shown in Figure 4. Note the center 

crack that formed during the printing. Superimposed on the image is the plot of the 

phase fractions, predicted using CALPHAD, along the linear gradient path. b) A 

backscattered electron image of a crack-initiation site. 

 

In an effort to determine if the σ phase formed during the fabrication using the 

linear gradient path, XRD was also conducted on the transverse cross-sections of the 

samples at five different locations along the composition gradient (the build direction). 

As shown in Figure 6, there was a clear change from FCC to BCC crystal structure as 

the percentage of chromium in the sample increases going from the bottom of the sample 

Build Direction

316L SS Pure Cr
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to the top. However, it was not possible to detect any σ phase using the conventional 

XRD technique, as conventional XRD is typically incapable of detecting phases that 

exist at low volume fractions. Furthermore, it has been reported in the literature that the 

σ phase tends to form only upon slow cooling of the material, as the kinetics of 

nucleation and growth of this complex crystal structure, with a composition much 

different from the matrix, tends to be sluggish [25]. Since solidification in additive 

manufacturing is a rapid cooling process, it can be surmised that large quantities of σ 

phase would not have had sufficient time to form, thus preventing it from being detected 

in XRD. 
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Figure 6. Room temperature XRD results of the as-printed 316L stainless steel – 

Chromium functionally graded sample, fabricated following the linear gradient 

path in Figure 4, from the bottom of the sample (near the substrate, 100% 316L 

stainless steel) to the top of the sample (100% chromium). 

 

In order to find out whether nano-sized σ phase particles are present in the 

microstructure, TEM foils were prepared 12 mm from the top of the sample, or the 

location for maximum anticipated σ phase formation. The corresponding bright field 

TEM images and the corresponding diffraction patterns are shown in Figure 7. The 

bright field image (Figure 7a) shows that the microstructure consists of two phases. 

Selected area diffraction (SAD) patterns were recorded from both phases (Figure 7b and 
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c). The SAD pattern from the matrix was consistently indexed as bcc α phase, while the 

precipitate was indexed as fcc γ phase. σ phase was not observed in the microstructure. 

 

Figure 7. a) Bright field TEM image of the 316L stainless steel – chromium 

functionally graded sample, fabricated following the linear gradient path in Figure 

4. b) Selected area diffraction (SAD) pattern of the matrix. c) SAD pattern of the 

precipitate phase. 

 

It is likely that the cooling rate of the melt pool is sufficiently fast to prevent the 

formation of the σ phase upon AM fabrication using the present DED system. To 

explore this further, a series of additional TEM foils were prepared and examined from 

the different composition regions of the gradient sample in which the presence of σ 

phase was predicted by CALPHAD (near center of the gradient sample) and yet no sign 

of σ phase was detected in the as-printed samples. However, even if the σ phase did not 

form due to the long time necessary for it to nucleate and grow in appreciable amounts, 
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the post processing heat treatment of these samples could trigger the precipitation of σ 

phase, due to the composition of the center region of the sample perfectly matching that 

of σ phase. Therefore, the complete avoidance of σ-prone compositions is necessary. 

In order to further investigate if the σ phase forms at all in the sample with the 

linear gradient, the as-printed sample was heat treated at 900 °C for 8 h. This heat 

treatment was decided by inferring the kinetics of σ formation from the TTT diagram for 

a duplex stainless steel (Fe-22% Cr-5% Ni-3% Mo-0,15% N-0,02% C, having a 

microstructure of 40–45% of ferrite and 55–60% austenite) [25]. Although the duplex 

steel has a lower nickel content than 316L stainless steel, it provides a rough estimate on 

the kinetics of the precipitation and growth of σ phase in the Fe-Ni-Cr alloy system. 

After the heat treatment, the XRD was performed on the heat-treated sample and showed 

the presence of a significant fraction of σ phase in the bottom and center portions of the 

linear gradient sample, as demonstrated in Figure 8. 
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Figure 8. Room temperature XRD results of the as-printed and heat-treated 316L 

stainless steel – Chromium functionally graded sample, fabricated following the 

linear gradient path in Figure 4. The heat treatment was performed at 900 °C for 8 

h in vacuum. The measurements taken from the bottom of the sample (near the 

substrate, 100% 316L stainless steel) to the top of the sample (100% chromium) at 

different distances. 
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Figure 9. a) Bright field TEM image of the heat-treated 316L stainless steel – 

chromium functionally graded sample, fabricated following the linear gradient 

path in Figure 4. b) SAD pattern of the precipitate + matrix. c) SAD pattern of the 

matrix indicating that the matrix is the σ phase. d) Dark field image of the 

precipitate showing that the precipitates have FCC structure. 

 

The existence of a large amount of σ phase in the microstructure after heat 

treatment was further supported though TEM investigations. Figure 9a through d shows 

the TEM results recorded from a foil that was prepared 5 mm from the top of the sample. 

The bright field image (Figure 9a) as well as the SAD patterns (Figure 9b and c) 

revealed that the matrix phase is the σ phase with tetragonal structure and the precipitate 

phase is fcc γ. Figure 9b presents a diffraction pattern recorded from a σ-γ phase 

boundary and the corresponding dark field image in Figure 9d is captured using the 

(002) γ reflection and shows a single γ phase particle. 

Overall, the above results point out the fact that although σ phase kinetics do not 

allow it to form in the as-printed condition due to the rapid cooling of the melt pool, 

when subject to secondary heat treatments, the σ phase forms rapidly in large amounts. If 

a manufactured part were to undergo common post-processing techniques, such as hot 
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isostatic pressing (HIPing), for stress relief or porosity reduction, this could result in a 

massive σ presence in the final part. Therefore, a Functionally Graded Material created 

using the linear gradient path from 316L stainless steel to pure chromium would not be 

desirable for practical applications, as it cannot be post-processed without forming the σ 

phase precipitates. 

In order to demonstrate the validity of the path planning methodology described 

above and show if σ and CrNi2 phases were completely avoided by following the 

planned gradient path during the fabrication or after post-processing heat treatment, a 

functionally graded sample was fabricated using the planned gradient path shown in 

Figs. 5 and 6. The planned path was simplified by identifying three linear segments that 

closely approximated the original planned path shown in Figure 3b. These linear 

compositional gradients were then programmed into to the LENS DED system to create 

a representation of the planned gradient path and the 12.7 × 12.7 × 12.7 mm3 sample 

was printed. The sample was then examined using SEM to confirm that σ phase did not 

appear. As with the linear gradient path, there was no evidence of σ formation in the 

sample. XRD was then conducted on this sample, as seen in Figure 10 (upper figure). It 

was again shown that there was no sign of σ phase in the as-printed condition. TEM 

investigations also confirmed this conclusion. The planned gradient samples then 

underwent the same heat treatment as the linear gradient sample. The XRD results 

showed that a small amount of σ phase become evident, as displayed in Figure 10 (lower 

figure). Even with σ phase present, its volume fraction is significantly less in the planned 

gradient sample than what was found in the linear gradient sample. Using the Rietveld 
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analysis, the volume fraction of the σ phase was determined to be 98.9% for the heat-

treated linear path samples, while the volume fraction of the σ phase was only 3.5% for 

the heat-treated planned path samples. 

 

Figure 10. Room temperature XRD results of the as-printed 316L stainless steel – 

chromium functionally graded sample, fabricated following the planned gradient 

path in Figure 4, from the bottom of the sample (near the substrate) to the top of 

the sample (upper figure), the same sample after the secondary heat treatment (HT) 

at 900 °C for 8 h (lower figure). 

 

 I
n

te
n

s
it
y
 [

a
.u

.]

807060504030

2 Angle º

Path-planned Gradient
SS316L-Cr

 2mm above center
 Center
 2mm below center

 (110)

 ()
 ()

 () (200)

In
te

n
s
it
y
 [

a
.u

.]

807060504030

 2 Angle º

HT Planned Path Gradient
SS316L-Cr

 2mm above center
 Center
 2mm below center

 ()

 ()

 ()  




 



 

27 

 

TEM investigations summarized in Figure 11 further demonstrate the significant 

reduction in the σ phase content in the planned gradient sample over the linear gradient 

sample (Figure 9). The TEM bright field image (Figure 11a), the indexed SAD patterns 

(Figure 11b through d), as well as the associated dark filed image (Figure 11e), confirm 

that unlike the linear gradient sample, here the γ phase is the matrix and the σ phase 

appears in form of particles at the grain boundaries of γ phase.  

A closer look into these TEM images using ImageJ image analysis soft- ware 

revealed that the amount of the σ phase was decreased from 71.6% in the linear gradient 

sample to 7.46% in the planned gradient sample. This significant change indicates that 

even with the same heat treatment applied to both samples, the planned gradient path 

managed to avoid most of the σ phase composition region during the fabrication, and 

therefore, decrease the amount of σ phase that formed after the heat treatment.  

Figure 11.  a) Bright field TEM image of the heat-treated 316L stainless steel – 

chromium functionally graded sample, fabricated following the planned gradient 

path in Figure 4. b) SAD pattern of the precipitate. c) SAD pattern of the matrix 

indicating that the matrix is the FCC phase. d) SAD pattern of the precipitate and 

the matrix. e) Dark field image of the precipitate showing that the precipitates are σ 

phase. 
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It is still plausible, however, to ask the question of why the planned gradient path 

was not successful in totally eliminating the σ phase or avoiding the σ phase composition 

region. The cost function used was supposed to maximize the distance from the 

obstacles, i.e. detrimental phases, in order to avoid any surprises that may arise from 

issues related to initial powder variability or AM processing issues, yet the σ phase still 

appeared after the heat treatment, albeit in much smaller amounts as compared to the 

linear gradient path sample. We attributed this unexpected observation to challenges 

associated with the fabrication of the compositionally gradient path itself. The detailed 

compositional analysis using WDS demonstrated that the existence of the σ phase in the 

planned gradient sample was very likely because the actual deposited composition of Ni 

during DED printing was consistently lower than the target Ni content as determined by 

the path-planning algorithm. Figure 4 displays the experimentally measured 

compositions at different locations of the sample, clearly showing this depletion in 

nickel content by plotting the composition of the planned gradient as printed as well as 

the nominal compositions. Clearly, Ni concentration achieved in the planned gradient 

path sample is much lower than the target composition, providing an explanation behind 

the observation of the σ phase. 

The reduced amount of Ni relative to the actual planned composition gradient 

could have been the result of the differential evaporation of nickel in the melt pool. 

However, the amount of nickel loss (max 5.82%) is much higher than what would be 

expected from the differential evaporation loss [26], [27], therefore, there must be other 

factors at play. It is possible that since nickel has the greatest density, the nickel powder 
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may not have enough pressure behind it to push it through the powder feeding system at 

the same speed as the other powders. Another factor that one needs to take into account 

is the differences in surface roughness among the powders used, which may lead to 

different flow rates even though preset flow rates for each powder might be the same. 

Regardless of which possibility is the main cause of the nickel loss, it is obvious that any 

effort on fabricating Functionally Graded Materials using DED AM systems should be 

preceded by a careful calibration study to determine the flow rates of each powder type 

and batch, and powder hopper, in order to accurately capture the mass deposition rate of 

each powder. Ongoing work by the authors is focusing on the redesign of the powder 

feeding system and better calibration of powder deposition parameters to attain better 

control over the compositions deposited in the DED system currently in use. The 

preliminary work on the calibration of the powder deposition parameters has been 

introduced below and the results are presented in Figure 12, showing a much better 

match between the planned and experimentally fabricated compositional gradients. 

In order to calibrate the deposited mass from each of the powder hoppers, and thus, to 

better control the local composition and composition gradient, we created a calibration 

curve correlating the hopper motor rotations per minute (rpms) to the mass of the 

powder exiting the nozzles for each powder type.  
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Figure 12. a) The linear gradient (the black path) as well as the nominal (the blue 

path) and experimental paths (the pink one) for the planned gradient are shown in 

the composition space for the functionally graded samples starting from 316L 

stainless steel and ending at pure Cr while avoiding the detrimental phases (CrNi2 

and σ). The experimental planned path samples were fabricated after calibrating 

the powder flow rates for each type of powder to achieve the desired mass 

deposition rates at a given point. Note the much better match with the nominal 

planned path compositions, as compared to the experiments shown in Figure 4. b) 

Room temperature XRD results of the as-printed functionally graded sample, 

fabricated following the planned gradient path in Figure 4, after a better 

calibration of the powder flow rates for target compositions, from the bottom (near 

the substrate) to the top of the sample, c) the same sample after the secondary heat 

treatment (HT) at 900 °C, 8 h. 
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Figure 12. Continued. 

 

We then identified the critical points of inflection from the path designed using 

our path planning algorithm (Figure 3b, the blue path) and determined the necessary 

rpms to deposit the target compositions, as described in Section 4, using the gradient 

path design software. Starting with the 316L stainless steel as a known standard, we 

deposited the path by starting at optimal rpm for the pure 316L stainless steel, then 

adjusted the rpms of all powders, accordingly, to maintain a constant target mass out of 

the nozzle at a given layer, based on the planned compositional gradient. This 

methodology resulted in a measured compositional gradient in the designed path, much 

closer to the planned composition gradient (Figure 12a), and eventually, led to the 

complete elimination of the σ phase in the heat-treated samples as seen in Figure 12c 

The presence of detrimental phases is a significant issue in the fabrication of 

functionally graded alloys. A new algorithmic methodology for designing functional 

gradients that avoids detrimental phases is presented. This methodology was 
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experimentally validated by planning and 3-D printing a gradient from 316L stainless 

steel to pure chromium. Gradient samples were successfully printed using a multi-

material direct energy deposition system with optimized processing parameters. The 

samples fabricated using the planned gradient and a linear gradient were characterized to 

identify their compositions and phases before and after secondary heat treatments. The 

presence of detrimental σ phase after the heat treatment (900 °C for 8 h) in the planned 

gradient sample was shown to be significantly less than the amount of σ phase detected 

in the heat-treated linear gradient sample. The as-printed planned gradient was 

determined to have less nickel content than what was planned. This difference in 

composition was attributed to the combination of differential evaporation and 

inconsistencies in powder flowability. Efforts to reduce the observed deviation in the 

printed composition from the planned gradient include modifications to the powder flow 

system of the printer and more rigorous flow calibration techniques. The preliminary 

work on the better calibration of powder flow rates to achieve target mass deposition 

rates and local compositions resulted in the fabrication of the planned gradient samples 

with much closer compositions to the planned values and the complete elimination of the 

σ phase, demonstrating the success of the proposed methodology. 

By embodying a gradient design methodology algorithmically, there are 

numerous opportunities to design previously unknown gradient materials. While the 

present work demonstrates the methodology in a three-element system (Fe-Ni-Cr), there 

is no formal limit to the dimensionality of designed gradients. As such, more 

complicated FGMs could be designed that were previously impossible to fabricate due to 
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the inability to visualize detrimental phase regions. The ability to optimize gradient paths 

to a cost function also enables gradients to be designed for optimal properties like 

hardness, strength, or heat dissipation. The uncertainties in printed compositions and 

CALPHAD phase predictions could also be accounted for computationally to design 

more robust functional gradients. 

2.4. Summary and Conclusion 

The presence of detrimental phases is a significant issue in the fabrication of 

functionally graded alloys. A new algorithmic methodology for designing functional 

gradients that avoids detrimental phases is presented. This methodology was 

experimentally validated by planning and 3-D printing a gradient from 316L stainless 

steel to pure chromium. 

Gradient samples were successfully printed using a multi-material direct energy 

deposition system with optimized processing parameters. The samples fabricated using 

the planned gradient and a linear gradient were characterized to identify their 

compositions and phases before and after secondary heat treatments. The presence of 

detrimental σ phase after the heat treatment (900 °C for 8 h) in the planned gradient 

sample was shown to be significantly less than the amount of σ phase detected in the 

heat-treated linear gradient sample. The as-printed planned gradient was determined to 

have less nickel content than what was planned. This difference in composition was 

attributed to the combination of differential evaporation and inconsistencies in powder 

flowability. Efforts to reduce the observed deviation in the printed com- position from 

the planned gradient include modifications to the powder flow system of the printer and 



 

34 

 

more rigorous flow calibration techniques. The preliminary work on the better 

calibration of powder flow rates to achieve target mass deposition rates and local 

compositions resulted in the fabrication of the planned gradient samples with much 

closer compositions to the planned values and the complete elimination of the σ phase, 

demonstrating the success of the proposed methodology. 

By embodying a gradient design methodology algorithmically, there are 

numerous opportunities to design previously unknown gradient materials. While the 

present work demonstrates the methodology in a three-element system (Fe-Ni-Cr), there 

is no formal limit to the dimensionality of designed gradients. As such, more 

complicated FGMs could be designed that were previously impossible to fabricate due to 

the in- ability to visualize detrimental phase regions. The ability to optimize gradient 

paths to a cost function also enables gradients to be designed for optimal properties like 

hardness, strength, or heat dissipation. The uncertainties in printed compositions and 

CALPHAD phase predictions could also be accounted for computationally to design 

more robust functional gradients. 
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3. PRINTING METHODOLOGY FOR FUNCTIONALLY GRADING IRON ALLOYS 

TO REFRACTORY METALS 

3.1. Introduction 

Refractory alloys are often challenging to mold and weld let alone additively 

manufacture [1], [2]. Their high brittleness, high melting point, and tendency to form 

secondary phases, makes printing challenging [3], [4]. However, their high melting point 

and resistance to neutron corrosion make them an optimal choice for many high heat and 

nuclear applications [5], [6]. On the other side of the spectrum, steel alloys do not 

possess high heat or radiation corrosion resistances but are generally malleable and well-

studied for additive [7]–[9]. Each of these materials has been used in nuclear 

applications for different purposes: refractories in reactor-facing components that 

experience extreme temperatures [10], [11], and steels in adjacent heat sinks or other 

structural components [12], [13]. Given their prevalence, joints between these materials 

are commonly necessary, but large differences in material composition and properties 

introduce significant issues with traditional joining techniques [14]. 

The most common technique for joining these two materials is brazing [15]–[17]. 

This technique will join the two metals together, but it is often seen that the brazed 

joined will produce brittle phases without interlayers or is more prone to failure under 

thermal cycling due to the buildup of thermal stresses [18], [19]. Furthermore, any 

discrete boundary between these materials produces large discontinuities in properties 

like thermal expansion, which produce significant stress concentrations and can lead to 

cracking [14], [20]. Researchers have proposed using discrete interlayer materials (e.g. 
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V, Ni, Nb) to reduce these drastic changes in properties, but lesser discontinuities persist 

in these materials, and brittle phases, like intermetallic compounds, are also prevalent 

[14], [21]–[24]. These problems prohibit the production of structurally sound 

components, especially in critical, risk-averse applications like nuclear energy. To 

circumvent these problems, we propose employing a continuous compositional gradient 

between a refractory alloy and steel to produce functionally graded parts suitable for 

these applications. 

The design of compositional functional gradients in metals can experience a 

number of the same problems seen in brazing and welding. For example, the formation 

of deleterious phases (e.g. sigma, laves, intermetallics) is common in the linear gradient 

path between arbitrary compositions [25]. The presence of these phases can lead to 

brittle regions or large mismatches in thermal expansion, both of which have been 

shown to produce catastrophic cracking during the additive manufacturing process. [26]–

[29]. The additive manufacturing process imposes certain printability requirements on 

solidification range, solidus temperature, and hot cracking susceptibility that must be 

met by every composition in the gradient path if the material is to be successfully 

printed. 

Kirk et al. [30] have developed a computational methodology to design 

compositionally graded alloys that avoid the issues of phase formation.  The 

methodology is capable of planning paths in high dimensional spaces and can optimize 

paths for a cost function. This methodology has been validated by designing and printing 

a functional gradient from 316L stainless steel to pure chromium [31]. Both the planned 
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gradient and a simple linear gradient were printed and characterized to determine 

composition and phase amount after heat treatment. The planned gradient was able to 

eliminate the detrimental sigma phase after heat treatment demonstrating the success of 

the methodology. 

In this work, the techniques presented in Eliseeva et al. [31] are employed to 

design and print a novel gradient from Fe9Cr to W. This system differs from prior work 

in that the number of elements is increased, increasing the space dimensionality and thus 

the time and complexity of both the design and manufacturing processes. In addition, the 

gradient design problem poses several unique but critical manufacturing challenges. 

There is a dramatic melting point difference of 2000C degrees between W and other 

constituent elements (Fe, Cr), which complicates the melting process and introduces 

issues such as vaporization, balling, or hot tearing [22], [24]. To address these issues, 

special consideration for the manufacturing process was added to the design 

methodology and the design of the manufacturing process itself had to consider and 

overcome all of these challenges.    

3.1.1. Path Simplification 

 After analyzing the results of the path planning algorithm seen in Appendix B, 

the optimal path was simplified to make experimentation easier and to maximize 

separation from constraint boundaries. To simplify the path, excess W was removed 

from the first half of the path and excess Fe and Al were removed from the second half 

of the path, then compositions were linearized where possible. The simplified path is 

shown in Figure 343. The simplified path begins by traversing the Fe-Cr-Al ternary from 
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Fe9Cr to pure Cr and then simply following the Cr-W binary from pure Cr to pure W. 

This path lies on the exactly on the edges and boundaries of the Fe-Cr-W-Al 

composition space and, as such, is impossible to discover via uniform random sampling 

of Fe, Cr, W, and Al. For a path planning algorithm to discover such a path, it would 

need to sample the lower dimensional subspaces (i.e. ternary and binary regions) 

directly. 

 

The phase fractions along the simplified path at various temperatures are shown 

in Figure 344. These plots show no deleterious phases at any of the selected 

temperatures. This is a significant improvement over the original optimal path, which 

showed up to 0.50 mole fraction of mu phase and up to 0.10 of laves. However, this 

Figure 13. The optimal path (shown in Figure 37a) simplified for experimentation. 

Five critical compositions were identified and used to divide the path into four linear 

gradient regions for experimental reference. 
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simplified path is about 25% longer than the original path, indicating it is suboptimal to 

the original optimal path with respect to its problem formulation. 

 

 

3.2. Experimental Methodology 

In order to print the compositions defined by the planned path shown in Figure 

13, a standard methodology was created as shown in Figure 15. 

Figure 14. Equilibrium phase fractions along the simplified path (shown in Figure 

13) at various temperatures. Phases are numbered by descending phase fraction 

when multiple phases of the same structure are present. Consequently, phase 

numbering is not necessarily consistent with phase constitution. 



 

44 

 

  

F
ig

u
re

 1
5
. 
F

lo
w

 c
h

a
rt

 o
f 

st
ep

s 
re

q
u

ir
ed

 t
o
 m

a
n

u
fa

ct
u

re
 a

 f
u

n
ct

io
n

a
l 

g
r
a
d

ie
n

t 



 

45 

 

This methodology allows for the simultaneous printing of materials with a large 

range of melting points and allows for smooth transitions between parameter sets. First 

the corresponding powders for the planned path were procured: commercially pure Fe, 

pure Cr, Al6061, and pure W, as shown Table 1. The sizes and distribution were 

provided by the companies the powders were received from. 

 

Table 1. Powder Properties Used for Printing 

 

 

These powders were then dried for 8h at 100C in an inert Ar environment to 

eliminate any trace moisture. The dry powders were then assigned to one of four powder 

feeders. Powder mass flow rates for each powder were then determined by collecting a 

sample of power for 30 seconds at a predetermined feeder rotation speed. Test were 

conducted at after stead flow was achieved at each speed, approximately 20 seconds. 

Figure 16, summarizes the powder mass flow rates for all powders used in this study as a 

function of the feeder rotation speed. The desired critical compositions from the planed 

path were then converted to weight percentage, which was used with the calibration 

Powder Provider Size range 

Manufacturing 

process 

Fe TLS 45-100um N atomized 

Cr TLS 45-100um Ar atomized 

W Tekmat 45-90um Inert gas atomized 

Al6061 Valimet 40-100um Inert gas atomized 
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curves to calculate a constant relative volume of powder under the laser beam for each 

critical composition. This kept the amount of powder flowing out of the powder nozzles 

constant and allowed for the weld pool volume to remain constant. This constancy in 

weld pool volume allowed a variable to be removed when comparing the width and 

heights of the weld pools and allow for more consistent prints. 

Following the calibration of the powder flow rates, an Optomec LENS® MR-7 

direct energy metal deposition system with 4 powder feeders and a 1000W, 1060nm 

laser was used to print 13 mm single tracks of the critical compositions. The laser power 

and laser line speeds were varied systematically based on literature values. These single 

tracks were inspected with a scanning electron microscope (SEM) for uniformity in track 

height and width, the absence of other traditionally recognized additive manufacturing 

(AM) defects (lack of fusion and balling), consistent curvature of solidification front, 

and good fusion to the substrate. As shown in Figure 17 only single tracks that met all 

the criteria were selected for the next step. The acceptable single tracks were then 

measured for width with an SEM and height with a profilometer to determine hatch 

spacing between laser scan lines and a starting layer height at each critical composition 

point. 
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  After completing the study of the single tracks, 10-layer thin square prisms were 

fabricated using the most viable set of single tracks. The heights of the 10-layer prisms 

were measured to find the average layer height achieved for each combination of laser 

power, laser line speed, and chosen hatch spacing, and then the average as compared to 

the initially programmed layer height. Figure 18, displays Fe9Cr 10-layer cube changes 

in average measured layer height as a function of programmed layer height. Note that if 

the programmed layer height is significantly different than the actual deposited layer 

height, the laser beam diameter at the focal point will continuously change with the 

increasing number of layers deposited and may cause significant printing failures. 

 Using the measured average layer height as the new programmed layer height, 

the prisms were printed again, and this iterative process continued until the programmed 

total height matched the printed part height; allowing the focal length of the laser to 

remain consistent throughout the build. Once this step is completed, the hatch spacing 

can be adjusted, if required, to increase the density of the build. This process not only 

allowed for the build to achieve the desired height but also for the gradient to be as 

accurate as possible. 
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a 

b 

Figure 17. (a) Selected single tracks of Cr printed using the DED system with the 

power and speed combinations shown. The four tracks in (b) are from the red 

boxes in (a) displaying the classification of acceptable and unacceptable tracks. A 

is an example for non-uniform track width; B: Acceptable, good track; C: Uneven 

solidification front and spatter particles; D: Lack of sufficient fusion to the 

substrate. 
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Next, the critical compositions were combined using linear composition grading. 

The small gradients were printed using the parameters established in the previous steps. 

These samples were sliced into 2mm sections with wire electrical discharge machining 

(EDM) parallel to the built direction such that each sample includes all layers of the 

gradient. The 2mm thick slices of each graded sample were then embedded in an epoxy 

mount and mechanically polished down to a 0.05 μm surface finish, first using Si carbide 

paper from 600 grit to 1200 grit, followed by diamond paste polishing from 6 μm to 0.05 

μm. These slices were examined with Phenom XL G2 Desktop SEM equipped with 

Energy Dispersive Spectroscopy (EDS). The phase structures of the gradient samples 

were then determined using a Bruker-AXS D8 X-ray diffractometer with Cu Kα 

(wavelength λ =0.154 nm) radiation. A more in-depth look into composition was done 

using Cameca SX Five Electron Microprobe Analyzer (EPMA) using wavelength 

dispersive spectroscopy (WDS), operated at 15 keV and 20 mA. 

3.3. Experimental Results 

As shown in Figure 13, the designed path is simplified and is approximated into 

4 linear gradient segments, that are numbered sequentially starting from 100% W (region 

1) to 100% Fe-9Cr steel (region 4).  Region 4 and 3 were first printed, starting with 

single tracks to identify the appropriate parameter set.  

A standard process parameter matrix was utilized for single tracks of laser speeds 

between 7 and 20 inches/min and laser power between 200W and 400W. Each single  

track was examined using SEM as discussed in the previous section. The images were 

then uploaded into Image J software where the average track widths were measured, and 
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the overall quality of the single tracks was evaluated. This method allowed optimal 

printability areas of the three critical composition points within the Region I of the path 

to be determined. The parameters that resulted in acceptable single-track characteristics  

for printing defect free parts from all three critical compositions were plotted together 

and the overlap region is presented in Figure 19. This region narrowed down the 

optimum process parameter window significantly, allowing the focus to be concentrated 

on a small area of process parameter space, and was used to generate the parameter set 

for the next step, a 10-layer square prism study for the optimization of layer thickness 

and hatch spacing. 

 

 

Figure 19. Optimal printability regions for the critical compositions points in 

Region IV and III of the new gradient path using single track experiments 

described in the text. 
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 Due to the validated optimum processing parameter region in Figure 19 and the 

success in testing these parameters for optimizing layer thickness and hatch spacing, one 

constant parameter set was selected for printing the entire Region IV and III of the path. 

The result seen in Figure 20 the part was relatively dense with minimal micro-cracks. 

From the SEM-BSE micrographs, Figure 21, it can be seen that the relatively density is 

consistent over the entirety of the gradient, and its microstructure evolves into larger 

grains as the sample continues to build up heat.  

The WDS with EPMA evaluation, Figure 22 respectively, shows little deviation 

from the intended composition with an average error of less than 3.6% overall and a 

Figure 20. Region IV to III gradient print of the designed Path from Fe-9Cr to 100 

%Cr. 
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standard deviation of 4.1. There was substantial Fe vaporization near the middle and top 

of the print, where the heat buildup was sufficient to vaporize notable portions due to 

continuous laser exposure and the substate as well as the Ar atmosphere heating up and 

becoming inefficient heat sinks. The sample was printed with no sooting, and the printed 

height was within 0.01 inches of the programmed height which is well within the 

accuracy of the system. The smooth surface and even layers of this part made it the best 

candidate for continuing gradient printing. 

The examination of the entirety of the sample with XRD reviled that the gradient 

is BCC crystal structure as expected and there was no sign of detrimental phases 

appearing. As show in Figure 23 the BCC peaks are those associated with Cr and Fe, 

with a strong preference for the (011) direction.  
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With the success seen in Figure 20, the next two critical points were included, and the 

full gradient was printed as seen in Figure 24. While oxidation and sooting occurred at 

the top of the sample, there was a substantial buildup of tungsten at the top of the 

sample. 

 

 

 

Figure 22. WDS - EPMA results of the Region IV to III gradient print of the 

designed path from Fe-9Cr to 100 %Cr showing the compositional change across 

the height in comparison with the target gradient compositions. 
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  The SEM microstructure show in Figure 25 showed micro-cracking as more 

Chromium is incorporated into the matrix. These cracks are likely the result of  hot 

tearing in the chromium rich grains. The rapid cooling of the weld pool can result in a 

skin that prevents the shrinking of chromium as it solidifies. These small cracks can be 

eliminated by decreasing the solidification rate. Increase the thermal input would also 

allow the diffusion of Chromium and Tungsten into each other decreasing the appetence 

of dendrites.    
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Figure 23. XRD  results of the Region IV to III gradient print of the designed 

path from Fe-9Cr to 100 % Cr.   
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Figure 24.  Full gradient print of the designed Path from Fe-9Cr to 100 %W. 
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The WDS analyses has shown an average 2.08 deviation from expected 

composition and 3.61 stranded deviation as shown in Figure 26.Using XRD, shown in 

Figure 27, it verified that the expected detrimental phases were avoided it this sample. 

Only BCC phase was prevenient though the gradient, with a smooth transition from 

Fe/Cr peak to Tungsten BCC peaks. A slight trace of Cr Oxide causes peak sifting 

around 100% chromium. The and chromium oxides could have resulted from the 

atmosphere in the printing chamber being above the oxidation threshold, will prints are 

done in Ar with less than 100ppm O2 content this may still be too high for Chromium. 

This problem could be solved by purging and atmosphere to a much lower ppm before 

printing or printing in a reducing atmosphere.   
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Even with the appearance of microcracking the results showed that there was no 

trace of the predicted detrimental phase and the compositional accuracy showed the 

method was effective to print the planed path successfully.  

 

 

 

 

Figure 26. WDS - EPMA results of the full gradient print of the designed path from Fe-9Cr to 

100 %W showing the compositional change across the height in comparison with the target 

gradient compositions. 
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Figure 27. XRD results of the full gradient print of the designed path from Fe-9Cr to 100 

%W showing the pecks shifting from Cr/Fe to W as the gradient changes compositionally 

along the planed path. 
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3.4. Summary 

• An extensive exploration of the Fe-Cr-W-Al thermodynamic space was 

conducted to discover deleterious phase regions as well as regions of high 

solidification range and hot cracking susceptibility. The subsequent mapping can 

be used to avoid compositions or compositional gradients that are susceptible to 

cracking during manufacturing and other printability issues. 

• A novel computational methodology was used to design new gradients between 

Fe9Cr and pure W. The designed gradient path significantly reduces the phase 

fraction of deleterious phases when compared to the linear gradient. The 

designed path also satisfies constraints on printability metrics like solidification 

cracking and hot cracking susceptibility. 

• Analysis of the designed path led to a simplified gradient path that is predicted to 

produce no undesirable phases at any temperature. 

• Developed a methodology to successful print a variety of composition with 

varying meting temperature and vaporization points.  

• Successfully printed full gradient that avoided the predicted detrimental phases.  
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4. MACHINE LEARNING FOR POROSITY LOCATION IN ADDITIVELY 

MANUFACTURED PARTS 

4.1. Introduction 

Microstructural features produced by complex metal additive manufacturing 

(AM) processes can strongly influence material properties and are controlled by 

numerous details of the process plan, fabrication environment, and feedstock utilized[1]–

[6].  While some of these contributing factors have a strong stochastic aspect, systematic 

details of the processing plan also both directly drive the material response and affect 

susceptibility to random events, often in a location-specific manner. Significant prior 

work has focused on identifying material-specific global process parameter 

combinations that generate desirable microstructural features over the balance of a 

component, but often do not address location-specific features influenced by the details 

of the processing plan [7]–[9].  In this work, we describe a methodology to develop a 

transfer function that links location-specific processing information with microstructure 

features for a laser powder bed fusion (LPBF) process.  Specifically, as shown in Figure 

S1, we use a classifier to link attributes of the time-temperature history to location-

specific porosity, and then describe how such a tool could be utilized within a process 

design and optimization framework. 

As significant aspects of microstructural feature formation are linked to the local 

thermal history, we hypothesize that such information can be effectively utilized to 

predict likelihood of porosity formation when processing new geometries, utilizing new 

scan path generation algorithms, or a combination of both.  We demonstrate that such a 
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tool can be trained using a combination of thermal history predictions from a fast-acting 

model and destructive characterization data as described in Figure S1. Starting with a 3-

dimensional model, the part is first printed, its microstructure analyzed, and labels of 

important features are generated.  Concurrently, a digital twin of the printing process is 

instantiated and used to generate location-specific process representations.  These are 

then featurized, and labels from the characterization activity are associated with feature 

sets on a location-specific basis. Collectively, these data are used to train a classifier, 

which can then be used to predict microstructural characteristics––in this case, the 

presence/absence of porosity originating from unique aspects of the thermal history of a 

location in the fabricated part––given processing information. Such a capability can be 

used to assess an arbitrary processing plan for a new component, a plan generated by a 

new scan path generation algorithm, or even embedded in an optimization framework to 

generate a novel plan. 

While a range of microstructural features are important in different alloy 

systems, one critical microstructural aspect for mechanical properties, particularly 

fatigue performance, is the presence of porosity or voids.  Pores form due to 3 primary 

mechanisms during LPBF. The keyhole mechanism occurs when conditions are 

sufficient to result in significant vaporization from the melt pool, creating a deep 

depression in the liquid-vapor surface [10]. This feature is often dynamic, unstable, and 

a can frequently collapse on itself, trapping vapor and creating a void [11]–[14]. The 

lack-of-fusion (LOF) mechanism is a result of inadequate melting of material due to 

insufficient energy input, poor laser path, unsatisfactory spreading of powder, or a 



 

70 

 

combination of these factors. [10], [15]. The third mechanism is the result of trapped 

gases during powder production[10].  Pores formed during e.g. gas atomization can be 

retained through the LPBF process as the duration in the molten state is not long enough 

for these bubbles to reach the liquid-vapor interface and break [16].   

In situ methods to reliably identify porosity are in development [17]–[20], and 

post-print inspection techniques such as x-ray computed tomography (CT) are more 

commonly utilized for this purpose. While in situ and post build inspections will likely 

remain necessary for items with stringent reliability requirements, it is highly desirable 

to optimize processing plans in order to minimize the probability of porosity formation 

during printing.  Significant previous work has focused on porosity across the entirety of 

the part. Tapia et al., for example, developed a statistical model to estimate porosity 

based on the function of laser power and scanning speed [21]. While such methods can 

be applied to decrease the porosity of the full part, they do not account for the full scan 

path or geometry details. Ning et al. developed a model based on physics and geometry 

to predict porosity; however, this was to predict the overall porosity in a part and again 

does not identify location-based formation within the part [8], [9].  

The present method takes a finer grained approach, as summarized in Figure 28. 

Our framework starts with a given part, whose fabrication via 3D printing has already 

been specified through a layer-by-layer printing protocol. Once the process plan has 

been defined, the part is fabricated, while the same process plan is executed, through an 

efficient thermal model, in order to attain a ‘digital twin’. After fabrication, the part is 

characterized on a layer-by-layer basis, identifying microstructural features of interest––
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in this case, porosity. The ‘digital twin’ of a specific layer is in turn represented in terms 

of a collection of location specific thermal histories that are time- and location-aligned to 

the fabrication protocol used in the real 3D printed part. Human-assisted automated 

schemes are used to identify microstructural features of interest in a cross section in 

order to generate labels (e.g. pore/no-pore). In order to further reduce the dimensionality 

of the problem, specific features in the location-specific thermal histories are extracted in 

order to obtain local ‘thermal signatures’. The thermal signatures are then used as 

features in order to train a classifier against the microstructure-specific labels generated 

from the experimental observations. 
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Preliminary findings can be seen in Appendix C.  

4.2. Results and Discussion 

In the Methods section we discuss in detail the different elements of the 

framework described above. Here, we limit ourselves to present the main results of the 

present work. The curating and data sampling to ensure independence largely determines 

a classifiers’ usefulness and accuracy. This work aims to test a framework that takes 

experimentally created parts and links internal microstructural features to thermal curve 

data for porosity identification.  To begin data processing, first the dataset of thermal 

history peaks need to be normalized. This is especially important for classifiers like K-

nearest neighbour (KNN) and support vector machine  (SVM) as their effectiveness are 

greatly affected by the data distribution [22]. 

The methodology to normalize the data was approached from 3 directions, as 

shown in Figure 27, first a standard scalar was used to produce a unit vector from the 

give peak intensity data. This method had the best overall performance for SVM and 

KNN, it also had notably fastest training test times over the 2 other normalization 

processes. The second method used to normalize the data using the mean and standard 

deviation of all temperature and all-time features. This normalization resulted 
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Figure 29. Three methods of standardization of data a) Standard Scaler 

methodology b) scaled with mean and standard deviation of all temperature and 

all time features for scaling c) standardized with predefined temperature and 
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in worse performance for SVM and KNN while it was relatively consistent for 

data tree as normalization does not play a large part in the method of data separation in 

that technique. The last normalization method used a predefined temperature and time 

scale for standardization. However, this normalization methodology did not offer an 

improvement over standardized normalization ,which was selected for the remained of 

this study.  

The next important metric to consider is the number of features and their effect 

on accuracy of the classifier. In this case, the number of features was directly linked to 

the number of peaks in the thermal curve at a given location. The classifiers’ ability to 

separate the pore thermal curves from non-pore thermal curves increased initially to 5 

peaks, as demonstrated in Figure 30. The accuracy initially increases with increasing 

number of peaks, particularly for the SVM and KNN classifiers, with relatively little 

improvement as feature sized increased beyond this value. The data tree classifier on the 

other hand rises with the number of features. However, this can be misleading as data 

tree will begin over fitting as more features are introduced, especially if those features 

add little value to the data separability [23]. So, to strike a balance between accuracy and 

computation time, 5 peaks were used for the following evaluations resulting in 9 total 

features: 5 peek magnitudes and 4 times between peaks.  
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Once the number of features were selected and the normalization technique for 

those features was implemented, the effect of the training set size was assessed. The 

training set size needs to be selected to ensure the classifiers see each pore type and there 

is enough information to effectively select hyper-parameters for each classifier. In this 

case training set of size larger than 300 shows the best validation accuracy, demonstrated 

in Figure 31. All three classifiers plateau around 65% accuracy and do not show 

improvement as more data points are used to train the classifier. All the classifiers all 

have multiple hyper-parameters which can be tailored to achieve the optimal classifier 

for this data set, however even with the refinement the data plateau. This leads us to 
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believe that the classifiers are not over fitting, but instead hitting a natural limit of the 

available data.     

 

  

In this work the validation accuracy of the classifier stabilizes around 300 

training size. This result could stem from the inherent limitation of the available data. In 

this work there are only 483 unique pores and as the data are evenly split into 

independent training and validation sets as described in the Methods section,  a 

maximum of 241 unique pores are available for training. For cases with less than 300 

thermal histories, additional unique points are added to the training set as its size is 

increased.  Beyond this size though, addition of thermal histories no longer introduces 

new pores, but rather begins to better represent the variance in thermal history within the 

pores already in the set.  
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Overall, the classifiers reach a max of 65% in their ability to take a single layer of a 

cylinder and evaluate the thermal histories to determining if porosity had formed. This 

result shows a direct link between porosity and thermal histories. It also shows that a single 

layer thermal history is not enough to completely identify porosity formation. For a full 

understanding of porosity formation multiple layers would have to be considered as 

processing on subsequent layers can either fill the porosity or vaporize material. Even if 

such data were introduced it would be impossible to account for stochastic events that 

occur during printing, and 100% accuracy is never expected. However, this methodology 

can be applied to evaluate effective scanning strategies.  

For this method SVM or KNN stand out as the best classifiers for this data set 

which effectively separates the data set without over fitting if the training set is kept 

relatively small around 300 unique points from both classes. These methodologies show 

the potential for this methodology to become an effective tool not only for porosity 

identification but for all thermally linked microstructural features. In order to increase is 

effectiveness more data is required. Since porosity are relatively rare events and there 

are very few unique incidences available for training more layers would be required to 

encompass the thermal relationship. It would also be beneficial to introduce a variety of 

varying geometries to add variety in scan patterns.  

4.3. Methods 

Lack of density features were identified in a Ti-6Al-4V column which was 

printed with conditions as described in Ref Schwalbach et al. [24]. This column was 

robotically serial sectioned [25] with slices parallel to the build direction using optical 
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bright-field microscopy with a pixel size of 2.084um/px.  Approximately 120 slices with 

a mean slice spacing of 1.0µm was collected.  A single slice with significant lack of 

density was identified for further analysis. The slice image was processed to identify 

pores using a robust automatic thresholding technique [26], [27] followed by 

morphological operations to remove small features and scratches [21] and finally, the 

binary images were segmented, and a reconstruction of the scan path corresponding to 

the same layer was manually aligned the segmented image.  To final pore mask 

consisting of 54,007,801 pixels 18,083,983 were from the actual cylinders of those 

240,947 were from open pore locations. From the 483 unique identified pores only 1.3% 

of cylinder was identified as containing porosity. To create the data set 20, 000 pixels 

were selected randomly from each of the two classes  i.e. “pore” and “No Pore” this 

create a data set of 40,000 pixels. The thermal histories were computed on the unique 

pixels using parameters described in the Sample Linked Parameters column of Table 2.  
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Table 2. List of Process and Thermophysical Parameters 

Property Phantom Parameters Sample Linked Parameters 

P [W] 200 290 

V[mm s-1] 1000 1300 

4 σx = 4 σz [μm] 75 75 

η 1.0 0.5 

h [μm] 100 140 

T0 [℃] 25 80 

⍴[kg m-3] 4252 4252 

cp [J kg-1 K-1] 679 679 

Κ [W m-1 K-1] 22.9 22.9 

Δt [μs] 20 20 

rcutoff [mm] 1 1 

tcutoff [s] ∞ ∞ 

 

The Discrete Source Model used to create the thermal curves for every selected 

pixel is a computationally inexpensive method that captures energy input and the 

thermal conduction to estimate local thermal history and is described in more detail in 

[24]. While the model uses a simple temporal discretization scheme to estimate the 

behavior of complex scanning trajectories and does not explicitly account for radiation 

and evaporation, it has been shown to capture many important aspects of melt pool 

geometry in validation activities. 
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4.3.1. Peak Identification and Feature Creation 

Peaks in each thermal history are identified using the find_peaks function in the 

scipy.signal module [28]. A peak is defined as a local maximum in the temperature as a 

function of time curve.  Furthermore, a peak is required to have a temperature greater 

than 100°C and be more than 10 time steps from an adjacent peak.  If multiple peaks are 

identified within this distance, only the most intense peak is retained.   From this initial 

list of peaks, the subset of the Npeaks most intense peaks are selected, and the absolute 

times associated with these events are identified.  To remove information about the 

absolute timing, the chronologically earliest peak is used as a local time datum and its 

time is subtracted from all remaining times to produce a new set of time features.  With 

this definition, the first time is always zero, and is therefore dropped from the feature 

vector.  Also, if the total number of peaks present in a thermal history is less than 

Npeaks, then the remaining expected peaks are padded with 0 intensity and times of 0.  

In this manner, for choice Npeaks the feature vector will have 2 Npeaks-1 components. 

4.3.2. Feature Standardization 

The native features used are measured in different units and span several orders 

of magnitude in scale.  Such a feature set typically requires some form of feature scaling 

or standardization for the best performance of some classifiers [22]. Three methods for 

scaling the native feature vectors were tested including the typical z-score method, a 

modified z-score method, and a physically informed approach.  For the standard z-score 

method, the population mean and standard deviations are calculated independently 

across the full population of each component of the feature vector.  The component wise 
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mean value is then subtracted, and the resulting values are divided by the component 

wise standard deviation, brining each feature component’s distribution to have a zero 

mean and unit variance, which is desirable for efficient training of some classifiers.  This 

approach removes information about the relative magnitude between all feature types, 

including those measured in like units (e.g., temperature of the tallest and next tallest 

peak), which may actually be undesirable.  One approach to retain this information 

would be to explicitly add additional features to encode these differences, but this would 

essentially double the size of the feature vector.  Another approach is to modify the 

scaling methodology.  For the modified z-score approach, instead of computing the 

mean and standard deviation for each feature component independently, we compute 

these quantities across all values in all feature components measured in the same 

physical units.  In the present case, there is one set of features with units of temperature, 

and another with time.  The final approach tested was to use a physics informed method 

to select characteristic temperature and time scales for the standardization process.  In 

this case, we subtracted off the material’s melting temperature from all temperature 

features, and then divided by 3 times the same temperature.  For the time features, we 

subtracted off the characteristic time associated with thermal diffusion across a distance 

of 1 mm.  Across these three methods, the standard z-score approach resulted in feature 

distributions that most closely followed the desired zero-mean unit-variance target, and 

the physics informed was the most independent of the input data. 
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4.3.3. Training and Validation 

There are only 483 unique pores represented in the original image, meaning that 

an individual pore is represented by multiple thermal histories.  Furthermore, larger 

pores will contribute more thermal histories to the overall population proportional to 

their relative area.  While the thermal histories coming from different locations within 

the same pore are not identical, their features are likely to be highly correlated.  A purely 

random assignment of thermal histories to training and validation sets would result in 

correlated features in both sets, and this could lead to an inflated validation score, 

particularly as the set sizes are increased.  To avoid such a situation, we first divide the 

population of pores into unique subsets for classifier training, and another for validation, 

with no unique pores contributing thermal histories to both subsets.  Furthermore, we 

desire that the original size distribution (and potentially pore formation mechanisms) is 

faithfully reproduced in both subsets to the extent possible.  To achieve this, we first 

order the unique pore indices according to their size, and from this size-ordered list we 

alternately assign the pores to either the training or validation subset.   

Once the two subsets are selected, we train 3 different types of classifier using 

data from the training subset, including a support vector machine (SVM), k-nearest 

neighbors (NN), and a decision Tree (DT).  Because some training operations can take 

significant time, we select a subset of the training set of size Ntrain.  This subset is then 

used in a 100 iteration random search for optimal hyperparameters.  From this 

population of 100 hyper parameter combinations, the one achieving the highest 5-fold 

cross-validation score is selected as the best-performing classifier, and is then employed 
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to classify points from the as yet unseen validation set.  This operation is then repeated 

15 times, and the mean and standard deviation of the validation scores of the best 

performing classifiers is determined and recorded.  We also systematically increase 

Ntrain to determine when adding additional training data is no longer worth the 

additional training time, particularly for the support vector machine.  All calculations are 

performed using the scikit-learn library [29]. 

Additionally, Npeaks included in the feature set was varied from Npeaks=2 up to 

10.  For this test, Ntrain was fixed at 300. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

85 

 

4.4. References 

[1] Z. Snow, A. R. Nassar, and E. W. Reutzel, “Invited Review Article: Review of 

the formation and impact of flaws in powder bed fusion additive manufacturing,” Addit. 

Manuf., vol. 36, p. 101457, Dec. 2020, doi: 10.1016/j.addma.2020.101457. 

 

[2] S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, and P. B. 

Prangnell, “XCT analysis of the influence of melt strategies on defect population in Ti–

6Al–4V components manufactured by Selective Electron Beam Melting,” Mater. 

Charact., vol. 102, pp. 47–61, Apr. 2015, doi: 10.1016/j.matchar.2015.02.008. 

 

[3] H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, “Analysis of defect generation 

in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes,” 

Addit. Manuf., vol. 1–4, pp. 87–98, Oct. 2014, doi: 10.1016/j.addma.2014.08.002. 

 

[4] J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On 

the mechanism of porosity formation during welding of titanium alloys,” Acta Mater., 

vol. 60, no. 6, pp. 3215–3225, Apr. 2012, doi: 10.1016/j.actamat.2012.02.035. 

 

[5] M. Iebba et al., “Influence of Powder Characteristics on Formation of Porosity in 

Additive Manufacturing of Ti-6Al-4V Components,” J. Mater. Eng. Perform., vol. 26, 

no. 8, pp. 4138–4147, Aug. 2017, doi: 10.1007/s11665-017-2796-2. 

 

[6] S. Katayama, N. Seto, J.-D. Kim, and A. Matsunaw, “Formation mechanism and 

reduction method of porosity in laser welding of stainless steel,” Int. Congr. Appl. 

Lasers Electro-Opt., vol. 1997, no. 1, pp. G83–G92, Nov. 1997, doi: 10.2351/1.5059741. 

 

[7] G. Tapia, A. H. Elwany, and H. Sang, “Prediction of porosity in metal-based 

additive manufacturing using spatial Gaussian process models,” Addit. Manuf., vol. 12, 

pp. 282–290, Oct. 2016, doi: 10.1016/j.addma.2016.05.009. 

 

[8] J. Ning, D. E. Sievers, H. Garmestani, and S. Y. Liang, “Analytical modeling of 

part porosity in metal additive manufacturing,” Int. J. Mech. Sci., vol. 172, p. 105428, 

Apr. 2020, doi: 10.1016/j.ijmecsci.2020.105428. 

 

[9] J. Ning, W. Wang, B. Zamorano, and S. Y. Liang, “Analytical modeling of lack-

of-fusion porosity in metal additive manufacturing,” Appl. Phys. A, vol. 125, no. 11, p. 

797, Nov. 2019, doi: 10.1007/s00339-019-3092-9. 

 

[10] W. J. Sames, F. Medina, W. H. Peter, S. S. Babu, and R. R. Dehoff, “Effect of 

Process Control and Powder Quality on Inconel 718 Produced Using Electron Beam 

Melting,” in 8th International Symposium on Superalloy 718 and Derivatives, John 

Wiley & Sons, Ltd, 2014, pp. 409–423. 

 



 

86 

 

[11] M. M. Attallah, R. Jennings, X. Wang, and L. N. Carter, “Additive 

manufacturing of Ni-based superalloys: The outstanding issues,” MRS Bull., vol. 41, no. 

10, pp. 758–764, Oct. 2016, doi: 10.1557/mrs.2016.211. 

 

[12] C. Zhao et al., “Real-time monitoring of laser powder bed fusion process using 

high-speed X-ray imaging and diffraction,” Sci. Rep., vol. 7, no. 1, Art. no. 1, Jun. 2017, 

doi: 10.1038/s41598-017-03761-2. 

 

[13] R. Cunningham, S. P. Narra, T. Ozturk, J. Beuth, and A. D. Rollett, “Evaluating 

the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via 

Synchrotron X-ray Microtomography,” JOM, vol. 68, no. 3, pp. 765–771, Mar. 2016, 

doi: 10.1007/s11837-015-1802-0. 

 

[14] R. Cunningham, S. P. Narra, C. Montgomery, J. Beuth, and A. D. Rollett, 

“Synchrotron-Based X-ray Microtomography Characterization of the Effect of 

Processing Variables on Porosity Formation in Laser Power-Bed Additive 

Manufacturing of Ti-6Al-4V,” JOM, vol. 69, no. 3, pp. 479–484, Mar. 2017, doi: 

10.1007/s11837-016-2234-1. 

 

[15] L. N. Carter, K. Essa, and M. M. Attallah, “Optimisation of selective laser 

melting for a high temperature Ni-superalloy,” Rapid Prototyp. J., vol. 21, no. 4, pp. 

423–432, Jan. 2015, doi: 10.1108/RPJ-06-2013-0063. 

 

[16] V. Juechter, T. Scharowsky, R. F. Singer, and C. Körner, “Processing window 

and evaporation phenomena for Ti–6Al–4V produced by selective electron beam 

melting,” Acta Mater., vol. 76, pp. 252–258, Sep. 2014, doi: 

10.1016/j.actamat.2014.05.037. 

 

[17] B. Zhang, S. Liu, and Y. C. Shin, “In-Process monitoring of porosity during laser 

additive manufacturing process,” Addit. Manuf., vol. 28, pp. 497–505, Aug. 2019, doi: 

10.1016/j.addma.2019.05.030. 

[18] J. A. Slotwinski and E. J. Garboczi, “Porosity of additive manufacturing parts for 

process monitoring,” AIP Conf. Proc., vol. 1581, no. 1, pp. 1197–1204, Feb. 2014, doi: 

10.1063/1.4864957. 

 

[19] W. Ren and J. Mazumder, “In-situ porosity recognition for laser additive 

manufacturing of 7075-Al alloy using plasma emission spectroscopy,” Sci. Rep., vol. 10, 

no. 1, Art. no. 1, Nov. 2020, doi: 10.1038/s41598-020-75131-4. 

 

[20] J. A. Slotwinski, E. J. Garboczi, and K. M. Hebenstreit, “Porosity Measurements 

and Analysis for Metal Additive Manufacturing Process Control,” J. Res. Natl. Inst. 

Stand. Technol., vol. 119, pp. 494–528, Sep. 2014, doi: 10.6028/jres.119.019. 

[21] P. Soille, Morphological Image Analysis: Principles and Applications, 2nd ed. 

Berlin Heidelberg: Springer-Verlag, 2004. 



 

87 

 

 

[22] G. M. Weiss and F. Provost, “The effect of class distribution on classifier 

learning: an empirical study,” Aug. 2001, doi: 10.7282/t3-vpfw-sf95. 

 

[23] T. Wang, Z. Qin, Z. Jin, and S. Zhang, “Handling over-fitting in test cost-

sensitive decision tree learning by feature selection, smoothing and pruning,” J. Syst. 

Softw., vol. 83, no. 7, pp. 1137–1147, Jul. 2010, doi: 10.1016/j.jss.2010.01.002. 

 

[24] E. J. Schwalbach, S. P. Donegan, M. G. Chapman, K. J. Chaput, and M. A. 

Groeber, “A discrete source model of powder bed fusion additive manufacturing thermal 

history,” Addit. Manuf., vol. 25, pp. 485–498, Jan. 2019, doi: 

10.1016/j.addma.2018.12.004. 

 

[25] M. Uchic et al., “An Automated Multi-Modal Serial Sectioning System for 

Characterization of Grain-Scale Microstructures in Engineering Materials,” in 

Proceedings of the 1st International Conference on 3D Materials Science, Cham, 2016, 

pp. 195–202, doi: 10.1007/978-3-319-48762-5_30. 

 

[26] J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple 

image statistic,” Comput. Vis. Graph. Image Process., vol. 30, no. 2, pp. 125–147, May 

1985, doi: 10.1016/0734-189X(85)90093-3. 

 

[27] M. H. F. Wilkinson, “Optimizing Edge Detectors for Robust Automatic 

Threshold Selection: Coping with Edge Curvature and Noise,” Graph. Models Image 

Process., vol. 60, no. 5, pp. 385–401, Sep. 1998, doi: 10.1006/gmip.1998.0478. 

[28] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in 

Python,” Nat. Methods, vol. 17, no. 3, Art. no. 3, Mar. 2020, doi: 10.1038/s41592-019-

0686-2. 

 

[29] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. 

Res., vol. 12, no. 85, pp. 2825–2830, 2011. 

 

 

 

 

 

 

 

 



 

88 

 

5. CONCLUSIONS 

 

5.1 Conclusions 

This work shows  the ability of creating gradients to avoid detrimental phases. 

This was first performed in 3 powder space with Cr, 316SS, and Ni demonstrating both 

the ability and the necessity of avoiding detrimental phases such as sigma. This research 

shows that this methodology could be translated to tangible functional gradients with no 

detrimental phases even after heat treatment. The four-powder system shows the ability 

to extend path planning into a more complex space, demonstrating the need for a robust 

printing methodology for powders that vary in thermodynamic properties. This printing 

path planning method was applied to a complex gradient and successfully avoided the 

predicted detrimental phases. However, the results also highlight the need to expand 

algorithm to avoid all predictable detrimental phases, since stochastic events can still 

occur during printing. Overall, printing the predicted computational path is an effective 

methodology for preventing failure in functional gradients.  

  This work also demonstrates the relationship between heat input and the resulting 

microstructure, establishing a methodology that allows heat induced microstructural 

features to be identified though their thermal features. The method’s identification 

potential was successfully demonstrated on a small set of porosity features. The 

discussion of the data preparation methodology demonstrates the method’s robustness 

and shows its potential.  

In summary, multiple methodologies were established for printing complex 

systems while accounting for predictable detrimental phases. Induced microstructures 
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can all be predicted with a large degree of success. Both of these methodologies help 

increase the probability of  successfully printing novel parts.  

5.2 Future Work 

The next step in the gradient work is to expand this research into other functional 

gradients that have applications in the real world. One of the main focuses should be a 

stainless-steel gradient to aluminum, which is of strategic importance in the aerospace 

industry, specifically because of the strength of steel and the lightness of aluminum.  

However, steel and aluminum form brittle intermetallics when the two materials 

are combined and tend to crack because of the brittle phases. The stainless-steel to 

aluminum functional gradient is an ideal system for the expansion of the methodology 

specifically due to the number of intermetallics that can form. The proposed path could 

consist of Fe, Ni, Cr, Ti, and Al. The biggest concern is that while Al has a melting point 

of 660.3°C, it has a very high reflectivity. Therefore, when Al particles are hit with a 

laser, most of the energy is reflected and not absorbed into the particle to heat it up. This 

would require the use of more powerful lasers while printing Al which would result in 

the vaporization of the higher melting particles like Cr, Ni, and Fe. To overcome this, the 

printing parameters need to be graded along with the composition in order to create 

geometrically accurate parts.  

Alongside a new gradient, further study of the focal point’s role in printing needs 

to be investigated. The focal point of the laser directly controls the spot size and 

therefore the amount of heat input. The larger the spot size, the more evenly the heat is 
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applied over the part for a longer time. This could be used to print difficult materials 

such as refractory alloys and aluminum.  

Future work for the microstructure project focuses on expanding the training data 

set. This can be accomplished using one of three methods. The first method incorporates 

more slices of the previously printed part: pores are rare events and incorporating more 

slices would widen the data set. The second method expands the thermal histories’ time 

to include thermal events from the next deposition layer: this would capture more 

features for training. The third method prints a variety of shapes that have vastly 

different printing strategies: this would allow for different types of porosity to be added 

to the training set. It would be best to include all three methods, as this would offer the 

most robust data set. Furthermore, the porosity data set is easily identifiable, but this 

methodology can easily be extended to other thermally activated microstructural features 

such as grain size.   
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APPENDIX A 

COMPUTATIONAL DESIGN OF PATH-PLANNING ALGORITHM 

 

A.1 Computational Methodology for the Design of Functional Gradients 

The formation of undesired intermetallic phases that are detrimental to 

mechanical properties is a significant challenge in the manufacturing of compositionally 

graded alloys. Due to the creation of a localized melt pool during direct energy 

deposition (DED) additive processes (including LENS technology) and the subsequent 

rapid solidification, the microstructure of additively manufactured materials, in terms of 

present phases, often deviates from what can be expected under equilibrium conditions. 

As such, CALPHAD based computational thermodynamics software cannot accurately 

predict the exact phase constitution of as-built AM materials. However, one can examine 

equilibrium CALPHAD predictions over a wide range of temperatures to predict all the 

possible phases that might form at a given composition, at any stage of fabrication or 

post-processing. By ensuring detrimental phases are not predicted to appear in this wide 

range of temperatures, designed FGMs can be made more robust with respect to phase 

kinetics and potential heat treatments. Increasing the dimensionality of the search space 

to include temperature severely limits the possibility to visualize a potential gradient 

path. The difficulty of visualizing the design space would also increase dramatically as 

more elements are added to the FGM. In order to design FGMs that occupy such high 

dimensional spaces it is therefore necessary to use computational design methods that 

are not limited by the inability of humans to navigate spaces of N3 dimensions. 
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Representing FGM design philosophies, like avoiding detrimental phases, preventing 

steep stress gradients, or achieving desired properties, in an algorithmic manner will 

therefore allow materials scientists to take full advantage of computational models. 

Before implementing the proposed methodology algorithmically, the FGM 

design problem was formalized as an optimization problem, as shown in Kirk et al. [23]. 

Consider the composition space of the FGM as the state space Zd with dimensionality d 

equal to the total number of unique relevant elements. A point z in the state space is 

defined by the fractions of each of the relevant elements, as shown in Eq. (1), where the 

total composition must sum to unity and no fraction can be less than zero or greater than 

unity. 

         𝑧 = {𝑥1, … , 𝑥𝑑 : ∑ 𝑥𝑖 = 1 and 𝑥𝑖 ≥ 0 ∀ 𝑖𝑑
𝑖=1 }                    (1) 

Let pu ( z, T )→ [0, 1] be a function (e.g. a CALPHAD model) that maps a unique 

composition (a point z in state space Zd) at temperature T to an estimated fraction of 

undesirable phase u. Subsequently, let Zobs ⊂ Zd (obs: obstacle) be defined as the region 

of composition space where the predicted undesirable phase fraction, pu, exceeds a user-

defined allowable λu for any temperature, T ∈ [Tr, Tm], from room temperature, Tr, to 

manufacturing temperature, Tm, as seen in Eq. (2). This obstacle region, Zobs, provides a 

conservative estimate of the compositions that might produce undesirable phases at any 

temperature during the complicated thermal history of an additive manufacturing 

process. 

𝑍obs = {𝑧 ∶  𝑝𝑢(𝑧, 𝑇) > 𝜆𝑢 ∃ 𝑢, 𝑇}                                               (2) 

Next, let the complement of the obstacle region, Zfree = Zd\Zobs, rep- resent the 

free space. As shown in Eq. (3), the free space represents the region of the composition 
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space where the predicted undesirable phase fraction is below the user-defined 

allowable, λu, for all temperatures be- tween room temperature and the manufacturing 

temperature. 

𝑍free = {𝑧 ∶  𝑝𝑢(𝑧, 𝑇) ≤ 𝜆𝑢 ∀ 𝑢, 𝑇}                     (3) 

Let the continuous function σ : [0, 1] → z be a path in composition space. This 

path represents the compositions of a gradient between two materials. This path is 

collision-free if and only if σ(α) ∈ Zfree∀ α ∈ [0,1] or, in other words, if every 

composition in the gradient material is predicted to produce a fraction of undesirable 

phases that is less than or equal to the allowable fraction in the temperature range 

defined. Let zinit and zgoal be two target materials at each end of an FGM. A path, σ, is a 

feasible design for the FGM if it is collision-free and σ(0) = zinit and σ(1) = zgoal. 

Lastly, let c : σ → R≥0 be a cost function that relates a path to a strictly positive 

cost. The cost returned by this cost function is zero if and only if σ(α)= σ(0) ∀ α ϵ [0, 1] 

(i.e. the path is a single point). The objective of the proposed FGM design methodology 

is to find the path in composition space, σbest, that minimizes this cost function while also 

avoiding undesirable phases. In other words, σbest is the argument that minimizes the cost 

function c(σ) subject to path feasibility constraints. This objective is summarized in the 

optimization problem formulation below. 
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𝐅𝐢𝐧𝐝  𝜎best = 𝐚𝐫𝐠𝐦𝐢𝐧
𝝈

𝑐(𝜎) 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝜎(𝛼) ∈ 𝑍free∀α ∈ [0,1] , 

  𝑍free = {𝑧 ∶  𝑝𝑢(𝑧, 𝑇) ≤ 𝜆𝑢∀ 𝑢, 𝑇} ,       (4) 

  𝑇 ∈ [𝑇𝑟 , 𝑇𝑚] , 

  𝜎(0) = 𝑧init , 

  𝜎(1) = 𝑧goal 

This problem formulation shares many characteristics with the motion planning 

problem formulation in the robotics community [36]–[38]. As such, a motion planning 

algorithm was adapted to execute this problem formulation computationally. Motion 

planning algorithms plan a robot's motion in its environment such that obstacles are 

avoided and path length, or some other cost which can be computed as a function of the 

path taken, is minimized [39]–[41]. By applying these algorithms to composition space, 

FGM gradient paths can be designed that avoid detrimental phase regions and are 

optimal with respect to some cost function. 

Most motion planning algorithms require either a complete, explicit 

representation of the obstacles in the environment (detrimental phases in composition 

space) or numerous samples of the environment (often in the tens of thousands for just a 

2D space) [41]–[43]. As CALPHAD software will be used to predict the presence of 

detrimental phases for a given composition and temperature, sampling CALPHAD 

models directly could become prohibitively expensive, especially in large compositional 

spaces (3+ elements). To reduce the number of samples needed from phase equilibrium 

predictions to represent the detrimental phase region(s), thermodynamic spaces defined 

by CALPHAD models were efficiently sampled by a Constraint Satisfaction Algorithm 
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(CSA) developed by Galvan et al. [44] for the identification of specific phase regions in 

multicomponent systems. The CSA has been shown be- fore to be effective in 

identifying arbitrary, designed-for, phase constitutions in high entropy alloy (HEA) 

systems [45]. Given initial samples, the CSA creates a Support Vector Data Description 

(SVDD) [46], a machine-learning classifier similar to a support vector machine [47], 

[48].  That classifies the region of interest as containing detrimental phases. The CSA 

then grows the SVDD by sampling the thermodynamic space along directions 

perpendicular to the SVDD boundary in the region where the boundary is least defined. 

Once trained in this manner, the SVDD can be cheaply evaluated to classify points in 

composition- temperature space as lying in the detrimental phase region or not. In this 

way, the CSA uses a minimal number of samples derived from thermodynamic 

equilibrium calculations to create a representation of the detrimental phases that is much 

cheaper to evaluate than the use of the thermodynamic model directly. 

With a model of detrimental phase regions that can be cheaply evaluated, many 

of the motion planning algorithms that require numerous samples of the environment 

could be used. The Rapidly-Exploring Random Tree (RRT) [36], [41] class of 

algorithms was chosen for its general applicability and scalability to high dimensional 

spaces. More specifically, a fixed-node implementation of the optimal RRT [36] 

(RRT*FN) developed by Adiyatov et al.[37] was used as it can find paths that are 

optimal to some cost function while remaining under a preset limit on computational 

expense. In short, the RRT*FN builds a tree of nodes by sampling the environment 

randomly. New samples are connected to the node in the tree that minimizes cost (i.e. 
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the parent node). In the basic case where the cost is path length, the parent node is 

simply the node nearest to the candidate node. Connections are only allowed if no 

obstacles lie along the line connecting the candidate node and the parent node. To check 

if any obstacles lie along the connection, the connection is discretized into a fixed 

number of points that are then evaluated by the obstacle model provided by the CSA. If 

any point contains detrimental phases, the connection is said to collide with an obstacle 

and is disallowed.  

After a new node is connected to the tree, an optimization routine rewires the 

connections between the nodes to optimize the path cost globally. This process is 

repeated until a complete path be- tween target compositions is found to minimize the 

given cost function. A visual summary of this process can be seen in Figure 34.  

Figure 35 summarizes the computational methodology used in this work for the 

design of FGMs. First, a CSA is used to sample the thermodynamic space defined by 

CALPHAD models and create a simplified model of where detrimental phases lie in 

composition space. A motion planning algorithm (RRT*FN) is then used to find a path 

in composition space be- tween two materials that does not contain these detrimental 

phases. The resulting path represents the compositions of the optimized gradient 

material. More information about the design problem formulation and the algorithms 

used within the methodology can be found in Kirk et al. [23]. 

 

  



 

97 

 

 

  

Figure 32. a) A simplified example of the RRT*FN algorithm. Consider point z1 

to have been randomly sampled from the composition space of elements X, Y, 

and Z. A connection is attempted to the existing tree, but the connection is not 

allowed because point z1 is in the obstacle region containing undesirable phases. 

Consider another randomly sampled point z2 that is not in the obstacle region. 

Neighboring nodes in the existing tree within a defined distance (shown as a 

dashed circle) of the newly sampled point are examined for connection to point 

z2. b) The node that minimizes path cost (path length in this case) to zinit is 

chosen to connect with z2 and the connection passes because the connecting 

segment does not intersect the obstacle region. c) At a future “rewiring” step, a 

new connection is made to z2 that reduces the cost of the path to another node in 

the tree. d) If the fixed number of allowed nodes is exceeded in the tree, 

extraneous nodes are removed during the “removal” step. 
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 To validate the viability of the method introduced above, a case study was 

conducted in the iron-nickel-chromium (Fe-Ni-Cr) system. This system was chosen 

given its relevance to many alloys of interest to the additive manufacturing community, 

including Inconel type alloys and stainless steels. In the first step, two detrimental 

intermetallic phases, σ phase and CrNi2, were identified by examining literature and 

conducting a dense sampling of the CALPHAD model in composition-temperature 

space. Precipitation of the σ phase with a tetragonal crystal structure leads to loss of 

ductility and toughness in stainless steels [24]. The CrNi2 phase with an orthorhombic 

structure is an incoherent intermetallic precipitate and causes embrittlement. 

 

More than 500,000 samples of Thermo-Calc's TCHEA2 database[49], [50] were 

considered in an equally spaced grid sampling of the Fe- Ni-Cr space from 300 to 1100 

Figure 33. Flow diagram that summarizes the model sequence in the proposed 

methodology for designing Functionally Graded Materials (FGMs) without forming 

detrimental phases. A Constraint Satisfaction Algorithm (CSA) samples CALPHAD 

software to form an obstacle model that represents detrimental phase locations in 

composition-temperature space. This model is then sampled by the motion planning 

algorithm to plan a path. RRT*FN: Rapidly-Exploring Random Tree algorithm with a 

Fixed-Node implementation. 
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K. These samples were used to visualize the locations of CrNi2 and σ phase in the Fe-Ni-

Cr ternary phase diagram, as seen in Figure 34a. From this, it can be observed that each 

phase occurs at a different temperature regime: CrNi2 appears at lower temperatures 

(300–700 K) while the σ phase occurs at higher temperatures (700–1100 K). For this 

reason, it would be difficult to accurately visualize these phases in a single isothermal 

ternary phase diagram. However, after projecting the maximum phase fractions 

encountered in the temperature dimension onto the composition plane, a 2-D 

visualization of the locations of both phases in thermodynamic space can be achieved, as 

seen in Figure 34b. Note that the phase fraction of CrNi2 in- creases as compositions 

near its compound line (approx. 33% Cr and 67% Ni) and, similarly, σ phase fraction 

increases to a maximum as com- positions approach the center of the σ phase stability 

area (pointed by arrows in Figure 34b). 
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Figure 34. A3. a) A visualization of the locations of CrNi2 and σ phases in the Fe-

Ni-Cr thermodynamic space. The Cr-Ni and Cr-Fe binary phase diagrams are 

shown on the Ni-T and Fe-T planes respectively to assist in visualization. b) The 

maximum phase fractions of CrNi2 and σ phases projected in the temperature 

dimension from 300 to 1100 K. The boundary estimated by the Constraint 

Satisfaction Algorithm (CSA) and the starting points used to initialize the CSA 

(taken at 1100 K) are also shown. 

 

Before path planning, the CSA was used to construct an approximate model of 

the locations of both phases in the phase diagram. Initialized with just ten points at 1100 

K, shown in Figure 34b, the CSA adaptively sampled the CALPHAD-defined 

thermodynamic space (using Thermo-Calc's TCHEA2 database [49], [50] to 

approximate the locations where the phase fractions of CrNi2 and σ phase exceed 1 

mol%. Figure 34b shows the CSA estimate of the phase region boundaries after 3000 

samples. The CSA boundaries generally underestimate the size of the true phase regions, 

but the regions missed by the CSA have smaller phase fractions (most are b30%). This 

example of the CSA is the most general case as few initial points were provided and 

both phase regions were found simultaneously. In Kirk et al. [23], the CSA was applied 

to the same system and phases, but the CSA boundaries were shown to nearly match the 

true boundaries. In that work, the CSA was applied to each phase separately with initial 
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examples of both phases. The CSA boundaries used in this work, those in Figure 34b, 

represent the more general case where initial samples of phase locations in 

thermodynamic space might not be known. 

After obtaining the CSA descriptions of undesirable phase boundaries, the 

composition space was further constrained to only include alloys that can be fabricated 

using the combination of 316L stainless steel, pure nickel, and pure chromium powders. 

This constraint can be visualized as the dashed lines in Figure 35. Given these 

constraints, the RRT*FN algorithm was used to plan gradient paths. Two cost functions 

were considered that each expressed different design priorities. The first cost function 

sought simply to find the shortest feasible path between 316L stainless steel and pure 

chromium while avoiding the undesirable phases. This cost function is shown in Eq. (5), 

where lk is the length of the kth segment in the path and n is the total number of 

segments in the path. This path could be desired if it is important that the number of 

interlayers be minimized, which could be the case if the part size must be small. 

𝑐1(𝜎) = ∑ 𝑙𝑘
𝑛
𝑘=1      (5) 

 

The second cost function seeks to find a gradient path that is robust to 

processing-induced compositional variability. To reduce the chance of producing 

deleterious phases, the distance from the path to deleterious phase boundaries is 

maximized by minimizing Eq. (6), where davg, k is the average distance between the kth 

segment and the nearest phase boundary. 

𝑐2(𝜎) = ∑
1

𝑑avg,𝑘

𝑛
𝑘=1      (6) 
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The results of the RRT*FN based path planning for both cost functions can be 

seen in Figure 35. Figure 35a depicts the shortest possible path be- tween 316L stainless 

steel and pure chromium as calculated from Eq. (5), which also requires the smallest 

change in compositions. Figure 35b shows the path that minimizes Eq. (6) and 

consequently in- creases the separation of the path from the CrNi2 and σ phase regions. 

Since compositional control in a multi-powder direct energy deposition process is not 

precise, the second path was chosen to be printed and experimentally validated. 
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Figure 35. a) The tree created by the RRT*FN algorithm (see text for details) when 

minimizing the path length to go from 316L stainless steel to pure chromium in the Fe-

Cr-Ni phase map while avoiding both CrNi2 and σ phases, as estimated by the 

Constraint Satisfaction Algorithm. The optimal path is shown in blue. b) The tree 

created by the RRT*FN algorithm when maximizing the distance from the undesirable 

phase regions. The optimal path is shown in blue. The numbered points represent the 

vertices of the simplified path used for experimental validation. 
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APPENDIX B 

PATH PLANNING METHODOLOGY FOR FGM DESIGN 

B.1  Path Planning Methodology for FGM Design 

The methodology presented in Kirk et al. [30] is summarized in Figure 36. The 

methodology begins by defining a composition space and target compositions for each 

end of the desired gradient. Once the design space is defined, information about the 

space needs to be collected. CALPHAD models are used as the primary information 

source as they can predict equilibria phase information, which is often the most critical 

indicator of build success. However, CALPHAD models and other materials models 

often have an associated computational expense that prohibits the direct use of path 

planning algorithms, which often require millions of samples. In order to facilitate the 

use of path planning, cheaper surrogate models must be created to replicate CALPHAD 

and other relevant models. In the methodology, this is generally done by first sampling 

CALPHAD throughout the composition space, labeling compositions that violate the 

constraints, and then training a machine learning classifier. The trained classifier can 

then be used as a representation of the obstacle region, or the region in composition 
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space that violates the design constraints. In the current work, a k-nearest neighbors 

classifier is used given its simplicity and scalability.   

 

Figure 36. Flowchart depicting the path planning methodology for FGM design 

presented in Kirk et al.[30] 

 

After the obstacle region has been modeled, a path planning algorithm can be 

used to find the optimal gradient path. In the current work, a fixed nodes implementation 

of the Rapidly-Exploring Random Tree algorithm (RRT*FN) [32], [33] is used to plan 

the gradient paths. Put simply, this algorithm randomly samples the composition space 

to form a connected tree of nodes or compositions. Connections are made only if they do 

not intersect with the obstacle region. Connections are also made to minimize the cost 

function. The cost function is defined by the designer and used to express gradient 

design objectives. As the number of samples taken by RRT*FN increases to infinity, it is 

proven to find a feasible path if one exists (i.e. probabilistically complete) and will also 

find the path that minimizes the cost function (i.e. asymptotically optimal) [32]. The 

ultimate result of the path planning algorithm is a gradient path through composition 

space that satisfies the design constraints and optimizes the design objective. 
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B.2 Phase Equilibria 

To avoid the deleterious phases present in the linear Fe9Cr to W gradient, it is 

necessary to consider additional elements in the search for a feasible gradient path. 

Preliminary exploration found that adding small amounts of aluminum can destabilize 

the sigma phase that tends to form at compositions rich in Fe and Cr. Similarly, 

vanadium was determined to destabilize the laves and mu phases, but stabilize sigma 

phase. Due to vanadium’s expense and difficult of acquisition in comparison to the other 

elements in this system, it was decided to only consider the Fe-Cr-W-Al system in this 

work. 

Once the design space was chosen, samples of relevant thermodynamic 

information were gathered from Thermo-Calc’s TCHEA2 database. More than 275,000 

uniform random samples were taken from the Fe-Cr-W-Al composition space and a 

uniform temperature distribution from 300 to 3700 K (the melting point of pure W is 

3695 K). Phase equilibria were predicted at these samples to determine where 

deleterious phases (e.g. sigma, laves, mu) are located. 

B.3 Solidification Range 

The solidification range of an alloy is a predictor of its suitability for additive 

manufacturing. In general, smaller solidification ranges are desirable as they reduce the 

potential for hot cracking, a phenomenon common in casting processes and also additive 

manufacturing[34], [35]. Hot cracking, or tearing, occurs when liquid and solid phases 

coexist for an extended period, particularly near the end of solidification. As 
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solidification range decreases, the time spent in the two-phase liquid-solid phase region 

also decreases, reducing the likelihood of hot cracking. 

In this system, solidification range is of particular interest because of large 

differences in the melting temperatures of the relevant elements. Pure W has a melting 

point of 3695 K while Fe, Cr, and Al have melting points of 1808 K, 2130 K, and 933 K 

respectively. These differences can lead to large solidification ranges as W will solidify 

well before elements with lower melting temperatures. 

To estimate the solidification ranges of compositions in the Fe-Cr-W-Al system, 

Thermo-Calc was used to perform equilibrium solidification calculations for over 60,000 

uniform random compositions. Ten thousand of these compositions were used to train a 

gaussian process regression model that predicts solidification range when given 

composition. This model was tested on the remaining data and was found to have a 

coefficient of determination (R^2) of 0.996 and a Root Mean Square Error (RMSE) of 

32.6 K on the test set. 

B.4 Hot Cracking Susceptibility 

In an effort to predict hot cracking more accurately than simply predicting 

solidification range, QuesTek has developed a proprietary Hot Cracking Susceptibility 

(HCS) criterion. Like other cracking susceptibility metrics reported in literature[34], 

[36], HCS considers the fraction of solidification time spent on the final stages of 

solidification. However, QuesTek’s HCS also considers the solidification range and the 

grain size of candidate alloys in its prediction of hot cracking. The exact form and values 

of this equation will not be detailed to protect QuesTek’s intellectual property. 
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A surrogate model for Hot Cracking Susceptibility was created by first 

performing Scheil solidification simulations in Thermo-Calc. Scheil simulations[37] 

limit the diffusion in the solid phases and therefore more accurately model solidification 

than typical equilibrium calculations [38]. However, Scheil simulations also take about 

two to three orders of magnitude more time to perform than simple equilibrium 

calculations. For this reason, only 1082 simulations were run for randomly selected 

compositions in the Fe-Cr-W-Al system. HCS was calculated from these simulations 

using Equation 1. A gaussian random process regressor was trained on a randomly 

selected subset of 1000 compositions. The model had a coefficient of determination 

(R^2) of 0.803 and a Root Mean Square Error (RMSE) of 21.5 when tested on a test set 

formed from the remaining 82 compositions. 

B.5 FGM Optimization Problem 

The path planning methodology detailed in Figure 36 was applied to the Fe-Cr-

W-Al space to find an optimal gradient that maximized performance objectives and 

satisfied constraints. In the methodology, a potential gradient is represented as a path, σ. 

Equation 2 demonstrates that an arbitrary point in this path at some index, α∈[0,1], 

represents a set of compositions of each element in Fe-Cr-W-Al space, where the 

compositions of Cr, W, and Al are represented explicitly and Fe is the balance element. 

A total path, from σ(0) to σ(1), therefore represents a continuous sequence of 

compositions (i.e. a compositional gradient). 

𝜎(𝛼) = {𝑥Cr, 𝑥W, 𝑥Al: 𝑥Fe = 1 − ∑ 𝑥𝑖
3
𝑖=1  and 𝑥𝑖 ≥ 0 ∀ 𝑖}   (2) 
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The objective of the gradient design methodology was to find the shortest length 

path that satisfied the constraints. Shorter gradient paths are desirable because shorter 

gradients can lead to less material use and smaller parts. The length of each linear 

segment in the path, 𝑙𝑘, was calculated as the Euclidean distance between the 

compositions at each end of the segment. All 𝑛 segment lengths were then summed to 

compute a total path length which was used as the cost function, 𝑐(𝜎), considered by the 

path planning algorithm. 

Multiple constraints were considered in the optimization problem formulation. 

First, a model of phases near each composition’s solidus temperature, 𝑇solidus, was 

created from the more than 60,000 Thermo-Calc solidification calculations used to 

create the solidification range model. The first constraint uses this model to ensure that 

the path does not form any significant deleterious phase fraction (f < 0.01) near its 

solidus temperature or, in other words, just after solidifying during the manufacturing 

process. Collapsed temperature models were constructed from the initial sampling of 

over 275,000 composition-temperature combinations. These models were used to ensure 

the path avoided deleterious phases at all temperatures from 300 to 3700 K. Constraints 

on the sigma and intermetallic phases were set to be less 0.01 phase fraction as these 

phases are easily avoidable. The constraint on laves phase was set to be less than 0.10 to 

accommodate the close proximity of laves phase to Fe9Cr. Lastly, the constraint on mu 

phase was set to be less than 0.50. This constraint on mu phase is necessarily relaxed in 

comparison to the other phases due to the pervasiveness of mu phase in the composition 

space. A more restrictive constraint would eliminate all but the boundaries of the 
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composition space and create an insurmountable obstacle for the path planning algorithm 

in its current state. 

In addition to phase constraints, constraints were also placed on solidification 

range, ∆𝑇solidification, and Hot Cracking Susceptibility (HCS) in order to promote 

manufacturabilty of the gradient. Due to the large melting point differences in the design 

space, feasible paths were constrained to experience a maximum solidification range of 

less than 900 K, as lower constraints are unlikely to be met in the W-rich portions of the 

space. The maximum allowable HCS was chosen in a similar fashion. The gradient 

design problem formulation is summarized below. 

𝐟𝐢𝐧𝐝       𝜎best = argmin
𝜎

[𝑐(𝜎) = ∑ 𝑙k

𝑛

𝑘=1

] 

𝐬. 𝐭.  𝑓mu(𝜎, 𝑇), 𝑓sigma(𝜎, 𝑇), 𝑓laves(𝜎, 𝑇), 𝑓intermetallics(𝜎, 𝑇) < 0.01 ∀ 𝑇 ≈ 𝑇solidus, 

𝑓sigma(𝜎, 𝑇), 𝑓intermetallics(𝜎, 𝑇) < 0.01 ∀ 𝑇 ∈ [300 K, 3700 K], 

𝑓laves(𝜎, 𝑇) < 0.10 ∀ 𝑇 ∈ [300 K, 3700 K], 

𝑓mu(𝜎, 𝑇) < 0.50 ∀ 𝑇 ∈ [300 K, 3700 K], 

∆𝑇solidification,max,σ < 900 K, 

HCSmax,σ < HCSallowable,  

σ(0) = {𝑥Cr = 0.09, 𝑥W = 0, 𝑥Al = 0},  

σ(0) = {𝑥Cr = 0, 𝑥W = 1, 𝑥Al = 0}. 

B.6 Issues with the Linear Gradient 

The linear compositional gradient between Fe9Cr and pure W, shown in Figure 

37a, is rife with undesirable, deleterious phases. Figure 37b shows equilibrium phase 

fractions along the path at various temperatures as predicted by Thermo-Calc’s TCHEA2 

database. From these plots, it is evident that the linear gradient experiences several 
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regions of 100% phase fraction of both laves and mu phases. These phases are known to 

be brittle and can lead to cracking during the build and severely compromised parts. 

B.7 Visualizations of Design Constraints 

By collapsing the temperature dimension, phase regions can be visualized in three-

dimensions as in Figure 38. The regions plotted in Figure 38 were found by training k-

nearest neighbors classifiers (k=3) on the points sampled from composition-temperature 

space and then testing those classifiers on a full sampling of composition space at a 

Figure 37. a) Compositions of the linear gradient path between Fe9Cr and pure W. 

The x-axis represents the length in composition space along the path from Fe9Cr to 

pure W. b) Equilibrium phase fractions along the linear gradient path at various 

temperatures. 
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dense range of temperatures from 300 to 3700 K. These regions represent compositions 

which are predicted to form the relevant phase at any temperature from 300 to 3700 K. 
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Figure 38a depicts the region in Fe-Cr-W-Al space where mu phase is present (in 

greater than 0.01 mole fraction) at some temperature between 300 and 3700 K. Mu 

phase is present in 96.8% of the tested compositions, even those that are very close to 

the gradient endpoints (Fe9Cr and pure W). This is an issue if the gradient will 

experience the relevant temperatures long enough to approach equilibrium and produce 

mu phase. As seen in Figure 38a, there are very few possible gradient paths from Fe9Cr 

to pure W that could avoid mu phase at all possible temperatures. Figure 38b illustrates 

the region occupied by intermetallic phases (40.7% of compositions). This region 

dominates the Al-rich portion of the composition space. Also, less Al is needed to form 

intermetallics as compositions approach pure W. Figures 38c and 38d visualize the laves 

phase (21.4% of compositions) and sigma phase (3.18% of compositions) regions 

respectively. Both phases are common near the Fe-Cr-W ternary region but dissipate as 

the Al content increases. The laves phase is present at compositions very close to Fe9Cr, 

meaning it will be difficult to avoid the laves phase completely at all temperatures in 

compositions near Fe9Cr. 

Figure 38e visualizes solidification range throughout the Fe-Cr-W-Al 

composition space. This visualization was created by using the gaussian process model 

to predict solidification range for 3,000 uniform random compositions. Figure 38e 

demonstrates that solidification range increases as compositions approach pure W and 

the difference between pure element melting points increases. The highest region of 

solidification range occurs near the Al-W binary edge where the difference in pure 
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element melting points is highest. Ultimately, a significant portion of the compositions 

in Fe-Cr-W-Al space have predicted solidification ranges above that of most 

successfully printed alloys (~10-200 K). As such, large solidification ranges are 

practically unavoidable in this system, but designed gradients should minimize 

solidification range as much as possible. 

In a similar fashion to Figure 38e, Figure 38f was created by inputting 3,000 

random compositions into the gaussian process model to visualize HCS in the Fe-Cr-W-

Al system. While the trends in HCS are less obvious than those in solidification range, 

there are still definitive regions where HCS is highest. These regions are primarily 

centered around two locations. One region is where Cr and W are present in near equal 

proportions and other elements are present only in minor fractions. Similarly, another 

region of high HCS occurs where Fe and W are present in near equal proportions, but 

other elements are minimal. These regions are likely where a small fraction of an Al-

containing phase is present which requires lower temperatures and therefore more time 

to solidify. Overall, there are many compositions with suitably low HCS, but the high 

HCS regions leave limited paths to approach pure W from Fe-rich compositions. 

B.8 Path Planning Results 

After 500,000 iterations of the path planning algorithm, the optimal path was 

determined to have the compositions shown in Figure 39a. The optimal path exploits Al 

in Fe-rich portion of the path to avoid sigma and laves and then transitions to significant 

amounts of Cr to satisfy constraints on solidification and mu phase. Figure 39b displays 

both the solidification range and predicted HCS along the optimal path. The 
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solidification range is predicted directly from Thermo-Calc, but the HCS is predicted 

from a gaussian process regressor. The maximum solidification range is shown to satisfy 

the constraint of less than 900 K, however the HCS constraint is shown to be met by 

most of the path, but eventually violated as the HCS exceeds the allowable near pure W.  

This violation was not missed by the path planning algorithm, because the 

planned path stopped short of pure W, at around 70 at. % W. Usually, the end of the 

planned path can be simply connected to the goal composition, but that connection 

happened to violate a constraint in this case. Nevertheless, Figure 38f displays a cluster 

of high HCS compositions near pure W indicating that high HCS cannot be avoided in 

this region. As such, the optimal path was deemed to be remain the best feasible path. 

The phase fractions along the path at temperatures 100 K below the solidus temperature 

predicted by the machine learning model are shown in Figure 39c. These phase fractions 

were computed directly from Thermo-Calc, but the solidus temperature was 

approximated from a gaussian process regressor. This plot confirms that the first 

constraint on significant deleterious phase fractions near the solidus temperature was not 

violated by the algorithm. 
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 Figure 40 shows equilibrium phase fractions along the optimal path at various 

temperatures. While deleterious phases are present at some of these temperatures, none 

of them violate the constraints set in the problem formulation. For example, at a 

temperature of 750 K, the optimal path experiences a maximum laves phase fraction of 

about 0.10 and a maximum mu phase fraction of 0.50. These values are the same values 

set as the maximum allowable phase fractions of their respective phases. Because the 

Figure 39. a) The optimal gradient path as planned by algorithm in Fe-Cr-W-Al space 

after 500,000 iterations. The black dots along the x-axis represent the actual points 

sampled by the path planner. b) Predicted solidification range and Hot Cracking 

Susceptibility along the optimal path. c) Predicted phase fractions along the path 100 

K below the predicted solidus temperature. 
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objective of the design problem was to minimize path length, the optimal path will 

necessarily be the path closest to the constraint boundaries without violating the 

constraints. Other objectives, like obstacle clearance, could provide paths that are farther 

away from constraint boundaries if avoiding constraints is of high priority. 

 

Figure 40. Equilibrium phase fractions along the optimal path (shown in Figure 

37a) at various temperatures. Phases are numbered by descending phase fraction 

when multiple phases of the same structure are present. Consequently, phase 

numbering is not necessarily consistent with phase constitution. 
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APPENDIX C 

PHANTOM DATA SETS  

 

C.1 Data  

The original test data available for this project is a series of thermal histories 

simulated by researchers at AFRL. These thermal histories are the result of thermal 

simulations of additive manufacturing processes. The simulations take processing 

parameters (ex. laser power and speed), material properties (ex. conductivity and heat 

capacity) and part characteristics (ex. part shape and laser track) as input. A thermal 

model is then used to create thermal histories at any point sampled from the simulated 

part. The thermal model considers simple thermal transfer effects like conduction but 

neglects more complex interactions like evaporation. Nevertheless, the model has been 

calibrated to experimental data and is assumed to be accurate. 

Before experimental data is available, these thermal histories will be used to first 

predict pore-prone regions. These regions were identified by AFRL’s experts to have 

increased porosity in most cases. Four sets of single-layer thermal histories were 

provided that focus on differentiating different types of locations. Figure 41 displays the 

four distinct datasets provided for this project. The first dataset represents a square cross-

section with sampling points on the laser tracks, as seen in Figure 41 (a). Figure 41 (b) 

shows the second dataset which also has a square cross-section. However, the points are 

sampled both on and off the laser path. Figure 41 (c) displays an “L”-shaped cross-

section that includes both short and long tracks. Lastly, a triangular cross-section that 
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again has varying track lengths is shown in Figure 41 (d). The ‘Square’ dataset consists 

of thermal histories sampled from 500 random locations.  

 

 Each one of the 500 points has a separate CSV file with all temperature data 

listed along normalized time. Along with the raw thermal histories, each CSV contains 

an identification number, the number of time samples, two-dimensional location data, 

Figure 41. Visual representation of the data provided by AFRL for a (a) 

square cross-section, (b) square cross-section on and off the laser track, (c) 

“L”-shaped cross-section, and (d) triangular cross-section. Point colors 

indicate: (a) the start (blue), middle (green), and end (red) of a track; (b) 

points on (green) and off (red) the laser track; (c) long tracks (green) and 

short tracks (red); as well as (d) edge samples (red) and middle samples 

(green). 
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absolute time when the beam comes closest to the point of interest, absolute time of the 

start of the thermal history, time interval between samples, and finally a tag indicating 

the samples location along the laser track: ‘Start’, ‘Middle’, or ‘End’. The goal of the 

present work is to be able to classify the thermal histories based on these three location 

labels. Of the 500 samples, 49 are ‘Start’ samples, 419 are ‘Middle’ samples, and 32 are 

‘End’ samples. Figure 42 (a) displays the thermal histories for each of these classes 

separately. Several visual distinctions between each class can be observed. The largest 

peak in the ‘Start’ curves is followed by the second largest peak, while the second 

largest peak precedes the largest peak in the ‘End’ curves. Potential features could be 

extracted that attempt to describe this visual distinction. The ‘Middle’ curves, while 

more numerous, are far less uniform than the ‘Start’ or ‘End’ curves and might 

consequently be hard to distinguish. The ‘Square On-Off’ dataset, seen in Figure 41 (b), 

has the same geometry as the ‘Square’ dataset, but instead separates samples taken ‘On’ 

the laser track and ‘Off’ the laser track. There are 500 samples split evenly between each 

class, 250 each. Figure 42 (b) displays every thermal history plotterd for this dataset, 

separated by class. ‘Off’ samples tend to have smaller secondary peaks than the ‘On’ 

samples. Figure 41 (c) displays the ‘L’ dataset. This dataset demonstrates the differences 

between ‘Long’ tracks and ‘Short’ tracks. In this case, there are 486 total samples with 

410 from ‘Long’ tracks and 76 from ‘Short’ tracks. As with the ‘Square’ dataset, the 

imbalance in sample distribution could skew error metrics. Figure 42 (c) displays the 
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thermal histories from this dataset. ‘Long’ samples tend to have multiple peaks, while 

‘Short’ samples seem to have just one dominating peak. 

Lastly, Figure 41 (d) shows the ‘Triangle’ dataset which attempts to combine a 

few characteristics from previous datasets. Similar to the ‘Square’ dataset, this dataset 

Figure 42.  Every thermal history grouped by class and plotted together for the 

(a) square cross-section, (b) square cross-section on and off the laser track, (c) 

“L”-shaped cross-section, and (d) triangular cross-section. Line colors indicate: 

(a) the start (blue), middle (green), and end (red) of a track; (b) points on (green) 

and off (red) the laser track; (c) long tracks (green) and short tracks (red); as 

well as (d) edge samples (red) and middle samples (green). 
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seeks to differentiate between samples taken from the ‘Middle’ and ‘Edge’ of the part. 

However, because of its geometry, this dataset contains tracks of varying lengths, much 

like the ‘L’ dataset. The thermal histories from this dataset are plotted in Figure 42 (d). 

Unlike the other datasets, the ‘Middle’ and ‘Edge’ histories are difficult to visually 

distinguish.  This may mean this dataset will be more difficult to classify.  

The Informatics strategies are limited by the available data. In this case, the 

available data is sampled from random locations within the part. At each location, 

temperature measurements are taken at regular time intervals. The location samples are 

also tagged with a binary indicator that identifies the presence of a pore. These labels of 

‘pore’ or ‘no pore’ enable the use of supervised machine learning techniques that can 

train an algorithm from a training data set. The nature of the problem, to identify pore 

locations given location data, suggests several characteristics of the informatics strategy.  

C.2 Featurization 

Initial featurization of the thermal histories began by extracting the peak 

temperatures of each history. Peaks or maximums were found by iterating through each 

time sample and recording temperatures that were greater than the temperatures 

immediately preceding it and following it in time. The number of peak temperatures 

extracted was limited to three because that was the minimum number of peaks 

experienced by any of the thermal histories and three features can be visualized 

relatively easily. Initially, peak temperatures were ordered by magnitude from greatest to 

smallest. The times corresponding to each maximum temperature were also recorded and 

put in the same order as their corresponding temperatures.  Figure 43 displays an 
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example of a curve featurized in such a manner. Note that the resulting feature vector 

begins with the three largest peak temperatures ordered by magnitude (F1>F2>F3) 

followed by each temperature’s corresponding time sample (F4, F5, F6). 

Aside from ordering the peak temperatures by magnitude, a separate set of 

features was created by ordering the peak temperatures chronologically. As seen in 

Figure 42 (a), the chronological order of peak temperatures could be a descriptive 

feature. In the ‘Start’ curves, the largest peak is followed by the second largest peak 

while, in the ‘End’ curves, the second largest peak comes before the largest peak. Peak 

temperatures were obtained by first finding the maximum temperature in the curve. Then 

the first peak temperatures before and after the ultimate maximum were recorded. This 

method ensures that the middle feature (F2) is always the ultimate peak of the curve and 

that the other two features (F1 and F3) will be the first peaks on each side of the ultimate 

peak, as seen in Figure 44. 
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Figure 43. Example of how a thermal curve is featurized by peak temperatures. In 

this example, the three largest peak temperatures are taken and ordered by 

magnitude (F1>F2>F3). The corresponding time for each temperature is also taken 

and put in the same order as their corresponding temperatures. 
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Principal Component Analysis (PCA) [38] was conducted on the first set of peak 

temperature features (see Figure 43) to select only those features that are most 

descriptive (i.e. can distinguish between classes). In short, PCA is an unsupervised (i.e. 

ignores class labels) technique that finds which features explain the most variance in the 

data. Figure 45 displays the portion of the variance explained by each Principal 

Component (PC). Note that the first three principal components explain more than 90% 

of the variance in the data. PCs are created from weighted linear combinations of the 

features. Table 3 displays the weight assigned to each feature in each principal 

component. Note that the first three PCs are almost entirely composed of the first three 

Figure 44. Peak temperatures ordered chornologically and centered on the 

maximum temperature (F1<F2>F3). The corresponding time for each temperature 

is also taken and put in the same order as their corresponding temperatures. 
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features. Consequently, the first three features (the three largest peak temperatures) will 

most likely be the most important for classification, but all six features will be kept. 

 

 

 
PC1 PC2 PC3 PC4 PC5 

F1 -0.890 -0.375 0.257 0.004 0.032 

F2 0.414 -0.463 0.773 -0.082 -0.094 

F3 0.173 -0.802 -0.572 0.002 0.011 

F4 0 0 0 0 0 

F5 -0.022 -0.007 -0.008 0.691 -0.723 

F6 -0.073 0.041 -0.095 -0.718 -0.684 

 

Table 3. Contribution of Each Feature in the First Feature Set to Each 

Principal Component 

Figure 45. The ratio of variance explained by each principal component in 

the PCA conducted on the first set of features. 
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Figure 46 shows a pairwise plot of the first three principal components plotted 

against each other. In every plot, each class can be visually distinguished and seems 

clustered reasonably well. This is another good indicator that these features will be 

descriptive of the data.  

 

 

 

Figure 46. A pairwise plot of each of the first three principal components plotted 

against each other. The plots along the diagonal represent the distributions of the 

principal component values for each class. 
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C.3 Classification 

Each feature set was used to train three different types of classifiers. The error of 

each classifier was then tested on a variety of error metrics. The following section details 

the methods used to construct and test these classifiers as well as the results obtained. 

The first classifier used on the featurized data was a Support Vector Machine 

(SVM) [33]. In short, SVMs operate by finding the maximum margin hyperplane that 

separates the data in feature space. Mathematically, finding the hyperplane involves 

transforming the feature space into a hyper-dimensional space using what is called a 

‘kernel trick’. The type of kernel used (linear, polynomial, radial basis function, etc.) can 

have a significant effect on the shape of the hyperplane and thus the effectiveness of the 

classifier. In this work, a linear kernel was used given its simplicity and interpretability. 

SVMs are some of the most commonly used algorithms in the machine learning 

community as they are highly adaptable and have shown good performance in a wide set 

of applications. 

Nearest Neighbor Classifiers (NNCs) [34] are relatively simple classifiers that 

are used frequently for simple datasets. Given a new test point, NNCs assign the class 

that is most common among the training points closest to the test point in feature space. 

In this work, a 5-Nearest-Neighbor classifier (5NN) was chosen, so the nearest 5 training 

points are sampled for every test point. While NNCs are quite robust and generalizable 

they can often suffer from overfitting given their simplicity and reliance on local 

observations. 
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The last type of classifier used to classify the thermal histories was a Decision 

Tree (DT) [35] classifier. In general, decision trees classify data by discretely binning 

data according to the value of a specific feature. This binning is done many times to 

create layers of the tree until a limit set by the user is reached. Decision trees are 

generally sought after for their interpretability as they can be seen as a series of logical 

decisions. However, they often fail to be as consistently accurate as SVMs given their 

discrete nature. 

Several classification error metrics were used assess the performance of each 

classifier. The first and simplest error metric is the apparent error. Apparent error is 

simply the portion of the training data that is misclassified by the classifier. This error 

can be overly optimistic in many cases, particularly when the classifier is overfit to the 

training data. To combat this bias, the machine learning community often uses cross 

validation error as a more reasonable metric. Cross validation involves selecting some of 

the training data to reserve as a test set on which the classifier accuracy is scored. In this 

work, 5-fold cross validation was used to estimate classification error. As such, each 

dataset was binned into 5 partitions and each partition was used as the test set. The 

ultimate error estimation is simply the average of these 5 errors. The available data in 

this work presents an extra challenge for estimating classification error as each class is 

not represented equally. There are about ten times as many samples of the ‘Middle’ class 

as there of the ‘Start’ and ‘End’ classes. Because of this imbalance, error on the ‘Middle’ 

class will probably dominate the errors on the other classes. To mitigate this potential 

issue, 5 random samples of each class were reserved in a test set and the error of the 
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classifier was calculated on this set as a whole and for each class individually. The entire 

classification process was then repeated 100 times to prevent any effect this random 

process might have on the error metrics. 

C.4 Preliminary Results 

To begin the classification process, both featurization strategies were applied to 

the ‘Square’ dataset to obtain two feature sets (peak temperatures ordered by (1) 

magnitude and (2) chronologically). The error metrics of each classifier (averaged over 

100 runs) trained on both feature sets can be seen in Table 4. The best performing 

classifiers were the SVM and DT classifiers. These classifiers had less than 10% error on 

both feature sets, but errors were generally smaller on the chronological feature set. As 

such, the SVM and DT classifiers trained on the chronological feature set were deemed 

to have the best performance (and consequently highlighted in green). These classifiers 

performed very well on the ‘Start’ and ‘End’ classes but tended to misclassify the 

‘Middle’ class at a higher rate. This is likely because the ‘Start’ and ‘End’ classes are 

highly differentiable (the second largest peak always precedes the largest and vice versa) 

while the ‘Middle’ class exhibits a wider range of curve characteristics. 
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Table 5 displays the error metrics for classifiers trained on the ‘Square On-Off’ 

dataset. These errors were, generally speaking, lower than those obtained for the 

‘Square’ dataset as all error metrics are less than 10% for every classifier. This could 

possibly be attributed to fewer classes (two instead of three) and equal sample sizes for 

each class. It is also possible that is easier to differentiate samples taken from ‘On’ or 

‘Off’ the track than samples taken from the ‘Start’, ‘Middle’, or ‘End’ of the track, 

because the first case might simply be a change in peak magnitudes while the second is 

likely a shift in peak positions. The best performing classifiers were the SVM and 5NN 

trained on the second feature set, which had identical errors. These classifiers performed 

perfectly on the ‘On’ class but misclassified the ‘Off’ class at a rate of 5.6%.  

 

 

 

Table 4. Square Dataset Error Metrics of Each Classifier (Averaged from 100 

Runs) 
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The results of the classifiers trained on the ‘L’ dataset can be seen in Table 6. 

These errors are generally as low as those seen in Table 5. In general, the ‘Short’ class 

was misclassified at a higher rate than the ‘Long’ class, which was rarely, if ever, 

misclassified. This can likely be attributed to the much smaller sample size of the ‘Short’ 

class. The best performing classifier, the SVM trained on the second feature set, had zero 

error by every metric. The reason behind this particular classifier’s perfect performance 

has yet to be identified. 

Table 5. Square On-Off Dataset Error Metrics of Each Classifier (Averaged 

from 100 Runs) 
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Lastly, the results of the classifiers trained on the ‘Triangle’ dataset can be seen 

in Table 7. These errors are generally much higher than those of any of the other 

datasets. This is likely because, as discussed in Section 6 and seen in Figure 41 (d), this 

dataset combines several of the characteristics of the other datasets and, consequently, 

presents a more challenging classification problem. Nevertheless, the best performing 

classifiers, the DTs, had about 5% error. The Decision Trees could have performed 

considerably better because they divided the problem into differentiating track length 

first (resolving the complications of geometry) and then location on the track second. 

The confirmation of this strategy can be determined by attempting to interpret the DTs, 

but this is left to future work. In general, the ‘Edge’ class was misclassified at a much 

higher rate than the ‘Middle’ class. This could be because there were two to three times 

as many samples of the ‘Middle’ class as the ‘Edge’ class, 339 to 161 respectively. It 

could also be attributed to the fact that samples from the start and end of the track (as in 

Table 6. L Dataset Error Metrics of Each Classifier (Averaged from 100 Runs) 
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the ‘Square’ dataset) are lumped together into one ‘Edge’ class even though they can be 

quite different, as seen in Figure 42 (a). 

 

 

Table 7. Triangle Dataset Error Metrics of Each Classifier (Averaged from 100 

Runs) 


