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ABSTRACT

This dissertation presents an efficient proper orthogonal decomposition (POD) based reduced-

order model (ROM) for use in compressible fluid flows. The method is made efficient by rewriting

the governing equations of fluid dynamics using zeta-coordinates, i.e., using primitive variables

with specific volume substituted in for density. This substitution allowed for the pre computation of

the inner products, or coefficients, of the reduced-order model system of equations, and reduced the

nonlinearity of the system. To stabilize the POD-based ROM, three methods were used: (1) the

penalty method, (2) artificial dissipation, and (3) a new method that modifies the number of modes

used in the POD approximation. Energy-based stabilizing methods to calculate the parameters in the

penalty method and the artificial dissipation method were developed to improve the robustness of

these methods for predicting new flow solutions. Furthermore, a minimization method to calculate

the parameter in the penalty method was also developed.

The POD-based ROM was used to predict solutions for several cases of varying degrees of

unsteadiness: for an outlet pressure oscillation and for deforming boundaries. The results of

these cases are shown for a quasi-one-dimensional nozzle, a two-dimensional channel, a three-

dimensional axisymmetric nozzle, NASA Rotor 67, the 10th standard configuration, and the 11th

standard configuration. A stability analysis was performed using Lyapunov’s method, and showed

that the stabilizing methods used were successful in stabilizing the POD-based ROM. To compare

the speedup attained by the POD-based ROM, its CPU time was compared to the full CFD solver,

or full-order model, and to a ROM that uses density instead of specific volume. The POD-based

ROM attained a speedup of greater than four orders of magnitude when compared to both, and was

able to accurately predict new flow solutions.
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NOMENCLATURE

Greek Letters

β Parameter of interest

γ Specific heat ratio

γ̃ Gamma parameter

ΓΓΓ Tangent space to POD subspace

ε Least-squares error

ε Relative error

ζ Specific volume

κ Wavenumber

λ Eigenvalue

λ̃ Operating points

ν̃ Artificial dissipation parameter

ν̃νν Artificial dissipation parameter diagonal matrix

ρ Density

τ Penalty parameter

τττ Penalty parameter diagonal matrix

τττ Viscous stress tensor

φ Basis function

ϕ Phase shift

Ω Spatial domain

ω̃ Angular velocity
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ωx Wheel speed of blade rotating about x-axis

Latin Letters

a Time coefficient

A Area

Ã Amplitude

c Speed of sound

D Dimension of domain

Ei Energy index

E Total energy

F Prescribed boundary condition

F Nonlinear functional

GGG Grassmann manifold

H Total enthalpy

J Jacobian

J Nonlinear functional

K Boundary condition error

m Total number of modes

M Number of snapshots

n Number of modes

N Resolution of spatial domain

NR Number of reference subspaces

p Pressure

q State vector

r Radius

R Autocorrelation matrix
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s Entropy

S Projection of Laplacian of basis functions

SSS POD subspace

t Time

T Temperature

u u-Velocity

v v-Velocity

v Velocity vector

w w-Velocity

W Relative velocity

x Spatial coordinate

Z Zeta state vector

Mathematical Symbols

(·, ·) Inner Product

〈·, ·〉 Ensemble average

Subscripts

BC Subset belonging to points along prescribed boundary

hub Subset belonging to outlet hub boundary

out Subset belonging to outlet boundary

Superscripts

ˆ Approximate value

∗ Complex conjugate

˜ Perturbation

¯ Spatial-averaged value
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Acronyms

POD Proper Orthogonal Decomposition

FOM Full-Order Model

ROM Reduced-Order Model

CFD Computational Fluid Dynamics

PDE Partial Differential Equation

ODE Ordinary Differential Equation
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5.4 Off-reference ROM solution vs. FOM solution for a quasi-one-dimensional nozzle
with an outlet pressure oscillation with angular velocity ω̃ = 1 rad/sec and amplitude
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1. INTRODUCTION

1.1 Background and Motivation

Advancements in computer hardware and infrastructure have opened up pathways toward high-

fidelity model development of complex flow problems. Despite these advancements, the simulation

of such flow problems remain computationally expensive. The high-fidelity model or full-order

model (FOM) of these simulations is then limited in its computational speed by its numerical

scheme and/or grid quality. This effectively limits the FOM in its use for design as well as for

real-time feedback [1, 2].

To amend this expense, one can instead use model reduction procedures to create reduced-order

models (ROM). These ROMs operate at a lower-fidelity than the full-order models. The model

reduction procedures replace the larger system of partial differential equations (PDEs) of the full-

order model by a much smaller system of ordinary differential equations (ODEs) that make up the

reduced-order model. One such model reduction procedure is the Proper Orthogonal Decomposition

(POD) method.

Proper Orthogonal Decomposition, otherwise referred to as Principal Component Analysis or

the Karhunen-Loeve Decomposition, was developed by Karhunen and Loeve separately [3, 4] as a

statistical method to extract optimal basis sets from an ensemble of observations. This optimal basis

is found in such a way that the time-averaged approximation error between the POD approximation

and the full-order model is minimized in a respective norm. Because the basis set is orthonormal,

projecting the full-order model onto the basis creates the reduced-order model, where the ROM has

significantly less degrees of freedom than the FOM.

When applying the POD method to the governing equations of fluid dynamics written in

primitive or conservative form, a POD approximate appears in the denominator. This appearance

has two effects. First, it increases the non-linearity of the system of equations. Second, it may

require the recalculation of the coefficients of the ODEs that make up the ROM at every time step.
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Both effects act as limitations to the computational speedup of the ROM.

Another limitation appears when POD is applied to aeroelastic simulations with moving meshes.

The relationship between grid points in POD is index-based. Therefore, unless the mesh deforms in

a topologically consistent manner, that is, the grid deforms such that the relationship between grid

points does not change in time, then the dynamics of the mesh deformation will not be captured.

Therefore, the accuracy of the ROM diminishes.

The research proposed herein corrects these limitations in speedup of the reduced-order model

by rewriting the governing equations of fluid dynamics in zeta-coordinates, that is, as a function

of specific volume instead of density [5, 6]. A dynamic average and dynamic basis are used in the

POD approximation such that the ROM can accurately model flows with deforming meshes without

interpolating or modifying the boundary conditions. The zeta-coordinate formulation reduces the

nonlinearity of the governing equations and allows for the pre-computation of the coefficients of the

ODEs. As such, the computational speedup of the ROM is increased.

1.2 Literature Review

Proper Orthogonal Decomposition has been used for many applications. In particular, the first

application of POD in fluid flows was performed by Lumley on turbulent flows [7]. Since then,

POD has been used for turbomachinery [8, 9], cavity [10], and multi-phase [11, 12] flows among

others. Although referred to differently in other fields, all POD methods: principal component

analysis, Karhunen-Loeve decomposition, and singular value decomposition are equivalent [13].

When taking that into account, POD has also been used in chemistry [14, 15], biology [16], and

statistics [17].

Other model reduction procedures have also been explored. The Balanced POD developed by

Rowley uses empirical Gramians to find balancing transformations for large systems to correct

the limitations of balanced truncations [18]. Unfortunately, this method is limited to linear, stable

systems, although it may be extended to nonlinear systems. Another method developed is the

bi-orthogonal decomposition, which is a special case of POD, developed by Aubry [19]. This

method decomposes its data set into orthogonal temporal modes and orthogonal spatial modes
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simultaneously. Schmid developed the dynamic mode decomposition that calculates dynamic modes,

which are orthogonalized in time rather than space [20]. The dynamic modes provide a way of

identifying coherent structures particularly for experimental data sets. An extensive review of model

reduction procedures was presented by Lucia et al., which includes a review on Volterra theory,

harmonic balance, and the traditional POD method [21]. Furthermore, Dowell et al. presented

a review of reduced-order models in unsteady aerodynamics [22]. Of note in his review is that

POD is not necessarily limited to linear problems. While the list of methods given here is not a

comprehensive list, it is clear that these model reduction procedures have become an important part

of CFD model development.

Extensions to the traditional POD method have also been investigated. One common modifica-

tion is to manipulate the form of the governing equations, for example, by linearization. Another

is to change the form of the inner product of the Galerkin projection procedure. For example,

Barone changed the form of the inner product to a symmetry inner product that better reflected

the flow dynamics [23]. One can also change the form of the POD approximation. Brenner aug-

mented the POD approximation with discontinuity modes to better capture problems with moving

discontinuities [12].

Modifications are needed to the traditional POD method to capture aeroelastic effects. Because

POD uses index-based relationships between grid points, then any mesh deformation, unless

topologically consistent, will not be communicated to the POD modes. There have been several

methods developed to correct this limitation. Anttonen developed a multi-POD ROM that uses a set

of POD solutions trained for different grid deformations [24, 25, 26]. The POD solutions are then

selected that best match the current grid deformation. Lewin augmented the POD approximation

with control modes that reflect the heaving, lagging, and angular velocity of an airfoil [27]. This

method is limited to modes with homogenous boundary conditions. Freno addressed the mesh

deformation directly by augmenting the POD approximation with dynamic averages and dynamic

basis functions [28, 29]. These dynamic modes are no longer functions of just space only, but are

also dependent on time-dependent parameters associated with the flow unsteadiness.
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One drawback of the POD method is its lack of guarantee to preserve the stability of the

FOM [30]. Although the original space of the FOM may be stable, the subspace of the ROM may

see unstable trajectories. This limits the robustness of the ROM for handling changes in geometry

and flow conditions. While this is the case, it does not mean that the ROM cannot be stabilized.

There have been several methods developed that can aid in regaining the stability lost through

the POD process. For example, extensions on the traditional POD method for stability have been

performed for linear-time invariant ROMs by modifying the reduced-order basis coming from the

right eigenvector [31, 32]. Other research on linear-time invariant systems focused on eigenvalue

reassignment of the ROM system matrix [33]. It is possible to extend this eigenvalue reassignment

for linear-time invariant systems to nonlinear systems through an iterative approach developed by

Tomas-Rodriguez [34]. Barone and Kalashnikova found that a stability-preserving inner product

could be developed respective to the type of flow problem [23, 35]. Artificial dissipation has also

been successfully used to stabilize the ROMs after the fact by adding an artificial dissipation term

to the governing equations [36, 37, 38]. A method to calculate the artificial dissipation such that

the system energy of the ROM would decrease was developed by the author for off-reference

conditions [39, 40, 41].

It has been found that the lack of enforcement of boundary conditions in a ROM can lead

to constrained solutions, which may lead to instabilities in the ROM [30]. Therefore, enforcing

boundary conditions in a ROM is another way to preserve stability. The penalty method can be

used for such a purpose. This method penalizes the governing system of equations based off of how

well the system satisfies the boundary conditions. When using the penalty method for stability, the

question becomes how to calculate the penalty parameters. Hesthaven developed a stable penalty

method for the linearized compressible navier-stokes equations by calculating the penalty parameter

such that the system eigenvalues are negative [42]. This method was then extended to reduced-order

models by Kalshnikova [43]. Sirisup used a bifurcation tracking software, AUTO, to calculate the

penalty parameters for autonomous systems [37, 44]. A method to apply the penalty method to

nonautonomous, nonlinear systems was developed by the author where the penalty parameter is
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calculated such that a prescribed boundary error was set to zero [41].

The main benefit of a ROM consists in its ability to efficiently predict flow conditions beyond

what is predicted by the FOM, that is, at off-reference conditions. To predict off-reference conditions,

the basis functions, which are functions of space (and sometimes time), need to be interpolated to

the new flow conditions. This can be done in two ways. The first method is enriching the snapshot

database with multiple FOM solutions of differing values of the parameter of interest [11]. The

second is interpolation using the tangent space to a Grassmann manifold, which was developed by

Amsallem for POD-based reduced-order models [45]. The second method is ideal for interpolation,

because it retains the orthonormality constraint of the POD basis functions. When used for off-

reference solutions, the second method produces more accurate results [46].

With the ability to predict off-reference solutions, the POD-based ROM can be used for opti-

mization studies. This opens up many possibilities to real-time feedback, control, and/or design.

The main questions to consider when using POD for optimization is how to maintain the accuracy

of the off-reference solutions and how to preserve the efficiency of the POD process throughout the

optimization.

The accuracy of the POD-based ROM solution for off-reference solutions has different factors

associated to it such as the interpolation of the basis, the calculation of the time coefficients, and the

size of the design space. For example, Fahl addressed the size of the design space by using a trust

region algorithm to update the POD-based ROM with new basis functions from snapshots of the

FOM [47]. My-Ha addressed the interpolation of the basis functions and calculation of the time

coefficients by creating an ensemble of solution snapshots with differing parameters to develop the

POD basis functions, and then using an inverse design optimization with linear interpolation of

the time coefficients [48]. Toal addressed the size of the design space by combining two kriging-

based response surface optimizations with a POD-based approximation for the minimization of

drag-to-lift [49]. Along with Toal, POD has been used for multiple aerodynamic shape optimization

studies [27, 50, 51].
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1.3 Current Contributions

This paper presents the development of a zeta-variable Proper Orthogonal Decomposition

based reduced-order model for compressible flows with aeroelastic applications. To overcome

the limitations that arise due to writing the governing equations in primitive or conservative

coordinates, zeta-variables will be used. Zeta-variables replace density with specific volume in

the governing equations. This substitution reduces the nonlinearity of the equations and allows

for the pre-computation of the ODE coefficients that make up the reduced-order model [5, 6, 41].

Therefore, the computational speedup of the ROM to the FOM is increased. The POD approximation

will be augmented with dynamic basis functions. These dynamic basis functions introduce flow

unsteadiness into the basis functions themselves, no longer rendering them only functions of space.

By doing this, it allows the POD method to continue to use index-based relations between grid

points while still communicating mesh deformation to the modes.

The zeta-variable POD-based ROM will be verified and validated for several geometries of

differing unsteadiness. For the same geometries, the POD-based ROM will be used to generate

off-reference solutions, solutions for which the POD basis functions are not derived from. The

off-reference solutions will be validated against the FOM.

1.4 Outline of Dissertation

The following section presents the governing equations of the full-order model written using the

zeta variables. The POD-based reduced-order model is subsequently described. Results are then

presented for a quasi-one-dimensional nozzle, a two-dimensional channel flow, an axisymmetric

nozzle, NASA Rotor 67, and the tenth and eleventh standard configuration. A stability analysis

of the reduced-order model is then presented along with the shortcomings of the analysis tools

available. Finally, the computational runtime of the reduced-order model is discussed and compared

to other respective models.
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2. PROPER ORTHOGONAL DECOMPOSITION

Proper Orthogonal Decomposition (POD) extracts an optimal basis set from an ensemble

of observations [3, 4]. When used in conjunction with a Galerkin projection procedure, it can

significantly reduce the number of degrees of freedom of a problem. Ordinarily, the basis set that

is found varies spatially and not temporally, which may lead to issues when computing domains

with moving meshes [29]. Two methods are presented here: the traditional Proper Orthogonal

Decomposition method with a static basis set and average and a modification to the POD method

with a dynamic basis set and/or average.

2.1 Static Average and Static Basis1

Consider a set of discrete snapshots of some scalar function q(x, ti), 1 ≤ i ≤M , where M is the

number of snapshots. This set of snapshots is assumed to form a linear, finite-dimensional Hilbert

space L2 on a spatial domain Ω. The POD method approximates the perturbation of the scalar

function, q̃ = q − q̄, as a linear combination of some time-dependent orthogonal time coefficients,

a, and time-independent orthogonal basis functions, φ,

q̃(x, ti) =
nq∑
j=1

aqj(ti)φ
q
j(x) (2.1)

where nq is the number of terms or modes kept to approximate q̃(x, ti). Alternatively, the POD

approximation can be applied to the scalar function q

q(x, ti) =
nq∑
j=0

aqj(ti)φ
q
j(x) (2.2)

where aq0(ti) = 1 and φq0(x) = q̄. Take note that the basis functions, φ, are time-independent. The

reconstruction (2.1) is optimal in the sense that the time-averaged least-square error of the POD

1This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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approximation

εqnq =

〈∥∥∥∥∥q̃(x, ti)−
nq∑
k=1

aqk(ti)φ
q
k(x)

∥∥∥∥∥
2〉

(2.3)

is a minimum for any nq ≤ M combinations of basis functions [52]. Here ‖·‖ denotes the L2

norm, ‖f‖ = (f, f)1/2, where (·, ·) denotes an inner product, and 〈·〉 denotes an ensemble average,

〈f〉 = 1
T

∫ T
0
f(x, t)dt. This minimization reduces to an eigenvalue problem of the form [53, p. 89]

∫
Ω

〈q̃(x)q̃∗(x)〉φ(y)dy = λφ(y) (2.4)

which is a homogenous Fredholm integral equation of the second kind [54]. Here, the optimal

basis functions are the eigenfunctions of the integral eigenvalue equation. The kernel of (2.4) is the

autocorrelation function R(x, y) = 〈q̃(x)q̃∗(y)〉 where ∗ denotes a complex conjugate. The integral

equation in (2.4) is solved using a Singular Value Decomposition (SVD).

If instead one has a set of discrete vector-valued observations

q(x, ti) = [q(x1, ti), q(x2, ti), ..., q(xN , ti)]
T

where N is the resolution of the spatial domain, the discrete ensemble average becomes 〈f〉 =

1
M

∑M
i=1 f(x, ti) and the autocorrelation function becomes a tensor product matrix

R =
1

M

M∑
i=1

q̃(x, ti)q̃T (y, ti) (2.5)

where R is a symmetric, positive semi-definite matrix which by definition has orthogonal eigenvec-

tors [55]. The eigenvalue problem in discrete form is

Rφφφ = λλλφφφ. (2.6)

For this discrete set of observations, the method of snapshots developed by Sirovich [56] is used

to calculate the eigenvectors of R. This is efficient when M � N , since it reduces a system of N
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equations to one of M equations. Details on the implementation of this method are given in [9, 52].

To understand how much energy is captured by the modes, an energy index

Ej =
λj∑M
i=1 λi

, j ∈ [1, nq] (2.7)

is used. Generally, the number of modes are selected such that 99% of the cumulative energy is

captured.

A Galerkin projection procedure is used to reduce the size of the system of equations. For

example, consider a scalar variable q(x, t). The POD approximation of the time-derivative of this

variable is

q̇(x, t) =
∂

∂t

nq∑
j=0

aqj(t)φ
q
j(x) =

nq∑
j=0

ȧqj(t)φ
q
j(x).

where ℵ̇ denotes the time-derivative. The variable q̇(x, t) is then projected along an optimal

eigenvector subspace

(q̇(x, t), φqk(x)) =

(
nq∑
j=0

ȧqj(t)φ
q
j(x), φqk(x)

)
=

nq∑
j=0

ȧqj(t)
(
φqj(x), φqk(x)

)
= ȧqk(t)

and is contracted due to the orthogonality of the basis functions. When two variables are multiplied

together

(q1(x, t)q2(x, t), φq1k ) =

(
nq1∑
i=0

nq2∑
j=0

aq1i a
q2
j φ

q1
i φ

q2
j , φ

q1
k

)
=

nq1∑
i=0

nq2∑
j=0

aq1i a
q2
j

(
φq1i φ

q2
j , φ

q1
k

)

an inner product coefficient results,
(
φq1i φ

q2
j , φ

q1
k

)
, that can be precomputed before solving the

ODEs.

When an approximated variable is in the denominator, the inner product coefficient of that

variable becomes time-dependent. For example, consider the inverse of the scalar variable q

1

q(x, t)
=

1∑nq

j=0 a
q
j(t)φ

q
j(x)

.
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When projected along an optimal subspace, the term is unable to be contracted

(
1

q(x, t)
, φqk(x)

)
=

(
1∑nq

j=0 a
q
j(t)φ

q
j

, φqk(x)

)
(2.8)

and therefore is time-dependent due to the presence of aqj(t) in the inner product. This means that

at every time step, the variable will need to be reconstructed using Eq. (2.1), and then the inner

product in Eq. (2.8) will need to be recomputed. This greatly increases the computational cost of

the POD-based reduced-order model. It is imperative then that the governing equations do not have

any division of a state variable.

The only remaining unknowns after solving for the optimal set of basis functions are the time

coefficients. Because the basis functions are orthogonal, the time coefficients can be calculated as

aqk =
(q̃, φqk)

(φqk, φ
q
k)
. (2.9)

While (2.9) produces the “exact" time coefficients that best approximate q̃, these time coefficients

cannot be used for predicting the solution at off-reference conditions, that is, for conditions different

from those predicted by the full-order model. For off-reference conditions, the time coefficients need

to be computed by solving the system of ordinary differential equations obtained by substituting the

approximation (2.1) into the governing equations and then projecting the approximate governing

equations along the basis functions as was described before.

2.2 Dynamic Average and Dynamic Basis

Dynamic average and dynamic basis functions were developed to expand the capability of the

POD-based ROM to model meshes with deforming or moving boundaries [29]. Consider the same

set of discrete vector-valued observations as before, q(x, t). The basis functions are approximated as

φqk(x) = φ̃k
q

0 (x) +
d∑
i=0

γ̃iφ̃
kq

i (x) (2.10)
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where Γ = {γ̃i}di=1 are parameters associated with the flow unsteadiness and d is the number of

parameters used, typically two or less. The gamma parameters must be linearly independent of each

other. For k = 0, Eq. (2.10) gives the dynamic average, while for k > 0, the dynamic basis is given.

For conciseness, Eq. (2.10) is written as

φqk(x) =
d∑
i=0

γ̃iφ̃
kq

i (x), γ̃0 = 1. (2.11)

In this form, if one is using a dynamic average but no dynamic basis, then for k, i > 0, γ̃i = 0. If

one is using a dynamic basis but no dynamic average, then for k = 0, i > 0, γ̃i = 0. The discrete

variable q(x, t) can then be approximated as

q(x, t) =
nq∑
i=0

aqi (t)φ
q
i (x)

=
nq∑
i=0

aqi (t)
d∑
j=0

γ̃jφ̃
iq

j (x)

=
d∑
j=0

γ̃j

nq∑
i=0

aqi (t)φ̃
iq

j (x).

The dynamic average and dynamic basis are solved using either an eigenvalue algorithm or the

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno algorithm [28].

By observation, it was noted that using the dynamic average or dynamic basis required fewer

modes to capture the cumulative energy (2.7) than using a static average or static basis.
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3. FLOW SOLVER

This chapter discusses the models used to simulate the flow dynamics. The physical model con-

sists of the governing equations of fluid flow. Two models are then used to solve the physical model:

a full-order model (FOM) and a reduced-order model (ROM). The FOM solves the discretized

governing equations while the ROM solves the projection of the governing equations. These models

are described in the following sections.

3.1 Physical Model

The Navier-Stokes equations for an isothermal, adiabatic flow in the absence of external forces

are
∂ρ

∂t
+
∂ρui
∂xi

= 0

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τ ij
∂xj

∂ρE

∂t
+
∂ρHui
∂xi

=
∂uiτ ij
∂xj

− ∂pui
∂xi

(3.1)

where ρ is the density, ui are the velocity components (u, v, w)T , xi are the spatial components

(x, y, z)T , p is the static pressure, τ ij are the viscous stress tensor components, E is the total energy,

and H is the total enthalpy. The viscous stress tensor for a Newtonian fluid is

τ ij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij

where λ is the bulk viscosity that can be defined in terms of the dynamic viscosity coefficient, µ,

using Stokes’ hypothesis

λ = −2

3
µ. (3.2)

Therefore, the viscous stress tensor becomes

τ ij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
. (3.3)
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The dynamic viscosity coefficient can be found using Sutherland’s law

µ =
CT 3/2

T + S
(3.4)

where C = 1.458× 10−6 kg
ms
√

K
and S = 110.4 K.

Equation (3.1) can be expanded further by substituting in the definitions for the total energy and

total enthalpy.

E =
1

γ − 1

p

ρ
+
uiui

2

H = h+
uiui

2

These substitutions along with assuming a perfect gas, p = ρRT , give a form of the governing

equations where the conservation of energy equation is now primarily written in terms of p. In index

notation, these are
∂ρ

∂t
+ ρ

∂ui
∂xi

+ ui
∂ρ

∂xi
= 0 (3.5a)

∂ui
∂t

+ uj
∂ui
∂xj

+
1

ρ

∂p

∂xi
− 1

ρRe

(
∂2ui
∂x2

i

+
1

3

∂2uj
∂xi∂xj

)
= 0 (3.5b)

∂p

∂t
+ ui

∂p

∂xi
+ γp

∂ui
∂xi
− (γ − 1)µ

Re

∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
= 0 (3.5c)

where density appears in the denominator in the conservation of momentum equations. To remove

the appearance of density in the denominator, specific volume, ζ , can be substituted in for density.

The equations then become
∂ζ

∂t
− ζ ∂ui

∂xi
+ ui

∂ζ

∂xi
= 0 (3.6a)

∂ui
∂t

+ uj
∂ui
∂xj

+ ζ
∂p

∂xi
− ζ

Re

(
∂2ui
∂x2

i

+
1

3

∂2uj
∂xi∂xj

)
= 0 (3.6b)

∂p

∂t
+ ui

∂p

∂xi
+ γp

∂ui
∂xi
− (γ − 1)µ

Re

∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
= 0 (3.6c)

where an appearance of a state variable in the denominator no longer occurs. The zeta-variable state

13



vector is

Z = [ζ u v w p]T .

3.1.1 Rotating Reference Frame

The Navier-Stokes equations for a rotating reference frame about the x-axis written in zeta-

variables are
∂ζ

∂t
− ζ ∂ui

∂xi
+ ui

∂ζ

∂xi
− ζωx

∂x̃i
∂xi

+ x̃iωx
∂ζ

∂xi
= 0 (3.7a)

∂ui
∂t

+ uj
∂ui
∂xj

+ ωxx̃j
∂ui
∂xj

+ ζ
∂p

∂xi
− ζτij,j = 0 (3.7b)

∂p

∂t
+ ui

∂p

∂xi
+ γp

∂ui
∂xi

+ ωxx̃i
∂p

∂xi
+ ωxp

∂x̃i
∂xi
− (γ − 1)τij

∂uj
∂xi

= 0 (3.7c)

where x̃ = [0, z,−y]T and τττ is the viscous stress tensor.

τττ =


τxx τxy τxz

τxy τ yy τ yz

τxz τ yz τ zz


The components of the viscous stress tensor in a rotating reference frame are

τxx = µ
2

3

(
2
∂W1

∂x
− ∂W2

∂y
− ∂W3

∂z

)
τ yy = µ

2

3

(
2
∂W2

∂y
− ∂W1

∂x
− ∂W3

∂z

)
τ zz = µ

2

3

(
2
∂W3

∂z
− ∂W1

∂x
− ∂W2

∂y

)
τxy = µ

(
∂W1

∂y
+
∂W2

∂x

)
τxz = µ

(
∂W1

∂z
+
∂W3

∂x

)
τ yz = µ

(
∂W2

∂z
+
∂W3

∂y

)

14



where Wi are the components of the relative velocity vector.

W =


W1

W2

W3

 =


u1

u2 + zωx

u3 − yωx



3.2 Full-Order Model1

Two full-order models were used for generating the results presented herein. The first FOM

solved the one-dimensional Euler equations written using characteristic variables [57]

∂s

∂t
+ u

∂s

∂x
= 0

∂

∂t

(
u+

2c

γ − 1

)
+ (u+ c)

∂

∂x

(
u+

2c

γ − 1

)
+ cu

1

A

∂A

∂x
= 0

∂

∂t

(
u− 2c

γ − 1

)
+ (u− c) ∂

∂x

(
u− 2c

γ − 1

)
− cu 1

A

∂A

∂x
= 0

(3.8)

where s is the entropy and c is the speed of sound. MacCormack’s technique was used to solve the

FOM system [58]. Herein, this FOM is referred to as the 1D FOM.

The second full-order model solves the mass, momentum and energy conservation equations

written using primitive variables, as opposed to the zeta variables used for the ROM. The governing

equations of this FOM were solved using an in-house three-dimensional unstructured solver, called

UNS3D [59]. This code solves both the Euler equations and the Reynolds-averaged Navier–Stokes

equations using the finite volume method with Roe-Riemann flux splitting [60] and Harten entropy

fix [61]. The code uses a dual-mesh cell-vertex discretization and an edge-based method [62]. An

upwind method is used to calculate the convective fluxes. The gradients were computed using a

weighted least squares with QR decomposition. The time integration can be done explicitly using a

multi-stage Runge-Kutta method with local time stepping and residual smoothing, or implicitly,

using a lower-upper symmetric Gauss-Seidel scheme [63]. The code was parallelized using Message
1A portion of this section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order

Model for Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of
Computational Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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Passing Interface and has deforming cell capabilities that satisfy the geometric conservation law.

The FOM is second-order in time and space [64].

The UNS3D software is written in Fortran2003 and uses the MPI library for parallelization.

The code was compiled and tested with several Fortran compilers: Absoft, Intel, and Gfortran,

and has been tested on Unix and Linux operating systems. The UNS3D software is also able to

produce POD-based reduced-order model results [46, 65]. In the scope of this dissertation, this

ROM, referred to as UNS3D POD, will be used for comparison purposes.

3.3 Reduced-Order Model2

The snapshots generated by solving the FOM were used to assemble the R autocorrelation

matrix (2.5). The POD basis functions φ were obtained as the eigenmodes of R. In the governing

equations, (3.6) and (3.7), the state variables were approximated using (2.1) which yielded

nZk∑
i=0

ȧZki φ
Zk
i (x) = Jk (a,φφφ) , k ∈ [1, D + 2] (3.9)

where D is the dimension of the domain and J is a nonlinear functional consisting of the combina-

tions of the time coefficients and basis functions of each approximated state variable. The approxi-

mated governing equations were projected along the POD basis functions, φZkj , j ∈ [1, nZk ], k ∈

[1, D+2]. Since the governing equations are nonlinear, the reduced system of equations is nonlinear

as well. Projecting (3.9) along the POD basis functions contracts the time-derivative term

ȧZkj =
(
Jk (a,φφφ) , φZkj (x)

)
, j ∈ [1, nZk ], k ∈ [1, D + 2]

such that the system of N PDEs is reduced to a system of m =
∑D+2

k=1 n
Zk ODEs where the time

coefficients are the dependent variables. The coefficients of the ODEs that appear in this equation

are only dependent on space, and so can be precomputed before solving the system of ODEs. The

2This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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system of ODEs can be concisely written as

ȧ = FFF(a) (3.10)

where a ∈ Rm andFFF ∈ Rm. The inner product selected for this operation is the L2 inner product,

which when used with the velocity components yields the rate of kinetic energy

(v̇, v) =
1

2

∂

∂t
‖v‖2 .

This is desirable, because the L2 inner product reflects the physics of the flow [23]. The discrete L2

inner product was used to project the governing equations

(f, g) =

∫
Ω

fgdΩ ≈
N∑
i=1

f(xi)g(xi)Ωi =
N∑
i=1

f(xi)g(xi)

where Ω ∈ RD is a reference spatial domain with unit length, width, and depth.

With the method presented here, the ROM was not developed by projecting the discretized

governing equations of the FOM as was done in [11, 66], but was developed by projecting the

differential form of the governing equations themselves. This may lead to small differences between

the FOM and the ROM [67]. Furthermore, the ROM developed herein is not guaranteed to preserve

the stability of the FOM. The stabilization of the ROM is discussed in the following section.
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4. METHODOLOGY

This section discusses the methodology used in the zeta-variable POD ROM. Firstly, the stability

of the reduced-order model is discussed followed by methods to stabilize the zeta-variable POD

ROM. Secondly, methods to interpolate the basis functions to new flow solutions are discussed.

Finally, a discussion on the ODE solver used to solve Eq. (3.10) is given.

4.1 Stability of the Reduced-Order Model

POD-based reduced-order models do not necessarily retain the stability of the FOM. This is

due in part to the projection of the FOM onto the POD subspace. Although the FOM may be

unconditionally stable, the POD subspace may end up seeing unstable trajectories [30]. Therefore,

the following methods are considered for obtaining a stable ROM: (1) the penalty method, (2)

artificial dissipation, and (3) a method that modifies the number of modes of the POD approximation

within the governing equations.

Before explaining the methods used to stabilize the ROM, a discussion on how to determine the

stability of an ODE system is given.

4.1.1 Lyapunov’s Method

Lyapunov’s method is a popular method to examine the stability of ODE systems [68]. For an

indepth explanation of Lyapunov’s method, see Slotine’s book [69, Ch. 3-4]. While Lyapunov’s

stability analysis is not performed within the scope of this dissertation, the information provided

here is for the reader to understand the complexity of the stability of the ODE system.

Before discussing Lyapunov’s method, several terms need to be defined first: autonomous

systems and equilibrium points. Consider Eq. (3.10). This system is an autonomous system,

because it does not depend explicitly on time. Systems that depend explicitly on time are called

non-autonomous systems. Now consider a set of points a∗. If FFF(a∗) = 0, then a∗ are called

equilibrium points. These definitions are used to define the types of systems for which Lyapunov’s

method apply to.
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For linear, autonomous systems, Lyapunov’s first or linearization method is used. This method

is a subset of Lyapunov’s direct method, which is for nonlinear systems. Consider a linear system

ẋ = Ax (4.1)

where A is an n× n matrix and x is a vector of length n. This system has an equilibrium point at

x∗ = 0. All stability analysis using Lyapunov’s method is for an equilibrium point at the origin.

If x∗ 6= 0, then the system can be shifted by substituting in x = y + x∗ where y∗ = 0 is the

new equilibrium point. By Lyapunov’s first method, if the eigenvalues of A have all negative real

parts for small perturbations around the equilibrium point, then the equilibrium point is stable.

Furthermore, if the system remains stable in a ball with radius R centered about the equilibrium

point, BR0 , then BR0 is a domain of attraction of the equilibrium point. Any initial condition that

begins within this domain will not leave it. When R goes to infinity, then the system is globally

asymptotically stable.

Lyapunov’s first method can be extended to nonlinear systems by linearizing the system about

an equilibrium point. Take the nonlinear system in Eq. (3.10). Its linearization is

FFF(a) ≈ FFF(a∗) + J(a∗)(a− a∗) (4.2)

where J(a∗) is the m×m Jacobian of the ODE system evaluated at the equilibrium point. If one

defines u = a− a∗, then the linearized ODE becomes

u̇ = J(a∗)u. (4.3)

Similar to Eq. (4.1), the stability of this system is performed by evaluating the eigenvalues of its

matrix J(a∗).

Some limitations exist when applying Lyapunov’s first method to nonlinear systems. First, the

approximation given in Eq. (4.3) may not be accurate to the actual model, in which case the stability
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analysis cannot be performed. Second, if the system is non-autonomous and has positive real parts

in its eigenvalues, then the stability of the system is inconclusive. Third, the linearization may lose

information about the nonlinear system that may be important. To counter these issues, Lyapunov’s

direct method should be used.

Lyapunov’s direct method is based on the dissipation of energy within a system. Consider a

pendulum displaced a certain height. At this state it has some stored potential energy. When the

pendulum is dropped, the potential energy converts to kinetic energy. After both the kinetic energy

and potential energy reduce to zero, the pendulum is at equilibrium. In this case the rate of decay of

the energy in the system relates to its stability. In Lyapunov’s direct method, an energy function,

V (x), is chosen such that V (x) is smooth, V (x) > 0 or positive definite, and V (0) = 0. Similar

to the pendulum, stability is determined by analyzing its time derivative at the equilibrium point

V̇ (x). If V̇ (x∗) ≤ 0, then the equilibrium point is stable (asymptotically stable if V̇ (x∗) < 0. If

V̇ (x∗) > 0, then the equilibrium point is unstable, because the energy is increasing in the system.

For non-autonomous systems, Lyapunov’s direct method may be used given some limitations.

The Lyapunov function is now given by a time-varying function V (x, t). This function is locally

positive definite if ∀ t ≥ t0, V (x, t) ≥ V0(x) where V0(x) is a time-invariant positive definite

function. Furthermore, this function is decrescent if V (0, t) = 0 and ∀ t ≥ 0, V (x, t) ≤ Vl(x) where

Vl(x) is a time-invariant positive definite function. For V̇ (x, t) to be negative semi-definite, then

−V̇ (x, t) must be positive semi-definite. If V (x, t) is positive definite and decrescent and V̇ (x, t) is

negative semi-definite in a ball BR0 around the equilibrium point x∗ = 0, then x∗ = 0 is uniformly

stable. Lyapunov’s first method can also be applied to non-autonomous systems as well [69, pp.

116-117].

For systems undergoing a disturbance,

ẋ = Ax + g(x, t) (4.4)

where g(t) is the disturbance, then the stability of the ODE system depends on the unperturbed state,
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ẋ = f(x, t) and the size of the perturbation. If x∗ = 0 is an equilibrium point of the unperturbed

state, and ‖x(t0)‖ < δ1 and ‖g(x, t)‖ < δ2 about x∗ = 0, where δ1 and δ2 are scalar numbers, then

‖x(t)‖ < ε, that is, the equilibrium point is totally stable. Conversely, if the unperturbed state

is uniformly asymptotically stable in the sense of Lyapunov, then the perturbed state for small

disturbances is totally stable.

4.1.2 Penalty Method1

The boundary conditions imposed on the FOM constrain the basis functions such that, for the

on-reference cases, the ROM will satisfy the boundary conditions. For the off-reference cases,

however, the ROM might not satisfy the boundary conditions because the basis functions might not

be able to reconstruct the off-reference boundary conditions. If the basis functions do not satisfy

the boundary conditions of the FOM, the boundary conditions may end up becoming compatibility

constraints on the ROM [30]. These constraints limit the combination of basis functions and time

coefficients that can be used for the reconstruction (2.1).

To correct the compatibility constraints, boundary conditions are implemented into the ROM

using the penalty method [42, 70]. The penalty method imposes a prescribed boundary condition

onto the ODEs of the ROM (3.10). Let NBC be the number of nodes at the selected boundary. The

difference between the ROM solution ZZk
BC ∈ RNBC , k ∈ [1, D + 2], a subset of Z that includes only

the NBC nodes of the selected boundary of the k-th state variable, and the prescribed boundary

condition, FZk(t) ∈ RNBC , k ∈ [1, D + 2], is a measure of the boundary condition error. Let

φZkBCi ∈ RNBC , i ∈ [1, nZk ], k ∈ [1, D+2] be a subset of the POD basis function φZki , i ∈ [1, nZk ], k ∈

[1, D+2], which includes only theNBC nodes of the boundary of the k-th state variable. Let KZk
i , k ∈

[1, D + 2] define the boundary error ZZk
BC − FZk projected on φZkBCi, K

Zk
i =

(
ZZk

BC − FZk , φZkBCi

)
, i ∈

[1, nZk ], k ∈ [1, D + 2]. Let K ∈ Rm be the collection of all KZk
i and let τττ ∈ Rm×m be a diagonal

matrix consisting of the penalty parameters for each ODE of (3.10). The penalty method adds to

1This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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(3.10) the projection of the boundary error K scaled by the penalty parameter τττ

ȧ = FFF(a)− τττK. (4.5)

A component of the vectorial equation (4.5) is

ȧZki = FZki (a)− τZkii

(
ZZk

BC − FZk(t), φZki (xBC)
)
, i ∈ [1, nZk ], k ∈ [1, D + 2]

where the superscript Zk indicates the kth component of the state variable and

τZkii = τKK, K =
k−1∑
j=1

nZj + i.

The prescribed boundary condition F(t) ∈ R(D+2)NBC consists of the components

F(t) =
(
Fζ ,Fu,Fv,Fw,Fp

)T
.

The value of the penalty parameter τZkii is typically set to some large number. Rather than

randomly guessing its value, two methods are explored here for the computation of τZkii : an energy-

based stabilizing method and a method that minimizes the error K to zero.

The energy-based stabilizing method [42, 43] ensures that the system energy is decreasing.

Assuming τττ = τI in (4.5) yields

ȧ = FFF(a)− τIK. (4.6)

One can then project (4.6) along a to get

(ȧ, a) = (FFF(a), a)− τ (K, a) .

Note that (ȧ, a) = 1
2
∂
∂t
‖a‖2, which represents the time rate of system energy. Bounds for the penalty
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parameter are found by ensuring that system energy is decreasing, 1
2
∂
∂t
‖a‖2 ≤ 0, such that

τ ≥ (FFF(a), a)

(K, a)
.

Alternately, one can calculate the penalty parameter such that the error at the next time step K

is reduced to zero. Let us assume τττ = τ̂̂τ̂τ, where τ̂̂τ̂τ ∈ Rm×m is a diagonal matrix with τ̂ik = τ̂k, ik ∈

[1, nZk ], k ∈ [1, D + 2], that is, the value of the penalty parameters are held constant for all modes

ik in their respective governing equation, k. The value of τ̂̂τ̂τ that sets K to zero is found by using an

iterative procedure based on Newton’s method such that τ̂̂τ̂τ is the root of K(τ̂̂τ̂τ)

τ̂n+1
Zk

= τ̂nZk −
K(τ̂nZk)

dK(τ̂nZk)/dτ̂
, k ∈ [1, D + 2]. (4.7)

If dK(τ̂nZk)/dτ̂ is approximated using a first-order difference, then (4.7) becomes

τ̂n+1
Zk

= τ̂nZk −
K(τ̂nZk)

K(τ̂nZk)−K(τ̂n−1
Zk

)

(
τ̂nZk − τ̂

n−1
)
, k ∈ [1, D + 2]. (4.8)

Numerical experiments showed thatK(τ̂nZk) varied linearly with τ̂nZk , which led to a fast convergence

of the method. While this method does not guarantee stability, it does add to the accuracy of the

solution. This method for determining the penalty parameter τττ by finding the roots of K was used

herein instead of the energy-decreasing method because it reliably generated stable results.

4.1.2.1 Note on Lifting Method

Another possible method that was considered was the “lifting” method. This method incorporates

the unsteadiness of the flow solution into a variable that is then substituted into the governing

equations. For example, consider Poisson’s equation. Let p(t) be the solution to

−∆p(t) = f ∈ Ω,

p(t) = p̄g(t) ∈ ∂Ω
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where p̄ is the solution to the steady-state problem and g(t) is the variation of the pressure at the

outlet. Let ` be the solution to

−∆` = f ∈ Ω,

` = p̄ ∈ ∂Ω

where ` is parameter independent.

Rather than calculate the POD basis functions of p(t), the POD basis functions of a new variable

w(t), denoted by w(t) = p(t)− g(t)`, is found. The governing equations are rewritten with w(t)

by substituting in p(t) = w(t) + g(t)`. For example, the conservation of x-momentum equation in

one-dimension is
∂u

∂t
+ u

∂u

∂x
+ ζ

∂p

∂x
+ ζg(t)

∂p̄

∂x
= 0

and the conservation of energy equation in one-dimension is

∂w

∂t
+ u

∂w

∂x
+ γw

∂u

∂x
+ p̄

∂g(t)

∂t
+ ug(t)

∂p̄

∂x
+ γg(t)

∂u

∂x
= 0.

The basis functions of w(t) should be zero at the boundaries for which the unsteady boundary

conditions are placed. This removes the compatibility constraint on the ROM. Results of this

approach are shown in sec. 5.1. It was found that the penalty method was better at stabilizing the

ROM than the lifting method, because the lifting method does not address the destabilizing effect

of the projection procedure. The penalty method addresses the destabilizing effect by working a

posteriori of the projection procedure.

4.1.3 Artificial Dissipation2

Artificial dissipation has been used previously to stabilize POD-based reduced-order models

by dissipating spurious modes [36, 37]. The artificial dissipation terms are projected along their

2This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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respective subspace and added to the system of ODEs of the ROM such that (3.10) becomes

ȧ = FFF(a) + ν̃ννS (4.9)

where ν̃νν ∈ Rm×m is the diagonal matrix of the artificial dissipation parameters, and S ∈ Rm consists

of the projection of the Laplacian of the basis functions along their respective subspace. It should be

noted that artificial dissipation is not applied to the zeroth (or mean) mode. For a three-dimensional

problem, (4.9) can be written in component form as

ȧZki = FZki + ν̃Zkii

nZk∑
j=1

(
φZkj,xx + φZkj,yy + φZkj,zz, φ

Zk
i

)
aZkj ,

1 ≤ i ≤ nZk , 1 ≤ k ≤ 5

where the artificial dissipation parameter, ν̃ii, must be greater than or equal to zero.

The value of the artificial dissipation parameter ν̃ii was found using an energy-based stability

analysis. Therefore, artificial dissipation was added to (4.5) to yield

ȧ = FFF(a) + ν̃ννS− τττK. (4.10)

Assuming ν̃νν = ν̃I and projecting along a gives

(ȧ, a) = (FFF(a), a) + ν̃ (S, a)− (τττK, a)

where (ȧ, a) = 1
2
∂
∂t
‖a‖2 is the system energy, which should be decreasing for stability, i.e.,

1
2
∂
∂t
‖a‖2 ≤ 0. Consequently, the dissipation must satisfy the inequalities

0 ≤ ν̃ ≤ (τττK−FFF(a), a)

(S, a)
. (4.11)
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4.1.4 Modified Number of Modes3

The size of the system of ODEs (3.10) is m =
∑D+2

k=1 n
Zk . Consequently, the value of m

depends on the number of modes nζ used to approximate the ζ variable in the mass balance

equation, the number of modes nu used to approximate velocity u in the x-component of the

momentum conservation equation, and so on for the v, w and p variables. If the number of modes

used to approximate variable u in the mass balance equation is less than nu, the size of the system of

ODEs is not changed. The Jacobian of the reduced-order model, however, is changed. Consequently,

the eigenvalues of the Jacobian are changed, and this change affects the stability of the reduced-order

model.

For example, consider the projection of the conservation of mass equation for one-dimensional

flow

ȧζk +
nζ∑
i=0

nu∑
j=0

(
φζi,xφ

u
j − φ

ζ
iφ

u
j,x, φ

ζ
k

)
aζi a

u
j = 0, k ∈ [1, nζ ] (4.12)

Assuming nζ = 1 and nu = 2 in (4.12) yields

ȧζk +
(
φζ0,xφ

u
0 − φ

ζ
0φ

u
0,x, φ

ζ
k

)
+
(
φζ0,xφ

u
1 − φ

ζ
0φ

u
1,x, φ

ζ
k

)
au1+

+
(
φζ0,xφ

u
2 − φ

ζ
0φ

u
2,x, φ

ζ
k

)
au2 +

(
φζ1,xφ

u
0 − φ

ζ
1φ

u
0,x, φ

ζ
k

)
aζ1+

+
(
φζ1,xφ

u
1 − φ

ζ
1φ

u
1,x, φ

ζ
k

)
aζ1a

u
1 +

(
φζ1,xφ

u
2 − φ

ζ
1φ

u
2,x, φ

ζ
k

)
aζ1a

u
2 = 0.

(4.13)

If nu is set equal to one within this equation only, then (4.13) reduces to

ȧζk +
(
φζ0,xφ

u
0 − φ

ζ
0φ

u
0,x, φ

ζ
k

)
+
(
φζ0,xφ

u
1 − φ

ζ
0φ

u
1,x, φ

ζ
k

)
au1+

+
(
φζ1,xφ

u
0 − φ

ζ
1φ

u
0,x, φ

ζ
k

)
aζ1 +

(
φζ1,xφ

u
1 − φ

ζ
1φ

u
1,x, φ

ζ
k

)
aζ1a

u
1 = 0.

Note that nu cannot be changed within the conservation of x-momentum equation, and nu can only

be reduced within the other equations.

3This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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The effect of modifying the number of modes is apparent when analyzing the Jacobian of the

reduced-order model

JZkij =
∂FZki (a)

∂aj
, i, j ∈ [1, nZk ], k ∈ [1, D + 2].

The part of the Jacobian that accounts for the effect of x-velocity u on the mass balance equation is

∂FFF ζ

∂au
=



∂Fζ1
∂au1

∂Fζ1
∂au2

...
∂Fζ1
∂aunu

∂Fζ2
∂au1

∂Fζ2
∂au2

...
∂Fζ2
∂aunu

...
... . . . ...

∂Fζ
nζ

∂au1

∂Fζ
nζ

∂au2
...

∂Fζ
nζ

∂aunu


(4.14)

If the velocity u in the mass balance equation is approximated by nu − 1 terms instead of nu, then

all the terms of the last column of (4.14) are zero. Consequently, the eigenvalues of the Jacobian

are modified. The number of modes is modified in order to remove the spurious modes that have a

destabilizing effect on the solution of the system of ODEs.

The decision to modify the number of modes within the governing equations comes by obser-

vation only. It can be speculated that doing acts as a filter to remove spurious modes from within

the governing equations themselves. These spurious modes only have a destabilizing effect rather

than a stabilizing one. It may also help with errors that, although may be small in the FOM, are

magnified in the ROM through the projection procedure.

4.2 Basis Function Interpolation

The main benefit of a ROM consists in its ability to efficiently predict flow conditions beyond

what is predicted by the FOM, that is, at off-reference conditions. To predict off-reference conditions,

the basis functions, which are functions of space, need to be interpolated to the new flow conditions.

This can be done in two ways: by enriching the snapshot database with solutions of different flow

conditions, referred to as global POD, or by interpolating using the tangent space to a Grassmann

manifold [45]. Both methods are used in this dissertation.
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4.2.1 Enriching the Snapshot Database

To enrich the snapshot database, FOM solutions are generated that bound the parameter(s)

that need to be explored. For example, say the parameter of interest is the angular velocity ω̃

of some oscillating boundary condition, and a solution is sought for ω̃t. Two FOM solutions are

generated with angular velocities ω̃1 and ω̃2, where ω̃1 < ω̃t < ω̃2. An interpolated basis is found

by combining the FOM snapshots of the solutions of ω̃1 and ω̃2, and finding the POD basis of

the combined solutions that minimizes (2.3). This interpolated basis can be used by the ROM to

solve for any solution with an angular velocity that lies between ω̃1 and ω̃2. Solutions for angular

velocities outside of the interval can also be generated, but the approximation errors typically

increase [11].

Ideally, the accuracy of the interpolated basis will increase when increasing the number of

snapshots appended to the snapshot database. One can also append snapshots with multiple sets

of parameters. In this sense, a large enriched snapshot database has the capability of providing a

plethora of solutions without having to rerun the FOM.

4.2.2 Grassmann Interpolation

Basis interpolation using the tangent space to a Grassmann manifold was developed by Am-

sallem [45] for POD-based reduced-order models. A further example of its use for off-reference

conditions is given in [46].

For a set of flow variables q ∈ RD+2, one can obtain a set of POD basis modes φφφ ∈ R(D+2)×N .

The POD basis φφφ lies on a subspace SSS ∈ RD+2 with dimension N . These subspaces belong to, or

are points of, a Grassmann manifold GGG(D + 2, N). To interpolate to a separate subspace, one can

use the tangent space to SSS with points ΓΓΓ ∈ R(D+2)×N . The subspaces themselves form a subset of

orthonormal matrices belonging to a compact Stiefel manifold, which is a unit sphere manifold.

Therefore, to interpolate to a new subspace, one can use the geodesic path on the manifold, which

requires only a reference point and an initial derivative, i.e., an initial direction. Because the

interpolation is done in the manifold, the constraints on the original space are preserved, i.e, the
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orthogonality of the bases.

Given NR sets of reference subspaces with respective operating points or flow parameters

{λ̃i}NR−1
i=0 associated with them, where λ̃NR is the desired operating point of the new subspace, one

can find the interpolated set of basis functions φφφNR . A thin Singular Value Decomposition (SVD) is

taken of a product of the bases

(
I− φφφi0φφφTi0

)
φφφi
(
φφφTi0φφφi

)−1
= UiΣΣΣiVT

i , i = 0, NR − 1, i 6= i0

where φφφi0 is a reference basis, which is the basis with operating point closest to the desired operating

point λ̃NR . The tangent subspaces of the known sets of bases are found by using the results of the

thin SVD.

ΓΓΓi = Ui tan−1 (ΣΣΣi) VT
i , i = 0, NR − 1, i 6= i0

A Lagrangian interpolation with coefficients r̃i given by

r̃i =
∏
j 6=i

λ̃0 − λ̃j
λ̃i − λ̃j

, i = 1, NR − 1, i 6= i0 (4.15)

is used to interpolate along the tangent subspace ΓΓΓ to find the tangent subspace at the desired

operating point

ΓΓΓ(λ̃NR) =

NR−1∑
i=0

r̃iΓΓΓi(λ̃i), i = 0, NR − 1, i 6= i0.

To obtain the interpolated basis, a thin SVD of the tangent subspace at the desired operating point is

performed ΓΓΓ(λ̃NR) = UNRΣΣΣNRVT
NR

where the interpolated basis is

φφφNR = φφφi0VNR cos (ΣΣΣNR) + UNR sin (ΣΣΣNR) . (4.16)

Note that the basis corresponding to the zeroth mode or mean φφφ0
NR
∈ R(D+2) is found using a

Lagrangian interpolation φφφ0
NR

=
∑NR

i=0 riφφφ
0
i , i 6= i0.

If there are multiple variables to consider when interpolating, one can instead replace the
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Lagrangian interpolation with any multivariate interpolation method. For example, one can use

bivariate interpolation [71]. The author notes that using a multivariate interpolation scheme will

increase the offline costs, because it requires more FOM snapshots to interpolate off of.

4.3 ODEPACK4

The governing system of ODEs of the ROM (3.10) was solved using ODEPACK [72]. The

relative and absolute tolerance parameters in ODEPACK were set to 0.1 and 0.001, respectively.

The DLSODE solver was selected. This solver has both nonstiff and stiff solvers imbedded into

it. The nonstiff solver uses Adams’ method while the stiff solver uses backward differentiation

formulas. The Jacobian was generated internally. The initial conditions were taken from time

coefficients derived from a FOM solution (2.9). A least-squares with QR decomposition method

was used to evaluate the spatial derivatives in the ROM [73, p. 165-168].

4This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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5. VERIFICATION AND VALIDATION OF ZETA-ROM

This section presents verification and validation results of the zeta-ROM for both on- and off-

reference conditions. The cases selected were to test different aspects of the zeta-ROM throughout

its development, e.g., its stability and its ability to accurately reconstruct and predict flow solutions

of varying unsteadiness.

5.1 Quasi-One-Dimensional Nozzle

This section presents results for inviscid flow through a quasi-one-dimensional nozzle. The

quasi-one-dimensional nozzle is a diverging nozzle that has an area variation A(x) [58, p. 327]

A(x) =


1 + 2.2(x− 0.5)2 0.0 ≤ x ≤ 0.5

1 + 0.2223(x− 0.5)2 0.5 ≤ x ≤ 1.0

. (5.1)

The 1D FOM was used to generate the snapshots for the ROM. It is important to note that while the

governing equations of the FOM used characteristic variables, the ROM used the specific volume

formulation of the inviscid form of the governing equations (3.6). A grid convergence study was

performed for the steady flow through the nozzle by using 51, 101, and 201 nodes. Table 5.1 shows

the results of the study where the percentages are the percent change of the steady state Mach

number between grid refinements. The steady state Mach number approached an asymptotic value

as the grid was refined. Due to the small change between the three grids, results are shown for the

grid using 51 nodes.

To create an unsteady flow, an oscillating outlet pressure was imposed

p(t, xout) = f(t) = p̄
(

1 + Ã sin (ω̃t+ ϕ)
)

(5.2)

where the subscript “out" denotes values at the outlet boundary, p̄ is the mean pressure at the outlet,

Ã is the amplitude of the oscillation, ω̃ is the angular velocity of the oscillation, and ϕ is the phase
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Grid Steady-State Change from
Points Outlet Mach Number Previous (%)

51 0.3598 -
101 0.3603 0.16
201 0.3605 0.04

Table 5.1: Grid convergence of the quasi-one-dimensional nozzle.

shift. Five cases for the ROM were created by varying the amplitude Ã and angular velocity ω̃ of

the outlet pressure oscillation. Table 5.2 summarizes these cases. Cases 1 to 3 are on-reference

Case ω̃ [rad/sec] Ã Type

1 1.0 0.020 on-reference
2 1.0 0.030 on-reference
3 2.0 0.020 on-reference
4 1.0 0.025 off-reference
5 1.5 0.020 off-reference

Table 5.2: On- and off-reference cases for the quasi-one-dimensional nozzle with oscillating outlet
pressure.

cases and cases 4 and 5 are off-reference cases. For all cases p̄ = 0.95 and ϕ = 0.141π. The FOM

simulated the flow for 8 periods, and a total of 2000 snapshots were saved.

A penalty-enforced boundary condition was imposed onto the ROM. The prescribed boundary

condition was applied at the outlet F (t) = (0, 0, f(t))T where f(t) is the oscillating outlet pressure

boundary condition imposed on the FOM in Eq. (5.4). The penalty parameter, τττ, was calculated by

finding the roots of the error K (4.8).

For brevity, only case 1 results are shown here for the on-reference cases. Cases 2 and 3 showed

similar results. All cases used the following number of modes nζ = nu = np = 2. Figure 5.1 shows

the stabilizing effect of the penalty-enforced boundary condition on the solution of the first time

coefficient of pressure. Both ζ and u displayed similar results.
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(a) ROM without Penalty-Enforced BC (b) ROM with Penalty-Enforced BC

Figure 5.1: Effect of penalty-enforced boundary condition on ROM solution for a quasi-one-
dimensional nozzle case with outlet pressure oscillation with angular velocity ω̃ = 1 rad/sec and
amplitude Ã = 0.02. The red lines correspond to the bounds of the time coefficients derived from
the FOM solution.

The time coefficients were calculated in three ways: (1) the line corresponding to “FOM" solved

Eq. (2.9) for the “exact" time coefficients, (2) the line corresponding to “ROM with no BC" solved

Eq. (3.10) for the time coefficients, and (3) the line corresponding to “ROM with BC" solved

Eq. (4.5) for the time coefficients. Both ROM solutions were extrapolated past the sampling time

of the FOM. The ROM solution without the penalty-enforced boundary condition had an unstable

growth over time. The ROM solution with the penalty-enforced boundary condition remained

within the bounds of the time coefficients derived from the FOM solution, resulting in a stable

solution. The penalty method, therefore, worked in stabilizing the ROM by imposing the prescribed

boundary condition. In addition, there was also good agreement between the ROM solution and the

FOM solution once the penalty method was imposed.

The phase portrait in Figure 5.2 shows the effect of imposing the boundary conditions onto

the ROM for ζ. The ROM solution without the penalty-enforced boundary condition displays an

unstable outward spiral while the ROM with the penalty-enforced boundary condition displays a

stable Limit Cycle Oscillation (LCO) indicative of its oscillating outlet pressure boundary condition.
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Figure 5.2: Phase portrait of the time coefficients of specific volume for a quasi-one-dimensional
nozzle case with outlet pressure oscillation with angular velocity ω̃ = 1 rad/sec and amplitude
Ã = 0.02.

To interpolate the basis functions, the snapshots of cases 1 and 2 were combined to develop the

autocorrelation matrix (2.5) for case 4. The snapshots of cases 1 and 3 were combined to develop

the autocorrelation matrix for case 5. It is important to note that the zeta-variable ROM used the

interpolated basis functions developed by enriching the snapshot database to solve for the off-

reference solutions. An interesting note is that for case 5, which interpolated frequency, enriching

the snapshot database with an unequal number of periods between solutions led to erroneous results

from the 1D ROM.

Figures 5.3 shows a comparison of the “exact” time coefficients found by solving (2.9) and

the “approximate” time coefficients found by solving the system of ODEs (4.5). For conciseness,

only case 1 results are shown for the on-reference cases. All other on-reference cases showed

similar results. The zeta-ROM solution is extended past the runtime of the FOM to show the

continuous stabilizing effect of the penalty method on the zeta-ROM. Here, the zeta-ROM was able

to accurately reconstruct the FOM solution.

The penalty method for the off-reference cases was used in a manner similar to that for the

on-reference cases. Consequently, the penalty method was used to constrain the solution of the
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(a) Specific Volume (b) x-Velocity

(c) Pressure

Figure 5.3: Comparison of the approximate time coefficients of the zeta-ROM versus the exact
time coefficients for a quasi-one-dimensional nozzle with an outlet pressure oscillation with angular
velocity ω̃ = 1 rad/sec and amplitude Ã = 0.02.

zeta-variable ROM such that it matched the desired flow conditions, i.e., the angular velocity and

amplitude of the outlet pressure oscillation. Like in case 1, the penalty parameter τττ was determined

by finding the roots of the error K (4.7).

Figures 5.4 and 5.5 show a comparison between the reconstructed zeta-variable ROM solution

and the FOM solution for cases 4 and 5, respectively, at three different times corresponding to the

minimum, mean, and maximum of the outlet pressure oscillation. It is important to note that the

respective FOM solutions were only developed for comparison, and the snapshots of the respective
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FOM solutions were not used to develop the autocorrelation matrix. The ROM solution shows good

agreement with the respective FOM solution for all three times for both cases 4 and 5.

(a) Specific Volume (b) x-Velocity

(c) Pressure

Figure 5.4: Off-reference ROM solution vs. FOM solution for a quasi-one-dimensional nozzle with
an outlet pressure oscillation with angular velocity ω̃ = 1 rad/sec and amplitude Ã = 0.025. The
dashed lines are the ROM solution and the solid lines are the FOM solution.

5.1.1 Effect of Lifting Method

The lifting method was also applied to case 1. The zeta-ROM solved the ODE system with

w(t) substituted in. The ROM used the same number of modes as the previous cases. The penalty
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(a) Specific Volume (b) x-Velocity

(c) Pressure

Figure 5.5: Off-reference ROM solution vs. FOM solution for a quasi-one-dimensional nozzle with
an outlet pressure oscillation with angular velocity ω̃ = 1.5 rad/sec and amplitude Ã = 0.02. The
dashed lines are the ROM solution and the solid lines are the FOM solution.

method was not enforced.

Figure 5.6 shows the results of solving the ODE solution using the lifting approach with the

same number of modes as before. The lifting approach enforces the boundary conditions onto

the POD-based ROM a priori of the projection procedure. Unfortunately, the instabilities of the

projection procedure weaken this constraint. This leads to an explosion of the ODE solution when

solving. The penalty method was preferred because it enforced the boundary conditions a posteriori

the projection process. In this way, the instabilities of the projection procedure were addressed, and
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a stable solution that adequately satisfied the boundary conditions was generated.

Figure 5.6: Results using the lifting approach on a quasi-one-dimensional nozzle with ω̃ = 1 rad/sec
and Ã = 0.02.

5.2 Channel Flow1

This sections presents results of inviscid flow through a two-dimensional channel. The area

variation for the channel is given by [58, p.327]

A(x) =


1 + 2.2(x− 0.5)2 0.0 ≤ x ≤ 0.5

1 + 0.2223(x− 0.5)2 0.5 ≤ x ≤ 1.0

(5.3)

1This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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where the channel has a unit span. The inlet stagnation pressure and temperature are 101,325 Pa and

288.15 K, respectively. The flow enters the inlet along the x-axis. The mean pressure at the outlet is

98,538 Pa. The inlet was extended by a quarter of the length of the domain such that the flow enters

the nozzle at a zero degree angle. The total length of the channel was 4 m. A cubic spline was used

to smooth out the top boundary. Figure 5.7 shows the computational mesh of the channel.

Figure 5.7: Computational mesh of the two-dimensional channel with 4257 nodes.

A grid convergence study was done assuming steady flow. Table 5.3 shows the variation of the

average Mach number at the outlet for three grids: coarse, medium and fine with 4257, 16,705, and

66,177 grid nodes, respectively. Table 5.3 also shows the percent change between grid refinements.

Grid
Steady-State Change from

Outlet Mach Number Previous (%)

Coarse 0.1993 -
Medium 0.1996 0.14

Fine 0.1998 0.07

Table 5.3: Grid convergence of the two-dimensional channel.

As the grid was refined, the variation of the average Mach number decreased. Since the solution

variation with grid size was small, the coarse grid results are discussed in the following paragraphs.
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To create an unsteady flow, an oscillating outlet pressure was imposed

p(t, xout) = f(t) = p̄
(

1 + Ã sin (ω̃t)
)

(5.4)

where the subscript “out" denotes values at the outlet boundary, p̄ is the mean pressure at the

outlet, Ã is the amplitude of the oscillation, and ω̃ is the angular velocity of the oscillation. Three

cases were created by varying the amplitude and angular velocity of the outlet pressure oscillation.

Table 5.4 summarizes these cases.

Case ω̃ [rad/sec] Ã

1 10 0.01
2 10 0.02
3 20 0.01

Table 5.4: On-reference cases for the two-dimensional channel.

For all cases, the pressure was p̄ = 98,538 Pa. The full-order model generated snapshots for

approximately 3 periods, each period consisting of 300 time steps. A total of 900 snapshots were

used to generate the autocorrelation matrix R.

The penalty method was imposed onto the ROM with a prescribed boundary condition applied

at the outlet

F(t) =
(

(γf(t))
1
γ , 0, 0, f(t)

)T
where f(t) ∈ RNout and Nout is the number of nodes at the outlet boundary. In addition, fi(t) = f(t)

of (5.4), 1 ≤ i ≤ Nout. The prescribed boundary condition for ζ was found through an isentropic

relationship [39]. Its derivation is shown in Appendix A. The penalty parameter τττ was solved for

using (4.8).

The ROM solution used the following number of modes, nζ = 1,

nu = nv = np = 2, with a modified number of modes of nv = 1 in the energy conservation
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equation. Modifying nv in the energy conservation equation altered the eigenvalues of the Jacobian

of the ROM system such that the ROM was stabilized. Figure 5.8 shows the effect of the modified

number of modes on the ROM solution for case 1.

Figure 5.8: Stabilizing effect of the penalty-enforced boundary conditions and modified number of
modes on the ROM solution for a two-dimensional channel case with oscillating outlet pressure of
angular velocity ω̃ = 10 rad/sec and amplitude Ã = 0.01: (1) time coefficients derived from the
FOM solution, (2) ROM solution, (3) ROM solution with penalty-enforced boundary conditions, (4)
ROM solution with penalty-enforced boundary conditions and a modified number of modes.

Once both the penalty method was imposed and the number of modes was modified, the ROM

solution agreed well with the “exact” time coefficients (2.9) derived from the FOM without solving

the system of ODEs.

For brevity, results are only shown for case 1. The other cases had similar results. The relative

error of the ROM solution to the FOM solution

εi =
|Zi,FOM − Zi,ROM|
|Zi,FOM|

(5.5)

was calculated at each node point to assess the accuracy of the ROM. Zi is either the first or the
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D+2 component of the state vector. To avoid division by zero when the velocity components vanish,

the relative error for all velocity components was calculated as

εj,v =
|Zj,FOM − Zj,ROM|
|Zj,FOM|+ 1

(5.6)

The j index has values between 2 and D+1.

Figure 5.9 shows the time-averaged relative error of the ROM solution with respect to the FOM

solution for case 1. The ROM solution agreed well with the FOM solution as the error was less than

(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.9: Time-averaged relative error between the ROM solution and the FOM solution for a
two-dimensional channel flow with outlet pressure oscillation of angular velocity ω̃ = 10 rad/sec
and amplitude Ã = 0.01.

0.11% for all variables. To assess the variation of the error in time, Fig. 5.10 shows the maximum

relative error across all nodes versus time for case 1. The maximum relative error across all nodes

shows an oscillatory motion, but remains small for all state variables. To summarize the results of
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(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.10: Two-dimensional channel flow with an outlet pressure oscillation with angular velocity
ω̃ = 10 rad/sec and amplitude Ã = 0.01: time variation of maximum relative error between the
ROM and FOM solutions across all nodes.

all cases, Table 5.5 shows the maximum spatial and temporal relative error for all three validation

cases. All cases match well with the FOM solution, the maximum relative error being less than

0.5%.
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maxx,t(ε) (%)
Case ζ u v p

1 0.20 0.19 0.19 0.04
2 0.40 0.29 0.27 0.09
3 0.23 0.21 0.13 0.07

Table 5.5: Two-dimensional channel flow: maximum spatial and temporal relative error between
the ROM and FOM, for all on-reference cases.

5.3 Axisymmetric Nozzle2

This section presents results for inviscid flow through an axisymmetric nozzle. The nozzle is a

converging-diverging nozzle with area variation given by [74].

A(x) =


1.75− 0.75 cos (π (2x/`− 1)) 0 ≤ x ≤ `/2

1.25− 0.25 cos (π (2x/`− 1)) `/2 ≤ x ≤ `

The length of the nozzle ` was 254 mm (10 inches) while the throat was located at 127 mm (5 inches)

downstream from the inlet. The inlet stagnation pressure and temperature were 104,191 Pa and

290.435 K, respectively. The flow entered the inlet along the x-axis. The mean outlet pressure was

102,107 Pa.

The FOM was used to simulate the steady flow in the axisymmetric nozzle for three grids: coarse,

medium and fine with 3045, 22,673, and 175,041 grid points, respectively. Table 5.6 summarizes

the information on the three grids. Figure 5.11 shows the medium grid for the axisymmetric nozzle.

Table 5.7 shows the grid convergence of the steady-state Mach number at the outlet. As the grid

was refined, the variation of Mach number decreased. The percent change between grid refinements

is also shown in Table 5.7. Since the variation between the medium and fine grid was small, results

for the medium grid are shown herein.

2This section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order Model for
Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of Computational
Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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Figure 5.11: Computational mesh of the axisymmetric nozzle with 22,673 nodes.

Type
Nodes in Nodes in circum- Nodes in Total number

x-direction ferential direction yz-plane of nodes, N

Coarse 21 24 145 3045
Medium 41 48 553 22,673
Fine 81 96 2161 175,041

Table 5.6: Grids refinement of the axisymmetric nozzle.

Grid
Steady-State Change from

Outlet Mach Number Previous (%)

Coarse 0.1552 -
Medium 0.1600 3.12
Fine 0.1644 2.74

Table 5.7: Grid convergence of the axisymmetric nozzle.

The nozzle flow was made unsteady in two ways: (i) through an oscillating outlet pressure

boundary condition (5.4), and (ii) through an oscillating wall deformation. The results of both cases

are given for both on- and off-reference conditions in the following sections.
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5.3.1 Oscillating Outlet Pressure

An outlet pressure oscillation boundary condition (5.4) was imposed onto the axisymmetric

nozzle. Table 5.8 shows the five cases created for validating the ROM by varying the angular velocity

and amplitude of the outlet pressure oscillation. Cases one to three are listed as on-reference cases,

Case ω̃ [rad/sec] Ã Type

1 10 0.010 on-reference
2 10 0.020 on-reference
3 20 0.010 on-reference
4 10 0.015 off-reference
5 15 0.010 off-reference

Table 5.8: On- and off-reference cases for the axisymmetric nozzle with an oscillating outlet
pressure.

that is, cases for which the zeta-variable ROM reproduces a FOM solution. Cases four and five are

listed as off-reference cases, that is, cases for which the zeta-variable ROM will predict a FOM

solution. The FOM generated snapshots for 3 periods, each period consisting of approximately 666

time steps. A total of 2000 snapshots were used to generate the autocorrelation matrix R.

For all cases, three procedures were used to stabilize the ROM solution. The penalty method

was imposed onto the ROM by enforcing a prescribed boundary condition at the outlet

F(t) =
(

(γf(t))
1
γ , 0, 0, 0, f(t)

)T
where f(t) ∈ RNout and fi(t) = f(t) of (5.4), 1 ≤ i ≤ Nout. The penalty parameter τττ was solved for

using (4.8). Artificial dissipation was used to obtain a stable solution (4.10).

On-reference results are shown only for case 1 since all cases 2 and 3 showed similar results.

Cases 1 to 3 used nζ = np = 1, nu = 3, and nv = nw = 2 modes with a modified number of modes

of nu = 2 in the y- and z-momentum equations and in the conservation of energy equation. Case
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1 had values for the artificial dissipation parameter of ν̃ = (2, 0.45, 4, 4, 2)T ×10−4. These values

were found empirically, by increasing the amount of dissipation until the ODEs became stable.

Equations (5.5) and (5.6) were used to find the relative error between the ROM and the FOM.

Figure 5.12 shows the time-averaged relative error between the ROM and the FOM solutions. The

comparison for z-velocity is not shown since it is identical to y-velocity for an axisymmetric nozzle.

The ROM solution for x-velocity used only one mode for its reconstruction (2.1), while three modes

were needed while solving for stability. The ROM and FOM solutions were in good agreement,

(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.12: Time-averaged relative error between the ROM and FOM solutions for an axisymmetric
nozzle with outlet pressure oscillation of angular velocity ω̃ = 10 rad/sec and amplitude Ã = 0.01.

with a time-averaged relative error below 1% for all state variables. All three stabilizing methods

were necessary to obtain a converged solution.

Off-reference results are shown for both cases 4 and 5. To develop the basis functions for case

4, the snapshots of cases 1 and 2 were combined to produce the autocorrelation matrix. The basis

functions for case 5 were generated using the snapshots of cases 1 and 3. Artificial dissipation was

applied to both cases to limit the growth of spurious modes. The artificial dissipation parameters

were given the upper bound value of (4.11).
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Figure 5.13 shows the time-averaged relative error of the ROM solution with respect to the

FOM solution for case 4. The FOM solution was only generated for the purpose of comparison,

(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.13: Time-averaged relative error between the ROM off-reference solution and the FOM
solution for an axisymmetric nozzle with outlet pressure oscillation with angular velocity ω̃ = 10
rad/sec and amplitude Ã = 0.015.

and its snapshots were not used in the development of the autocorrelation matrix. For this case,

artificial dissipation was only applied to the velocity components. The ROM used the following

number of modes: nζ = np = 1 and nu = nv = nw = 3. There was good agreement between the

time-averaged ROM and FOM solutions. The largest error occurred in the x-velocity and was less

than 1.6%.

Figure 5.14 shows the time-averaged relative error of the ROM solution with respect to the

FOM solution for case 5. The ROM used the following number of modes: nζ = np = 1 and

nu = nv = nw = 2. Similarly to case 4, artificial dissipation was only applied to the velocity

components. The ROM solution agreed well with the FOM solution, the largest error being in

x-velocity.
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(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.14: Time-averaged relative error between the ROM off-reference solution and the FOM
solution for an axisymmetric nozzle with outlet pressure oscillation with angular velocity ω̃ =
15 rad/sec and amplitude Ã = 0.01.

Table 5.9 summarizes the maximum spatial and temporal relative error for both the on- and

off-reference cases. The off-reference results have a larger error than the on-reference results with

maxx,t(ε) (%)
Case ζ u v w p

1 0.29 0.70 0.48 0.48 0.13
2 0.49 0.56 0.64 0.25 0.62
3 0.34 0.69 0.68 0.29 0.38
4 0.92 4.32 1.49 1.44 1.24
5 0.64 4.96 1.00 0.62 0.91

Table 5.9: Axisymmetric nozzle with outlet pressure oscillation: maximum spatial and temporal
relative error between the ROM and FOM solutions, for all cases.

the largest error occurring in x-velocity, which was less than 5% for both off-reference cases. All

other variables had errors less than 2% for both on- and off-reference results.

49



5.3.2 Deforming Boundary

An oscillating wall boundary deformation was imposed on the axisymmetric nozzle by varying

in time the radius of the nozzle at every x location according to

rforced(t) = r̄
(

1 + Ã sin (2πω̃t)
)

(5.7)

where rforced is the radius of the nozzle that is deformed, r̄ is the nozzle undeformed radius, Ã is the

amplitude of the deformation, and ω̃ is the angular velocity of the deformation. An example of the

deformation for an amplitude Ã = 0.2 is shown in Figure 5.15.

(a) Minimum, t = − 1
4ω̃ (b) Undeformed, t = 0 (c) Maximum, t = 1

4ω̃

Figure 5.15: Nozzle inlet deformation for amplitude Ã = 0.2.

To validate the zeta-variable POD-based ROM, five cases were investigated by varying the

amplitude and angular velocity of the nozzle deformation. Table 5.10 summarizes these cases. A

back pressure of 102,100 Pa was held constant at downstream infinity during the deformation. The

FOM solutions were generated for three periods, each period consisting of 100 snapshots for a

total of 300 snapshots to generate the autocorrelation matrix R. The zeta-variable ROM used the

following number of nodes for all cases: nζ = nu = nv = nw = np = 1.

To stabilize the zeta-variable ROM and preserve accuracy, the penalty method was applied to

each state variable. To apply it to each state variable, a prescribed boundary condition needed to be
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Case ω̃ [rad/sec] Ã Type

1 10 0.2 on-reference
2 10 0.4 on-reference
3 20 0.2 on-reference
4 10 0.3 off-reference
5 15 0.2 off-reference

Table 5.10: On- and off-reference cases for the axisymmetric nozzle with an oscillating boundary
deformation.

defined for each state variable. To define the prescribed boundary condition, several approximate

parameters were defined. The spatial and temporal average of the state vector across a prescribed

boundary of the FOM is

Ẑk =
〈
Z̄k(xBC)

〉
(5.8)

where ·̄ denotes a spatial average, 〈·〉 denotes a time average, and xBC are the nodes along the

prescribed boundary. Recall that the zeta-variable state vector is Z = (ζ, u, v, w, p)T , such that

Z1 = ζ , Z2 = u, etc. The amplitude is defined using the maximum and minimum values over time

across a prescribed boundary

Âk =
max

(
Z̄k(xBC)

)
−min

(
Z̄k(xBC)

)
2Ẑk

. (5.9)

Using definitions (5.14) and (5.9), an approximation of the solution at the prescribed boundary is

defined

Zkapprox = Ẑk

(
1 + Âk sin (ω̃t− ϕ̂k)

)
, k ∈ [1, D + 2] (5.10)

where the value of the phase ϕ̂k is determined such that the peak values of the FOM solution and its

approximation are in phase, that is, ω̃tpeak − ϕ̂k = ω̃tpeak
FOM. Consequently,

ϕ̂k = ω̃
(
tpeak − tpeak

FOM

)
. (5.11)
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The penalty method was imposed onto the ROM using these approximate equations, where the

prescribed boundary condition was applied at the outlet

F(t) =
(
Zζapprox ,Zuapprox ,Zvapprox ,Zwapprox ,Zpapprox

)T
each component being a vector of size Nout. The penalty parameter τττ was calculated for each

variable by solving (4.8).

The spatial and temporal averages Ẑk, Âk and ϕ̂k were calculated based on the FOM solutions

for the on-reference cases and are shown in Table 5.11. One can note that Ẑk remains approximately

Case
1 2 3

ζ̂ 1.00 1.00 1.00
Âζ × 10−5 1.52 2.93 1.73
ϕ̂ζ -0.82 -0.69 -0.75

û 0.16 0.16 0.16
Âu × 10−3 0.81 1.68 0.89
ϕ̂u 3.64 3.77 -1.26

v̂ ×10−6 -5.11 -5.39 -5.16
Âv -0.34 -0.65 -0.40
ϕ̂v 9.36 28.27 -28.27

ŵ ×10−6 -5.94 -6.06 -5.95
Âw -0.27 -0.54 -0.30
ϕ̂w 15.77 15.77 -9.42

p̂ 0.72 0.72 0.72
Âp × 10−5 0.97 1.74 0.72
ϕ̂p 9.36 9.42 28.40

Table 5.11: Mean values of state variables, amplitudes and phase angles for a nozzle deformation of
the axisymmetric nozzle for all on-reference cases.

constant for all cases while the amplitude Âk scales approximately with the actual amplitudes Ã.

For example, case 2 has an amplitude, Ã = 0.4, that is twice as large as the amplitude for case
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1, Ã = 0.2. Similarly, using conservation of mass as an example, the approximate amplitude of

case 2, Âζ = 2.93× 10−5, is approximately twice as large as the approximate amplitude for case 1,

Âζ = 1.52× 10−5.

It is important to note that with the nozzle deformation imposed, the coefficients of the ODEs

of the ROM that contain derivative terms will become time-dependent in the spatial term. If the

deformation is small, one can assume the coefficients remain approximately constant in time, using

the coefficients calculated at the mean deformation. In this way, the coefficients of the ODEs remain

time-independent. This assumption was applied to this case.

Only case 1 results are shown here since cases 2 and 3 showed similar results. As before, the

errors were found using (5.5) and (5.6). Figure 5.16 shows the time-averaged relative error between

the ROM and FOM solutions. The z-velocity results are not shown since they were identical to

(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.16: Time-averaged relative error between the ROM and FOM solutions for an axisymmetric
nozzle deforming with angular velocity ω̃ = 10 rad/sec and amplitude Ã = 0.2.

those of the y-velocity. The time-averaged relative errors showed a good agreement between the
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ROM and the FOM solutions.

Off-reference results for cases 4 and 5 are shown here. Grassmann interpolation was used to find

the interpolated basis for cases 4 and 5. Cases 1 and 2 were used to develop the interpolated basis

functions for case 4. Cases 1 and 3 were used to find the interpolated basis functions for case 5.

The penalty method was applied at the outlet using an outlet approximation (5.13) for each

variable as the prescribed boundary condition, similarly to what was done for the on-reference cases.

Unlike the on-reference cases, the approximate values, which were found from the FOM solution,

cannot be directly computed using (5.14), (5.9), and (5.16). Therefore, the approximate values, q̂k,

Âk, and ϕ̂k, are found by interpolating from the on-reference solutions.

As noted, Ẑk are almost independent of the case number, while the amplitudes Âk scale with

the actual amplitudes Ãk. Table 5.12 shows the mean values Ẑk, Âk, and ϕ̂k for cases 4 and 5. The

table includes “exact” values, that is, derived directly from respective FOM solutions evaluated at

the amplitudes and angular velocities of cases 4 and 5, and values scaled from case 1. The values

scaled from case 1 matched well the “exact” values. The phase angle for case 4 was determined by

linear interpolation between cases 1 and 2. Similarly, the phase angle for case 5 was determined by

linear interpolation between cases 1 and 3.

Figures 5.17 and 5.18 show the time-averaged relative errors of the ROM solution with respect

to the FOM solution for cases 4 and 5, respectively. In both cases, the off-reference ROM solution

matched well the FOM solution, the time-averaged relative error being less than 0.1%.

Table 5.13 shows the maximum spatial and temporal relative error for all cases. The maximum

relative error between the off-reference ROM and the FOM solutions was less than 1% while the

maximum relative error was less than 0.5% for the on-reference cases.
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Case
Exact (FOM) Scaled

4 5 4 5

ζ̂ 1.00 1.00 1.00 1.00
Âζ × 10−5 2.26 1.70 2.28 1.52
ϕ̂ζ 11.81 17.63 -0.75 -0.90

û 0.16 0.16 0.16 0.16
Âu × 10−3 1.23 0.66 1.21 0.81
ϕ̂u -2.58 41.54 3.71 2.26

v̂ ×10−6 -5.05 -5.05 -5.11 -5.11
Âv -0.52 -0.38 -0.51 -0.34
ϕ̂v 3.08 40.42 18.82 -3.58

ŵ ×10−6 -5.82 -5.87 -5.94 -5.94
Âw -0.42 -0.30 -0.41 -0.27
ϕ̂w 22.05 27.95 15.77 8.29

p̂ 0.72 0.72 0.72 0.72
Âp × 10−5 1.41 0.96 1.46 0.97
ϕ̂p 21.99 9.10 9.39 17.67

Table 5.12: Axisymmetric nozzle with oscillating boundary deformation: exact and scaled mean
values of state variables, amplitudes and phase angles for all off-reference cases.

maxx,t(ε) (%)
Case ζ u v w p

1 0.04 0.08 0.01 0.04 0.02
2 0.06 0.17 0.05 0.09 0.03
3 0.06 0.42 0.06 0.36 0.15
4 0.05 0.12 0.96 0.48 0.06
5 0.04 0.24 0.48 0.31 0.11

Table 5.13: Axisymmetric nozzle with oscillating walls: maximum spatial and temporal relative
error between the ROM and FOM solutions.
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(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.17: Time-averaged relative error between the ROM off-reference and FOM solutions for
an axisymmetric nozzle with walls oscillating with angular velocity ω̃ = 10 rad/sec and amplitude
Ã = 0.3.

(a) Specific Volume (b) u-Velocity

(c) v-Velocity (d) Pressure

Figure 5.18: Time-averaged relative error between the ROM off-reference and FOM solutions for
an axisymmetric nozzle with walls oscillating with angular velocity ω̃ = 15 rad/sec and amplitude
Ã = 0.2.
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5.4 Rotor 67

This section presents results of inviscid flow through a twenty-two-blade first-stage rotor of a

two-stage fan, referred to as Rotor 67. Rotor 67 was developed and tested at NASA Lewis [75].

The inlet stagnation pressure and temperature are 124,453 Pa and 305.74 K, respectively. The flow

enters the inlet along the x-axis. The mean outlet pressure at the hub is 136,898 Pa. A FOM solution

for this case was generated and validated against the experimental data [76]. This FOM solved the

Euler equations written in a rotating reference frame about the x-axis (3.7). Figure 5.19 shows the

computational mesh of Rotor 67 that used 299, 844 grid nodes.

(a) Computational domain

(b) Detail of hub-to-tip mesh (c) Detail of mesh near airfoil

Figure 5.19: NASA Rotor 67: computational mesh with N = 299, 844 grid nodes.

The inlet and outlet boundaries were located approximately 5 chords away from the airfoil

to reduce spurious boundary reflections. Periodic boundary conditions were used to reduce the
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computational domain to one blade passage. The pressure variation from hub to tip across the outlet

was solved using the axisymmetric radial momentum equation

∂p

∂r
=
ρv2

θ

r
(5.12)

where vθ = (vz − wy)/r. The angular velocity about the x-axis was ωx=16,520 RPM. Integrat-

ing (5.12) from the hub to a radial location r, r ≤ rtip, yields

p(r)− p(rhub) =

∫ r

rhub

ρv2
θ

r
dr.

The unsteadiness was introduced in the FOM through an oscillating outlet pressure at the hub

p(rhub) that followed the form of Eq. (5.4). Three amplitudes Ã and three angular velocities ω̃ were

considered, as shown in Table 5.14. Similar to the previous results, three on-reference solutions

and two off-reference solutions were developed. The FOM generated snapshots for five periods.

Case ω̃ [rad/sec] Ã Type

1 38,059 0.050 on-reference
2 38,059 0.100 on-reference
3 37,582 0.050 on-reference
4 38,059 0.075 off-reference
5 37,765 0.050 off-reference

Table 5.14: NASA Rotor 67: on- and off-reference cases for oscillating outlet pressure.

Fifty snapshots were saved for each period. All cases had a pressure p̄=136,900 Pa and a phase shift

ϕ = 0.

For xBC denoting the nodes along the prescribed boundary, the penalty method was imposed

onto the ROM for each state variable using an approximation of the boundary solution

Zkapprox = Ẑk

(
1 + Âk sin (ω̃t− ϕ̂k)

)
, k ∈ [1, D + 2]. (5.13)
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Here, Ẑk is the spatial and temporal average of the state vector

Ẑk =
〈
Z̄k(xBC)

〉
(5.14)

where ·̄ denotes a spatial average. The approximate amplitude, Âk, is found by finding the average

of the maximum and minimum in time of Ẑk.

Âk =
max

(
Z̄k(xBC)

)
−min

(
Z̄k(xBC)

)
2Ẑk

(5.15)

The approximate phase, ϕ̂k, is found from the peak values of the FOM solution.

ϕ̂k = ω̃
(
tpeak − tpeak

FOM

)
(5.16)

The final prescribed boundary condition was

F(t) =
(

(γf(t))
1
γ ,Zuapprox ,Zvapprox ,Zwapprox ,Zpapprox

)T
where f(t) ∈ RNout and Zkapprox ∈ RNhub , k ∈ [2, D + 2], with Nhub being the number of nodes

along the outlet hub boundary. The penalty method was applied at the hub to avoid solving (5.12)

from hub to tip at each time step in the ROM. An isentropic relation was used for determining the

boundary condition for the specific volume [39].

The penalty parameter τττ was solved for using (4.7) for each state variable. The approximate

values of (5.13) were determined from the FOM solution for each case using (5.14) to (5.16), and

these values are shown in Table 5.15. The value for Ẑ does not change between the cases while the

value for Â scales similarly to the actual amplitude values. For example, the amplitude ratio from

case 1 to case 2 using the values in Table 5.14 is 2. The amplitude ratio from case 1 to case 2 using

the values in Table 5.15 ranges from 2 to 2.01.

For conciseness and since cases 2 and 3 showed similar results, only case 1 results are shown
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Case
1 2 3

û 0.50 0.50 0.50
Âu × 10−2 0.95 1.91 0.97

ϕ̂u -13.83 -13.83 -19.86

v̂ -0.67 -0.67 -0.67
Âv × 10−4 -2.22 -4.47 -2.27

ϕ̂v 4.53 4.65 -1.49

ŵ 0.12 0.12 0.12
Âw × 10−2 0.73 1.46 0.74

ϕ̂w -19.99 -19.99 -19.86

p̂ 1.08 1.08 1.08
Âp × 10−2 0.52 1.04 0.52

ϕ̂p -23.13 -23.13 2.23

Table 5.15: NASA Rotor 67 with outlet pressure oscillation: mean values of state variables,
amplitudes and phase angles.

here for the on-reference conditions. Cases 1 to 3 were solved using nζ = nu = nv = nw = np = 1.

An error between the ROM and the FOM was calculated using (5.5) and (5.6). Figure 5.20

shows the time-averaged relative error between the FOM and ROM solutions. The time-averaged

relative error is less than 0.5% for all state variables. The largest errors occur at the outlet, where

the penalty-imposed boundary conditions were applied. Of note in this case is that there exists

a shock wave near the leading edge of the blade. The error values are not increased at the shock

location, therefore the zeta-variable ROM solution accurately captures the flow discontinuity from

the FOM solution. Table 5.16 summarizes the results of all on-reference cases for Rotor 67. Each

case shows good agreement between the zeta-variable ROM solution to its respective FOM solution

with a maximum relative error over all time and space of less than 1%.

The Grassmann interpolation was used to interpolate the basis functions to a new flow condition

for the off-reference cases. Cases 1 and 2 were used to find the interpolated basis of case 4. Cases 1

and 3 were used to find the interpolated basis of case 5.

The penalty method was imposed similarly to the way it was applied to the on-reference cases.
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(a) Specific Volume (b) x-Velocity

(c) y-Velocity (d) z-Velocity

(e) Pressure

Figure 5.20: Time-Averaged Relative Error of the ROM to the FOM for Rotor 67 with an outlet
pressure oscillation with angular velocity ω̃ = 38, 059 rad/sec and amplitude Ã = 0.05.

maxx,t(ε) (%)
Case ζ u v w p

1 0.50 0.19 0.04 0.05 0.39
2 0.78 0.39 0.07 0.11 0.78
3 0.60 0.28 0.04 0.07 0.54

Table 5.16: NASA Rotor 67 with outlet pressure oscillation: maximum spatial and temporal relative
errors between the ROM and FOM solutions, for all on-reference cases.

The approximate values of the amplitudes were scaled based on case 1 values given in Table 5.14.

Table 5.17 shows the mean values Ẑk, Âk and ϕ̂k for cases 4 and 5. The table includes “exact”

values, that is, derived directly from respective FOM solutions evaluated at the amplitudes and

angular velocities of cases 4 and 5, and values scaled from case 1. The values scaled from case 1

matched well with the “exact” values. The phase angle was interpolated using a linear interpolation:
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the approximate values of the phase angles of case 4 were interpolated based on the phase angles of

cases 1 and 2, and the phase angles of case 5 were interpolated based on the phase angles of cases 1

and 3.

Case
Exact (FOM) Scaled

4 5 4 5

û 0.50 0.50 0.50 0.50
Âu × 10−2 1.43 0.96 1.43 0.97

ϕ̂u -13.83 5.36 -13.83 -17.48

v̂ -0.67 -0.67 -0.67 -0.67
Âv × 10−4 -3.34 -2.25 -3.33 -2.27

ϕ̂v 4.53 -13.97 4.53 0.80

ŵ ×10−6 0.12 0.12 0.12 0.12
Âw × 10−2 1.09 0.74 1.09 0.74

ϕ̂w -19.99 -0.87 -19.99 -19.82

p̂ 1.08 1.08 1.08 1.08
Âp × 10−3 7.77 5.22 7.77 5.22

ϕ̂p -23.13 -16.59 -23.13 -7.41

Table 5.17: NASA Rotor 67: exact and scaled mean values of state variables, amplitudes and phase
angles.

The same number of modes used for the on-reference cases was used for the off-reference cases

to produce a solution. A FOM solution was generated for assessing the accuracy of the ROM

solution. This FOM solution was not used to generate basis functions. Figure 5.21 shows the

time-averaged relative error between the off-reference ROM solution for pressure and the FOM

solution for pressure for case 4. Pressure had the largest error, approximately 3%, that occurred near

the tip of the airfoil where a shock developed. Figure 5.22 shows the time-averaged relative error

between the off-reference ROM and FOM state variables for case 5. The largest errors occurred at

the outlet, as opposed to the shock location, and their values were smaller than 0.5%.

Table 5.18 gives the maximum spatial and temporal relative error between the off-reference
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Figure 5.21: NASA Rotor 67: time-averaged relative error between the off-reference ROM and
FOM pressures for an outlet pressure oscillating with angular velocity ω̃ = 38, 059 rad/sec and
amplitude Ã = 0.075. A close-up of the error around the blade is shown at blade midspan while a
close-up of the error around the shock is shown at around 95% blade span location measured from
the hub. Note that the legend for the midspan contour plots is different from the other two plots.

ROM and FOM state variables for cases 4 and 5. The small error implies that the zeta-variable

ROM accurately predicted the off-reference solutions even when using the approximate boundary

conditions. The zeta-variable ROM captured well the shock wave that formed on the suction side of

the blade.

maxx,t(ε) (%)
Case ζ u v w p

4 1.85 0.97 1.26 0.82 3.46
5 0.57 0.41 0.12 0.17 0.68

Table 5.18: NASA Rotor 67: maximum spatial and temporal relative error between the off-reference
ROM and FOM state variables.
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(a) Specific Volume (b) x-Velocity

(c) y-Velocity (d) z-Velocity

(e) Pressure

Figure 5.22: NASA Rotor 67: time-averaged relative error between the off-reference ROM and
FOM state variables, for an outlet pressure oscillating with angular velocity ω̃ = 37, 765 rad/sec
and amplitude Ã = 0.05.

5.5 10th Standard Configuration

This section presents on- and off-reference results for the blade deformation of the 10th standard

configuration, which is a modified NACA 0006 airfoil at a stagger angle of 45◦ [77, 78]. The flow

enters the inlet with an angle of attack of 55◦ at Mach 0.7. The stagnation pressure is 140.55 kPa,

the stagnation temperature is 316.39 K, and the static outlet pressure is 122.05 kPa. Figure 5.23

shows its computational grid with N = 33, 068 nodes.

Flow unsteadiness is introduced by the blade plunging with an amplitude

yforced(t) = ȳ
(

1 + Ã sin(2πft)
)

(5.17)

where ȳ is the y-location of the surface of the blade at its undeformed state and f is the frequency.
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Inlet

Outlet

Periodic

Periodic

Figure 5.23: 10th standard configuration computational mesh

Radial basis functions were used to deform the mesh [79]. The amplitude was varied across three

cases as summarized in Table 5.19. Cases 1 and 2 are on-reference cases and case 3 is an off-

reference case. The FOM produced snapshots for each case for 5 periods with 100 snapshots per

period.

Case Plunge Amplitude [-] Frequency [Hz] Type

1 0.02 10 on-reference
2 0.04 10 on-reference
3 0.03 10 off-reference

Table 5.19: 10th standard configuration on- and off-reference cases

The penalty method was imposed onto the ROM to enforce the boundary deformation of

the blade. To impose the boundary deformation, a point on the blade was selected to create the

prescribed boundary condition, F(t). This point was located at x/c ≈ 0.18 on the lower side of

the blade. For this problem, the prescribed boundary condition was found by finding the Fast
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Fourier Transform (FFT) approximation of the FOM solution at the selected boundary node. For

off-reference conditions, the coefficients of the FFT approximation were linearly interpolated to the

new flow conditions.

The error between the ROM and the FOM was calculated using (5.5) and (5.6). Figure 5.24

shows the the maximum relative error of x-velocity for all time and space for case 1. The maximum

error occurs at the trailing edge of the blade. This was the same location for all on-reference cases.

Figure 5.24: 10th standard configuration: location of maximum error for x-velocity for case 1.

The maximum error occurs around the trailing edge of the blade where the grid is coarse relative to

the changes in the flow dynamics. Increasing the grid quality in that area may reduce the errors.

Table 5.20 summarizes the spatial and time-averaged relative error, the spatial-averaged maxi-

mum relative error in time, and the maximum relative error for all time and space for all variables.

The basis functions for case 3 were developed by interpolating the basis functions of cases 1 and

2 using Grassmann interpolation. It is important to note that the FOM solution for case 3 was

generated for comparison purposes only, and was not used to produce the basis functions the ROM
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used. The largest error is around 18%, which occurred near the trailing edge of the blade. Despite

this large error, the ROM was able to accurately reproduce (for cases 1 and 2) and predict (for case

3) the FOM solution at the given flow conditions with the average maximum error in the domain

being less than 1%.

Case Variable x,t-Avg Error (%) x-Avg Max Error in Time (%) Max Error (%)

1

ζ 0.15 0.32 5.99
u 0.11 0.26 7.35
v 0.20 0.42 3.40
p 0.21 0.44 2.51

2

ζ 0.31 0.68 5.46
u 0.21 0.48 9.47
v 0.38 0.79 4.56
p 0.42 0.88 4.90

3

ζ 0.23 0.49 5.00
u 0.20 0.52 17.68
v 0.31 0.75 11.67
p 0.34 0.87 8.94

Table 5.20: Relative error of the ROM to the FOM for the 10th standard configuration.

5.6 11th Standard Configuration

Results here are presented for the 11th standard configuration, which is a turbine cascade with a

180◦ inter blade phase angle [78, 80]. Figure 5.25 shows a detail of the computational grid used

with N = 78,260. UNS3D POD generated snapshots for laminar flow with an inlet flow angle of

15.2◦ and a back pressure of 78.8 kPa. The inlet stagnation pressure and temperature are 108.31 kPa

and 293.8 K, respectively. A total of five-hundred snapshots were taken with 50 points per period to

develop the auto-correlation matrix of Eq. (2.5).

To impose unsteadiness in the flow, the blades plunged normal to the chord with a deformation

given by

x(ti) = x(ti−1) + Ã cos(2πft) sin(γ̂)
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y(ti) = y(ti−1) + Ã cos(2πft) cos(γ̂)

where γ̂ = −40.85◦ is the stagger angle of the blades. Table 5.21 summarizes the cases for this

configuration. The amplitude and reduced frequency were varied between cases to change the

deformation. The reduced frequency, k, was calculated based on the semi chord and the exit velocity.

Cases 1, 2, and 4 are on-reference, that is, cases for which the basis functions are directly derived

from a FOM solution by solving Eq. (2.6). Cases 3 and 5 are off-reference, that is, cases, for which

the basis functions are not directly derived from a FOM solution. Interpolation on the tangent space

to a Grassmann manifold was used to find the basis functions for cases 3 and 5 [45]. The basis

functions of cases 1 and 2 were interpolated to find the basis functions for case 3, and the basis

functions of cases 1 and 4 were interpolated to find the basis functions for case 5.

To impose boundary conditions into the zeta-variable ROM, the penalty method was used [39,

40]. The prescribed boundary conditions F(t) = (Fζ ,Fu,Fv,Fp)T were found by fitting an eight-

X

Y

Z

Blade 1

Blade 2

Figure 5.25: 11th standard configuration computational grid.
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Case Type Amplitude×10−4 Frequency [Hz] k

1 On-reference 3.7811 209 0.45
2 On-reference 4.6213 209 0.45
3 Off-reference 4.2012 209 0.45
4 On-reference 3.7811 327 0.70
5 Off-reference 3.7811 281 0.60

Table 5.21: 11th Standard Configuration Cases

term Fourier Series model to time-series data of the FOM solution. The time-series data were

collected from a point along both blades corresponding to x/c ≈ 0.26 on the suction side of the

blade and then averaged together. This means thatNBC = 1 for this case. The penalty parameter was

solved for at each time step using Eq. (4.7). For off-reference conditions, the Fourier coefficients

were linearly interpolated based off of either the amplitude or frequency change.

The zeta-variable ROM ran for 500 iterations for each case and each case was compared to its

respective FOM solution. For cases 3 and 5, a reference FOM solution was generated for comparison

purposes. It is important to note that this reference FOM solution was not used to generate basis

functions for the ROM.

To compare the ROM solution to the FOM solution, (5.5) and (5.6) were used. Table 5.22 gives

the spatial and time-averaged relative error, the spatial-average of the maximum relative error in

time, and the maximum relative error for all time and space of the ROM to the FOM for all cases.

For cases 1, 2, and 4, which are the on-reference cases, the zeta-variable ROM does fairly well with

a maximum relative error of less than 5%. For cases 3 and 5, there are large maximum relative

errors. These errors occur near the trailing edge of the blades. It is possible that some of the error is

due to the interpolation of the Fourier series coefficients and some to the interpolation of the basis

functions. Overall, as can be seen by the averages of the relative error, the relative error remains

low throughout most of the domain.

The zeta-variable POD ROM was also compared to UNS3D POD. Figure 5.26 shows a compari-

son of the isentropic Mach number between the zeta-variable ROM and UNS3D POD as compared
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Case Variable avgx,t(ε) (%) avgx (maxt (ε)) (%) maxx,t(ε) (%)

1

ζ 0.03 0.06 1.23
u 0.04 0.10 3.41
v 0.02 0.07 1.96
p 0.03 0.06 0.76

2

ζ 0.04 0.07 1.34
u 0.06 0.12 2.95
v 0.02 0.07 2.30
p 0.03 0.06 0.76

3

ζ 0.27 0.60 12.20
u 0.02 0.07 3.57
v 0.02 0.07 2.15
p 0.03 0.06 0.64

4

ζ 0.04 0.09 1.65
u 0.06 0.14 4.47
v 0.03 0.10 3.10
p 0.03 0.08 1.29

5

ζ 0.37 0.71 10.81
u 0.43 0.85 21.72
v 0.58 1.04 24.45
p 0.27 0.65 5.85

Table 5.22: Relative error of the ROM to the FOM for the 11th standard configuration plunging
blades with 180◦ inter blade phase angle.

to the FOM for cases 3 and 5. A closeup of the trailing edge is provided in each figure. Along

the interior of the airfoil, both the zeta-variable ROM and UNS3D POD solutions match well

with the FOM solution. Towards the leading edge on the suction side of the blade, UNS3D POD

under-predicts the isentropic Mach number. At the trailing edge of the blade, the zeta-variable ROM

and UNS3D POD solutions match well with each other, but stray from the FOM solution. The

zeta-variable ROM appears to be more accurate than UNS3D POD for this case. Figure 5.27 shows

a comparison of the coefficient of pressure between the zeta-variable ROM and UNS3D POD as

compared to the FOM for cases 3 and 5. Again, UNS3D POD under-predicts at the leading edge

of the suction side of the blade whereas the zeta-variable ROM matches well with the FOM. Both

ROMs match well with the FOM solution along the interior of the blade. At the trailing edge there
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(c) Case 3 (d) Case 5

Figure 5.26: Comparison of the isentropic Mach number of the zeta-variable ROM to UNS3D POD
to the FOM.

is a difference in the results between cases 3 and 5. For case 3, the zeta-variable ROM and UNS3D

POD match well with the FOM solution. For case 5, both ROM solutions match well with each

other, but do not match well with the FOM solution. The results of these comparisons show that

both the zeta-variable ROM and UNS3D POD experience larger errors near the leading and trailing

edges of the blades. As mentioned before, the zeta-variable ROM incurred the largest of its errors at

the trailing edge of the blade, which accounted for the large maximum errors seen in Table 5.22.

This may imply that a majority of the error lies within the interpolation of the basis functions rather
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(c) Case 3 (d) Case 5

Figure 5.27: Comparison of the coefficient of pressure of the zeta-variable ROM to UNS3D POD to
the FOM. The legend follows that of Figure 5.26.

than the methods of the ROMs themselves. The zeta-variable ROM may have performed better than

UNS3D POD at the leading edge due to its use of the penalty method to impose boundary condition

constraints.
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6. STABILITY ANALYSIS OF THE ZETA-ROM

This section provides a stability analysis of the zeta-ROM using Lyapunov’s method from

sec. 4.1.1. Results are shown for only the 2D channel. There were shortcomings for using this

method to investigate stability, which will be discussed at the end of this section.

The ODE system of the ROM is a nonlinear system of equations. When using the penalty

method, the system becomes non-autonomous. This makes it difficult to assess how well the penalty

method is stabilizing the ROM. Lyapunov’s method can be used to assess the stability of nonlinear,

non-autonomous systems as long as specific criteria are met [69].

A simple Lyapunov’s function was selected to assess the stability of the zeta-ROM. Here, the

function is described by the time coefficients, a.

V (a) =
nZk∑
i=1

(
aZki

)2

, k ∈ [1, D + 2] (6.1)

This function resembles the kinetic energy of the system, which makes it ideal for assessing whether

energy in the system is decreasing or increasing. For completeness, the time-derivative of the

Lyapunov’s function is

V̇ (a) = 2
nZk∑
i=1

aZki ȧ
Zk
i , k ∈ [1, D + 2]. (6.2)

Table 6.1 shows the effect of the penalty method and a modified number of modes on the

stability of the zeta-ROM for the 2D channel. The cases reflect the cases in Table 5.4. Case 2 has no

results, because the critical points were unable to be found. Based off of the rate of the Lyapunov’s

function, the implementation of the penalty method along with a modified number of modes appears

to stabilize the zeta-ROM.

Figure 6.1 shows the effect of the penalty method along with a modified number of modes

on the eigenvalues. For both cases, a positive real part of an eigenvalue appears, which indicates

instability. When the penalty method along with a modified number of modes are applied, the
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Case
V̇ (a)

No Method Penalty Method with Modified Number of Modes

1 0.31 -1.63
3 0.06 -8.22

Table 6.1: Effect of the penalty method and a modified number of modes on V̇ (a).

eigenvalues shift to a complex conjugate pair. It is important to note that this case ran successfully

with results reported in Sec. 5.2 once the penalty method with a modified number of modes was

applied. Therefore, there appears to be an issue with using Lyapunov’s first method to approximate

stability for this case. This is due to the system being highly nonlinear and non-autonomous.

(a) Case 1 (b) Case 3

Figure 6.1: Effect of the penalty method and a modified number of modes on the eigenvalues of
the zeta-ROM ODE system. The red markers denote the zeta-ROM without stabilizing methods
imposed. The blue markers denote the zeta-ROM with stabilizing methods imposed.

Stability analysis using Lyapunov’s method failed for all other cases, because, similar to what

happened with case 2, the critical points were unable to be found. Without the critical points, the

stability analysis is unable to be conducted. While it is difficult to determine a priori the stability of

the zeta-ROM ODE system, analysis using the Lyapunov’s function did indicate some measure of
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success. Therefore, more investigation into this method or possibly others designed for nonlinear,

non-autonomous systems should be performed.
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7. COMPUTATIONAL TIME RESULTS1

This section presents a comparison between the runtimes of the zeta-variable ROM and the FOM

for all cases. The reduced-order model was ran on a 2009 Mac Pro with two 2.26 GHz Quad-Core

Intel Xeon processors with 24 GB of RAM. The full-order model was ran on both the 2009 Mac

Pro and on Texas A&M’s Terra supercomputing cluster and used multiple processors. The CPU run

time is given to account for the use of parallel processing for the FOM.

Table 7.1 shows the offline costs of running the FOM and generating the basis functions. Here,

(P) and (D) for the axisymmetric nozzle refer to the cases with a pressure oscillation and the cases

with a deforming boundary, respectively. The CPU time of the snapshot generation phase in the

FOM, the CPU time it took to run the FOM, and the CPU time to calculate the POD basis functions

are given. It is worth it to note that the total time of the FOM does not include the time to calculate

the POD basis functions. The snapshot generation phase takes up a majority of the run time of

the FOM as the transients in the solution quickly disappear. For Rotor 67 and the 3D Nozzle (D),

the snapshot generation phase takes up a smaller portion due to long transients in the solution.

Generating the POD basis functions from the snapshots takes up a minuscule part, less than 1%, of

the runtime of the offline phase when compared to the run time of the FOM.

Table 7.2 shows a comparison between the CPU runtime of the zeta-variable ROM and the

FOM for all cases. The FOM solutions were generated using the UNS3D flow solver [59]. The

FOM solution of the two-dimensional channel was obtained running UNS3D as an implicit solver

while all other case solutions were obtained by running UNS3D as an explicit solver. The FOM and

the ROM were run such that they both predicted the flow over the same time interval. The FOM

used six processors for the 2D channel and 3D nozzle cases and used 56 processors for Rotor 67

and the 10th standard configuration cases. From the data, the ROM is consistently more than four

orders of magnitude faster than the FOM. The computational time needed to generate the POD

1A portion of this section is reprinted from “An Efficient Proper Orthogonal Decomposition based Reduced-Order
Model for Compressible Flows” by E.H. Krath, F.L. Carpenter, P.G.A. Cizmas, and D.A. Johnston, 2020. Journal of
Computational Physics. Copyright 2020 by Elsevier Inc. https://doi.org/10.1016/j.jcp.2020.109959
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Case 2D Channel 3D Nozzle (P) 3D Nozzle (D) Rotor 67

N 8514 22,673 22,673 299,844
Snapshots per Period 300 666 100 50
Total Snapshots 900 2000 300 250

FOM Snapshots [s] 15,130.75 506,635.00 61,049.33 388,891
FOM Total [s] 15,664.75 508,018.00 164,872.68 4,860,247

POD Basis Functions [s] 121.33 1673.00 50.04 479.43
POD Basis/FOM Total 0.84% 0.33% 0.02% 0.01%

10 STCF 11th STCF

N 33,068 78,260
Snapshots per Period 100 100
Total Snapshots 500 500

FOM Snapshots [s] 473,059 2,260,688.25
FOM Total [s] 530,558 10,883,754.00

POD Basis Functions [s] 172.63 397.365
POD Basis/FOM Total 0.03% 0.004%

Table 7.1: Breakdown of the CPU runtime of the FOM for three on-reference cases: (1) 2D channel
with 7 modes, (2) 3D nozzle (P) with 9 modes, and (3), 3D nozzle (D) with 5 modes.

basis functions was not included in this comparison.

Case N M FOM [s] ROM [s] Ratio

2D Channel 8514 900 15,131 0.52 29,098
3D Nozzle (P) 22,673 2000 506,635 5.38 94,170
3D Nozzle (D) 22,673 300 61,049 4.19 14,564
Rotor 67 299,844 250 4,860,247 51.30 94,749
10 STCF 33,068 500 530,558 12.46 42,580
11 STCF 78,260 500 2,260,688 24.35 92,841

Table 7.2: CPU runtime comparison between the ROM and the FOM for all cases: (1) 2D channel
with 7 modes, (2) 3D nozzle (P) with 9 modes, (3) 3D nozzle (D) with 5 modes, (4) Rotor 67 with 5
modes, and (5) the 10th standard configuration with 5 modes.

Table 7.3 breaks down the run time of the ROM into two segments: the setup, which is pre-
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calculating the inner products, and the time it takes to solve the ODEs for 5 periods. A theoretical

upper limit of speedup can be created by finding the ratio of the run time of the FOM to the time it

takes to solve the ODEs.

ROM Upper % Upper
Case No. Periods Setup [s] Solve ODE [s] Total [s] Limit Limit

2D Channel 3 0.22 0.08 0.30 195,787 15%
3D Nozzle (P) ≈3 2.34 3.04 5.38 166,394 57%
3D Nozzle (D) 3 1.93 2.26 4.19 26,997 54%

Rotor 67 5 19.45 31.84 51.30 152,623 62%
10 STCF 5 5.97 6.49 12.46 81,773 52%
11 STCF 5 11.93 12.42 24.35 182,020 51%

Table 7.3: Breakdown of CPU run time of ROM and comparison to theoretical upper limit of
speedup.

The reduced-order model currently runs at an average of 49% of this upper limit. The 2D

channel case has a large setup time compared to the time it takes to solve the ODE, which leads to a

lower percent upper limit achieved. Improvements can be made by reducing the time of the setup

phase.

Additionally, the upper limit of the speedup can be improved by reducing the time it takes to

solve the ODEs. Part of this was already accomplished by rewriting the governing equations using

specific volume instead of density. Changing the form of the governing equations was used to

prevent any slowdown while solving the ODEs. A slowdown would have occurred if the coefficients

of the ODEs had to be recalculated at each time step or if a separate system of equations had to be

solved to find the time-derivative of the time coefficients. It is also good to note that the run time of

the setup phase is independent of the length of time that the ROM solves for. For increasing lengths

of time or number of periods, the speedup of the ROM will be entirely dependent on the time it

takes to solve the ODE system.

To better assess the efficiency of the zeta-variable ROM, it is better to compare its performance
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to other ROMs that do not use zeta-variables. The zeta-ROM was compared to the UNS3D POD

ROM for the 2D channel and the 11th standard configuration.

Table 7.4 shows a comparison of the CPU runtime of the zeta-variable ROM to the conservative-

variable ROM for the 2D channel. Because UNS3D POD is based off of the discretized scheme of

the governing equations, it depends on certain factors related to the FOM such as the CFL number

and the number of sub-iterations used in dual time stepping Msub. These two factors were varied to

show how the run time of the conservative-variable ROM changes as compared to the zeta-variable

ROM. The results of the runtime are also shown for the conservative-variable ROM using an implicit

and explicit solver. The zeta-variable ROM used the same solver from the ODEPACK suite as used

in all other cases. The results show a marked improvement in runtime from the conservative-variable

ROM to the zeta-variable ROM, with the zeta-variable ROM being more than 10,000 times faster

than the conservative-variable ROM. This speed up is due in large part to removing the occurrence

of density in the denominator, which allowed for the pre computation of the coefficients of the

ODEs that make up the ROM.

Solver m CFL Msub Conservative [s] Zeta [s] Ratio

I 2 20 15 7423 0.40 12,200

E

2 3 150 29,851 0.39 76,541
2 5 150 29,644 0.39 76,010
2 5 140 27,978 0.39 71,738
2 5 130 26,001 0.39 66,669
2 15 150 29,609 0.39 73,356

Table 7.4: CPU runtime comparison of the zeta-variable ROM to a conservative-variable ROM
for different solvers, CFL numbers, and sub-iterations for a 2D channel case with N = 4257 and
m = 6.

Table 7.5 shows the shows a comparison of the average CPU run time for the 11th standard

configuration case. Without post-processing, the zeta-variable ROM will only output the time

coefficients at each time step. Whereas, with post-processing, the zeta-variable ROM will also
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output the relative errors, which requires the reconstruction of each state variable at each time step.

Here, UNS3D POD and the FOM were ran on Texas A&M University’s supercomputing cluster

Ada, which is an Intel x86-64 Linux cluster. The ratios provided in Table 7.5 compare the CPU

runtime of the FOM or UNS3D POD to the zeta-variable ROM. The zeta-variable ROM ran more

than five orders of magnitude faster than the FOM and more than three orders of magnitude faster

than UNS3D POD. When post-processing time is included in the zeta-variable ROM, the size of the

speedup drops by about an order of magnitude.

Post-Process zeta-ROM [s] FOM ×106 [s] Ratio UNS3D POD×104 [s] Ratio

No 24.35 2.26 92,841.41 7.51 14,625.24
Yes 189.33 2.26 11,940.47 7.51 1880.85

Table 7.5: Computational runtime with and without additional post-processing of the zeta-variable
POD ROM (zeta-ROM) versus UNS3D POD and the FOM for the 11th standard configuration
plunging blades with 180◦ inter blade phase angle.

7.1 Cost-benefit of POD-based ROM

It is important to quantify when a reduced-order model is beneficial to use as compared to the

full-order model. Using a ROM to reconstruct an already generated full-order model solution, at

on-reference conditions, does not add any new information. A ROM truly becomes beneficial when

it is used to predict new flow solutions at off-reference conditions. To use the ROM at off-reference

conditions, the basis functions needed to be interpolated. The methods used to interpolate the basis

functions were given in Sec. 4.2.

For all cases shown, the ROM needed two FOM snapshot sets to solve at off-reference conditions.

The two FOM snapshot sets bounded a parameter of interest, for example, the amplitude or angular

velocity of an imposed oscillatory motion. With these two FOM snapshot sets, the ROM could

predict any number of solutions in between the bounds. Let’s say that three solution sets are needed

for a change in a parameter of interest β on the 2D channel case in Table 7.2. If only the FOM
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is used, then the total time is 3 × 15, 131 sec = 45, 393 sec. If the ROM is used, then two FOM

solutions are needed at first, 2× 15, 131 sec = 30, 262 sec, plus one ROM run, 0.52 sec, which is a

total of 30, 262.52 sec or 1.5× faster than only using the FOM. Therefore, for this case the ROM

becomes beneficial to use if three or more flow solutions are needed.

Let’s say instead that there are multiple parameters of interest, βββ = {βi}
nβ
i=1, where nβ is the

number of parameters of interest. Assuming a linear model is used to interpolate the basis functions

to a specified design point, βββ∗, then the number of FOM evaluations needed to create the linear

model is nβ + 1. Therefore, the ROM becomes beneficial to use for multivariate cases if nβ + 2

solutions are needed.
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8. CONCLUSIONS

An efficient Proper Orthogonal Decomposition based reduced-order model for compressible

flows was developed and verified and validated for several cases of varying complexity. This

reduced-order model, or zeta-ROM, was made efficient by substituting in specific volume for

density in the governing equations, which allowed for the pre computation of the coefficients and

reduced the nonlinearity of the ROM ODE system. The zeta-ROM was able to accurately reconstruct

and predict flow solutions with aeroelastic deformations. This included a radial deformation of an

axisymmetric nozzle and a plunging turbine blade for the 10th and 11th standard configurations.

The accuracy of the zeta-ROM was further enhanced by using either a dynamic average or dynamic

basis functions. Furthermore, the zeta-ROM was able to accurately reconstruct and predict flow

solutions for cases with a pressure oscillation applied at the outlet.

The instabilities of the model reduction procedure were apparent in the zeta-ROM. Three

methods were developed and successfully used to stabilize the zeta-ROM. These were the penalty

method, artificial dissipation, and a new method that modifies the number of modes in the ROM

ODE system.

The penalty method worked very well to enforce boundary conditions into the ROM. Surpris-

ingly, it was also an effective tool when using the zeta-ROM to predict off-reference solutions.

Using the penalty method for off-reference conditions constrained the solution to match the target

design parameters, which increased the accuracy of the zeta-ROM.

Artificial dissipation was helpful to stabilize the zeta-ROM, but the artificial dissipation param-

eters can become tricky to tune. For this reason, a method to calculate the artificial dissipation

parameters such that the energy in the system is decreasing was developed. This was made especially

helpful for off-reference conditions when the artificial dissipation parameters are not able to be

tuned against a full-order model solution.

The method that modifies the number of modes, or referred to as “modified number of modes”,

in the ROM ODE system was effective at removing destabilizing modes from the ODE system. This
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method came about by observation. Spurious modes can sometimes be captured using the POD

method. For some cases, these spurious modes can be destabilizing. This method acted as a filter to

remove these modes, and was successful in further stabilizing the zeta-ROM.

A stability analysis was performed of the zeta-ROM. This analysis was performed with the

hopes of determining a priori the effects of the stabilizing methods on the ROM before solving

the ODE system. Lyapunov’s first and second methods were used with varying degrees of success.

Because the ODEs of the zeta-ROM are nonlinear and non-autonomous, these stability analysis

tools are limited in their scope and application. Initial results did show that the stabilizing methods

used were able to ensure “system energy” was decreasing. Unfortunately, failure to find the critical

points for more complex problems limited the application of these tools.

A run time study was conducted to determine the speedup that the substitution of specific volume

into the governing equations had on the run time of the ROM. It was found that the zeta-ROM

attained a speed up of greater than four orders of magnitude compared to the FOM and to a ROM

written in conservative variables. The zeta-ROM ran at an average of 49% of a theoretical upper

limit of speedup against the FOM. Improvements to the speedup can be attained by reducing the

time it takes to set up the ODE system of the ROM, for example, the zeta-ROM can be sped up by

reducing the computational time of reading in files, calculating derivatives, and pre computing the

coefficients of the ODEs.

8.1 Future Work

While the zeta-ROM is capable of solving for both inviscid and laminar flows for stationary

reference frames, it does not capture laminar flows for rotating reference frames and turbulent flows.

Equations (3.7) provide the necessary foundation to update the zeta-ROM for laminar flows with

a rotating reference frame about the x-axis. Section B provides the Spalart-Allmaras turbulence

model modified to reduce its nonlinearity such that it can be used effectively with a POD-based

reduced-order model. In this case, “effectively” refers to the ability to precompute the inner products

or coefficients of the ODE system of the ROM.

In the course of this dissertation, two interpolation methods were used to produce solutions for
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off-reference conditions. These interpolation methods interpolated only a single design variable,

generally an amplitude or frequency of motion. Interpolating such design variables produced

accurate results. One issue, though, is that these interpolation methods may not adequately capture

the effect that changes of geometric design variables may have on the solution.

The POD method uses an index-based relationship between grid points. This relationship means

that when the computational mesh is deformed, the deformation is not communicated to the POD

modes unless the deformation is topologically consistent. In the same way, if the geometric design

variables change the computational mesh in a topologically inconsistent manner, the POD modes

may not adequately capture the change itself. Even if a proper interpolation method is used, the

predicted solution may be inaccurate.

To include the effect of the geometric design variables in the POD modes, it may be possible to

instead use the dynamic basis and dynamic average augmented with information on the geometric

design variables. Here, the selection of the gamma parameters, γ̃i, are important. For unsteady

flows, γ̃i were used to describe the primary form of motion. For example, a sine or cosine pair

describing the motion in time. In addition to this definition, the gamma parameters may also be

utilized to bring in information of the geometric design variables into the POD basis. To capture

the geometric design variables, the gamma parameters can be written as γ̃i = Fi(ααα(x)) where the

gamma parameters are functionals of the geometric design variables, ααα, which may be functions of

space, x.

The selection of the functional is very important for the accuracy and computational expense of

this method, and can be flexible for the type of problem. For example, consider a linear model of γ̃i

γ̃i = β0 + β1α1 + β2α2 + ...+ βnvarαnvar

where βi are coefficients in this model. The model would require nvar + 1 full-order model solutions

to approximate γ̃i. Depending on the complexity of the design space, this necessary computational

expense would still be much cheaper than using the FOM for design. For example, the zeta-ROM
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ran four orders of magnitude faster than the FOM. Let us say the optimization procedure takes 10

iteration steps, the ROM takes 1 second to run, and the FOM takes 10,000 seconds to run. Then,

the total time of the optimization procedure if using the FOM is 100,000 seconds not including

computations to determine gradients. For the optimization procedure using the ROM to run faster

than the optimization using the FOM, the number of design variables would be limited to 8. At 8

design variables, the cost of the optimization procedure would be 9 FOM runs, 90,000 seconds,

plus 10 ROM runs, 10 seconds, for a total of 90,010 seconds or 1.11× faster than the optimization

using the FOM. If one includes multi start into the optimization procedure, the speedup increases

by 1.11× nms where nms is the number of multi starts. Obviously, the speedup increase would be

greater if the cost to calculate the gradients is included.
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APPENDIX A

ISENTROPIC BOUNDARY CONDITION FOR SPECIFIC VOLUME

An isentropic boundary condition for specific volume at the outlet is formulated using the

isentropic relations
p∗

p
=

(
ρ∗

ρ

)γ
=

(
ζ

ζ∗

)γ
with nondimensionalization

p′ =
p

qref
ρ′ =

ρ

ρref
T ′ =

T

Tref

where (·)′ denotes a nondimensional term. Here qref = ρrefv
2
ref and vref =

√
γRTref . To begin,

the isentropic relations are nondimensionalized.

p∗

p′qref
=

(
ρ∗

ρ′ρref

)γ
=

(
ζ ′

ζ∗ρref

)γ

At the outlet, the dimensionless pressure, p′, is oscillated with function f(t).

p∗

f(t)qref
=

(
ζ ′

ζ∗ρref

)γ

Switch the powers and multiply by ρref/ρ∗ on both sides.

(
p∗

f(t)qref

) 1
γ

=
ζ ′

ζ∗ρref

ρref
ρ∗

(
p∗

f(t)qref

) 1
γ

=
ρref
ρ∗

ζ ′

ζ∗ρref

ρref
ρ∗

(
p∗

f(t)ρrefv2
ref

) 1
γ

=
ζ ′

ζ∗ρ∗

ρref
ρ∗

(
p∗

f(t)ρrefγRTref

) 1
γ

= ζ ′
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1

ρ∗

(
p∗ργ−1

ref

f(t)γRTref

) 1
γ

= ζ ′

Here the equations for qref and vref were substituted in. The equation is simplified even further by

assuming that the flow behaves as an ideal gas.

1

ρ∗

(
ρ∗RT ∗ργ−1

ref

f(t)γRTref

) 1
γ

= ζ ′

ζ ′ =

(
T ∗ργ−1

ref

f(t)γTref (ρ∗)γ−1

) 1
γ

(A.1)

This is further simplified if the reference values correspond to the total values.

ζ ′ = (γf(t))−
1
γ (A.2)
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APPENDIX B

REDUCED-ORDER SPALART ALLMARAS EQUATIONS

The S-A model for turbulent flows models the Reynolds stresses using the Boussinesq eddy

viscosity assumption. Here, the eddy viscosity is defined as νt = ν̃fν1 where ν̃ is the S-A working

variable and

fν1 =
χ3

χ3 + c3
ν1

(B.1)

where χ = ν̃/ν and ν is the kinematic viscosity. The S-A working variable has a transport equation

of the form
Dν̃

Dt
= P −D + T +

1

σ

(
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2) (B.2)

where σ, cb2 are constants, ν is the kinematic viscosity, and P , D, and T are the production,

dissipation, and trip terms respectively. The production term is

P = cb1 (1− ft2) S̃ν̃ (B.3)

where cb1 is a constant, S̃ is the modified vorticity, and ft2 is the laminar suppression term,

ft2 = ct3e
−ct4χ

2

(B.4)

where ct3 and ct4 are constants. Physically, the modified vorticity should always be negative with

values that never fall below 0.3S. A modified form of S̃ was developed by Spalart and Allmaras [81]

S̃ =


S + S̄ S̄ ≥ −cν2S

S +
S(c2ν2S+cν3 S̄)
(cν3−2cν2)S−S̄

S̄ < −cν2S

, S̄ =
ν̃

κ2d2
fν2 (B.5)
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where κ, cν2 , cν3 are constants, S is the magnitude of the vorticity,

S =

√(
∂w

∂y
− ∂v

∂z

)2

+

(
∂u

∂z
− ∂w

∂x

)2

+

(
∂v

∂x
− ∂u

∂y

)2

d is the distance closest to the wall, ft2 = ct3e
−ct4χ

2 where ct3 , ct4 are constants, and

fν2 = 1− χ

1 + χfν1

. (B.6)

The dissipation term is

D =
(
cw1fw −

cb1
κ2
ft2

)( ν̃
d

)2

(B.7)

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2

(
r6 − r

)
, r = min

(
ν̃

S̃κ2d2
, rlim

)
.

where cw1 , cw2 , cw3 , and rlim are constants. The trip term is

T = ft1 (∇u)2 (B.8)

ft1 = ct1gte
−ct2

ωt
∆u2 (d2+g2

t d
2
t), gt = min

(
0.1,

∆u

ωt∆x

)
where dt is the distance to the trip point, ωt is the vorticity of the trip, ∆u is the difference in velocity

relative to the trip point, ∆x is the streamwise grid spacing at the trip, and ct1 , ct2 are constants.

Herein, the trip term T is neglected. All constants and their values are given in Table B.1.

B.1 Reduced-Order Model

To develop a POD-based reduced-order model, the equations need to be converted into a form

where the projection along the optimal subspace will not be time-dependent. To do this, the binomial

theorem, multinomial theorem, which is a special case of the binomial theorem, and a power series

expansion of the exponential function were employed.

Binomial Theorem : (x+ y)n =
n∑
k=0

n!

k!(n− k)!
xn−kyk (B.9)
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Constants Values

cb1 0.1355
cb2 0.622
cw1

cb1
κ2 +

1+cb2
σ

cw2 0.3
cw3 2
cν1 7.1
cν2 0.7
cν3 0.9
ct1 1
ct2 2
ct3 1.2
ct4 0.5
σ 2/3
κ 0.41
rlim 10

Table B.1: Constants of the S-A Equation

Multinomial Theorem : (x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

n!

k1!k2! · · · km!

m∏
t=1

xktt (B.10)

Power Series of ex : ex =
∞∑
k=0

xn

n!
(B.11)

For example, the multinomial theorem is applied directly to the POD approximation in the case

where ν̃ is raised to a power n.

(ν̃)n =

 nν̃∑
i=0

aν̃i (t)φ
ν̃
i (x)

n

=
(
aν̃0(t)φν̃0 + aν̃1(t)φν̃1 + · · ·+ aν̃nν̃ (t)φ

ν̃
nν̃

)n
=

∑
p0+p1+···+p

nν̃
=n

n!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)φ

ν̃
i (x)

)pi
=

∑
p0+p1+···+p

nν̃
=n

n!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)

)pi (φν̃i (x)
)pi
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To complete separating the spatial-dependent variable, φ, from any time-dependent variables, the

product operator property
I∏
i=1

xiyi =

(
I∏
i=1

xi

)(
I∏
i=1

yi

)

is used. Therefore, the inner product is of the form
(∏nν̃

i=0

(
φν̃i (x)

)pi , φν̃k(x)
)

, which can be

pre-calculated for any value of pi. There may be memory issues if nν̃ is large.

The S-A equations were approximated using these theorems and series expansions. The

following sections provide the approximations to the production and dissipation terms and to eddy

viscosity.

B.1.1 Production, P

The production term in Eq. (B.3) is repeated here for convenience.

P = cb1 (1− ft2) S̃ν̃

One nonlinear function of ν̃ appears in the equation: the modified vorticity S̃. To prevent nega-

tive values of S̃, a new formulation based off of two inequalities was presented by Spalart and

Allmaras [81] and was given in Eq. (B.5). The inequality expressed in Eq. (B.5) needs to be approx-

imated such that it can be projected along the POD subspace without producing time-dependent

inner products. The function ft2 is approximated as

ft2 = ct3e
−ct4χ

2

= ct3

∞∑
k=0

(
− ct4

ν2

)k
k!

ν̃2k

= ct3

∞∑
k=0

(
− ct4

ν2

)k
k!

∑
p0+p1+···+p

nν̃
=2k

(2k)!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)

)pi (φν̃i (x)
)pi . (B.12)
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The function fν2 is approximated as

fν2 = 1− χ

1 + χfν1

= 1−
∞∑
k=0

(−1)k

(cν1ν)3k

k∑
m=0

k!

m!(k −m)!

(
ν̃3k+m+4 +

1

c2
ν1
ν
ν̃3k+m+1

)
= 1− Cν2 (B.13)

where

Cν2 =
∞∑
k=0

(−1)k

(cν1ν)3k

k∑
m=0

k!

m!(k −m)!

[ ∑
p0+p1+···+p

nν̃
=3k+m+4

(3k +m+ 4)!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)

)pi (φν̃i (x)
)pi

− 1

c2
ν1
ν

∑
p0+p1+···+p

nν̃
=3k+m+1

(3k +m+ 1)!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)

)pi (φν̃i (x)
)pi].

The term S̄ can now be written in terms of this approximation.

S̄ =
ν̃

κ2d2
fν2

=
ν̃

κ2d2

(
1−

∞∑
k=0

(−1)k

(cν1ν)3k

k∑
m=0

k!

m!(k −m)!

(
ν̃3k+m+4 +

1

c2
ν1
ν
ν̃3k+m+1

))

=
ν̃

κ2d2
− 1

κ2d2

∞∑
k=0

(−1)k

(cν1ν)3k

k∑
m=0

k!

m!(k −m)!

(
ν̃3k+m+5 +

1

c2
ν1
ν
ν̃3k+m+2

)

B.1.2 Dissipation, D

The dissipation term in Eq. (B.7) is repeated here for convenience.

D =
(
cw1fw −

cb1
κ2
ft2

)( ν̃
d

)2
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Two nonlinear functions of ν̃ appear in the equation: the functions fw and ft2 . The approximation

for ft2 is

ft2 = ct3e
−ct4χ

2

= ct3

∞∑
k=0

(
− ct4

ν2

)k
k!

ν̃2k

= ct3

∞∑
k=0

(
− ct4

ν2

)k
k!

∑
p0+p1+···+p

nν̃
=2k

(2k)!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)

)pi (φν̃i (x)
)pi . (B.14)

B.1.3 Eddy Viscosity, νt

The eddy viscosity contains one nonlinear function of ν̃: the function fν1 . This function is

approximated as

fν1 =
χ3

χ3 + c3
ν1

=
1

(cν1ν)3

∞∑
k=0

(−1)k

(cν1ν)3k
ν̃3(1+k)

=
1

(cν1ν)3

∞∑
k=0

(−1)k

(cν1ν)3k

∑
p0+p1+···p

nν̃
=3(1+k)

(3(1 + k))!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)

)pi (φν̃i (x)
)pi (B.15)

where the final approximation for the eddy viscosity is

νt = ν̃fν1

= ν̃

(
1

(cν1ν)3

∞∑
k=0

(−1)k

(cν1ν)3k
ν̃3(1+k)

)

=
1

(cν1ν)3

∞∑
k=0

(−1)k

(cν1ν)3k
ν̃4+3k

=
1

(cν1ν)3

∞∑
k=0

(−1)k

(cν1ν)3k

∑
p0+p1+···p

nν̃
=4+3k

(4 + 3k)!

p0!p1! · · · pnν̃ !

nν̃∏
i=0

(
aν̃i (t)

)pi (φν̃i (x)
)pi .
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APPENDIX C

ZETA-VARIABLE POD-ROM USER’S MANUAL

This appendix contains all necessary documentation for running the zeta-variable POD-ROM

code. To access the software, please email cizmas@tamu.edu

C.1 Software Installation

This section details the installation of several software necessary to run the ζ-ROM .

C.1.1 unsromBC Installation

The unsromBC software and all auxiliary files are contained in the zetaunsromBC.tgz

file. It is recommended to move this file to its own directory on the user’s system. To untar the file

type, cd to the .tgz file directory and type

tar -xf zetaunsromBC.tgz

in the terminal. Six .tgz files will be extracted. These files will also need to be extracted using the

tar command. These files contain six folders: the BC_interpolation directory containing

the BC_interpolation MATLAB software, the convert directory containing the convert

software, the unsromBC directory containing the ζ-ROM software along with libraries used, the

bfg directory containing the bfg code to generate basis functions and time coefficients from a set

of snapshots, the grassman directory containing the grass code that interpolates basis functions,

and an additional directory containing an auxiliary program findsurface that is used for blade

deformation. A copy of this manual is also provided.

The findsurface software should be compiled in its respective folder. To compile the

software type

gfortran findsurface.f90 -o findsurface

in the terminal. If the user does not have gfortran installed, they may use whichever Fortran

compiler they prefer.
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The BC_interpolation software needs no installation, but requires a working license of

MATLAB.

The convert software should be compiled in its respective folder. To compile the software

type

gfortran convert.f90 -o convert

in the terminal. If the user does not have gfortran installed, they may use whichever Fortran

compiler they prefer.

The bfg software installation is given in Sec. C.1.2. Information on the grassman software

is given in Sec. C.3.

The unsromBC directory contains five folders:

example - example cases that the user may use to practice running the software (see

Sec. C.4.2)

inputfiles - contains the input files for the ζ-ROM code

minpack - contains the source files to create the minpack library used for compilation of

the ζ-ROM code

odepack - contains the source files to create the odepack library used for compilation of

the ζ-ROM code

src - contains the source code for the ζ-ROM code

Before installing the ζ-ROM code, three libraries must be installed: minpack, odepack, and

LAPACK. The LAPACK library is not given here, but can be found online or in the documentation

for uns3d. The minpack library is already included in its folder and is named minpack.a. The

odepack library needs to be created using either a gfortran compiler or f95 compiler. To

install simply type make in the terminal.

After the libraries have been installed, the ζ-ROM code can be compiled. Go into the src

directory by typing
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cd src

in the terminal. Link in the minpack and odepack libraries into the diretory by typing

ln -s ../minpack/minpack.a .

ln -s ../odepack/f95/opk.a odepack_dpf95.a

for f95 compilers or

ln -s ../minpack/minpack.a .

ln -s ../odepack/gfortran/opk.a odepack_dpf90.a

for gfortran compilers. It is important to note that the ζ-ROM code has been optimized for an

f95 compiler, and may not necessarily work for other compilers.

C.1.2 bfg Installation

The bfg code develops the basis functions and time coefficients used by the ζ-ROM code.

This code has been modified to accept the outputs of the convert code. The installation of the

bfg software requires the use of the LAPACK library from www.netlib.org/lapack. If you

do not have these libraries already installed on your computer, you can download them from the

www.netlib.org web page. Installing the LAPACK libraries correctly is critical to the proper

operation of the bfg software.

To install the bfg code, follow these steps:

1. Untar the file bfg.tgz:

tar xvfz bfg.tgz

2. Edit the makefile by commenting out any compiler setup lines that are not related to your

compiler. Also, make sure the location of your LAPACK libraries are called out correctly

3. Make the makefile:

make
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C.2 Basis Function Generator (bfg)

This section describes how to run the basis function generator (bfg ) using terminal line

commands. The basis functions are computed using snapshots of the flow field. The reduced-order

model (ROM) based on proper orthogonal decomposition (POD) uses the basis functions to compute

corresponding time coefficients to reconstruct the solution.

C.2.1 Running bfg

To run the basis function generator, the input file bfg_input.nml and the folders mesh and

out are needed. These folders should have been populated with files when the UNS3D POD was

run. For example, the out directory should contain:

rhosnaps.dat - ρ state variable

rhousnaps.dat - ρu state variable

rhovsnaps.dat - ρv state variable

rhowsnaps.dat - ρw state variable

rhoEsnaps.dat - ρE state variable

When the UNS3D POD code is ran with multiple processors, these snapshot files will additionally

contain an underscore and a three character string containing which processor the file was outputted

from. For example, for three processors the rhosnaps.dat file will be written out as:

rhosnaps.dat_000

rhousnaps.dat_001

rhousnaps.dat_002

Additionally, if the basis function generator is used to produce a dynamic average and/or dynamic

basis functions, an additional file, gammas.dat is required which should be outputted from the
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UNS3D POD code and also stored in out. This file consists of (number of snapshots) rows with

columns consisting of the time of the snapshot and γ1, . . . , γd.

If one is using the zeta-coordinate POD ROM code, then the snapshot files outputted by the

UNS3D POD code need to be converted to a format acceptable to the zeta-coordinate POD ROM

code. Firstly, if the UNS3D POD code was ran in parallel, the parallel output snapshot files need to

be combined into one file. The combineout code will accomplish this. See Appendix C.7 for

more details. After combining the snapshot files, the convert code described in Sec. C.6.1 should

be used to convert the snapshot files into a format acceptable to the zeta-coordinate POD ROM

To generate the basis functions, switch to the directory in which bfg is to be executed. This

directory must contain the input file bfg_input.nml and the snapshot files. It is recommended

to make a separate directory from the out directory and link in the snapshot files. To run bfg , the

following command statement can be used:

bfg snapshot_file basis_file tc_file energy_spectrum

The snapshot_filewill be the name of the snapshot file outputted by the UNS3D POD code.

The basis_file, tc_file, and energy_spectrum files are the names of the files con-

taining the basis functions, time coefficients, and energy spectrum outputted by the bfg code

respectively.

Alternately, two executable files titled run_UNS3D and run_zeta are also included in the

bfg installation files. The run_UNS3D file contains the execution statements:

./bfg rhosnaps.dat rrm art r_spect

./bfg rhousnaps.dat rum aut ru_spect

./bfg rhovsnaps.dat rvm avt rv_spect

./bfg rhowsnaps.dat rwm awt rw_spect

./bfg rhoEsnaps.dat rEm aEt rE_spect
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Here you can see that the bfg code needs to be rerun for each snapshot file. The run_zeta file

contains the execution statements:

./bfg z.dat zm zt z_spect

./bfg u.dat um ut u_spect

./bfg v.dat vm vt v_spect

./bfg w.dat wm wt w_spect

./bfg p.dat pm Et p_spect

This file produces basis functions and time coefficients for the zeta-coordinate POD ROM, which

uses specific volume in place of density in the governing equations.

C.2.2 bfg Input and Output Files

C.2.2.1 bfg Input File

The bfg input file, bfg_input.nml, consists of the following parameters:

&bfg_input

nss I The number of snapshots of the flow field. If the convert

code was used, use the number of snapshots of the converted

snapshot files

skip_snaps I The number of snapshots to skip (at the beginning of the

sequence of snapshots) when determining the basis functions.

This will be zero if the snapshots were already skipped in

the convert code.

skip_aux I The number of snapshots to skip in the numsnaps.dat

and gammas.dat files

n I The number of nodes
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n_modes I The number of basis functions

dyn_avg L Whether a dynamic average is used

dyn_phi L Whether dynamic basis functions are used

lbfgs L Whether the dynamic basis functions are obtained using the

L-BFGS algorithm

n_parameters I The number of parameters used by dynamic average/basis

functions

parallel L Whether the snapshots and basis functions are used for the

parallel version of UNS3D POD (.true.)

ncpu I The number of processors used by the parallel version of

UNS3D POD

snapshot_dir C Directory containing the snapshots

loc2glob_dir C Directory containing the node distribution across the proces-

sors, i.e., the loc2glob file

Many of the parameters needed for the bfg_input.nml file have special constraints to their

values. The following list shows how to determine the proper values of these parameters:

nss The number of snapshots can be found by reading the length of the

numsnaps.dat file

cd out/

wc numsnaps.dat

The number of snapshots is the first number listed. Take note that if

the convert code was used, then the number of snapshots of the

snapshot files to the number of snapshots of the gammas.dat and

numsnaps.dat files will not match. The bfg code can be used to
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correct for the difference, but it will not modify the gammas.dat

and numsnaps.dat files.

skip To determine this value, information from the convergence of the full

order model must be known. When the number of snapshots is very

low skip should be set to 0 or more snapshots should be developed.

If the time coefficients produced by the bfg code indicate transience,

then this value should increase.

n The number of nodes is given as the second value in the first line of

the loc2glob.dat file

n_modes User choice, but note that n_modes < nss

dyn_avg and dyn_phi These can be determined by finding their definitions in the

uns3d.input file.

ncpu If parallel was set to .true. then ncpu is the number of processors

used to run the UNS3D POD code. If that is unknown, see the suffix

_xxx at the end of the rhosnaps.dat files in the out folder. The

number of processors is equal to the final number plus one.

C.2.2.2 bfg Output Files

The bfg code will generate output files given by what was inputted into the command line.

basis_file###.dat Basis function ### for the provided snapshot file

tc_file###.dat Projected time coefficients for the provided snapshot file

energy_spectrum The energy spectrum of the provided snapshot file

The basis function files will contain a _### appended to the end of the file name if the parallel

flag was set to true. The ### indicates the processor number. For dynamic functions, each column
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will contain the value of the subfunction, where the subfunction is ϕ̃j
k(x), k ∈ [0, d] and j ∈ [1,m],

as shown in (2.10). The zeroth basis function file corresponds to the average.

The time coefficient files contain the time coefficients corresponding to the basis functions

generated for the snapshots sampled. Each row corresponds to a point in time.

C.3 Interpolation for Off-Reference Conditions

This section describes the methodology used to generate basis functions for off-reference

conditions and how to use the code grassman.

C.3.1 grassman Code

The code grassman has been provided to generate spatial functions for off-reference condi-

tions. The input files for this code are:

1. loc2glob.dat_nnn, where nnn is the number of processors used in the simulation.

2. interpolator_input.nml; the structure of the file is:

&interpolator_input

n_modes I Number of basis functions

n I Number of nodes

n_conditions I Number of flow conditions known

two_d I Whether flow is two-dimensional

parallel L Whether the basis functions are distributed across multiple

processors

dyn_avg L Whether the average is dynamic

dyn_phi L Whether the basis functions are dynamic

n_p I The number of processors if parallel

collectively L Whether to interpolate the basis functions collectively or

individually (recommend collectively)
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&conditions

m0 R Condition of interest

m(1) R Known first condition

m(2) R Known second condition
...

...
...

m(n_conditions) R Known n_conditions condition

&directories

loc2glob_dir C Location of loc2glob.dat file

basis_dir(1) C Location of basis functions for first condition

basis_dir(2) C Location of basis functions for second condition
...

...
...

basis_dir(n_conditions) C Location of basis functions for n_conditions condition

&basisfiles

basisfile(1) C Name of the density ρ or specific volume ζ basis file

basisfile(2) C Name of the x-velocity u basis file

basisfile(3) C Name of the y-velocity v basis file

basisfile(4) C Name of the pressure p basis file

basisfile(5) C Name of the z-velocity w basis file
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For the basisfiles input, the name of the basis file will match the basis_file input

for the bfg code. It is important that the z-velocity basis file be put last such that the two_d

option can work properly.

3. Basis functions generated by running the bfg code on the full-order model snapshots

C.3.1.1 grass Example

A test case has been provided in folder grassman/dat that contains two sets of snapshot

files.

1. In the grassman directory, compile the code by typing make. This will yield the executable

grass.

2. Go to the folder dat. This folder consists of three folders: input, output, and run.

The input folder consists of the folders 1 and 2: folders 1 and 2 contain the basis

functions generated by using the full-order model snapshots. In the run folder are the

interpolator_input.nml and loc2glob.dat_008 files. The output folder con-

tains basis functions produced by the grass code.

3. Copy or symbolically link the executable grass into the run folder.

4. To run the code, type grass in the run folder. This run generates the interpolated basis

functions.

5. To verify the run was successful, the content of the files r?m00?.dat_00? that contain the

interpolated basis functions can be checked against the files provided in the output folder.

C.4 Starting and Executing unsromBC

This chapter goes over the steps to start and execute the unsromBC code and finishes with

example cases that are provided in the ζ-ROM package.
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C.4.1 Steps to start and execute

1. Run the UNS3D POD code to produce the snapshot files. There should be five snapshot files

with the following names:

rhosnaps.dat - contains snapshots of ρ

rhousnaps.dat - contains snapshots of ρu

rhovsnaps.dat - contains snapshots of ρv

rhowsnaps.dat - contains snapshots of ρw

rhoEsnaps.dat - contains snapshots of ρE

Even if the case is two-dimensional, a snapshot file of rhowsnaps.dat should exist of the

same size as the other snapshot files.

2. Link in the uns3d .mesh file and connectivity file c2n.def

3. If the uns3d code was ran in parallel, link in the the loc2glob file. Link in the combineout

executable and copy the executable script combine from the splitcombine directory.

The combine executable file may need to be edited depending on the . extension for the

loc2glob file. To run the executable file combine use the following command sequence:

./combine number_of_processors number_of_snapshots

The number_of_processors input is a three character numerical sequence matching

that of the loc2glob file.

4. Link in the convert executable from the convert directory. Copy in the input file

inputPP from the convert directory and modify it as needed for the case. Execute the

convert code.

./convert inputPP
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5. Create a directory for the POD modes in the same directory as the snapshot files and outputs

of the convert code. Enter the created directory.

6. (Only for blade deformation) Go to the mesh folder. Link in the executable findsurface

from the findsurface directory. Execute it for one processor.

./findsurface 1

This will create a file surfacenode.dat. Link this file into the POD modes directory.

7. Link in all outputs of the convert code except for out.plt. Link in the uns3d .mesh

file and connectivity file c2n.def. Link in numsnaps.dat and gammas.dat produced

by uns3d.

8. Link in the executable for the bfg code. Copy in the input file bfg_input.nml and

modify it for your case. It is important to note that the skip_aux input is only for the

numsnaps.dat and gammas.dat files, and that nss should be the size of your t.dat

file. Copy in the executable script run_zeta from the bfg file. Execute the executable

script run_zeta.

9. Link in the outlet_ij.def file from the mesh directory. If this file does not exist, skip

to Step 10 and run unsromBC with solveODE and writeout set to false. Go to Step

9 if desired.

10. (Optional: to develop the approximate prescribed boundary equations) Copy in the input for

the BC_interpolation code, "BCinterp_input" and modify as needed for the case.

Execute the BC_interpolation.m code. This will output the approximate prescribed

boundary equations and FFT.dat file.

11. Link in the ζ-ROM executable "unsromBC" from the src directory. Copy in its inputs from

the directory inputfiles.

12. Modify the files input and const.dat for your case. To execute unsromBC type
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./unsromBC input

in the terminal.

13. The unsromBC code will output while running: the time, the first modal time coefficients for

each state variable, the error between the prescribed boundary condition and the reconstructed

solution KKK, the value of the penalty parameter, and the value of the artificial dissipation

parameter for pressure and specific volume respectively.

14. If writeout is set to true, then uns3d will calculate the error of the ROM solution to

the FOM solution contained in the converted snapshot files.

C.4.2 Example Cases

Two examples cases are provided in the example folder in the unsromBC directory: 2d10thstd

and 3drotor67. The 2d10thstd case corresponds to the 10th standard configuration with a

blade plunging deformation. The 3drotor67 case corresponds to an outlet pressure oscillation

applied to a transonic compressor fan referred to as NASA Rotor 67. The cases will need to be

extracted using the tar command.

The layout of both cases is similar. Both files contain six common directories:

eout - contains the terminal output of the UNS3D POD code

input - contains the input files of the UNS3D POD code

mesh - contains all files pertaining to the mesh

out - contains all written outputs of the UNS3D POD code

plt - contains tecplot files written by the UNS3D POD code

txt - contains text files written by the UNS3D POD code

among other auxiliary files. This layout is similar to any case ran using the UNS3D POD software.
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The user will find that the steps given in Sec. C.4.1 have already been performed in these

examples. It is recommended that the user attempt to repeat those steps to better learn how to run

the code. If the user wishes to just run the code, follow these steps:

1. Untar the mesh directory and out directory

tar -xvf mesh.tgz

tar -xvf out.tgz (or out_1.tgz and out_2.tgz)

2. Move to the out directory

cd out

3. Untar the convertoutput.tgz file

tar -xvf convertoutput.tgz

4. Move to the modes directory

cd modes

5. The basis functions and time coefficients have all been compressed and will need to be

extracted

tar -xvf basisfunctions.tgz

tar -xvf timecoefficients.tgz
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6. Run unsromBC

./unsromBC input

The output files can be compared to those in the output directory contained in the modes folder.

C.5 Input and Output Files for the ζ-ROM

This section describes the input and output files for the ζ-ROM .

C.5.1 ζ-ROM Input Files

C.5.1.1 Main input file

The main input file for the ζ-Coordinate POD-ROM is written using the Fortran namelist format.

Multiple input blocks are used to specify the input parameters. The first column gives the name of

the variable. The second gives the variable type: integer (I), real(R), logical (L), or character string

(C). The final column gives the variable description, and, in some cases, a default value.

&card1

nt I Number of snapshots

0 - default (automatically detect size of snapshots from

t.dat file)

n I Number of nodes

nz I Number of modes for ζ

nu I Number of modes for u

nv I Number of modes for v

nw I Number of modes for w

np I Number of modes for p

et R End time of integration

0 - default (automatically detect end time from t.dat file)
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twod L Flag for whether the case is two-dimensional

wlsqr_pwr R Weighted least squares power

gridfile C Name of input .mesh file (see Sec. C.5.1.3)

debug L Flag for debugger mode

wrtcoeff L Flag to write out coefficients

readKder L Not Recommended Flag to read in precalculated derivatives

of the basis functions from files (see Sec. C.5.1.3)

odecheck L Flag to compare exact ȧ with the ȧ that is calculated by the

ζ-coordinate POD-ROM

solvecheck L Flag to compute the integration of the ODE system

writeout L Flag to write out the results of the integration

movie L Flag to write out a Tecplot movie during integration

deform L Flag for whether a deformation of the entire mesh is occur-

ring (not applicable for deforming blades)

blade L Flag for whether a deformation of a blade is occurring

harmonic L Flag for chord-wise bending

&ODEsolve

odesolver I Type of ODE solver

0 - ODEPACK

1 - Forward Euler

-1 - Backward Euler

indst I Index of start time for integration

dt R Time step

0 - default (automatically detect size of time step from

t.dat file)
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dtscale R Scalar multiple that scales the time step

itol I ODEPACK Input Flag that indicates the type of local error

control to be performed.

1 - scalar rtol and scalar atol

2 - scalar rtol and array atol

3 - array rtol and scalar atol

4 - array rtol and array atol

rtol R ODEPACK Input The local relative error tolerance parameter

for the solution

atol R ODEPACK Input The local absolute error tolerance parame-

ter for the solution

itask I ODEPACK Input An index that specifies the task to be per-

formed

iopt I Integer flag that specifies if any optional input is being used

0 - no optional input parameters have been set

1 - optional input parameters have been set

mf I Method flag that indicates both the integration method and

corrector iteration technique to be used

10 - nonstiff solver

21 - stiff solver, internally generated Jacobian

22 - stiff solver, Jacobian provided in jac.f90

mxstep I Maximum number of integration steps allowed on one call

to ODEPACK
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typeBC I Type of enforcement of boundary conditions

0 - no enforcement of boundary conditions

-1 - penalty enforcement of boundary conditions using

Eq. (4.7).

1 - penalty enforcement of boundary conditions only on ζ

using Eq. (4.8).

2 - penalty enforcement of boundary conditions only on u

using Eq. (4.8).

3 - penalty enforcement of boundary conditions only on v

using Eq. (4.8).

4 - penalty enforcement of boundary conditions only on w

using Eq. (4.8).

5 - penalty enforcement of boundary conditions only on p

using Eq. (4.8).

6 - penalty enforcement of boundary conditions only on ζ

and p using Eq. (4.8).

7 - penalty enforcement of boundary conditions on all state

variables

tpconst R Adds this value to the penalty parameter for all state variables

scconst R Adds this value to the artificial dissipation parameter for all

state variables

&flow

pback R Outlet pressure value

POF R Frequency of imposed unsteadiness (unused if FFT is set to

.true.)
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POA R Amplitude of imposed unsteadiness (unused if FFT is set to

.true.)

phase R Phase of imposed unsteadiness (unused if FFT is set to

.true.)

pref R Reference pressure value for nondimensionalization

Tref R Reference temperature value for nondimensionalization

ptot R Stagnation pressure value

Ttot R Stagnation temperature value

lref R Reference length for nondimensionalization

omegax R Wheel speed of the blade rotating about the x-axis [rpm]

&stability

stablecheck L Flag to check stability of ODE system with current options

stol R The relative error desired in the approximate solution for

finding the critical points

jovbl C Flag to calculate left eigenvectors

"N" left eigenvectors are not computed

"V" left eigenvectors are computed

jobvr C Flag to calculate right eigenvectors

"N" right eigenvectors are not computed

"V" right eigenvectors are computed

&approxbc
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FFTflag L Flag to calculate approximate prescribed boundary condi-

tions using FFT

zback R Mean specific volume for the prescribed B.C. in Eq. (5.13)

zPOA R Amplitude of specific volume prescribed B.C. in Eq. (5.13).

-1 - use the isentropic approximation for ζ as the prescribed

boundary condition

zphase R Phase of specific volume prescribed B.C. in Eq. (5.13)

uback R Mean x-velocity for the prescribed B.C. in Eq. (5.13)

uPOA R Amplitude of x-velocity prescribed B.C. in Eq. (5.13)

uphase R Phase of x-velocity prescribed B.C. in Eq. (5.13)

vback R Mean y-velocity for the prescribed B.C. in Eq. (5.13)

vPOA R Amplitude of y-velocity prescribed B.C. in Eq. (5.13)

vphase R Phase of y-velocity prescribed B.C. in Eq. (5.13)

wback R Mean z-velocity for the prescribed B.C. in Eq. (5.13)

wPOA R Amplitude of z-velocity prescribed B.C. in Eq. (5.13)

wphase R Phase of z-velocity prescribed B.C. in Eq. (5.13)

&dynamic

np_var I Vector of length D + 2 containing the number of parameters

per state variable

dyn_avg I Flag vector of length D + 2 for whether each state variable

is approximated using dynamic average

dyn_phi I Flag vector of length D + 2 for whether each state variable

is approximated using dynamic basis
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C.5.1.2 Secondary input file: “const.dat”

This file contains the values for the artificial dissipation parameters and how many modified

number of modes each variable uses in its ODE. The format is as follows.

# Dissipation Constants

sc(1)

sc(2)

sc(3)

sc(4)

sc(5)

# ODE Modes

nz Mnu Mnv Mnw Mnp

Xnz nu Xnv Xnw Xnp

Ynz Ynu nv Ynw Ynp

Znz Znu Znv nw Znp

Enz Enu Env Enw np

In this file, sc(1) to sc(5) are real values. If the user wants to calculate the dissipation parameter,

ν̃, using Eq. (4.11), then set each value of sc to -1. In ODE Modes, the rows correspond to each

state variable’s ODE: conservation of mass, conservation of momentum, and conservation of

energy. Each column corresponds to the number of modified number of modes for each state

variable. The diagonal consisting of nz, nu, nv, nw, and np correspond to nζ , nu, nv, nw, and

np respectively. Table C.12 shows an example with marked columns and rows. In this case,

nζ = 1, nu = 3, nv = 2, nw = 2, and np = 1. There are a modified number of modes for v in Mass

and Energy where Mnv=1 and Env=1. Recall that the modified number of modes cannot be greater

than what is given by nqk , k = [1, D + 2].
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ζ u v w p
Mass 1 3 1 2 1
x-Momentum 1 3 2 2 1
y-Momentum 1 3 2 2 1
z-Momentum 1 3 2 2 1
Energy 1 3 1 2 1

Table C.12: Example of ODE Modes in const.dat file.

C.5.1.3 Auxiliary input files

This section provides a list of files that the ζ-ROM code reads in apart from the input and

const.dat files. All files are either from uns3d, the convert code, or from the BC_interpolation

code.

z.dat Snapshot file of specific volume produced by the FOM. Used for calculating

the error between the ROM and the FOM

u.dat Snapshot file of x-velocity produced by the FOM.

v.dat Snapshot file of y-velocity produced by the FOM.

w.dat Snapshot file of z-velocity produced by the FOM.

p.dat Snapshot file of pressure produced by the FOM.

grid.dat Grid file produced by the convert code

t.dat Nondimensional time file produced by the convert code

vol.mesh The uns3d grid file

c2n.def The uns3d node connectivity file

bladenodes.dat File containing the blade nodes from which the approximate prescribed

boundary conditions were developed. Produced by the BC_interpolation

code
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FFT.dat File containing the FFT coefficients found by the BC_interpolation

code

C.5.2 ζ-Coordinate POD-ROM Output Files

The following files contain the time and the exact time coefficients, aqiexact, for each variable of

the state vector.

• TCtz.dat: time, aζ1exact, . . . , a
ζ
nζ

exact

• TCtu.dat: time, au1
exact, . . . , aunuexact

• TCtv.dat: time, av1
exact, . . . , aunvexact

• TCtw.dat: time, aw1
exact, . . . , aunwexact

• TCtp.dat: time, ap1
exact, . . . , aunpexact

The following files contain the time and the calculated time coefficients, aqi , for each variable

of the state vector.

• TCtz_out.dat: time, aζ1 , . . . , aζnζ

• TCtu_out.dat: time, au1 , . . . , aunu

• TCtv_out.dat: time, av1 , . . . , avnv

• TCtw_out.dat: time, aw1 , . . . , awnw

• TCtp_out.dat: time, ap1 , . . . , apnp

The following files contain the spatial derivative of the basis functions of each variable of the

state vector. The columns are in the following order: all modes of ∂φ/∂x, all modes of ∂φ/∂y, all

modes of ∂φ/∂z, all modes of ∂2φ/∂x2, all modes of ∂2φ/∂y2, and all modes of ∂2φ/∂z2.

• dKLz.dat Spatial derivatives of ζ modes
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• dKLu.dat Spatial derivatives of u modes

• dKLv.dat Spatial derivatives of v modes

• dKLw.dat Spatial derivatives of w modes

• dKLp.dat Spatial derivatives of p modes

• err.plt Tecplot file showing the time-averaged error of the ζ-ROM vs. the FOM

• max.plt Tecplot file showing the maximum error of the ζ-ROM vs. the FOM at each

nodal point

• outmovie.plt Tecplot movie file showing the progress of the ζ-ROM as it integrates the

ODE system

• KLmodes_#.plt Tecplot file showing the basis functions of the # mode

• youtput.dat File containing the last calculated time coefficients listed in rows by order:

all modes of specific volume, all modes of x-velocity, all modes of y-velocity,

all modes of z-velocity, and all modes of pressure

• time.dat File containing the dimensional time

• tauvst.dat File outputting the penalty parameter of pressure versus time

• Kcal.dat File outputting the calculated error for pressure at the next time step used

in the penalty method in Eq. (4.8). Column 1 is time, columns 2 to np+1

is the predicted error at the next time step for each mode, column np+2 is

the reconstructed pressure, and column np+3 is the prescribed boundary

condition for pressure

• Kact.dat File outputting the actual error for pressure at the current time step for

comparing to the values outputted in Kcal.dat. Column 1 is the number
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of modes for pressure, column 2 is time, columns 3 to np+2 are the predicted

errors for each mode, column np+3 is reconstructed pressure, and column

np+4 is the prescribed boundary condition for pressure

• ytoutput#.dat File containing the calculated time coefficients along with time. The first

column contains dimensionless time. The second column and onward are in

the order: all modes of specific volume, all modes of x-velocity, all modes

of y-velocity, all modes of z-velocity, and all modes of pressure

• maxerr.dat File containing the maximum error at each time step for each state variable

along with the nodal location it occurred in the mesh. Column 1 is the

dimensionless time, columns 2-6 are the maximum error of specific volume,

x-velocity, y-velocity, z-velocity, and pressure respectively, and columns

7-12 are the locations of the maximum error for specific volume, x-velocity,

y-velocity, z-velocity, and pressure respectively

C.6 Input and Output Files for convert

C.6.1 convert Input File

&card1

gridfile C uns3d.mesh file

nruns I Number of snapshots

ntrans I Number of transients in the snapshots (to skip)

zlayer I Not Recommended to use unless the .mesh file is changed

(For 2D) If ran 3D, but want a 2D solution, select which

slice in the z-direction to use

L R Not Recommended to use unless the .mesh file is changed

(For 2D) Length of the domain (to detect when each z-layer

ends)
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movie L Flag to output a Tecplot movie of the snapshots

R R Universal gas constant in SI units

Tref R Reference static temperature

Pref R Reference static pressure

lref R Reference length

omegax R Wheel speed of the blade rotating about the x-axis

C.6.1.1 Auxiliary Files

• numsnaps.dat File containing the time for each snapshot

• rhosnaps.dat File containing the snapshots of ρ. Each snapshot is outputted at its respec-

tive time step for all nodes and appended onto the previous snapshot.

• rhousnaps.dat ‘...‘ ρu ’...’

• rhovsnaps.dat ‘...‘ ρv ’...’

• rhowsnaps.dat ‘...‘ ρw ’...’

• rhoEsnaps.dat ‘...‘ ρE ’...’

• c2n.def The uns3d nodal connectivity file

C.6.2 convert Output File

• z.dat File containing the snapshots of nondimensionalized ζ. Each snapshot is out-

putted at its respective time step for all nodes and appended onto the previous

snapshot.

• rho.dat ‘...‘ ρ ’...’

• u.dat ‘...‘ u ’...’
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• v.dat ‘...‘ v ’...’

• w.dat ‘...‘ w ’...’

• p.dat ‘...‘ p ’...’

• t.dat File containing the nondimensional time for each snapshot

• grid.dat Grid file containing the x, y, and z-coordinates for each nodal point

• out.plt Tecplot file outputting the FOM solution at the last snapshot

C.7 splitout and combineout

The UNS3D POD code writes its outputs based off of processor number when run in parallel.

Sometimes the user may wish to combine these files into one. Or, the user may wish to split a

single file into multiple files based off of processor number. For these cases, the split_out and

combineout codes can be used.

Both codes are contained in the split_out directory. The codes are compiled using gfortran.

If another compiler is desired, the user will need to modify the makefile within the directory. To

compile the codes type

make

in the directory. The makefile is designed to compile both codes.

C.7.1 splitout

The splitout code takes a single file and splits it to be read by multiple processors based

off of a loc2glob file. When executing the splitout code without any command line input

arguments, the splitout code will output the following: This lets the user know how to run the

code. There are three inputs: filename, filetype, and l2gfile.

• filename - The name of the file to be split (without the . extension)
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Program 1 splitout line argument output
------------------------------------------------------------
| The correct usage of this executable is as follows: |
| splitout <filename> <filetype> <l2gfile>, |
| |
| <filename> -- File to be split |
| <filetype> -- Can be "out", "def", "tur", or "#", |
| where "#" refers to the number of values/node |
| <l2gfile> -- Output file from splitmesh |
------------------------------------------------------------

• filetype - The type of file: "out", "def", "tur", or "#", where "#" refers to the number of

values/node. This code does not work on snapshot files. The filetype refers to the

. extension of the filename.

• l2gfile - The loc2glob file read in by the UNS3D POD code.

C.7.2 combineout

The combineout code takes multiple files split by processor number and combines them into

a single file using a provided loc2glob file. When executing the combineout code without

any command line input arguments, the combineout code will output the following: This lets

Program 2 combineout line argument output
------------------------------------------------------------
| The correct usage of this executable is as follows: |
| combineout <filename> <filetype> <l2gfile> [<c2nfile>],|
| |
| <filetype> -- Can be "out", "def", "tur", "plt", |
| "snaps", or "#", where "#" refers to the |
| number of values/node |
| <filename> -- Base name of files to be combined |
| <l2gfile> -- Output file from splitmesh |
| <c2nfile> -- Name of c2n connectivity (plt only) |
| <niter> -- Number of iterations (snaps only) |
------------------------------------------------------------
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the user know how to run the code. There are three to five inputs depending on the filetype:

filename, filetype, l2gfile, c2nfile, and niter.

• filename - The name of the file to be split (without the . extension)

• filetype - The type of file: "out", "def", "tur", "plt", "snaps", or "#", where "#" refers to

the number of values/node. For all except "snaps", the filetype refers to the .

extension of the filename. The "snaps" input is for combining snapshot files.

• l2gfile - The loc2glob file read in by the UNS3D POD code.

• c2nfile - The connectivity file c2n.dex read in by the UNS3D POD code.

• niter - The number of snapshots.
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