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ABSTRACT

Gene expression variability has been associated with specific roles in cell function. However,

its functional implications in multicellular organization have not been systematically tested due

to technical limitations. Furthermore, their potential application in functional genomics that may

increase our understanding of the regulatory mechanisms driving different cell states and the ac-

tive role of the genes on them have not been evaluated. Thanks to the development of single-cell

RNA-seq techniques allowing the measurement of the transcriptome profile in thousands of cells

in a single experiment, now it is possible to characterize the synchronized patterns of expression

of genes participating in the same biological processes or under the regulation of the same tran-

scription factor. This allows identifying cells under the same cellular state and genes’ functional

relationships driving those cellular states without the need for genetic manipulations.

Here we introduce three new single-cell RNA-seq datasets (from lymphoblastoid cell lines,

Ahr, and Malat1 knockouts). We also introduce cell-type and tissue-specific thresholds for single-

cell RNA-seq quality control and novel computational methods to increase our understanding of

the biological implications of the single-cell gene expression variability in a high-level order in

multicellular organisms and its applications for the identification of differentially regulated genes

driving the observed cellular states, and the prediction of the cell-type-specific functional roles of

the genes. Our results provide evidence supporting the ‘variation is function’ hypothesis suggest-

ing that the aggregate cellular function may depend on the single-cell gene expression variability

observed among cells of the same type under the same environment. We show that the reported

thresholds for single-cell RNA-seq quality control accurately discriminate between healthy and

low-quality cells in different tissues and cell-types. We also demonstrate that our novel computa-

tional methods based on gene expression variability and unsupervised machine learning algorithms

allow unraveling the regulatory mechanisms underlying cell behaviors and the accurate prediction

of the perturbations caused by the deletion of a gene in a gene regulatory network revealing the

gene’s function in a cell type-specific manner.
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1. INTRODUCTION

Gene expression (GE) is a cellular phenotype under genetic and environmental regulation [1].

At the molecular level, GE starts with the association of RNA polymerase and a transcription factor

(TF), which leads to the binding of the polymerase in the promoter region (in a double-stranded

state) of specific genes regulated by the TF. The RNA polymerase then separates the DNA into

single strands, creating an open chromatin state, where the template strand can be read in the 3’ to

5’ direction. Nucleotides are then quickly paired with their complementary bases until they reach

the terminator signal. After that, the RNA polymerase leaves the DNA, releases the mRNA, and

the two DNA strands come back together and reform the double helix [2]. This event occurs in

each cell independently for each gene, in a synchronized manner essential to maintain the cellular

homeostasis and respond to specific stimuli.

The recent advancement of technologies to measure the gene expression profile at the single-

cell level (single-cell RNA-seq) in thousands of cells in the same experiment has increased our

understanding of the biological processes happening in the cells [3, 4]. This new resolution of the

expression profiles has been widely adopted to refine the categories of established cell types and

systematically and reproductively examine complex tissues’ cellular composition [5]. The power

of single-cell RNA-seq is also often used to classify new cellular states among the same cell type

[6]. Under the same conditions, cells of the same type and state can still exhibit substantial cell-to-

cell differences in their gene expression profiles [7]. These changes are known as single-cell gene

expression variability.

At the bulk level, GE variability is measured among individuals of a population, and it is

known to be responsible for producing phenotypic variability [8]. In medicine, phenotypic vari-

ability has been associated with disease susceptibility due to the generation of extreme phenotypes

and reduced response to drugs that target genes with highly variable expression profiles among

individuals [9, 10]. At the single-cell level, however, their functional roles in cell homeostasis are

still under research. Gene expression variability can be classified into intrinsic and extrinsic vari-
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ability depending on their origin. Biochemical processes like transcription and translation produce

‘intrinsic’ variability, and fluctuations in the quantities or states of other cellular components and

extracellular signals often contribute indirectly to gene expression changes and the generation of

‘extrinsic’ variability [11].

Intrinsic GE variability has been hypothesized to be crucial for population-level function in a

hypothesis called variation-is-function [12]. The variation-is-function hypothesis states that the

intrinsic cell-to-cell variability indicates a diversity of hidden functional capacities, which may fa-

cilitate cells’ collective behavior. This collective behavior is essential for the function and normal

development of cells and tissues. The loss of this collective cellular behavior may result in disease.

Thus, investigation of the intrinsic cell-to-cell variability may contribute to understanding patho-

logical processes associated with disease development. Identifying the highly variable genes in

different biological scenarios may also help identify non-suitable targets for treating diseases [10].

Testing this hypothesis requires measuring each cell’s individual gene expression profile within a

highly homogeneous population of cells. Micro-environmental perturbations and stochastic factors

at the cellular level, such as local cell density, cell size, shape, and rate of proliferation, cell cycle

have to be controlled [13, 14, 15]. The characterization of the relationship of the gene expression

variability on cell function requires understanding which genes show greater or less cell-to-cell

variability in their expression [16]. Under the variation-is-function hypothesis, different tissues

or cell types must have different sets of highly variable genes [12]. These highly variable genes

should be enriched with functions that reflect the biological processes associated with the respec-

tive tissues or the cell types.

GE variability measured across cells also allow us to infer relevant interactions between genes

without the need for genetic manipulations [17]. By using reverse engineering, single-cell GE

variability enables identifying the regulatory mechanisms associated with its own generation [18,

19]. Those regulatory mechanisms are usually represented in a gene regulatory network (GRN) at

different resolution levels from a single individual. A GRN is a graph that describes the relationship

between transcription factors, associated proteins, and their target genes [20]. The analysis of
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GRNs promotes the interpretation of cell states, cell functions, and regulatory mechanisms that

underlie cell behaviors. However, constructing single-cell GRNs (scGRNs) using data from single-

cell RNA-seq and then effectively comparing constructed scGRNs presents significant analytical

challenges. Single-cell RNA-seq data is highly sparse, usually containing more than 70% zero

values [21]. The sparsity level makes mapping GRNs from single-cell data a challenging task that

requires a robust construction method to avoid misleading results and inappropriate conclusions

[22]. The comparison between two scGRNs is also a difficult task. Comparing each edge of the

graph between networks would be ill-powered when the networks represent thousands of genes’

regulatory relationships. This comparison’s main goal is to detect alterations in gene regulation

between cellular states that may not be recovered by just testing the differential expression and

relating those alterations to cellular function changes [23, 24].

Since transcription factors regulate eukaryotic cells’ gene expression, generating patterns across

the expression profiles of all the target genes regulated by the same transcription factors [25]. These

patterns have allowed mapping a significant proportion of interactions between biochemical enti-

ties in the cell. Moreover, synchronized expression patterns (co-expression) are characteristic of

genes involved in the same biological process or metabolic pathway. Those relationships repre-

sented in the gene regulatory network are known to allow predicting the perturbations such as the

caused by the deletion or malfunction of a gene [26, 27]. Given that at the transcriptome level, the

topmost usually perturbed (differentially regulated) genes after a gene knockout (KO) are associ-

ated with the biological process or metabolic pathway in which the knocked-out gene is involved

[28]. This predictable behavior of the cells allows characterizing the biological processes in which

a gene is involved in different cell states. Compared with the traditional way to decode the cel-

lular role of a gene consisting of inactivating one of the organism’s genes and then characterize

the displayed phenotype compared with the one from a wild-type organism with a similar genetic

background, the approach based on the analysis of the network topology requiring only the wild-

type RNA-seq data is more suitable to identify the functional role of the genes under different

scenarios in a time and cost-effective manner.
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Here I present my research using the gene expression variability observed in public and newly

generated single-cell RNA-seq experiments. I used this property of the datasets to test the variation-

is-function hypothesis, to construct and compare single-cell gene regulatory networks among dif-

ferent cellular states and perturbations to detect alterations in gene regulation and relate those

alterations into changes in cellular function, as well as to predict the cell-type-specific functional

roles of the genes in different cell states.

This research project was based on the fact that gene expression variability is ubiquitous in all

kingdoms’ organisms and has been associated with specific roles in cell function [7, 12]. However,

its functional implications in cell function and multicellular organization have not been system-

atically tested due to technical limitations. Furthermore, their potential application in functional

genomics that may increase our understanding of the regulatory mechanisms driving different cell

states and the active role of the genes on them have not been evaluated. The foundations were

that the development of new high-throughput technologies such as single-cell RNA-seq allowing

us to measure all genes’ expression also provides us with an extraordinary opportunity to charac-

terize the biological processes happening in every single cell of an organism [4]. The expression

profiles of the genes across cells also contain information about the synchronized patterns of ex-

pression of genes participating in the same biological processes or under the regulation of the same

transcription factor allowing the identification of functional relationships between genes without

genetic manipulations [17]. Our rationale was to use available public datasets and develop new

computational methods that make use of the variability of the gene expression, to increase our

understanding of the biological implications of such variability in a high-level order in multicel-

lular organisms, identify differentially regulated genes driving the observed phenotypes through

the construction and comparison of gene regulatory networks, and to predict the cell-type-specific

functional roles of genes using the information provided by the constructed single-cell gene regu-

latory networks’ topology.

In the next five chapters, I describe the single-cell RNA-seq data generation and characteriza-

tion of two lymphoblastoid cell lines (LCLs) with different ascendance (Chapter 2). The compar-
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ison of the mitochondrial content across all the datasets included in the PanglaoDB [29] database

to generate thresholds for quality control purposes (Chapter 3). The evaluation of the variation-is-

function hypothesis [30] taking advantage of the distributional properties of the single-cell RNA-

seq data and the advance of the multivariate methods to select homogeneous populations of cells

(Chapter 4). The development of scTenifoldNet (Chapter 5), a workflow based on machine learning

methods to construct and compare single-cell gene regulatory networks using single-cell RNA-seq

data collected from different conditions, as well as the development of scTenifoldKnk (Chapter 6),

another workflow to perform in-silico knockout experiments using single-cell RNA-seq data from

wild-type control samples used as input.
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2. SINGLE-CELL RNA SEQUENCING OF A EUROPEAN AND AN AFRICAN

LYMPHOBLASTOID CELL LINE *

2.1 Introduction

Immortalized cell lines are continuously growing cells derived from biological samples. Lym-

phoblastoid cell lines (LCLs) are one of the important members among many immortalized cell

lines [31]. LCLs are usually established by infecting human peripheral blood lymphocytes in vitro

with Epstein-Barr virus (EBV). The viral infection selectively immortalizes resting B cells, giving

rise to an actively proliferating B cell population [32]. LCLs exhibit a low somatic mutation rate in

continuous culture, making them the preferred choice of storage for individuals’ genetic material

[33]. As one of the most reliable, inexpensive, and convenient sources of cells, LCLs have been

used by several large-scale genomic DNA sequencing efforts such as the International HapMap

and the 1, 000 Genomes projects [34, 35], in which a large collection of LCLs were derived from

individuals of different genetic backgrounds, to document the extensive genetic variation in human

populations.

LCLs are also an in vitro model system for a variety of molecular and functional assays, con-

tributing to studies in immunology, cellular biology, genetics, and other research areas [36, 37,

38, 39, 40, 41, 42]. It is also believed that gene expression in LCLs encompasses a wide range

of metabolic pathways specific to individuals where the cells originated [43]. LCLs have been

used in population-scale RNA sequencing projects [44, 45, 46], as well as epigenomic projects

[47]. For many LCLs used as reference strains, both genomic and transcriptomic information is

available, making it possible to detect the correlation between genotype and expression level of

genes and infer the potential causative function of genetic variants [48]. Furthermore, compar-

This chapter has been reprinted from: Osorio, Daniel, Xue Yu, Peng Yu, Erchin Serpedin, and James J. Cai.
‘Single-cell RNA sequencing of a European and an African lymphoblastoid cell line’. Scientific data 6, no. 1
(2019): 1-8. Available at: https://www.nature.com/articles/s41597-019-0116-4. Licensed under a Creative Commons
Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
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isons of gene expression profiles of LCLs between populations such as between Centre d’Etude du

Polymorphisme Humain – Utah (CEPH/CEU) and Yoruba in Ibadan, Nigeria (YRI), have revealed

the genetic basis underlying the differences in transcriptional activity between the two populations

[46, 49].

With the advent of single-cell RNA sequencing (single-cell RNA-seq) technology [50, 4], our

approach for understanding the origin, global distribution, and functional consequences of gene ex-

pression variation is ready to be extended. For example, data generated from single-cell RNA-seq

provide an unprecedented resolution of the gene expression profiles at single cell level, which al-

lows the identification of previously unknown subpopulations of cells and functional heterogeneity

in a cell population [51, 52, 53].

In this study, we used single-cell RNA-seq to assess the gene expression across thousands of

cells from two LCLs: GM12878 and GM18502. Cells were prepared using a Chromium Controller

(10× Genomics, Pleasanton, CA) as described previously [4] and sequenced using an Illumina No-

vaseq. 6000 sequencer. We present this dataset on the single-cell gene expression profile for more

than 7, 000 cells from GM12878 and more than 5, 000 from GM18502. GM12878 is a popular

sample that has been widely used in genomic studies. For example, it is one of three ‘Tier 1’

cell lines of the Encyclopedia of DNA Elements (ENCODE) project [47, 54]. GM18502, derived

from the donor of African ancestry, serves as a representative sample from the divergent popula-

tion. The two cell lines are part of the International HapMap project, and genotypic information

is available for both of them [34]. We also processed and sequenced an additional sample of

1 : 1 mixture of GM12878 and GM18502 using the same single-cell RNA-seq procedure. Our

dataset presented here provides a suitable reference for those researchers interested in performing

between-populations comparisons in gene expression at the single-cell level, as well as for those

developing new statistical methods and algorithms for single-cell RNA-seq data analysis.
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2.2 Materials and Methods

2.2.1 Cell culture

GM12878 and GM18502 cell lines were purchased from the Coriell Institute for Medical Re-

search. Cells were cultured in the Roswell Park Memorial Institute (RPMI) Medium 1640 sup-

plemented with 2mM L-glutamine and 20% of non-inactivated fetal bovine serum in T25 tissue

culture flasks. Flasks with 20mL medium were incubated on the upright position at 37°C under

5% of carbon dioxide. Cell cultures were split every three days for maintenance. Note that authen-

tication test and mycoplasm contamination screening on these freshly purchased cell lines were

not undertaken in this study.

2.2.2 Growth curve

Four culture flasks for each cell line were started with approximately 200, 000 viable cells/mL

to measure the growth rate of each cell line. Cells were prepared and cultured as described above.

Viable cell number was estimated on a daily basis for four days. Briefly, 100uL suspended cells

from each flask were taken every day, to visualize the viable cells, the samples were stained using

10uL of Trypan Blue (0.4%), and live cells were counted manually using a Neubauer counting

chamber.

2.2.3 Single cell preparation

Single-cell sample preparation was conducted according to Sample Preparation Demonstrated

Protocol provided by 10× Genomics as follows: 1mL of cell suspensions from each cell line (day

4, stable phase) was pelleted in Eppendorf tubes by centrifugation (400g, 5min). The supernatant

was discarded, and the cells pellet was then resuspended in 1x PBS with 0.04% BSA, followed

by two washing procedures by centrifugation (150g, 3min). After the second wash, cells were

resuspended in ≈ 500uL 1x PBS with 0.04% BSA followed by gently pipetting mix 10-15 times.

Cells were counted using an Invitrogen Countess automated cell counter (Thermo Fisher Scientific,

Carlsbad, CA) and the viability of cells was assessed by Trypan Blue staining (0.4%).
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2.2.4 Generation of single cell GEMs (Gel bead in EMulsion) and sequencing libraries

Libraries were prepared using the 10× Genomics Chromium Controller in conjunction with the

single-cell 3’ v2 kit. Briefly, the cell suspensions were diluted in nuclease-free water according to

manufacturer instructions to achieve a targeted cell count of 5, 000 for each cell line. The cDNA

synthesis, barcoding, and library preparation were then carried out according to the manufacturer’s

instructions. Libraries were sequenced in the North Texas Genome Centre facilities on a Novaseq.

6000 sequencer (Illumina, San Diego).

2.2.5 Mapping of reads to transcripts and cells

Sample demultiplexing, barcode processing, and unique molecular identifiers (UMI) counting

were performed by using the 10× Genomics pipeline CellRanger v.2.1.0 with default parame-

ters. Specifically, for each library, raw reads were demultiplexed using the pipeline command

‘cellranger mkfastq’ in conjunction with ‘bcl2fastq’ (v2.17.1.14, Illumina) to pro-

duce two fastq files: the read 1 file contains 26-bp reads, each consists of a cell barcode and

a unique molecule identifier (UMI), and the read 2 file contains 96-bp reads including cDNA se-

quences. Reads then were aligned to the human reference genome (GRCh38), filtered, and counted

using ‘cellranger count’ to generate the gene-barcode matrix. Summary metrics of bar-

coding and sequencing from raw data are given in Table 2.1.

2.2.6 Quality control

Expression matrices were processed using Seurat (v2.3.4) R package [55]. Briefly, for each

library, the expression matrix was loaded using the ‘Read10X’ function, and the default log-

normalization was performed using the ‘NormalizeData’ function, followed by a cantering

and scaling of the normalized values by using the ‘ScaleData’ function. Quality control (QC)

measures, including UMI count, the number of genes detected per cell, and the percentage of

mitochondrial transcripts were calculated. Cells with a proportion of mitochondrial reads lower

than 10% and a library size smaller than 2.5× standard deviation (SD) from the average library

size were considered good quality cells.
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GM12878 GM18502 Mixture
Estimated Number of Cells 7,247 5,530 5,828
Mean Reads per Cell 65,466 91,493 83,326
Median Genes per Cell 2,954 3,960 3,621
Number of Reads 474,436,605 505,958,821 485,628,282
Valid Barcodes 97.20% 97.30% 97.20%
Sequencing Saturation 50.30% 53.50% 53.30%
Q30 Bases in Barcode 94.90% 94.80% 94.80%
Q30 Bases in RNA Read 90.20% 89.60% 89.90%
Q30 Bases in Sample Index 91.50% 93.40% 92.20%
Q30 Bases in UMI 94.80% 93.40% 94.70%
Reads Mapped to Genome 93.90% 93.70% 93.70%
Reads Mapped Confidently to Genome 92.00% 92.00% 92.00%
Reads Mapped Confidently to Intergenic Regions 2.60% 2.70% 2.70%
Reads Mapped Confidently to Intronic Regions 12.90% 13.10% 12.80%
Reads Mapped Confidently to Exonic Regions 76.50% 76.20% 76.50%
Reads Mapped Confidently to Transcriptome 72.60% 71.90% 72.50%
Reads Mapped Antisense to Gene 0.90% 0.90% 0.90%
Fraction Reads in Cells 90.70% 91.70% 89.80%
Total Genes Detected 21,329 20,701 21,151
Median UMI Counts per Cell 18,214 25,973 22,608

Table 2.1: Summary metrics for 10× Genomics single-cell RNA-seq barcoding and sequencing of
three LCL samples (GM12878, GM18502, and the 1 : 1 mixture).

2.2.7 Cell cycle phase and population assignment

Cell cycle phase assignment was made using the ‘CellCycleScoring’ function in the

Seurat R package [55], which uses the phase-specific marker genes, given by the ‘cc.genes’

dataset [56]. Cell population assignment, i.e., assigning cells in the mixture sample back to the

cell line (GM12878 or GM18502) they belong to, was made using the Brunet algorithm [57] for

non-negative matrix factorization, in the NMF (v.0.21) R package [58]. A set of marker genes

(n = 252) with absolute log-fold change > 2.5 identified by comparing the pure cell lines was

used as inputs and the resulting probabilities after 2, 000 iterations were used to assign each cell in

the mixture to either GM12878 or GM18502.
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2.2.8 Dimensionality reduction

Expression matrices from GM12878, GM18502, and the mixture sample were merged and

log-normalized using the function ‘MergeSeurat’. The resultant matrix was then centered

and scaled. Highly variable genes were identified using function ‘FindVariableGenes’ in

the Seurat R package [55]. Identified highly variable genes were used as input to produce the

t-Distributed Stochastic Neighbour Embedding (t-SNE) projection using the ‘RunTSNE’ func-

tion with standard settings (perplexity = 30, theta = 0.5, maximum_iteration =

1000, learning_rate = 250, and momentum_reduction = 0.5, by using the first 5

components from the principal component analysis). The Uniform Manifold Approximation and

Projection (UMAP) was produced with the same set of highly variable genes as input using the

function ‘RunUMAP’with standard settings (min_dist = 0.3, metric = correlation,

n_neighbors = 30).

2.2.9 single-cell RNA-seq versus bulk RNA-seq

For both GM12878 and GM18502, transcriptome has been previously sequenced using bulk

RNA-seq. The availability of these existing data allowed us to examine the correlation between

gene expression levels measured using single-cell RNA-seq and bulk RNA-seq in the same LCLs.

Thus, we downloaded the raw fastq files of bulk RNA-seq experiments from the Gene Expression

Omnibus (GEO) database using accessions GSM484896 [59] (for GM12878) and GSM2392689

[60] (for GM18502) and quantified gene expression for both samples using Salmon [61] (v.0.12.0)

against the human transcriptome (GRCh38). In addition, we also compared gene expression mea-

sured using single-cell RNA-seq in GM12878 and GM18502 with the average gene expression

measured in multiple samples from CEU and YRI populations. To do so, we downloaded the bulk

RNA-seq data of 91 CEU and 89 YRI LCLs from the website of the Geuvadis RNA-seq project of

1, 000 Genomes. The expression of each gene was measured as the mean of transcripts per million

(TPM) values across all individuals of CEU or YRI population. To visualize the relationship of the

single-cell gene-expression profiles of the two cell lines with their respective population, a princi-
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pal component analysis (PCA) was performed. The input data for PCA was batch-effect corrected

using the ‘removeBatchEffect’ function in the limma (v.3.4.0) R package [62] and quantile

normalized using the ‘normalize.quantiles’ function in the preprocessCore (v.1.46.0) R

package.

2.3 Results

Here we present the single-cell RNA-seq gene expression profile for 7, 045 and 5, 189 cells

for GM12878 and GM18502, respectively. For GM12878, the median UMI counts per cell is

18, 214 and the median number of genes detected (at least 1 UMI) per cell is 3, 167; for GM18502,

25, 973 and 3, 891. Figure 2.1 is a heatmap of log-transformed expression data of top 200 highly

expressed genes in the two LCLs. Cells are grouped by their cell cycle phases (G1, S, and G2/M)

and sorted within each group by their library size. Among the top expressed genes, there are

several immunoglobulin genes such as IGLC2, IGHA1, IGKC, IGLC3, and IGHM. These genes are

not only expressed highly on average but also expressed highly variably across cells—i.e., highly

expressed in one set of cells but no expression in another set of cells. We consider that this highly

variable expression pattern can be attributed to immunoglobulin gene rearrangement. During the

formation of the naïve-B cells, gene rearrangement process occurs to reshuffle different subunits of

the variable (V), diversity (D) and joining (J) segments of immunoglobulin genes, resulting in the

generation of a wide range of organism-specific antigen receptors that allow the immune system

to recognize foreign molecules and initiate differential immune responses [63, 64]. LCLs are

produced through the rapid proliferation of few EBV-driven B cells from the blood cell population

[65]. Thus, our single-cell RNA-seq data of GM12878 and GM18502 offer a ‘snapshot’ of highly

diverse immunoglobulin rearrangement profiles in a much larger population of polyclonal B cells

found in the two donors.

We also performed single-cell RNA-seq with a 1 : 1 mixture sample of the two LCLs and ob-

tained data for additional 5, 820 cells with a median UMI counts per cell of 22, 608 and a median

number of genes detected per cell of 3, 625. This mixture sample can be considered as a technical

replicate for both GM12878 and GM18502. The use of the mixture sample facilitates direct com-
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Figure 2.1: Heatmap of single-cell gene expression levels of the top 200 genes highly expressed
in GM12878 and GM18502. Values are log-transformed UMI counts. For coloring purposes,
values are truncated at a range between 0 and 4. Genes are arranged by the expression level.
Cells are grouped according to cell cycle phases and sorted by their library size within each group.
Immunoglobulin genes are labeled.

parison of gene expression between GM12878 and GM18502 because cells from two cell lines in

the mixture were processed simultaneously in the same reaction, maximally eliminating the batch

effect. We found that cells in the mixture were able to be assigned back to their original cell lines

almost unambiguously using a non-negative matrix factorization algorithm (see Section 2.2.7).

Furthermore, the average gene expression measured in cells in the mixture, after discriminating

cells in the mixture and assigning them to their respective one of original cell lines, was virtually

indistinguishable from that measured in the original ‘pure’ cells (Fig. 2.2).

The percentage of mitochondrial transcripts, an indicator of apoptotic cells, was computed for

all cells sequenced in all the three samples. We found that no more than 0.4% of cells, that is,

26 cells from GM12878, 6 from GM18502, and 23 cells from the mixture sample, surpass the

commonly used threshold of 10% mitochondrial transcripts [66]. This suggests that the majority

of cells processed and sequenced were viable. Furthermore, as the 10× Genomics Chromium

technology relies on droplets to partitioning cells and barcoding, it is normal some of them contain

multiple cells in the cell droplet, making the estimation of the frequency of multiplets a critical

aspect of quality control [67]. There are several ways to identify multiplets [68, 69, 70]. Here
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Figure 2.2: Cell growth curves and the gene expression correlations between samples. (a) Growth
curve of the GM12878 and GM18502 cultured in the same RPMI 1640 medium. (b) Spear-
man’s correlation between the gene expressions profiles UMI average of the cells assigned to
the CEU population from the mixture and those from the pure GM12878 cell line. Values were
log-transformed, and each dot represents a gene. (c) Spearman’s correlation between the gene ex-
pression (average UMI) of cells assigned to the YRI population from the mixture and those from
the pure GM18502 cell line. Values are log-transformed, and each dot represents a gene.

we adopted the threshold of 2.5× SD from the average library size for each cell. Based on this

threshold, only 171 cells were considered to be multiplets for GM12878, 66 for GM18502, and 87

for the mixture (Fig. 2.3). These results support the quality of the dataset.

In either t-SNE or UMAP projection, no separation was observed between cells from the two

pure cell lines, GM12878 and GM18502, and cells from the corresponding replicates of the two

pure cell lines in the mixture (Fig. 2.4). This result suggests that cells in the mixture have the

global expression profiles indistinguishable from those of cells of their original samples. Popula-

tion signal of each sample allows a sample to be separated from others in the first two t-SNE or

UMAP dimensional spaces. Furthermore, for each cell line, cells of different cell cycle phases are

not entirely separated – a continuous path between the different clusters of cells exist. This al-

lows researchers interested in cell cycle development to perform pseudo-time analysis [71]. Also,

cells in the same cell cycle phase tend to be spread out and form a spectrum of cells in interme-

diate stages, indicating that cell proliferation is a continuous process and researchers interested

in this process can use this dataset to refine reference cell sub-populations by their characterized

14



●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●●

●

●●

●

● ●● ●
●

●
●

● ●●

● ●

● ●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●
● ● ●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●●

●●

●
● ●

● ●

●
●

●

●

●

●●

● ●
●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●● ●
●

●
●

●

●●
●

●

●●

●
●

● ●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
● ●

● ●
●●

●●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●
● ●

●
● ●

●
●

●

●

●

●

● ●

●

●●
●

● ●

●

●

●
●

●

●●

●
●

●

● ● ●

●

●
●
● ●

●

●

●
●

●

●

●
●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
● ●

●

●

● ●●●

●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●●●

●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●

●●

●

● ●
●

●

●●
●●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●●
●

●

●

●
● ●

●

●
●

● ●● ●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●
●

●●

●

●

●●
●

●

●

● ●●

●
●

●

●

●

●●

●

● ●

●
●
●

●

●

●
● ●

●

●
●

●

●

● ●

●
●●

●

●

●
●

●

●

●●

●

● ● ●●

●● ●●
●

●

●

●●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●● ●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●●
●●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

● ●

●
●

●

●
●

●
●
●

●

●

●●

● ●
●

●

● ●

● ●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●● ●
● ●

● ●● ●●

●

●●
●

● ●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●● ●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●
●

●

●

●

●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●●
●

●

●

●
●

●●

●

●

●●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●●

●

●

●●
●

●
●●

●
●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●●

●

● ●

●●

●●
●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

● ●

●

● ●

●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

● ● ●

●

●

●●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●●●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●●●
●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

● ●

●

●

●

●
●

●
● ●

●●

●

●●

●

●
●

●

● ●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●
●

●
● ●

●

●

●●

●

●●●

● ●
●

● ●●●
● ●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●
●
●

●
●

● ●●

●

●

●● ●●

●

●
●

●
●

● ●

●

● ●
●

●
●

●

●
●●

●

●

●

● ● ●

●
●

●
●

●

● ●●● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●
●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

● ●
●

●●

●
●

●
● ●

●● ●

●
●

● ●●

●
●

●
●

●
●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●● ●

●

●

●

●

●

●●

●

●
● ●

●
●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●● ●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●
●

●●

●●

●

●

● ●

●

●

● ●
●

●

●
●

●

●●

●
●●

●

●
●

●

●

●

●●

● ●
●

●
●

●

●

● ●
●

●

●
●

●
●

●
●

●
● ●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●●

●

●
●

●

●
●●

●

●
● ●

●

●

●

●

●
● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●●
●

●

●
●

● ●

●

●

●

●●

●●

●●

● ●

●

●

●
● ●

●
●

●

●●
●

●

●

●

●

● ●

●

●
● ●

●

● ●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●
●

●
●●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

● ●

●

●
●

●

●

●●

●

● ●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●● ●

●

●

●

● ●

●

●

●●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●●

●

●

●

● ● ●

●
●

●●

●
●

●

●
●●

●

●

●

● ●
●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●●

● ●

●
●

●
●

●

●
●

●
● ●

● ●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●●● ●

●

● ●●

●

●

●●

●●●

●

●

● ●

●

●

● ●●

●
●

●

●

●●

●

●
●●

●

●
● ● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●
●

●

●●
● ●●

●
●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●●
●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●
●●●

●

●

●
● ●

●● ●●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

● ●

●

●●

●
●

●●

●

●

● ●

● ●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●● ●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

● ●

●
●

●

●

●
●

●●

●

●
●

●

●

●

● ●

●

●

●

● ●

●
●

●

●
● ●

●

●

●

●
●

●

●

●
●

● ●

●

●
● ●

●

●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●●

●
●

●

●

●

●
●●

●

●

●
●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●●
●

●

●●
●

●

●

●
●

●

●

● ● ●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●●
●

●

●
●●

●

●
●

●

●●
●●●

●

● ●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●● ●●

●
●

●
●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●●●

●●

●
●

●●

●●

●

●
●●

●
●

●

●●
●

●
●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●●
●

● ●●

●

●
●

● ●
●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ●●

●

●●

● ●

●

●

●●

●●●

●●

●

●●
●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●● ●

● ●

●● ●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●●

●
● ●

●

●●

●

●

●●●

●●

●
●

●●

●

●

●

●
●●

●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●
● ●

●

● ●

● ●
●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●●
●●

●
● ●

●
●●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●
● ●

●

● ●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
● ●

● ●●

●
●

●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●● ●

●

●

●

●●

●

●
●

●
● ●

●

●

●
●

●
●

● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

● ●

●●

●
●

●●

●
●

●●

●

●

●

●
●

●

●
● ●●

●

●

●

●●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●●
●● ●

●
●

●

●

●

●
●

●

●
●

●

●

●●
●

● ●●

●

●

●

●

●●

●

● ● ●

●

● ● ●

●
●

●
●

●
●

●

●
●

●●
●

●

●

●●
● ●

●
●●

●●

●

● ●
●

●

●
●

● ●

●

●

●
●●

●●

● ●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●●●●

●

●● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

● ●●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
● ●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●
●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●●

●●

● ●
●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

● ●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
● ●●●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●●

● ●

●

● ●

●

●●
●

●●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●
●

●
● ●

●

●

●

●

●

● ●

●

●

●●

●

●
●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

● ●

●● ●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●●

●

●

●
●

●●

●

●

●

●

● ●

●

●
● ●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●
●

●
● ●

●
● ● ● ●

●
● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
● ●

●
● ●

●●

●
●

● ●

●
●

●

●

●

●

●
●

●

●● ●
●

●
●

●

●●
●

●

●

●●
● ●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●● ● ●

●● ●

●

●

●

●

●●

●

●
●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

● ●
●

●

●

●

●
●

● ●

● ●

●

●
●●

●

●●

●

●
●

●

●

●●
●

●

●

●●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●● ●

●●
●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●
●

●

● ●
●

●

●

●●

●

●

●

● ●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●●

●● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

● ●

●

●
●●

●●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●● ● ●
●

●
●

●●
●●●

●

●
● ●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

● ● ●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
● ●

●

●

●

●●

●
●

●●

● ●

●

●

●
●

●

● ●

●
●●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●
●

●

●
●

● ●

● ●

● ●●

●
●

●

●

●

●

● ●●●
●

●

●

● ●●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●
●

●

●
●●

● ●

●
●

● ●
●

●

●●
●

●
●

●●

●
●

●
●

●

●

●

●

●

●●
● ●

●
●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●●
●

●
● ●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●
●

●

●●

●

●
●
●

●

●

●
●

●

●
●

●●

●

● ●
●

●

●

●
●

●
●●

●

●●
●● ●

●

●
● ●

●

●●

●

●

●
●

●
● ●

●
●

●

●● ●

●●

●
●
●

●

●

●

●●

●● ●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●

●
●

●

● ●

●●●

●
●

●
●

●

●

●●
●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

● ●
●

●
●

●●
●● ●●

●

●●

●
●

●

●
●

●
● ●

●

●

●●

●
● ●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

●
●●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ●
●

●

●

● ●
●

●●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●
●

●
● ●

●
●

●

●

●

●

●●
●

●

●

● ●●
●

●

●

●
●● ●

●
●

●
●

●

●

●
●

● ●

●
●

●
●

●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●
● ●● ●

●

●

●

●

●

●● ●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●●
●

●
●●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●
●

●

●
●●

●

●

●

●

●●●
●

●

●

●●
● ●

● ●
●

●

●

●

●
●

●●

●●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●●
●

●
●

●●

●

●

●

●

●

●

● ●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●● ●
●

●
●●

●

●

●

● ●
●

●

●

●●

●

●

●●

●

●
● ●● ●●

●

●
●

●

●

●

●

●
● ●

● ●

●●

●

●

●
●●

●
●

●●

●

●

●

●

●

●
● ●●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●●

●

●

●

●

● ●
●

● ●
●

●

●

●

●●●

●●
●

● ●

●
●

●
●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●
●

● ●●
●

●
●

●●

●

●

● ●
●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●●●
●

●

● ●

●
●

●●
●

● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ● ●

●

●

●
●

●

●

●
●

●
●●

●
●

●
●

● ●

●

●

●
●

●
●
●

●

●

●
●

●
● ●

●

●
● ●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

● ●
●●●

●

●

●

●

●

●
● ●

●

● ●● ●

●

●

●

●

●
● ●

●●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

●
●

●
●

●● ●

●●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●
●

●●●
●

●

●

●
●●

●

●

●
●

●
●

●●
●

●

●

●

●

● ●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●●

●

● ●

●

●

●●●

●
●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

● ●
●

●

●●

●

●●
● ●

●

●

●●

●

●
●

●
●

●

●●

●

●

●●●
●

●

● ●●
●
●

●●

●

●
● ●

●
●

●●
●

●
●●

●

● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●●●

●

●
●

● ●● ●●●

●●
●

●
●

●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●
●

●

●●
● ●

● ●

●
●

●●
●

●
● ●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●
●●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●●●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●●

●

●

●
●●

●
●

●

●
●

●

●● ●
● ●

● ●

●

●

●

●

●

● ●
●

●
●

●

●
●●

●

●

●

● ●●
●

●

● ●●
●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●

●
●●

●

●
● ●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●●
●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

● ● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●●

●
●●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●
●

●●
●

●

●

●
●

●

●

●

●
●

● ● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●● ●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●●

●

●●
●

●●
●

●
●

● ●
●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●●

●
● ●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

● ●
●

●
● ●

●
●●

●

●
●

●
●

●

●●

●

●

●
● ●

●
●

●● ● ●

●
● ●

●
●
● ●

●
●

●

●

●
●

●

●
● ●

●

● ●

●

●●
● ●

●

●
●

●
●

● ●●
●

●

0.0

0.1

0.2

0.3

0.4
GM12878

M
ito

ch
on

dr
ia

l T
ra

ns
cr

ip
t P

er
ce

nt
Mitochondrial Proportion Threshold
Library Size Threshold

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●
● ●

● ●
●

●

●

●●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●

●●
●●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●
●●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●●

●
●

●

●●
●

●●

●

● ●

●

●
●

●●
● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●● ●●

●

● ●
●

●
●
●

●

●

●

●

● ●

● ●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

● ●

●

●
●

●
●

●

● ●●
●●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●
● ●

●
●

●●

● ●

●

●

●●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●
●●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●
●●

●
●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●

●

●

●●

● ●

●

●

●

●
●● ●

●

●

●●
●

●●

●
●

●

●

●

● ● ●

● ●
●

●

●

●

●

●
●

●
●

●

●

●
●

●● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

● ● ●●

●

●●

●

● ●● ●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●●●

●

●

●● ●

●

●
●

●
●

●

●●
● ●●

●●
● ● ●● ● ●

● ●

●

●
●

●

●
●

●

●

●
●

●● ●
●

●

●

●

●
●

●

●

●

● ●●

●

●●

●
● ●

●

●

●

●
●

●
●

●

●
●

●
●

● ●

●

● ●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

● ●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●●●
●●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

● ●
●

●●

● ●

●
●

●
●

● ●

●
● ●

● ● ●

●

●
● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●● ●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

● ●●

●● ●●●
●

● ●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●
●

●

●
●

● ●
●●

●

●

●●
●●

●

● ●

●
●

●
●●

●

● ●
●

●

●

●

●
●

●
●

●

● ●

● ●
●

●

●

●

●

●

● ●

●●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●

● ●
●

●●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●●
●

● ●
●

●
● ● ●

●

●

● ●
●●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●●

●

●
●

●

●●

●

●

●

●●

●
●

●
●

●
●

●
●

●
●

●

● ●●

●●●
●

●

●

●
●

●

●

●

●
●

● ●

●

● ●

●
●

●

●

●●

●

● ●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●

●●

●

● ●
●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
●

●● ●

●●
●

●

●●
●

●●
●

●

●

●

●

● ●

●

●
● ●

●

●
●

●

●
●

●

● ●

●
● ●

●

●

●

● ●●
●

●

●
● ●

●

●
● ●

●
●●

●

●

●●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●● ●
● ●

●● ●

●

●

●

●

●

●● ●
●

●

●
●

●
●

●●

●

●● ●

●
●

●

●

● ●

●●●

●

●

●
●● ● ●

●

●
●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●
●● ●●

●●

●

●

●

●

● ●
●●

● ●

●
●

●●

●
●●

●

●

●
●●

●
●

● ●
●

●
●

●
●

●

●

●

●

●

●●

●

●● ● ●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●

●
●

● ●

●● ●
● ●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●●
●●

●
●

●

●

●

●
● ●

●

●

● ●

●●
●

● ●●
●

●

●

● ●

●

●

●

●
●

●
● ●

●

●●

●
●

●

●

●

●

●● ●

●

●
●

●
●

●
●

●

● ●
●

● ●

●●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
● ●

●

●
●●

●

●

●●●
●

●

●
●

●

●

● ●
●
●

●

●

● ●

●

●

●
●

●
●

●

●

● ●●
● ● ●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●

●

● ●●
●

●

●●

●

● ●
●

●
●

●●

●
●

●
●●

●

●

●

●
● ●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●

●

● ●●

●
●●

●

●

●

●

●

●
●● ●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

● ●●

●

●●

●●

●●

● ●

●

●

●
●

●

●
● ●

●

●

●

● ●
●

●
●

●

●

● ●

●

●● ●
●

●●

●
●

●●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●
●

●●

●

●

● ●
●

●

●

●

●
●
●

● ●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●

●●
●●

●
●

●
●●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●●●
●●

●

●

●●

●
●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●● ●

● ●
●● ●●

●

●

●

●
●● ●

●

●
●

●

●

●
●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●
●

●●

●●●
●

●
●

● ●
●

●

●
● ●●

●●

●
●●

●

●●

●

●
●

● ●●

●●

●
●

●
●

●●

●

●

●
●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

● ●

●

● ●
●●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●
● ●

●

●

●
● ●

●
● ●

●

●●
●

●

●
●●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●
●

●●
●

●
● ●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●
● ● ●●

●

●

●

● ●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●
●

●
●

● ● ●

● ●

●

●

●

●
●

●
●

●
●

●

●

●●

●

● ●
●

●

●
●

●
●

●

●●

●● ●

●
● ●●

●●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●
● ●

●

●

●

●
●●

●●
● ●●

●

●

●

●

●●

●● ●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

● ●

●
●

●

●●

●

●

●

●
●

●

●
●

●●

●

●● ●

●●●
●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●

●
● ●

●

● ●●
●

●

●●

●
● ●

●

●
●

●● ●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●
● ●●

●●

●

●●
●●

●
● ●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ● ●● ●●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

● ●
●

●
●

●

●

●●

●
● ●

●

●

●

●

● ●
●

●

●

● ●
●

●
●● ●

●

●
●
●

●
●

●

●● ●
●

● ●
●

●

● ● ●
●

●
●

● ●
●

●

●

●●

●

● ●

●
●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●
●

●

●

● ●
●● ●

●
●

●
● ●

●
●

●
●

●
●

●

●

●

●
●

●
● ● ●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●
●

● ●

●

● ●
●●

●
●

●
●

●

● ●

●●

●
● ●

● ●

●

●
●

●●

●
●

●

●

●● ●

●

●
●

●
●

●

●

●

●
●●

●

●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●

●

● ●
●

● ●
● ● ●

●
●● ●

●

●●●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

● ●●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●● ●

●
●●

●

● ●

●

● ●
●

●●

●

●

● ●

● ●

●
● ● ●

●

●
●

● ●
●

●

● ●

●

●
●

●
●

●

●
●

●

●●●
●●

●

● ●

●

● ●
●

●
●● ●

●

●
●
●

●

●

●

●●
●

●
●●

● ●

●

● ●
●

●●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

● ●

●

● ●
●

●

●

●

●

●
●

● ●
●

● ●●
●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

● ● ●
● ●
●●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

● ●
●

●

●●
● ●

●

●

●
●

●●

●

●●

●
●

●
●

●
●

●●

●

● ●
●●

●

●

●

●

●● ●●●●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●
●●

●

● ●
● ●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●
● ●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

● ● ●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●

●● ●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●●
● ●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●●

●

●

●

●●
●

●

●
●

●

●●

●

●
● ●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●●●●
●●●

●
●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●● ●
●

●

●

●

●●

●

●●

●

●

●
●

●●●

●

●

●

●

●●
●

●●
● ● ●

●
●

●

●
●

●●

●

●

●
●

●

●●
●●

●
●

●

●
● ●●

●
●

●

●
●

●●
●

●
●

●

●●
●

●

●

●

●
●

●

● ●
●

●

●

●●

●

●
●

●

●
● ●

●

●

●

●

●

●●

●

●

●● ●

●
●

●

●

●

● ●
●

●

●
●

●●

●●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●● ●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

● ●
●

●
●
●●

●

●

●
●

●
●

●

●

●
●

●
● ●

●
●

●

●

●
●

●

●

● ●

● ●

●

● ●
●

●
●

●●
●

●

●
●

●
● ●

●

●●

●

●●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●● ●

●●
●

● ●

●
●

●

●
● ● ●

●
●

●
●

● ●

●●
●

●● ●

●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●
●

●
●

●
●●

●

●

●
●

●

●

● ●

●

●

● ●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

● ●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●

●●

●●

●●

●
● ●● ●●

●

●

●

●

●

●● ●

●
●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

● ● ●
●

●
● ●●

●
●

●

●
● ●

●

●

● ●
●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●
●●

●

●

●
●

● ●
●●

●

●

●●

●

●
●

● ●
●●

●●

●
●

●●

●●

●
●

●

●
●

●

●
●

●

● ●●

●
●● ●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●●

● ●

●
●

●

●

●

●

● ●
●

●

●●
●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

● ●
●

● ●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

● ●
●

● ●
●

●

●
●

●●
●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●
●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●
●

●

●
● ●

● ●

●●

●

●●

●

●

●

●● ●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

● ●

●

●●

●

●
● ●

●
●

●

●
●

●
●

●
●● ●

●
●●

●

●
●

●
●

●
●

●

●

●

● ●
●

●

●

●
● ●

●

● ●
●

●

●● ●

●

●
●

●

●

●●

●
● ●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

● ●

●●● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●●

●

●●

●

●

● ●●

●

●●
● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●●

●

●

● ●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
● ●

●

●
●

●

●

●
● ●

●

●

●

●
●

●
●

●

●
●

● ●●

●

●
●

●

●
● ●

●
●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●●

●
●

● ●
●

●
●

● ●
● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

● ●

●
● ●

●

● ●
●

●

●

●
●●

●
●

●

● ●

●
●

●●

● ●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●
●●

●

●

●

●

●

●

●

●
●●
●●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●
●

● ●●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

● ●●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●● ●

●

●
●

●
●●

●

●

●

●
●

●●

●
●

●●

●● ●
●

●

●
●●

●

●

●
●

●

●
●

● ●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

● ●
●● ● ●

●
●●

●

●

●

●
● ●

●●●

● ●

●

● ●

●
●

●
●

●

●●
●

●
●●

●●

●
●

●

●

●

●

●

●● ●

●

●

●● ●

●

● ●

●
●

●

●●●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●
● ●

●
●●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

● ●

● ●
●

●

●
●

●●

● ●

●●

● ●

●

●
●

●

●

●
●

●●

●

●
●● ●

●

●

●

●

●
●

●●
● ●

●

●●
●

●

●
●

●

●

● ●●
● ●

●

●

●●

●
●●●

● ●● ● ●

●

●
●

●
●

●

●
●

●

●

●

●
● ●

●

● ●●

●

●●

●

●

●
● ●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●
●●●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

● ●

●
●

●
● ●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●

●

●
●

●
●

●

●

●
● ●

●
●●● ●

●

●

● ●

●

●●

●
●

●●

● ●

●

●

●
●

● ●●

●

●

●

● ●

●

●

● ●●

●

●●

●

●

●

●
● ●

●

●

● ●

●●

●

●
●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

● ●● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●
●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●● ●

●

●

●

●

●

●

● ●

●

● ●

●

●●
●

●

●

●

●
● ●●

●

●

●

●

●

●
●●

●
●

●

●

●●
●

●

● ●
●

●

●
●

●
●

●

●

● ● ●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●● ●

●
●
● ●●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

● ●
●

●

● ● ●●
●

● ●
● ● ●

●
●

●
● ●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●
●●

●
●

●

●

●

●

●

●●

●● ●

●

● ●
●●

●●

●
●●

●

●

●● ●
● ●

●●

●

●

● ●
●

●●
●

●

●
●

●
●●

●
●● ●

●●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●
●●

●

●

●

●

●
●

●

●

● ●
●●

●

● ●

●

●
● ●

● ●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●● ●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
● ●

● ●

●

●●●●
● ● ●

●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●

● ●
●

●

● ● ●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

● ●

●

● ●

●

●
●

●

● ●●
●
●

●
●

● ●
●●

●

●
●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●
●

●
●

●

●

●
●

●
●

● ●●
●

●

●

●

●

●

●
●

●

●
●

● ●●
●

● ●
●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●●

●

● ●

●
●

●
●

●

●

●

●

●

●● ●
● ●●

●

●
●

●

●

●

●

●●●
●

● ●

●
●

●

●

●●●

●

● ●
●

●

●● ●● ●
●●

●
●

●

●

●

●

●●

●

● ● ●●

●

●
●

●

●

●

●

●

●

●

●
● ●●●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●
● ●

●
●

●
● ●

●

●

●

●

●
●

●●●

●

●

●

●

● ●

●

●

●
●● ●

●
●

●
●

●

●
● ●●

●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●●

●
●

●
●

●●
●

●
●

●

●
●

● ● ●

●
●

●●
●

●
●●

●●

●

●●

●

●
●

●
●

●●

● ●
●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

0.0

0.1

0.2

0.3

0.4
MIXTURE GM12878/GM18502

M
ito

ch
on

dr
ia

l T
ra

ns
cr

ip
t P

er
ce

nt

Mitochondrial Proportion Threshold
Library Size Threshold

●

●
●

●
●

●
● ●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●●
●

●
●

● ●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●●

●

●
● ●

●
●● ●

●

●
●

●

●

●

●

●

●●
●

●
● ●

●

●●

●

●
●

●●

●
●

●

●
●● ●●

●● ●●

●

●

●

●
●● ●

●
●

●● ●
●

●

●
●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●

●

●●

● ●●

●
●

●

●
●

●●
●
●

●
●

● ●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●●●

● ●

●
●●●

●
●

●
●

●

●

●
●

● ●

●

●

● ●
●

●●
● ●

●
●

●
●

●●

●● ●●

●

●
●●

●

●

●

●

●
● ●

●

●●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

● ●●

●

●

● ●
●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

● ●

●
●

●
●

●

●
●

●

●
●● ●

●

●

●

●

●

●●
●

●

● ●

●
●●

●
●

●
●

●●
●

● ●
●

●●
●

●

●

●
●

●● ●●
●

●

●

●

●●
● ●● ●

●
●●

●

●

●
●

●
●

●

●

●

●●
●

●

●
● ●

●●

●

●

●
● ● ●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●● ●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●
●●

● ●
●

●

●

●
●●

●
●

●
● ●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●●

●
●●

●

●

●

● ●
●

●
●

● ●

●

●

●●
●

●
●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●●
● ●

●
●

●

●●
●

●
●

● ●
●

●

●
●●●

●

●

●

●

● ●● ●

●

●●
●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●●

●
●

● ●

●
●

●
●

●

●●

●
●

● ●● ●

●
● ●

●

●
●

●
●●
●

●
●●

●

●●

●
●

● ●
● ●

●

●
●

●

● ●
●

●
●

●

●
●

●
●

●
●

●●
●●

●

●

●

●

●

● ●

● ●

●

●

●

●●
●

●●

●

●

●● ●
●

●
●●●●

●

●

●●

●
●

●
●

●

●●
●

●
●

●●
●

●

●

●

●

●
●

●●●

●

●

●
●

● ●

●
●

●●

●●●
●

●

●

●

●
●

●

●
● ●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●●

● ●
●● ●

●

●
●●

●

●
● ●●

●
●

●
●

● ●

●

●
●●

●

●

●

●

●●

●
● ●

●

●
●●

●
●●

●

● ●

●

●

●
●

●

●

●
●

●
●

● ●
●

●

● ●
●

●

●

●

●
●●●

●

●

●

●
●

●● ● ●

●

●

●

●
●

●

●●
● ●● ●

●

●

●

●●

●

●
●
●
●

●
●● ●

●

●

●
●

●
●

●
● ●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●● ●

●●

●

●

●●
● ●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●

●●●

●

●

●

●

●

●
●●●

●
●

●
●

●

●

●●
●

●
● ●

●

●●

●

●

● ●●

●

●

●
●

●

●

●

●
●

● ●●

●

●
●

●●
●

●
●

● ●● ●

●

● ●

●

●●
●●

●

●

●

●●
●

●
●

●

● ●
●

●●

●
●

●●

● ●
●

●

● ●

●●
●●

●

●

●

●

●

●●

●●

●

●

●
● ●

●
●

●
●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●●

●
●

●
●

●

●
●

●
●

●

●

● ●

●
● ●

●●

●

●

●
●● ●

●

●●
●

●

●

●

●●

●●

●

●

●
●

●
●

●

●●●

●

●

● ●

●
●

●

●● ●

●

●
● ●

●
●

●
●●

●

●●

●

●

●

●● ●
●● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●

●●

●

● ●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●
●

●
●●

●

● ●
●

●●

●

●
● ●●●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●
●●

●
●

●

●

●

● ●

●
●

●

●

●

● ●

●

●● ●

● ●

●●

●

● ●

●●●

● ●
●

●
●

●

●

● ●●

●

●●
●●

●

●●

●

●

●●

●

●
●

●

● ●

●●

● ●

●●

● ●
● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●
●

●
●●

● ●●

●

●
●●
●

●

● ●
●

●

●
●

●
●

● ●

●

●

●● ●
● ● ●

●

●●●● ●

● ●●

●

●●

●
● ●

●●

●

●

●

●

● ●
●

●

●

●●
●

●

●●●
● ●●

●

●
●

●
●

● ●
●

●

●●

●
●

●

●

●

●
●

●

●
● ●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

● ●

●

●
●

●
●

●●

●
●

●

●

●

●●
●

●●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●
●●

●

● ●
●

●●● ●

●

●

●
●

●
●

●
●●

●
●

●
● ●

●

●

● ●

●
●

●

●

● ●●●
●

●

● ●●

●
● ●
●

●

●

●
●

●
●

●

● ●

● ●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●●
●

●

●

●
● ●

●
●

●

●

●
●●●●

●

●●● ●

●●

●●

●●

●
●

●

●

● ●

●

●

● ●
●

●

●

●

● ●

●● ● ●

●

●
●●

●●

●

●
●

●
● ●

● ●●
●

●
●

●

●

●
●

●●
●● ●

●

●

●

● ●
●

●

●●
●

●

●●● ●

●

●●
●

● ●●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●●
●

● ●
●

●
●●●

●
●

●

●

●
●

●

●

●●
●●

●

● ●

●

●
●

●

●

●
●

●
●

●●

●

●●
●

●

● ●●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●●

●
● ●

●

●
●

● ● ●

●

● ●
●●

●

●

●

●

●

●
●●

●

●●●●

●

●●

●
● ●●

●
●

●
●

●

●
● ●●

●

●

●

●

●●

● ●
●

●

●
●

●

●●
●● ●

●

●
●

●●

● ●
●

●

●

● ●●
● ● ● ●

●

●●

●

●
●●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●●

●

●
●● ●

● ●

●

●

● ● ●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●●

● ●
●●

●

●

●

●

●

●

●
●

●

●
●

●

● ●●
●●

●

●

●
● ●
●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

● ●●

●

●
●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●
● ●

●

●
●

●
● ●

●

●
●

●

●●
●

●

●

●

●
●

●
●●

●

●

● ●
●

●

●

●●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●● ●

●

●
● ●

●

●

●

●
●

●

●
●

●
●

●

●●
●●

●
●

●

●

●●
●● ●●

●
●

●

●
●

●

●

● ●
●●

●
●●

●

● ●
●

●

●

●

●

● ●●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●
●●

●
● ●

●
●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●●

● ●

●
●

●
●

●

● ●

●

●

●

●

●
● ●

●

●

●●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

● ●
●

●●

● ●
●

●

●
●●

●
● ● ●

●
●

●

● ●
●● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●●●●
●

●

●

●
●

●
●

●

●

●● ●●●

●●

●● ●

●

●

●

●
●●●

●●

●

●

●

● ●● ● ●
●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●
● ●

●

●

● ●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●
●

●●
●

●
●

●
●●

●

●
●

●
●

●

●
●

●

●● ●●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●●

●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

● ●

●

● ●●
●

●
●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●
●● ●

●
●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●●
●

● ● ● ● ●●
●

●

●

●
●

●

●

● ●
●

●
●

●●●
●

●
●

●
●

●

●
●

●

●
●●

●
●

●

●

●●

●

●

●
●

● ●●
●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●● ●●

●

●

●

● ●
●●

●
●

●
●

● ●
●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

● ● ●

●

● ● ●

●

●

●

● ●●

●
●

●
●

●

●

●

●
●●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
● ● ●

●

●

● ●
●●

● ●

●●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●
●

●
● ●●●

●

● ●

●
●●

●

●●

●
●

●

●
●●

●●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●
● ●●

●

●

●

● ●●●●
●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●●
●

●
●

● ●
●

●

●
●

●●

●

●

●

●

●
●●●

●

●

● ●●● ● ●
●

●

●
●

●
●

●

●

●●
● ●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●
●

●

●
●●

●●
●

●●

● ●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●●●
●

●

●

●

● ●

● ●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

● ●●
●

●●
●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●
●

●

●

●

● ●
●

●

●

●

●● ●
●

●
●

●

●

●

● ●
●

●
●●●

●
●

● ●

●
●

●

●

●
●

● ●● ●●●

●
●

●
●

●
●

●

●●

●
● ●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●
●●

●

● ●
●●

●●

●

●

●

●

●●

●

●

●

●
●●●●

●

●●

●
●●

●

●

●●
● ●

●
●●

●●
●

●
●

●●●

●
● ●● ●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●

●●
●

●

●● ●
●

●

● ●

●

●

● ●
●

● ●

●
●

● ●

●

●●
●

●●
● ●

●

●

●

●

●

●
● ●

●

●
●●

●

●
●

● ●
●

●
●

●
●

●

●
●●

●

●
●

●

●

● ●
●●●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

● ●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
● ●

●
●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

●
●

●●
●

●●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●●
●

● ●
●

●

●

●

●

●
●●

●

●
●●

●
●●

●●

● ●●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●
● ●●

●●
● ●

●

●

●

●
●●

●

●
●

●
●

●

● ●
●

●
● ●

●
●

●

●

●

●

●

●
●
●

●

●
●●
● ●

●

●

●

●● ● ●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
● ●

● ● ●
●

●

●

●●●
●

●● ●
●

●●● ●

●

●

●

●

●

●●

●

●●
● ●

●●
●

● ●

●

●
●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●

●

●

●

●

●

●
●●

● ●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●
● ●

●

●

●

●● ●●
●

●
●

●

●

● ●
●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●

●
●

●
●

● ●●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●●
●

●

●

●
●

●

●

●

● ●
●

●

●
●●

● ● ●

●

●
●
● ●

●

●

●

●

●

●

●

● ●
●

● ● ●
●●

●

●

●
● ● ●●

●

●●
●●

●
●

●
●

●

●

●
●

●
●● ●●

● ●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●●

●

● ●

●

●
●

● ●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●
● ●

●

● ●

●●
●

● ●
●

●● ●●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●
●

●

●●

●
●

●
●

●●

● ● ●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
● ●
●●

●
●

●
●

●●●
●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●●

●

●
●●

●●
●

●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●

● ●

●
●

●

●

●●
●●

●

●

●

●

●
●

●

●●
●

●●●

●●

●

●●

●
●

●
● ●

●
●

●
●

● ●
● ●

●

●
●

●

●

●●●●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●

●
●

● ● ●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

● ●●

●
●

●

● ●

●

●

●●
●

●
●

●
●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

● ●●●

●

●●
●

● ●

●

●

●
●

●

●
●

●●
●

●

●●●

●
●

●

● ●
●

●

●
● ●

●

●
●

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

● ●
● ●

●

●
●

●●● ●
● ●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●
●● ●●

●

●●
●

●
● ●

●

● ●
●●
●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●

●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●
● ● ●

●

● ●

●

●
● ●●

●●

●
●

●
●

●●

●

●

●
● ●

● ●●

●

●
● ● ●

●●

●
●

●

● ●●

●
●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●
●

● ●●
●

●
● ●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●
●

● ●● ●
●●

●
● ●

●
● ● ●

●

●

●

●

●

●
●

● ●

●
●

●
●

●
●

●

●

●
● ●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●● ●●

●
●

●

●● ●

●

●

●●
●

●
●

●

●
●●

●

●

●

●

●

● ●

●
●●

●●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●
●

●●●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●
●

●●●

●

●

●
●

●
●

●●
●●●

●
●● ●

●
●

●●●
● ●

●
●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
● ● ●

●
●

●

●

●
●

●

● ●●

●

●●

●

●

●

●

● ●
●

● ●
●

●
●●

●

● ●

●

●

●

●
●●

●

●

●
●●

●

●

●● ●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●

●

● ●

●

●
●

●
●

● ●● ●

●
●

●
●●

●

●

●

● ●
●

● ●
●

●

●●

●

●

●

● ●
●

●

●●

●
●

●

●

● ●●

●

●
●

●

●
●

●
●

●●
●

●●
●

●

● ●

●

● ● ●
●

●
●

● ●
● ●

●
●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●
●

●

● ●

● ●
●

●●
●

● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

● ● ●
●

●
●

●

●
●

● ●

●
●
●

●

●

●

●
●

●

● ●

● ●
●

●● ●
●

● ●●

●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

● ●
●

●

●

●
●

●●●

●
●●

● ●●
● ●

●

● ●
●●

●

●

●
● ●

●

●

●
●

● ●

●

●
●

●●

●● ●●●
●

●●
●

●

●
●

● ●
●●

●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

● ●

●
● ●

●

●
●

●
●●

●●

●

●
●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●●●

●

●

●

●●

●●

●
●

●●
●

●
●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

●
●

●●

●● ●
●

●

● ●

●

●

● ●

●● ●

●●
●

●●
●

●●
● ●

● ●
●

●
●

●

● ●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

● ●
●●

● ●

●

●

●

●

●
●

●
●

● ●
● ●

●

●

●

●

● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●

● ●
●

●

●●
● ●●

●●
●

●

●

●

●

●

●

●●
●

●
●

●

●
●●

● ●

●●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●

●
●

● ●
●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
● ●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
● ●

●●

●

●

● ●
● ●
● ●

●

●

● ●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

● ●
●

●

●
●

●
●

●● ●
●

●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●
● ●

●

●
●

●
● ●

●

●

● ●
● ●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●● ●●

●
●

●

●
●

●●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●●
● ●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●● ●

●

●

●
●

●

●● ●
●

●
●●

●
●●●

●

●
●

●

● ●●
●● ●

●
●

●●

●

●

●

●●●
●

●
● ●●

●

●

● ●
● ●

●

●● ●●
●

●

●

●

●

●
●

●

●

●

● ● ●

●●

●

●

●

●

●●
●

● ●● ●
●

●● ●

●

●

●
●

● ●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

● ● ●
●● ●●

●

●

●

●
●●

●
●

●
●●

●

●

●

● ●
●

●

●●●●●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

● ●

●

●

● ●● ●

●

●
●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●
● ●

●

●

●

●
● ●

●

●●
●

●

●

●
●

●●

●●
●

●

●

●
●

●

● ●

●

●●

●
●

● ●

●

●

●

●

● ●
●

●

● ●
●

●
●

●

●●

●
●

●

●

●

●● ●
●

●

●
●

●●

●

●

●

0.0

0.1

0.2

0.3

0.4
GM18502

M
ito

ch
on

dr
ia

l T
ra

ns
cr

ip
t P

er
ce

nt

Mitochondrial Proportion Threshold
Library Size Threshold

●●●●● ●●●● ●●●● ●● ●●●●● ● ●● ●●● ●●●● ●● ●● ●● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●● ● ●●● ● ●● ● ●● ●●● ● ●● ●● ● ●●●● ● ●● ●●● ●●●●●●● ●● ● ●●● ● ●● ●●● ● ●●●● ●● ●●● ●● ● ● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ● ●● ● ●● ●●

2e+04 4e+04 6e+04 8e+04 1e+05
Library Size

●●●● ●● ●● ●●●●● ●●● ●● ●●● ● ●● ● ●● ● ●● ●●●● ● ● ● ●●● ●●● ● ●● ● ●● ● ●● ●● ●●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●●● ●● ● ●●●

2e+04 4e+04 6e+04 8e+04 1e+05
Library Size

●● ● ● ●● ● ●●● ●● ●●● ●● ●●● ●● ●●● ●●● ●● ●●●● ● ● ●● ●● ●●● ●● ● ●● ●● ● ●●●● ● ●●● ●● ●●● ● ●

2e+04 4e+04 6e+04 8e+04 1e+05
Library Size

Figure 2.3: Distribution of the single-cell gene expression profiles under the defined quality control
thresholds. There are 6, 848 cells for the GM12878, 5, 117 for the GM18502 and 5, 710 for the
mixture sample within the range of thresholds. These cells are considered to be of high quality.

expression profiles.

For both GM12878 and GM18502, we conducted correlation analyses to validate our single-

cell RNA-seq expression data using bulk RNA-seq expression information as a reference. We first

compared gene expression measured using single-cell RNA-seq and bulk RNA-seq in the same

LCL, GM12878 or GM18502. We also compared gene expression measured using single-cell

RNA-seq in GM12878 (and GM18502) with the average gene expression in corresponding popu-

lation CEU (and YRI). We found that in all cases the correlations are highly significant and strong

with Spearman correlation coefficients (SCCs) of 0.78, 0.58, 0.76, and 0.77, respectively (Fig. 2.5).

Thus, when single-cell RNA-seq data are pooled across cells, genes’ expression levels are largely

recapitulated as they were measured using bulk RNA-seq. These results further support the quality

of our single-cell RNA-seq dataset. We note that the SCC (0.58) between GM18502 single-cell

RNA-seq and GM18502 bulk RNA-seq is lower than that (0.78) between GM12878 single-cell

RNA-seq and GM12878 bulk RNA-seq. This may be due to differences in cell population state at

the time when GM18502 cells were harvested for single-cell RNA-seq and bulk RNA-seq.

As long-lasting supplies of cells containing genotypic and phenotypic information matching

that of B-cell origins, LCLs have contributed significantly to biomedical research. We present a

high-quality dataset of single-cell RNA-seq from homogenous cell populations of two LCLs, in-
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Figure 2.4: Plots of t-SNE and UMAP projections generated from the pooled single-cell RNA-seq
data of GM12878, GM18502, and the mixture samples. Separate panels are used to show cells
labeled and colored differentially according to their cell line name and cell cycle state.

cluding GM12878—one of the most popular reference cell lines. Our dataset provides information

that can be used to quantify cell-to-cell variability in gene expression and study cellular states

and associated gene expression changes. It also informs the analysis and comparison of gene ex-

pression at the single-cell level between European and African LCLs. The data from the mixture

sample are a suitable resource for estimating the technical variability of single-cell RNA-seq and

can also be used to calibrate statistical methods for data normalization and batch effect correction.

2.3.1 Data Records

The sequencing data from this study have been submitted as the BioProject reference (PR-

JNA508890), with descriptions of the Biosamples (SUB4895416, SUB4895422, SUB4895423).

Raw data of three samples have been deposited at the National Center for Biotechnology Infor-
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Figure 2.5: Gene expression correlations between single-cell sample, bulk-cell sample, and pop-
ulation average of bulk-cell samples. (a) Spearman’s correlation between the gene expressions
profiles at the single-cell level and the bulk expression level (TPM) for GM12878 and GM18502.
(b) Spearman’s correlation between the gene expressions profiles at the single-cell level for the
GM12878 and GM18502 compared to the average bulk level expression (average TPM) for the
available samples of CEU and YRI. Values are log-transformed, and each dot represents a gene.
(c) PCA plot shows the similarity between the same samples’ gene expression profiles obtained
using bulk RNA-seq and single-cell RNA-seq.

mation (NCBI) Sequence Reads Archive (SRA) with accession ID: SRP172838. For each sample,

data include unprocessed single-cell RNA-seq reads in two raw fastq files (*R1.fastq.gz for cell

barcodes and UMIs, and *R2.fastq.gz for RNA reads), as well as an expression matrix file in

matrix market exchange format (*.mtx) with columns corresponding to cells and row to genes.

UMI matrices of this study have been deposited with the Gene Expression Omnibus at GEO:

GSE126321. The identifiers for the columns and rows are included in separated files (barcodes.tsv

and genes.tsv). These processed files correspond to the output produced by the cell ranger pipeline.

In addition, a supplementary table with the barcodes, population, UMI count, gene count, and mi-

tochondrial transcript levels is included.
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2.3.2 Code Availability

All the required code to replicate the feature characterization of GM12878 or GM18502 and

the mixture, as well as all figures included in this document, are available in a public repository on

GitHub at https://github.com/cailab-tamu/sciData-LCL.
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3. SYSTEMATIC DETERMINATION OF THE MITOCHONDRIAL PROPORTION IN

HUMAN AND MICE TISSUES FOR SINGLE-CELL RNA-SEQUENCING DATA

QUALITY CONTROL *

3.1 Introduction

Single-cell RNA-seq (single-cell RNA-seq) experiments have improved the resolution of our

knowledge about cellular composition and cellular behavior in complex tissues [72]. A critical

step during single-cell RNA-seq data processing is to perform quality control (QC) over the cells

sequenced transcriptomes [73]. The QC process usually involves applying user-defined thresholds

for different metrics computed for each individual cell to filter out doublets and ‘low-quality’ cells

[74]. Commonly used QC metrics include the total transcript counts (also known as the library

size), the number of expressed genes and the mitochondrial proportion (mtDNA%, i.e. the ratio

of reads mapped to mitochondrial DNA-encoded genes to the total number of reads mapped).

Defining the proper thresholds of QC metrics is a complex task that requires a vast knowledge of

the cellular diversity in the tissue under study. Thresholds may be uniquely set for each sample, as

they are dependent on the cells or tissue being processed [75].

This study focuses on the systematic determination of a threshold for mtDNA% – the fraction

of mitochondrial counts per cell – in single-cell RNA-seq QC. Mitochondrial content is known to

interact with the nuclear genome, drive alternative splicing and regulate nuclear gene expression

and is also associated with cancer, degenerative diseases and aging [76, 77]. High numbers of

mitochondrial transcripts are indicators of cell stress, and therefore mtDNA% is a measurement

associated with apoptotic, stressed and low-quality cells [78, 21, 79]. However, mtDNA% thresh-

old depends highly on the tissue type and the questions being investigated [80]. The mtDNA%

threshold is of economic and biological importance. A wrongly defined, very stringent mtDNA%

This chapter has been reprinted from: Osorio Daniel, Cai James J., ‘Systematic determination of the mito-
chondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control’, Bioinfor-
matics, 2020, btaa751. Available at: https://doi.org/10.1093/bioinformatics/btaa751. Licensed by Oxford University
Press with license # 5000230599558.
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threshold may cause bias in the recovered cellular composition of the tissue under study. This bias

may force the researchers to increase the sample size to capture enough cells (which may not have

the normal biological behavior of the cell type) under the threshold, and thus increase the cost of

the experiment. Inversely, a relaxed threshold of mtDNA% may allow apoptotic, low-quality cells

to remain in the analysis, resulting in the identification of wrong biological patterns.

To reduce the bias caused by the use of arbitrary mtDNA% thresholds, Ma et al. [81] proposed

an unsupervised method to optimize the threshold for each given input data. This computationally

expensive data-driven procedure, which defines the threshold as a function of the distribution of

the data, due to the lack of reference values, is not able to identify bias induced during the library

preparation. Without such standard references, the values of mtDNA% thresholds fluctuate with

different input datasets. For example, a largely failed experiment may generate a dataset, in which

most cells have an inflated mtDNA%. Accordingly, the optimized threshold based on these inflated

values may be unreasonably high. Therefore, having a uniform and standardized threshold for

single-cell RNA-seq data analysis is essential. It improves the reproducibility of experiments and

simplifies the automatization of bioinformatic pipelines [82].

Through analysis of bulk RNA-seq data produced by the Illumina Body Tissue Atlas, Mercer

et al. [83] reported the mtDNA% for 16 human tissues. They found that the mtDNA% ranges

from 5% or less in tissues with low energy requirements up to ≈ 30% in the heart due to the high

energy demand of cardiomyocytes. Based on that study, early publications of single-cell RNA-

seq datasets used the 5% threshold reported for tissues with low energy demands (e.g. adrenal,

ovary, thyroid, prostate, testes, lung, lymph and white blood cells) as default for data QC [84].

Furthermore, the 5% threshold has been adapted as the default parameter by Seurat – one of the

most popular software packages for single-cell RNA-seq data analysis [55]. These have made a 5%

practical standard for single-cell RNA-seq data analyses. Nevertheless, due to the lack of reference

values for mtDNA% in different species, technologies, tissues and cell types, the optimal value for

a standardized threshold is still an open question in the field.

PanglaoDB is a single-cell RNA-seq database providing uniformly processed, annotated count
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matrices for thousands of cells from hundreds of single-cell RNA-seq experiments. The data source

of PanglaoDB is the sequence read archive (SRA) database of the National Center for Biotechnol-

ogy Information (NCBI). With the datasets from PanglaoDB, it is possible to systematically eval-

uate the optimal threshold of mtDNA% for different experimental settings that may vary across

platforms, technologies, species, tissues or cell types [29, 85]. Here, we present a systematic

analysis of the mtDNA% in more than 5 million cells reported in over one thousand datasets in

PanglaoDB [29]. We compared the mtDNA% reported for different technologies, species, tissues

and cell types. By analyzing the data provided by hundreds of experiments together, we reach the

consensus reference values for more than 40 human tissues and more than 120 mouse tissues. Fur-

thermore, we evaluated the validity of using the 5% threshold in different humans and mice tissues

and showed that omitting the mtDNA% as a QC filter led to erroneous biological interpretations of

the data.

3.2 Materials and Methods

Datasets in the PanglaoDB database, available at the time of analysis (in January 2020), were

downloaded and processed using R 3.6.2 [86] through an ‘in-house’ script using the XML [87] and

xml2 [88] packages. The library size (total number of counts), the total number of detected genes

and the total number of counts that match with the mitochondrial genes (mitochondrial counts)

were estimated for all cells in each of downloaded datasets. The SRA/SRS identifiers, species,

protocol, tissue, cell type and barcode of each experiment were obtained and associated with each

cell.

Only the cells with more than 1, 000 counts and with the total number of counts greater than

two times the average library size in the same sample were retained for analysis. In addition,

a polynomic regression of degree 2 (to account for saturation) was applied to establish the 95%

confidence intervals of the predicted total number of genes as a function of the library size per cell.

Cells with an observed total number of genes below or above expectation limits were removed

from the analysis. The same procedure was applied a second time to establish the 95% confidence

intervals of the predicted mitochondrial counts as a function of library size. An ordinary least
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squares (OLS) regression model was used to fit the data and cells with exceptionally high or low

mitochondrial counts were removed from the analysis.

Subsequently, the mtDNA% value was computed for each cell as the ratio between the mi-

tochondrial counts and the library size of the cell. The mtDNA% values were then compared

between cells from different settings: species, technologies, tissues and cell types. To compare

the mtDNA% between humans and mice cells, we used the Welch two-sample t-test and used the

Wilcoxon sum-rank test to cross-validate the results. To evaluate the reliability of the 5% thresh-

old, a comparison to evaluate whether the mean was < 0.05 threshold value was performed using

the t-test for each tissue and cell type independently using the data generated by the 10× Genomics

Chromium system, after filtering out groups with less than 1, 000 cells.

Example datasets (SRS3703557, SRS3545826 and SRS2397417) were downloaded from the

PanglaoDB along with cell clustering results and cell type information. Count matrices were pro-

cessed using the ‘Seurat’ R package to generate low-dimensional representations. Differential

expression analysis was performed using ‘MAST’ [89] to compare the transcriptome profile of

clusters exhibiting a median mtDNA% higher than 5% against that of other clusters with the same

cell type but with a median mtDNA% lower than 5%. Using the sorted list of fold-changes re-

ported by MAST, we performed Gene Set Enrichment Analysis (GSEA) to test the enrichment of

the ‘Apoptosis’ pathway from the KEGG database [90] in the clusters with increased mtDNA%.

To run the GSEA analysis efficiently, we used the multilevel function included in the ‘fgsea’ R

package [91].

3.3 Results

We downloaded a total of 5, 530, 106 cells reported in 1, 349 datasets from the PanglaoDB

database. From those, we removed 278, 607 cells with a total number of counts smaller than 1000

or above two times the average library size in the sample where it was sequenced. Also, 80, 225

cells with no mitochondrial counts were removed. The remaining 5, 171, 274 cells were used to

establish the 95% confidence intervals of the predicted total number of genes as a function of the

library size per cell. We found that the relationship between the number of genes and the library
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size is monotonically positive (ρ = 0.89; P< 2.2×10−16), which is consistent with that previously

reported [85]. We also found that the expected total number of genes reaches saturation at a point

close to the 1×105 library size counts. In this step, we removed 157, 960 cells because they have a

total number of quantified genes above (n = 5, 509) or below (n = 152, 451) the 95% confidence

interval limit defined from the prediction.

Next, we accounted for outliers in the mitochondrial counts in relative to the library size. This

procedure has been shown to be critical to differentiate apoptotic cells of preapoptotic and healthy

cells in a supervised experiment [92]. To do so, we used the OLS regression and computed the

confidence interval of prediction between the mitochondrial counts and the library size with data

from all 5, 013, 314 cells. We found that the relationship is noisy but positive and linear (r = 0.65,

P< 2.2×10−16. Following this procedure, we identified 333, 712 cells with mitochondrial counts

above (n = 178, 671) or below (n = 155, 041) computed confidence interval limits, which were

also removed. After this step, 4, 679, 602 cells were retained for the study.

With the cleaned dataset, we estimated that the mtDNA% per cell is distributed between the

minimum of 0.17% and the maximum of 14.64%, considerably lower than the upper limit pre-

viously reported (up to 30% in heart) using the bulk RNA-seq generated by the Illumina Body

Tissue Atlas [83]. Next, we performed a comparison to evaluate whether there is a difference in

the average mtDNA% cross different species. The PanglaoDB database contains human and mouse

datasets; therefore, our comparison was between human and mouse. We performed the Welch two-

sample t-test and use the Wilcoxon-sum rank test to validate the results. Both tests converged to

the same conclusion, that is, the average mtDNA% in human cells is significative higher than that

in mice cells (P< 2.2× 10−16, in both cases) as is displayed in Figure 3.1 A.

Then, we compared the mitochondrial content between human and mouse data, stratified by

the type of single-cell RNA-seq technologies, by which the data are obtained. These technologies

include drop-seq, C1 Fluidigm and 10× Genomics. Our results confirm our previous finding. In

all cases wherever data allowed, no matter which technology is used, the same pattern was re-

covered. That is, human cells have significantly larger mtDNA% than mice cells (Fig. 3.1 B.).
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Figure 3.1: Boxplots showing the differences in mtDNA% across species, technologies and tissues.
Each dot represents a cell; the red line is the early established 5% threshold, and the blue line is
the 10% threshold for human cells proposed here. In parenthesis (C and D), the number of cells
in the stated tissue. (A) The difference in mtDNA% between human and mice cells. (B) The
differences in mtDNA% between human and mice cells by the technology used to generate the
data. (C) Boxplots of mtDNA% across 44 human tissues. (D) Boxplots of mtDNA% across 121
mouse tissues
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Most importantly, for all cases where mitochondrial content in humans was evaluated, the 75th

percentile was located above the threshold, suggesting that the early defined 5% is not appropriate

for human cells. Note that 91.3% (n = 4, 271, 613) of cells analyzed here were processed using the

10× Genomics chromium system. Next, we decided to perform the comparison of the mitochon-

drial content between tissues and cell types using only the data generated using the 10× Genomics

technology.

For humans, we identified 44 tissues, for which more than 1, 000 cells are available in the

database. From those 44 tissues, 13 (29.5%) showed an average mtDNA% significantly higher

than 5%. The 13 human tissues are nasal airway epithelium, monocyte-derived macrophages,

testicle, colon (ulcerative colitis), liver, colon, melanoma, mammary gland, ES-derived kidney

organoid, pancreatic progenitor cells, adipose, Kaposi’s sarcoma and brain. However, as displayed

in Figure 3.1 C., 18 of the 44 human tissues (40%) have a portion of the interquartile range over

the 5% threshold. Only two of them, monocyte-derived macrophages and adipose, have an average

mtDNA% higher than 10%. This result supports our observation that the early defined 5% is not

appropriate for human tissues. We conclude that the new standardized threshold for human tissues

should be 10% instead. At the cell-type level, we found similar patterns. From 37 different cell

types with more than 1, 000 cells derived from human samples, 13 of them (35.1%) have an average

mtDNA% greater than 5%, but none of them have an average mtDNA% greater than 10%. The

13 cell types are hepatocytes, epithelial cells, neutrophils, cholangiocytes, smooth muscle cells,

keratinocytes, Langerhans cells, spermatocytes, ductal cells, beta cells, luminal epithelial cells,

macrophages and embryonic stem cells.

Furthermore, only 4 of them (epithelial cells, Langerhans cells, spermatocytes and macrophages)

have a portion of the interquartile range above the 10% threshold. For mice, when the mtDNA%

was compared across the cell types with at least 1, 000 cells reported in the database, 7 of 74 cell

types showed an average mtDNA% greater than 5%. The 7 cell types are proximal tubule cells,

distal tubule cells, hepatocyte, cardiomyocytes, Leydig cells, intercalated cells and choroid plexus

cell. In contrast to the identified 44 human tissues, there are many more mouse tissues (121) with
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more than 1, 000 cells reported in the database. Among them, only 3 (2.5%) showed an average

mtDNA% significantly higher than 5% (whole kidney, whole heart and distal small intestine). Fur-

thermore, only 6 mouse tissues (whole kidney, intestinal epithelium, whole heart, nerve, distal

small intestine and submandibular gland) have a portion of the interquartile range over the 5%

threshold (Fig. 3.1 D.). These findings indicate that the 5% threshold early proposed in the field is

an appropriate standardized threshold for mouse tissues.

To evaluate the effect of mtDNA% in the analysis of single-cell RNA-seq data, we downloaded

three datasets from the PanglaoDB database using accessions: SRS3703557, SRS3545826 and

SRS2397417. The first dataset contains 9, 238 cells from the mouse heart, the second 7, 448 cells

from mouse lung and the third 9, 057 cells from the human umbilical vein.

First, we evaluated the effect of genes encoded in the mitochondrial genome (for short, mt-

Genes) on the cell clustering results. We compared the low-dimensional representations generated

by t-SNE using the PCA result as a prior with and without the mtGenes. We found that, in all three

examples, the mitochondrial content does not affect significantly the structure of the data in low di-

mensional representation, allowing to recover clearly in both cases (with and without mtGenes) the

clusters reported by the PanglaoDB database (Fig. 3.2). These results confirm findings previously

reported in an evaluation study of different computational pipelines for single-cell RNA-seq data

preprocessing [93]. We also found that even without considering the mtGenes for the generation of

the low-dimensional representation, low-quality cells with high mtDNA% tend to cluster together

(Fig. 3.2 B.; Clusters 19, 0, 9, 7 and 11 in SRS3703557; cluster 5 in SRS3545826 and cluster 11

in SRS2397417).

Next, we evaluated the significance of the threshold to identify low-quality cells. For each

example, after identifying the clusters containing cells with high mtDNA% of a cell type, we used

MAST to compare their expression profiles against other clusters with most of the cells below the

threshold. The fold-change values reported by MAST were used as the input of GSEA analysis to

test for the significance of the Apoptosis pathway in the KEGG database.

For the first example, we focused on cardiomyocytes, a cell type associated with high mtDNA%
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Figure 3.2: Case examples showing the effect of omitting the mtDNA% QC filter in the analysis
of single-cell RNA-seq data. (A) t-SNE representation of all the cell populations included in
the dataset generated by excluding the mitochondrial genes from the list of highly variable genes
before principal component analysis (PCA). Each dot represents a cell and they are colored by
cell type. (B) t-SNE representation of cell type used as an example colored in the function of the
mtDNA% in each cell. Clusters reported by the PanglaoDB are labeled. (C) Boxplot showing the
distribution of the mtDNA% across clusters. The red line is the early established 5% threshold. (D)
GSEA analysis of the Apoptosis pathway between clusters with a high proportion of low-quality
cells and others containing high-quality cells
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with nine clusters reported by the PanglaoDB database (Fig. 3.2 C.) for this dataset. We compared

cells with a higher mtDNA% level in clusters 19, 0, 9, 7 and 11, which form a larger cluster, against

cells with a lower mtDNA% level in cluster 4. We found that the number of genes with detectable

expression decreases with the increase of mtDNA% in cells (as shown by the x-axes of the first

two rows of subplots in Fig. 3.2 D.). This anticorrelation is expected as the increased mtDNA% is

likely to be associated with cell breakout events. When a breakout occurs (due to the differences

in copy numbers given by a single nucleus and several mitochondria by cell), generate an increase

in the abundance of mitochondrial content, and reducing the reads that will be mapped to nuclear

genes, resulting in fewer genes’ expression detected. Indeed, we found even a small increase of the

mitochondrial content (comparing cluster 19 and cluster 0 versus cluster 4) led to a huge decrease in

the number of expressed genes (> 6, 000 genes versus ≈ 5, 000 genes, see the first row of subplots

in Fig. 3.2 D.). The number of genes included in the GSEA analysis, in turn, influences the value

of Normalized Enrichment Score (NES), which is used to assess the significance of the apoptosis

pathway. Despite this influence, a positive NES value was recovered in all the cases for the tested

cardiomyocytes clusters, as well as in the other two examples of mouse alveolar macrophages

(cluster 5 against others) and human endothelial cells (cluster 11 against others), suggesting a

consistently higher expression (positive log2 fold-change) of apoptotic pathway genes among cells

with mtDNA% above the threshold (Fig. 3.2 D.).

In summary, we reported a new set of mtDNA% reference values across human and mice tis-

sues and cell types for single-cell RNA-seq QC. Based on our analytical results, we suggest a stan-

dardized mtDNA% threshold of 10% for single-cell RNA-seq QC of human samples. For mouse

samples, we found that the early defined threshold of 5% accurately discriminates between healthy

and low-quality cells, bringing to evidence that under a well-performed single-cell RNA-seq QC,

clusters containing cells with high mtDNA% exhibiting signatures of apoptosis, like those shown

in the example datasets, should be excluded from being used to make biological interpretations.

Thus, we suggest that all published mouse studies, in which single-cell RNA-seq QC was based

on the mtDNA% value greater than 5%, should be re-evaluated because the use of any mtDNA%
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higher than 5% is likely to be an overshoot over the threshold, resulting in apoptotic cells being

utilized in the subsequent analyses.
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4. SINGLE-CELL EXPRESSION VARIABILITY IMPLIES CELL FUNCTION *

4.1 Introduction

Cells are fundamental units of cellular function. Cells in multi-cellular organisms can be or-

ganized into groups, or cell types, based on shared features that are quantifiable. A multicellular

organism is usually composed of cells of many different types – each is a distinct functional entity

differing from the other. Within the same cell type, cells are nearly identical and are considered to

carry the same cell function or biological processes associated with the cell type that ensures the

homeostatic state of the organism where the cell is present.

The recent development of single-cell RNA sequencing (scRNA-seq) technologies has brought

the increasingly high-resolution measurements of gene expression in single cells [94]. This power

has been widely adopted to refine the categories of known cell types and analyze complex tissues

systematically and reproducibly [5]. The power of scRNA-seq has also been harnessed to identify

novel cellular states among the same type of cells [6].

Cells of the same type and at the same state may still show marked intrinsic cell-to-cell vari-

ability in gene expression or single cell expression variability (scEV), even under the same en-

vironmental conditions [95, 96, 7]. The importance of this intrinsic variability is increasingly

appreciated [97, 98]. Changes in the magnitude of scEV have been associated with development

[99, 100, 101, 102], aging [103, 104], and pathological processes [105, 106].

Dueck and colleagues [12] put forward the so-called ‘variation is function’ hypothesis, saying

that scEV per se might be crucial for population-level function. They used the term ‘single cell

variation or variability’ to refer to diversity within an ensemble that has been previously defined as

being generally homogeneous, rather than diversity of cell types that are clearly distinct and already

This chapter has been reprinted from: Osorio, Daniel; Yu, Xue; Zhong, Yan; Li, Guanxun; Serpedin, Erchin;
Huang, Jianhua Z.; Cai, James J. 2020. ‘Single-Cell Expression Variability Implies Cell Function’ Cells 9, no.
1: 14. Available at: https://www.mdpi.com/2073-4409/9/1/14. Licensed under a Creative Commons Attribution 4.0
International License https://creativecommons.org/licenses/by/4.0/, which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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recognized. The main focus of their question is to ask how the individual cells with different gene

expression levels may interact to causally generate higher-level function. If the hypothesis turns out

to be true, it means that the intrinsic cell-to-cell variability is an indicator of a diversity of hidden

functional capacities, which facilitate the collective behavior of cells. This collective behavior is

essential for the function and normal development of cells and tissues [107, 108]. The loss of this

collective cellular behavior may result in disease. Thus, investigation of the intrinsic cell-to-cell

variability may contribute to the understanding of pathological processes associated with disease

development.

It is worth noting that the level of intrinsic cell-to-cell variability needs to be measured within a

highly homogeneous population of cells. This is because many micro-environmental perturbations

and stochastic factors at the cellular level are known to change the scEV. These factors may include

local cell density, cell size, shape and rate of proliferation, cell cycle [13, 14, 109, 110, 15]. To

work on the cell-to-cell variability, these confounding factors have to be controlled.

Exponential scaling of scRNA-seq has made it feasible to study scEV across thousands of

cells [111] and quantify scEV based on measures of statistical dispersion such as the coefficient

of variation (CV) [112, 113]. The sheer number of cells sequenced in a ‘typical’ droplet-based

scRNA-seq experiment allows us to filter out for a sizable number of highly homogeneous cells,

based on the similarity between their global transcriptional profiles. With these selected core of

highly similar cells, we are able to test the ‘variation is function’ hypothesis. Furthermore, using

established statistical methods, we are able to control for many sources of technical variation that

may confound the measurement of scEV to obtain an unbiased estimate. For instance, single-

molecule capture efficiency, 3’ end bias due to single-cell RNA library preparation protocol, and

low expression of genes are examples of known sources of technical variation [53], which should

be controlled for using statistical means.

The characterization of the impact of scEV on cell function requires the understanding of which

genes show greater or less cell-to-cell variability in their expression. These feature genes may

carry valuable information that can facilitate the elucidation of underlying regulatory networks
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[16]. Once these genes are identified, a follow-up question is whether they are tissue- or cell type-

specific – i.e., whether the same genes will be identified for different tissues or cell types. Our

working hypothesis is in line with the ‘variation is function’ hypothesis, that is, different tissues or

cell types have different sets of highly variable genes (HVGs), and these HVGs should be enriched

with functions that reflect the biological processes associated with the respective tissues or the cell

types. To test this, we analyzed three scRNA-seq data sets generated for three different cell types.

Each data set contains thousands of cells. For each cell type, we selected a highly homogenous

population of cells, with the help of a newly developed dimensionality reduction method, called

potential of heat-diffusion for affinity-based trajectory embedding (PHATE) [114]. We estimated

scEV among the selected cells for each of these cell types and further systematically characterized

functions of identified HVGs. We show that HVGs are highly specific to cell types, i.e., different

cell types have different sets of HVGs; functions of HVGs precisely mirror the biological processes

of the corresponding cell types.

4.2 Materials and Methods

4.2.1 LCL cell culture and scRNA-seq experiment

The lymphoblastoid cell line (LCL) GM12878 was purchased from the Coriell Institute for

Medical Research. They were cultured in the RPMI-1640 medium supplied with 2mM L-glutamine

and 20% of non-inactivated fetal bovine serum, incubated at 37°C under 5% CO2 atmosphere. For

maintenance, cells were subcultured every three days by adding fresh medium. For single-cell

sequencing, each cell line was subcultured with 200, 000 viable cells/mL. Cells were harvested for

single-cell sample preparation and sequencing on day four (stationary phase) following the sample

preparation demonstrated protocol and Single Cell 3’ Reagent Kits v2 user guide provided by 10×

Genomics. Briefly, cells were mixed well in each flask, and 1mL of cell suspensions from each cell

line were taken out. The cells were washed three times by centrifuging, suspending, and resuspend-

ing in 1× PBS with 0.04% BSA. Viable cells were then counted using an automated cell counter

(Thermo Fisher Scientific, Carlsbad, CA, USA). Cells (≈ 5000 per cell line) were then pelleted
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and resuspended in the nuclease-free water based on the cell suspension volume calculator table,

followed by GEM (gel bead-in-emulsions) generation and barcoding, the post-GEM-RT cleanup,

cDNA amplification, and library construction and sequencing. The experiments were conducted at

the Texas A&M Institute for Genome Sciences and Society. The sequencing was conducted in the

North Texas Genome Center facilities using a Novaseq 6000 sequencer (Illumina, San Diego, CA,

USA). Raw reads for each cell were analyzed using Cell Ranger (v2.0.0, 10× Genomics, Pleasan-

ton, CA, USA) and the outputs were aligned to the human reference genome (GRCh38) to obtain

the counts [115].

4.2.2 Non-LCL scRNA-seq data sets

The scRNA-seq data for lung airway epithelial cells (LAECs) was downloaded from the GEO

database using accession number GSE115982. The original data was generated in the study of

[116] for CCR10− and CCR10+ LAECs. We used the data generated from the CCR10− cells with

the sample identifier GSM3204305. The scRNA-seq data for primary dermal fibroblasts (DFs) was

generated in the study of [117]. We downloaded the data for unstimulated DFs from the Array-

Express database using accession number E-MTAB-5988. To support our findings, we processed

additional samples and compared the results obtained for the same cell type. We selected the tran-

scriptomic profile of fibroblasts (7, 052 and 6, 503 cells) from samples extracted from two different

lung regions (GEO accessions: GSM2894834 and GSM2894835); and for the iPSC sample, we

used another iPSC culture (9, 146 cells) generated in the study of [118], and downloaded from

the ArrayExpress database using accession number E-MTAB-6268. All of these data sets were

produced using 10× Genomics scRNA-seq solutions.

4.2.3 Selection of highly homogeneous populations of cells

We used a supervised data analysis method to select highly homogeneous cells based on the

scRNA-seq expression profile of each cell. The procedure is summarized in a flowchart. The main

steps are as follows. We used Seurat (v2.2.0) [119] to assign each cell into a cell cycle phase

and excluded cells that were not considered to be in G1-phase. We removed genes encoded in
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the mitochondrial genome from the analysis. We then selected and retained cells with a library

size between 50 and 95 percentiles. We used PHATE [114] to generate a embedding plot of all

remaining cells and inspected the distributions of cells in the three-dimensional plot and manually

picked one ‘core’ cell. Finally, an additional 999 cells that were closest to the core cell, according

to the Euclidean distances between cells, were selected to form the final 1, 000-cell population.

This selection procedure was applied to each of the three cell types independently, as well as for

the additional samples used to support our findings.

4.2.4 Identification of HVGs

Identification of highly variable genes (HVGs) was based on the assumption that high expres-

sion variability of these genes across cells relative to their mean expression is caused by biological

effects rather than merely technical noise. We used the method proposed in [120], which is im-

plemented in function ‘sc_hvg’ of the scGEAToolbox package [121]. This method starts by

adjusting the library size and assumes that the observed mean expression (µi) and the observed

CV2 (ŵi) of gene i among cells have the following relationship:

E (ŵi) ≈
a1

µ̂i + a0

(4.1)

and
ŵi

a1
µ̂i

+ a0

∼
X2
m−1

m− 1
(4.2)

where m is the number of cells. The values of a0 and a1 are estimated by generalized linear

regression (GLM). The residual term ŵi
a1
µ̂i

+a0
for each gene is used to test if the observed CV2 is sig-

nificantly larger than the expected CV2 via a chi-squared test. Multiple testing p-value adjustments

were performed by controlling FDR [122].

4.2.5 Function enrichment analyses

To identify the overrepresented biological functions of HVGs in different cell types, we per-

formed the GO enrichment analysis using Enrichr [123, 124] and GOrilla [125]. Enrichr was
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conducted for HVGs (FDR < 0.01) against the rest of the expressed genes with respect to path-

ways collected in the Reactome pathway knowledgebase [126]. GOrilla was performed with the

list of genes sorted in descending order of their residual variability.

4.2.6 Analyses of co-expression network and regulatory regions of HVGs

MAGIC [24] was used to impute the expression matrix. The co-expression networks were con-

structed using 1-correlation as a distance measure, using SBEToolbox [127]. The motif analysis of

the regulatory regions associated with the HVGs was performed using the GREAT [128]. Genomic

coordinates for the HVG genes from the Human Reference Genome (hg19) were downloaded from

the Ensembl Biomart [129] and converted into bed format using an in-house script. Identified mo-

tifs were searched against the JASPAR database [130] to match the binding sites of corresponding

TFs.

4.2.7 Data availability

The data sets used in this study and computer code are available.

1. LCLs GM12878 scRNA-seq data in the GEO database with accession number GSE126321:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126321

2. LAEC scRNA-seq data in the GEO database with accession number GSE115982:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115982

3. DF scRNA-seq data in ArrayExpress database with accession number E-MTAB-5988:

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5988

4. Human iPSC scRNA-seq data in ArrayExpress database with accession number E-MTAB-

6687: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6687

5. Fibroblasts scRNA-seq data in GEO database with accession number GSM2894834:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894834
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6. Fibroblasts scRNA-seq data in GEO database with accession number GSM2894835:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894835

7. Human iPSC scRNA-seq data in ArrayExpress database with accession number E-MTAB-

6268: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6268/

8. Computer codes used to analyze data: https://github.com/cailab-tamu/HVG

9. The following are available online at https://www.mdpi.com/2073-4409/9/1/14/s1, Figure

S1: Flowchart of selection of a highly homogeneous population of cells; Figure S2: UMAP

embedding plots for the 1, 000 selected cells of each of three cell types. Figure S3: Scat-

ter plots between mean and residual CV2. Figure S4: Comparison between two methods:

HVG [120] and VEG [131], for correcting mean-variance dependency. Figure S5: Venn di-

agram showing overlap between HVGs identified in three cell types. Figure S6: Correlation

between scEV and population-level expression variability across genes of functional sets.

Figure S7: PHATE 3-D embedding plot for cells colored according to IGLC2 expression

level in cells. Table S1: HVGs of lymphoblastoid cell line (LCL) cells (FDR < 0.01). Ta-

ble S2: HVGs of lung airway epithelial cells (LAECs) (FDR < 0.01). Table S3: HVGs of

dermal fibroblasts (DFs) (FDR < 0.01). Table S4: Significantly enriched motifs found in

HVGs. Table S5: HVGs of induced pluripotent stem cell (iPSCs) (FDR < 0.01).

4.3 Results

4.3.1 Single-cell RNA sequencing and selection of highly homogenous cells

In this study, we experimented with the transcriptomic profiles of three different human cell

types, namely, lymphoblastoid cell line (LCL), lung airway epithelial cell (LAEC), and dermal

fibroblast (DF). We estimated single-cell expression variability (scEV) for each of these cell types,

individually.

To obtain the scRNA-seq data for LCL, we cultured GM12878, an LCL strain widely used in

genomic research, prepared cells using a 10× Genomics Chromium Controller, and sequenced a
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total of 7, 045 cells [115]. This data has been deposited in the NCBI Gene Expression Omnibus

(GEO) database (accession number GSE126321). For the other two cell types, LAEC and DF,

we obtained the scRNA-seq data for 3, 863 and 2, 553 cells from the studies of [116] and [117],

respectively. In addition, we also processed two more samples for fibroblasts and one for iPSC

cells (see Section 4.2.7 for data availability) to cross-validate our findings. All scRNA-seq data

sets of the three cell types and the additional samples used were produced using 10× Genomics

droplet-based solution and made use of unique molecular identifiers (UMIs) [132].

For each cell type, we employed a data analysis procedure, a filter pipeline on scRNA-seq

data, to select highly similar populations of cells (see Section 4.2 for materials and methods).

These selected cells are a representative population of each the cell type. Briefly, we first excluded

mitochondrial DNA-encoded genes from the analysis. We then excluded cells in the S- or G2/M

phases and only retained G1-phase cells. We also excluded cells with library size < 55 percentile

or > 99 percentile. Finally, we used PHATE to produce the low-dimensionality representation of

the remaining cells to inspect between-cell structure driven by heterogeneity in gene expression.

PHATE is a visualization method that captures both local and global nonlinear structure in data by

an information-geometry distance between data points [114]. As seen from the PHATE projection

(Figure 4.1 A.), several ‘arms’ of cells show the structure of the cell-to-cell relationship. Based on

the observation, we manually picked one ‘core’ cell at the root of the arms of cells in the middle of

the cell cloud (red circle in Figure 4.1 A.). The core cell and 999 nearest cells around it were then

selected using the k-nearest neighbors algorithm to form the final population of 1, 000 cells, which

was used for subsequent data analyses.

To examine the homogeneity of selected cells, we used t-distributed stochastic neighbor em-

bedding (t-SNE) [133] to position all 1, 000 selected cells in the two-dimensional t-SNE space.

Compared to PHATE, t-SNE is a more commonly used nonlinear visualization algorithm for re-

vealing structures in high-dimensional data, emphasizing local neighborhood structure within the

data. When running t-SNE, we experimented with a series of perplexity values to produce multiple

plots for the same population of selected cells. t-SNE is known to be sensitive to hyperparameters
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Figure 4.1: Selection of a highly homogenous cell population for variability analysis. (A) Three-
dimensional PHATE embedding plot for G1-phase cells of GM12878. Each point represents a
single cell in the three-dimensional space. The red circle indicates the approximate positions of
1000 selected cells. (B) Embedding plots generated for the 1000 selected cells with a t-SNE
algorithm with a series of perplexity values.

[134]. In general, when different parameter values are given, t-SNE tends to produce different cell

clustering plots. However, for our selected cells, no structure is observed in any of these t-SNE

embedding plots (Figure 4.1 B.). The same results were obtained for the other two cell types as

well as using the uniform manifold approximation and projection (UMAP) as an alternative em-

bedding algorithm [134] (Supplementary Figure S2). Thus, we confirm that cells selected with our

filter pipeline are highly homogenous populations of representative cells for each cell type.

4.3.2 Identification of highly variable genes

Highly variable genes (HVGs) are expressed variably across homogeneous cells of the same

type. For each cell type, we used the method of [120] to identify HVGs from scRNA-seq data of

the homogeneous population of selected cells. In this method, the relationship between the squared

coefficient of variation (CV2) of genes and their average expression (µ) is considered. The relation-

ship between log-transformed CV2 and log-transformed µ is fitted with a generalized linear model

(GLM) by using a gamma distribution, and the expected CV2 for a given µ is calculated with the

fitted curve. The log-transformed ratio between observed CV2 and expected CV2 [= log(observed

CV2) - log(expected CV2], called ‘residual variability’, is used as the measurement of scEV. Since
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Figure 4.2: Identification of highly variable genes (HVGs). (A) The relationship between CV2
and mean expression of genes in LCL GM12878. The orange line shows the trend for the gamma
GLM fit curve between CV2 and mean expression and used to identify HVGs. For each gene, the
residual variability is calculated as the difference between observed CV2 and expected CV2 from
the fitted curve. (B) Expression profiles of selected HVGs and lowly variable genes across cells.
Cells are unsorted and remain a random order. Each vertical line is a cell, and the height of line
indicates the level of gene expression in counts per million (CPM) in a cell.

the expected CV2 captures the variability originated from technical noise, the residual variability

is considered to be an unbiased measure of biological variability. Indeed, after the correction, the

µ-CV2 correlation disappeared (Supplementary Figure S3). We repeated the procedure for correct-

ing -CV dependency using another method [131] and obtained the qualitatively similar results in

terms of identified HVGs and enriched functions (Supplementary Figure S4). Here, we only report

the results obtained using the method of [120].

After the µ-CV2 dependency correction, we identified 465, 466, and 364 HVGs at a false-

discovery rate (FDR) of 0.01 for LCL, LAEC, and DF, respectively (Supplementary Tables S1–3).

To visualize the expression variability of genes, we plot CV2 against µ, both on the logarithmic

scale, for LCL (Figure 4.2 A.). Each dot represents a gene; all genes together give a characteristic

cloud showing the µ and CV2 of gene expression. Genes above the GLM fitting curve, e.g., IGKC,

CCL3, LTB, and FTL, are more variable than expectation, whereas genes below the curve, e.g.,

TMEM9B and RPL17, are less variable (Figure 4.2 B.).
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4.3.3 Cell-type origin determines the function of highly variable genes

To assess the biological functions of HVGs in different cell types, we performed enrichment

analyses. We found that enriched gene ontology (GO) terms are largely distinct and reflect re-

spective cell functions of each of the three cell types (Table 4.1). For example, LCL HVGs (e.g.,

CCL22 and IFI27) are more likely to be involved in cytokine- or interferon-signaling pathways,

and also, more generally, the innate immune system; LAEC HVGs (e.g., COL1A1, MMP1, and

IL17C) collagen formation and extracellular matrix organization; DF HVGs (e.g., KRT14, ACAN,

and FLG) keratinization and regulation of cell proliferation. DF HVGs also include SFRP2, DPP4,

and LSP1, which are marker genes defining major fibroblast subpopulations in human skin [135].

Taken together, these results show that different cell types have different sets of HVGs with sub-

stantial scEV, associated with cell-type-specific functions.

If two cell types have shared function, then we expect to see the overlap in their HVG-associated

functions. This, indeed, is the case. There are some overlaps between enriched functions between

the three cell types we examined here. For example, the cytokine signaling pathway is enriched

for both LCL and LAEC, and extracellular structure organization is enriched for both LAEC and

DF. Meanwhile, across all three cell types, there are 14 shared HVGs genes (CDC20, CLEC2B,

CLIC3, CTSC, CYP1B1, DUSP2, HES1, MT1E, NPW, SOX4, STMN1, TK1, TRIB3, and UCHL1;

Supplementary Figure S5), with diverse cellular and molecular functions.

4.3.4 Functions associated to HVGs are conserved across tissues and subpopulations of cells

To determine how stable the functions associated with the HVGs identified in a cell type are,

we used additional samples and random selection of the core cell. We analyzed two other fibroblast

samples obtained from different body tissues (see Section 4.2.7 for data availability), as well as the

initially included dermal sample. For each sample, after quality control, we randomly selected

a core cell and their 999 more similar cells; then, we identified the set of HVGs (FDR < 0.01

and fold-change > 1.5) present in each subpopulation as described before (see Section 4.2 for

materials and methods). Under these thresholds, we identified 221, 226, and 228 HVGs for dermal,
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Cell Type Highly Variable Genes, Top 50 Enriched GO Terms, Top 10 Enriched Reactome Pathways, Top 10

Lymphoblastoid
Cell Line (LCL)

ANKRD37 ATF3 BIN1 BMP4
CAMP CCL22 CCL3 CCL3L3
CCL4 CCL4L2 CCR7 CD69 CD7
CD83 CDKN1A CTSC CYP1B1
DHRS9 DUSP2 FSCN1
HIST1H1C IER3 IFI27 IGHG1
IGHG3 IGHM IGKC ITM2A
KCNMA1 LINC00176 LINC01588
LMNA LTA LTB MAL MIER2
MIR155HG MYC NFKBIA PMCH
PRSS2 RGS1 RGS16 RGS2
RP11-291B21.2 S100A4 SFN
TNFAIP2 TUBB4B WFDC2

Signal transduction (GO:0007165) Immune system (R-HSA-168256)
Response to stimulus
(GO:0050896)

Chemokine receptors bind chemokines (R-
HSA-380108)

Immune response (GO:0006955) Interferon alpha/beta signaling (R-HSA-
909733)

Response to biotic stimulus
(GO:0009607)

Cytokine signaling in immune system (R-
HSA-1280215)

Immune system process
(GO:0002376) Interferon signaling (R-HSA-913531)

Response to external biotic stimu-
lus (GO:0043207)

Peptide ligand-binding receptors (R-HSA-
375276)

Response to external stimulus
(GO:0009605)

G alpha (i) signaling events (R-HSA-
418594)

Cytokine-mediated signaling path-
way (GO:0019221) Innate Immune System (R-HSA-168249)

Defense response (GO:0006952) Interferon gamma signaling (R-HSA-
877300)

Response to chemical
(GO:0042221) Cell cycle (R-HSA-1640170)

Lung airway
epithelial cell
(LAEC)

AMTN ANKRD1 AREG CCL2
CCL5 CCL7 COL1A1 COL1A2
COL3A1 COL6A1 COL6A3
CRCT1 CTGF CXCL5 CXCL6
FBXO32 GREM1 HAS2 IFNL1
IFNL2 IFNL3 IGFBP5 IGFL1
IL17C IL23A KRT14 KRT6B
KRT81 LY6D MEG3 MMP1
MSMB OVOS2 PI3 POSTN PPBP
RP11-338I21.1 S100A7 S100A8
S100A9 SERPINB2 SERPINB3
SERPINB4 SLC15A2 SPARC
SUGCT SULF1 TEX26-AS1
TNFAIP6 TSLP

Regulation of multicellular organ-
ismal process (GO:0051239)

Extracellular matrix organization (R-HSA-
1474244)

Regulation of signaling receptor
activity (GO:0010469)

Assembly of collagen fibrils and other mul-
timeric structures (R-HSA-2022090)

Response to stimulus
(GO:0050896)

Cytokine signaling in immune system (R-
HSA-1280215)

Regulation of cell proliferation
(GO:0042127) Collagen formation (R-HSA-1474290)

Developmental process
(GO:0032502) Signaling by interleukins (R-HSA-449147)

Extracellular matrix organization
(GO:0030198)

Chemokine receptors bind chemokines (R-
HSA-380108)

Response to chemical
(GO:0042221)

Peptide ligand-binding receptors (R-HSA-
375276)

Response to organic substance
(GO:0010033)

Collagen biosynthesis and modifying en-
zymes (R-HSA-1650814)

Regulation of developmental pro-
cess (GO:0050793)

Integrin cell surface interactions (R-HSA-
216083)

Regulation of response to stimulus
(GO:0048583)

Class A/1 (rhodopsin-like receptors) (R-
HSA-373076)

Dermal fibroblast
(DF)

ACAN ACTA2 ACTC1 CEMIP
CLU COMP CTSC CXCL1 DCN
DKK1 FLG G0S2 GAL HIST1H4C
IGFBP5 IGFBP7 IL1RL1
KCNMA1 KRT14 KRT17 KRT19
KRT34 KRT81 KRTAP1-5
KRTAP2-3 LCE1F LUM MGP
MMP1 MMP3 MT1X NMB
OLFM2 PCP4 PENK PGF PI16
POSTN PPP1R14A PTTG1 PTX3
RARRES2 RGCC SCG5
SERPINE2 SFRP2 SFRP4 STMN2
TFPI2 TNFRSF11B

Regulation of signaling receptor
activity (GO:0010469)

Extracellular matrix organization (R-HSA-
1474244)

Developmental process
(GO:0032502)

Regulation of insulin-like growth factor
(IGF) transport and uptake by insulin-like
growth factor binding proteins (IGFBPs) (R-
HSA-381426)

Keratinization (GO:0031424) ECM proteoglycans (R-HSA-3000178)
Anatomical structure development
(GO:0048856) Hemostasis (R-HSA-109582)

Regulation of cell proliferation
(GO:0042127) Platelet degranulation (R-HSA-114608)

Regulation of multicellular organ-
ismal process (GO:0051239) Dissolution of fibrin clot (R-HSA-75205)

Extracellular matrix organization
(GO:0030198)

Response to elevated platelet cytosolic Ca2+
(R-HSA-76005)

Extracellular structure organization
(GO:0043062)

Negative regulation of TCF-dependent sig-
naling by WNT ligand antagonists (R-HSA-
3772470)

Response to oxygen-containing
compound (GO:1901700) GPCR ligand binding (R-HSA-500792)

Multicellular organismal process
(GO:0032501)

Peptide ligand-binding receptors (R-HSA-
375276)

Table 4.1: Representative highly variable genes (HVGs) identified in the three cell types: LCL,
LAEC, and DF, and the results of functional enrichment analyses. Genes are sorted by residual
variability. The top 50 genes with the highest residual variability values are selected as representa-
tive HVGs.
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Shared Highly Variable Genes Enriched GO Terms, Top 5 Enriched Reactome Pathways

ID3 MARCKSL1 DPT ID2 CYP1B1
IGFBP2 IGFBP5 APOD IGFBP7 SFRP2
PLK2 SOX4 PI16 CTGF SGK1 CITED2
IGFBP3 SERPINE1 TIMP1 OSR2 HAS2
MYC B4GALT1 PTGDS CRYAB BAMBI
MFAP5 CSRP2 LUM PGF THBS1 FGF7
MT2A MT1X WISP2 ADAMTS1

Collagen-containing extracellular matrix
(GO:0062023)

Extracellular matrix organization (R-HSA-
1474244)

Extracellular matrix (GO:0031012) Regulation of insulin-like growth factor
(IGF) transport and uptake by insulin-like
growth factor binding proteins (IGFBPs)
(R-HSA-381426)

Epithelial cell proliferation (GO:0050673)
Negative regulation of cell migration
(GO:0030336)
Extracellular matrix organization
(GO:0030198)

Table 4.2: Shared highly variable genes (HVGs) identified in the three fibroblast samples: dermal,
lung distal, and lung proximal, and the results of functional enrichment analysis.

lung distal, and lung proximal fibroblasts, respectively. Among the identified HVGs from the

three samples, we found 36 genes that statistically enrich (FDR < 0.05) for specific biological

processes historically associated with fibroblasts (Table 4.2). The small overlap found, as well

as the functional enrichment for the extracellular matrix, were previously described in [136, 137],

where it is shown that fibroblasts are a remarkably plastic cell type differing between human tissues

where they develop unique morphologies and physiologic functions but still have a commonly

associated role, the extracellular matrix organization, and maintenance.

4.3.5 HVGs as part of the regulatory network with high cell-type specificity

Next, we set out to test whether HVGs are co-expressed and thus tend to form co-expression

networks [138]. We first imputed the expression matrix and then constructed the co-expressed

network using the top 50 HVGs for each cell type. For LCLs, the network contains two main mod-

ules centered on NFKBIA and IGHG1, respectively (Figure 4.3 A.). NFKBIA encodes the NF-κB

inhibitor that interacts with REL dimers to inhibit NF-κB/Rel complexes [139, 140]. For LAECs,

two modules are centered on IL23A/TNFAIP6 and COL1A1 (Figure 4.3 B.); for DF, KRTAP2-3

and IGFBP7 (Figure 4.3 C.). Thus, functions of ‘hub’ genes in HVG co-expression networks are

closely relevant to the function of corresponding cell type. These results are another line of evi-

dence that scEV implies cell function. The transcription of multiple HVGs may be involved in the

same underlying regulatory activities, giving rise to the co-expression network, as we observed.

Thus, we wondered whether scEV in several different HVGs is driven by activities of one or few

common TFs. To address this question, we searched for upstream regulators of the HVGs defined
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Figure 4.3: Co-expression networks of top HVGs. (A) Co-expression network between most-
variable HVGs of LCL and two enriched binding motifs identified in these HVGs. (B) and (C) are
for LAEC and DF, respectively. Genes labeled in yellow are the ones acting as a “hub” with high
betweenness centrality and closely relevant to the cell-type function.

by our analysis (see Section 4.2 for materials and methods). We identified significant enriched TF

binding motifs upstream of HVGs, four for LCL, and five for LAEC (Supplementary Table S4).

No significantly enriched motif was identified for DF. The known motifs of LCL HVGs include

that of the NF-κB subunit gene, RELA, and that of BACH2 (Figure 4.3 A.). The known motifs of

LAEC HVGs include the TATA box and that of CEBPB (Figure 4.3 B.).

To further explore the involvement of HVGs in the cell type-specific regulatory network, we

focused on LCL HVGs in a well-studied gene regulatory network that orchestrates B cell fate

dynamics [141, 142, 143]. This known regulatory network involves eight genes, including three

LCL HVGs – PRDM1 (or Blimp-1), AICDA (or AID), IRF4, two key regulatory genes with binding

motifs enriched in targeting LCL HVGs (see above) – RELA and BACH2, and three other key

regulators – BCL6, PAX5, and REL (cRel) (Figure 4.4 A.).

We examined the inter-relationship between across-cell expressions of three LCL HVGs (Fig-

ure 4.4 B.). The scatter plot shows that the directionality of the correlation between AICDA and

IRF4 depends on the expression level of PRDM1. Among cells with relatively low expression

of PRDM1, expressions of AICDA and IRF4 are negatively correlated. Whereas, among cells

in which PRDM1 is highly expressed, expressions of AICDA and IRF4 are positively correlated.

This nonlinear relationship between expressions of HVGs suggests they are embedded in a tightly
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Figure 4.4: Gene regulatory network and correlation matrix of LCL HVGs. (A) An NF-κB reg-
ulatory network model for activated B cell (ABC) - antibody secreting cell (ASC) differentiation,
modified from [143]. Bold font indicates HVGs; asterisk indicates the upstream TFs targeting
HVGs; solid line dashed line indicates the regulatory relationship supported by the correlation be-
tween two corresponding genes, and the dashed line indicates regulatory relationship not supported
by the expression correlation between genes. (B) Scatter plot of cells, showing the correlation be-
tween expression levels of three HVGs: IRF4, AICDA (AID), and PRDM1 (Blimp-1). The color
bar indicates the expression level of PRDM1 (Blimp-1). (C) Spearman correlation matrix between
expression levels of eight genes involved in the model. Green boxes indicate that the sign of the
correlation between two genes is consistent with the effect (induction/repression) of the relation-
ship between the two in the regulatory model. Red boxes indicate inconsistency, while gray boxes
indicate no direct relationship according to the model.
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regulated expression network. Thus, we examined the all-by-all Spearman correlation between

expressions of all eight genes in this regulatory network using the imputed data of the homogenous

LCLs (Figure 4.4 C.). By comparing the sign of correlation coefficient of each pair of genes with

the regulatory effect of the gene pair in the model network, we found that the correlation matrix

can be used to correctly recover 15 out of 18 direct regulatory relationships. The result suggests

that, even in this highly homogenous population of LCLs, cells retain gene regulatory network

activities that orchestrate cell fate dynamics as in their original B cells.

4.3.6 Single-cell expression variability in LCLs is positively correlated with between - indi-

vidual expression variability

Next, we examined the relationship between scEV and inter-individual expression variabil-

ity. We distinguish between the two different types of variabilities at different organizational lev-

els. Specifically, the former is cell-to-cell variability in a population of cells, and the latter is

inter-individual variability at the human population level. We again focused on LCLs, for which

population-scale gene expression data are available from the Geuvadis RNA-seq project of 1, 000

Genomes samples. The bulk RNA-seq data was downloaded as a normalized expression matrix

of FPKM values. We retained data for all LCLs of European ancestry (CEU) [44]. With the

residual variability estimated from scRNA-seq of GM12878 and that estimated from the CEU

population, we tested the correlation between the two estimates across genes. When the test was

conducted with all genes (n = 8, 424), we obtained a significant but weak positive correlation

(SCC, ρ = 0.19, P = 1.2 × 10−9). We wondered whether this positive correlation was driven

by subsets of genes. To identify these gene sets, we conducted the correlation tests for the GO-

defined gene sets one by one. Across all gene sets tested, the average SCC for gene sets defined

by GO biological process (BP) and molecular function (MF) terms are on average ρ = 0.28 and

ρ = 0.23, respectively. Strikingly, we found a small number of gene sets that produced SCC much

higher than averages. The functions of these gene sets include B-cell activation involved in im-

mune response (GO:0002322), cytokine receptor activity (GO:0004896), cellular response to drug

(GO:0035690), and regulation of tyrosine phosphorylation of stat protein (GO: 0042509; Figure
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Figure 4.5: Correlation between scEV (i.e., residual variability estimated from LCL GM12878)
and the population-level expression variability (measured in LCLs derived from unrelated indi-
viduals of European ancestry, CEU) between genes of selected gene sets. More examples can be
found in Supplementary Figure S6.

4.5), as well as leukocyte chemotaxis (GO: 0030595) and phospholipase activity (GO:0004620;

for more examples, see Supplementary Figure S6). Thus, for these gene sets, scEV may contribute

to the establishment of between-individual expression variability.

4.3.7 No enriched functions associated with HVGs identified in human induced pluripotent

stem cells (iPSCs)

Finally, we argued, if scEV is the indicator of cell type-specific function, then scEV in undif-

ferentiated cells should not be associated with any cellular functions. To test this, we obtained the

scRNA-seq data from the study of [144] (see Section 4.2.7 for data availability). The data was

generated from human iPSCs [145]. Same as other cell types examined in this study, these iPSCs

were also prepared using the 10× Genomics Chromium controller. The released data contains five

samples. We used the first batch (Sample 4) of the data to perform the HVG detection and function

enrichment tests, using the same procedure applied to other cell types. When plotting the relation-

ship between log-transformed CV2 and log-transformed average expression (µ), we found almost

no genes showing large CV2 deviated from the regression curve (Figure 4.6 A.) –a pattern differs

substantially from those of the other three cell types (Figure 4.6 B.). This pattern suggests that, for

the majority of genes in iPSCs, scEV can be explained by technical noise or sampling stochastic-

ity. In other words, iPSCs lack biological variability in their single-cell expression. Nevertheless,
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Figure 4.6: Comparison of the magnitude of single-cell expression variability (scEV) among genes
between (A) undifferentiated induced pluripotent stem cells (iPSCs) and (B) three differentiated
cell types: Lymphoblastoid cell line (LCL), lung airway epithelial cell (LAEC), and dermal fibrob-
last (DF). For each cell type, the relationship between coefficient of variation squared (CV2) and
mean expression of genes is shown.

we still identified 79 iPSC HVGs (Supplementary Table S5) but could not associate any signifi-

cant (FDR < 0.05) enriched function with them. To further validate our findings, we performed

the same analysis using another iPSC sample (see Section 2.7 for data availability) recovering the

same pattern, a low number of HVGs (4) that are not significative enriched for a specific function

(ID3, LEFTY1, MALAT1, TAGLN). These negative results are consistent with our prediction given

by the ‘variation is function’ hypothesis: undifferentiated iPSCs are not expected to be associated

with any cell-type-specific function.

4.4 Discussion

Single-cell expression variability (or scEV) is sometimes called gene expression noise, empha-

sizing the stochastic nature of transcriptional activities in cells [146, 147]. Interrogating scEV data

has provided insights into gene regulatory architecture [148, 149]; manipulating the magnitude

of scEV, through using noise enhancers or scEV-modulating chemicals, has been an approach to

achieve drug synergies [150]. Understanding the origin and functional implications of scEV has

long been appreciated [95, 96, 7, 151].

In this study, we focused on scEV in human cells. More specifically, we characterized dif-

ferent genes’ expression variability levels within a highly homogeneous population of genetically
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identical (or nearly isogenic) cells under the same environmental condition. We quantified scEV

in highly homogeneous populations of a sizable number of viable cells. Working with cells of the

same type, for example, LCL, we started by preprocessing data from thousands of cells. We found

that, even though we had firstly preprocessed the data and retained only cells with similar library

size and in the same cell cycle phase, it was not enough. There were still marked substructures,

shown as branches of cells, in the embedding cloud of cells (Figure 4.1 A.), as revealed by the

new embedding algorithm [114]. Retrospectively, we applied the trajectory analysis and found out

that one of the longest branches contained cells with elevated expression of immunoglobulin genes

(Supplementary Figure S7).

Similarly, marked substructures were observed in the embedding plots of the other two cell

types, LAEC and DF. Genes that were differentially expressed and drove the formation of branches

of LAECs and DFs were different from those in LCL cells. Thus, there is no single or a small set of

marker genes that can be used to capture cellular heterogeneity across different cell types, making

the definition of populations of homogenous cells a tedious task. Our work represents the first study

focused on comparing scEV in highly homogeneous cell populations across genes in different cell

types.

We showed that scEV estimated from homogeneous populations of cells for different cell types

carries information on cell type-specific function. Information on molecular functions of cells

and biological processes of a given cell type can be extracted from a set of highly variable genes

(HVGs), bearing significant biological meaning (see also [30]). HVGs detected in different cell

types do not overlap and can reveal the subtle differences in cellar functions between cell types.

These conclusions are reached based on our investigation of three cell types and their correspond-

ing HVGs.

First, LCLs are usually established by in vitro infection of human peripheral blood lympho-

cytes by the Epstein–Barr virus. The viral infection selectively immortalizes resting B cells, giving

rise to an actively proliferating B cell population [32]. B cells genetically diversity by rearranging

the immunoglobulin locus to produce diverse antibody repertories that allow the immune system
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to recognize foreign molecules and initiate differential immune responses [13, 64, 63]. LCLs are

produced through the rapid proliferation of few EBV-driven B cells from the blood cell population

[65]. Thus, scRNA-seq data sets of LCLs offer a ‘snapshot’ of highly diverse immunoglobulin

rearrangement profiles in a much larger population of polyclonal B cells established in donors of

these cell lines. Therefore, it is not unexpected to see quite a few immunoglobulin genes in the

top list of HVGs identified in LCLs. In addition to these immunoglobulin genes, a number of

other immune genes, especially C-C motif chemokine ligands (CCLs) and C-C motif chemokine

receptors (CCRs), are in the list of HVGs of LCL. These genes play important roles in allowing

the coordination of the activity of individual cells through intercellular communication, essential

for the immune system maintains robustness [152]. The HVG co-expression network analysis re-

vealed the key role of the NF-κB pathway in facilitating communications between immune cells

[107, 13]. More strikingly, we were able to reconstruct nearly the entire NF-κB regulatory net-

work, underlying a differentiation of activated B cells and antibody-secreting cells, by using the

correlation and anti-correlation relationships between expressions of HVGs and their regulatory

genes.

Second, LAEC is a key cell type playing important roles in lung tissue remodeling, and pul-

monary inflammatory and immune responses [153]. The airway epithelium, playing a critical role

in conducting air to and from the alveoli, is a dynamic tissue that normally undergoes slow but con-

stant turnover. In the event of mild to moderate injury, the airway epithelium responds vigorously

to re-establish an epithelial sheet with normal structure and function. HVGs identified in LAECs,

which are enriched with genes involved in collagen formation, regulation of cell proliferation, and

extracellular matrix organization, accurately elucidate this aspect of functions of the airway ep-

ithelium. LAECs are also central to the defense of the lung against pathogens and particulates

that are inhaled from the environment. This aspect of functions is also reflected in the enriched

functionality of LAEC HVGs.

Third, DFs are responsible for generating connective tissue and play a critical role in normal

wound healing [136]. DFs are also commonly used in immunological studies [117, 154, 155].
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HVGs identified in DFs again accurately reflect these primary aspects of DF functions, including

extracellular matrix organization, keratinization, and regulation of signaling receptor activity. DF

HVGs do have several categories of enriched functions overlap with those of LAEC, which is not

unexpected, given that DF and LAEC have functional overlaps [156].

Our results provide evidence supporting the ‘variation is function’ hypothesis, proposed by

[12], suggesting that the aggregate cellular function may depend on scEV. Dueck and colleagues

also laid down several scenarios, including bet hedging, response distribution, fate plasticity, and

so on, in which the establishment of the relationship between scEV and cell function could be

attained. Our analytical framework using scRNA-seq data may be utilized in appropriate systems

to test the plausibility of these different scenarios. If scEV is an accountable and credible surrogate

of cell function, as we have shown in this study, then quantifying and characterizing scEV may

become a first-line approach for understanding the function of cell types and tissues. Indeed,

when we applied this framework to scRNA-seq data from human iPSCs, we observed no enriched

gene functions and no regulatory pathways/networks associated with HVGs in iPSCs. This anti-

example, showing no variation no function, further validates the “variation is function” hypothesis.

Furthermore, we have shown that, across certain sets of genes, scEV is positively correlated

with population-level expression variability. This correlation provides a new possibility to design

single-cell assays with one sample to approximate the population variability of certain genes’ ex-

pression. This new method may be used to study disease-causing expression dysregulation because

it has been a number of cases that increased population-level expression variability has been linked

with diseases [157, 158, 159, 160, 161].

Pelkmans [98] pointed out in a visionary perspective article that: ‘Embracing this cell-to-cell

variability as a fact in our scientific understanding requires a paradigm shift, but it will be neces-

sary’. Indeed, scRNA-seq technologies have brought revolution to gene expression analysis. The

technical development gives us a new approach beyond the capacity of traditional methods that

rely on experimental measurements of population-average behavior of cells to conceive regulatory

network models and signal processing pathways. More importantly, for traditional methods, by
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averaging information across many cells, differences among cells, which may be important in ex-

plaining mechanisms, can be lost. Given the large degree of cell-to-cell expression variability even

between genetically homogeneous cells, conclusions reached as for such with traditional average-

based methods may be of low-resolution, incomplete, and sometimes misleading [6, 107, 16, 162].
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5. SCTENIFOLDNET: A MACHINE LEARNING WORKFLOW FOR CONSTRUCTING

AND COMPARING TRANSCRIPTOME-WIDE GENE REGULATORY NETWORKS

FROM SINGLE-CELL DATA *

5.1 Introduction

A gene regulatory network (GRN) is a graph depicting the intricate interactions between tran-

scription factors (TFs), associated proteins, and their target genes, reflecting the physiological

condition of the cells in question. The analysis of GRNs promotes the interpretation of cell states,

cell functions, and regulatory mechanisms that underlie the dynamics of cell behaviors. Multiple

methods have been developed to build GRNs from data of gene expression [163, 164, 165, 166].

It is important to compare GRNs constructed using datasets from different samples because the

comparison may reveal regulatory mechanisms leading to transcriptomic changes. In particular,

the comparison results may help us understand what is the most significant shift in regulatory

mechanisms between samples, as well as how genetic and environmental signals are integrated to

regulate a cell population’s physiological responses and how cell behavior is affected by various

perturbations. All of these are key questions in the study of the functional participation of given

GRNs. Despite the critical importance of comparative GRN analysis, relatively few methods have

been established to compare GRNs [167].

Single-cell RNA-sequencing (scRNA-seq) technology has been revolutionizing the biomedical

sciences in recent years. New research provides an unparalleled degree of precision in analyzing

transcriptional regulation, cell history, and cell interactions with rich knowledge. It transforms

previous entirely tissue-based assays into transcriptomic single-cell measurements and greatly en-

This chapter has been reprinted from: Osorio, Daniel, Yan Zhong, Guanxun Li, Jianhua Z. Huang, and
James J. Cai. ‘scTenifoldNet: a machine learning workflow for constructing and comparing transcriptome-
wide gene regulatory networks from single-cell data.’ Patterns 1, no. 9 (2020): 100139. Available at:
https://www.sciencedirect.com/science/article/pii/S2666389920301872. Licensed under a Creative Commons Attri-
bution 4.0 International License https://creativecommons.org/licenses/by/4.0/, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.
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hances our understanding of cell development, homeostasis, and disease. Current scRNA-seq sys-

tems (e.g., 10× Genomics) can profile transcriptomes for thousands of cells per experiment. The

sheer number of measured cells can be leveraged to construct GRNs. Advanced computational

methods can facilitate such an effort to reach unprecedented resolution and accuracy, revealing the

network state of given cells [168, 169, 170]. Furthermore, comparative analyses among GRNs

of different samples will be extremely powerful in revealing fundamental changes in regulatory

networks and unraveling the transcriptional programs that govern the behaviors of cells. Since

our ability to generate scRNA-seq data has outpaced our ability to extract information from it,

there is a clear need to develop effective computational algorithms and novel statistical methods

for analyzing and exploiting information embedded within GRNs [171].

Constructing single-cell GRNs (scGRNs) using data from scRNA-seq and then effectively

comparing constructed scGRNs presents significant analytical challenges [171, 22]. A meaning-

ful comparison of scGRNs first requires a robust construction of a GRN from scRNA-seq data.

Comparing scGRNs built via an unstable solution would cause misleading results and inappropri-

ate conclusions. The vast number of different cellular states in a sample and the technical and

biological noise, as well as the sparsity of scRNA-seq data, complicate the process of scGRN con-

struction. Often, the expression of a gene is governed by stochastic processes and also influenced

by transcriptional activities of many other genes. Thus, it is difficult to tease out subtle signals

and infer true connections between genes. Furthermore, a direct comparison between two scGRNs

is difficult; e.g., comparing each edge of the graph between scGRNs would be ill powered when

scGRNs involve thousands of genes. Taken together, the key challenge in conducting comparative

scGRN analysis is to extract meaningful information from noisy and sparse scRNA-seq data, since

the information is deeply embedded in the differences between highly complex scGRNs of two

samples.

In this paper, we introduce a workflow for constructing and comparing scGRNs using data from

scRNA-seq of different samples. The workflow, which we call scTenifoldNet, is built upon several

machine learning algorithms, including principal-component (PC) regression, low-rank tensor ap-
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proximation, and manifold alignment. Through several examples, we show that scTenifoldNet is a

sensitive tool to detect specific changes in gene expression signatures and the regulatory network

rewiring events. The input of scTenifoldNet is a pair of expression matrices from scRNA-seq of

two different samples. For instance, one sample may come from a healthy donor and the other

from a diseased donor. In scTenifoldNet, the two input expression matrices are simultaneously

processed through a multistep procedure. The final output is a list of ranked genes, sorted accord-

ing to the differential regulation level of each gene. The ranked gene list can be used to perform

functional enrichment analysis to detect the enriched molecular functions and involved biological

processes. The constructed scGRN can also be used to identify functionally significant modules,

i.e., subsets of tightly regulated genes.

scTenifoldNet includes an innovative method for comparing two scGRNs. We are not aware

of any prior work using a similar design to achieve the same analytical goal. scTenifoldNet over-

comes several methodological challenges, resulting in an effective and efficient scGRN comparison

method. Here, we first benchmark and demonstrate the utility of scTenifoldNet across synthetic

datasets and then apply scTenifoldNet to real datasets. Our real data analyses showed scTenifold-

Net’s power in identifying significant genes and network modules whose regulatory patterns shift

greatly between samples. Some of these findings have not been reported in the respective original

studies in which the datasets were generated.

5.2 Material and methods

5.2.1 The scTenifoldNet workflow

The scTenifoldNet workflow takes two scRNA-seq expression matrices as inputs. The two

matrices are supposed to be obtained from two samples of the same type of cell, such as those

of different treatments or from diseased and healthy subjects. The purpose of the analysis is to

identify genes whose transcriptional regulation is shifted between the two samples. The whole

workflow consists of five steps: cell subsampling, network construction, network denoising, man-

ifold alignment, and module detection.

54



5.2.2 Cell subsampling

Instead of using all cells of each sample to construct a single GRN, we randomly subsample

cells multiple times to obtain a set of subsampled cell populations. This subsampling strategy is

to ensure the robustness of results against cell heterogeneity in samples. Subsampling of each

sample is performed as follows: assuming the sample has M cells, m cells (m < M ) are randomly

selected to form a subsampled cell population. The process is repeated with cell replacement t

times to produce a set of t subsampled cell populations.

5.2.3 Network construction

For a given expression matrix, a PC-regression network construction method [167] is adopted

to construct scGRN. PC regression is a popular multiple regression method, where the original

explanatory variables are first subjected to a PC analysis (PCA) and then the response variable is

regressed on the few leading PCs. By regressing on PCs (M � n, where n is the total number of

genes in the expression matrix), PC regression mitigates the overfitting and reduces the computa-

tion time. To build an scGRN, each time we focus on one gene (referred to as the target gene) and

apply the PC-regression method, treating the expression level of the target gene as the response

variable and the expression levels of other genes as the explanatory variables. The regression co-

efficients from PC regression are then used to measure the strength of the association of the target

gene and other genes and to construct the scGRN. We repeat this process n times, each time with

one gene as the target gene. At the end, the interaction strengths between all possible gene pairs

are obtained and an adjacency matrix is formed. The details of applying the PC-regression method

to a scRNA-seq expression data matrix are described as follows.

More specifically, suppose X ∈ Rn×p is the gene expression matrix with n genes and p cells.

The ith row of X , denoted by Xi ∈ Rp represents the gene expression level of the ith gene in the p

cells. We construct a data matrixX−i ∈ R(n−1)×p by deletingXi fromX . To estimate the effects of

the other n−1 genes to the ith gene, we build a PC-regression model forXi. First, we apply PCA to

XT
−i and take the first M leading principal components to construct Zi = (Zi

1, · · · , Zi
M) ∈ Rp×M ,
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where Zi
m ∈ Rp is the mth principal component of XT

−i, m = 1, 2, . . . , M . Mathematically,

Zi = XT
−iV

i, where V i ∈ R(n−1)×M is the PC loading matrix for the first M leading principal

components, satisfying (V i)
T
V i = IM . Secondly, the PC-regression method regresses Xi on Zi

and solves the following optimization problem: β̂i = argminβi∈RM ‖ Xi − Ziβi ‖2
2. Then,

α̂i = V iβ̂i ∈ Rn−1 quantifies the effects of the other n− 1 genes to the ith gene. After performing

PC-regression on each gene, we collect {α̂i}ni=1 together and construct an n×nweighted adjacency

matrix W of the gene-gene interaction network. The ith row of W is α̂i, and the diagonal entries

of W are all 0. Then we retain interactions with top α% (= 5% by default) absolute value in the

matrix to obtain the scGRN adjacency matrix.

5.2.4 Tensor decomposition

For each of the t subsamples of cells obtained in the cell subsampling step, we construct a

network using PC-regression, as described above. Each network is represented as a n×n adjacency

matrix; the adjacency matrices of the t networks can be stacked to form a third-order tensor T ∈

R(n×n×t). To remove the noise in the adjacency matrices and extract important latent factors,

the CANDECOMP/PARAFAC (CP) tensor decomposition is applied. Similar to the truncated

singular value decomposition (SVD) of a matrix, the CP decomposition approximates the tensor

by a summation of multiple rank-one tensors [172]. More specifically, for our problem:

T ≈ Td =
d∑
r=1

λrar ◦ br ◦ cr,

where ◦ denotes the outer product, ar ∈ Rn, br ∈ Rn, and cr ∈ Rt are unit-norm vectors, and λr

is a scalar. In the CP decomposition, Td is the denoised tensor of T, which assumes that the valid

information of T can be described by d rank-one tensors, and the rest part T− Td is mostly noise.

We use the function cp in the R package ‘rTensor’ to do the CP decomposition. For each

sample, the reconstructed tensor Td includes t denoised scGRNs. We then calculate the average of

associated t denoised networks to obtain the overall stable network. We further normalize entries

by dividing them by their maximum absolute value to obtain the final scGRNs for the given sample.
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For later use, denote the denoised adjacency matrices for the two samples as W x
d and W y

d .

5.2.5 Manifold alignment

After obtaining W x
d and W y

d , we compare them to identify the regulatory changes and associ-

ated genes and modules. Instead of directly comparing the two n×n adjacency matrices, we apply

manifold alignment to build comparable low-dimensional features and compare these features of

genes between two samples, while maintaining the structural information of the two scGRNs [173].

Manifold alignment is used here to match the local and no-linear structures among the data points

of W x
d and W y

d and project them to the same low-dimensional space. Specifically, we use W x
d

and W y
d to denote the pairwise similarity matrices obtained by applying the PC-regression-based

network construction method, and then denoising through tensor decomposition on the two initial

expression matrices, X and Y . These similarity matrices serve as the input for manifold alignment

to find the low-dimensional projections F x ∈ Rn×d and F y ∈ Rn×d of genes from each sample,

where d � n. In terms of the underlying matrix representation, we use F x
i ∈ Rd and F y

i ∈ Rd to

denote the ith row of F x and F y that reflect the features of the ith gene in X and Y , respectively.

We note that W x
d and W y

d may include negative values, which means genes are negatively

correlated. When the similarity matrix contains negative edge weights, the properties of the cor-

responding Laplacian are not entirely well understood [174]. To deal with this problem, we add 1

to all entries in W x
d and W y

d , transforming the range of W x
d and W y

d from [−1, 1] to [0, 2]. As a

result, all original negative relationships have a transformed value in [0, 1) and all original positive

relationships have a transformed value in (1, 2]. In this case, the projected features of two genes

with a positive correlation will be closer than those with a negative correlation. For convenience,

we still use W x
d and W y

d to denote the transformed similarity matrices of two data sets.

Now we propose a specific manifold alignment method to find appropriate low-dimensional

projections of each gene. Our manifold alignment should trade off the following two requirements:

(1) the projections of the same ith gene in two samples should be relatively close in the projected

space; and (2) if ith gene and jth gene in sample 1 are functionally related, their projections F x
i

and F x
j should be close in the projected space, and the same is true for sample 2. We minimize
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the following loss function: Loss (F x, F y) = λ
∑n

i=1 ‖ F x
i − F y

i ‖2
2 +

∑n
i,j=1 ‖ F x

i − F x
j ‖2

2

W x
i,j +

∑n
i,j=1 ‖ F

y
i − F y

j ‖2
2 W

y
i,j , where W x

i,j and W y
i,j denote the (i, j) entry of W x

d and W y
d

respectively. The first term of the loss function requires the similarity between corresponding genes

across two samples; the second and third terms are regularizers preserving the local similarity of

genes in each of the two networks. λ is an allocation parameter to balance the effects of two

requirements.

One way to minimize the loss function is by using an algorithm similar to Laplacian eigenmaps

[175], which requires the adjacency matrix to be symmetry, but in our case both W x
d and W y

d

are asymmetric. Notice that if we symmetrize W x
d and W y

d by W x = 1
2
((W x

d )T + W x
d ) and

W y = 1
2
((W y

d )T + W y
d ), and again denote W x

i,j and W y
i,j as the (i, j) entry of W x and W y, then

the value of the loss function won’t be changed. Thus, minimizing the loss function based on

the symmetrized adjacency matrices, W x and W y, is equivalent to using the original adjacency

matrices, W x
d and W y

d . Based on this observation, using linear algebra, we can write the loss

function into the matrix form as Loss (F x, F y) = 2trace
(
F TLF

)
, where: F =

F x

F y

 , L =

1
2

(D −W ) ,W =

W x λ
2
I

λ
2
I W y

, and D is a diagonal matrix with Dii =
∑

iWij . L is called

a graph Laplacian matrix. The default selection of λ is 0.9 times the mean value of the row

sums of W x and W y. By further adding the constraint F TF = I to remove the arbitrary scaling

factor, minimizing Loss (F x, F y) is equivalent to solving an eigenvalue problem. The solution for

F = [f1, f2, · · · , fd] is given by d eigenvectors corresponding to the d smallest nonzero eigenvalues

of L [176].

5.2.6 Determination of p-value of deferentially regulated genes

With F =

F x

F y

 = [f1, f2, · · · , fd] obtained in manifold alignment, we calculate the distance

dj between projected data points of two samples for each gene. One may declare significant genes

according to the ranking of dj’s. To avoid arbitrariness in deciding the number of selected genes,
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we propose to use the Chi-square distribution to determine the significance of genes [120]. Specif-

ically, d2
j is derived from the summation of squares of differences of projected representations of

gene j for two samples, whose distribution could be approximately Chi-square. To adjust the scale

of the distribution, we compute the scaled fold-change defined as
df ·d2j
d̄2

for each gene j, where d̄2 de-

notes the average of d2
j among all the tested genes. The scaled fold-change approximately follows

the Chi-square distribution with the degree of freedom df if the gene does not perform differently

in the two samples. By using the upper tail (P [X > x]) of the Chi-square distribution, we assign

p-values for genes and adjust them for multiple testing using the Benjamini–Hochberg (B–H) FDR

correction [122]. To determine df , since the number of the significant genes will increase as df

increases, we use df = 1 to make a conservative selection of genes with high precision.

5.2.7 Functional enrichment analyses

Functional enrichment analysis of gene sets was performed using Enrichr [123, 124], which

is a web-based, integrative enrichment analysis application based on more than 100 curated gene

set libraries. The test of enriched TF targets was performed using the ChIP-X enrichment analysis

(ChEA) [177] based on comprehensive results from ChIP-seq studies. Finally, predefined gene

sets from the REACTOME, BioPlanet and KEGG databases were tested for the enriched functions

using the pre-ranked Gene Set Enrichment Analysis (GSEA) [178].

5.2.8 Simulations of scRNAseq data and benchmarking of network methods

A systematic evaluation of state-of-the-art algorithms for inferring scGRNs was performed

using BEELINE [22]. We applied scTenifoldNet/PC-regression and other scGRN inference algo-

rithms to a data set called GSD, which is derived from a curated Boolean model [179]. These

methods include PIDC [180], PPCOR [181], LEAP [182], GRNBOOST2 [183], GENIE3 [164],

SCINGE [184], SINCERITIES [185], GRISLI [186], SCODE [187], GRNVBEM [188], and

SCNS [189]. Due to compatibility issues, SCRIBE [190] was not included in comparison. We pro-

cessed the data set through the uniform pipeline provided by BEELINE: Preprocessing, generation

of a Docker containers for scTenifoldNet/PC-regression and the 11 above-mentioned algorithms
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for scGRN construction, parameter estimation, and postprocessing and evaluation. We compared

algorithms based on their average performance among three different metrics: precision-recall

curve (AUPRC), receiver operating characteristic curve (AUROC), and the time of computing.

We generated our own synthetic data sets using SERGIO – a single-cell expression simulator

guided by GRNs [191]. SERGIO allows for the simulation of scRNAseq data while considering

the linear and nonlinear influences of regulatory interactions between genes. SERGIO takes a user-

provided GRN to define the interactions and generates expression profiles of genes in steady-state

using systems of stochastic differential equations derived from the chemical Langevin equation.

The time-course of mRNA concentration of gene i is modeled by: ∂Xi
∂t

= Pi (t) − λixi (t) +

qi

(√
Pi (t)α

)
, where xi is the expression of gene i, Pi is its production rate, which reflects the

influence of its regulators as identified by the given GRN, λi is the decay rate, qi is the noise

amplitude in the transcription of gene i, and α is an independent Gaussian white noise process.

In order to obtain the mRNA concentrations as a function of time, the above stochastic differen-

tial equation is integrated for all genes as follows: (Xi)t = (Xi)t0 +
∫ t
to

(Pi (t)− λixi (t)) ∂t +∫ t
t0
qi

(√
Pi (t)

)
∂Wα. The simulation was focused on testing and comparing the performance of

PC-regression and several other methods (SCC, MI, GENIE3) using sparse data without imputa-

tion. The relationships between 100 genes were simulated as they belong to two major modules

containing 40 and 60 genes, respectively. Each module is under the influence of one TF. We used

the steady-state simulations to synthesize data to generate expression profiles of 100 genes, ac-

cording to the parameter setting for two modules.

For each one of the tested methods, we randomly selected n = 10, 50, 100, 500, 1000, 2000,

and 3000 cells from the simulated data for ten times and build ten scGRN. For each n, relevance

measurements (accuracy and recall) were evaluated for each of the ten networks using the match

of the sign of the relationships between genes to compute the following formulas: Accuracy =

TP+TN
TP+TN+FP+FN

and Recall = TP
TP+FN

, where TP stands for true positive, TN true negative, FP

false positive, and FN false negative. For the MI and GENIE3 methods that only provide positive

values, the median value was used as the center point and then the values were scaled to [−1, 1] by

60



dividing them over the maximum absolute value.

5.2.9 Code availability

scTenifoldNet has been implemented in R. The source code is available at https://github.com/

cailab-tamu/scTenifoldNet, which also includes the code of the benchmarking method, auxiliary

functions, and example datasets (including the simulated data used to generate Fig. 5.2). The

scTenifoldNet R package is available at the CRAN repository. The following is available online:

Document S1 including Figures S1–S5 and Tables S1–S7 https://ars.els-cdn.com/content/image/1-

s2.0-S2666389920301872-mmc1.pdf. Document S2 including the article plus Supplemental In-

formation https://ars.els-cdn.com/content/image/1-s2.0-S2666389920301872-mmc2.pdf

5.3 Results

To enable comparative scGRN analysis in a robust and scalable manner, we base our method

on a series of machine learning methods. A key challenge of our comparative analysis is to extract

meaningful differences in regulatory relationships between two samples from noisy and sparse

data. Specifically, we seek to contrast scGRNs constructed from different scRNAseq expression

matrices. Fig. 5.1 shows the main components of scTenifoldNet architecture. The whole workflow

contains five key steps: subsampling cells, constructing multilayer scGRNs, denoising, manifold

alignment, and differential regulation (DR) test. In order to produce biologically meaningful re-

sults, we made dedicated design decisions for the task in each of these steps. Next, we briefly

describe the numerical methods implemented in scTenifoldNet. More technical details are pre-

sented in section 5.2.

5.3.1 Numerical Methods

The numerical methods used to construct and compare scGRNs involve the following five steps:

1. Pre-processing data and subsampling cells: The input data are two scRNAseq expression

data matrices, X and Y , containing expression values for n genes in m1 and m2 cells from

two different samples, respectively. Next, m cells in X and Y are randomly sampled to

form X ′ and Y ′. This subsampling process is repeated t times to create two collections of
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Figure 5.1: Overview of the scTenifoldNet workflow. scTenifoldNet is a machine learning frame-
work that uses a comparative network approach with scRNA-seq data to identify regulatory
changes between samples. scTenifoldNet is composed of five major steps. (A) Cell subsam-
pling. scTenifoldNet starts with subsampling cells in the scRNA-seq expression matrices. When
two samples are analyzed, each of the two samples is subsampled either randomly or following
a pseudotime trajectory of cells. The subsampling is repeated multiple times to create a series
of subsampled cell populations, which are subject to network construction and form a multilayer
scGRN. (B) Network construction. PC regression is used for scGRN construction; each scGRN
is represented as a weighted adjacency matrix. (C) Tensor denoising. Two samples produce two
multilayer GRNs and form two three-order tensors, which are subsequently decomposed into mul-
tiple components. The top components of tensor decomposition are then used to reconstruct two
denoised multilayer scGRNs. Then, two denoised multilayer scGRNs are collapsed by taking the
average weight across layers. (D) Manifold alignment. The two single-layer average scGRNs are
then aligned with respect to common genes using a nonlinear manifold alignment algorithm. Each
gene is projected to a low-rank manifold space as two data points, one from each sample. (E)
Differential regulation test. The distance between the two data points is the relative difference of
the gene in its regulatory relationships in the two scGRNs. Ranked genes are subject to tests for
their significance in differential regulation between scGRNs.
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subsampled cells {X ′i} and {Y ′i }, where i = 1, 2, . . . , t.

2. Constructing initial networks: For each X ′i ∈ {X ′i}, i = 1, 2, . . . , t, PC-regression is

used to construct a GRN. The constructed GRN from X ′i is stored as a weighted graph

represented with an n × n weighted adjacency matrix W x
i . Similarly, for each Y ′i ∈ {Y ′i },

i = 1, 2, . . . , t, we construct a GRN and represent it with an n × n weighted adjacency

matrix W y
i . Diagonal values of each adjacency matrix are set to zeros, and other values are

normalized by dividing by their maximal absolute value. Each normalized adjacency matrix

is then filtered by retaining only the top 5% of edges ranked using the absolute edge weight,

resulting in a sparse adjacency matrix.

3. Denoising: Tensor decomposition [172] is used to denoise the adjacency matrices obtained in

Step 2. The collection of t scGRNs for each sample, {W x
i } or {W y

i }, is processed separately

as a third-order tensor, denoted as Tx or Ty, each containing n × n × t elements. The

CANDECOMP/PARAFAC (CP) decomposition is applied to decompose Tx and Ty into

components. Next, Tx and Ty are reconstructed using top r components to obtain denoised

tensors: Txd and Tyd . Denoised {W x
i } and {W y

i } in Txd and Tyd are collapsed by taking the

average of edge weights for each edge to form two denoised, averaged matrices, W x
d and

W y
d , which are subsequently normalized as in step 2 and then symmetrized.

4. Aligning genes onto a manifold: The weighted adjacency matrices W x
d and W y

d are regarded

as two similarity matrices for a nonlinear manifold alignment procedure. The alignment

is done by solving an eigenvalue problem with a Laplacian matrix derived from the joint

matrices: W =
[
W x
d , λI/2;λIT/2, W y

d

]
, where λ is a tuning parameter and I is the identity

matrix that reflects the binary correspondence between genes in the samples, X and Y . As

the result of manifold alignment, all genes in the samples, X and Y , are projected on a

shared, low dimensional manifold with a dimension km � n. The projections of each gene

j from the samples, X and Y , are two km-dimensional vectors, F x
j and F y

j .

5. Ranking genes: For each gene j, let dj be the Euclidean distance between the gene’s two
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projections F x
j and F y

j on the shared manifold: one is from the sample X , and the other is

from the sample Y . Genes are sorted according to this distance. The greater the distance,

the greater the regulatory shift.

In the following sections, we explain rationale behind each step of scTenifoldNet, as well as

the selection of machine learning algorithms and implementation details.

5.3.2 Subsampling of cells

The rationale for randomly subsampling cells is close to that of ensemble learning. Ensemble

learning is a technique where multi-model decisions are merged to improve overall performance.

Similarly, instead of attempting to build a single scGRN, scTenifoldNet randomly samples sub-

sets of cells from the given scRNAseq expression matrix and builds a series of ‘low-precision’

scGRNs with the subsampled data sets. These ‘low-precision’ scGRNs are then combined to ob-

tain a ‘high-precision’ scGRN. As mentioned above, current scRNAseq technology can produce

the transcriptome profiles of thousands of cells from each sample. It is fundamentally difficult to

process high-dimensionality and large-scale scRNAseq data, especially given that there can be a

substantial variation among cells. This happens even in a group of highly homogenous cells of the

same type [192]. The presence of so-called outlying cells, i.e., cells showing profiles of expres-

sion deviate from those of most other cells, many influence the construction of ‘high-precision’

scGRNs. Therefore, subsampling offers promise as a technique for handling the noise in the in-

put data sets. When the number of cells is small, the input data matrix may be resampled with

replacement [193].

5.3.3 Constructing scGRNs using PC-regression

Although many GRN construction methods have been developed [163, 164, 166], it is unclear

which one is suitable for constructing a large number of scGRNs from the subsampled data [171].

When dealing with multiple sets of input data, both the accuracy and computational efficiency

of these algorithms have to be considered. We opted to use the PCNet method [167], which is

based on PC-regression [194], after conducting a thorough review of the current methods. The
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PC-regression method extracts the first few (e.g., k = 3) PCs and then uses these components

as the predictors in a linear regression model fitted using ordinary least squares. The values of

the transformed coefficients of genes are treated as the strength and regulatory effect between

genes to generate the network. The main use of PC-regression in scTenifoldNet lies in its ability

to surpass the multicollinearity problem that arises when two or more explanatory variables are

linearly correlated.

5.3.4 Denoising via low-rank tensor approximation

Removing the noise from constructed scGRNs is an important step of scTenifoldNet. Here the

term noise is used in a broad sense to refer to any outlier or interference that is not the quantity of

interest, i.e., the true regulatory relationship between genes. For each sample, the multilayer sc-

GRN constructed from multiple subsampled data sets is regarded as a rank-three tensor. To reduce

the noise in the multilayer scGRN, we decompose the tensor and reconstruct the multilayer scGRN

using leading components. The idea is similar to that of denoising using truncated singular value

decomposition (SVD). After cutting a larger portion of the noise spread over the lowest singular

value components, the reconstructed data matrix based on the truncated SVD would, therefore,

represent the original data with reduced noise. Indeed, tensor decomposition has been used in

video data analyses for denoising and information extracting purposes [195]. It has also been used

to impute missing data [196]. We use the CANDECOMP/PARAFAC (CP) algorithm [197] to fac-

torize the two multilayer scGRNs separately and regenerate all adjacency matrices using leading

components. The number of components used for reconstruction can be specified and is set to

3 by default. In the real data applications, we find the tensor GRN regeneration serves for two

purposes: denoising and enhancing, i.e., making main signals stronger and making less important

signals weaker.

5.3.5 Manifold alignment of two scGRNs

For a gene, its position in one of the two scGRNs (i.e., denoised adjacency matrices from the

two samples) is determined by its regulatory relationships with all other genes. Here we regard
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each gene as a data point in a high-dimensional space where components of the data point are the

features, i.e., weights between the gene and all other genes in the scGRN adjacency matrix. To

compare the same gene’s positions in the two scGRNs, we first align the two scGRNs. To do so,

we take a popular and effective approach for processing high-dimensional data, intuitively mod-

eling the intrinsic geometry of the data as being sampled from a low-dimensional manifold—i.e.,

commonly referred to as the manifold assumption [198]. This assumption essentially means that

local regions in the data can be mapped to low-dimensional coordinates, while the nonlinearity

and high dimensionality in the data come from the curvature of the manifold. Manifold align-

ment produces projections between sets of data, given that the original data sets lie on a common

manifold [173, 199, 200, 201]. Manifold alignment matches the local and nonlinear structures

among the data points from multiple sources and projects them to the same low-dimensional space

while maintaining their local manifold structure of each source. The ability to flexibly learn and

accurately represent the structure in the data with manifold alignment has been demonstrated in

applications in automatic machine translation, face recognition, and so on [202, 203]. Here, we

use manifold alignment to match genes in the two denoised scGRNs, one from each sample, to

identify cross-network linkages. Consequently, the information of genes stored in two scGRNs is

aligned, meaning points close together in the low-dimensional space are more similar than points

that are farther apart.

5.3.6 Ranking genes and reporting DR genes

To identify genes whose regulatory status differs between the two samples, we calculate the

distance between projected data points in the manifold alignment subspace. For each gene, if the

gene appears in scGRNs of both samples, there are two data points for the same genes, one from

each sample. We compute the Euclidean distance between the two data points of the gene and used

the distance to measure the dissimilarity in the gene’s regulatory status in two scGRNs [204]. We

do this for all genes shared between two samples and then rank genes by the distance. The larger

the distance, the more different the gene in two samples. In this way, we obtain a list of ranked

genes. These ranked genes are subject to functional annotation, such as using the pre-ranked Gene
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Set Enrichment Analysis (GSEA) [178] to assess the enriched functions associated with top genes.

To avoid choosing the number of selected genes arbitrarily, we compute p-values for genes using

Chi-square tests, adjust p-values with a multiple testing correction, and select significant genes

using 5% FDR cutoff.

5.3.7 Benchmarking the performance of scTenifoldNet using simulated data

5.3.7.1 Precision and recall of the network construction method adopted in scTenifoldNet

PC-regression is the method we adopted for scTenifoldNet to construct scGRN. It is important

to ensure scTenifoldNet/PC-regression is an effective and efficient network construction method

for our purpose. To this end, we conducted a systematic comparison between network construction

algorithms using a published evaluation tool package called BEELINE [22]. We benchmarked

scTenifoldNet/PC-regression and compared it with 11 other algorithms (see 5.2). We chose to re-

use a reference data set called GSD in the BEELINE package to perform the benchmarking. GSD

is the largest curated reference data set provided in the BEELINE package. We found that, when

jointly comparing their precision-recall curve (AUPRC), receiver operating characteristic curve

(AUROC) and computation time, scTenifoldNet/PC-regression, along with a partial information

decomposition-based method [180], outperformed all other algorithms (see Supplementary Fig.

S1 for details).

We also simulated scRNAseq data using a parametric method with a predefined scGRN model

(see 5.2 for details). With the simulated data, we compared constructed scGRNs against the ground

truth (i.e., the simulated scGRN) to estimate the accuracy of reconstruction. We tested the accuracy

of scTenifoldNet/PC-regression against methods based on Spearman correlation coefficient (SCC)

and mutual information (MI) [163], and GENIE3 [164]. SCC and MI methods are computationally

efficient, whereas GENIE3 is not, but GENIE3 is the top-performing method for network inference

in the DREAM challenges [165]. For each method, their performances in recovering gene regula-

tory relationships were compared against the ground-truth interactions between genes, where were

generated according to pre-setting parameters. We found that scTenifoldNet/PC-regression pro-
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duced more specific (better accuracy) and more sensitive (better recall) scGRNs than other meth-

ods (Fig. 5.2 A.). This is true across a wide range of settings of cell numbers in input scRNAseq

expression matrices. scTenifoldNet/PC-regression is also much faster than GENIE3 (running time

information is available in Supplementary Table S1).

5.3.7.2 Effect of denoising with tensor decomposition

To show the effect of tensor denoising, we simulated scRNAseq data (see 5.2) and processed the

data using the first two steps of scTenifoldNet, i.e., cell subsampling followed by the construction

of scGRNs using PC-regression. We subsampled 500 cells each time and generated ten scGRNs.

The ten scGRNs are treated as a multilayer network or a tensor to be denoised. For each scGRN,

we kept the top 20% of the links. The presence and absence of links in each scGRN were compared

with those in the simulated, ground-truth scGRN to estimate the accuracy of recovery and the rate

of recall. Fig. 5.2 B. contains the heatmaps of adjacency matrices of the ten scGRNs before and

after denoising (small panels). We also show two collapsed scGRNs (Fig. 5.2 B., large panels),

which were generated by averaging link weights across the ten scGRNs before and after denoising.

These results illustrate the ability of scTenifoldNet to denoise multilayer scGRNs. For instance,

tensor denoising improves the recall rate of regulatory relationships between genes by 25%. This

simulation study suggests that tensor denoising could be useful for removing impacts of random

dropout and other noise issues affecting the scGRN construction using scRNAseq data.

5.3.7.3 Detecting power illustrated with a simulated data set

We used simulated data to show the capability of scTenifoldNet in detecting differentially reg-

ulated (DR) genes. We first used the negative binomial distribution to generate a sparse synthetic

scRNAseq data set (an expression matrix including 67% zeros in its values). This toy data set

includes 2, 000 cells and 100 genes. We called it sample 1. We then duplicated the expression

matrix of sample 1 to make sample 2. We modified the expression matrix of sample 2 by swapping

expression values of three randomly selected genes with those of another three randomly selected

genes. Thus, the differences between samples 1 and 2 are restricted in these six genes. Using
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scTenifoldNet with the default parameter setting, we compared the originally generated expression

matrix (sample 1) against itself (sample 1 vs. sample 1) and also against the manually perturbed

version (sample 1 vs. sample 2). As expected, when comparing the original matrix against itself,

none of the genes was identified to be significant. However, when samples 1 and 2 were compared,

the six genes whose expression values were swapped were identified as significant DR genes (Fig.

5.2 C., FDR < 0.1). These results are expected and support the sensitivity of scTenifoldNet in

identifying subtly shifted gene expression programs.

5.3.8 Real data analyses

5.3.8.1 Practical considerations of real data analysis using scTenifoldNet

First of all, we address several practical questions regarding the application of scTenifoldNet

to real scRNAseq data. (1) What are the input expression matrices to be compared? The input to

scTenifoldNet is two matrices of gene expression values (e.g., UMI counts) as measured in two

samples to be compared. In each matrix, columns represent cells, and rows represent genes. We

assume that each input matrix contains a sizable number of cells. For example, a typical input

matrix may contain UMI counts for 5, 000 genes and 2, 000 cells. Whether a gene is expressed

among cells can be determined by examining if this gene has a nonzero UMI count in more than

5% of cells. Scaling normalization (e.g., the library size normalization) of the input UMI count

matrix does not seem to affect the construction of scGRNs (Supplementary Fig. S2). In contrast,

imputing the UMI count matrix using an imputation algorithm (e.g., MAGIC [24]) may have im-

pact on the performance of scTenifoldNet (Supplementary Fig. S3). (2) How does scTenifoldNet

handle cell heterogeneity? Heterogeneity in expression among cells is inevitable. scTenifoldNet

is designed to tolerate a certain level of such heterogeneity as long as cells are of the same type.

scTenifoldNet is not a data preparation tool. It also does not perform any clustering analysis for

cells; it does not assign cells into cell types. We assume all cells in both input matrices are of the

same type. Otherwise, the results would be difficult to interpret. To solve this problem, a spe-

cific tool (to prioritize cell types most responsive to biological perturbations) has been developed
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Figure 5.2: Benchmarking the performance of scTenifoldNet using simulated data. (A) The ac-
curacy and recall of scGRN construction using different methods: PC-regression, SCC, MI, and
GENIE3, as functions of the number of cells used in the analysis. Error bar is the standard de-
viation of the computed values after 10 bootstrapped evaluations. PCR – PC-regression; SCC
– Spearman correlation coefficient; MI – mutual information; GENIE3 – a random forest-based
network construction method. (B) Visualization of the effect of tensor denoising on accuracy
and recall of multilayer scGRNs. Each subpanel is a heatmap of a 100 × 100 adjacency matrix
constructed using PC-regression over the counts of 500 randomly subsampled cells. Grayscale in-
dicates the relative strength of regulatory relationships between genes. Top part includes networks
before tensor denoising (adjacency matrices in heatmap with red box); bottom part includes corre-
sponding networks after tensor denoising (adjacency matrices in heatmap with green box). In each
part, adjacency matrices of networks of 10 subsamples (10 small heatmaps) and their average adja-
cency matrix (one large heatmap) are shown. (C) Evaluation of the sensitivity of scTenifoldNet in
identifying punctual changes in the regulatory profiles. Top panel: evaluation of the original data
matrix against itself; bottom panel: evaluation of the original matrix against the perturbed matrix.
Significant genes identified using the differential regulation test (FDR < 0.1, B–H correction) are
indicated in red. All significant genes are perturbed in simulation and thus are expected to be
identified.
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elsewhere [205]. (3) What if the number of cells is too small? We expect that each input matrix

contains a sizable number of cells (e.g., n > 2, 000). If this is the case, the jackknife method

(subsampling without replacement) is adapted by default: m = 500 cells are subsampled each

time. Alternatively, an m-out-of-n bootstrap method (subsampling with replacement) can be used

[193]. When the number of cells is small (e.g., n = 500), a full bootstrap method can be used, i.e.,

resampling 500 cells each time out of 500 given cells with replacement [193, 206]. scTenifoldNet

is robust against imbalanced cell numbers in the two samples for comparison (Supplementary Fig.

S4). (4) What is the relationship between scTenifoldNet analysis and DE analysis? scTenifoldNet

analysis should be used as a complementary analysis method in addition to DE analysis, rather

than replacing DE analysis. DE analysis (using e.g., MAST [89], edgeR [207] or SCDE [208]) is

still a widely used method for understanding the difference between two scRNAseq samples [209].

scTenifoldNet is designed based on a principle different from that underlying DE analysis. Thus,

the results of scTenifoldNet analysis and DE analysis are not supposed to be compared side by side.

It is not uncommon that scTenifoldNet and DE analyses report the same genes to be significant.

This is because the change of the regulatory pattern of a gene in scGRNs may be associated with

the change of the gene’s expression level. To evaluate the influence of gene expression level on

scGRN construction, we calculated the correlation between the average gene expression level and

the average weighted degree of nodes in scGRNs, which are constructed using scTenifoldNet/PC-

regression and other algorithms in the BEELINE package [22]. If the weighted degree of nodes

in a scGRN constructed using a method is correlated with the expression level of genes, then it

indicates that the method is likely to be biased towards highly expressed genes during the pro-

cess of scGRN construction. We found that all evaluated algorithms produced results showing a

certain level of such a correlation (Supplementary Fig. S5). However, compared with all other

algorithms, scTenifoldNet/PC-regression produced the smallest correlation value and thus is most

robust against the bias towards highly expressed genes.
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Study Reference Species Cell type Perturbation
type

Number
of genes
included
in analysis

Number of cells
in two groups

Number
of DR
genes

Enriched functions of
the DR gene list

1 [210] Mouse Neurons Morphine 8, 136

Mock-treated =
8, 912 56

Opioid signaling
Signaling by G protein-
coupled receptors

Morphine-treated
= 7, 972

Reduction of cytosolic
calcium levels
Morphine addiction

2 [211] Human Carcinoma
cell line Cetuximab 11, 140

Untreated =
5, 217

125

EGFR1 pathway
Regulation of apoptosis
Cell cycle checkpoints

Treated = 4, 507
G1 cell cycle arrest
Regulation of apoptosis

3 [212] Mouse
Lung
alveolar
cells

Nkx2-1 gene
knockout 7, 842 Wild-type = 638 29 Gastrointestinal marker

genes
Knockout =
2, 397

Sox2 target genes

4 [117] Human Dermal
fibroblasts

dsRNA
immune
stimulus

7, 904

Unstimulated =
2, 553

29 Interferon signaling
Immune system

Stimulated =
2, 130

Interleukin-1 regulation
of extracellular matrix

5 [213] Mouse Neurons Alzheimer’s
disease 2, 869

Wild-type =
4, 561

29

Functions of Apoe and
Bin1
Regulation of neuron pro-
jection development
Positive regulation of cell
projection organization
Phosphatidylserine
metabolic process

Knockout =
2, 423

Protein acylation
Potassium channel activ-
ity
Methylation-dependent
protein binding
Integrin signaling path-
way
Serotonin HTR1 group
and FOS pathway
Glutamate neurotransmit-
ter release cycle

Table 5.1: Summary of real-data applications of scTenifoldNet analysis
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5.3.8.2 Analysis of transcriptional responses of neurons to acute morphine treatment

To illustrate the use of scTenifoldNet, we first applied scTenifoldNet to a scRNAseq data set

from [210]. This is a study on transcriptional responses of mouse neural cells to morphine (Fig. 5.3

A.). In the study [210], Avey and colleagues performed scRNAseq experiments with the nucleus

accumbens (NAc) of mice after four hours of the morphine treatment, using mice treated with

saline as mock controls. Single-cell expression data was obtained for 11, 171 and 12, 105 cells from

four morphine- and four mock-treated mice, respectively [210]. The measured cells were clustered

to identify neurons (7, 972 and 8, 912 from morphine- and mock-treated samples, respectively); the

identified neurons were then sub-grouped into 11 clusters, including major clusters of D1 and D2

medium spiny neurons (MSNs), comprising ≈ 95% of the neurons in the NAc. Using differential

expression (DE) analysis implemented in SCDE [208], Avey et al. identified several hundred genes

that are differentially expressed between morphine- and mock-treated samples (Supplementary

Table S2 of [210]). Although this result is intriguing, we argue that it seems that when so many

genes are identified as ‘significant players’, it is difficult to interpret the result and to pinpoint

the specific regulatory mechanism underlying the true response. Indeed, instead of performing

functional enrichment analysis with identified DE genes, the subsequent analyses in the study of

[210] were re-focused on a tiny portion of D1 MSNs, called activated MSNs. It is only when

activated MSNs were compared to all other D1 MSNs that 256 DE genes were identified (SCDE,

P < 0.001, Supplementary Table S2 of [210]). These genes were then found to be associated

with several terms related to opioid addiction, including morphine dependence and opioid-related

disorders (Supplementary Table S3 of [210]). In the morphine-treated sample, less than 4.5% of

D1 MSNs are activated MSNs; in the mock-treated sample, less than 2% (see Fig. 2B of [210]).

In view of these, we point out here that while relevant signals can be detected using traditional DE

analysis, the analytical method involves extensive human intervention – i.e., an iterative clustering

procedure is needed to identify a final population of cells (in this case, activated MSNs). The cell

population size is small, making the analysis result potentially variable.

We were motivated by these considerations and set out to re-analyze the data. We first re-
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produce results of DE analysis. We found that the mock- and morphine-treated neurons indeed

exhibited a striking similarity. For example, mock- and morphine-treated neurons are indistin-

guishable in a tSNE plot (Fig. 5.3 B.); expression levels of several known morphine responsive

genes, e.g., Adcy5, Ppp1r1b, and Ppp3ca, show no difference (Fig. 5.3 C.). Thus, a direct compar-

ison of gene expression between neurons using the DE method may have limited power to identify

relevant genes involved in the morphine response.

Next, using scTenifoldNet, we identified 56 genes showing significant differences in their tran-

scriptional regulation between mock- and morphine-treated neurons (Supplementary Table S2).

Compared to other genes, these genes have significantly greater distance between their positions

in two scGRNs aligned into the manifold (FDR < 0.05, Chi-square test with B-H multiple test

adjustment, see 5.2 for details). GSEA analysis [178] showed that these DR genes are enriched for

opioid signaling, signaling by G protein-coupled receptors, reduction of cytosolic Calcium levels,

and morphine addiction (Fig. 5.3 D. inset). It is known that morphine binds to the opioid receptors

on the neuronal membrane. The signal is then transmitted through the G-protein signaling sys-

tem, inhibiting the adenylyl cyclase in the cytoplasm and decreasing the levels of cAMP and the

calcium-channel conduction [214, 215, 216]. Furthermore, 21 out of 56 (38%) identified DR genes

(Supplementary Table S2) were found to be targets of RARB (adjusted p-value < 0.01, Enrichr

enrichment test [123, 124] based on ChIP-seq data [177]). RARB plays a role in synaptic transmis-

sion in dopaminergic neurons and the adenylate cyclase-activating dopamine receptor signaling

pathway [217, 218]. Thus, these enriched functions are relevant to the morphine stimulus, which

is known to induce the disinhibition of dopaminergic neurons by GABA transmission, enhance

dopamine release, and cause addiction [219, 220]. Using the constructed scGRN, we were able

to trace DR genes back to their topological positions in the network and examine their interacting

genes. Fig. 5.3 E. shows such a network module, including multiple DR genes.

In this case, scTenifoldNet is used as an unsupervised tool, and no human interference is needed

to operate. This feature is critical when referring to this specific set of data because where the sig-

nal is limited to rare types of cells, there is a chance that a less sensitive approach would miss the
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signal, especially when human interference is not provided. It is ideal to have an unsupervised

tool that is sensitive to signals, and robust to variation between cells at the same time. We note

that scTenifoldNet is a different tool to conventional DE analysis tool – scTenifoldNet reported

less DR genes in terms of the number of genes, compared with DE genes identified in the orig-

inal study [210]. Among the 56 DR genes that scTenifoldNet detected, 11 (Actb, Adcy5, Akap9,

D430041D05Rik, Eif1, Pcp4l1, Penk, Phactr1, Rasd2, Scn4b and Ubb) are among the 256 DE

genes reported in Supplementary Table S2 of [210]. The number of overlap genes is not signif-

icantly higher than expected by random according to a hypergeometric test (P = 0.29) with a

total of 1, 432 genes (from Supplementary Table S2 of [210]) included in the test. Fig. 5.3 C.

shows expression levels of three representative genes: Pde1b, Adcy5 and Gabrg1, in neurons from

mock- and morphine-treated mice. All three genes are known to be involved in morphine response

[221, 222, 223], but only when DE and DR tests are applied jointly, all three genes are identified:

Pde1b is a DE but not a DR gene, Adcy5 a DR and DE gene, and Gabrg1 a DR but not DE gene.

5.3.8.3 Analysis of transcriptional responses of a carcinoma cell line to cetuximab

To further illustrate the power of scTenifoldNet in identifying genes associated with specific

perturbations, we applied scTenifoldNet to another published scRNAseq data [211]. In this study,

Kagohara et al. [211] use scRNAseq to study mechanisms that lead the development of resis-

tance to cetuximab in head and neck squamous cell carcinoma (HNSCC)(Fig. 5.4 A.). Cetuximab

is a human-murine chimeric monoclonal antibody used for the treatment of metastatic colorectal

cancer, metastatic non-small cell lung cancer, and head and neck cancer. In conjunction with the

radiotherapy, cetuximab improves the objective response rate in first-line treatment of recurrent or

metastatic squamous cell carcinoma of the head and neck [224]. Cetuximab binds to the extracellu-

lar domain of the epidermal growth factor receptor (EGFR) on both normal and tumor cells [225].

EGFR is over-expressed in many cancers. Competitive binding of cetuximab to EGFR blocks the

phosphorylation and activation of receptor-associated kinases and their downstream targets, e.g.,

MAPK, PI3K/Akt, and Jak/Stat pathways [226], thereby reducing their effects on cell growth and

metastatic spread. It is known that blocking EGFR activation also affects cellular processes such as
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Figure 5.3: Analysis of transcriptional responses to morphine in mouse cortical neurons. (A)
Illustration of experimental design and data collection of the morphine response study [210]. (B)
A t-SNE plot of 7, 972 and 8, 912 neurons from morphine-treated (blue) and mock-treated (red)
mice, respectively. (C) Violin plots show the log-normalized expression levels of representative DR
and/or DE genes in four (M) morphine- and four (C) mock-treated mice. (D) Quantile-quantile (Q-
Q) plot for observed and expected p-values of the 8, 138 genes tested. Genes (n = 65) with FDR
< 0.1 are shown in red; genes (n = 56) with FDR < 0.05 are labeled with asterisk. Inset shows
results of the GSEA analysis for genes ranked by their distances in manifold aligned scGRNs from
morphine- and mock-treated mice. (E) The module enriched with DR genes and the corresponding
subnetworks in two scGRNs. For illustrative purposes, the module is centered on the DR gene,
Ppp3ca. Significant DR genes (FDR < 0.05) in the module are highlighted in green. Edges
are color-coded: red indicates a positive association, and blue indicates negative. Weak edges are
filtered out by thresholding for clear visualization, and the background shadow indicates the shared
portion of the module in the two scGRNs.
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apoptosis, cell growth, and vascular endothelial growth factor (VEGF) production [227]. Cetux-

imab is also known to cause degradation of the antibody-receptor complex and the downregulation

of EGFR1 expression [228].

Kagohara et al. [211] sequenced the transcriptome profile of cells before and after Cetuximab

treatment for 120 hours in three different HNSCC cell lines: SCC1, SCC6, SCC25. They found

that SCC6 is the most sensitive to the cetuximab treatment, reporting 8, 389 genes as differentially

expressed (including 4, 166 upregulated and 4, 223 downregulated ones with P< 0.05; Supplemen-

tary Table S4 of [211]). Such a large number of differentially expressed genes makes it difficult

to identify genes directly associated with the molecular mechanism through which cetuximab acts.

We extracted scRNAseq data for 4, 507 and 5, 217 SCC6 cells treated with and without cetuximab,

respectively (Fig. 5.4 B.). Expression levels of three genes: DuSP4, TIGA3 and LIF, in cells of

two treatment groups are shown in Fig. 5.4 C. All three genes are in the EGFR pathway. We

used scTenifoldNet to re-analyze the data and identified 125 DR genes (FDR < 0.05, Fig. 5.4

D., Supplementary Table S3). These genes are enriched with those (39 out of 125) that are under

the regulation of TFs: SMAD2 and SMAD3. GSEA analysis [178] showed that these DR genes

are associated with EGFR1 pathway, regulation of apoptosis, cell cycle checkpoints, G1 cell cy-

cle arrest, and regulation of apoptosis (Fig. 5.4 D. inset, Supplementary Table S3). Once again,

scTenifoldNet identified a much smaller set of significant genes compared to those reported in the

original paper [211]: 125 DR genes vs. 8, 389 DE genes. Nevertheless, functional analyses show

that scTenifoldNet identified a more specific gene set relevant to cetuximab’s mechanism of action.

Further scrutinization of enriched molecular functions of these DR genes will help to identify more

regulatory targets induced by cetuximab in HNSCC cells.

5.3.8.4 Analysis of transcriptional responses of alveolar type 1 cells to Nkx2-1 gene knockout

In the third example, we applied scTenifoldNet to another published scRNAseq data from

type 1 alveolar (AT1) cells [212]. AT1 cells are responsible for gas exchange, the physiological

function of the lung [229]. Little et al., [212] found that NK homeobox 2-1 (Nkx2-1) is expressed

in AT1 cells and thought Nkx2-1 might be essential to the development and maintenance of AT1
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Figure 5.4: Analysis of transcriptional responses of a carcinoma cell line to cetuximab. (A) Illus-
tration of experimental design, including sample groups and the known mechanism of drug action,
in the study of cetuximab resistance of HNSCC cell lines [211]. (B) t-SNE plot of 5, 217 and 4, 507
HNSCC-SCC6 cells treated with cetuximab (red) and PBS (blue), respectively. (C) Violin plots
show the log-normalized expression levels of selected DR genes in SCC6 cells with and without
cetuximab treatment. (D) Q-Q plot for observed and expected p-values of the 7, 503 genes tested.
Genes (n = 25) with FDR < 0.05 are labeled with asterisk. Inset shows the results of the GSEA
analysis for genes ranked by their distances in manifold aligned scGRNs from young and old mice.
(E) A representative module with DR genes and corresponding subnetworks in two scGRNs. The
module is enriched with DR genes and the corresponding subnetworks in two scGRNs. For illus-
trative purposes, the module is centered on the DR gene, H2AFZ. The colors, edges, and marks are
presented as in Fig. 5.3 E.
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cells. To determine the function of NKX2-1 during the development of AT1 cells, they performed

scRNAseq experiment to obtain transcriptome profile of cells from the lungs of Nkx2-1CKO/CKO;

Aqp5Cre/+ mutant mice (i.e., knockout [KO] mice) and littermate controls (i.e., wild-type [WT]

mice). They used early infant mice (postnatal day 10, P10) because P10 represents an intermediate

time point when individual AT1 cells in the mutant lung are expected to collectively feature the full

range of transcriptomic phenotypes. They reported 3, 622 DE genes (2, 105 upregulated and 1, 517

downregulated, Supplementary Dataset S1 of [212]) between the KO and WT mice. Their analyses

suggest that, without Nkx2-1, developing AT1 cells lose their molecular markers, morphology,

and cellular quiescence, leading to aberrant expression of gastrointestinal (GI) genes, alveolar

simplification and lethality (Fig. 5.5 A.).

To evaluate the power of scTenifoldNet in identifying regulatory changes caused by gene KO,

we re-analyzed the transcriptional profiles of 2, 397 mutant AT1 cells from the Nkx2-1CKO/CKO;

Aqp5Cre/+ mice and 638 AT1 cells from the WT mice (Fig. 5.5 B.). Expression levels of Cd24a,

Fau and Eef1a1 in AT1 cells of KO and WT mice are shown in Fig. 5.5 C. Cd24a is a marker

gene for AT1 cells; Fau and Eef1a1 are GI genes, known to be highly expressed in the GI tissues.

Using scTenifoldNet, we identified 29 genes exhibiting significant difference in their regulation

between the two samples: KO vs. WT (FDR < 0.05, Fig. 5.5 D.). These 29 genes are: Cd24a,

Clu, Muc1, Stard10, Glul, Fxyd3, Gsto1, Eef1a1, Bag1, Atp1b1, Txnip, Csrp2, Tspan1, Nr2f2,

Elf3, Sepp1, Pabpc1, Lurap1l, Gnb2l1, Eef2, Smim6, Cox7a2l, Tpt1, Fau, Eef1b2, Eif3f, Atpif1,

0610040J01Rik and Krt19. Targets of Sox2 [230] are in bold. As reported [212], this gene list is

enriched with genes highly expressed in the intestine. Using GSEA analysis [178], we showed the

significant enrichment of gastrointestinal marker genes [29] (Fig. 5.5 D., insets), which confirmed

the effect of Nkx2-1 KO on the cellular identity of AT1 cells.

5.3.8.5 Analysis of transcriptional responses of human dermal fibroblasts to the double-stranded

RNA stimulus

Next, we show the use of scTenifoldNet to a scRNAseq data set from human dermal fibroblasts

[117]. In the original paper, Hagai et al. [117] focused on single-cell transcriptional responses
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Figure 5.5: Analysis of transcriptional responses of alveolar type 1 cells to Nkx2-1 gene knockout.
(A) Illustration of experimental design and data collection of the KO experiment [212]. (B) t-SNE
plot of 2, 397 and 638 AT1 cells from Nkx2-1 KO mice (red) and WT mice (blue). (C) Violin
plots show the log-normalized expression levels of selected DR genes in KO (red) and WT (blue)
mice. (D) Q-Q plot for observed and expected p-values of tested genes. Genes (n = 29) with FDR
< 0.05 are labeled with asterisk. Inset shows the results of the GSEA analysis for genes ranked by
their distances in manifold aligned scGRNs. (E) A representative module that contains DR gene,
Tpt1, in the WT mice. Most parts of the module disappear in the KO mice. The colors, edges and
marks are presented as in Fig. 5.3 E.
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induced by the stimulus of polyinosinic-polycytidylic acid (polyI:C), a synthetic double-stranded

RNA (dsRNA)(Fig. 5.6 A.). They obtained and compared transcriptomes of 2, 553 unstimulated

and 2, 130 stimulated cells and identified 875 DE genes (Supplementary Table S3 of [117]). These

DE genes include IFNB, TNF, IL1A, and CCL5, encoding antiviral and inflammatory gene prod-

ucts, and are enriched for inflammatory response, positive regulation of immune system process,

and response to cytokine, among many others biological processes and pathways. We found the

original scRNAseq data has a batch effect between two samples, but the global batch effect can be

removed using Harmony [231], as shown in the tSNE-plot of cells of two samples (Fig. 5.6 B.).

Nevertheless, the differences in the expression level between samples can still be detected in se-

lected genes with Harmony-processed data (Fig. 5.6 B.). Applying scTenifoldNet to the processed

data, we identified 29 DR genes: SOD2, GBP1, WARS, ZC3HAV1, EGR1, BBC3, ISG15, HLA-B,

ZFP36, PPP1R15A, JUN, IFI6, JUNB, B2M, APOL2, HLA-A, IER3, SAT1, NFKBIA, NNMT,

FN1, IFITM3, MEG3, NEAT1, COL1A1, PLEKHA4, EEF1A1, SOCS1, and SERF2 (Fig. 5.6 D.,

Supplementary Table S4). Among them, 14 (highlighted in bold) are targets of TF, RELA [232]

(48%, adjusted p-value < 0.01, enrichment test by Enrichr [123, 124]). These DR genes are func-

tionally enriched for interferon signaling, immune system, interleukin-1 regulation of extracellular

matrix, and among others (Supplementary Table S4).

Once again, scTenifoldNet reports fewer genes than DE analysis does in the original paper

[117]. Through comparing DR genes with the DE genes, we found that enriched functions of

DE genes reflect the differences between unstimulated cells and cells that have completed an ini-

tial response to dsRNA stimulus and reached a final phase of the response, whereas the enriched

functions of DR genes reflect ongoing activities associated with regulatory changes and immune

responses to the stimulus. In this sense, DR genes are valuable for informing of mechanisms,

through which the dsRNA acts to induce immunological responses [233, 234, 235]. For exam-

ple, it is known that the dsRNA inhibits the translation of mRNA to proteins [234] and leads the

synthesis of interferon, which induces the synthesis of ribosomal units that are able to distinguish

between cell mRNA and viral RNA [235]. Interferon also promotes cytokine production that ac-
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tivates the immune responses and induces inflammation [233]. To further illustrate the changes in

the regulatory patterns between samples, we plotted the GRN module around EEF1A1. It can be

seen that, before and after the dsRNA treatment, the interacting partnership of the genes is changed

substantially (Fig. 5.6 E.). Two scatter plots show the change of correlation between TPT1 and

ANXA2, as an example (Fig. 5.6 F.). The negative correlation between the two genes’ expression

among cells disappears after the dsRNA treatment and, thus, the two genes are not linked in the

scGRN constructed using the after-treatment data.

5.3.8.6 Analysis of transcriptional responses of mouse neurons in Alzheimer’s disease

Lastly, we applied scTenifoldNet to scRNAseq data of isolated single nuclei from the brains of

the WT and 5×FAD mice [213]. The 5×FAD strain recapitulates the major features of Alzheimer’s

disease amyloid pathology. The genotype of these mice contains several Familial Alzheimer’s Dis-

ease (FAD) mutations in APP and PSEN1, causing the overexpression of mutant human amyloid-

beta (Aβ) precursor protein and human presenilin 1. The 5×FAD model rapidly develops amyloid

pathology, with high levels of intraneuronal Aβ accumulation beginning around 1.5 months of age,

and extracellular Aβ deposition beginning around two months [236].

In the original paper [213], Zhou et al. compared single-cell gene expression between 6-month-

old WT mice with 6-month-old 5×FAD mice. They found that neurons show limited responses to

Aβ peptides—compared to microglia and oligodendrocytes, neurons show minimal transcriptional

changes (149 DE genes) between WT and 5×FAD mice. To test whether scTenifoldNet can detect

genes whose expression is differentially regulated between WT and 5×FAD mice, we decided to

apply our method to this scRNAseq data, exclusively in neurons. We downloaded expression data

matrices from the GEO database using accession number GSE140511 and extracted expression

data of neurons from two samples: WT (GSM4173505) and WT 5×FAD (GSM4173511)(Fig. 5.7

A.).

After re-analyzing the data using scTenifoldNet, we identified 18 DR genes: Zdhhc17, Chl1,

Abhd17b, Rchy1, Stmn2, Tjp1, Nrbp2, Ly6h, Smarcd1, Rhbdd2, Ndfip1, Mark2, Icam5, Fam92a,

Rgl1, Gmcl1, Daam1, and Fxr1 (FDR < 0.05, Fig. 5.7 D.). For functional enrichment analy-
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Figure 5.6: Analysis of transcriptional responses of human dermal fibroblasts to the double-
stranded RNA stimulus. (A) Illustration of experimental design and tested mechanism of tran-
scriptional responses [117]. (B) t-SNE plot of human dermal fibroblasts before (blue) and after
(red) dsRNA stimulus. (C) Violin plots show the log-normalized expression levels of selected DR
genes before (blue) and after (red) stimulus. (D) Q-Q plot for observed and expected p-values of
tested genes. Genes (n = 29) with FDR< 0.05 are labeled with asterisk. Inset shows the results of
GSEA analysis for genes ranked by their distances in manifold aligned scGRNs. (E) Comparison
of a representative module that contains three DR genes in the control sample. The colors, edges
and marks are presented as in Fig. 5.3 E. (F) Scatter plots show the correlation between TPT1 and
ANXA2 before (top) and after (bottom) dsRNA stimulus.
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sis, we relaxed the significant-gene cutoff to include 57 additional genes with FDR ≥ 0.05 but

nominal p-value < 0.05. These additional genes include: Apoe and Bin1. Bin1 encodes bridging

integrator 1 (also known as amphiphysin 2), which is the second most important risk locus (af-

ter Apoe) for the late onset Alzheimer’s disease [237, 238]. Apoe and Bin1 rank 25th and 61th,

respectively, in the list of 75 significant genes (18 genes with FDR < 0.05 followed by 57 genes

with nominal p-value < 0.05), both play a role in negative regulation of amyloid precursor pro-

tein catabolic process and tau protein binding. Enrichr analysis [124, 123] reported following

top GO terms: regulation of neuron projection development, positive regulation of cell projection

organization, phosphatidylserine metabolic process, and protein acylation, potassium channel ac-

tivity and methylation-dependent protein binding. GSEA analysis [178] showed that regulatory

changes are associated with integrin signaling pathway, serotonin HTR1 group and FOS pathway,

and glutamate neurotransmitter release cycle (Fig. 5.7 D., insets).

5.4 Discussion

We present scTenifoldNet, a robust, unsupervised machine learning workflow that streamlines

comparative GRN analyses with data from scRNAseq. The key feature of scTenifoldNet is to

apply comparative network analysis with scRNAseq data. It detects differences in the cell popu-

lation’s state between two samples in a sensitive and scalable manner. It provides the function of

differential regulation (DR) analysis, which can be used to reveal subtle regulatory shifts of genes.

Today, differential expression (DE) analysis is still the primary method for the purpose of com-

parative analysis between scRNAseq samples (see, e.g., [210, 117, 239]). As scRNAseq data sets

are becoming widely available, there will be more and more interest in comparing between sam-

ples. The scTenifoldNet-based DR analysis is expected to be adapted in more scenarios wherever

DE analysis is applicable. scTenifoldNet learns and contrasts high-dimensional features of genes

in scGRNs by examining global interactions between the genes. scTenifoldNet is more suitable

for comparing highly similar samples, such as two populations of cells of the same type. scTeni-

foldNet is built as a robust, sensitive tool that can capture signals that are even confined to rare cell

types.
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Figure 5.7: Analysis of transcriptional responses of neurons to amyloid-beta (Aβ) peptides in the
5×FAD mice, a model of Alzheimer’s disease. (A) Illustration of experimental design and data
collection of the 5×FAD mice study [213]. (B) t-SNE plot of neurons of the 5×FAD (red) and
WT (blue) mice. (C) Violin plots show the log-normalized expression levels of selected DR genes
in neurons of the 5×FAD (red) and WT (blue) mice. (D) Q-Q plot for observed and expected
p-values of tested genes. Genes (n = 18) with FDR < 0.05 are labeled with asterisk. Inset shows
the results of the GSEA analysis for genes ranked by their distances in manifold aligned scGRNs.
(E) Comparison of a representative module that contains top-ranked DR genes between the two
scGRNs. The colors, edges and marks are presented as in Fig. 5.3 E.
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To achieve technical requirements, we overcome several analytical barriers in developing scTeni-

foldNet. First, constructing scGRN from scRNAseq data, which consists of cells in many different

states, is challenging at present. It is also difficult to control for technical noise in the data. To

address these issues, we let scTenifoldNet begin with random cell subsampling. It is worth noting

that random cell subsampling can not only help dealing with the problem of cell heterogeneity,

additional information of cells can be incorporated into subsampling schema. More specifically,

in addition to the random subsampling using jackknife and bootstrap methods, we can adapt a

semi-random subsampling schema, if cells in an input matrix are sorted according to pseudo-

time [240]. These cells can be subsampled using a pseudotime-guided method, with which sorted

cells are sampled along the pseudotime trajectory. In such a way, the subsamples contain pseudo-

time information, and the multilayer scGRN constructed from these subsamples will contain the

pseudotime-series information. In machine learning, many multilayer network analysis algorithms

have been proposed [241, 242, 243]. With our pseudotime-series scGRN data, these algorithms

will be relevant and applicable. Second, regulatory relationships between genes from scRNAseq

data are difficult to establish, even though the data may theoretically capture a complete picture

of the regulatory gene landscape. We consider PC-regression to stand out as a crucial method of

building scGRNs. PC-regression significantly outperforms the other GRN construction algorithms

in all aspects of methodology metrics, including specificity, sensitivity, computational efficiency,

and the required minimum number of cells. Importantly, PC-regression explicitly projects thou-

sands of gene expression measurements into a low dimensional space to capture much of the ob-

served variation. PC-regression, therefore, establishes the relationship for each pair of genes after

controlling for the most important background interactions. Third, in scTenifoldNet, the tensor

denoising procedure effectively smooths edge weights across all networks in multilayer scGRNs.

Fourth, scTenifoldNet performs nonlinear manifold alignment to align two networks. As such,

two networks can be contrasted directly, and DR genes could be detected using distance in new

coordinates of data in a low-dimensional space.

We validate the power of scTenifoldNet using real data sets coming from various studies and
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demonstrate that scTenifoldNet is sensitive to signals. Five real scRNAseq data sets are involved

(Table 5.1). These five data sets have one thing in common: they all have two sets of scRNAseq

data – one from a treated group and the other from a control/untreated group. More importantly, in

all five cases, we have sufficient prior knowledge about the biological system, from which the data

is collected. Therefore, we have hypotheses about what transcriptional changes are expected to

see before doing the analysis. For example, in the morphine response analysis, the causal factor of

transcriptional responses, i.e., the morphine stimulus, is known and thus, we know what should be

recovering through the analysis. Similarly, we had some clues in the examples of cetuximab and

fibroblasts about what transcriptional changes we might be able to retrieve. By compiling all the

findings from scTenifoldNet applications, we tested scTenifoldNet and showed that scTenifoldNet

provides findings that are precise, specific and relevant to the biological systems and questions in

the test. It is of significance to building a specific and sensitive tool like scTenifoldNet for the

purpose of molecular mechanism studies using scRNAseq. This is because causal factors and their

target genes remain unknown in many biological systems studied. If this is the case, it is crucial

to apply the sensitive approach like scTenifoldNet, which may be in addition to the DE analysis,

to unveil more gene candidates. Only then will we be able to scrutinize identified genes further

to learn the mechanisms behind their actions in the whole system. We face such a challenge in

many studies from unknown factors that cause the disorder. It is therefore critical that we adopt

tools such as scTenifoldNet, instead of relying solely on conventional DE analysis, to tackle this

big data analysis problem.

In summary, scRNAseq enables the study of cellular, molecular components, and dynamics of

complex biological systems at single-cell resolution. To unravel the regulatory mechanisms under-

lying cell behaviors, novel computational methods are essential for understanding the complexity

in scRNAseq data (e.g., scGRNs) that surpasses human interpretative ability. We anticipate that,

when applied to real scRNAseq data, our machine learning workflow implemented in scTenifold-

Net, can help achieve breakthroughs by deciphering the full cellular and molecular complexity of

the data through constructing and comparing scGRNs.
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6. SCTENIFOLDKNK: A MACHINE LEARNING WORKFLOW PERFORMING VIRTUAL

KNOCKOUT EXPERIMENTS ON SINGLE-CELL GENE REGULATORY NETWORKS

6.1 Introduction

Gene knockout (KO) experiments are a proven approach for studying gene function. A typi-

cal KO experiment involves the phenotypic characterization of organisms that carry the gene KO.

For example, in KO mice, a gene is made inoperative or knocked out using genetic techniques.

Deletion of one or more alleles provides mechanistic insight as to how the target gene functions

within a particular biological context. Gene function may be predicted from phenotypic differ-

ences between the KO and wild-type (WT) samples, and its expression is a molecular phenotype

that can be quantitatively measured. Gene expression is regulated in a coordinated manner in all

living organisms. Typically, regulation is observable as synchronized patterns of transcription in

a gene regulatory network (GRN). Co-regulation and co-expression are often seen among genes

associated with the same biological processes and pathways, or regulated by the same master

transcription factors [25]. If one gene is knocked out, functionally related genes can mediate a

homeostatic response. Thus, in unraveling regulatory mechanisms and synchronized patterns of

the cellular transcriptional activities, network analysis of gene expression data in KO experiments

provides mechanistic insights.

Here we present a machine learning workflow, called scTenifoldKnk that can be used to per-

form virtual KO experiments from the topology of the constructed GRNs. scTenifoldKnk takes

expression data from scRNA-seq of wild-type (WT) samples as input and constructs a denoised

single-cell GRN (scGRN) using principle component (PC) regression and tensor decomposition.

The WT scGRN is copied and then converted to a pseudo-KO scGRN by artificially zeroing out

the target gene in the adjacency matrix. To compare the two scGRNs (WT vs. pseudo-KO), a

quasi-manifold alignment method is adapted [200, 199]. Through comparing the two scGRNs,

scTenifoldKnk predicts changes in transcriptional programs and assesses the impact of KO on the
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WT scGRN. This information is then used to elucidate functions of the KO gene in analyzed cells

through enrichment analysis.

scTenifoldKnk is computationally efficient enough to allow the method to be applied to system-

atic KO experiments. In such a systematic study, we assume that thousands of genes in analyzed

cells will be knocked out one by one. As mentioned, due to the experimental and biological lim-

itations, such systematic KO experiments would never be possible in a real-animal experimental

setting. The other features of scTenifoldKnk include: (1) scTenifoldKnk requires no data from KO

animals or cell lines, as it only utilizes the scRNA-seq data from WT samples; and (2) scTenifold-

Knk can be used to perform double-KO experiments – that is, to knock out more than one gene

at a time. The remainder of this paper is organized as follows. We first present an overview of

the workflow of scTenifoldKnk and use simulated data to demonstrate its basic functions. We then

use existing data generated from authentic-animal KO experiments to highlight the use of scTeni-

foldKnk. These existing data sets contain scRNA-seq expression matrices from both WT and KO

samples. Although the KO data sets were available, they were not used by scTenifoldKnk as input.

Instead, the KO data sets were specifically used as positive controls to show that scTenifoldKnk

can produce expected results. Next, we show applications of scTenifoldKnk to delete genes that

cause three different Mendelian diseases with known phenotypic outcomes. Finally, we conduct

our own KO animal experiments to validate the utility of scTenifoldKnk as a predictive tool and

discuss the contribution of scTenifoldKnk to the future of predictive biology.

6.2 Materials and Methods

scTenifoldKnk is a machine learning workflow for virtual KO experiments with scRNA-seq

data. It utilizes a scRNA-seq expression matrix from a WT sample as input, without using any data

from a KO sample, to predict regulatory network changes and perturbed genes caused by the KO

of a gene.
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6.2.1 Construction of the WT scGRN

scTenifoldKnk uses a method we proposed previously – scTenifoldNet [244] – to construct sc-

GRNs. The procedure of scGRN construction consists of three steps: cell subsampling, principal

component (PC) regression, and tensor decomposition. In cell subsampling, cells are randomly

sampled to form subsets. This strategy assures that the outliers in the sample are not included by

many sub-sample sets and reduce the influences of outliers. When constructing the scGRN for each

sub-sample set, both the accuracy and computational efficiency of the algorithms should be consid-

ered. Among existing methods, PCNet based on PC regression is an efficient approach to construct

scGRN. It can also surpass the multicollinearity problem when explanatory variables are linearly

correlated and provides stable constructing results. Finally, to aggregate multiple GRNs, scTeni-

foldNet uses the CP tensor decomposition algorithm. CP decomposition factorizes the multilayer

scGRN and regenerates all adjacency matrices using top components, which achieves denoising

and enhancing, i.e., making main signals stronger and other signals weaker. Overall, scTenifoldNet

provides relatively stable and accurate results in constructing GRN. We briefly describe each step

below. Additional details can be found in a previous publication [244].

1. Cell subsampling: Initially, scTenifoldNet builds several subsets of cells via random sam-

pling. Denote X ∈ Rn×p as the scRNA-seq data matrix that reflects gene expression levels

for p genes in n cells. A sub-sample set of cells is constructed via randomly sampling m

(< n) cells in X . By repeating this subsampling process for t times, t sub-sample sets of

cells are derived, denoted as X ′1, . . . , X
′
t ∈ Rm×p.

2. Network construction: For each X ′i, scTenifoldNet builds a GRN with an adjacency matrix

W i via PC regression, where a PC analysis (PCA) is applied to the original explanatory vari-

ables and then the response variable is regressed on a few leading PCs. Since PC regression

only utilizes d PCs (d � n) as the covariates in regression, it mitigates over-fitting and re-

duces the computation time. To build an scGRN, each time scTenifoldNet focuses on one

gene (referred to as the response gene) and applies PC regression. The expression level of
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the response gene is used as the response variable, and the expression levels of other genes

are used as the explanatory variables in PC regression. scTenifoldNet repeats this process

for another N − 1 times, with one different gene as the response gene each time. In the end,

scTenifoldNet collects the coefficients of N regression models together and forms a p × p

adjacency matrix W i, whose (i, j) entry saves the coefficient of the ith gene on the jth gene.

W i could reflect the interaction strengths between each pair of genes.

3. Network denoising: The adjacency matrices of the t networksW 1, . . . , W t can be stacked to

form a third-order tensor Ξ ∈ R(p×p×t). To remove noise and construct an overall adjacency

matrix, scTenifoldNet applies CANDECOMP/PARAFAC (CP) tensor decomposition to Ξ

to extract important latent factors. More specifically, scTenifoldNet approximates Ξ by ΞR:

Ξ ≈ ΞR =
∑R

r=1 λrar ◦ br ◦ cr, where ◦ denotes the outer product, ar ∈ Rp, br ∈ Rp, and

cr ∈ Rt are unit-norm vectors, and λr is a scalar. The reconstructed tensor ΞR ∈ R(p×p×t)

includes t denoised adjacency matrices, and by taking the average of them, scTenifoldNet

obtains the overall stable adjacency matrix. After further normalizing its entries by dividing

them by their maximum absolute value, scTenifoldNet generates the final adjacency matrix

of scGRN for the given sample. For later use, denote it as Wd.

4. Obtaining enhanced directed network: We provided an option to get the strictly directed sc-

GRN. Given the denoised networkWd, for each pair (i, j) and (j, i), only the entry whose ab-

solute value is large will be left. More specifically, we defined the (i, j) entry for the strictly

directed network Ws by Ws (i, j) = Wd(i, j) if |Wd(i, j)| > |Wd(j, i)| and Ws(i, j) = 0

otherwise. Note that if |Wd(i, j)| < |Wd(j, i)|, then Ws(i, j) = 0, but it is believed that

Wd(i, j) still contains some information. Instead of using restricted directed network, we can

also come up with the ‘interpolated network’ Wi which contains part of the information of

Wd (i, j). Given the hyperparameter , the “interpolated network” isWi = λW s+(1− λ)Wd,

where λ ∈ [0, 1]. It is easy to check that when λ = 0, we get the original denoised network

Wd and when λ = 1, it is to go back to the strictly directed network Ws.
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6.2.2 Deletion of the KO gene from the WT scGRN

We propose the virtual KO method that directly works on the WT scGRN (Figure 6.1 B.). The

adjacency matrix Wd represents the scGRN constructed using the WT data. In the virtual KO

method, the entire row of the adjacency matrix Wd for the target gene is set to zero. We denote the

adjacency matrix of the scGRN generated as W̃d.

6.2.3 Comparison between the WT and pseudo-KO scGRNs

After obtaining Wd and W̃d, two comparable low-dimensional feature vectors of each gene in

the two networks are built and then compared to detect affected genes. Our approach of creating

low-dimensional feature vectors is inspired by manifold alignment [203, 199] and its application

[201]; our approach is referred to as quasi-manifold alignment because the adjacency matrices

used here are not symmetric matrices while they are required to be symmetric in the original

procedure. Here Wd and W̃d serve as the inputs for manifold alignment and the outputs are the

low-dimensional features F ∈ Rp×k and F̃ ∈ Rp×k of genes before and after knocking out the

target gene, where k � n. Before giving the details of the alignment procedure, we point out that

Wd and W̃d may include negative values, which reflect the negative correlation between genes.

Before doing alignment, we add 1 to all entries in Wd and W̃d, and the range of Wd and W̃d is

transformed from [−1, 1] to [0, 2].

To perform quasi-manifold alignment, we first construct a joint adjacency matrix W by com-

bining Wd and W̃d together, where W =

Wd
λ
2
I

λ
2
I W̃d

. We can treat W as the adjacency matrix

of a joint network formed by linking the corresponding genes in two networks. The off-diagonal

block of this matrix reflects the corresponding genes between two networks. λ is a tuning param-

eter. In practice, we select λ as the mean of the row summations of Wd and W̃d. We further build

F = [
F

F̃
] ∈ R2p×k , and the manifold alignment problem of two networks characterized by the

adjacency matrices Wd and W̃d is equivalent to the manifold learning problem that finds the low

dimensional features F for the joint network characterized by the adjacency matrixW . For the sake
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of convenience, we denote Fi ∈ Rk as the ith row of F that reflects the projection corresponding

to the ith gene in the large network. The next step is to build a ‘Laplacian’ matrix L = D −W ,

where D is a diagonal matrix with Dii =
∑n

j=1 (W )j,i. Denote f1, f2, . . . , fd as the eigenvectors

corresponding to the d smallest nonzero eigenvalues of L. Note that L is not a symmetric ma-

trix. We found that the usual solution of symmetrizing L does not work well with either simulated

or real data. We therefore use asymmetric matrix L in our quasi-manifold alignment procedure.

Since L is not symmetric, there may be imaginary parts in the eigen decomposition. Based on

our experiment, taking only the real part of eigenvectors with respect to the eigenvalue that has

the smallest real part will give better overall results. The final low dimensional representation is

F = [Re(f 1), Re(f 2), . . . , Re(fd)], where Re(f) means the real part of f .

6.2.4 Test for significance of virtual-KO perturbed genes

The virtual-KO perturbed genes are identified as genes with significant difference in their reg-

ulatory patterns in two scGRNs constructed from the WT and KO data. The method for testing the

significance of the difference for each gene is described here. With F =

F
F̃

 = [f1, f2, . . . , fd]

obtained in manifold alignment, for each gene, we calculate the distance dj between its two pro-

jected feature vectors from two networks. The rankings of dj are used to help identify significant

genes. To avoid arbitrariness in deciding the number of selected genes, we proposed a χ2 test.

Specifically, since d2
j is calculated by taking the summation of squares of the differences of pro-

jected representations of two samples, its distribution could be approximately χ2. Instead of d2
j ,

we use the scaled fold-change
df ·d2j
d̄2

as the test statistic for each gene j to adjust the scale of the dis-

tribution, where df is the degree of freedom.
df ·d2j
d̄2

approximately follows a χ2 distribution with the

degree of freedom (df ) if the gene does not perform differently before and after knocking out the

target gene. By using the upper tail (P [X > x]) of the χ2 distribution and the Benjamini–Hochberg

(B–H) FDR correction [122] for multiple testing correction, we assign a P-value for each gene. To

determine df , since the number of the selected significant genes will increase as df increases, we

choose df = 1 to make a conservative selection of genes with high confidence.
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6.2.5 Gene functional annotation and enrichment tests

Identified virtual-KO perturbed genes were evaluated and assessed for their molecular functions

and biological processes using Enrichr functional enrichment analysis. The enrichment test results

of Enrichr were derived from a large number of reference gene sets. In this study, we reported

results derived from the following gene set collections: KEGG 2019 for Human, KEGG 2019

for Mouse, GO Biological Process 2018, GO Cellular Component 2018, GO Molecular Function

2018, BioPlanet 2019, WikiPathways 2019 for Human, WikiPathways 2019 for Mouse, and Reac-

tome 2016. GSEA analysis was conducted using a ranked list of all genes as input and comparing

against either KEGG 2019 for Mouse or KEGG 2019 for Human gene sets. The genes were ranked

according to their distance between corresponding projection on the aligned manifold between WT

and pseudo-KO scGRNs. To remove redundant hits, identified gene sets were compared pairwise.

For each pair of identified gene sets, e.g., A and B, if Jaccard index, J = |A∩B|
|A∪B| , is greater than

0.8, then this pair of gene sets were merged into one. In this way, non-redundant sets of identified

gene sets were created and used for gene functional inference. GSEA analysis was also conducted

against gene sets of marker genes. The marker genes were obtained from PanglaoDB [29]. The

protein interaction enrichment tests were conducted using the web tool of STRING database [245].

6.2.6 Systematic KO analysis using scRNA-seq data in microglia

The scRNA-seq data used in the systematic KO analysis was obtained from the brain immune

atlas (https://www.brainimmuneatlas.org), which is a scRNA-seq resource for assessing and cap-

turing the diversity of the brain immune compartment, as published in [246]. The data was gen-

erated using the 10× Genomics Chromium platform, including more than 61, 000 CD45+ immune

cells from whole brains or isolated dura mater, subdural meninges and choroid plexus of mice. The

downloaded data is called the full aggregate data set (combining cells of whole brain and choroid

plexus cells from WT + Irf8 KO mice). The downloaded matrix was processed and the sub-matrix

contained 5, 271 microglia from the WT mice. For all genes, the KO perturbation profile of each

gene, i.e., a vector of DR distances, was transformed using Box-Cox transformation and then was
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standardized using z-score transformation. The processed KO perturbation profiles of all genes

were combined into one matrix for t-SNE embedding.

6.2.7 Ahr−/− KO mouse strain and crypt cell isolation

Animals were housed under conventional conditions, adhering to the guidelines approved by

the Institutional Animal Care and Use Committee at Texas A&M University. Stem cell targeted

Lgr5-EGFP-IRES-CreERT2, AhRf/f and tdTomatof/f mouse strains have all been previously de-

scribed [247]. The mouse genotypes used in this study include: tamoxifen inducible - Lgr5-EGFP-

CreERT2 × Tomatof/f (WT, control), AhRf/f × Lgr5-EGFP-CreERT2 × Tomatof/f (KO). Male

mice (n = 5 per genotype, 8 − 10 weeks of age) were intraperitoneally injected with 2.5mg

of tamoxifen (Sigma, T5648) dissolved in corn oil (25mg/ml) once a day, for four consecutive

days. Mice were maintained on an AIN-76A, semi-purified diet (Research Diets, D12450B), fed

ad libitum and housed on a 12h light-dark cycle. For all experiments, littermate controls were

cohoused with the KO mice. Two weeks post tamoxifen injection, colons were removed, washed

with cold PBS without calcium and magnesium (PBS-/-), everted on a disposable mouse gavage

needle (Instech Laboratories) and incubated in 15mM EDTA in PBS-/- at 37°C for 35 min as

previously described [247]. Subsequently, following transfer to chilled PBS-/-, crypts were me-

chanically separated from the connective tissue by vigorous vortexing. Cell suspensions were then

filtered through a 40µm mesh and Tomato-expressing cells (includes GFP+/Tom+ as well as GFP

negative/Tom+) were collected using a MoFlo Astrios Cell Sorter (Beckman Coulter) or a Bio-

Rad S3e Cell Sorter. Tomato positive cells represent colonic stem cells and their progeny. Dead

cells were excluded by staining with propidium iodide or 7-AAD. Samples were subsequently pro-

cessed using the 10× Genomics scRNA-seq pipeline described below. A total of 62, 741 cells from

10 mice were sequenced. These included 34, 889 sorted colonocytes from the WT and 27, 852 from

the KO mice. The average number of genes detected per sample was 20, 141. From all sequenced

cells, 40, 690 (21, 263 from WT and 19, 427 from KO samples) were removed with the scRNA-seq

quality control procedure. These cells had either a high proportion of mitochondrial reads (greater

than 10%), or exhibited an extremely large or small library size.
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6.2.8 Malat1−/− KO mouse strain and pancreatic islet cell isolation

Malat1 null mice were obtained from Texas A&M Institute for Genomic Medicine (TIGM).

Islets were isolated based on published procedures [248, 249, 250]. Briefly, mice were killed by

cervical dislocation. The pancreas was inflated with 3mL of cold collagenase solution (0.3mg/mL)

(Collagenase type 4, Worthington Biochemical Corporation) through the common bile duct with a

20G needle, starting at the gallbladder. The pancreas was then removed from the body and placed

in a siliconized vial containing 2mL of 1mg/mL collagenase solution, and digested at 37°C in a

water bath for≈ 12−15 min. After three washes of the digested pancreas with centrifugation (97g

at 4°C for 1 min) to collect the tissues, islets were purified by density gradient centrifugation (cold

polysucrose/sodium diatrizoate solution 1.1119g/ml, 560g at 4 °C for 15 min) and then dispersed

in 96 well plates and cultured in RPMI (Gibco) with 10% FBS for further experiments. To deter-

mine islet function and confirm success of isolation of the functional islets, the glucose-stimulated

insulin secretion level was measured using a highly sensitive sandwich ELISA assay kit following

manufacturer’s instructions (EMD Millipore, EZRMI-13K). After confirming the function of iso-

lated islets, the islets were washed in 10ml of PBS and dissociated using 2ml of Accutase (Sigma-

Aldrich, CatA6964) and incubated at room temperature for 20mins with gentle intermittent mixing

by pipetting. The dissociated islets were confirmed using microscopy and were stopped with islet

culture media (RPMI with 10% FBS). The dissociated islets were then filtered through a 40mm

filter to remove disassociated tissue and obtain a single-cell suspension of pancreatic islet cells. A

total of approximately 20, 000 cells were resuspended in 30mL PBS with 0.05% BSA. Samples

were subsequently processed using the 10× Genomics scRNA-seq pipeline described below.

6.2.9 10× Genomics scRNA-seq

Single-cell sample preparation was conducted according to Sample Preparation Demonstrated

Protocol provided by 10× Genomics as follows: 1mL of cell suspension from each mouse genotype

was pelleted in Eppendorf tubes by centrifugation (400g, 5min). The supernatant was discarded,

and the cell pellets were then resuspended in 1× PBS with 0.04% BSA, followed by two wash-
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ing procedures by centrifugation (150g, 3min). After the second wash, cells were resuspended

in ≈ 500µL 1× PBS with 0.04% BSA followed by gently pipetting 10 − 15 times. Cells were

counted using an Invitrogen Countess automated cell counter (Thermo Fisher Scientific, Carls-

bad, CA) and the viability of cells was assessed by Trypan Blue staining (0.4%). Subsequently,

single cell GEMs (Gel bead in EMulsion) and sequencing libraries were prepared using the 10×

Genomics Chromium Controller in conjunction with the single-cell 3’ v3 kit. Cell suspensions

were diluted in nuclease-free water to achieve a targeted cell count of 5, 000 for each cell line. The

cDNA synthesis, barcoding, and library preparation were then carried out according to the manu-

facturer’s instructions. Libraries were sequenced in the North Texas Genome Center facilities on a

NovaSeq 6000 sequencer (Illumina, San Diego). For the mapping of reads to transcripts and cells,

sample demultiplexing, barcode processing, and unique molecular identifier (UMI) countings were

performed using the 10× Genomics pipeline CellRanger v.2.1.0 with default parameters. Specifi-

cally, for each library, raw reads were demultiplexed using the pipeline command ‘cellranger

mkfastq’ in conjunction with ‘bcl2fastq’ (v2.17.1.14, Illumina) to produce two fastq files:

the read 1 file containing 26bp reads, consisting of a cell barcode and a unique molecule iden-

tifier (UMI), and the read 2 file containing 96bp reads including cDNA sequences. Reads then

were aligned to the mouse reference genome (mm10), filtered, and counted using ‘cellranger

count’ to generate the gene-barcode matrix.

6.2.10 Data and code availability

The scRNA-seq data of KO mice reported in this paper will be deposited in the NCBI’s Gene

Expression Omnibus database. scTenifoldKnk has been implemented in R, as well as in Matlab.

The source code is available at https://github.com/cailab-tamu/scTenifoldKnk. The R package is

also available at the CRAN repository, https://cran.r-project.org/web/packages/scTenifoldKnk/.
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6.3 Results

6.3.1 The scTenifoldKnk workflow

scTenifoldKnk takes a single gene-by-cell count matrix from the WT sample as input. Even-

tually, scTenifoldKnk employs a network comparison method to compare a pseudo-KO scGRN

to the WT scGRN to identify differentially regulated genes. These genes are called virtual-KO

perturbed genes. From the enriched function of these perturbed genes, the function of the KO gene

(i.e., the gene that is virtually knocked out) can be inferred. scTenifoldKnk is implemented with a

modular structure containing three core modules illustrated in Figure 6.1 and briefly summarized

in three steps as follows.

6.3.1.1 Constructing scGRN with scRNA-seq data from a WT sample

With the scRNA-seq data from a WT sample, scTenifoldKnk first constructs a scGRN using

a pipeline we proposed previously, namely scTenifoldNet [244]. This network construction step

contains three sub-steps (Figure 6.1 A.):

1. Subsampling cells randomly: Denote X as the scRNA-seq expression data matrix, which

contains the expression levels for p genes and n cells. Then,m (< n) cells inX are randomly

sampled to form X ′ using an m-out-of-n bootstrap procedure. This subsampling process

repeats t times to create t subsets of cells X ′1, . . . , X
′
t.

2. Constructing a GRN for each subsampled set of cells: For each X ′i, principal component

(PC) regression is run p times to construct a GRN. Each time the expression level of one

gene is used as the response variable and the expression levels for the remaining genes as

the dependent variables. The constructed GRN from X ′i is stored as a signed, weighted and

directional graph, represented with a p × p adjacency matrix Wi, each of whose columns

stores the regression coefficients for the PC regression of a gene. Wi is then normalized via

dividing by the maximal absolute value.

3. Denoising adjacency matrices to obtain the final GRN: Tensor decomposition is used to
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Figure 6.1: Overview of the scTenifoldKnk workflow. scTenifoldKnk is a machine learning frame-
work designed to perform virtual KO experiments with data from scRNA-seq. It consists of three
main analytical modules: network construction, virtual KO, and manifold alignment. (A) Network
construction. This module consists of three steps: cell subsampling, principal component regres-
sion, and tensor decomposition/denoising. (B) Virtual KO. This module starts by duplicating the
WT adjacency matrix, W 0, to make W 1 = W 0. Then, the entire row of W 1 corresponding to the
KO gene is set to zero. The modified W 1 is called the pseudo-KO scGRN. (C) Quasi-manifold
alignment. This method is used to learn latent representations of two networks, W 0 and W 1, and
align them based on their underlying manifold structures. The distance between a gene’s pro-
jections with respect to the two scGRNs on the low-dimensional latent representation is used to
measure the level of differential regulation of the specific gene. The significantly differentially
regulated genes are identified as virtual-KO perturbed genes.
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denoise the adjacency matricesWi obtained from the PC regression step. First, the collection

of Wi for t GRNs is processed as a third-order tensor Ξ, containing p × p × t elements.

Next, the CANDECOMP/PARAFAC (CP) decomposition is applied to decompose Ξ into

components. Then, Ξ is reconstructed using top d components to obtain denoised tensors

Ξd. Denoised Wi in Ξd are collapsed by taking the average of edge weights to obtain the

final averaged matrix, Wd.

6.3.1.2 Generating pseudo-KO scGRN by virtually knocking out a gene

In the last step, the scRNA-seq expression data matrix from the WT sample, X , is first used to

construct the WT scGRN. In this step named virtual KO, the adjacency matrix of the WT scGRN,

Wd, is copied, and then the entire row of Wd corresponding to the target gene is set to 0 (Figure

6.1 B.). In this way, the virtual KO operation is performed on Wd directly. The modified Wd is

denoted as W̃d, that is, the adjacency matrix of pseudo-KO scGRN.

6.3.1.3 Comparing scGRNs to identify virtual-KO perturbed genes

In this step, we assume that WT and pseudo-KO scGRNs, Wd and W̃d, have been obtained. A

quasi-manifold alignment method is then used to align Wd and W̃d (Figure 6.1 C., see Methods

for details). All genes included in the two scGRNs are projected in a k-dimensional space, where

k � p. After the projection, each gene has two low-dimensional representations: one is in respect

to Wd and the other W̃d. For each gene j, dj is the Euclidean distance between the gene’s two

projections. The greater dj , the more significant the differential regulation. Finally, a χ2 test is

applied to detect significantly differentially regulated (DR) genes, i.e., virtual-KO perturbed genes.

A more detailed description of scTenifoldKnk modules is in the section 6.2.

6.3.2 Virtual knockout experiments using simulated scRNA-seq data

We first used the simulated data to validate the relevance of our method. We generated a syn-

thetic scRNA-seq data set using the simulator SERGIO [191]. The generated data produces a

sparse matrix (70% zeros) of 3, 000 cells and 100 genes. To simulate the data, we supplied SER-

GIO with a predefined GRN with five modules of different sizes (containing 5, 10, 25, 40, and 20
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genes, respectively) representing modules of functionally related genes under the same regulation.

As expected, genes in the simulated data were clustered using the output of the PC regression al-

gorithm into five distinct modules (Figure 6.2 A.), mirroring the predefined modules given to the

generative model of SERGIO. We regarded this simulated data as the WT data. We applied the vir-

tual KO method of scTenifoldKnk to artificially delete the 20th gene, or gene #20, in the list. This

gene is one of 25 genes in the third module. The removal of the gene produced the pseudo-KO data

set. We then used scTenifoldKnk to compare the pseudo-KO with the WT data to identify genes

significantly differently regulated before and after the KO. These genes were predicted likely to be

perturbed. Because we knew the KO effect was due to the deletion of gene #20, we expected that

the identified genes to be those closely correlated with gene #20. Indeed, as expected, scTenifold-

Knk showed all significant genes were from the third module (Figure 6.2 B. 6.2 C., top), in which

gene #20 is located. We repeated the analysis using genes #50 and #100 as another two examples.

Again, the results were as expected (Figure 6.2 B. 6.2 C., middle and bottom). Thus, we concluded

that when a member gene is knocked out from a tightly regulated module, othe member genes in

the same module should be detected by scTenifoldKnk. Algorithmically, genes in the same mod-

ule with the KO gene were detected because their projected positions in low-dimensional latent

representations of WT and pseudo-KO networks changed more than other genes not in the same

module (see Section 6.2 for details).

To further increase our approach’s specificity, we included a lambda parameter in our network

construction algorithm that maximizes the constructed gene regulatory networks’ directionality.

This parameter allows us to move from a close to the symmetric matrix like the one shown in

Fig 6.2 A. to one totally directed as the one shown in Supplementary Figure S1A. The lambda

parameter ranges from 0 to 1 and has a multiplicative (1 − λ ∗ weight) effect over the edges’

weaker weight connecting two genes. When lambda is equal to 1, only the strongest edge with

the largest weight is kept in the network. We applied the same approach described above to knock

out the gene 20, gene 50, and 100, respectively, in the totally directed adjacency matrix. Our

method’s specificity remains stable in all the cases (Supplementary Figure S1B). The identified

101



Figure 6.2: Simulations show that scTenifoldKnk specifically detects regulatory modules that in-
clude the KO gene. (A) Heatmap of a 100 × 100 adjacency matrix of scGRN constructed from
a simulated scRNA-seq data of 100 genes and 3, 000 cells. The color is scaled according to the
normalized PC regression coefficient values between genes. The network contains 5 predefined
co-regulated modules of different sizes, indicated by the blocks of gene pairs with a high correla-
tion. The number of genes of each module is 5, 10, 25, 40, and 20, respectively. (B) Significance of
scTenifoldKnk DR test of genes in the simulated network is shown as -log(p-value). Red and black
dots indicate whether genes are significant or not after false discovery correction. Assuming genes
in the same module should be detected as significance genes, sensitivity is defined as = TP

TP+FN
,

and specificity as = TN
TN+FP

, where T , P , F , and N stands for true, positive, false and negative,
respectively. Balanced accuracy is defined as the average of sensitivity and specificity values. (C)
QQ-plots of expected vs. observed p-values of genes, given by the DR tests.
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genes predicted to be perturbed belonged to the same cluster from where the knocked-out gene

was located in the SERGIO simulation. Additionally to the identified genes, the genes next in the

rank of topmost perturbed genes belong to the same cluster, confirming the power of scTenifoldKnk

to identify modules of perturbed genes after a gene knockout in directed scenarios.

To cross-validate that the directionality retained in the network after using λ = 1 follows the

real regulatory direction, we tested the inbound and outbound directionality of the transcription fac-

tors and their target genes reported in the ENCODE database. Briefly, for each transcription factor

and associated target genes, we compared the interquartile range of the weights from the transcrip-

tion factor to their target genes against the interquartile range in the inverse direction (from targets

to the transcription factors) in a gene regulatory network constructed for microglial cells [251].

First, we tested the difference in the distribution of the weights using the Kolmogorov–Smirnov

test and then cross-validated the difference in the weights using a paired t-test (Supplementary

Figure S1C). Both tests agreed that the outbound direction between transcription factors and their

target genes is favored by our approach using λ = 1, confirming the power of scTenifoldKnk to

provide the right directionality of the gene regulatory networks.

6.3.3 scTenifoldKnk virtual KO analysis recapitulates results of real KO experiments

As a virtual KO tool, scTenifoldKnk is expected to recapitulate results obtained using real KO

experimental data. To prove this, we applied scTenifoldKnk to three scRNA-seq data sets from

three real KO experiments. In all three cases, the scRNA-seq data sets of the original studies

contained expression matrices from both WT and KO samples. When applying scTenifoldKnk to

each of these data sets, we did not use the data from the KO samples, because the virtual KO does

not need it. Instead, we used scTenifoldKnk to generate pseudo-KO scGRN, which was used as a

surrogate to replace the scGRN generated from the real KO data.
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KO
gene Cell type Main results from original and related

studies Ref. scTenifoldKnk predicted results Figure and table in
this article

Real-animal KO experiments with published data

Nkx2-1
Pulmonary
alveolar
cells

Decreased expression of marker genes of
alveolar type I (AT1) and II (AT2) cells [212] Marker genes of AT1 and AT2 cells;

Intestinal microvillus; Cell cycle
and cytoskeleton; Epithelial to
mesenchymal transition led by the
WNT signaling pathway members;
Surfactant homeostasis; Lamellar
body; Cell adhesion molecules

Figure 6.3 A..

Increased expression of marker genes of
gastrointestinal cells

Suppl. Table S1 (171
genes)

Nkx2-1 regulates expression of genes related
to membrane composition, extracellular ma-
trix, and cytoskeleton
Mutations in Nkx2-1 interrupts AT2 cell
function and identity

Trem2 Microglial
cells

Trem2 regulates expression of genes related
to lipid transport and catabolism [251]

Alzheimer’s disease; Oxidative
phosphorylation; Lysosome;
TYROBP causal network; Microglia
pathogen phagocytosis pathway;

Figure 6.3 B.

Lipid metabolism Suppl. Table S2 (128
genes)

Microglial cell damage response
Lysosome and phagosome function
Alzheimer’s disease
Oxidative phosphorylation
Trem2 interacts with signaling transducer
Hcst and adaptor Tyrobp

Hnf4a
and
Hnf4g

Intestinal
villus
epithelial
cells

Increased expression of Goblet cell enriched
genes [252] Enterocyte marker genes Figure 6.3 C.

Genes in BMP/SMAD signaling pathway Electron transport chain Suppl. Table S3 (65
genes)

Decreased expression of enterocyte-
enriched genes Fat digestion and absorption

Genes involved in lipid metabolism Cholesterol metabolism
Microvillus and absorption Chylomicron assembly
Genes related to cytoplasm Cytoplasmic vesicle lumen

Mendelian diseases

Cftr
Pulmonary
alveolar
cells

Expressed in epithelial cells of many organs [253] ABC transporter disorders and sur-
factant metabolism Figure 6.4 A.

Mutations disrupt the function of the
chloride channels

Ion transmembrane transporter activ-
ity

Suppl. Table S4 (17
genes)

Abnormal surfactant secretion and
alveolus morphology

Dmd Skeletal
myocytes

Mutation disrupts the linkage between the
cytoskeleton and the glycoproteins of the ex-
tracellular matrix

[254] Beta-1 integrin cell surface interac-
tion Figure 6.4 B.

Impairment of muscle contraction Contractile actin filament bundle Suppl. Table S4 (190
genes)

Muscle cell necrosis Actomyosin, extracellular matrix re-
ceptor interaction
Abnormal skeletal muscle morphol-
ogy

Mecp2 Neurons Repressing the transcription factor REST [255] Affected REST target genes Suppl. Figure S2
Altered synapses and synaptic vesicle pro-
teins

GABA synthesis, release, reuptake
and degradation

Suppl. Table S5 (211
genes)

Defects of GABAergic synapses Syntaxin binding
Syntaxin-1 mutant phenotype Synaptic vesicle cycle

Real-animal KO experiments (data generated in this study)

Ahr Enterocytes Unreliable barrier and uncontrolled prolifer-
ation cells

Myc active pathway; Nuclear recep-
tors meta-pathway. Figure 6.5

Enterocyte marker genes Suppl. Table S6 (53
genes)

Malat1 Pancreatic
beta cells Adenocarcinoma associated genes Cori cycle; Glycolysis and

gluconeogenesis; Regulation of
insulin secretion, Cellular
carcinomas; HIF signaling pathway

Figure 6.6

Reactive Oxygen Species (ROS) Suppl. Table S7 (167
genes)Cell cycle regulation

Hyperglycemia

Table 6.1: Summary of real-data applications of scTenifoldKnk analysis.
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6.3.3.1 Nkx2-1 is required for the transcriptional control, development, and maintenance of alve-

olar type-1 and type-2 cells

NK homeobox 2-1 (Nkx2-1) is a transcription factor expressed in lung epithelial cells of alve-

olar type I (AT1) and type II (AT2). AT1 cells cover 95% of the surface of gas exchange and are

0.1µm thick to allow passive oxygen diffusion into the bloodstream. Nkx2-1 is essential at all de-

velopmental stages of AT1 cells. Loss of Nkx2-1 results in the impairment of three main defining

features of AT1 cells, molecular markers, expansive morphology, and cellular quiescence [212].

AT2 cells are cuboidal and secrete surfactants to reduce surface tension. Mutations in Nkx2-1 in-

terrupt the expression of Sftpb and Sftpc, two genes related to AT2 cell function and molecular

identity [212, 256].

To examine the molecular and cellular changes underlying the mutant phenotypes in mouse

lungs caused by the Nkx2-1−/− KO, Little, Gerner-Mauro [212] generated a comprehensive set

of data using the lung samples from WT and Nkx2-1−/− KO mice. Using bulk RNA-seq and

immunostaining assays, they observed that the expression of marker genes of AT1 and AT2 cells

were downregulated in the Nkx2-1 mutant cells. They also found that the expression of marker

genes for gastrointestinal cells was upregulated in Nkx2-1−/− mutant AT1 cells, which form dense

microvilli-like structures apically. Using ChIP-seq, they found that Nkx2-1 binds to a set of genes

implicated in regulating the cytoskeleton, membrane composition, and extracellular matrix. Little

et al. [212] also generated scRNA-seq data for 2, 312 and 2, 558 epithelial cells from lung samples

of the WT and Nkx2-1−/− KO mice, respectively.

We obtained the scRNA-seq data, generated by Little et al. [212], and used the expression

matrix of 8, 647 genes × 2, 312 cells from WT mice as the input for scTenifoldKnk. We con-

structed the WT scGRN and then knocked out Nkx2-1. The final report of scTenifoldKnk analysis

contained 171 significant genes (FDR < 0.05, Supplementary Table S1). These virtual-KO per-

turbed genes included 7 marker genes of AT1 cells (Egfl6, Ager, Cldn18, Icam1, Crlf1, Gprc5a,

and Aqp5) and 25 marker genes of AT2 cells (highlighted in Supplementary Table S1). Enrichr

functional enrichment test [123] indicated that these genes were enriched for the following func-
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tional categories: epithelial to mesenchymal transition led by the WNT signaling pathway mem-

bers, surfactant homeostasis, lamellar body, and cell adhesion molecules. These enriched function

annotations were known to be related to the function of AT2 cells. Next, we applied the interaction

enrichment analysis to the 171 significant genes. The interaction enrichment analysis was based

on the STRING database [245]. We found that these significant genes appeared in a fully con-

nected component in the STRING interaction network, which is unexpected by chance (P < 0.01,

STRING interaction enrichment test), indicating a closely related functional relationship between

those genes. We subsequently performed the gene set enrichment analysis (GSEA [178]) to eval-

uate the extent of perturbation caused by the Nkx2-1 KO at the transcriptome-wide level. The

GSEA analysis identified gene sets containing marker genes of AT1 and AT2 cells (FDR < 0.01 in

both cases). That is to say, AT1 and AT2 marker genes were among the topmost perturbed genes,

caused by the deletion of Nkx2-1. GSEA analysis also showed that the Nkx2-1−/− KO impacted

genes with functions related to intestinal microvillus (Figure 6.3 A.), cell cycle, and cytoskeleton.

These results are consistent with those reported in the original study [212]. Again, we emphasize

that scTenifoldKnk did not use data generated from the KO mice. Instead, all results of scTeni-

foldKnk were derived in-silico using data generated from the WT mice. Overall, the results of our

scTenifoldKnk analysis are consistent with those of the original study [212], in which scRNA-seq

data was experimentally derived from KO mice and combined with other experimental techniques

to characterize the KO individual.

6.3.3.2 Trem2 regulates microglial cholesterol metabolism

The Triggering Receptor Expressed on Myeloid cells 2 (Trem2) is a single-pass transmembrane

immune receptor, selectively expressed in microglia within the central nervous system. Trem2 is

known to be involved in late-onset Alzheimer’s disease, and plays a role in modulating prolifer-

ation, survival, immune response, calcium mobilization, cytoskeletal dynamics, mTOR signaling,

autophagy, and energy metabolism [257]. The function of Trem2 is known to be mediated via sig-

naling transducer Hcst and adaptor Tyrobp [258]. Trem2 is also known to play a role in regulating

lipid metabolism, with most studies focusing on lipids in the form of either lipoprotein particles
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Figure 6.3: scTenifoldKnk virtual KO analysis recapitulates the findings of real KO experiments.
(A) Virtual KO of Nkx2-1 identifies gene expression program changes reported in the original
study. GSEA analysis identifies significant gene sets including pulmonary alveolar type I cells,
pulmonary alveolar type II cells, and microvillus (GO:0005920 under cellular component actin-
based cell projection). Egocentric plot shows virtual-KO perturbed genes connected to Nkx2-1.
Nodes are color-coded by each gene’s membership association with significantly enriched func-
tional groups. (B) Virtual KO of Trem2 identifies gene expression program changes reported in
the original study. GSEA analysis identifies significant gene sets including Alzheimer’s disease,
lysosome, and cholesterol metabolism. Egocentric plot shows virtual-KO perturbed genes con-
nected to Trem2. Nodes are color-coded by each gene’s membership association with significantly
enriched functional groups. (C) Virtual double KO of Hnf4a and Hnf4g identifies gene expression
program changes reported in the original study. GSEA analysis identifies significant gene sets in-
cluding enterocytes, chylomicron assembly, and cytoplasmic vesicle lumen. Egocentric plot shows
virtual-KO perturbed genes connected to Hnf4a and Hnf4g. Nodes are color-coded by each gene’s
membership association with significantly enriched functional groups.
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or cell surface-exposed signals, such as candidate Trem2 ligands [259]. By comparing between

WT and Trem2˘/˘ KO mice, Poliani et al. [260] showed that Trem2 regulates many genes, such as

Apoe and Lpl, which control lipid transport and catabolism in microglia. Trem2 was also found to

modulate gene expression of macrophages in adipose and control blood cholesterol metabolism in

obese mice [261], further linking the function of Trem2 to lipid metabolism. To examine whether

Trem2 mediates myelin lipid processing in microglia, Nugent et al.[251] isolated and characterized

Cd11b+/Cd45low microglial cells from Trem2+/+, Trem2+/˘, and Trem2˘/˘ mice, fed with a 0.2%

demyelinating cuprizone diet for 12 weeks. They analyzed a comprehensive set of analytical data

using FACS, RNA-seq, scRNA-seq, and lipidomics. They reported that Trem2 upregulates Apoe

and other genes involved in cholesterol transport and metabolism, causing robust intracellular ac-

cumulation of a storage form of cholesterol upon chronic phagocytic challenge. Trem2 was also

shown to regulate the expression of genes associated with cell damage response, lysosome and

phagosome function, Alzheimer’s disease, and oxidative phosphorylation [251].

To perform the virtual KO analysis, we obtained scRNA-seq data from WT (Trem2+/+) mice

[251]. The expression matrix contained data of 7, 715 genes and 765 Cd11b+/Cd45low microglial

cells. We used this WT expression matrix as the input and used scTenifoldKnk to knock out

Trem2. The final results of scTenifoldKnk analysis contained 128 virtual-KO perturbed genes

(FDR < 0.05, Supplementary Table S2). The Enrichr analysis [123] showed that these genes

were enriched with: Alzheimer’s disease, oxidative phosphorylation, lysosome, TYROBP causal

network, metabolic pathway of LDL, HDL and TG, and microglia pathogen phagocytosis pathway.

Such an enrichment indicates that the proteins were at least partially biologically connected as a

group. These virtual-KO perturbed genes were highly interactive with each other, as shown by

their positions on the STRING interaction network. The network of virtual-KO perturbed genes

had significantly more interactions than expected (P < 0.01, STRING interaction enrichment test),

which means that gene products exhibited more interactions among themselves than what would

be expected for a random set of proteins of similar size, drawn from the genome. This result

suggests that the identified, virtual-KO perturbed genes are closely related with shared functions.
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Collectively, these scTenifoldKnk findings provide insight into understanding Trem2 function by

revealing the list of genes perturbed following Trem2 deletion (Figure 6.3 B.). We show that the

scTenifoldKnk results recapitulate those reported in the original study [251], demonstrating the

utility of scTenifoldKnk.

6.3.3.3 Hnf4a and Hnf4g stabilize enterocyte identity

Hepatocyte nuclear factor 4 alpha and gamma, Hnf4a and Hnf4g, are transcription factors

which regulate gene expression in the gut epithelium. Hnf4a and Hnf4g function redundantly, and

thus, an independent deletion of one paralog causes no gross abnormalities [252, 262]. Hnf4a and

Hnf4g double-KO Hnf4agDKO mice exhibit fluid-filled intestines indicative of intestinal malfunc-

tion [252]. Epithelial cells in the Hnf4agDKO mutants fail to differentiate. Using the bulk RNA-seq

data, Chen et al. [252] compared gene expression in duodenal epithelial cells isolated from WT

mice and Hnf4aKO, Hnf4gKO and Hnf4agDKO mutants. They identified 2, 892 DE genes in the

Hnf4agDKO mutant but only 560 and 77 in the Hnf4aKO and Hnf4gKO mutants, respectively (FDR

< 0.05, absolute log2(fold change) > 1). The DE genes identified in the Hnf4agDKO enterocytes

were enriched for functions in digestive metabolisms such as lipid metabolism, microvillus, and

absorption, as well as enterocyte morphology, cytoplasm, Golgi apparatus, and immune signal-

ing. Hnf4agDKO epithelium exhibited a robust shift in the transcriptome away from differentiated

cells toward proliferating and Goblet cells, suggesting that Hnf4agDKO impair enterocyte differ-

entiation and destabilize enterocyte identity. To validate their findings, Chen et al. [252] used

scRNA-seq to measure gene expression in intestinal villus epithelial cells. They obtained scRNA-

seq data for 4, 100 and 4, 200 cells from Hnf4agWT and Hnf4agDKO respectively, and confirmed

that, compared to the WT, mutant epithelial cells show increased Goblet cell-enriched genes, such

as Agr2, Spink4, Gcnt3 and S100a6, and decreased expression of enterocyte-enriched genes, such

as Npc1l1, Apoc3, Slc6a19 and Lct (Figure 6.3 C. left panel). The Hnf4agDKO mutant cells also

showed increased expression for genes in the BMP/SMAD signaling pathway and decreased ex-

pression of genes involved in lipid metabolism, microvillus and absorption, and genes related to

cytoplasm [252].
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We obtained the scRNA-seq expression matrix of 4, 100 cells from the Hnf4agWT samples

used as input for scTenifoldKnk. We constructed the WT scGRN of 2, 591 genes and then virtually

knocked out both Hnf4a and Hnf4g genes at the same time. The final result of scTenifoldKnk con-

tained 65 virtual-KO perturbed genes (FDR < 0.05, Supplementary Table S3). These genes were

enriched with electron transport chain, fat digestion and absorption, cholesterol metabolism, chy-

lomicron assembly, and cytoplasmic vesicle lumen. A search of STRING database [245] indicated

that all virtual-KO perturbed genes form a fully connected network module. STRING is a database

of known and predicted protein-protein interactions. The interaction enrichment test, a statistical

test provided by the STRING database, indicated that such a full interconnection of 65 genes is

less likely to be expected by chance (P < 0.01). Furthermore, GSEA analysis revealed that these

virtual-KO perturbed genes were enriched with canonical marker genes of enterocytes (Figure 6.3

C.), which is consistent with the finding of the original study [252].

6.3.4 scTenifoldKnk reveals functions of Mendelian disease genes

Mendelian diseases are a family of diseases caused by the loss or malfunctioning of a single

gene. For many Mendelian diseases, we know a great deal about their genetic basis and pathophysi-

ological phenotypes [263]. Thus, we decided to use three Mendelian diseases as ‘positive controls’

to test the performance of scTenifoldKnk. We attempted to determine whether scTenifoldKnk can

accurately predict the molecular phenotypic consequences of gene deletion. The three chosen

Mendelian diseases were Cystic fibrosis, Duchenne muscular dystrophy, and Rett syndrome. As

described in more detail below, in each case, we performed scTenifoldKnk analysis using existing

scRNA-seq data generated from cell types that are most relevant to the disease conditions (Table

6.1).

6.3.4.1 Cystic fibrosis

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases [264]. It is caused

by mutations in CFTR, a gene encoding for a transmembrane conductance regulator [265, 266],

which functions as a channel across the membrane of cells that produce mucus, sweat, saliva, tears,
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and digestive enzymes. The CFTR protein also regulates the function of other channels. CFTR is

expressed in epithelial cells of many organs, including lung, liver, pancreas, and digestive tract

[267]. The most common CFTR mutation that causes CF is the deletion of phenylalanine 508

(∆F508), which disrupts the function of the chloride channels, preventing patients from regulating

the flow of chloride ions and water across cell membranes [265]. The truncated CFTR protein leads

to a reduction of surfactant, and causes the build-up of sticky, thick mucus that clog the airways,

increasing the risk of bacterial infections and permanent lung damage [268].

To test scTenifoldKnk, we obtained scRNA-seq data from 7, 326 pulmonary alveolar type II

(AT2) cells in the GEO database (access number: GSM3560282). The original data sets were gen-

erated by Frank et al. [253] to study the lineage-specific development of alveolar epithelial cells

in mice. The original study was not directly focused on CF. Nevertheless, with the downloaded

data, we constructed a WT scGRN that contained 7, 107 genes. We then used scTenifoldKnk to

knock out Cftr. The final results of scTenifoldKnk contained 17 virtual-KO perturbed genes: Cftr,

Birc5, Cldn10, Cxcl15, Dcxr, Hmgb2, Lamp3, Mgst1, Npc2, Pclaf, Pglyrp1, Sftpa1, Sftpb, Sftpc,

Smc2, Tspan1 and Tubb5 (FDR < 0.05, Figure 6.4A, Supplementary Table S4). Among them,

Sftpa1, Sftpb, and Sftpc have functions associated with ABC transporter disorders and surfactant

metabolism. Sftpb and Sftpd encode for surfactant proteins implicated in CF and innate immunity

[269, 270]. Ctsh encodes for cathepsin H, a cysteine peptidase, which is involved in the processing

and secretion of the pulmonary surfactant protein B [271]. GSEA analysis of the ranked gene list

was conducted using gene sets of the MGI mammalian phenotypes database as reference. The

result showed that the gene list scTenifoldKnk produced was significant in terms of ion transmem-

brane transporter activity, abnormal surfactant secretion, and alveolus morphology (FDR< 0.01 in

all cases, Figure 6.4 A.). These results are consistent with the known pathophysiological changes

resulting from the loss of Cftr function in the lungs.

6.3.4.2 Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) arises as a result of mutations that affect the open read-

ing frame of DMD [272, 273]. The DMD gene encodes dystrophin, a large cytoskeletal structural
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Figure 6.4: scTenifoldKnk virtual KO analysis reveals the function of Mendelian disease genes in
relevant cell types. (A) Virtual KO of Cftr in pulmonary alveolar type II cells identifies gene ex-
pression program changes associated with cystic fibrosis. GSEA analysis identifies significant gene
sets including regulation of ion transmembrane transporter, abnormal alveolus morphology, and ab-
normal surfactant secretion. Egocentric plot shows virtual-KO perturbed genes connected to Cftr.
Nodes are color-coded by each gene’s membership association with significantly enriched func-
tional groups. QQ-plot of genes and interconnection of virtual-KO perturbed genes in STRING are
given. (B) Virtual KO of Dmd in muscular cells identifies gene expression program changes associ-
ated with Duchenne muscular dystrophy. GSEA analysis identifies significant gene sets including
abnormal skeletal muscle morphology, and abnormal collagen fibril morphology. Egocentric plot
shows virtual-KO perturbed genes connected to Dmd.
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protein, which is mostly absent in DMD patients [274]. The absence of dystrophin results in

a disturbance of the linkage between the cytoskeleton and the glycoproteins of the extracellular

matrix, generating an impairment of muscle contraction, eventually leading to muscle cell necro-

sis [274, 275] (Figure 6.4 B. left). We obtained the scRNA-seq data of 5, 159 muscle cells from

the mouse limb (quadriceps) in the GEO database (Access number: GSM4116571). The original

data was generated to study gene expression patterns in skeletal muscle cells [254]. The original

study was not focused on DMD. We used scRNA-seq data from normal tissue to construct the WT

scGRN of 9, 783 genes. We subsequently performed the scTenifoldKnk virtual KO analysis to pre-

dict the molecular phenotype due to the impact of the Dmd KO. The final results of scTenifoldKnk

included 190 virtual-KO perturbed genes (FDR < 0.05, Supplementary Table S5). These genes

were enriched with functions related to beta-1 integrin cell surface interaction, contractile actin

filament bundle, actomyosin, extracellular matrix receptor interaction, and extracellular matrix

organization (Figure 6.4 B. middle). The GSEA analysis against the MGI mammalian phenotype

database gave the following top hits (FDR < 0.01): abnormal collagen fibril morphology, abnor-

mal skeletal muscle morphology, and abnormal skeletal muscle fiber morphology (Figure 6.4 B.

right). These phenotype terms represent consistently with known effects of the loss of DMD func-

tion in muscle cells, verifying that scTenifoldKnk can predict phenotypic effects caused by gene

KO that are pertinent for the biological context.

6.3.4.3 Rett syndrome

The third Mendelian disease we considered was the Rett syndrome (RTT, MIM 312750), which

is a severe neurodevelopmental disease [276, 277]. RTT is known to be caused by mutations

in Mecp2, a transcriptional repressor required for the maintenance of normal neuronal functions

[278, 279]. Mecp2 deficiency in the brain decreases the expression level of genes involved in the

Bdnf signaling pathway, mediated by repressing the transcription factor Rest [280]. We obtained

scRNA-seq data generated from mouse neurons (SRA database access numbers: SRX3809326 and

SRX3809327) for the mouse brain atlas project [255]. The two data sets contain 2, 054 and 2, 156

neurons respectively, derived from two CD1 P19 female mice that served as biological replicates.

113



Here, we analyzed the two data sets independently, to see whether scTenifoldKnk could, as

expected, produce similar results with data gathered from biological replicates. Two scGRNs

containing 8, 652 and 8, 555 genes were constructed first. Then, the scTenifoldKnk analysis of

virtual KO of Mecp2 produced 377 and 322 virtual-KO perturbed genes, respectively (FDR< 0.05,

Supplementary Table S6 and S7), including 211 shared genes. The number of shared genes was

significantly higher than the random expectation (P < 1× 10−5, hypergeometric test), indicating a

high overlap rate between results of the scTenifoldKnk analysis when applied to the two data sets

from biological replicates.

Many of these 211 genes were found to be targets of the transcription factor Rest (FDR< 0.01).

The functions of these genes were enriched (FDR < 0.01) and include: axon, synaptic vesicle

cycle, GABA synthesis, release, reuptake and degradation, syntaxin binding, and transmission

across chemical synapses. These results are consistent with previous experimental results. For

example, it is known that the most prominent alterations in gene products due to Mecp2 KO are

related to synapses and synaptic vesicle proteins [281]. At the phenotypic level, the Mecp2 KO

causes early defects in GABAergic synapses [282] and mediates autism-like stereotypies and RTT

phenotypes [283]. Mutations in syntaxin-1 are known to illicit phenotypes similar to those found in

RTT [284]. In addition to using the overlapped genes to show the reproducibility of scTenifoldKnk

analysis, we also compared the two ranked gene lists generated from the two replicate mice. If

scTenifoldKnk results are robust, we expected the relative positions of the same genes in the two

ranked lists, generated from biological replicates, to show stronger correlation than those in two

random lists of genes. Indeed, we found the correlation in the rank of genes between two reported

lists was highly significant (P < 1 × 10−12), with a Spearman correlation coefficient of ρ = 0.68.

Finally, GSEA analyses with both lists of genes showed that BDNF signaling pathway was highly

significant (FDR < 0.01, for both replicates, Supplementary Figure S2).

Since validating the reproducibility of scTenifoldKnk findings is important even when the avail-

able experiments with public biological replicates containing sufficient cells (over 500) for the

same cell type are still uncommon. We decided to evaluate the results’ stability using ten random
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subsamplings (bootstrap) of cells within the dataset used to assess the impact of the Trem2 knock-

out on microglial cells. For each random subsampling of 500 cells, we constructed an scGRN,

performed the virtual knockout of Trem2 using scTenifoldKnk, and obtained a perturbation profile

to test the recovered functional enrichment and the similarity in the ranking of the predicted to be

perturbed genes. We found that all the computed perturbation profiles returned by scTenifoldKnk

are positively correlated with an average Spearman correlation coefficient of 0.55 ± 0.06 (Sup-

plementary Figure S3A). This result strengthens the power of scTenifoldKnk to identify similar

patterns of perturbation, surpassing the differences that the sparsity of the data may induce. We

also evaluated the power to detect the functional enrichment of the gene sets reported in the paper

across each subsampling. For that purpose, we used single-sample gene set enrichment analysis

using the gene set reported by the KEGG database. We found that the gene sets reported associ-

ated with Oxidative phosphorylation, Alzheimer’s disease, Cholesterol metabolism, Phagosome,

and Lysosome are among the top predicted to be perturbed gene sets in all the cases (Supplemen-

tary Figure S3B). This result confirms the stability of the perturbation predictions provided by

scTenifoldKnk.

6.3.5 scTenifoldKnk predicts real KO experimental results

In this section, we describe two in vivo KO experiments that we performed. In each of the

experiments, we generated scRNA-seq data from both WT and KO mice. The WT data was used

to perform scTenifoldKnk virtual KO analysis and predict the consequences of gene KO. The

comparative studies between the data sets from WT and KO mice were conducted to validate the

prediction made.

6.3.5.1 scTenifoldKnk predicts transcriptional changes in enterocytes of Ahr−/− KO mice

The Aryl hydrocarbon receptor (AhR) is a transcription factor that regulates the gene expres-

sion of metabolic enzymes, such as cytochrome P450s. It acts primarily as a sensor for both dietary

and gut microbial-derived ligands. These include structurally diverse phytochemicals, pharmaceu-

ticals, and endogenous compounds, including tryptophan metabolites and xenobiotic chemicals.
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AhR also plays a role in regulating immunity, stem cell maintenance, and cellular differentiation

[285, 247, 286, 287, 288]. To study the role of Ahr in intestinal stem cell fate determination, we

generated inducible, stem cell-specific Ahr−/− KO mice (see Section 6.2.7). We then used scRNA-

seq to generate data for five WT and five KO mice, and obtained 13, 626 and 8, 425 sequenced cells

from WT and KO mice, respectively. Data was pooled and projected to low-dimensional embed-

ding, showing that there was no global shift in overall gene expression profiles between cells from

WT and KO mice (Figure 5A). We subsequently clustered cells into groups and identified seven

distinct cell types: non-cycling Lgr5+ colonic stem cells, Goblet cells, cycling Lgr5+ colonic stem

cells, pre-enterocytes, transit-amplifying cells, enteroendocrine cells, and Tuft cells (Figure 5B).

Since enterocytes are the most abundant epithelial cell lineage in the intestine, we decided to con-

duct scTenifoldKnk using data from enterocytes (indicated by dashed oval in Figure 6.5 B.) to

assess the function of Ahr.

We conducted scTenifoldKnk analysis to knock out Ahr from the scGRN of WT mice. The

scGRN was constructed from an input expression matrix of 1, 029 cells (i.e., WT enterocytes)

and 8, 478 genes. The output of scTenifoldKnk was a ranked gene list including 53 top genes, i.e.,

virtual-KO perturbed genes (FDR < 0.05, Supplementary Table S8). Enrichr functional enrichment

tests indicated that these genes were associated with Myc active pathway, nuclear receptors meta-

pathway, MHC class II protein complex binding, Chaperone-mediated protein complex assembly,

response to unfolded protein, RNA binding, translation elongation factor activity, cytoplasmic

vesicle lumen, T cell receptor regulation of apoptosis, and secretory granule lumen (Figure 6.5

C.). Next, a STRING database [245] search indicated that identified virtual-KO perturbed genes

form two network modules (both P < 0.01, STRING interaction enrichment tests, Supplementary

Figure S4). Gene members in each module are fully connected, further confirming closely related

functional associations among identified genes. Finally, GSEA analysis against a comprehensive

collection of gene sets (see Section 6.2) identified 60 non-redundant functional gene sets (Supple-

mentary Table S9), including many related to cell cycle and cell proliferation signaling pathways.

GSEA analysis against the canonical marker gene sets (retrieved from PanglaoDB, see Section
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Figure 6.5: scTenifoldKnk predicts transcriptional changes in the enterocytes of Ahr−/− KO mice
(A) UMAP plot of cells distinguished by experimental groups: WT or KO. (B) Cell clustering
and cell type assignment. Enterocytes included in the analysis are highlighted with dashed oval.
(C) Egocentric plot showing virtual-KO perturbed genes connected to Ahr. Nodes are color-coded
by each gene’s membership association with the top 10 significantly enriched functional groups.
Proliferative genes (associated with the Myc pathway) were identified as the expected topmost
perturbed genes after the deletion of Ahr in enterocytes. (D) GSEA analyses with the DE gene
list and scTenifoldKnk gene list produce the same result – gene sets of enterocytes. (E) Volcano
plot from the DE analysis comparing gene expression between WT and KO samples. In the plot, -
log2(FC) and -log10(P-value) of genes are plotted against each other. Names of genes are given for
those with a fold change (FC) > 10% and FDR < 0.05. Among them, 4 virtual-KO perturbed genes
are highlighted with a red (Gstm1, Gpx2 and Ifitm2) or a blue (Dmbt1) box, indicating up-regulated
or down-regulated in the KO sample.
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6.2) showed that enterocytes was the most significant hit (Figure 6.5 D., left), suggesting that Ahr

KO induces a change in the expression of enterocyte marker genes, which may be responsible for

the alteration of enterocyte differentiation fate [289]. Taken together, our comprehensive func-

tional annotation for the virtual-KO perturbed genes revealed the multifactorial functions of Ahr as

a key player of enterocyte cell differentiation and proliferation. These results are consistent with

the known functions of Ahr. For example, a previous study showed that Ahr deletion in intestinal

epithelial cells resulted in an abnormal barrier function and uncontrolled proliferation of intestinal

cells, promoting malignant transformation [285]. Organoids with dysregulated Ahr had substan-

tially compromised differentiation to goblet and enterocyte cell fate [289]. Intestinal-specific Ahr

KO increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tu-

morigenesis [247]. Myc is a key transcriptional effector of the Wnt signaling pathway through its

actions to promote cellular proliferation [290].

Without scTenifoldKnk, we would have to use differential expression (DE) analysis. Indeed,

DE analysis has been a dominant method for assessing the impact of gene KO (e.g., as in [251,

212, 252]). Here, we put ourselves in such a hypothetical scenario – that is, scTenifoldKnk is

not available. We resorted to comparing gene expression levels between the WT and Ahr KO

mice, using an established scRNA-seq DE analysis tool, MAST [89]. A total of 68 DE genes were

identified (FDR < 0.05 and log(FC) > 0.25), including 46 upregulated and 22 downregulated

genes in the Ahr KO enterocytes (Figure 6.5 E.). Three up-regulated DE genes, Gstm1, Gpx2,

and Ifitm2, and one down-regulated DE genes, Dmb1t, are also among the list of 53 virtual-KO

perturbed genes identified by scTenifoldKnk (highlighted with red and blue boxes, respectively,

in Figure 6.5 C. 6.5 E.). Note that, in the WT scGRN, the sign of edges from Ahr to the three

up-regulated genes is positive (shown as red edges in Figure 6.5 C.), while the sign of edge from

Ahr to the down-regulated Dmb1t is negative (shown using the blue edge between Ahr and Dmb1t

in Figure 6.5C). The GSEA analysis of the DE gene list, with the comprehensive gene sets as the

references (Section 6.2), reported 35 non-redundant significant gene sets, with 16 overlaps with

the 60 non-redundant significant gene sets in Supplementary Table S9, which were identified using
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scTenifoldKnk ranked gene list. The overlap is significantly larger than expected by chance (P

< 10×−20, hypergeometric test, assuming n = 109 of non-redundant gene sets). In addition,

GSEA analysis of the DE gene list with marker gene sets as references showed that enterocytes

was one of the significant hits (Figure 6.5 D., right), which is the same as the result of GSEA

analysis of virtual-KO perturbed genes (Figure 6.5 D., left). In summary, we obtained overall

similar results using scTenifoldKnk and DE analysis. The difference is that scTenifoldKnk is a

virtual KO analysis, whereas DE analysis requires data from the real KO experiment.

6.3.5.2 scTenifoldKnk predicts transcriptional changes in pancreatic beta cells of Malat1−/− KO

mice

Malat1 is a long, non-coding RNA gene that acts as a transcriptional regulator for numerous

genes, which are involved in the generation of reactive oxygen species, cell cycle regulation, can-

cer metastasis, and cell migration [291, 292, 293, 294]. Malat1 upregulation is also associated

with hyperglycemia [295]. We have previously shown that the ablation of Malat1 changes insulin

responses in vivo by suppressing Jnk activity and inducing the activation of the insulin receptor

substance 1 (IRS-1) [294]. The ablation of Malat1 also induces the phosphorylation of Akt in a

process mediated by increased reactive oxygen species (ROS) [294].

To explore the regulatory role of Malat1 in pancreatic cell functions, we generated Malat1−/−

KO mice (see Section 6.2.8). We performed scRNA-seq experiments with isolated pancreatic cells

from WT (C57BL/6) and Malat1−/− KO mice (Figure 6.6 A.). The beta cells were the most

abundant cells in both samples, 1, 142 WT and 1, 695 KO (Figure 6.6 B.). We used scTenifoldKnk

to knock out Malat1 over the WT scGRN, and identified 167 virtual-KO perturbed genes (FDR <

0.05, Supplementary Table S10). Enrichr functional enrichment analysis indicated that these genes

were significantly associated with glucose metabolisms functions such as Cori cycle, glycolysis

and gluconeogenesis, and the regulation of insulin secretion, as well as with pathways related to

cellular carcinomas (Figure 6.6 C.). This result is consistent with the known function of Malat1.

For example, Malat1, which stands for Metastasis Associated Lung Adenocarcinoma Transcript 1,

is known to be overexpressed in lung carcinoma. In addition, Malat1 is known to have pleiotropic
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Figure 6.6: scTenifoldKnk predicts transcriptional changes in beta cells of Malat1−/− KO mice.
(A) UMAP plot of cells distinguished by experimental groups: WT or KO. (B) Cell clustering
and cell type assignment. Beta cells included in the analysis are highlighted with a dashed outline
border. (C) Egocentric plot showing virtual-KO perturbed genes connected to Malat1. Nodes
are color-coded by each gene’s membership association with the top 10 significantly enriched
functional groups. (D) GSEA analysis with scTenifoldKnk gene list identifies significant gene sets,
including insulin secretion and circadian rhythm. (E) Volcano plot from the DE analysis comparing
gene expression between WT and KO samples. In the plot, -log2(FC) and -log10(P-value) of genes
are plotted against each other. Names of genes are given for those with a fold change (FC) > 10%
and FDR < 0.05. Among them, 4 virtual-KO perturbed genes are highlighted with a red (Insig1
and Meg3) or a blue (Glu1 and Hist1h1) box, indicating up-regulated or down-regulated in the KO
sample.
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functions in various physiological and pathophysiological processes [294, 296, 297, 298, 299, 300,

301, 302], including cytoskeleton, circadian rhythm, and hypoxia-inducible factor (HIF) signaling

pathway, as predicted (Figure 6.6 C.). STRING database search showed that virtual-KO perturbed

genes form a highly connected interaction network (P < 0.01, STRING interaction enrichment

test, Supplementary Figure S5). GSEA analysis with scTenifoldKnk-reported gene list indicated

that 79 non-redundant gene sets were enriched significantly (FDR < 0.05, Supplementary Table

S11), including insulin secretion and circadian rhythm (Figure 6D).

To validate these predictions made by using scTenifoldKnk, we performed DE analysis using

MAST to compare gene expression in beta cells between WT and KO mice. We identified 1, 695

DE genes (FDR < 0.05, Figure 6.6 E.). Two up-regulated genes (Insig1 and Meg3) and two down-

regulated genes (Glu1 and Hist1h1) were among the 167 virtual-KO perturbed genes (Figure 6.6

C.). GSEA analysis with the ranked list of DE genes sorted by the fold-change produced only 17

non-redundant enriched gene sets including insulin secretion.

6.3.6 Systematic KO of all genes in a given sample to generate the landscape of genes’ per-

turbation profiles

As mentioned, scTenifoldKnk is designed and implemented to be computationally efficient. In-

deed, we benchmarked the performance of scTenifoldKnk when the WT scGRN is given. Running

on a standard workstation, scTenifoldKnk could complete a virtual KO analysis in one minute per

gene. That is to say, for a given scGRN of 6, 000 genes, scTendifoldKnk could knock out all of

these genes individually in 4 to 5 days in a workstation. The process can also be splitted and run

in paraelle to increase the speed of computing. The outcome of such a systematic KO experiment

is a collection of perturbation profiles of all genes. For each gene (e.g., gene δ), the perturbation

profile of the gene (i.e., gene δ) is a vector of distances of all other genes ({δ−}) produced by

scTenifoldKnk (see Figure 6.1 C.). The distance value quantifies the level of a gene (i.e., a gene

in {δ−}) being perturbed by the deletion of the KO gene (i.e., gene δ). Figure 6.7 A/ illustrates an

analytic flowchart when scTenifoldKnk is used in a systematic KO experiment. For a given WT

scGRN with n genes, scTenifoldKnk can be used to delete individual genes from 1 to n. For the ith
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gene deletion, GKO
i , scTenifoldKnk produces a KO perturbation profile for the ith gene. The KO

perturbation profile is a vector of distances: [di,1, di,2, ...di,n]T , where i = 1, 2, . . . , n. Combining

all genes’ KO perturbation profiles into a n × n matrix, called KO perturbation profile matrix, is

followed by t-SNE embedding and clustering of genes. As shown in Figure 6.7 B., each predicted

perturbation profile caused by the deletion of a gene is unique (each point representing a pertur-

bation profile is located in a different position), supporting the power of scTenifoldKnk to provide

specific results for each gene’s functional relationship in a cell-type-specific manner. Additionally,

as reported before, genes with similar perturbation profiles will be closely located in the low di-

mensional embedding [303]. Therefore, examining genes closely located will allow us to discover

potential functional associations between them.

To demonstrate the use of the systematic KO functionality, we downloaded the scRNA-seq

data from the brain immune atlas and obtained the expression matrix of 6, 853 genes and 5, 271

microglial cells (see Section 6.2). These microglial cells were derived from WT homeostatic mice

[246]. After knocking out all genes, we obtained the KO perturbation landscape of all 6, 853

genes, as shown in the t-SNE embedding (Figure 6.7 B.). We selected three clusters of different

sizes to examine the member of genes in each cluster and the functional relationships between

these genes. We found that all three clusters contain genes that show a significantly higher level of

functional associations than expected by chance (P < 0.01, STRING interaction enrichment tests).

We then focused on the smallest cluster, which contains 16 genes (Figure 6.7 C.). According to

the STRING database, 12 of these genes (Apoc1, Apoe, Clec12a, Clec4n, Cp, Fth1, Lilrb4, Mrc1,

Ms4a6c, Ms4a7, Pilra and Pla2g7) are functionally associated with each other. These associations

are supported by evidence from published literature [304, 305, 306]. All these supporting refer-

ences are related to the microglia study. The remaining 4 genes (Htra3, Tgfbi, Pf4 and Ifitm2) are

not connected to this 12 gene sub-network. Nevertheless, a new study [307] showed that Htra3

is overexpressed in repopulating microglia. Therefore, these ‘isolated’ genes may be worthy of

further scrutiny for their functions in microglia with the potential links to the other genes in the 12

gene sub-network.
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Figure 6.7: scTenifoldKnk enables systematic KO experiment in microglia and establishment of
KO perturbation profile landscape. (A) An illustration of systematic virtual-KO analysis using
scTenifoldKnk. Two KO genes are shown as an example. Due to the difference in their profiles, two
genes are embedded in two different locations, indicated by the red arrows, in the dimensionality
reduction visualization. (B) t-SNE embedding of 6, 853 genes expressed in microglia based on
these genes’ perturbation profiles. Genes in three clusters in the embedding are highlighted in
red. The connections between genes are retrieved from the STING database. Clusters are zoomed
to show the STING sub-networks. The rectangle indicates a sub-network shown in C. (C) STING
sub-network of 12 genes (Apoc1, Apoe, Clec12a, Clec4n, Cp, Fth1, Lilrb4, Mrc1, Ms4a6c, Ms4a7,
Pilra and Pla2g7) in the cluster highlighted with the rectangle in B. The references [304, 305, 306],
from which the associations between genes are established, are given in the table.
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Instead of using genes’ KO perturbation profiles, using genes’ expression information can also

produce a landscape of genes. Indeed, we applied t-SNE to the UMI count matrix, which was trans-

formed and standardized using the same procedure (see Section 6.2), and obtained the embedding

plot of genes (Supplementary Figure S6B). The difference between this embedding plot derived

from gene expression and the one derived from the gene’s KO perturbation profile is obvious. The

former has no structure among cells, but is just a cloud of data points. Performing clustering using

the embedding derived from gene expression ought to not produce clusters containing more true

interactions than using the embedding derived from gene expression profile across cells. To test

whether similar results were obtained using expression and perturbation profiles, we calculated the

average distance between genes that belong to the same KEGG gene set. We found that, across all

KEGG gene sets, the average distance in the embedding derived from a KO perturbation profile

was significantly smaller than that in the embedding derived from expression profile (Supplemen-

tary Figure S6C). Genes in the three example clusters, as shown in Figure 6.7 B., were found to

be scattered in different clusters in the embedding derived from gene expression (Supplementary

Figure S6B). We also conducted the same test using the embedding derived from the genes’ profile

of the weight of edges in the WT scGRN. The same pattern was uncovered – that is, the average

distance is smaller in the embedding derived from the KO perturbation profile than in that derived

from the scGRN edge weight. These results suggested that gene sets identified using the gene’s

KO perturbation profile were more likely to functionally connected than gene sets identified using

other types of gene profiles.

6.3.7 Systematic KO of a gene across many different cell types

To precisely understand a gene’s role requires the knockout of the gene in all the cell types

across the body. It is, however, an intractable task if the role of the gene is necessary for cell

survival as well as for the technical difficulties and high expenses of culturing different types of

cells. In this case, using scTenifoldKnk to conduct virtual knockout of genes in multiple cell types

will allow us to understand more confidently both the global and cell-type specific functions of a

gene.
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MYDGF (Myeloid Derived Growth Factor), also known as C19orf10, is a 142-residue pro-

tein broadly expressed in multiple tissues and cell types [308, 309]. In mouse model, Mydgf has

shown to enhance cardiac myocyte survival, tissue repair and angiogenesis caused by myocardial

infarction [310]. Although the structure and functionally important moieties of MYDGF have been

identified, further elucidation of MYDGF’s functional roles is required. To find the primary targets

of MYDGF, we conducted virtual knockout of the gene in 45 cell types. Datasets were downloaded

from the PanglaoDB database [29]. For each cell-type we recovered a cell-type specific perturba-

tion profile with a number of genes ranging from 4642 to 12386. Using the perturbation profile

computed by scTenifoldKnk for endothelial cells (experimental surrogate used by Wang to study

the functional role of Mydgf in mice heart) and gene set enrichment analysis (GSEA), we cross-

validated the associated functional roles reported before in mice, the identified pathways include

Cell cycle, VEGFA-VEGFR2 pathway, Intra-Golgi traffic and activation (Figure 6.8 A.) [311].

When all the perturbation profiles were concatenated to identify the broad targets of Mydgf we

recovered a total of 1, 288 perturbed genes expressed in at least the 5% of the cells of a given cell-

type and shared across all cell-types. Correlation analysis showed that the most similar patterns of

perturbations to the ones recovered from endothelial cells are from T-cells, hepatocytes, cardiomy-

ocytes, and kidney cells (Figure 6.8 B.). The enrichment analysis using ssGSEA analysis showed

that the perturbation profiles are posititively enriched (ES> 0) with genes associated with AKT sig-

naling pathway, endothelial NOS activation pathway, apoptosis pathway, muscle contraction path-

way, and ALK2 pathway using the BioPlanet 2019 database as gene sets reference (Figure 6.8 C.)

[312]. These results are consistent with previous results from mice reporting that overexpression

or addition of Mydgf can also increase AKT phosphorylation and cell proliferation via AKT/MAPK

signaling pathways [313]. Taken together, these pathways are closely related to the promoting sur-

vival and growth functions of MYDGF found in previous studies [308, 309, 310, 311, 313]. Thus,

scTenifoldKnk can be used to conduct virtual KO of a gene across multiple cell types to identify

common as well as cell type-specific transcriptional targets of the KO gene.
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Figure 6.8: scTenifoldKnk enables the identification of universal and cell-type-specific functional
roles of Mydgf across human cell-types. (A) GSEA analysis with scTenifoldKnk gene list identifies
significant gene sets predicted to be perturbed in endothelial cells, including cell cycle, apoptosis,
VEGFA-VEGFR2 and MAPK6/4 signaling pathways. (B) Correlation plot showing the similarity
between perturbation profiles predicted for the selected 45 cell-types. (C) Heatmap showing the
enrichment score (ES) for the gene sets reported in the BioPlanet database sorted by the average
enrichment score across cell-types.
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6.4 Discussion

Gene expression is almost always under coordinated regulation in cells of living organisms.

Inferring GRNs is the key to a better understanding of such coordinated regulation. However,

inferring GRNs is a very difficult process – there are always a large number of unknown vari-

ables in the system, and the power of inference is limited by the sample size. The development

of single-cell technology has brought new ‘oil’ to network science. We have previously shown

that scRNA-seq information can be leveraged to fuel the machine learning algorithms for reliable

scGRN construction [244].

In a GRN, the regulatory effect manifests as observable synchronized patterns of expression

between genes. These genes are associated with the same biological process, pathway, or under

the control of the same set of transcription factors [25]. When a gene involved in a process is

perturbed (e.g., knocked out), the expected first responders for such perturbation are those func-

tionally closely related to the KO gene. Thus, modeling influence patterns in a GRN, such as using

topological models to approximate perturbation patterns [26], can be used to bypass expensive ex-

perimental measurement. Thus, in principle, GRN-based perturbation analysis can contribute to

the planning and design of real-animal experimental work for testing or validating hypotheses.

Our contribution is to provide such an scGRN-based perturbation analytical system – scTeni-

foldKnk. By performing analyses with a series of existing scRNA-seq data, we showed that

scTenifoldKnk can be used to identify KO responsive genes. The reported genes were found to be

enriched with molecular functions that are similar to those enriched in genes identified by the au-

thentic KO experiments. We tested scTenifoldKnk using data from three different cell types, which

are affected by three Mendelian diseases. While these diseases represent conditions involving dis-

tinct causal genes and different dysregulated molecular processes, scTenifoldKnk demonstrated

its value in all cases. The top hits reported by scTenifoldKnk are highly interpretable, suggesting

scTenifoldKnk can be used to reveal molecular mechanisms underlying less characterized patho-

physiological processes. The predictive power of scTenifoldKnk was further demonstrated with

scRNA-seq data from our own KO experiments, involving enterocytes in Ahr−/− mice and islet
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cells in Malat1−/− mice. Finally, we showed a case study of a systematic KO experiment using

microglia data as an example.

Despite some obvious limitations associated with the virtual KO method, we start by discussing

its advantages. First, the virtual KO method, as we implemented in scTenifoldKnk, is species ag-

nostic – it works with scRNA-seq data from humans and animals alike. This feature gives the

method a huge advantage for KO experiments focusing on human samples. In the lack of human

KO samples, the KO animals are used as surrogates. The evolutionary divergence between humans

and model animals is assumed to play a neglectable role in shaping orthologue gene function – but

we know this is not always the case. While applying scTenifoldKnk to human scRNA-seq data,

researchers can avoid many pitfalls caused by extending the conclusions from animal KO exper-

iments to humans. Second, scTenifoldKnk allows for any gene to be knocked out for functional

analysis as long as the gene expression is detectable in the WT sample. One may want to knock

out all genes or a set of genes one by one to obtain an effect profile for each of the KO genes.

The effect profile can be as simple as a virtual-KO disrupted gene list produced by scTenifoldKnk.

Genes have similar effect profiles that are most likely to share molecular functions, or are involved

in the same signaling pathways. Third, using scTenifoldKnk, it is feasible to virtually delete more

than one gene from a system at the same time to study synergistic KO effects. An example is

the double-KO settings for Hnf4agDKO. This is significant because the number of possible com-

binations of multiple KO targets is often too large to allow researchers to explore the impact of

even a small fraction of the multi-gene KO possibilities. In this circumstance, scTenifoldKnk will

be an invaluable tool to predict the consequences of these KO combinations, and provide exper-

imental design guidance by suggesting the gene combinations that should be prioritized. Fourth,

scTenifoldKnk can be used to study the effects of gene KO across multiple cell types. A typical

scRNA-seq experiment generates expression data for multiple cell types. In this case, the scTeni-

foldKnk analysis will allow researchers to study diverse phenotypes associated with the KO gene

in all cell types as long as the gene is expressed. Finally, scTenifoldKnk can be used to study the

function of essential genes, for which the gene KO causes lethal outcomes, making it impossible
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to establish the KO animals. When scTenifoldKnk is applied to these essential genes, especially

with embryonic expression data of the genes from the WT samples, developmental functions of

these genes can be studied.

scTenifoldKnk can be used in extended research areas other than KO experiments. For exam-

ple, biologists often need to know whether a manipulation has an effect or not. scTenifoldKnk can

be applied not only to detect novel targets, but also to prioritize known targets prior to in vivo or in

vitro studies with different experimental techniques. One may use drugs to block the transcription

of a gene in a candidate pathway. If the drug has an effect, one would conclude that the drug

works on that pathway involved; otherwise, the pathway is not affected. The scTenifoldKnk-based

analysis represents a novel analytical method that can be applied to genome-wide association stud-

ies (GWAS). Throughout the last decade, GWAS have been successful in detecting associations

between variants and phenotypes; however, a phenotypic trait is usually associated with many

variants presumably influencing gene expression regulation. scTenifoldKnk may be used to help

geneticists to assess functional consequences in order to prioritize actionable gene targets. We

point out that the prediction of scTenifoldKnk does not have to be perfect. As we can see, with

many example data sets, scTenifoldKnk could recapitulate major findings reported in real-KO

experiments. We showed the landscape of KO perturbation profiles of all genes in microglia.

Experimentally, such systematic perturbation analysis has only been done in yeast [314]. With

scTenifoldKnk, systematic KO analysis in silico can be performed in a cell-type-specific manner

in organismal systems.

Limitations of scTenifoldKnk are inherited from being a virtual KO method. scTenifoldKnk

cannot be used to predict the consequence of gene overexpression, which is also a commonly

used method for gene function study. Also, as the power of scTenifoldKnk is rooted from the

WT scGRN, the regulatory network from the WT sample, the prediction that scTenifoldKnk may

‘favor’ regulatory rather than structural genes. Nevertheless, it is still possible to make adjustments

to some details in the implementation of scTenifoldKnk to make it better fit user analytical needs.

For example, instead of knocking out a target gene by setting its values to 0 in the adjacency matrix,
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randomly shuffling the count values in the expression matrix to construct a network that mimics

the effect of gene dysregulation and comparing against the original may also provide insights about

the functional role of the gene.

Prediction of gene expression responses to perturbation using scRNA-seq data is an active re-

search area. To the best of our knowledge, there are two software tools that have been developed

for this purpose: scGen [315] and CellOracle [316]. scGen is a package implemented in Python,

using TensorFlow variational autoencoders combined with vector arithmetic, to predict gene ex-

pression changes in cells. Overall, scGen works like a neural network-empowered regression tool

that predicts the changes of gene expression in cells in response to specific perturbations such as

disease and drug treatment. scGen requires training data sets from samples before and after being

exposed to the same perturbation. CellOracle is a workflow, developed in Python with several R de-

pendencies, that integrates scRNA-seq and single-cell chromatin accessibility data (scATAC-seq)

data to infer GRN and predict the changes of gene expression in response to specific perturbations.

CellOracle constructs a GRN that accounts for the relationship between transcription factors and

their target genes based on sequence motif analysis using the information provided by the scATAC-

seq data. After that, the constructed GRN is further refined using regularized Bayesian regression

models to remove weak connections and is adjusted to infer the context-dependent GRN using the

scRNA-seq data. scTenifoldKnk has a different design compared to either scGen or CellOracle.

scTenifoldKnk is specifically designed for performing virtual KO experiments. It requires only the

scRNA-seq data from the WT sample: unlike scGen, scTenifoldKnk does not need training data;

unlike CellOracle, scTenifoldKnk does not require extra scATAC-seq data to obtain information of

transcription factors and their targets. The minimalist design of scTenifoldKnk should allow for

adoption widely in most scenarios.

Overall, we have shown evidence that our machine learning workflow represents a powerful

and efficient method for conducting virtual KO experiments. The highly efficient implementation

of scTenifoldKnk allows systematic deletion of a large number of genes in scRNA-seq data. The

prediction power offered by scTenifoldKnk enables accurate prediction of perturbations in regula-
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tory networks caused by the deletion of a gene, revealing its function in a cell type-specific manner.

We anticipate that scTenifoldKnk will be adopted and widely applied in the predictive science of

single-cell biomedical research.
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7. SUMMARY AND CONCLUSION

In this dissertation, I presented five chapters that describe the major work I accomplished during

my Ph.D. research to investigate the functional implications of the single-cell gene expression

variability in multicellular organization, and its applications in functional genomics.

In Chapter 2, we introduced a single-cell RNA-seq dataset for GM12878 and GM18502 – two

LCLs derived from the blood of female donors of European and African ancestry, respectively. The

final dataset contained 7, 045 cells from GM12878, 5, 189 from GM18502, and 5, 820 from the

mixture, offering valuable information on single-cell gene expression in highly homogenous cell

populations. This dataset is a suitable reference for population differentiation in gene expression

at the single-cell level. We believe that the data from the mixture provide additional valuable

information facilitating the development of statistical methods for data normalization and batch

effect correction.

In Chapter 3, we presented the systematic analysis of 5, 530, 106 cells reported in 1, 349 an-

notated datasets available in the PanglaoDB database, and reported that the average mtDNA% in

scRNA-seq data across human tissues is significantly higher than that across mouse tissues. We

found this difference is not confounded by single-cell platforms or the technologies used to gener-

ate the data. Based on this finding, we propose new reference values of the mtDNA% threshold for

121 tissues of mouse and 44 tissues of humans. We concluded that in general, for mouse tissues,

with very few exceptions (3 of 121 analyzed tissues), the 5% threshold can still be used as a de-

fault, which performs well to distinguish between healthy and low-quality cells. We reported that

for human tissues, the 5% threshold should be reconsidered as it fails to accurately discriminate

between healthy and low-quality cells in 29.5% (13 of 44) tissues analyzed.

In Chapter 4, we analyzed multiple single-cell RNA-seq data sets from lymphoblastoid cell

lines (LCLs), lung airway epithelial cells (LAECs), and dermal fibroblasts (DFs) and, for each

cell type, selected a group of homogenous cells with highly similar expression profiles. We es-

timated the single-cell expression variability levels for genes after correcting the mean-variance
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dependency in that data and identified 465, 466, and 364 highly variable genes (HVGs) in LCLs,

LAECs, and DFs, respectively. Functions of these HVGs were found to be enriched with those

biological processes precisely relevant to the corresponding cell type’s function, from which the

scRNA-seq data used to identify HVGs were generated – e.g., cytokine signaling pathways were

enriched in HVGs identified in LCLs, collagen formation in LAECs, and keratinization in DFs.

We repeated the same analysis with scRNA-seq data from induced pluripotent stem cells (iPSCs)

and identified only 79 HVGs with no statistically significant enriched functions; the overall single-

cell expression variability in iPSCs was of negligible magnitude. Our results support the ‘variation

is function’ hypothesis, arguing that single-cell expression variability is required for cell type-

specific, higher-level system function. Thus, we concluded that quantifying and characterizing

single-cell expression variability are of importance for our understating of normal and pathologi-

cal cellular processes.

In Chapter 5, we introduced a robust and powerful machine learning workflow called ‘scTeni-

foldNet’ for comparative gene regulatory network (GRN) analysis of single cells. The scTenifold-

Net workflow, consisting of principal component (PC)-regression, low-rank tensor approximation,

and manifold alignment, constructs and compares transcriptome-wide single-cell GRNs (scGRNs)

from different samples to identify gene expression signatures shifting with cellular activity changes

such as those associated with pathophysiological processes and responses to environmental pertur-

bations. We used simulated data to benchmark scTenifoldNet’s performance, and then applied

scTenifoldNet to several real data sets. In real-data applications, scTenifoldNet identified highly

specific changes in gene regulation in response to acute morphine treatment, an antibody anticancer

drug, gene knockout, double-stranded RNA stimulus, and amyloid-beta plaques in various types of

mouse and human cells. We anticipate that scTenifoldNet can help achieve breakthroughs through

constructing and comparing scGRNs in poorly characterized biological systems, by deciphering

the full cellular and molecular complexity of the data.

In Chapter 6, we introduced ‘scTenifoldKnk’, a machine learning workflow for performing vir-

tual KO experiments with data from single-cell RNA-seq. Using existing data sets, we demonstrate
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that the scTenifoldKnk analysis recapitulates main findings of three real-animal KO experiments

and confirms the function of genes underlying three Mendelian diseases. We show the power of

scTenifoldKnk as a predictive method to successfully predict the outcomes of two KO experiments

we conducted. The two experiments involve intestinal enterocytes in Ahr−/− mice and pancreatic

islet cells in Malat1−/− mice, respectively. Finally, we demonstrate the use of scTenifoldKnk to

perform systematic KO analysis. We concluded that scTenifoldKnk is a powerful and efficient

virtual KO tool for gene function study, allowing a systematic deletion of a large number of genes

in single-cell RNA-seq data to reveal gene functionality in a cell type-specific manner.
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