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ABSTRACT

Recommender systems have been existing accompanying by web development, driving person-

alized experience for billions of users. They play a vital role in the information retrieval process,

overcome the information overload by facilitating the communication between business people and

the public, and boost the business world. Powered by the advances of machine learning techniques,

modern recommender systems enable tremendous automation on the data preprocessing, informa-

tion distillations, and contextual inferences. It allows us to mine patterns and relationships from

massive datasets and various data resources to make inferences. Moreover, the fast evolvement of

deep learning techniques brings vast vitality and improvements dived in both academic research

and industry applications. Despite the prominence achieved in the recent recommender systems, the

automation they have been achieved is still limited in a narrow scope. On the one hand, beyond the

static setting, real-world recommendation tasks are often imbued with high-velocity streaming data.

On the other hand, with the increasing complexity of model structure and system architecture, the

handcrafted design and tuning process is becoming increasingly complicated and time-consuming.

With these challenges in mind, this dissertation aims to enable advanced automation in recommender

systems. In particular, we discuss how to update factorization-based recommendation models adap-

tively and how to automatically design and tune recommendation models with automated machine

learning techniques. Four main contributions are made via tackling the challenges:

• The first contribution of this research dissertation is the development of a tensor-based

algorithm for streaming recommendation tasks.

• As deep learning techniques have shown their superiority in recommendation tasks and

become dominant in both academia and industry applications, the second contribution is

exploring and developing advanced deep learning algorithms to tackle the recommendation

problem with the streaming dataset.

• To alleviate the burden of human efforts, we explore adopting automated machine learning in

ii



designing and tuning recommender systems. The third contribution of this dissertation is the

development of a novel neural architecture search approaches for discovering useful features

interactions and designing better models for the click-through rate prediction problem.

• Considering a large number of recommendation tasks in industrial applications and their

similarities, in the last piece of work work, we focus on the hyperparameter tuning problem

in the transfer-learning setting and develop a transferable framework for meta-level tuning of

machine learning models.
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1. INTRODUCTION1

1.1 Motivation and Challenges

Recommender systems have been existing accompanying the web development, driving person-

alized experience for billions of users. It overcomes the online information overload by connecting

users with items they are interested in, such as products, services, and social content. For example,

Amazon recommender system recommends sponsored products or brands based on our search

history and preference. LinkedIn recommender system recommends the jobs that we might be

interested in based on our profile. Facebook and Twitter recommender systems recommend the

content published by the groups or users that we may concern. These recommender systems play a

vital role in the information retrieval process, facilitate communication between business people

and the public, and boost the business world.

Recommender systems are often classified and characterized by their internal filtering algo-

rithms. Popular ones include collaborative filtering algorithms, which leverage the explicit rating

information given by the users to items or implicit user behaviors; content-based filtering algorithms,

which utilize the item features and content information; knowledge-based filtering algorithms,

which utilize some explicit recommendation rules towards contextual inferences; and some hybrid

ones. Powered by the advances of machine learning techniques, modern recommender systems

enable tremendous automation on the data preprocessing, information distillations, and contextual

inferences. It allows us to mine patterns and relationships from massive datasets and various data

resources towards personalized recommendations. Moreover, the fast evolvement of deep learning

techniques brings vast vitality and further improvements in recommender systems dived in both

1This chapter is reprinted with permission from “Multi-Aspect Streaming Tensor Completion” by Qingquan Song,
Xiao Huang, Hancheng Ge, James Caverlee and Xia Hu, 2017, Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Copyright 2017 by ACM; “Coupled Variational Recurrent
Collaborative Filtering” by Qingquan Song, Shiyu Chang and Xia Hu, 2019, Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Copyright 2019 by ACM; and “Towards Automated
Neural Interaction Discovery for Click-Through Rate Prediction” by Qingquan Song, Dehua Cheng, Hanning Zhou,
Jiyan Yang, Yuandong Tian and Xia Hu, 2020, Proceedings of the 26rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Copyright 2020 by ACM.
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academic researches and industry applications.

Despite the prominence achieved in the recent recommender systems, the automation they

have been achieved is still limited in a narrow scope. On the one hand, beyond the static setting,

real-world recommendation tasks are often imbued with high-velocity streaming data. For example,

Facebook users update 684,478 messages, and Twitter users post over 100,000 tweets every minute.2

However, most recommender systems still focus on static settings and cannot be updated in

a streaming manner. With the large volume and velocity of newly created data instances and

features, constructing the recommender systems from scratch is computationally expensive and

even prohibited due to high time and resource requirements. On the other hand, with the increasing

complexity of model structure and system architecture, the handcrafted design and tuning process is

increasingly complicated and time-consuming. It also requires the accumulation of expertise and

experience, which hinders the recommender systems from moving toward further automation and

democratization.

Enabling the advanced automation of recommender systems is quite challenging. Firstly,

the dataset velocity and volume are large. The desired recommender system should be able to

expeditiously extract the prior knowledge from former time steps and effectively digest it for current

recommendations. Secondly, designing, selecting, and tuning a recommender system is non-trivial,

even for human experts. Using the deep recommender systems as an example, how to select a proper

neural architecture and configure its hyperparameters such as the number of layers, units, batch

sizes, and learning rates is still underexplored. The high complexity and diversity of deep neural

networks block us from trying out all available candidates towards the optimal one exhaustively.

Moreover, since the recommendation tasks are enormous in real-world applications, tuning the

recommender systems one by one for each task from scratch is also laborious.

1.2 Related Work

Increasing efforts are being made on proposing automated recommender systems to tackle the

challenges mentioned in the previous section. We summarize some related work in this section from

2http://mashable.com/2012/06/22/data-created-every-minute/
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three aspects:

Streaming Recommender Systems. Beyond traditional static settings, streaming recommender

systems have attracted widespread concerns in coping with the high data velocity and their natu-

rally incremental properties [1, 2]. Different from static time-aware models [3, 4, 5, 6, 7], which

only take account of temporal dynamics without updating in an streaming fashion, streaming

recommender systems dynamically encode temporal information and generate response instanta-

neously [8, 9, 10, 11]. Some existing works focus on extending classical memory-based recom-

mendation algorithms into online fashions to address the streaming challenges such as [12] and

[13]. Besides memory-based methods, model-based methods [14, 15, 16] are becoming more and

more popular in recent years, which conducts recommendation based on well-trained models rather

than explicitly aggregating and prediction based on the similarity relationships. Diaz-Aviles et al.

leverage the active learning strategy to sample and maintain a delicately designed reservoir, thus

providing a pairwise matrix factorization approach for streaming recommendation. Chang et al. [2]

exploit continuous Markov process (Brownian motion) to model the temporal drifting of users

and items, which introduces a principled way to model data streams. Wang et al. [17] propose a

streaming ranking-based framework based on Bayesian Personalized Ranking [18] to address the

user interest drifting as well as system overload problem. Although many recent advances based on

deep neural networks especially RNNs have been made to model streaming inputs and capture the

complex temporal dynamics [19, 20, 21], most of them overlook the causality inherited in the data

generation process.

Deep Recommender Systems. Deep learning techniques have brought vast vitality and achieve

dramatic improvement in recommender systems [22]. They have been adopted in various recom-

mendation tasks as well as accommodating different data sources [23, 24, 20]. From the perspective

of the general framework, deep recommender systems could be categorized into solely deep models,

which conduct recommendations based only on deep frameworks [24, 25, 26]; and integration

models, which integrate deep techniques with traditional recommender systems [23, 27, 28]. From

the perspective of deep frameworks, these models could also be divided into: (1) single deep

3



models, which are built upon single neural building blocks such as multi-layer perceptron [26],

convolutional neural network [29], and recurrent neural network [20]; and (2) composite models,

which are constructed with different deep learning techniques [30].

AutoML for Recommender Systems. AutoML aims to promote the design and tuning of machine

learning models, thus release the burden of human experts and enable the democratization of

advanced machine learning models to practitioners without enough experience. Designing the

AutoML algorithm requires the specification of three main components, including search space,

search techniques, and performance estimation strategy [31]. Though early work of AutoML mainly

focuses on tabular data [32], recent work of AutoML mostly targets the image- and text-related

models [33]. This is partly because of two reasons: (1) recommendation models usually adopt

multiple diverse and ad-hoc operations, leading to unstructured search space, which is hard to

be formally created; (2) the data scalability and feature heterogeneity is often more severe in

recommender systems. Existing AutoML work for recommendation often focuses on two aspects.

On one side, they try to improve the recommendation model performance by automatically searching

different architectures and optimal hyperparameters [34, 35]. On the other side, researchers have

been starting to investigate how to reduce the time and space complexity of recommendation models

with the help of AutoML techniques [36, 37, 38].

1.3 Dissertation Contributions

To tackle the core challenges of data velocity and model-design complicacy towards advanced

automation of recommender systems, we made four main contributions in this dissertation:

• The first contribution of this research dissertation is the development of a tensor-based

algorithm for streaming recommendation tasks. We formally define a problem of multi-

aspect streaming tensor completion, which aims to impute the tensor-structured dataset that

is incrementally augmented. Then we propose two novel incremental tensor completion

methods and apply them to recommendation tasks.

• As deep learning techniques have shown their superiority in recommendation tasks and
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become dominant in both academia and industry applications, the second contribution is

the exploration and development of advanced deep learning algorithms to tackle the rec-

ommendation problem with streaming datasets. Specifically, we focus on the collaborative

filtering setting and jointly combine stochastic processes and deep factorization models under

a Bayesian paradigm to model the generation and evolution of users’ preferences and items’

popularities.

• To alleviate the burden of human efforts, we explore adopting automated machine learning

(AutoML) in designing and tuning recommender systems. The third contribution of this

dissertation is developing a novel neural architecture search (NAS) approaches for discovering

useful features interactions and designing better models for the Click-Through Rate (CTR)

prediction problem. We formally design a search space for the CTR prediction task and

propose an efficient low-fidelity search algorithm to discover better architectures for CTR

predictions.

• Considering a large number of recommendation tasks in industrial applications and their

similarities, we focus on a transfer learning setting and explore a meta-level tuning of

recommender systems. We propose a transfer-learning framework to transfer the historical

architecture evaluation information (i.e., the different machine learning models evaluated on

historical tasks) to accelerate the tuning and design of models on new tasks.

The first two contributions lie in the automation of recommender systems on incremental

learning setting, while the remaining ones focus on hyper-level automation, which aim to automate

the design and tuning of recommender systems on single or multiple tasks efficiently.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Chapter 2: Multi-Aspect Streaming Tensor Completion. In this chapter, we develop

a tensor-based framework for uncovering multi-aspect correlations in high-dimensional

recommendation data and efficient recommendation in the streaming-data setting.
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• Chapter 3: Coupled Variational Recurrent Collaborative Filtering. In this chapter, we

explore the deep-learning solution to the streaming recommendation problem. We focus on

the collaborative filtering setting and add deep-learning flavor to the conventional probabilistic

factorization models to tackle the data velocity challenge in recommender systems.

• Chapter 4: Towards Automated Neural Interaction Discovery for Click-Through Rate

Prediction. In this chapter, we explore how to enable the automation on the architecture

design and hyperparameter tuning in recommender systems and propose a neural interaction

discovery framework to automatically design and tune deep-learning models for the click-

through rate prediction task.

• Chapter 5: Transferable Black-Box Optimization for Hyperparamter Tuning. In this

chapter, we explore how to leverage the similarities of different web application tasks to

accelerate the automated hyperparameter tuning. We propose a transfer learning framework

for black-box optimization and evaluate it on multiple synthetic datasets. The proposed

framework can be applied for transferable hyperparameter tuning and architecture design on

multiple recommendation tasks.

• Chapter 6: Conclusions and Future Research Opportunities. We conclude the disserta-

tion with a summary of contributions and discuss potential research directions to the results

presented.
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2. MULTI-ASPECT STREAMING TENSOR COMPLETION1

In this chapter, we tackle the streaming data challenge in recommender systems, especially for

structured high-dimensional data. The raw data reflects the temporal dynamics and multi-aspect

correlations in the recommender systems beyond the user-item correlations. We consider the

streaming recommendation problem as a streaming tensor completion problem. Our developed

framework can effectively uncover the relations leveraging a tensor completion framework and

conduct efficient recommendations in the streaming-data setting.

2.1 Introduction

Tensors are multidimensional or N -way extensions of matrices. Tensor completion, which aims

at filling the missing entries of partially observed tensors, has become one of the effective computa-

tional tools in recommender systems [39, 40], as well as many other data mining applications such

as social network analysis [41, 42], image recovery [43], and clinical data analysis [44, 45].

Beyond traditional static setting, real-world recommendations are often imbued with high veloc-

ity streaming data. Existing work has been conducted on developing dynamic tensor completion

methods based on a widely used assumption that tensors will be developed in one mode (or di-

mension). Following this assumption, online completion methods have been proposed based on

CP decomposition [46, 47]. Unfortunately, in many real-world applications, a tensor may develop

in multiple dimensions and traditional assumption does not hold. For example, given a dynamic

tensor in recommender systems structured as user×movie× actor, the number of registered users,

movies, and actors may all increase as time goes. This incremental property gives rise to a new

streaming pattern, which we call multi-aspect streaming. Figure 2.1 depicts traditional streaming

tensors and its generalized multi-aspect streaming tensors counterpart. As we can observe from the

figure, from time t to t+ 2, each mode of the multi-aspect streaming tensor increases while only

1This chapter is reprinted with permission from “Multi-Aspect Streaming Tensor Completion” by Qingquan Song,
Xiao Huang, Hancheng Ge, James Caverlee and Xia Hu, 2017. Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Copyright 2017 by ACM.
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Figure 2.1: An illustration of traditional streaming tensors and multi-aspect streaming tensors.

one mode of the streaming tensor grows.

Dealing with the multi-aspect streaming tensors is challenging due to three reasons. First,

coordinating multidimensional dynamics is difficult given the uncertainty of tensor mode changes.

It is too arbitrary to fix partial structure of a certain mode without accessing the data for an update.

Second, the incremental part of multi-aspect streaming data may not be a complete tensor. This

is different from streaming tensors in which the incremental part is well structured and can be

directly decomposed. Third, the multi-aspect streaming pattern leads to much higher time and space

complexity. Although some distributed and parallel algorithms could partially address the scalability

issue [48, 49, 50], the problem of non-adaptability still exists, meaning that the completion process

of new data cannot directly benefit from the existing model without complete model reconstruction.

To tackle these challenges, we investigate how to complete multi-aspect streaming tensors based

on CP decomposition. Specifically, we mainly study: (1) How to build up an updatable framework

based on CP decomposition for efficiently modeling multi-aspect streaming tensors? (2) How to

effectively capture the low-rank subspace for completion purpose? Through answering the two

questions, we propose a general Multi-Aspect Streaming Tensor completion algorithm (MAST) and

further propose a modified model T-MAST for temporal multi-aspect streaming tensor completion,

which is a special case of the general problem. We empirically validate the effectiveness and

efficiency of the proposed models on four real-world datasets with different real-world applications,

and the demonstrate its advantages on both static and dynamic baselines.
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2.2 Preliminaries

Notations and definitions in this chapter are presented as follows. Notations: An N th-order

tensor is an N -way array, also known as N -dimensional or N -mode tensor. In this chapter, tensors,

matrices, vectors are denoted by Euler script letters (e.g., XXX), boldface uppercase letters (e.g., A),

and boldface lowercase letters (e.g., a), respectively. An entry of tensor XXX indexed by [it1, . . . , i
t
N ]

is denoted as XXX[it1, . . . , i
t
N ]. We use A−1, A>, and ‖A‖F to denote the transpose, inverse, and

Frobenius norm of matrix A, respectively. Let J·K denote the Kruskal operator. Notations � and

~ are used to represent the Khatri-Rao product and Hadamard product, respectively. The main

symbols and operations are listed in Table 2.1.

Definition 1 (CP Decomposition). Given an N th-order tensor XXX, its CP decomposition is an

approximation of N loading matrices An ∈ RIn×R, n = 1, . . . , N , such that,

XXX ≈ JA1, . . . ,ANK, (2.1)

where R is a positive integer denoting an upper bound of the rank of XXX. We can further unfold XXX

along its nth mode as follows,

XXX
unfold
=⇒ X(n) ≈ An(AN � . . .An+1 �An−1 . . .�A1)> = An[(Ak)

�k 6=n ]
>
. (2.2)

Definition 2 (Coupled Tensor). If two tensors share one or more modes, then they are coupled

with each other and called coupled tensors. For example, in recommender systems, two tensors

structured as user×movie× time and movie× actor× director are coupled on the movie mode.

Definition 3 (Tensor Sequence). A sequence of N th-order tensors XXX(1), . . . ,XXX(T ), . . . is called a

tensor sequence denoted as {XXX(T )}, where each XXX(T ) ∈ RIT1 ×IT2 ×...×ITN , T ∈ Z+.

Definition 4 (Multi-aspect streaming Tensor Sequence). A sequence ofN th-order tensors {XXX(T )}

is called multi-aspect streaming tensor sequence if for any T ∈ Z+, XXX(T−1) is the sub-tensor ofXXX(T ),

denoted as XXX(T−1) j XXX(T ). T increases with time, and XXX(T ) is the snapshot tensor of this sequence

9



Table 2.1: Main symbols and operations for in tensor factorization.

Notations Definitions
XXX ∈ RI1×I2×...×IN N th-order tensor

X(n) ∈ RIn×(ΠNi 6=nIi) Mode-n unfolding matrix of tensor XXX
J·K Kruskal operator, e.g., XXX ≈ JA1, . . . ,ANK
� Khatri-Rao product
~ Hadamard product

(Ak)
�k 6=n AN � . . .�An+1 �An−1 � . . .�A1

(Ak)
~k 6=n AN ~ . . .~ An+1 ~ An−1 ~ . . .~ A1

taken at time T .

In fact, any tensor sequence {XXX(T )} can be modeled as a multi-aspect streaming one by adding

an additional mode, i.e., defining an (N + 1)th-order new tensor sequence {YYY(T )}, where YYY(T ) ∈

RJT1 ×JT2 ×...×JTN×T , Jn = maxt{I tn}. Entries of YYY(T ) are defined as:

YYY(T )[it1, . . . , i
t
N , t] =


XXX(t)[it1, . . . , i

t
N ], if 1 ≤ itn ≤ I tN ,

0, otherwise,
(2.3)

where 1 ≤ t ≤ T , and then YYY(T−1) j YYY(T ) is satisfied.

Based on the terminologies, the multi-aspect streaming tensor completion problem can be

formally defined as follows.
Given a multi-aspect streaming tensor sequence {XXX(T )} with missing entries, we aim

at recovering the missing data in current snapshot XXX(T ). Since XXX(T−1) j XXX(T ), and we

have recovered XXX(T−1) in previous time step, the problem is equivalent to completing the

relative complement of XXX(T−1) in XXX(T ) which is denoted as XXX(T )\XXX(T−1).

2.3 Multi-Aspect Streaming Tensor Completion Framework

In this section, we introduce the proposed framework MAST to solve the general multi-aspect

streaming completion problem. By taking advantage of the learned model in previous time step,

MAST can accelerate the completion process while preserving comparable completion accuracy

10
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Figure 2.2: An illustration of the proposed dynamic tensor decomposition model DTD.

to traditional batch learning methods. To achieve this, we begin with designing a dynamic tensor

decomposition (DTD) algorithm to model the incremental pattern of multi-aspect streaming tensor

sequence and track its low-rank subspace. Then, based on the DTD algorithm, we conduct the

completion task via the nuclear norm constraint. At the end, we discuss a special case in which

“time” is one mode of the tensors and further improve our framework for a better completion

effectiveness.

2.3.1 Dynamic Tensor Decomposition

CP decomposition is a widely used tool for tensor completion [43, 51, 42]. By decomposing a

tensor into multiple low-rank matrices using its observed entries, the underlying low-rank subspace

structure can be tracked for filling the missing entries. There are two intuitive solutions for our main

problem. At each time step, we can either reconstruct the batch CP model for the entire snapshot,

or decompose XXX(T )\XXX(T−1) only. The former solution is both time and space consuming since the

snapshots are increasing dramatically. In contrast, the latter fails to exploit the information inXXX(T−1)

to help achieve desirable imputation.

To accelerate completion process while preserving effectiveness, a dynamic CP decomposition

method DTD is proposed. It is based on two ideas. First, CP decomposition enjoys the good

partitioning property which means if XXX(T ) is approximated by JA1, . . . ,ANK, then its sub-tensor

XXX(T−1) could be approximated by JÃ1, . . . , ÃNK where Ãn is a sub-matrix of An, for n = 1, . . . , N .

This enables us to partition the current snapshot XXX(T ) to take advantage of the foregone acquired

decomposition of its sub-tensor XXX(T−1). Second, partial calculation complexity of decomposing
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XXX(T ) can be reduced one order lower by substituting acquired decompositions forXXX(T−1). These two

ideas are separately used in following two steps of our proposed method for information preservation

and optimization acceleration, respectively.

2.3.1.1 Tensor partition and substitution

For the ease of presentation, we use a third-order tensor with steady growth on all three modes as

an example. It is straightforward to extend to general N th-order tensors. We use X̃̃X̃X ∈ RI1×I2×I3 and

XXX ∈ R(I1+d1)×(I2+d2)×(I3+d3) to represent two consecutive snapshots XXX(T−1) and XXX(T ), (T ∈ Z+),

respectively. X̃̃X̃X = 0 if T = 0. We now introduce the details.

Let A ∈ R(I1+d1)×R,B ∈ R(I2+d2)×R,C ∈ R(I3+d3)×R be the CP factor matrices of XXX, the CP

loss function under gaussian noise is:

LLL(A,B,C) = ‖XXX− JA,B,CK‖2
F. (2.4)

After partitioning XXX into eight sub-tensors according to X̃̃X̃X, we use a binary tuple (i, j, k) ∈

{0, 1}3 , Θ to denote these eight sub-tensors as shown in Figure 2.2, with X̃̃X̃X = XXX0,0,0. Each pair

of adjacent sub-tensors are coupled with each other. Based on the partitioning property of CP

decomposition, each sub-tensor of XXX could also be approximated via the sub-matrices of A, B and

C, i.e., XXXi,j,k ≈ JAi,Bj,CkK. A0 ∈ RI1×R and A1 ∈ Rd1×R are the partitioned sub-matrices of A,

i.e., A> = [A>0 ,A
>
1 ]. Similarly to Bj and Ck. Then Equation (2.4) could be rewritten as follows.

LLL(A,B,C) =
∑

(i,j,k)∈Θ

‖XXXi,j,k − JAi,Bj,CkK‖2
F

= ‖XXX0,0,0 − JA0,B0,C0K‖2
F + LLL0,

(2.5)

where LLL0 ,
∑

(i,j,k)∈Θ\(0,0,0)‖XXXi,j,k − JAi,Bj,CkK‖2
F.

Let JÃ, B̃, C̃K denote the CP decomposition of X̃̃X̃X obtained at time T − 1. It represents the

low-rank subspace which preserves the information of former snapshot. Based on this, we can

approximately replace XXX0,0,0 by JÃ, B̃, C̃K and get the loss function as follows:
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LLL(A,B,C) ≈ µ‖JÃ, B̃, C̃K− JA0,B0,C0K‖2
F + LLL0, (2.6)

where weight µ ∈ [0, 1] is the forgetting factor [46] used to alleviate the influence of the previous

decomposition error. If µ = 1, then JÃ, B̃, C̃K is considered as a perfect decomposition of X̃̃X̃X. If

µ = 0, then the former-step information is considered as independent to current decomposition. As

our final goal is to complete this tensor sequence, this inequality (0 < µ < 1) is quite effective to

alleviate the substitution errors especially when the percentage of missing data is high. In other

words, this forgetting factor degrades the status of old data and upgrades the power of newly arrived

data, so that we can more effectively incorporate newly emerged information to update the foregone

decomposition and ensure the substitution error not continuously accumulated.

2.3.1.2 Alternating least square updating

The optimization is based on alternating least squares (ALS), for its fast and easy implementation

with high accuracy [52, 53]. The update rule for A0 is:

∂LLL

∂A0

=− 2µ(Ã(C̃� B̃)>(C0 �B0)−A0(C0 �B0)>(C0 �B0))

− 2
∑

(j,k)6=(0,0)

(X0,j,k
(1) (Ck �Bj)−A0(Ck �Bj)

>(Ck �Bj)),

A0 ←
µÃ

[
(C̃>C0) ~ (B̃>B0)

]
+
∑

(j,k)6=(0,0) X0,j,k
(1) (Ck �Bj)

(
∑1

k=0 C>k Ck) ~ (
∑1

j=0 B>j Bj)− (1− µ)(C>0 C0) ~ (B>0 B0)
.

(2.7)

The main difference between the above update rule and static CP-ALS method is the first term

of the numerator. Following the property of Khatri-Rao product, the space and time complexity of

calculating the Khatri-Rao products � in equation (C̃� B̃)>(C0 �B0) can be reduced using the

element-wise Hadamard product, i.e., C̃>C0~B̃>B0. Hence, by substitutingXXX0,0,0 with JÃ, B̃, C̃K,

this term is changed from X0,0,0
(1) (C0 �B0) to µÃ

[
(C̃>C0) ~ (B̃>B0)

]
leading to a reduction of

time complexity from O(RI1I2I3) to O(R2(I1 + I2 + I3)).

The update rules of the incremental matrix A1 can be derived as:
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A1 ←
∑

j,k X1,j,k
(1) (Ck �Bj)

(
∑1

k=0 C>k Ck) ~ (
∑1

j=0 B>j Bj)
. (2.8)

Similar update rules for matrices B0, C0, B1, and C1 can be easily derived. The proposed DTD

model enjoys several nice properties. First, it is capable of handling any-mode-change dynamic

pattern. Second, it has a fast updating process for the purpose of scalability. Third, it well preserves

the information acquired from old data as well as captures the new data characteristics through the

updated process. Besides, the idea of partitioning also benefits methods in solving large-scale tensor

decomposition problems [50, 48, 49].

2.3.2 Proposed Completion Framework - MAST

The proposed DTD method balances the trade-off between efficiency and effectiveness in

modeling the multi-aspect streaming pattern. As CP decomposition is an effective way in addressing

static tensor completion problem, the DTD model also paves the way of solving the multi-aspect

streaming tensor completion problem. In this section, we show how MAST is applied to this

problem. We start with introducing the nuclear norm based method on low-rank tensor completion

problem in batch setting and then combine it with the DTD model for completing multi-aspect

streaming tensor sequences.

2.3.2.1 Low-rank tensor completion (LRTC)

Generalized from matrix completion problem, the LRTC problem can be formulated as an

equivalent rank-minimization problem as follows [45]:

minimize
XXX

rank(XXX) subject to ΩΩΩ ~XXX = TTT, (2.9)

where XXX denotes the complete tensor, TTT denotes the practical observations of XXX. ΩΩΩ is a binary tensor

with the same size as XXX indicating whether each corresponding entry in XXX is observed or not.

As calculating the tensor rank is an NP-hard problem [54], one way is to relax the tensor rank

by replacing it with the summation of the nuclear norm of its factorized matrices [43, 51]. The
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modified relaxation objective function is described as follows:

minimize
XXX,A1,A2,...,AN

N∑
n=1

αn ‖An‖∗ + ‖XXX − JA1,A2, . . . ,ANK‖

subject to ΩΩΩ ~XXX = TTT,

(2.10)

where {αn} are trade-offs to balance the significance of each mode.

2.3.2.2 Combine LRTC with DTD

Since multi-aspect streaming tensor completion problem can be treated as a dynamic LRTC

problem, a natural solution is to combine DTD with LRTC approach. By extending Equation (2.6)

to N th-order tensor and combining it with Equation (2.10), the proposed loss function for N th-order

multi-aspect streaming tensor completion problem is formulated as:

LLL =
∑

(i1,...,iN )∈ΘN\{0}N
‖XXX(i1,...,iN ) − JA(i1)

1 , . . . ,A
(iN )
N K‖2

F

+
N∑
n=1

αn ‖An‖∗ + µ‖JÃ1, . . . , ÃNK− JA(0)
1 , . . . ,A

(0)
N K‖2

F

, LLL1 +
N∑
n=1

αn ‖An‖∗,

(2.11)

where An =

A
(0)
n

A
(1)
n

 ∈ RIn×R

∈ Rdn×R
. JÃ1, . . . , ÃNK is the decomposition of recovered tensor X̃̃X̃X in the

previous step, and ΘN = {0, 1}N .

A tensor-based Alternating Direction Method of Multipliers (ADMM) algorithm is employed to

solve this optimization problem. ADMM is an efficient optimization scheme for accommodating

various constraints [55, 56]. Following the similar optimization scheme described in [51, 42], we

induce auxiliary variables Zn =

Z
(0)
n

Z
(1)
n

 ∈ RIn×R

∈ Rdn×R
, n = 1, . . . , N into Equation (2.11), then the

corresponding partial augmented Lagrangian function is:
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minimize
XXX,{An},{Zn},{Yn}

LLL1 +
N∑
n=1

(
αn ‖Zn‖∗+ < Yn,Zn −An > +

η

2
‖Zn −An‖2

F

)
subject to ΩΩΩ ~XXX = TTT, Zn = An, n = 1, 2, . . . , N,

(2.12)

where Yn =

Y
(0)
n

Y
(1)
n

 ∈ RIn×R

∈ Rdn×R
is the Lagrange multiplier matrix, η > 0 is a penalty parame-

ter. Based on Equations (2.7) and (2.8), by calculating the derivatives of matrices {A(0)
n } and

{A(1)
n }(n = 1, 2, . . . , N), we can get their update rules as follows:

A(0)
n ←

µÃn

[
(Ã>k A

(0)
k )

~k 6=n
]

+
∑

i∈S0
n

Xi
(n)(A

(ik)
k )�k 6=n + ηZ

(0)
n + Y

(0)
n

(A
(0)
k

>
A

(0)
k + A

(1)
k

>
A

(1)
k )

~k 6=n
− (1− µ)(A

(0)
k

>
A

(0)
k )

~k 6=n
+ ηIR

,

A(1)
n ←

∑
i∈S1

n
Xi

(n)(A
(ik)
k )�k 6=n + ηZ

(1)
n + Y

(1)
n

(A
(0)
k

>
A

(0)
k + A

(1)
k

>
A

(1)
k )

~k 6=n
+ ηIR

, (2.13)

where S0
n = {(s1, . . . , sN)|

∑N
k=1 sk 6= 0, sk ∈ {0, 1}, sn = 0} and S1

n = {(s1, . . . , sN)|∀ k ∈

{1, . . . , N} sk ∈ {0, 1}, sn = 1}.

In each iteration, the auxiliary matrices {Zn} has a closed-form solution as follows[57]:

Zn = SV Tαn
η

(An −
Yn

η
), n = 1, 2, . . . , N. (2.14)

where SV Tαn
η

is the singular value thresholding operator [57] defined as SV Tδ(A) = U(diag{σi−

δ})+V>, where U(diag{σi}1≤i≤r)V
> is the singular value decomposition of matrix A. For any

matrix X, X+ = max{X, 0}, where max{·, ·} is an element-wise operator.

To mask the missing values and iteratively completing tensor XXX, XXX is updated as follows:

XXX← TTT + Ωc ~ JA1,A2, . . . ,ANK. (2.15)
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Algorithm 1: The proposed framework MAST

Input: TTT, Ω, {Ãn}Nn=1, R, {αn}Nn=1, µ, η, ηmax, ρ, tol;
Output: XXX, {An}Nn=1

1 Initialize A
(0)
n = Ãn, A

(1)
n = rand(dn, R), Zn = Yn = 0;

2 repeat
3 η = min{η ∗ ρ, ηmax} (accelerate optimization process);
4 for n = 1 : N do
5 Update A

(0)
n and A

(1)
n using Equation (2.13);

6 Update XXX using Equation (2.15);
7 for n = 1 : N do
8 Update Zn using Equation (2.14);
9 Update Yn using Equation (2.16);

10 until ‖XXXpre −XXX‖F/‖XXXpre‖F < tol;

Finally, Yn is updated as follows:

Yn ← Yn + η(Zn −An), n = 1, 2, . . . , N. (2.16)

By using this optimization scheme, we can get the decomposition matrices and completed tensor

XXX simultaneous. The entire optimization process of MAST is summarized in Algorithm 1. The

termination criterion is that the relative changing of tensor XXX in two contiguous iterations is smaller

than the tolerance.

2.3.3 Temporal Multi-Aspect Streaming Tensor Completion

In some real-world applications, time is one mode of each tensor in a multi-aspect streaming

tensor sequence. Take a recommender system structured as a user ×movie× time tensor as an

example. If a new user or a new item joins the system at time T , their past-time information would

not exist during t ∈ (0, T ). This information shortage renders the snapshot tensor degenerated to

a ladder-type structure shown in Figure 2.3. If we treat this structure as a combination of slices

{XXX(T )}, then the original multi-aspect streaming tensor sequence can be reconstructed using the

incremental tensor slices with zero-paddings. We call these slices {XXX(T )} temporal multi-aspect

streaming tensor sequence. This special structure provides us a way to improve MAST model for a

better effectiveness by alleviating the quantity of substitution on missing entries.
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Figure 2.3: Degeneration of multi-aspect streaming tensor.

2.3.3.1 Connection of Different Dynamic Patterns

Figure 2.3 depicts the relationships between different dynamic patterns. The temporal multi-

aspect steaming is a special scenario. If the sizes of the tensor slices are the same at each time

step, it will further degenerate into the traditional streaming tensor situation. Although the general

framework MAST can be directly applied to the temporal case, the ladder-type structure provides

extra information that could help.

We propose to reduce the quantity of substitution on missing entries to improve one of the key

manipulations of MAST, i.e., tensor substitution. Different from DTD, because of data missing, the

substitution of XXX(T−1) at time T is composed of two parts: (1) using former-step predicted values to

impute the missing entries; (2) using fitting values to substitute the existed entries. The substitution

of existed part often has much smaller error and usually provides more convincing information than

the prediction of missing part. As the degeneration process naturally centralizes the existed data

in the ladder-type object, all of the extra parts can be treat as missing data and their substitution

errors are easy to reduce. Thus, besides forgetting factor µ, this special structure paves another

way to reduce the accumulated error in MAST framework towards effectively capturing fast and

dramatically changed subspaces.

2.3.3.2 Temporal Multi-Aspect Streaming CP Completion Algorithm

Inspired by the coupled tensor factorization [58], we tailor the general MAST framework and use

Figure 2.4 to illustrate the main idea of the variation model T-MAST. LetXXX(T ) denote the tensor slice
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Figure 2.4: An illustration of T-MAST comparing with MAST.

arrives at time T . TTT(T ) represents its observed entries. {
r
Ã

(t)
1 ,


Ã

(1)
2

...

Ã
(t)
2

 , . . . ,


Ã
(1)
N

...

Ã
(t)
N


z
}(1≤t≤T−1)

is the set of CP decompositions of the recovered tensor slices {XXX(t)}(1≤t≤T−1) at time T − 1. We

use A
(T )
n , n = 1, . . . , N to represent the incremental part of the decomposition matrix on mode-

n at time T and use A
(t)
n (1 ≤ t ≤ T − 1) to represent the updated result of Ã

(t)
n at current

timestamp T . At each time step T , the problem is converted to how to recover XXX(T ) based on the

decompositions of former recovered slices {XXX(t)}(1≤t≤T−1) and get the updated CP decomposition

set {
r
A

(t)
1 ,


A

(1)
2

...

A
(t)
2

 , . . . ,


A
(1)
N

...

A
(t)
N


z
}(1≤t≤T ).

Comparing to MAST, which requires zero-paddings to redefine a multi-aspect sequence shown

in Figure 2.4, for T-MAST, rather than reconstructing it as a whole tensor, we directly treat this

ladder type object as coupled tensor slices and use the decomposition of each slice to substitute

it. Since newly added zero-padding tensors and the block operation of XXX(T ) has no influence on

19



the current update, the difference between MAST and T-MAST models is how we substitute the

former existed slices. Owing to the slice-based substitution in T-MAST model, the substitution of

the former zero-padding parts can be omitted compared with the tensor-based substitution used in

MAST model. Thus, it successfully reduces the proportion of missing data substitution as described

before. The modified loss function is defined as follows:

LLL =
∥∥∥XXX(T ) −

r
A

(T )
1 ,A2,A3, . . . ,AN

z∥∥∥2

F
+

N∑
n=1

αn

∥∥∥An

∥∥∥
∗

+
T−1∑
t=1

µt

∥∥∥rÃ
(t)
1 ,


Ã

(1)
2

...

Ã
(t)
2

 , . . . ,


Ã
(1)
N

...

Ã
(t)
N


z
−

r
A

(t)
1 ,


A

(1)
2

...

A
(t)
2

 , . . . ,


A
(1)
N

...

A
(t)
N


z∥∥∥2

F
,

(2.17)

where An =


A

(1)
n

...

A
(T )
n

 , n = 1, . . . , N .

2.3.3.3 Optimization Scheme

By comparing Equation (2.17) with Equation (2.11), we can easily find that their first and second

terms are correspondingly equivalent when dealing with the temporal-mode-involved scenario. The

different is the last term. Hence, we can still use ADMM algorithm to solve the above optimization

problem and the only difference lies in the optimization of {An}n. For the sake of brevity, we omit

other repetitive derivation and only focus on the update of matrices {A(t)
n }t,n. For each non-temporal

mode n = 2, . . . , N , we calculate the partial derivatives of matrices {A(t)
n }, t = 1, ..., T , and define

intermediate recursive matrix sequences {B(t)
n }, {D(t)

n }, {P(t)
n }, and {Q(t)

n } to update them in each

iteration. Assume Ã
(T )
k = 0, P

(T )
k =

∑T
j=1 Ã

(j)
k

>
A

(j)
k , and Q

(T )
k =

∑T
j=1 A

(j)
k

>
A

(j)
k , k = 2, . . . , N .

For any k = 2 . . . , N , we have:

P
(t)
k = P

(t+1)
k − Ã

(t)
k

>
A

(t)
k ; Q

(t)
k = Q

(t+1)
k −A

(t)
k

>
A

(t)
k , t = T − 1, . . . , 1.
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Based on {P(t)
n } and {Q(t)

n }, if we define D
(T+1)
n = 0, µT = 1, and B

(T+1)
n = 0, we have:

D(t)
n = D(t+1)

n + µt(Ã
(t)
1

>
A

(t)
1 ) ~ (P

(t)
k )~k 6=1,n ,

B(t)
n = B(t+1)

n + µt(A
(t)
1

>
A

(t)
1 ) ~ (Q

(t)
k )~k 6=1,n , t = T, . . . , 1.

Then we can get the update rules for {A(t)
n } as follows:

A(t)
n ←

C
(t)
n + Ã

(t)
n D

(t)
n + ηZ

(t)
n + Y

(t)
n

B
(t)
n + ηIR

, t = T, . . . , 1, n = 2, . . . , N, (2.18)

where {Y(t)
n }t,n are the Lagrange matrix multipliers. {C(t)

n }t are the block sub-matrices of Cn ,

X
(T )
(n)

[
A

(T )
1 �

(
Ak

)�k 6=1,n

]
based on the size of {A(t)

n }t.

For each mode n, only 2(N − 1)R2 extra space is needed comparing to the MAST model if we

follow the updating order below:

Cn → {P(T )
k }k∈[2,N ] → {Q(T )

k }k∈[2,N ] → D(T )
n → B(T )

n → A(T )
n

→ {P(T−1)
k }k∈[2,N ] → {Q(T−1)

k }k∈[2,N ] → D(T−1)
n → B(T−1)

n → A(T−1)
n

→ . . .→ {P(1)
k }k∈[2,N ] → {Q(1)

k }k∈[2,N ] → D(1)
n → B(1)

n → A(1)
n .

The temporal mode (n = 1) could be updated by:

A
(t)
1 ←

µtC
(t)
n + ηZ

(t)
1 + Y

(t)
1

µt(Q
(t)
k )~k 6=1 + ηIR

, t = T, . . . , 1, µT = 1, (2.19)

where C
(T )
n = X

(T )
(1)

(
Ak

)�k 6=1

, C
(t)
n = (P

(t)
k )~k 6=1 . The rest matrices {Y(t)

n }, {Z(t)
n } and tensor

XXX(T ) are updated similarly as MAST.

From model perspective, although T-MAST can not handle the general multi-aspect streaming

situation as MAST, both of them can be applied to the traditional streaming case. Not surprisingly,

comparing Equations (2.11) and (2.17), using the traditional streaming setting, these two models

are equivalent to each other.
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2.4 Experiments

In this section, we empirically evaluate the performance of the proposed framework MAST.

Three major aspects are analyzed.

Q1: How effective is MAST compared with static and dynamic CP completion methods on different

real-world datasets with different dynamic variation patterns?

Q2: How efficient is MAST compared with the state-of-the-art methods on datasets with different

length of time segments?

Q3: What is the influence of the forgetting factor µ on the general model MAST?

2.4.1 Datasets and Tasks

To evaluate the validity of MAST, we apply it to four datasets with different applications. The

first three are recommendation tasks, and the last one is an information diffusion application to

demonstrate the broader usage of the proposed framework. Their basic information is shown in

Table 2.2.

Twitter Topic [59] (Recommendation): It is a third-order tensor with binary entries of size

500(user)× 500(expert)× 20(topic). Experts represent the high-quality content producers of 20

topics. It starts from 50 × 50 × 20 and increases 2% of total users and experts at each time step.

The task is to recommend the personalized expert of each topic to each user.

Youtube2 [60] (Link Prediction): It includes 1,066 users which have the most interactions among

original 15,088 users sharing five interactions, including contact, co-contact, co-subscription, co-

subscribed, and favorite networks. It starts from 100(user) × 100(user) × 5(interaction) and

increases 2% of total users in each timestamp. The task is to predict missing links at each time step.

MovieLens3 (Recommendation): It is a benchmark dataset for movie recommendation structured

as a temporal multi-aspect streaming tensor sequence of size 943(user)× 1,682(item)× 31(week).

Instead of predicting concrete movie rates, the task is to predict what movies a user may rate.

Twitter Hashtag [42] (Information Diffusion): This is a spatial-temporal dataset structured as a

2http://socialcomputing.asu.edu/datasets/YouTube
3http://movielens.umn.edu
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Table 2.2: Characteristics of the four multi-aspect streaming tensor completion datasets.

Total Size Initial Size Increased Modes
Twitter Topic 500× 500× 20 50× 50× 20 1,2

Youtube 1066× 1066× 5 100× 100× 5 1,2
MovieLens 943× 1682× 31 57× 983× 1 1,2,3

Twitter Hashtag 100× 1000× 249 57× 1000× 1 1,3
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Figure 2.5: Incremental patterns of different datasets.
temporal multi-aspect streaming tensor sequence of size 100(hashtag)× 1000(city)× 249(day).

Each binary entry indicates whether the corresponding hashtag emerges at the corresponding city on

a specific day or not. Hashtag mode is increased as time goes. The task is to predict the emergence

of previously appeared hashtags in each city at each time step.

The MovieLens and Twitter Hashtag follow the natural evolvement of a ladder-type increment.

To give a better understanding of the incremental process, we depict the sectional views of the user

and item modes of MovieLens, as well as the hashtag mode of Twitter Hashtag in Figure 2.5. The

incremental pattern of Twitter Hashtag dataset is relatively gentle comparing with MovieLens.

2.4.2 Baseline Methods

Three state-of-the-art CP completion methods are employed including two categories, i.e., static

and dynamic algorithms.

• Static CP-ALS [61]: It is a traditional CP-based method also called EM-ALS [62]. To enhance

the learning process, the former-step decomposition is utilized as the initialization for the
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current step. We implement it with the help of [63].

• Static TNCP [51]: It is one of the state-of-the-art static completion methods. It employs trace

norm constraints optimized by ADMM algorithm. Similar initialization approach is employed

to accelerate the convergence.

• OLSTEC [47]: It is a state-of-the-art streaming tensor completion method. We extend

it for multi-aspect streaming tensor completion by splitting the multi-aspect incremental

process into several streaming ones and update them in random order in each iteration until it

converges.

• T-MAST: This is a variation of MAST tailored towards temporal multi-aspect streaming

tensor sequence. It cannot be applied to the Twitter Topic and Youtube.

2.4.3 Experimental Setup

Following widely used settings [47, 46], for all datasets, we randomly cover a fixed percentage

of data and consider the remaining entries as observed information. The hidden data is used as

ground truth. To further study the impact of the missing ratio, we vary it as {20%,50%,80%}. To

evaluate the performance, a widely used metric is employed for all tasks, i.e., running-average Area

Under Curve (RA-AUC). For the first two datasets, we focus on the incremental part XXX(t)\XXX(t−1)

at time step t to avoid double counting and calculate the Area Under Curve (AUC) score of each

topic slice or interaction slice based on the prediction. The average AUC at time t among topics

or interaction slices is denoted as AUCt. For the last two datasets which are two multi-aspect

streaming tensor sequences, AUCt is calculated using the prediction of missing data in slice XXX(t).

The running-average AUC score is defined as: RA-AUC = 1
T

∑T
t=1 AUCt, where T is the total

number of time steps. The efficiency is measured by average running time defined as 1
T

∑T
t=1 RTt,

where RTt is the running time at time step t.

Parameter Setting: We set the tolerance rate to 10−5, the maximum number of iteration to 500

for all the algorithms. By testing the performance of static methods on whole four datasets using

10 different ranks varying from 5 to 50, we set R = 10 in all the experiment considering of both
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Table 2.3: Performance in terms of RA-AUC metric on the two general multi-aspect streaming
tensor completion tasks. (Results of the best dynamic and static methods are highlighted.)

Dataset Twitter Topic Youtube
Missing Percentage 20% 50% 80% 20% 50% 80%

Static
CP-ALS 0.8394 0.7810 0.6238 0.9390 0.9209 0.8609
TNCP 0.8443 0.7936 0.6661 0.9384 0.9199 0.8659

Dynamic
OLSTEC 0.6670 0.5035 0.5028 0.8601 0.7315 0.7225

MAST 0.8392 0.7714 0.6493 0.9326 0.9141 0.8618
T-MAST N.A. N.A. N.A. N.A. N.A. N.A.

Table 2.4: Performance in terms of RA-AUC metric on the two temporal multi-aspect streaming
tensor completion tasks. (Results of the best dynamic and static methods are highlighted.)

Dataset MovieLens Twitter Hashtag
Missing Percentage 20% 50% 80% 20% 50% 80%

Static
CP-ALS 0.9304 0.9057 0.8605 0.9257 0.9236 0.9133
TNCP 0.9344 0.9139 0.8790 0.9258 0.9238 0.9137

Dynamic
OLSTEC 0.7048 0.6550 0.6227 0.7449 0.6716 0.6314

MAST 0.8393 0.8354 0.8099 0.9160 0.9019 0.8641
T-MAST 0.9294 0.9023 0.8586 0.9233 0.9153 0.8881

accuracy and speed for fair comparison. In the implementation of our proposed method, default

parameters are set as αn = 1
10N

n = 1, . . . , N , η = 10−4, ρ = 1.05 and ηmax = 106. The forgetting

factors are fine-tuned according to the missing ratio f (usually µ = µt = 1 − f (∀ t > 0)). For

baselines, we follow the suggestions of original papers to set parameters. The initial completion

and warm start matrices are calculated using TNCP method for two reasons: (1) MAST framework

degenerates to static TNCP when T = 1. (2) For fair comparison, we use the same best warm start

at initial time for all methods. All experimental results are the arithmetic average of five runs and

are ran on a Dell OptiPlex 9030 i7-16GB desktop with MATLAB R2016b.

2.4.4 Evaluation of Effectiveness

Table 2.3 and Table 2.4 show the performance of MAST and baselines on different datasets in

terms of RA-AUC. Three main conclusions are observed.

First, MAST has commensurate performance comparing with the two static models and higher
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Figure 2.6: Performance of different methods on the four datasets with different timestamps.
performance than dynamic baseline method OLSTEC with different percentages of random missing

entries on the first two datasets. To illustrate the performance of different models over time, we

display the RA-AUC variation curve of MAST compared with baselines on four datasets with 80%

missing entries in Figure 2.6. The results show that, with time goes, the increase of users leads

to a fluctuant increasing RU-AUC for all the methods except OLSTEC. MAST has comparable

performance to the static baselines and has higher accuracy than OLSTEC.

Second, on both MovieLens and Twitter Hashtag, which have different dynamic patterns shown

in Figure 2.5, the variation model T-MAST outperforms MAST. This result empirically validates

our analysis in Section 3.3 that the ladder-type structure of temporal multi-aspect streaming pattern

could help to reduce the quantity of substitution on missing entries thereby improving general
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Figure 2.7: Running time (in logarithmic scale) of all methods.
MAST framework. Besides, as can be seen from the results, the difference between T-MAST and

MAST on MovieLens is larger than the one on Twitter Hashtag. This is because MovieLens dataset

has fewer snapshots and sharper changes on the size of tensor slices than Twitter Hashtag as shown

in Figure 2.5. The dramatically increased ladder-type structure leads to a larger ratio of missing data

substitution at each time step. This further results in a hysteresis effect for capturing characteristics

of the new data during the update.

Third, MAST shows strong stability on different datasets of different dynamic patterns. Further-

more, for different ratios of missing data and different length of time steps, our proposed framework

retains comparable performance with static models. Theses results demonstrate the capability of

our model in capturing low-rank subspace of dynamically changed tensor objects.
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Table 2.5: Average running time of different methods on the two general multi-aspect streaming
tensor completion tasks.

Dataset Twitter Topic Youtube
Missing Percentage 20% 50% 80% 20% 50% 80%

Static
CP-ALS 305.20 307.42 302.85 504.77 502.73 500.72
TNCP 110.73 118.69 117.92 371.33 368.56 365.67

Dynamic
OLSTEC 14.042 14.150 13.903 29.592 27.272 27.216

MAST 8.7937 8.3523 7.6398 28.270 26.443 25.626
T-MAST N.A. N.A. N.A. N.A. N.A. N.A.

2.4.5 Evaluation of Efficiency

To study the efficiency of the proposed framework, we compare the average running time of

all five models shown in Table 2.5 and Table 2.6. For better visualization, Figure 2.7 displays the

computation time (RTt) in logarithmic scale as a function of timestamps or user numbers on four

datasets with 80% missing. From these results, we can come to the conclusion that (1) For general

multi-aspect streaming tensor, MAST model takes much less running time than static models and

outperforms OLSTEC. (2) T-MAST model shows comparable efficiency with MAST on short-term

datasets. Although it sacrifices the time complexity to some degree on long-term datasets for

the sake of higher effectiveness, it is still significantly faster than static models. If we assume

R � In, n = 1, . . . , N , and define St =
∏N

n=1 I
t
n, where I tn is size of the N th mode of slice XXX(t)

in a temporal multi-aspect streaming tensor sequence, the complexities per iteration of all three

dynamic models at time t would beO((N+1)R(St−S(t−1))) comparing toO((N+1)RSt) of two

static models. Moreover, a dramatic change in the size of the tensor will cause a violent fluctuation

on the completion time. For instance, the structures of Youtube and Twitter Topic datasets changed

more steadily than MovieLens and Twitter Hashtag datasets resulting in less violent fluctuations

on the running-time curves. If we focus on one dataset such as Twitter Hashtag, the time curve

fluctuates more acutely when the size of the newly slice increases sharply.

2.4.6 Influence of Forgetting Factor

To investigate the effect of forgetting factor µ on our proposed framework, we vary it from

0 to 1 with a step size 0.05 and compare the performance of MAST model on Twitter Topic and
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Table 2.6: Average running time of different methods on the two temporal multi-aspect streaming
tensor completion tasks.

Dataset MovieLens Twitter Hashtag
Missing Percentage 20% 50% 80% 20% 50% 80%

Static
CP-ALS 1189.9 1223.3 1170.2 257.16 468.13 582.38
TNCP 509.87 511.34 456.59 172.01 194.78 193.59

Dynamic
OLSTEC 144.18 143.59 140.81 9.2601 9.6796 9.3625
MAST 118.13 113.74 110.72 8.9186 8.5487 7.0420

T-MAST 113.65 105.29 103.56 19.1785 18.6397 16.3826
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Figure 2.8: Impact of forgetting factor µ on MAST with different missing percentages.
Youtube datasets. Results shown in Figure 2.8 demonstrate that with the decreasing of forgetting

factor, the performance of MAST increases at first and then decreases. With the increase of the

missing ratio, the turning point becomes closer to 0, which inspires us to choose a smaller µ to

alleviate the substitution error. In sum, these observations illustrate that: (1) A suitable shrinkage

on the approximately substituted tensor could alleviate the previous fitting error and result in better

completion effectiveness. (2) The higher the missing ratio is, the smaller the forgetting factor we

should choose to alleviate the hysteresis effect of our framework in capturing the low-rank subspace

for multi-aspect streaming tensor completion.

2.5 Related Work

The related work can be categorized into two main topics as follows:
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Dynamic Tensor Factorization. Tensor factorization methods have received widespread concerns

and achievements under static setting [52, 55]. Increasingly massive amount of real-world dynamic

data nowadays requires an extensive concern on the problem of dynamic tensor factorization [47].

Nion and Sidiropoulos [64] proposed two adaptive PARAFAC algorithms adopting the recursive

least square and simultaneous diagonalization tracking methods to solve the online third-order tensor

factorization. Phan et al. [50] partitioned a large-scale tensor into small grids and proposed a grid-

based scalable tensor factorization method which could also be used in dynamic tensor factorization.

Zhou et al. [53] proposed an accelerated online algorithm that can track the CP decompositions

of incremental N th-order tensors. However, all of them are not directly applicable to multi-aspect

streaming situations and the completion task. Kasai [47] substituted the stochastic gradient descent

method with recursive least square method and improved the algorithm proposed by Mardani et al.

[46] focusing on the problem of subspace learning and imputation for streaming tensors. Besides

CP decomposition, dynamic tucker decomposition methods were also proposed [65, 66, 67]. Some

of them were not only focusing on one-mode increasing condition [68, 69], but also giving possible

solutions for all-mode incremental update using matrix-based online methods such as incremental

SVD [70] without considering about missing entries. Finally, it is worth to mention that though not

a factorization method, the histogram-based approach [71] conducted on multi-aspect streaming

tensor analysis can be treated as one of the pioneer researches on the multi-aspect streaming pattern.

Low-Rank Tensor Completion. Since the real-world multidimensional datasets are oftentimes

raw and incomplete because of missing at random and limited permissions [42, 51], low-rank tensor

completion problem has been attractive to researchers and practitioners in data mining, online

learning, computer vision, signal processing, etc. Generalized from matrix cases, a wide range of

approaches have been proposed such as trace-norm based methods [43, 45, 72, 73], factorization-

based approaches [61, 74, 62], tensor completion with auxiliary information [75, 42, 58], and online

tensor imputation [46, 47]. Although both theoretical analysis and various practical applications

have been considered, to our best knowledge, no existing work has been conducted on the low-rank

tensor completion with general multi-aspect streaming patterns.
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2.6 Conclusions

In this work, we focus on the multi-aspect streaming tensor completion problem and propose

an updatable CP completion framework MAST. The proposed framework can effectively capture

the low-rank subspace of multi-aspect streaming tensor sequences so as to achieve the completion

purpose. To further enhance the effectiveness, we also tailor the general framework toward a special

case where time is one mode of the multi-aspect streaming tensors. By conducting experiments on

various real-world recommendation tasks, we empirically validate the effectiveness and efficiency

of our proposed framework.
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3. COUPLED VARIATIONAL RECURRENT COLLABORATIVE FILTERING1

In this chapter, we explore the deep-learning solution to the streaming recommendation problem.

We focus on the collaborative filtering setting and add deep-learning flavor to the conventional

probabilistic factorization models. We model the evolution of the users’ preference and items’

popularity with the stochastic processes under the Bayesian treatment, which provides advanced

recommendation performance and extra interpretability compared to existing shallow and deep

recommender systems.

3.1 Introduction

Traditional work has been widely conducted in exploiting temporal dynamics to improve the

recommendation performance under static settings [6, 76, 4, 5] or streaming settings [8, 9, 1, 12, 10,

13, 7]. Though great advances have been made, the capacity of these models are usually restricted

while capturing complex data structures and require delicate statistical assumptions comparing with

structured deep frameworks [77, 22].

Despite the remarkable revolution achieved recently in deep recommender systems either in

static setting [24, 25, 26, 23, 27, 28] or streaming fashion [19, 20, 21], deep frameworks also

have their own limitations. One of the most noticeable fact is that deep frameworks are usually

deterministic approaches, which only output point estimations without taking the uncertainty

into account. It significantly limits their power in modeling the randomness of the measurement

noises [78] and providing predictions of the missing or unobserved interactions in recommender

systems. As probabilistic approaches, especially Bayesian methods, provide solid mathematically

tools for coping with the uncertainty, it motivates us to conduct streaming recommendations from

the view of Deep Bayesian Learning (DBL) to conjoin the advantages of probabilistic models and

deep learning models.

1This chapter is reprinted with permission from “Coupled Variational Recurrent Collaborative Filtering” by Qingquan
Song, Shiyu Chang and Xia Hu, 2019. Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Copyright 2019 by ACM.
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However, simply applying DBL on streaming recommendation is a non-trivial task due to the

following challenges. First, coordinating the temporal dynamics is difficult given the continuous-

time discrete-event recommendation process along with the protean patterns on both user and

item modes. Second, the high velocity of streaming data requires an updatable model, which

could expeditiously extract the prior knowledge from former time steps and effectively digest it for

current predictions. Third, the DBL frameworks are usually expensive in terms of time and space

complexities.

To tackle these aforementioned challenges, in this work, we propose to investigate how to con-

duct streaming recommendation by leveraging the advantages of both deep models and probabilistic

processes. Specifically, we study: (1) How to model the streaming recommender system with an

updatable probabilistic process? (2) How to incorporate deep architectures into the probabilistic

framework? (3) How to efficiently learn and update the joint framework with streaming Bayesian

inference? Through answering the three questions, we propose a Coupled Variational Recurrent

Collaborative Filtering (CVRCF) Framework.

3.2 Coupled Variational Recurrent Collaborative Filtering Framework

The core of CVRCF is a dynamic probabilistic factor-based model that consists of four compo-

nents. The first two formulate the user-item interactions and temporal dynamics, respectively. Each

of them incorporates a probabilistic skeleton induced by deep architectures. The third component

is a sequential variational inference algorithm, which provides an efficient optimization scheme

for streaming updates. The last component allows us to generate rating predictions based on the

up-to-date model.

3.2.1 Interaction Network

Factor-based models are widely adopted in recommendation modelings. They have shown a

great success in multiple recommendation tasks [79]. Most of them follow the traditional matrix

factorization setting, in which users and items are modeled as latent factors; and their interactions

are defined as the linear combinations of these factors. However, such simple linear combinations
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Figure 3.1: Temporal drifting of the a user’s latent factor on two consecutive time steps.

are often insufficient to model complex user-item interactions [26]. Thus, we consider a deep

probabilistic matrix factorization setting as follows:

xTij|uTi ,vTj , σ2
i,j,T ∼ N (f1(uTi ,v

T
j ), f2(uTi ,v

T
j , σ

2
i,j,T )), (3.1)

where both f1(·) and f2(·) are represented by deep neural networks. We represent the latent vectors

of user i and item j at time step T as uTi and vTj , respectively. The rating xTij is modeled as a

Gaussian random variable whose location and scale values are the output of the deep networks. The

environmental noise σ2
i,j,T could either be predefined as a hyperparameter [79] or jointly learned. It

is worth pointing out that we assume the variance of xTij depends on both the latent vectors and the

environmental noises, which is slightly different from the conventional probabilistic setting [79].

3.2.2 Temporal Drifting Process

The temporal dynamics of a recommender system depend on the drifting of users’ preferences

and item popularities [14, 15]. A user’s tastes for a certain type of items may change over time while

the popularity of an item may also vary with time goes by. To capture the inherent dynamics, we

intend to encode the drifting processes into user and item latent factors based on three hypotheses:

• We assume the latent factors of both user and item can be decomposed as the combination
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of a stationary term (usi ) and a dynamic term (∆uTi ) [20]. The stationary factor captures

the long-term preference, which varies slowly over time. The dynamic factor encodes the

short-term changes, which evolves rapidly. An illustrative example is shown in Figure 3.1,

where a user’s dynamic factor evolves between two consecutive time steps, causing his

preference drifted from uT−1
i to uTi . We assume the two factors are independent of each other

for simplicity.

• The dynamic factors of a user or an item follows a Markov process [2]. The intuition of using

a Markov process comes from the observation that the changing of a user’s current preference

could be highly affected by his former preference.

• The changing of latent factors of a particular user i (or item j) between two consecutive time

steps T − 1 and T depends on the time interval between the last events before these two time

steps, which involves this user (or item), i.e., ∆τTu,i = τTu,i− τT−1
u,i , where τT−1

u,i and τTu,i denote

the actual time of the two last interactions of user i before time step T − 1 and T , respectively.

Intuitively, the longer the interval is, the larger the drifting may happen. τTu,i is defined to be

equal to τT−1
u,i if no interactions happens between time step T − 1 and T .

Upon these hypotheses, we model the evolution of hidden topics of a user (or an item), via

spatiotemporal Gaussian priors, which is mathematically formulated as follows:


uTi = usi + ∆uTi ,

usi ∼ N (0, σ2
UI),

∆uTi |∆uT−1
i ∼ N (µµµu,i,T ,ΣΣΣu,i,T ).

(3.2)

It is worth pointing out that only the users, which have interactions between time T and T − 1,

need to be considered here while factors of users who do not have interactions are assumed to be

unchanged till their next interaction happens. We place the zero-mean spherical Gaussian prior on

the stationary factors [79], where σU denotes the scale hyperparameter. For dynamic factors, the
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(a) CVRCF sequential inference network. (b) CVRCF prediction network.

Figure 3.2: Illustration of the inference and prediction networks of CVRCF.

kernel matrix ΣΣΣu,i,T is defined as a diagonal matrix here for simplicity, i.e., ΣΣΣu,i,T , diag(σσσ2
u,i,T ).

Motivated by the recent advances in deep kernel learning, which combines the non-parametric

flexibility of kernel approaches with the structural properties of deep architectures [77], we further

define the kernel as an output of a deep neural network f3(·) to enhance its generality, i.e., σσσ2
u,i,T =

f3(∆uT−1
i ,∆τTu,i).

Coping with the last two hypotheses, this spatiotemporal kernel takes ∆uT−1
i , which represents

the user’s dynamic preference at last time step, as a spatial effect to decide the drifting uncertainty

and it is stationary for temporal effect, which means ΣΣΣu,i,T depends on the time internal ∆τTu,i

rather than the concrete time τTu,i and τT−1
u,i . For a more unified representation, we can further

define µµµu,i,T = f4(∆uT−1
i ,∆τTu,i), where f4(·) denotes a predefined deep neural network. The

definition of the whole drifting prior obeys the Markov property for the discrete events on the

continues timeline, which implies that the current state depends only on the former state. It is also

applicable to employ other state dependency correlations and network structures. Similar prior with

corresponding notations is defined for items.

3.2.3 Deep Sequential Variational Inference

The third component of the CVRCF framework is the inference model. It composites the two

former components with a sequential Bayesian skeleton and associates them with the last prediction

component for streaming recommendations.
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3.2.3.1 Joint Distribution

The joint distribution of all observations up to time T and the latent factors is defined as follows:

p(x≤T ,U≤T ,V≤T ) = p(x≤T ,Us,Vs,∆U≤T ,∆V≤T )

= p(x≤T ,∆U≤T ,∆V≤T |Us,Vs)p(Us)p(Vs)

= p(Us)p(Vs)
[∏
t≤T

p(xt|x<t,∆U≤t,∆V≤t,Us,Vs)

× p(∆Ut,∆Vt|x<t,∆U<t,∆V<t,Us,Vs)
]
,

(3.3)

where U and V are the matrices of the latent factors for existing users and items.

Our goal is to infer the posterior distribution of latent factors for every t, i.e., p(Ut,Vt|x≤t),∀t ≤

T . However, it is intractable for direct inferences based on the current model assumptions. To

overcome this challenge, existing works usually focus on two types of approaches - Sequential Monte

Carlo methods (SMC) [80] and Variational Inference methods (VI) [81]. The traditional sequential

Bayesian updating usually uses SMC methods (a.k.a., particle filtering) to deal with intractable target

posterior distributions. Although this approach is very accurate when suitable proposal distributions

and enough particle samples are presented, the sampling process is often too slow to apply to

high dimensional and large-scale data [82]. On the other hands, the variational inference is much

faster compared to SMC. However, the accuracy highly depends on the approximation distribution,

especially in streaming settings [83]. Although there are hybrid models combine both algorithms

together [84, 85], the computational complexity makes it prohibited for large-scale recommender

systems. To trade-off the model scalability and accuracy, we consider the streaming variational

inference framework [81] by leveraging deep neural networks as the variational approximator to

obtain more flexible posteriors.
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3.2.3.2 Sequential Variational Inference Network

Before introducing the deep architectures, we first assume the latent factors can be partitioned

into independent units followed by the traditional mean-field approximation:

q(∆U≤T ,∆V≤T |x≤T ,Us,Vs) = q(∆U≤T |x≤T )q(∆V≤T |x≤T ), (3.4)

where q denotes the approximated variational posterior. Further, each user (or item) is placed by a

Gaussian variational posterior as follows:

q(∆uti|∆u≤t−1
i , x≤ti ) = N (µµµ∗u,i,t,ΣΣΣ

∗
u,i,t),∀1 ≤ t ≤ T, (3.5)

where ΣΣΣu,i,t is diagonal with the similar definition as the priors defined in Equation (3.2). x≤ti

denotes all the interactions related to user i before time step t.

To infer the variational posterior, we propose a Coupled Variational Gated Recurrent Network

structure (CVGRN) leveraging two variational Gated Recurrent Units (GRUs) for users and items,

respectively. Figure 3.2a demonstrates the key idea of the proposed inference network. Blocks

represent the inputs of two GRUs at different time steps. qtu,i and qtv,j represent the approximated

posterior distribution q(∆uti|∆u≤t−1
i , x≤ti ) and q(∆vtj|∆v≤t−1

j , x≤tj ), which are inferred based on

the GRUs output states ht−1
u,i and ht−1

v,j and the interactions elated to user i and item j between time

step t − 1 and t, i.e., {xti} and {xtj}. Specifically, assume a user and a movie interact with each

other at time t. The red and blue blocks denote the inputs of the user chain and item chain at time

step t, respectively, which are denoted as ytu,i and ytv,j . These two inputs are constructed based on

user i’s or item j’s interactions between time steps t− 1 and t, respectively. For example, ytu,i is

defined as ytu,i = [Wu · xtu,i, log(∆τ tu,i), 1u,new], where xtu,i denotes a sparse vector consisting of the

ratings {xti} given by user i in time interval ∆τ tu,i. Wu is an embedding matrix, which is employed

to reduce the length of GRUs inputs for alleviating intermediate data explosion. 1u,new indicates

whether a user is a new user or not [20]. The log interval log(∆τ tu,i) is concatenated into the inputs
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to encode continues-time information [21]. Inferring qtu,i is equivalent to inferring µµµ∗u,i,t and ΣΣΣ∗u,i,t in

Equation (3.5), which are calculated as: [µµµ∗u,i,t,ΣΣΣ
∗
u,i,t] = f5(ht−1

u,i ,y
t
u,i). f5 is a deep neural network.

Since all of the users (or items) share the same RNN chain, the model size could be largely

reduced. Moreover, to further reduce the number of latent variables, the conditioned prior distribu-

tions of the dynamic factors ∆uTi |∆uT−1
i , which is defined in Equation (3.2), are assumed to be

parameterized by the latent states, i.e., [µµµu,i,t,ΣΣΣu,i,t] = [f4(ht−1
u,i ,∆τ

T
u,i), f3(ht−1

u,i ,∆τ
T
u,i)]. To further

encode the temporal information, we exponentially decay the latent state variables at each time

step [86] as htu,i ← htu,,i · e
∆τtu,i
λ , where λ is a predefined decay rate.

3.2.3.3 Objective Function

Considering RNN as a graphical model, we leverage the conditionally independency between

current latent state and future inputs, and have ht |= x>t|ht−1, xt. Then Equation (3.4) could be

written as:

q(∆U≤T ,∆V≤T |x≤T ,Us,Vs)

=
∏
t≤T

q(∆Ut|x≤t,∆U<t)q(∆Vt|x≤t,∆V<t).
(3.6)

To obtain the objective function, we try to follow the traditional variational autoencoder to derive

a variant variational lower bound. We start from the joint log likelihood and drive the objective
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function as follows:

log p(x≤T ,Us,Vs) = log p(x≤T |Us,Vs) + log p(Us) + log p(Vs)

=

∫
log p(x≤T ,∆U≤T ,∆V≤T |Us,Vs)d∆U≤Td∆V≤T + log p(Us) + log p(Vs)

≥
∫
q(∆U≤T ,∆V≤T |x≤T ) log

p(x≤T ,∆U≤T ,∆V≤T |Us,Vs)

q(∆U≤T ,∆V≤T |x≤T )
d∆U≤Td∆V≤T

+ log p(Us) + log p(Vs)

=
∑
t≤T

{
Eq(∆Ut|x≤t,∆U<t),q(∆Vt|x≤t,∆V<t)[log p(xt|x<t,U≤t,V≤t)]

−KL(q(∆Ut|x≤t,∆U<t)||p(∆Ut|∆U<t))

−KL(q(∆Vt|x≤t,∆V<t)||p(∆Vt|∆V<t))
}

+ log p(Us) + log p(Vs).

(3.7)

To further simply the expression, we denote the probabilities p(∆Ut|∆U<t), p(∆Vt|∆V<t),

q(∆Ut|x≤t,∆U<t), q(∆Vt|x≤t,∆V<t), and p(xt|x<t,U≤t,V≤t), as ptu, ptv, q
t
u, qtv, and ptx, re-

spectively. Based on the former definitions, the objective function is defined as a timestep-wise

variational lower bound as follows:

L =
∑
t≤T

{
Eqtu,qtv [log ptx]− KL(qtu||ptu)− KL(qtv||ptv)

}
+ log p(Us) + log p(Vs).

(3.8)

It is worth pointing out that the expectation term is calculated based on sampling approximation,

i.e., Equ,qv [log ptx] ' 1
L

∑L
l=1 log p(xt|x<t,U≤t,l,V≤t,l), where L is the number of samples we wish

to use to estimate the quantity. We specifically set L = 1 for every iteration in the implementation

following the setting in conventional Variational Auto-Encoder [87] and adopt the reparameterization

trick for feasible optimization.

As the rating sequence of each user or item could be infinite long under the streaming setting,

which makes it infeasible to feed the whole sequences into the RNNs, this step-wise objective

function allows us to truncate the sequences into multiple segmentations for a streaming inference.
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Table 3.1: Movie rating dataset statistics.

# of User # of Items Time Spanning Granularities
MT 53, 275 30, 686 2013 ∼ 2018 4 Weeks

ML-10M 71, 567 10, 681 1995 ∼ 2009 2 Weeks
Netflix 480, 189 17, 700 1999 ∼ 2006 2 Weeks

In another words, assume qTu , qTv , pTu , pTv , Us and Vs are achieved at time step T , they could be

treated as the prior distribution of the latent variables at time step T + 1 and updated based on the

new interactions {xkij}, the CVRCF framework, and the following step-wise objective function:

L =
{
EqT+1

u ,qT+1
v

[log pT+1
x ]− KL(qT+1

u ||pT+1
u )− KL(qT+1

v ||pT+1
v )

}
+ log p(Us) + log p(Vs).

(3.9)

It is worth pointing that as stated in Section 3.2.2, we assume the stationary factors Us and Vs

represent long-term users’ preferences and item popularities. Thus, they should also be updated

at each time-step. However, they remain the same between two consecutive time steps while the

dynamic factors keep evolving.

3.2.4 Prediction Network

The prediction model is based on the generation model described in Figure 3.2b. At any

testing time between time steps T − 1 and T , to predict a specific ratings of a user i to an item

j, we first calculate the expectations of the current latent representations uTi and vTj based on

the prior distributions pTu,i and pTv,j , and the stationary factors usi and vsj . The ratings is then

predicted based on the distribution parameterized by the interaction network in Equation (3.1),

i.e., E(xTij|·) = f1(E(uTi ),E(vTj )). Similarly, the variance could also be predicted as: V (xTij|·) =

f2(E(uTi ),E(vTj ), σ2
i,j,T ). σ2

i,j,T is assumed to be learnable as a function of the hidden states hT−1
u,i

and hT−1
v,j in our implementation.

3.3 Experiments

In this section, we empirically evaluate the performance of CVRCF framework by analyzing

three major aspects. Q1: What are the general performance of CVRCF compared with the other
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Table 3.2: An overview of all experimental methods.

Methods
Categories Streaming

Temporal
Probabilistic Deep

Involved

PMF X
time-SVD++ X

sD-PMF X X X
sRRN X X X
sRec X X X

CVRCF (proposed) X X X X

baselines? Q2: What are the temporal drifting dynamics of users and items we could learned? Q3:

What are the sensitivities of the model to the key hyperparameters? The code of CVRCF is available

at GitHub: https://github.com/song3134/CVRCF.

3.3.1 Datasets

Three widely-adopted benchmark datasets shown in Figure 3.1 are employed in our experiments.

Detailed statistics of them are elaborated as follows:

• MovieTweetings (MT) [88]: It is a benchmark dataset consisting of movies ratings that were

contained in well-structured tweets on Twitter. It contains 696, 531 ratings (0-10) provided by

53, 275 users to 30, 686 movies. All ratings are time-associated spanning from 02/28/2013

to 04/07/2018. The granularity is defined as four weeks.

• MovieLens-10M (ML-10M) [89]: It contains ten million ratings to 10, 681 movies by 71, 567

users spanning from 1995 to 2009. The granularity is defined as four weeks.

• Netflix [90]: The Netflix challenge dataset consists of 100 million ratings by 480, 189 users

to 17, 700 movies from 1999 to 2006. The granularity is defined as two weeks.

3.3.2 Baselines

As our main focus is factorization-based approaches, five representative factorization-based

baseline algorithms, including two batch algorithms and three streaming algorithms are selected for

comparison from different perspectives shown in Table 3.2. Brief descriptions of these methods are

listed as follows.
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• PMF [79]: Probabilistic Matrix Factorization is a conventional recommendation algorithm,

which does not consider temporal information.

• TimeSVD++ [3]: The temporal-envoled variation of the classical static factor-based algorithm

SVD++. We implement it with Graphchi [91] C++ pacakge.

• sD-PMF: A streaming version of the PMF model combined with the deep interaction network,

which is employed in the CVRCF Framework. This model is used to test the effectiveness of

the dynamic factors optimized with the RNN structure in CVRCF.

• sRec [2]: Streaming Recommender System is the state-of-the-art shallow dynamic recommen-

dation model. It is a probabilistic factor-based model optimized with a recursive mean-field

approximation.

• sRRN [20]: A streaming variation of Recurrent Recommender Network (RRN), which is a

state-of-the-art deep heuristic streaming recommendation model.

3.3.3 Experimental Setup

For each dataset, we segment the data along timeline into three parts with ratios 4 : 1 : 5 serving

as training, validation, and testing sets, respectively.

3.3.3.1 Training Settings

During the training phase, the training and validation sets serve as the historical datasets to

decide the best hyperparameters for all methods. As each user or movie may have too many ratings,

to reduce and memory and protect the feasible use of GRU structures, we truncate the training

sequences along the timeline into batches for the user and movie chain, respectively. This will affect

the RNN effectiveness to some extent, but by varying the number of training epoch, it does not have

an obvious influence on the experimental results during our experiments. Moreover, to protect the

stationary factor get faster trained, in each epoch, every truncated batch is processed with multiple

iterations. The number of this iteration hyperparameter used in the training phase is set based on

validation and will be further analyzed in hyperparameter analysis section.

43



Table 3.3: The RMSE results on the three datasets.

Datasets

Methods MT ML-10M Netflix

Batch
PMF 1.5723 0.8202 0.9421

time-SVD++ 1.4630 0.7985 0.9311

Streaming

sD-PMF 1.6170 0.9017 0.9992
sRRN 1.5646 0.8003 0.9236
sRec 1.4831 0.8121 0.9288

CVRCF 1.4567 0.7831 0.9050

3.3.3.2 Testing Settings

During the testing phase, at each time step t, the testing is first done to get the prediction of

the upcoming ratings {xt+1}, and then these ratings are assumed to arrive and be used to update

the models. Different from dynamic methods, at each update, the static methods are reconstructed

from scratch using all the previously arrived testing ratings including the training ratings, while

the streaming models only employ the current-step arrived ratings for the current update. Based

on this setting, no later data is used to predict any former data and no temporal overlapping is

existed between each pair of testing intervals. Besides, for fair comparisons, at each testing step,

only ratings for existing users and items are used for testing since some baselines (e.g., PMF and

time-SVD++) cannot explicitly cope with new users and items. All the experimental results are the

arithmetic average of ten different times runs to ensure the reliability. The performance is evaluated

via the root mean square error (RMSE).

3.3.3.3 Parameter Setting

Settings of the hyperparameters for all the baselines follow the original papers, which result in

their best performance. Hyperparameters in all the methods are selected based on cross-validation

using the training and validation sets. For the static baselines PMF and timeSVD++, all of their

regularization parameters are chosen over {10−4, 10−3, . . . , 102} and the sizes of their latent factors

are chosen over {20, 40, 60, 80, 100}. For streaming methods, the size of the stationary factors for

sRRN and CVRCF are chosen to be 20 for all the datasets. The stationary factors for sD-PMF is

chosen over {20, 40, 60, 80, 100}. The size of the dynamic factors of CVRCF is chosen to be 40
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(a) Testing RMSE changing curve on MovieLens. (b) Testing RMSE changing curve on netflix dataset.

Figure 3.3: Testing RMSE changing curve of four representative methods on ML-10M and Netflix
datasets.
including the sizes of both mean and variance parameters. The size of the dynamic factors and

the length of the RNN inputs for sRRN is chosen to be the same as CVRCF for fair comparisons.

The size of the latent states (hu & hv) of CVRCF is set to be 20 which is half of the length we

used in sRRN. The exponential decay factors are set to be 1 week and 4 weeks for the user RNN

and movie RNN, respectively. In the training phase, the truncation hyperparameters of all the

RNN-based models are set to be 20, 20, and 10 weeks for the three datasets, respectively, to alleviate

the intermediate data explosion.

3.3.4 General Evaluation Results

We first analyze the general performance of CVRCF model by comparing it with different

categories of baselines based on the RMSE results shown in Table 3.3 and Figure 3.3. From

Table 3.3, three conclusions could be drawn as follows. First, CVRCF outperforms all baselines on

all datasets. Although time-SVD++ could achieve comparable performance on MT and ML-10M

dataset, it has to be reconstructed from scratch using all of the historical data at each update. Second,

CVRCF highly outperforms sD-PMF, which confirms the effectiveness of the dynamic factors

employed in CVRCF for capturing the temporal relationships during the streaming process. Third,

comparing with shallow probabilistic model sRec, CVRCF displays prominent improvement, which

demonstrate the effectiveness of deep architectures in modeling complex drifting interactions.

To further analyze the time-varying pattern of each method and their performance consistency
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on different datasets, we display the RMSE changing curves of the four representative methods on

two larger datasets ML-10M and Netflix in Figure 3.3. From the figure, we could observe that on

each dataset the performance of all methods shows similar varying patterns and starting form the

first testing step, CVRCF consistently achieves the best performance across two datasets with the

evolving of the system. Since MovieLens-10M has the longest testing timeline among all three

testing datasets, Figure 3.3a illustrates that CVRCF has stable effectiveness on the dataset with

strong temporal relationships in long-term evaluation. By comparison, Netflix is a much larger

dataset in terms of users and interactions. Results in Figure 3.3b confirms the superiority of the

proposed method on large-scale datasets. Finally, as sRRN could be treated as an ablation method of

CVRCF without the probabilistic component, the relative improvement of the proposed method on

the general performance validates the effectiveness of combining probabilistic approach in capturing

the prospective process of streaming data generation.

3.3.5 Evaluation of Temporal Dynamics

To analyze the temporal drifting dynamics learned from CVRCF, we visualize the learned latent

factors including the location factors (uTi and vTj ) and uncertainty factors (σσσu,i,T and σσσv,j,T ). We

conduct exploration on the ML-10M dataset and update the models every half a year during testing.

3.3.5.1 Drifting of the Location Factors

We first visualize the drifting of the average location factors uTi and vTj with heatmap shown in

Figure 3.4a. The X-axis denotes the index of the latent factors and the Y-axis denotes the timeline.

Each factor is adjusted with centralization for joint visualization. From the figure, we could discover

that the users’ preference factors change more smoothly than movies’ popularity factors, which

display a block-wise changing patterns. As we update the model every half a year, the stationary

factors of movies especially for the new movies are only updated or learned every half a year, which

is consistent with the length of the blocks. Thus, the block-wise structure, which appears only on

the movie factors, could be explained as: the movie drifting is more likely to be captured by the

stationary factors, while the drifting pattern of the users is more likely to be captured by dynamic
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factors. Since the dynamic factors and stationary factors are defined to capture the short-term and

long-term preference, respectively, the finding is also consistent with the fact that users preference

usually change more frequently compared to movie popularities.

3.3.5.2 Drifting of the Uncertainty Factors

Figure 3.4b displays the drifting of the average uncertainty factors learned from CVRCF.

Each column is first normalized with L∞-norm. There are two major observations we could find

from Figure 3.4b. From an overall perspective, with the evolving of the system, the variances

of the learned dynamic factors decrease. This is because the incremental ratings provide more

information for each user and item, and reduce the uncertainties of the whole system during the

testing phase. From the local perspective, at some time steps, the variance of the latent factors are

sharply increased and then slowly decreased. This is because, at some time steps, users and movies

increase are dramatically. The cold-start problem introduced by the incremental users and items

may raise the uncertainties of the system within a short time but would be alleviated with time goes

by. In other words, although new users and items are continually enrolled, the number of ratings

related to them could be deficient at first and then increasing over time.

3.3.6 Hyperparameter Sensitivity Analysis

Finally, we study the sensitivity of CVRCF to different hyperparameters using the ML-10M

dataset. We pick five hyperparameters, which are the most influential ones in our experiments, and

analyze their effects by coupling some of them. These pairwise effects are displayed in Figure 3.5.

3.3.6.1 Training Epochs & Training Batch Iterations

We first analyze the pairwise effects of the training epoch and the training batch iterations.

Figure 3.5a shows that these two parameters highly affects the learning process and may cause

overfitting or underfitting when the product of them are too large or too small. With the number of

training batch iteration increasing, less epoch should be adopted to protect the testing effectiveness.

This may be because: since the stationary factors are outside the RNNs and have high degrees of

freedom, they may get overtrained when the batch iteration is setting too large given fixed training
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(a) Drifting of average location factors of users & movies.

(b) Drifting of variance factors of users & movies.

Figure 3.4: Drifting of average latent factors learned from CVRCF on the ML-10M dataset.
epoch. Thus, early stopping should be employed via limiting the number of epochs to prevent the

RNN structures not further learning effectively. On the contrary, insufficient batch iterations would

limit the power of stationary factors in capturing long-term preferences.

3.3.6.2 Testing Batch Iterations & Testing Update Interval

Secondly, we focus on the testing phase and analyze the influence of the testing batch iterations

and the length of the model updating interval. As shown in Figure 3.5b, for a fixed testing update

interval, with the increasing of the testing batch iterations, the testing performance first decreases

and then increases. This might because: in the testing phase, new ratings, users, and items never

stop to arrive. Insufficient testing batch iterations would highly affect the learning of latent factors

especially for the stationary factors of new users or items. On the contrary, superfluous iterations
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(a) Effects of the train epoch & training batch itera-
tion.

(b) Effects of testing batch iteration & update inter-
val.

(c) Effects of the granularities.

Figure 3.5: Analysis of five key hyperparameters on ML-10M datasets.
would also lead to overfitting as in the training phase described above. Besides, with the enlarging

of the testing update interval, ratings in each batch increase which requires more updating iterations

under the same remaining settings.

3.3.6.3 Granularities

Finally, we explore the effect of the granularities. We assume the two granularities defined for

users and movies could be different for a more general treatment. From Figure 3.5c, we can see that

although different granularities do affect the results, their influences are shown to be very trivial

based on the scale of the Z-axis. Moreover, user granularity seems to have larger effects than movie

granularity and its optimal value is shown to be lower than movie granularity. This may illustrate

that the users’ preferences are varying more frequently than the items’ popularities.
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3.4 Conclusions

The work we discussed in this chapter focuses on the recommendation problem under streaming

setting and propose a deep streaming recommender system - CVRCF. CVRCF incorporates deep

architectures into traditional factorization-based model and encodes the temporal relationship with

Gaussian-Markov components. Standing upon the sequential variational inference, CVRCF is

optimized leveraging a cross variational GRU network and could continually update under the

streaming setting. By conducting experiments on various real-world benchmark datasets, we

empirically validate the effectiveness our proposed framework, explore the learned drifting patterns,

and validate the stability of our framework.
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4. TOWARDS AUTOMATED NEURAL INTERACTION DISCOVERY FOR

CLICK-THROUGH RATE PREDICTION1

With the rapid development of recommender systems, designing and tuning them become

increasingly complicated and challenging. Starting from this chapter, we explore how to enable

the automation on the architecture design and hyperparameter tuning in recommender systems.

Specifically, we focus on the deep-learning models for CTR prediction tasks in this chapter and

propose a framework to automatically search for a neural architecture that could even beat state-of-

the-art, manually designed architecture.

4.1 Introduction

Predicting CTR is a crucial problem in many web applications such as real-time bidding,

display advertising, and search engine optimization [92]. Due to the large-scale dataset and high-

cardinality feature property, extensive efforts have been devoted to designing architectures for

effectively learning combinatorial feature interactions towards condensed low-dimensional feature

representations [93, 94, 95, 96].

Classical approaches usually put the efforts on designing explicit feature interactions and

compose it with implicit interactions learning from multi-layer perceptrons (MLP) into a two-tower

model [93, 96, 97]. Beyond simple stacking strategies, how to organically bond the explicit and

implicit interactions is still underexplored and may further promote effectiveness. Besides, existing

work has shown that diamond MLP structure may be more powerful compared to the triangle and

rectangular MLP structures [98], which motivates us to explore more powerful implicit interactions

via designing delicate MLP structures. In addition, conjoining the advantages of diversified explicit

feature interactions such as inner and outer products could potentially boost the performance owning

to the ensemble effect.
1This chapter is reprinted with permission from “Towards Automated Neural Interaction Discovery for Click-

Through Rate Prediction” by Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang, Yuandong Tian and Xia Hu,
2020. Proceedings of the 26rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Copyright 2020 by ACM.
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Neural architecture search (NAS) has emerged as a prevailing research field upon the prevalent

adoption of deep learning techniques. It aims to discover optimal deep learning solutions automati-

cally given a data-driven problem, thereby enabling practitioners to access the off-the-shelf deep

learning techniques without extensive experience, and alleviating data scientists from the burden

of manual network design. The rapid development of NAS research and systems has enabled the

automation of state-of-the-art deep learning tools for various learning tasks in computer vision (CV)

and natural language processing [31, 99]. This motivates us to explore its potential in the context of

tabular data in discovering complex neural interactions, specifically for CTR predictions.

Developing novel NAS approaches for neural interaction discovery and better CTR models is

technically challenging. First, different from structure image data in CV tasks, CTR features are

often heterogeneous, high-dimensional, and have both sparse and dense components, which are

structureless and of diversified meanings in reality. Second, different from the dominant convo-

lutional neural networks in CV tasks that consist of multiple structured convolutional operations,

existing models for CTR prediction usually adopt multiple diverse and ad-hoc operations, leading to

unstructured search space. Third, a practical model for CTR prediction is often trained on billions

of data (e.g., Facebook has millions of daily active users and over 1 million active advertisers [100],

yielding billions of instances), requiring the NAS process to be time and space efficient. Finally, the

performance of CTR models with different architectures are often quite close in practice [96, 97],

asking for the NAS approach to be sensitive and discriminating.

To cope with these challenges, we propose an automated neural interaction discovering frame-

work for CTR prediction named AutoCTR. We abstract and modularize simple yet representative

operations in existing CTR prediction approaches to formulate a generalizable search space. A

hybrid search algorithm, composed of an evolutionary backbone and a learnable guider, is designed

to perform orientated exploration. To enhance the exploitation power and balance the trade-off

among different search objectives, we utilize a learning-to-rank strategy among the architecture

level to filter out the locally inferior architectures, and conduct the survivor selection based on a

mixture of rank-based measurement including aging, accuracy as well as architecture complexity.
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The search speed is further accelerated through a composited strategy of low-fidelity estimation,

including data subsampling and hash size reduction. The main contributions are summarized from

the following aspects:

• Design virtual blocks and a hierarchical search space for CTR prediction by abstracting and

unifying the commonly used operations in the existing literature.

• Provide ranking consistency analysis for three strategies combining low-fidelity estimation and

weight inheritance. Empirically prove the availability of employing them for search acceleration.

• Propose a novel multi-objective evolutionary search algorithm with architectural-level learning-

to-rank guidance.

• Empirically demonstrate the effectiveness of AutoCTR on different datasets comparing to human-

crafted architectures, and validate the generalizability and transferability of the discovered archi-

tecture across different datasets.

4.2 Preliminaries

Click-Through Rate Prediction: The CTR prediction problem could be mathematically defined

as: given a dataset D = {X,y}, where X ∈ RN×d denotes the d-dimensional features matrix of N

instances. The features here consist of both sparse and dense features, where we assume the sparse

features are ordinally encoded as integer vectors. y ∈ {0, 1}N indicates the clicks of users to items.

The goal is to predict the probability of a user clicking a target item.

Since its inception, the mainstream models have roughly experienced three-stage evolution

starting from linear regression and tree-based models [92, 100, 101], to interaction-based mod-

els [102, 103], and then the deep neural networks (DNNs) [104, 105, 98, 95, 93, 96, 26, 94, 106, 107].

Recent DNN-based work usually combines DNN with interaction-based or tree-based models to

extracting condensed representations via learning combinatorial feature interactions.

Neural Architecture Search: Neural architecture search (NAS) aims to promote the design of

neural network architectures automatically. Designing the NAS algorithm requires the specification
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Figure 4.1: An illustration of an architecture in the designed search space. The virtual building
blocks are wired together to form a DAG. Blocks are allowed to be selected repetitively.
of three main components, including search space, search techniques, and performance estimation

strategy [31].

From the search space perspective, existing work could be roughly divided into the exhaustive-

architecture search space [108, 109] and the constrained cell space [110, 111, 112, 113]. The former

one provides a more diversified set of architectures and allows a more comprehensive exploration,

while the later one inductively limits the space to accelerate the search speed and reduce the search

variance. Some tailored spaces are also designed [114] for specific tasks.

From the perspective of search techniques, several dominant ones include Bayesian optimiza-

tion [108], reinforcement learning [115, 110, 111], evolutionary algorithms [109, 112], gradient-

based optimization [113], and tree-based methods [116]. Recent work has shown the effectiveness of

combining different types of search techniques to better balance exploitation and exploration [117].

Due to the high complexity of training the DNNs and the particularity of evaluation criteria

in different tasks, various performance estimation strategies are proposed, including low-fidelity

estimation [110, 112], weight sharing [111, 113], learning curve extrapolation [118], and network

morphism [108].
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4.3 Hierarchical Search Space Design

An ideal search space should contain sufficient distinct architectures while potentially encom-

passing superior human-crafted structures [115, 108]. Inspired by the search space tailored to the

vision tasks [114], we design a two-level hierarchical search space by extracting and abstracting

representative structures in existing human-crafted CTR prediction architectures into virtual blocks,

and wire them together as a set of direct acyclic graphs (DAGs) with dimensionality alignment

among features. The inner space is composed of the appendant hyperparameters of blocks, such

as the number of units and layers in a multi-layer perceptron block, while the connections among

blocks form the outer search space.

As shown in Figure 4.1, for a given instance, we assume its raw input dense features are con-

catenated into a vector, and its sparse features are embedded into low-dimensional vectors based on

the look-up-table operation following similar preprocessing done in various CTR models [96, 107].

Blocks are wired together to form a DAG, and each block could take both raw input features and

the outputs from blocks with higher topological order via feature concatenation and dimensionality

alignment. The final block of the network is set to be a linear transformation. It collects all the

untouched features from either raw inputs or outputs provided by other blocks. It is worth noting

that to simplify the setting, the following hyperparameters are not taken into account in the search

space: (1) Hash size of sparse features. (2) Embedding dimension of sparse features. (3) Optimizers

and other model training hyperparameters such as learning rate and batch size.

4.3.1 Virtual Block Abstraction

We select and extract building blocks by considering two aspects described as follows:

• Functionality: blocks should accommodate and complement each other. Each type of block

should accommodate both dense and sparse features as inputs, and can be quantitatively evaluated.

• Complexity Aware: The computational and memory cost of a block should be a simple function

of its input specification and hyperparameters. The involvement of these primitives could benefit

the design of complexity-aware search algorithms to achieve better resource management and
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low-complex architectures.

Upon these requirements, we could abstract various operations from existing work as blocks

with different functionality and levels of complexity such as multi-layer perceptron (MLP) [107],

dot product (DP), factorization machine (FM) [102], outer product [96], and self-attention [97],

etc. We elaborate on the construction of the three example blocks (i.e., MLP, DP, FM) adopted

in the experiments below and describe the way of aligning the dimension and accommodating

different inputs for each of them. Other blocks could also be easily abstracted and integrated into

the framework, which is left for future exploration.

Dense MLP Block (MLP) The MLP block serves as the most commonly used building block in

literature. We design the dense MLP block similar to the one applied in the DLRM model [107].

The input of it will be concatenated into a single long vector and transformed via a multi-layer

perceptron with the ReLU activation function. We set the layer to be 1 for each MLP block to

maximize the flexibility of the final constructed architectures. The width of each MLP block is

searched within the unit set: {32, 64, 128, 256, 512, 1024}.

FM Block (FM) The FM block refers to the factorization machine block [102]. A conventional

factorization machine model takes real-valued feature vector x as inputs, and outputs a single

value via low-dimensional embedding and summation operations, as shown in Equation (4.1),

where v denotes the embedding matrix, w is the transformation parameter. In the designed FM

block, we assume all the input features are already transformed into the low-dimensional space

and conduct the dot product and summation operations directly. Three specific designs are listed

here for dimensionality alignment, and search space robustness: (1) We concatenate all the dense

input features, including dense raw features and the dense outputs from other blocks, into a single

vector. (2) If the dimensions of sparse inputs and the concatenated dense input are conflicted, we

will linearly embed them into the same size in advance. (3) If only dense features are obtained as

inputs, the block will degenerate to a linear embedding block with a sum pooling afterward.

ŷ(x) := w0 +
n∑
i=1

wixi +
n∑
i=1

n∑
j=i+1

< vi,vj > xixj. (4.1)
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Dotprocessor Block (DP) The DP block calculates the dot product of every pair of the input

embeddings and concatenates the results into a single long vector. The self-interaction is also added,

i.e., the dot product of each embedding vector and itself, so that when only dense features are

collected as the block input, it is also feasible to proceed. In this case, this block degenerates into

an element-wise square operator. Similar concatenation and dimensionality alignment strategy are

used as for the FM block.

4.3.2 Summarization of Search Components

We summarize the main components to be searched in the hierarchical search space as follows:

• Block Type: MLP, FM, DP.

• Raw Feature Input Selection: each block is allowed to take the raw feature with four choices,

i.e., dense only, sparse only, both or none. Without particular emphasis, we group the raw input

dense features as one single component to be selected rather than considering them independently.

A similar procedure is done for the sparse features to reduce the search complexity.

• Inter-Block Connection: a block could receive the outputs from any block that appeared before

it. The order is defined as the topological order in the DAG.

• Block Appendant Hyperparameters: We only consider the number of hidden units of MLP

block in this work. The embedding sizes for aligning the input dimensions in different blocks are

fixed and set to be the same with the embedding size of the raw input sparse features to reduce

the number of parameters.

To enable the feasible adoption of different searching algorithms, we provide a vector repre-

sentation of each architecture as a concatenation of multiple block vectors following [116]. Each

block is vectorized as a concatenation of the four components, i.e., [Block Type, Raw Feature Input

Selection, Inter-Block connection, Block Appendant Hyperparameters], where the Block Type and

Raw Feature Input Selection are encoded as one-hot vectors respectively, Inter-Block connection is
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encoded as a multi-hot vector, and Block Appendant Hyperparameters is encoded as a vector of

ordinals.

The designed search space contains plentiful distinct architectures. Even with three types of

blocks to be selected and assume each architecture contains no more than seven blocks, the space

would still contain over 1011 distinct architectures. Moreover, it could cover multiple representative

human-crafted architectures such as deepFM [93], DLRM [107], IPNN [105], and Wide&Deep [95].

4.4 Multi-Objective Evolutionary Search with Hyperrank Guidance

The proposed searcher is a mixed searcher composed of an evolutionary algorithm and a

learning-to-rank guider. We select the evolutionary algorithm in this pilot study due to its simplicity

and effectiveness in balancing the exploitation and exploration [112]. We adopt a multi-objective

evolutionary searcher as the backbone and employ a tree-based learner to guide the mutation of a

selected parent architecture in each iteration to facilitate the exploitation of superior offsprings. The

search process could be described as a loop of three stages, i.e., parent selection, guided mutation,

and survivor selection. The initial population is constructed via randomly selecting and evaluating a

predefined number of architectures. Stratified selections could also be used to potentially enhance

the performance, which we leave for future exploration.

The basic idea of the search loop is shown in Figure 4.2. In each search loop, we leverage a

mixture of rank-based meta-features to perform the survivor selection and maintain a new fix-size

population. Then we select a parent architecture from the population based on designed discrete

probabilistic distribution. After that, a set of neighbors is generated via mutating the selected parent

architecture. We adopt a learning-to-rank mechanism upon the architecture level and select the

best offspring from the generated neighbors. After evaluating the performance of this offspring, we

add it back to the architecture pool explored so far. The three stages are elaborated in turn in the

following subsections.
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Figure 4.2: An illustration of the AutoCTR search loop

4.4.1 Multi-Objective Survivor Selection

To maintain a superior population with diversified architectures, we design a survivor selection

metric f to measure the survival value of each architecture and select the top-p ones as the population

for parent selection. Three types of objectives are considered in the metric, i.e., fitness, age, and

model complexity. The “fitness” here represents the performance of an explored architecture to

ensure the exploitation ability, while the “age” reflects the reverse order of the architectures explored

so far. We use the rank of logloss as the fitness measure to mitigate the difference in scale and

define the “age” as the existing time of an architecture explored so far, motivated from the age-based

evolutionary methods [112], to enhance the exploration of diversified architectures. At each search

loop, we set the current time to be 0 and set the age of each observed architecture as the number of

architectures explored after it. In particular, all initial architectures are assigned with the same age.

Besides the two objectives, since CTR tasks are usually resource hungry in practice, we also take

the “model complexity” into account to explicitly constrain the model complexity during search.

We adopt floating point operations per second (FLOPs) as the complexity metric and use the rank of

flops to mitigate the scale influence.

The designed selection schema consists of two steps as shown in Figure 4.2, which could be
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formulated as follows:

f(q, aA, r
q
A, c

q
A) = 1[aA≤q] · (µ1aA + µ2r

q
A + µ3c

q
A), (4.2)

where aA denotes the age of an architecture A. The indicator function 1[aA≤q] is used to filter out the

architectures that is older than q, where q is a hyperparameter larger than the population size p, such

that the architectures with high-performance or low-complexity in the pool would not be selected

consistently. rqA, c
q
A ∈ {1, 2, . . . q} are the performance and complexity ranking of architecture A

within the q “youngest” architectures, respectively. {µi}i=1,2,3 are the trade-off hyperparameters to

balance the different objectives.

4.4.2 Rank-Based Parent Selection

Suppose we maintain a population of size p ∈ Z+ after the survivor selection step. The goal of

parent selection is to select an architecture from the population for generating a premium offspring

to be evaluated. Several popular strategies used in conventional evolutionary algorithms include

proportional, ranking, tournament, and genitor selection [119]. In this work, we adopt a ranking

selection schema and design a nonlinear ranking distribution borrowing the idea from tournament

selection. The intuition comes from three aspects: (1) The performance (logloss or AUC) of

different architectures in CTR prediction tasks is often extremely close, and the scale may vary a

lot on different datasets. It is hard to design a unified performance-based distribution to achieve

adaptive selective pressure on different datasets. (2) Existing work has proved the effectiveness

of ranking and tournament selection comparing with proportional and genitor on balancing the

selective intensity and selection diversity [120, 119]. (3) Classical tournament methods usually

randomly select a fixed number of candidates first and then select the best one of them. This may

result in a portion of architectures in the population never being selected as the parent, especially

when the ratio between candidate size and population size is large.
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Figure 4.3: Rank consistency analysis from both global perspective and local perspective
The concrete design of the probability is as follows:

p(r∗A) =

(
r∗A+λ−1

λ

)(
p+λ
1+λ

) , r∗A ∈ {1, 2, . . . , p}, λ ∈ N0, (4.3)

where r∗A denotes the rank of an architecture A in the population,
(
n
k

)
= n!

(n−k)!k!
, (k = 0, 1, .., n) ,

and λ is a hyperparameter to balance the trade-off between selection intensity and selection diversity.

Given a fixed size of population, with the increasing of λ, the selection intensity increases while the

selection diversity reduces. In particular, λ = 0 is the same as uniform selection and when λ = 1 is

the same as linear rank selection [121, 120].

4.4.3 Guided Mutation by Learning to Hyperrank

After the parent architecture is selected, the last step is to generate a worth exploring offspring

upon it. A naive way of doing this is to randomly select and modify an operation in the parent

architecture [112]. Nevertheless, it could become an inefficient strategy due to the huge search

space and the waste of the architecture information explored so far. Existing work has demonstrated

the effectiveness of using a learning-based model to guide the mutation process [117]. However,

with a limited number of explored architectures and the extremely close performance among them,

it is non-trivial to learn an effective fitness-based guider.

Instead of learning a fitness-based guider, we adopt a learning-to-rank strategy to learn the

relative ranking among architectures based on a pairwise ranking loss and the gradient boosted tree
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learner. The whole offspring generation process is done via three steps: (1) train a guider based

on the exploitable dataset (e.g., all the architectures explored so far); (2) randomly generate a set

of unique neighbors around the parent architecture; (3) select the best neighbor as the offspring

based on the guider. We call it “learning-to-Hyperrank” as it conducts a model-level ranking. The

intuition comes from two perspectives. On the one hand, the search problem itself is essentially a

ranking problem. Learning the ranking relationship is a commensurable strategy comparing with

learning the fitness but is weaker and more flexible. On the other hand, the number of instances are

implicitly augmented from the point-wise inputs to the pairwise inputs.

For the pairwise ranking-loss, we use LambdaRank [122] due to its simplicity and efficiency.

Though different types of models could serve as the learner, we choose a gradient boosted tree

learner as an example here due to its general stable and superior performance on small-scale

datasets. To feed architectures as the input for the tree-based learner, we encode each block as a

vector and concatenate them based on their topological order. Each block vector follows the vector

representation described in section 4.3.2.

4.5 Performance Estimation Acceleration

One of the most crucial challenges in modern NAS research, which could be even more severe

in recommender systems, is the high time complexity of network training. Low-fidelity performance

estimation and weight inheritance are two of the most widely adopted methods for speeding up

performance estimation [110, 112]. However, extra bias could be introduced, leading to the variation

of relative ranking among architectures, thereby affecting the searching effectiveness [31]. We

consider two strategies of low-fidelity estimation and adopt a warm-start embedding trick leveraging

the weight inheritance among architectures to mitigate the time and resource complexity. These

strategies are all general and practical ways to speed up the manual tuning of recommender systems.

Several rank consistency tests are described afterward to provide the evidence and illustrate the

feasibility of adopting these methods.
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• Data Subsampling. For each dataset, we randomly subsample a predefined portion of data for

searching and transfer the searched best architecture on the full dataset for final evaluations.

On average, the training time of every single architecture in our experiment is roughly linearly

correlated with the subsampling ratio under the hardware setting described in Section 4.6.2.

• Reducing Hash Size. For high-level categorical features (> 104), we hash the cardinality of

them to 104 before the embedding step to reduce the embedding size, and set back to the original

cardinality during final fit on the full dataset.

• Warm-Start Embedding. We pretrain a simple three-layer MLP model (units: 128-1024-128)

on the full dataset and use the pretrained embeddings of sparse features as the warm-start for each

architecture before the low-fidelity training.

The rest of this section provides an analysis of the effect of adopting low-fidelity training on

ranking consistency. We use logloss as the evaluation metric and use the early-stopping (ES) strategy

to alleviate overfitting. We focus on the global and local rank consistency respectively, to pursue

the analysis. The global rank consistency inspects whether the estimation could reflect the actual

ranking of performance among architectures2, and the local rank consistency testing zooms into the

architectures with relatively closer performance and analyze their localized rank consistency.

4.5.1 Global Rank Consistency

Settings: We use Criteo dataset3 here for experiments. Without loss of generality, we narrow

down the search space by assuming each architecture contains five blocks, and each MLP block has

one layer with 128 units. We randomly sample 100 valid architectures and evaluate them on Criteo

with different sizes of subsamples, i.e., {0.5, 2, 5, 10} million. Each subsampled dataset is split into

training (80%), validation (10%), and test (10%) sets. We run the 100 models on the full dataset

three times to provide a “ground-truth” rank, and the rank consistency is measured by the Kendall

τb coefficient ranging from −1 (perfect inversion) to 1 (perfect agreement).

2We assume the actual rank of architectures is reflected by their high-fidelity performance on the full dataset.
3www.kaggle.com/c/criteo-display-ad-challenge

63

www.kaggle.com/c/criteo-display-ad-challenge


Criteo Avazu KDD

# of Searched Architectures # of Searched Architectures# of Searched Architectures

Lo
gl

os
s

Figure 4.4: The performance drifting of the best architecture during search on the three datasets

Observations: Figure 4.3a depicts the varying curves of three training strategies measured by

the Kendall τb coefficient with the increasing of the subsample size. The three strategies are: (1)

early stopping; (2) early stopping with sparse feature hashing; (3) early stopping with warm-start

embedding. We observe that: firstly, with the increasing of the subsample size, the rank among

architectures become more consistent with the “ground-truth” rank, and the growth speed gradually

becomes slow. The non-linear relationship between sample size and τb coefficient offers the

opportunity of adopting the low-fidelity setting during searching, which will be further evaluated

in the experimental section. Secondly, adopting the hashing strategy for sparse features with high

cardinality would marginally decrease the rank consistency. Finally, the warm-start embedding

strategy could increase ranking consistency.

4.5.2 Local Rank Consistency

The above analysis provides a macro view of the ranking consistency among the architectures.

Beyond this, we are also curious if the τb score is harmoniously distributed across different intervals

of the actual rank. We first sort the 100 architectures based on their “ground-truth” performance

evaluated on the full dataset. Better architectures are indexed with smaller numbers. Then we

depict two plots for analysis. Figure 4.3b displays the variation of τb coefficient with a length-30

sliding window among the sorted architectures. For example, the score of the first point denotes

the τb coefficient of the top-30 architectures, where its x-coordinate is 15, indicating the middle

architecture rank within this sliding window. Figure 4.3c shows the variation of the NDCG@k score

with the increase of k. Exponential gain is used to calculate the NDCG score.

From the two figures, two main observations could be found: (1) From Figure 4.3b, we can
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see that, best- and worst-performing architectures seem to be more locally rank consistent. This is

partially aligned with our expectations since we expect the top architectures and the bottom ones to

be more easily discernible than others. The warm-start strategy is more helpful for maintaining the

local rank of middle architectures rather than the polar ones. (2) From Figure 4.3c, we can observe

that the rank of the top architectures could generally maintain high rankings in the low-fidelity

setting even if the rank consistency for some mediocre architectures is affected more compared to

the polar ones.

4.6 Experimental Analysis

In this section, we empirically evaluate AutoCTR as well as several baseline searchers and

compare the discovered architecture to the human-crafted architectures. We use logloss and AUC

score as the core evaluation metrics. Four questions are mainly explored:

Q1. How is AutoCTR comparing with other baseline searchers on both the search efficiency and

effectiveness?

Q2. How is the performance of the best architecture explored by the AutoCTR comparing with the

state-of-the-art (SOTA) human-crafted architectures?

Q3. Are the searched architectures able to be transferred between different datasets?

Q4. How sensitive is the AutoCTR to its key hyperparameters?

4.6.1 Baselines

We select baselines from both NAS methods and human-crafted CTR architectures for compari-

son. Since several searchers are not directly applicable in our setting, we modify and improve their

flexible components and elaborate the details as follows.

4.6.1.1 Searcher Baselines

To prove the effectiveness of the proposed search algorithm, we select three representative NAS

algorithms in existing work. We tailor random search and reinforcement learning based search to
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Figure 4.5: The illustration of the RL searcher
our designed search space and include a variation of LaNAS based on the proposed method and the

parallel Monte Carlo Tree Search [123].

• Random Search. Recent work in NAS has pointed out that random search could be a strong

baseline, even comparing to the most advanced search algorithm [124, 125]. We implement a

random searcher as follows: given a random seed, in every search epoch, it randomly selects the

four components described in section 4.3.2 for each block and builds an architecture based on the

topological order.

• Reinforcement Learning Based Search (RL) . We adopt a single-layer RNN controller with

length seven to generate architectures with seven intermediate blocks, as shown in Figure 4.5.

The output of each step decides the structure of the next block and serves as the recurrent input

for the next step. Initial inputs and hidden state values are set as zero by default. We use the

REINFORCE algorithm to update the controller and use the logloss difference between the current

architecture and the best architecture so far on the validation set as the reward. The average

reward is used as a baseline to reduce variance. An entropy term is added in the loss function to

enhance the exploration diversity.

66



• Latent Action Neural Architecture Search (LaNAS) [116]. A sample-efficient Monte Carlo

Tree Search (MCTS) algorithm, which has been proven to be effective than various advanced

search algorithms, including the Regularized evolutionary algorithm [112] and Bayesian opti-

mization algorithm in the image classification setting. The search strategy follows the standard

MCTS algorithm with the upper-confidence bound (UCB) policy. The search space is partitioned

via customizable regressors contained in the nodes of the tree. The search algorithm could narrow

down to a specific subspace when traversing from the root to the leaf. Each regressor is updated

based on the architectures in the corresponding node and their validation logloss.

• LaNAS+. We improve LaNAS from two perspectives.

1. Convert its rollout sampling policy from random sampling to rank-based method borrowing

the idea from the evolutionary method. Random rollout policy could be slow due to the lack

of exploitation. Following the original paper, the random rollout policy here means when we

have selected a path in the tree and collected the constraints in each node along the path to

narrow down to a specific subspace, the way to sample an architecture from this subspace is

naively random sampling. However, this could potentially cause a high rejection rate due to

the complicacy of sampling from a non-convex polytope and may lose the usage of existed

good architectures. To address the problem, we design an evolutionary style rollout policy:

every time after narrowing down to a specific subspace, we retrieve the currently searched

architectures within this subspace and set them as the population. Then we do the same

thing as we do in the AutoCTR, i.e., select a subset of candidates, pick the best one, and

mutate it to a new architecture.

2. Introduce virtual loss to enable parallel training of multiple architectures to improve the

search speed. Within each update internal of the LaNAS searcher, we are supposed to sample

multiple architectures in order to explore different tree branches. After each architecture is

sampled, the back-propagate step requires the logloss of it to update the tree statistics so that

it could conduct exploration on different branches rather than always exploring one single
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path. However, this may prevent the searching process from being parallelly proceeded

since each new architecture can only be sampled after the evaluation of the former one.

To circumvent this problem, a virtual loss [123] could be applied as padding during the

back-propagate step to ensure the feasible adoption of parallel training and evaluation of

multiple architectures. The virtual losses will be removed after the true loss is obtained.

4.6.1.2 SOTA Human-Crafted Networks

We select three representative human-designed networks to examine if the explored network is

able to achieve comparable accuracy or even beat the SOTA human-crafted networks.

• DeepFM [93]: a two-tower model composed of a six-layer MLP with 1024 hidden units in

each layer and factorization machine block, the sparse input embeddings are shared between

the two components, and the output of the two components are linearly embedded with sigmoid

transformation as the final prediction.

• DLRM [107]: a SOTA MLP-based recommendation model. It encodes dense features and sparse

look-up embeddings with two MLP modules and embeds their outputs with a top-level MLP

module jointly. We adopt two single-layer MLP on the dense and sparse features respectively and

stack a six-layer MLP on top of them. All MLP layers are with 1024 units except the final one.

• AutoInt+ [97]: a two-tower model composed of a four-layer MLP with 1024 hidden units in each

layer and three-layer self-interaction layer, which adopts the multi-head self-attention schema to

learn high-order feature interactions. The outputs of the two components are linearly embedded

with sigmoid transformation into the final prediction.

4.6.2 Experimental Settings

4.6.2.1 Data Preprocessing.

We adopt three benchmark datasets in this work, i.e., Criteo3, Avazu4, KDD Cup5. The basic

statistics of them are summarized in Table 4.1. All three datasets are processed based on the way
4https://www.kaggle.com/c/avazu-ctr-prediction/data
5https://www.kaggle.com/c/kddcup2012-track2/data
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and codes provided in [97]. During the search phase, we subsample the first 2 million data of each

dataset and further divide it into the tiny training (80%), validation (10%), and test (10%) sets for

low-fidelity evaluation. Also, we would like to gratefully acknowledge the organizers of KDD

Cup 2012 track 2 as well as the contributors of Criteo and Avazu for making these CTR prediction

benchmarks publicly available.

Table 4.1: Statistics of three CTR prediction datasets

Datasets # Samples
# Dense

Features
#

# Sparse

Features

Total Cardinality of

Sparse Features

Criteo 45,840,617 13 26 998,960

Avazu 40,428,967 0 23 1,544,488

KDD 149,639,105 3 10 6,019,086

4.6.2.2 Hyperparameter Settings.

We search seven intermediate blocks for each architecture. Blocks are allowed to be empty.

Three example blocks are adopted in the final experiments, i.e., MLP, FM, and DP. The detailed

construction of them is provided in Section 4.3.1. We randomly sample 100 architectures as

initialization for all the searchers. Detailed hyperparameter settings for each searcher and the

network training in both the search phase and final fit phase, are specified as follows:

We elaborate on the detailed hyperparameter settings adopted in the experiments in this section.

The three random seeds used in the experiments are 42, 2019, and 1234, respectively.

• Search Phase Training: Adam and Sparse Adam optimizers are adopted for dense and sparse

features, respectively, in training. The batch size is set as 4096. The learning rate is 0.001. The

hash size is 104 for all sparse features. The embedding tables for sparse features are randomly
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initialized based on a normal distribution with 0 mean and 0.01 standard deviation. The embedding

size for each sparse feature is 16.

• Final-Fit Phase Training: Except for the hash sizes of all sparse features that are set back to

their original cardinality, and the dataset is the full data, all the other settings are the same with

the ones adopted in the search phase.

Hyperparameter settings for the searchers are elaborated as follows.

• RL searcher: the input encoding size and the LSTM hidden embeddings size are both set to 10,

the trade-off hyperparameter of the entropy term is set to be 0.1.

• LaNAS: the tree-depth is set to 5. In the search phase, the update step is done once after 20

architectures are evaluated. The UCB trade-off parameter is set as 0.5. The space split classifier is

defined as ridge regression with 0.1 regularization hyperparameter.

• LaNAS+: besides the hyperparameters mentioned above in LaNAS, the candidate size for the

modified rollout policy in LaNAS+ is set as to be half of the architectures contained in a selected

region. The virtual loss is set to be the mean logloss of the architectures contained in each leaf

node.

• AutoCTR: the population size is set to be 100, and the survivor selection threshold q is set as 200.

The trade-off hyperparameters µ1, µ2, µ3 are set to be 1, 0.1, and 0.1, respectively. The parent

selection trade-off hyperparameter λ is set to be 10. The guider is implemented with the lightgbm

package with NDCG@3 as the early-stop evaluation metric.

• AutoCTR (warm): the warm-start embedding for each dataset is achieved from a four-layer

MLP architecture with units: 128-1024-128-1, which is pretrained on each full dataset.

4.6.2.3 Software and Hardware Descriptions

All the deep learning related frameworks are implemented with the PyTorch package6. Every

single search experiment is run on a single GPU (NVIDIA GeForce RTX 2080 Ti) with three
6https://pytorch.org
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Table 4.2: General CTR prediction results (logloss) on the three benchmark datasets

Criteo Avazu KDD Search cost
(GPU Days)SOFA

human-crafted
Networks

DeepFM 0.4432 0.3816 0.1529 -
DLRM 0.4436 0.3814 0.1523 -

AutoInt+ 0.4427 0.3813 0.1523 -

Best Networks
Found by the
NAS Methods

Random 0.4421 ± 0.0003 0.3824 ± 0.0030 0.1531 ± 0.0001 ∼ 0.75
RL 0.4422 ± 0.0005 0.3810 ± 0.0003 0.1531 ± 0.0001 ∼ 0.75

LaNAS 0.4421 ± 0.0004 0.3814 ± 0.0006 0.1533 ± 0.0002 ∼ 5
LaNAS+ 0.4417 ± 0.0001 0.3800 ± 0.0004 0.1521 ± 0.0001 ∼ 0.75
AutoCTR 0.4413 ± 0.0002 0.3800 ± 0.0001 0.1520 ± 0.0000 ∼ 0.75

AutoCTR (warm) 0.4417 ± 0.0005 0.3804 ± 0.0004 0.1523 ± 0.0001 ∼ 0.75

Table 4.3: General CTR prediction results (AUC) on the three benchmark datasets

Criteo Avazu KDD Search cost
(GPU Days)SOFA

human-crafted
Networks

DeepFM 0.8086 0.7767 0.7974 -
DLRM 0.8085 0.7766 0.8004 -

AutoInt+ 0.8090 0.7772 0.8002 -

Best Networks
Found by the
NAS Methods

Random 0.8096 ± 0.0004 0.7765 ± 0.0029 0.8001 ± 0.0003 ∼ 0.75
RL 0.8094 ± 0.0005 0.7778 ± 0.0005 0.7999 ± 0.0002 ∼ 0.75

LaNAS 0.8096 ± 0.0005 0.7772 ± 0.0011 0.8001 ± 0.0009 ∼ 5
LaNAS+ 0.8101 ± 0.0000 0.7790 ± 0.0007 0.8009 ± 0.0004 ∼ 0.75
AutoCTR 0.8104 ± 0.0003 0.7791 ± 0.0001 0.8011 ± 0.0001 ∼ 0.75

AutoCTR (warm) 0.8099 ± 0.0005 0.7784 ± 0.0006 0.8004 ± 0.0003 ∼ 0.75

architectures parallelly trained on it. Multi-core CPUs are used for data preprocessing and searcher

training. Specifically, we use five cores for data preprocessing and the searcher training in the

search phase, and 5 CPU cores + 1 GPU for the final fit of each discovered architecture after

searching. We adopt parallel CPU-GPU training for searching, and the training speed is accelerated

by loading, preprocessing, and saving the data batches in the GPU memory. The evolutionary

guider is implemented with the lightgbm package7, and the FLOPs are calculated based on the thop

package8. Plots in the case study are drawn with the graphviz package9.

7https://lightgbm.readthedocs.io/
8https://github.com/Lyken17/pytorch-OpCounter
9https://graphviz.readthedocs.io
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Table 4.4: Architecture complexity comparison (parameters in the embedding tables are included)

# Params (Million) Flops (Million)
Criteo Avazu KDD Criteo Avazu KDD

DeepFM 22.51 30.34 101.73 22.74 22.50 21.66
DLRM 23.55 29.29 102.77 26.92 18.29 25.84

AutoInt+ 20.44 28.28 99.66 18.33 17.49 14.88

AutoCTR 19.89 26.49 97.06 12.31 7.12 3.02

4.6.3 General Comparison Among Searchers

We first compare the general search performance of all five searchers. Figure 4.4 depicts the

logloss drifting of the best architecture during searching on the three datasets. The x-axis indicates

the number of architectures searched so far (in total, 1500). The y-axis denotes the validation

logloss of the architectures. Several observations can be summarized as follows. Firstly, based on

the performance of the best architecture searched in the low-fidelity setting, AutoCTR generally out-

performs other baselines, and our modified LaNAS+ outperforms LaNAS. Secondly, by comparing

the search efficiency, AutoCTR and LaNAS+ still outperform other searchers consistently.

We then transfer the best architectures searched so far by each searcher onto the full dataset and

display the final evaluation results in Table 4.2 and Table 4.3. The results shown from row four to

eight are the average performance of the best architectures searched in the three rounds with different

seeds. We can observe that: (1) After transferring the best architectures found by the searchers

on the full datasets, the architectures found by AutoCTR still performs the best. Moreover, the

ranking of the results aligns well with the one in low-fidelity setting, which implies the correctness

of the rank consistency testing and the feasibility of adopting low-fidelity estimation in the search

process. (2) On all three datasets, the final architectures searched by AutoCTR and LaNAS+

could achieve even better performance comparing to the SOTA architectures. The architectures

searched by Random search and RL-based search could also achieve comparable or even better

performance. This empirically validates the effectiveness of the designed search space and the

feasibility of adopting NAS algorithms on the CTR prediction problem. It is worth pointing out that
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an improvement of around 0.0005-0.001 is already regarded as practically significant on these CTR

prediction benchmarks [96, 97]. (3) We further examine the influence of adopting the warm-start

embedding in searching. Although it highly improves the performance of most architectures in

the low-fidelity setting (not shown in Figure 4.4 due to the difference in scale), the performance

on the full dataset is not improved. We attribute this observation to the overfitting issue of the

warm-start embedding dictionary and the evaluation dataset during searching. Since we set a fixed

search iteration (i.e., 1500 architectures) rather than adopting early-stop for the search algorithm,

the overfitting issue may happen during the search process, which has also been pointed out by

several recent works [126, 127].

Beyond accuracy, we also display the time complexity of the search algorithms in Table 4.2

and compare the model complexity of the best-discovered architectures of AutoCTR with and the

SOTA human-crafted architectures in Table 4.4. The time for training the searcher could generally

be ignored due to the limited size of the sampled architectures and the parallel CPU-GPU training

schema we adopted. Results show that the explored architecture is smaller than the human-crafted

ones on both the number of parameters and FLOPs. This is mainly because: (1) we explicitly

constrain search space and adopt the complexity control term in the survivor selection, which

restricts the exploration of overcomplicated architectures; (2) the searchers tend to find architectures

with diamond or inverted triangle MLP structures, while the human-crafted ones directly adopt

rectangular MLP structures as defined in the original work, and are set with 1024 units in each layer

in our experiments.

4.6.4 Architecture Transferability Analysis

As the human-crafted architectures are not designed for a specific dataset, we explore the

transferability of the searched architectures across different datasets. We select the best architectures

searched by AutoCTR on each dataset, and apply them on the other two. From Table 4.5, we can

observe that the architectures searched on one dataset could still perform well when applying to the

others. This is mainly because: (1) the three benchmark datasets share common characteristics of

feature relationships; (2) the blocks incorporated in the designed search space and the discovered
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Table 4.5: Transferability of architectures found by AutoCTR

Original Dataset
Target Dataset

Criteo Avazu KDD

Criteo3 0.4413 0.3799 0.1520
Avazu4 0.4421 0.3800 0.1535
KDD5 0.4418 0.3803 0.1521

(a) Effects of the selection in-
tensity hyperparameter λ to the
search process given population
size p=100 on Criteo data.

(b) Effects of different type of
guider in the mutation stage to the
search process after fixing other
hyperparameters on Criteo data.

(c) Effects of seven different types
of the survivor selection objec-
tives to the search process on
Criteo data.

Figure 4.6: Analysis of the key hyperparameters in the three stages of AutoCTR
connectivity among the blocks is general enough to uncover the high-order feature interactions of

different CTR prediction datasets. Comparably, the architecture discovered on Avazu performs a

bit worse when doing the transfer. One reason is that Avazu only contains sparse features, which

results in no exploration of the dense features in searching. For these models, the dense features are

only considered in the final embedding layer in our implementation during the transfer.

4.6.5 Hyperparameter Sensitivity Analysis

In this section, we study the sensitivity of AutoCTR on the key hyperparameters using the Criteo

dataset and analyze the impact of the core components at different stages.

4.6.5.1 Effects of Selection Intensity in Parent Selection.

We first analyze the influence of the selection intensity hyperparameter λ in the parent selection

stage by fixing the population size as 100. As discussed in section 4.4.2, the higher the λ is, the
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more intense the selection would become. We choose λ = 1, 5, 10, 25, 50 and depict the curve of

search effectiveness in Figure 4.6a. With the increase of λ, the exploitation ability of AutoCTR

generally increases while the exploration power decreases. It increases the initial search speed but

would degrade the exploration ability in the long term. Under the current experimental setting,

λ = 25 seems to be a more balanced option between exploitation and exploration.

4.6.5.2 Effects of Different Mutation Guider.

Secondly, we focus on the mutation stage and analyze the influence of the different types

of guiders to the search efficacy. Three types of guiders are compared here: (1) random guider

(random): it generates the candidate offspring by randomly selecting and mutating an operation of

the selected parent architecture. (2) fitness-based guider (regression): it uses a gradient-boosted

tree to conduct regression on the explored architectures and their performance. It selects the best

architecture among the 100 randomly generated neighbors of the parent architecture as the new

candidate offspring. (3) rank-based guider (rank): the one we used in AutoCTR. Different from

the fitness-based guider, it learns the pairwise ranking relationship among the architectures rather

than directly fit their performance. We fine-tune the tree-based learner for both fitness-based guider

and rank-based guider, respectively. From Figure 4.6b, we can observe that the AutoCTR with

rank-based guider outperforms the other two. Although the fitness-based guider could improve

search effectiveness comparing to the random strategy, it also suffers more on the overfitting issue,

which results in the search variance to be large and makes it difficult to be tuned.

4.6.5.3 Effects of Different Survivor Selection Objectives.

Finally, we explore the effect of adopting different objectives in the survivor selection stage.

Figure 4.6c and Table 4.6 compare the search and final evaluation performance of AutoCTR with

different search objectives. Except for the last objective, each of them adopts the age threshold

1[aA≤q] described in Equation (4.2). We set the trade-off weights for each term as 0.5. The results

show that the age-based objective benefits more to the search speed comparing to the fitness-based

objective. By adding the complexity constraint in the objective, the size of the best model explored
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Table 4.6: Performance and complexity comparison of architectures found with different survivor
selection objectives

Objective
Performance Model Size (Million)

Logloss AUC # Params Flops
aA 0.4418 0.8010 21.97 16.62
rA 0.4417 0.8100 20.58 15.07

aA + rA 0.4415 0.8103 19.77 11.85
aA + cA 0.4418 0.8099 18.08 5.06
rA + cA 0.4417 0.8101 19.59 11.10

aA + rA + cA 0.4415 0.8103 20.50 14.73
aA + rA + cA w/o threshold 0.4416 0.8102 19.35 10.14

could be reduced while the performance remains comparable.

4.6.6 Discussion

In this section, we visualize the best-explored architectures and analyze the importance of the

block components learned from the tree-based guider. Some limitations and conjectures of the

current study are discussed afterward to promote future exploration.

4.6.6.1 Case Study.

We first visualize two of the best architectures found by AutoCTR on Criteo and KDD datasets,

respectively, in Figure 4.7. It shows that both of the architectures ensemble multiple FM and DP

blocks and tend to adopt MLP blocks in the later stage. Besides, dense features prefer MLP block

while sparse features prefer DP and FM in the early stages, which shows the ability of DP and FM

in modeling sparse features explicitly. Moreover, the MLP blocks display a diamond structure, i.e.,

MLP layers in the middle of the graph are wider than the ones in both ends, which aligns with some

analysis in existing works [98]: diamond networks are preferable to the increasing/decreasing width

networks (triangular networks) and the constant width networks (rectangular networks).

4.6.6.2 Interpretation of Important Blocks.

To provide a better understanding of the block-type influence to the architectures, we display

the feature importance of high influential components learned from the <architecture, performance
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Criteo Test Logloss:  0.4416 KDD 2012 Test Logloss: 0.1521   

Figure 4.7: Two architectures found by AutoCTR.
rank> pairs on Criteo and Avazu via the tree-based guiders. We randomly select 10, 000 architectures

with seven valid blocks in each of them to train the tree-based guider and display the importance

score of the top-20 influential block types in Figure 4.8. The “id_type" tick below the x-axis

indicates the topological order of a block and its type. We observe that: (1) the structure of the polar

blocks based on the topological order have larger impacts compared with the middle ones; (2) MLP

block dominates the architectures; (3) DP and FM blocks are relatively more impactful on Avazu

than Criteo since Avazu only contains sparse features. We need to emphasize that this interpretation

may be biased by the search-space design and the way of representing the architectures. Interpreting

the NAS process and involving the interpretations into the architecture design could be promising.

4.6.6.3 Limitations.

Despite the analysis discussed above, several limitations are mentioned here for future investiga-

tion.

Search Space. Though the number of architectures contained in the search space is quite large

(> 1011), the number of block types we have currently explored is still limited. This also explains

why Random and RL searchers could achieve acceptable performance. Moreover, the flexibility

can be further enlarged via independent feature selection towards more dedicated and delicate

interactions.

77



Figure 4.8: Normalized importance scores of top-20 block type operations learned by AutoCTR
guider on Criteo and Avazu
Overfitting. The overfitting issue is enlarged in the low-fidelity setting due to the limited subsample

size and the stop criteria we adopted, i.e., search 1500 architectures for every searcher in each

experiment. Although AutoCTR and LaNAS+ still show their superiority, the improvements

compared with other searchers are weakened. One possible way to migrate this issue is to adopt

early-stopping strategies or add regularizations for the search process [126, 127].

4.7 Conclusions

In this work, we conduct a pilot study of automatically designing architectures for the CTR

prediction task. We construct a hierarchical search space via wiring representative blocks extracting

from human-crafted networks and explore the rank consistency among the architectures under the

low-fidelity setting. A tailored evolutionary search algorithm with a multi-objective survivor selec-

tion strategy is proposed guided by an architectural-level learning-to-rank method. Experimental

results on three benchmark datasets demonstrate the effectiveness of the proposed search algorithm

and the feasibility of adopting low-fidelity estimation during the search phase.
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5. TRANSFERABLE BLACK-BOX OPTIMIZATION FOR HYPERPARAMETER TUNING

Considering the vast amount of recommendation tasks imbued in modern web applications,

designing a recommendation tuning them from scratch is time-consuming and laborious. In

this chapter, we explore how to leverage the similarities of different web application tasks to

accelerate the automated hyperparameter tuning. We propose a transferable black-box optimization

algorithm that could benefit from the model evaluation information from historical tasks towards

accelerated hyperparameter tuning. The outcome algorithm is expected to be not limited to tuning

ML models in recommender systems but also applicable for general block-box optimization and

related applications such as job scheduling of physical systems and user experience optimization in

web services.

5.1 Introduction

Designing and deploying recommendation models or services in industrial applications is quite

challenging. It generally involves various handcrafted configurations and multiple steps of manual

tuning. Automated hyperparameter tuning is an integral part of AutoML, showing extraordinary

ability and great potential in finding apposite hyperparameters for complex machine learning

algorithms [128]. It significantly alleviates the burden of expertise on repetitive tuning. Despite

the achievements made in hyperparameter tuning on a single task, it is still a time-consuming and

resource-intensive job, especially when faced with large models and datasets.

IT companies may develop and maintain hundreds, if not thousands of models for different

applications (online, offline). Exhaustively tuning and configuring them from scratch is prohibitively

resource-wise expensive. Moreover, as vast historical tuning and evaluation information is generated

every day, it could be difficult for engineers to manually distill and summarize all the experimental

results for model design and tuning.

Motivated by the continual learning of human engineers in honing their expertise on configuring

and designing models and systems from historical experience, we expect to leverage the evaluation
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and tuning information collected from historical tasks towards the faster exploration of optimal

configurations on new tasks. Since many tasks are within similar application domains (e.g., search

and recommendations), their datasets and models share extensive similarities. For example, (1)

neural network models applied on people search and job search could share similar model structure

(such as the number of filters) and hyperparameters for training (learning rate and optimizer type);

(2) datasets for different recommendation tasks may share similar feature categories such as user

demographic features or item content features. Distilling and harnessing this information could

potentially accelerate the tuning speed, thus saving the cost of workforce and physical resources.

We intend to treat the model selection and tuning in each recommendation task as a black-box

optimization problem to put it into a more general and flexible setting. No analytic solution or

gradient information is available for each optimization problem. The only input we have is the

hyperparameters and their evaluations on individual tasks. The goal is to design a transferable

black-box optimization algorithm that could benefit transfer the historical evaluation information

from different tasks towards accelerated hyperparameter tuning on the target tasks.

To achieve the goal, three questions needs to be answered, i.e., when to transfer, what to transfer,

and how to transfer. We briefly describe the challenges of answering each question and the limitation

of existing works on solving them:

• The breakthrough of ‘when to transfer‘ lies in measuring the similarity of tasks. The transfer

method should filter out the historical tasks that are similar to the target task to transfer

useful information without harming the tuning process of the new task. The critical challenge

is that there are no explicit measures to quantify the similarity of two tasks (black-box

functions). Existing work usually puts their efforts on designing hand-crafted meta-features to

characterize each task to quantify the similarity between them [129]. However, it is non-trivial

to develop suitable meta-features, and hard to judge their effectiveness.

• ‘What to transfer‘ describes the information that we want to transfer from historical tasks to

the new tasks. Some representative ones in the literature include the best hyperparameters

of historical tasks, the parameters of the surrogate model in the search algorithm (such as
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the gaussian process model in Bayesian optimization algorithm) learned from historical

evaluations (i.e., hyperparameters and their performance on historical tasks) [130], as well

as the constraint of search space [131]. Existing work usually focuses on one of these

transferable information or conjoint the advantages of several of them. However, almost

all the prior arts are tailored to a specific search model, which means their solution is not

model-agnostic and cannot be applied to other search algorithms.

• The question of ‘how to transfer‘ asks for the way of doing the transfer. As Black-box

optimization is often a time-consuming process in practice due to the high cost of evaluating

the black-box functions, the transfer algorithm should be efficient enough to avoid extra

burdens being appended. The state-of-the-art algorithms usually adopt ensemble learning of

neural network models to conduct meta-learning for information transfer. Though many of

them show prominent improvements compared to non-transfer methods, they either have high

computational complexity or are hungry for historical hyperparameter evaluations.

5.2 Meta-Tree Transfer Algorithm

To tackle the challenges, we intend to propose a tree-based transfer method. The key idea is to

construct a meta-level decision tree model for each task leveraging the optimization information

(e.g., <hyperparameter, evaluation> pairs of the corresponding tasks). The tree model compares

the task similarity and transfer information between the historical tasks and the target task. We

use the general hyperparameter tuning task as an example to illustrate the keys ideas of these three

steps. Specifically, given a new task, the methods take four steps to achieve the information transfer:

tree construction, similarity comparison, candidate task selection, and a two-type transfer. We will

elaborate the four steps one by one in the following subsections. Step two to four are iteratively

conducted during the search process.

5.2.1 Tree Construction

The first step is called tree construction, which is relatively straightforward. For each historical

task, we tree a regression decision tree based on <hyperparameter, evaluation result> pairs. This tree
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Figure 5.1: Tree construction based on historical hyperparameter evaluation information
could be used for later tasks without being constructed repetitively from scratch, given new tasks.

For the target task, we first sample several initialization points based on the Sobol quasi-random

sampling strategy [132]. We use Sobol quasi-random sampling based on the intuition that the

sequence achieved by it could provide a finer partition of the search space than purely uniform

random search and avoid the samples gathered in a specific region affects the tree construction.

5.2.2 Similarity Comparison

After constructing the tree, we develop a ranking-based similarity quantification strategy to

compare the tasks’ similarities. We first calculate the predictions of each historical tree to the

samples collected on the target task. The samples here represent the hyperparameters that have

already been evaluated. We then measure the similarity between tasks by calculating the Kendall

Tau-b ranking correlation coefficient between the predictions and the ground-truth evaluations on

the target task.

5.2.3 Candidate Historical Task Selection

Candidate historical task selection based on tournament selection. After comparing the sim-

ilarities between the old trees and the target tree. We can sort the historical trees based on how

similar they are to the target dataset. To avoid one historical tree always being selected, we adopt a

tournament selection method to enhance the exploration ability from a meta-tree level. The key idea

is to randomly select a candidate (five in the later experiments) set of historical trees and then pick
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Figure 5.2: Tournament selection of candidate tree based on tree similarities
the best one as the tree to be transferred based on the similarity score calculated in step two. This is

quite useful when not enough samples are provided for the new tasks leading to noisy measures on

the similarities.

5.2.4 Pointwise and Space-wise Transfer

We pursue both pointwise and space-wise transfer. For pointwise transfer, we directly transfer

the best points (hyperparameters) evaluated in the historical task selected at step three. A simple

simulated annealing method is used to judge if we would like to continue using the pointwise

transfer when the previous transferred point performs poorly on the target task. A core difference

between our transfer method and all the existing works is that we conduct a subspace transfer

besides a pointwise transfer. When the algorithm decides to stop the pointwise transfer, it will start

to apply for a space-wise transfer by transferring the best subspace partitioned by the historical tree

model into the target task. This subspace will serve as a constrained search space for the search

algorithm to pursue a more targeted and efficient exploration.

We can iteratively conduct steps two to four during the search phase and interactively with the

user-specified search algorithm (or we say black-box optimization algorithm) on the new tasks.
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The default search algorithm is Bayesian optimization with upper confidence bound acquisition

function. Other algorithms can also be seamlessly combined with the proposed method, such as

neural-network-based searching algorithms.

5.3 Experimental Analysis

In this section, we empirically evaluate the proposed transferable black-box optimization

algorithm on both synthetic and real-world datasets. We mainly explore two questions:

Q1. How is the proposed method comparing with the state-of-the-art (SOTA) transferable methods

on conventional black-box optimization tasks?

Q2. How is the search speed and accuracy of the proposed method compared to the SOTA transferable

methods on hyperparameter tuning tasks?

5.3.1 Baselines

We utilize four main baselines in the final experiments. The first two are non-transferable

methods, and the rest are the SOTA black-box optimization methods. Their details are summarized

as follows:

• Sobol quasi-random search (sobol). A random samping method, whose random sequense is

drawn by the sobol quasi-random sequence1.

• Gaussian process with upper confidence bound acquisition function (gpucb). It is a classical

black-box optimization method, utilizing the Bayesian optimization method with the Gaussian

process as the surrogate model and upper confidence bound as the acquisition function.

• Google vizier black (vizier) [130]. SOTA transferable black-box optimization service adopted

in Google.

• Ranking-weighted Gaussian process ensemble (RGPE) [133]. A SOTA meta-Learning method

proposed by Facebook.
1https://botorch.org/api/sampling.html
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5.3.2 Experiment on Synthetic Black-Box Optimization Datasets

In this subsection, we empirically evaluate the proposed method on a set of classical black-box

tasks: optimize quadratic functions. We sequentially maximize 15 quadratic functions. The format

of the quadratic functions are shown below:

ft(x) = at||x||22 + bt1
> + ct, (5.1)

where (at, bt, ct) ∈ [−0.1,−10]3, x ∈ [−100, 100]4. We randomly sample the three coefficients of

the 15 quadratic functions from the specified interval. Our goal is to sequential optimize these 15

functions, i.e., finding the optimal x to maximize each function. We conduct 50 search trials for each

task. Since we’re optimizing the functions in a sequential setting, each transfer learning methods

could leverage the optimizations on the previous quadratic functions to optimize the current one.

The experimental results are shown in Figure 5.3. The x-axis represents the number of trials

of each task, and the y-axis indicates the maximum value of all passed trials achieved on the

task-specific quadratic function during optimization. Black dash lines indicate the optimal values

for the tasks. We can get two main observations. Firstly, since we know the optimal value of each

task, all the methods could achieve the optimal value on every task within 50 search trials. Secondly,

the proposed ‘space_gpucb‘ method (purple curve) outperforms other methods in search speed on

almost all the tasks compared to both none transfer methods (sobol and gpucb) and transfer learning

method (RGPE and google vizier).
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Figure 5.3: Sequential optimization results of 15 quadratic functions.
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5.3.3 Experiment on Synthetic Hyperparameter Tuning Datasets

Our second experiment focuses on the hyperparameter tuning tasks of linear regression models

on synthetic tabular datasets. We sequentially tune the hyperparameters of 15 linear regression

problems. Each linear model is optimized with the stochastic gradient descent (SGD) algorithm

with the following parameter optimization rule:


v = γv + α

1+αλk
∆lt(θ

(k)
t ),

θ
(k+1)
t = θ

(k)
t − v

(5.2)

where θ(k)
t is the weight of the linear regression model for task t in the kth SGD update iteration.

The three hyperparameters to be searched and their search spaces are: learning rate α ∈ [0.001, 1],

momentum γ ∈ [0.3, 0.999], and regularization hyperparameter λ ∈ [0.001, 1000]. The detailed

settings follows [131, 134].

Figure 5.4 displays the search results on the 15 tasks. Each curve in the figure represents the

changing of the best validation results of the explored trials using the hyperparameters explored by

a black-box optimization method. The results are measured by minus RMSE, which is the larger,

the better. We also do 50 trials for each task. From the results, we can see that the proposed method

(‘red curve‘) also outperforms other baselines on search speed. The RGPE baseline is not shown in

the figure due to its computational issue caused by the ill-conditioned matrices.

5.3.4 Case Studies

In this subsection, we conduct two case studies to further show the effectiveness of the proposed

method and display more insights of it. We try to answer two questions: (1) can the proposed

method discover the same task correctly? (2) how does the transferred search space look like?

To answer the first question, we create a synthetic experiment with ten tasks. We recursively

maximize five quadratic functions twice. We adopt a two-dimensional search space for each task,

i.e., x ∈ R2. Each of the tasks is searched for 50 trials. The first five tasks serve as the historical

tasks and are directly tuned with the gpucb method. The rest five tasks repeat the first five tasks but
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Figure 5.4: Sequential hyperparameter tuning results of 15 linear regression tasks.
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Figure 5.5: The task similarity rank matrix for recursively tuning five quadratic functions twice.
are tuned with our proposed methods.

We display the task similarity rank matrix in Figure 5.5. We normalize the similarity scores

between the historical five tasks and the new tasks, sorted the scores, and display the sorted rank of

them in the matrix. Generally, the diagonal values rank highest in each row, which shows that the

tree-based method can provide good similarity measurement between tasks.

In the second case study, we display the constraint search space given by the proposed method

after transferring the information from historical tasks. We tune two same quadratic functions and

display the transferred search space of the first trial when tuning the second task in Figure 5.6. We

can see that the proposed method could largely constrain the search space by leveraging historical

information. The transferred search space could force the search algorithm to focus on a finer region

as expected.

5.4 Conclusions

In this work, we consider tuning machine learning models on multiple tasks and investigate how

to leverage the historical tuning information to accelerate tuning the new tasks sequentially. We form

each task as a black-box optimization problem and propose a transferable black-box optimization

algorithm. The algorithm measures the task similarities by constructing a set of decision trees

and transfer the information from the historical tasks to the target task through partitioning and
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Figure 5.6: Compare the transferred search space and the original search space of the first trial when
tuning the second function of two same quadratic functions.
constraining the search space with the help of the trees. The outcome algorithm is expected to be

not limited to tuning machine learning models in recommender systems but also applicable for

general block-box optimization and related applications such as job scheduling of physical systems

and user experience optimization in web services.
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6. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES

Machine learning has provided the recommender systems with the automation power on pattern

extraction and decision making. However, existing machine learning techniques still lack the

adaptive ability on streaming recommendations and require extensive human efforts on design

and tuning. In this dissertation, we made a series of contributions to enable advanced automation,

discussing how to adaptively update factorization-based recommendation models on streaming

data, how to automatically design and tuning recommendation models with the help of AutoML

techniques, and how to accelerate the automated hyperparameter tuning in the transfer learning

setting.

Concretely, to tackle the challenges of data velocity and high dimensionality. We propose a

multi-aspect streaming tensor completion framework named MAST, which can impute the tensor-

structured dataset that is incrementally augmented and accelerate the streaming recommendation

tasks. To benefit from the advantages of deep learning in effectively solving tasks with large-scale

recommender systems, we propose a framework named CVRCF that jointly combines stochastic

processes and deep factorization models under a Bayesian paradigm to model the generation and

evolution of users’ preferences and items’ popularities. Standing upon the sequential variational

inference, CVRCF could continually update under the streaming setting and effectively learn drifting

patterns towards better recommendations. To alleviate the burden of model design and tuning, we

explore adopting automated machine learning in designing and tuning recommender systems. Our

proposed AutoCTR framework is a pilot work of using neural architecture search for designing

CTR prediction networks. By evaluating it on the benchmark datasets, we show AutoCTR can

design even better architectures than the state-of-the-art human developed networks. The analysis

of low-fidelity estimation also provides insights and evidence for accelerating the automation

process. Finally, considering the vast amount of recommendation tasks imbued in modern web

applications, we propose a transferable black-box optimization algorithm that could benefit from

the model evaluation information from historical tasks towards accelerated hyperparameter tuning.
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The outcome algorithm is expected to be not limited to tuning ML models in recommender systems

but also applicable for general block-box optimization tasks.

Our research would facilitate the exploration of automated recommender systems, promote

the development of advanced recommender systems on different industrial applications, as well

as democratize the complicated recommendation models to practitioners who do not have much

expertise or experience. Despite the efforts made in the thesis, there are still many challenges and

open problems to be explored. With respect to future work, we are interested in investigating the

following directions:

• Enhance interpretability in recommendations. With more and more advanced recommen-

dation models being proposed, the interpretation of the recommendation model, especially

deep recommendation models, becomes more and more difficult. Although the automation of

recommender system greatly improves their performance, a natural question is which part

of the designed system improves the performance and which features or feature interactions

are more important to help achieve better recommendation performance. The interpreta-

tions for both users and recommendation providers are also useful for creating interactive

recommendations and model design.

• Reduce the space and time complexities in recommendations. Deep-learning models and

the AutoML technique both require a huge amount of computational resources. Though we

have explored some solutions for efficient architecture search and recommendation in stream-

ing settings, space and time complexities are still very high when applying and deploying

them in many industrial applications. How to reduce the space and time complexities for

recommendation models is always worth being explored.

• Create recommendation benchmarks for automated model design and tuning. Though

we have many recommendation datasets and models, there still lacks a comprehensive

benchmark for recommendation model design and tuning, especially for large-scale and

heterogeneous datasets. It is not an easy task since creating this type of benchmark may require
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tremendous computational resources to exhaustively evaluate different recommendation

models in the search space on the selected datasets. We may also need to evaluate each

architecture multiple times to reduce the variance.

• Enable the automation on heterogeneous recommendation models and datasets. In this

dissertation, we mainly target on enabling the automation in factorization-based recommenda-

tion models and tabular datasets. There are still many recommendation model structures and

datasets to be explored. For example, graph-structured datasets and related models such as

Graph Neural Networks are attracting increasing attention. How to realize the full potential

of graph-structured models with AutoML techniques and apply them in the recommendation

tasks to enable inductive and transductive learning on static and dynamic graphs can be

intriguing.
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