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ABSTRACT

Deep learning has been widely applied for its success in many real-world applications. To

adopt deep learning, people often need to go through a non-trivial learning curve like learning the

foundation of machine learning theory and how to use the deep learning libraries. Automated deep

learning has emerged as an important research topic to reduce the prerequisites for adopting deep

learning. Neural architecture search (NAS), as the most important component of the automated

deep learning process, is to solve the problem of automatically finding a good neural architecture.

However, existing NAS methods suffer from several problems. It usually has a high requirement

for computational resources and cannot be efficiently and jointly tuned with other parts of the deep

learning solution like the preprocessing steps or the optimizer hyperparameters. This dissertation

aims to improve the efficiency of NAS as a stand-alone process and as an important step in the overall

automated deep learning process. We propose a series of methods and frameworks for extracting

information from the neural architectures, improving the search and evaluation efficiency of NAS,

enabling joint tuning with other hyperparameters, and automatically selecting data augmentation

strategies.
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1. INTRODUCTION

Machine learning has been widely applied in various real-world problems [2]. However,

applying machine learning to real-world problems is a complicated process. For individuals, they

need to have rich expertise and experiences in both machine learning and programming [3]. For

businesses, they can either buy the machine learning services from a third party or hire machine

learning experts and software engineers to do the job. Such a huge barrier prevents domain experts

in various fields and small businesses, who own valuable data, to use machine learning to build

useful applications [4]. To reduce the barrier for people to apply machine learning, automated

machine learning (AutoML) has emerged as a research problem.

1.1 Background

In this section, the background knowledge of the dissertation is introduced, including the basics

of AutoML, AutoML for deep learning, and the basics of neural architecture search.

1.1.1 Automated Machine Learning (AutoML)

AutoML aims at automating the process of applying machine learning to real-world prob-

lems [5] by providing users with end-to-end machine learning solutions. The process may include

preprocessing, feature engineering, model selection, hyperparameter tuning, and others.

On the current stage, there are mainly three goals of AutoML, which can be summarized

as follows. (1) Usability: AutoML aims to provide machine learning as an available tool for

people with limited computer science and machine learning background. The domain experts with

valuable data and knowledge can easily develop their machine learning models and applications

with AutoML. (2) Productivity: AutoML aims to increase the productivity of machine learning

engineers. Machine learning engineers nowadays usually spend a long time trying out different

models and tuning the hyperparameters of the models. With the assistance of AutoML, they can

automate the repetitive work of tuning the hyperparameters. Moreover, they can inject their expertise

for selecting and designing the models into the AutoML process to accelerate the overall process
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even more. (3) Performance: AutoML aims to find better machine learning models than the models

manually designed by human experts. With the strong computing power of large clusters with GPUs

and TPUs [6], AutoML can explore a massive amount of different models, among which there may

be some models that are even better than the state-of-the-art models designed by humans experts

today.

The process of AutoML algorithms are as shown in Figure 1.1. The controller generates a new

configuration, which can be instantiated into a model. The model’s performance is evaluated and

feedback to the controller. The controller learns from the feedback and tries to generate a new

configuration. Through this loop, the controller can gradually learn the good and bad configurations

so that it can generate configurations with higher performances. The configuration can be the values

of the hyperparameters or the operations for feature engineering, and so on. The model is not

limited to machine learning models like support vector machines or neural networks. It can also be

an end-to-end machine learning pipeline. For example, the model may contain three steps, which

are data normalization, feature selection, and support vector machine for classification.

There are several important concepts involved in the process of AutoML: hyperparameters,

search space, search algorithm, and evaluation method. Hyperparameters are the parameters, which

cannot be learned from the data, whose value is assigned in advance of the learning process. For

example, the learning rate of a linear regression algorithm. The search space is the set of all possible

value combinations of the hyperparameters, which is the set of all the possible configurations that

can be generated by the controller. The search algorithm is the algorithm used by the controller
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to learn from the configurations and the performances of the models. There are several famous

approaches for the search algorithm, including bandit approaches [7]. Bayesian optimization [8, 9].

The evaluation method is the method used to evaluate the performance of a model. Cross-validation

is widely used for model evaluation. Many other techniques are also used for accelerating the

evaluation process [10].

1.1.2 AutoML for Deep Learning

Deep learning has evolved fast in recent years with applications in various fields including

computer vision [11], and natural language processing [12]. To automate the process of applying

deep learning to real-world problems, AutoML for deep learning, also known as automated deep

learning (AutoDL), has become an important problem.

AutoDL is a subfield of AutoML. The process of AutoDL can also be described by Figure 1.1.

The only difference is the model is limited to deep neural networks and their related processing and

training steps. It automates the design and training process of deep neural networks and the related

preprocessing and postprocessing steps.

1.1.3 Neural Architecture Search

Within the scope of AutoDL, there is a topic, which has drawn increasing attention recently,

named neural architecture search. It further narrows down the definition of the model in Figure 1.1

to deep neural networks only without the training or data processing steps. Neural architecture

search aims to automatically design the best neural architecture for a given task. Neural architecture

is the configuration of a neural network, which can include deciding the number of layers in the

neural network, the number of neurons each layer contains, whether to use skip connections between

the layers, and so on.

1.2 Motivation

The biggest barrier that prevents neural architecture from being widely used is low efficiency.

There are several challenges to be tackled to achieve efficient neural architecture search, which are

introduced as follows.
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The first challenge to be tackled is that the controller needs to efficiently learn from the neural

architectures. It needs to learn the relation between the neural architectures and their performances

on the target dataset. The search space of neural architecture search is different from traditional

AutoML, which consists of a set of different types of hyperparameters, for example, learning

rate, kernel type. Neural architecture search space is a cleaner search space that consists of only

computational graphs. Therefore, a method is needed to efficiently learn from the graph data to

extract useful information from the neural architectures. It motivates us to research the graph

representation learning methods to solve this problem.

The second challenge to be tackled is the efficiency of neural architecture search. It usually

completely trains a neural network to evaluate performance as the feedback to the controller. Since

the NAS needs to evaluate a large number of neural architectures, the total computational cost is

huge. It motivates us to explore a more efficient search algorithm in the controller and a more

efficient way to train and evaluate the neural architectures during the search.

Third, there are many other hyperparameters besides the neural architecture to be tuned. For

example, to apply deep learning to a real-world problem, one needs to decide the preprocessing

steps, the optimizer to use to train the neural network, and the learning rate. Moreover, these

hyperparameters are not independent of the neural architectures. Different neural architectures may

need different learning rates and optimizer to achieve their best performances. It motivates us to

explore how to tune the hyperparameters and the neural architectures jointly and efficiently.

The fourth challenge to be tackled is that data augmentation is inefficient to automate. Data

augmentation is critical to the performance of neural network training [13]. It contains many

hyperparameters, which enlarges the search space exponentially, which increases the burden of the

search algorithm while exploring the search space. Moreover, it often requires training the neural

network entirely for each of the evaluations when being automated. It motivates us to separate the

automation of the data augmentation from the hyperparameter tuning process and propose a more

efficient way to automatically find good data augmentation strategies.
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1.3 Contributions

This dissertation addresses four primary problems towards efficient neural architecture search,

which regards different parts of the overall AutoML framework ranging from search algorithm,

search space, and evaluation method. (1) How to efficiently and effectively learn vector represen-

tations from graphs, which is the basic form of the neural architectures? (2) How to efficiently

search and evaluate neural architectures for a given dataset and task? (3) How to efficiently tune

the hyperparameters together with the neural architectures for deep learning tasks? (4) How to

efficiently select a good data augmentation strategy for a given dataset and task?

We propose a series of methods to answer these questions. The key contributions of this

dissertation can be summarized as follows.

• We propose a novel graph representation learning method, which can efficiently and effec-

tively learn a smooth vector representation with an autoencoder architecture to leverage the

discriminative information in graphs based on class labels.

• We propose a novel efficient neural architecture search algorithm based on network morphism

guided by Bayesian optimization. It enables Bayesian optimization, which is the most widely

used approach to traditional hyperparameter tuning problems, in the neural architecture search

space. Also, it warm-starts the new neural architecture with weights in previously trained

neural networks.

• We propose a novel framework for hyperparameters and neural architectures joint tuning and

a corresponding greedy search algorithm. It maps the neural architecture and the rest of the

hyperparameters into the same hyperparameter space. It also proposes a search algorithm to

more efficiently explore the search space.

• We propose a novel measure for quantifying the diversity of the augmented data and use it to

automatically and dynamically select the data augmentation strategies for each epoch during

the training. The method does not use a search loop to significantly reduce the search time of
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automated data augmentation.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Section 2-5: We introduce each of the proposed methods in the contributions above in details.

We conducted experiments to validate the effectiveness and efficiency of the proposed method.

The results are shown in each of the chapters.

• Section 6 We conclude the dissertation by summarizing the contributions and propose poten-

tial future work to extend our research.
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2. GRAPH REPRESENTATION LEARNING*

In neural architecture search, the controller needs to learn the relation between the neural

architectures and their performance. However, the neural architecture is not a ready-to-use form

for many search algorithms, which can be potentially used in the controller. The search algorithms

may only work in Euclidean space and only accept vectorized data. Therefore, learning vector

representations for neural architectures is an effective way to enable a wider range of search

algorithms in the controller.

Neural architectures are computational graphs, which are attributed graphs with multiple at-

tributes on the edges and the nodes. In a computational graph of a neural network, each node is

an intermediate output tensor, whose attributes can be its shape, while each edge is a layer, whose

attributes can be the number of neurons it contains. Therefore, the problem of learning vector

representations for neural architectures is mapped to a graph representation learning problem. A

novel solution is proposed in this chapter to solve the problem.

2.1 Introduction

Besides neural architectures, graphs are widely used to represent macrostructures of relational

instances, such as airline networks, publication connections, and social communications [14].

Beyond the single graph setting, multiple microstructures are also ubiquitous in various real-world

data such as protein graphs, molecular expressions, and control flows. In such cases, each data

instance is a graph instead of a node resulting in higher complexity and difficulty in analysis

and applications. Graph representation learning aims at deriving informative low-dimensional

representations to prepare graphs for a variety of graph mining tasks such as graph classification

[15] and clustering [16].

A widely used approach to graph representation learning is the graph kernel, which measures

the similarity between graphs with vector inner product [17]. The key idea of graph kernels is to

*Reprinted with permission from “Discriminative Graph Autoencoder" by Haifeng Jin, Qingquan Song, Xia Hu,
2018. IEEE International Conference on Big Knowledge (ICBK), pp. 192-199, Copyright 2018 by IEEE.
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predefine a set of representative substructures and count their frequency in the graphs, known as

frequency-based methods.

Graph kernels extend kernel-based methods on graphs. Most of the work maps graphs to

vector space by counting the presence of specific substructures, which could be considered as

frequency-based methods.

They use the presence of a certain set of sub-structures as the features of a graph. There are

three main approaches for the state-of-art methods, namely limited-sized subgraphs [18, 19, 20, 21,

22, 23, 24], graph kernels based on subtree patterns [17, 25], and graph kernels based on walks and

paths [26, 27, 28].

Some works improve traditional graph kernels and their performance on downstream tasks, such

as solving the problem of the dominance of certain dimensions of the learned vector representations

[29], find discriminative subgraphs as substructures to learn better vector representations for

classification tasks [30, 31]. Besides, Kong et al. [32] try to reduce the labeling cost for graph

data for classification tasks. Saigo et al. [33] proposed a method to collect informative patterns

progressively through mathematical programming.

Inevitably, these solutions all suffer from the following problems. First, the complexity is

high. For the subgraph based methods, it is extremely expansive even to calculate the number

of occurrences of a subgraph in a given graph. For other methods, the complexity is at least

O(
∑
vi), which is the sum of all the values in the vector representation, where the learned vector

representation is V = [v1, v2, . . . , vn]. Second, the vector representation is sparse. Even two similar

graphs may not share many non-zero dimensions in their vector representations, which significantly

degraded the performance of the downstream tasks. Third, the values in the vector representations

are discrete, which would result in a nonsmooth vector space. The vector representations would be

rigid and lose more information in the original graph. The effects of such rigidity are shown in the

experiments.

Besides the traditional frequency-based approaches, some recent work aims to solve the problems

above. Yanardag et al. [34] proposed a method to measure the similarity between the substructures
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selected. It is more accurate in measuring the similarity values. Based on this work, Narayanan et

al. [14] proposed a new way to learn vector presentations for subgraphs to better solve the sparsity

problem. In addition, some other state-of-the-art work [35, 36, 37] solve the sparsity and discrete

problem by changing the kernel function. However, as we mentioned before, they can solve the

sparsity problem but cannot produce vector representation. It is compatible with kernel-based

methods like SVM, but not compatible with other methods that require vector representations of the

input, such as neural networks.

Deep learning has been widely applied to feature extraction. Work has been done on network

data [38], image data and text data[39]. The embedding and feature-learning techniques all try

to map one form of data into the latent space, so that every data instance is represented in a

vector representation preserving its original properties, which is much easier for further learning or

processing than the original form of the data. Instead of text, image, or a node in a network as a data

instance, we have graphs as data pieces. However, only a few works focus on graph representations.

Duvenaud et al. [40] also proposed a method for running convolutional neural networks on

molecular data in graph form. It generalizes standard molecular feature extraction methods based

on circular fingerprints. Scarselli et al. [41] proposed a graph neural network that used recurrent

neural networks for graph data. It maps the nodes of a graph and one of its nodes to the Euclidean

space which can process various types of graphs. It is useful for rooted graphs since a root node

has to be selected for the learning process. Li et al. [42] modified the graph neural network to use

gated recurrent units and modern optimization techniques. These two works only did unsupervised

learning which did not take the valuable labeling data into consideration.

The modern convolutional neural networks and recurrent neural networks are also involved in

the graph similarity measurement problem. Niepert et al. [43] proposed a method for preprocessing

the graph data to be in the input format of a convolutional neural network. Their emphasis is placed

on fast formatting graphs into suitable inputs of the neural network, which is similar to our graph

sampling method. It is used as the baseline method for efficiency evaluation in the experiment part.

More details are introduced in the experiment section.
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Autoencoder has been successfully applied to many real-world applications such as image

representations learning [44], machine translation [12] and video representation learning [45]. The

success of autoencoder motivates us to explore its nice properties which could be a better fit for our

problem. First, the values in the learned representations are continuous. The information is more

fine-grained than that in the raw integer representations. Second, the produced representation length

is flexible. The user could define a proper length of the learned representation to avoid the sparsity

problem [46]. Third, it is efficient by avoiding the complicated feature engineering process. In this

chapter, we propose to investigate whether a novel computational framework based on autoencoder

could better tackle the challenges in learning graph representations.

This is a nontrivial task to design an autoencoder for learning graph representations because

of the following reasons. First, unlike image or video data, graphs are not readily prepared for

an autoencoder which requires a vector input, while graphs are structural data. Second, graphs

are of various sizes. The architecture of the autoencoder needs to be modified to take different

sizes of input. Third, graphs have hierarchical information. For example, computer programs have

subroutines as subgraphs; and chemical compounds have functional groups as subgraphs. To take

full advantage of hierarchical information, the autoencoder needs to consider both overview and

details of the graphs.

In addition, the discriminative information in the graphs could be important. Graph data usually

have valuable class label information with them. For example, computer programs may be labeled

as malicious or benign; and chemical compounds may be labeled as acid or alkaline. The labels

make the representations more meaningful for the downstream applications, e.g., make classification

more accurate or make the visualization more illustrative. While discriminative information could

be useful in learning graph representations, it is simply ignored in much related work [30]. Thus

we also propose to study how the discriminative information could be naturally embedded in the

learned graph representation.

To tackle the above challenges, in this chapter, we study the problem of learning graph represen-

tations. We aim at answering the following questions. (1) How to efficiently and effectively learn
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vector representations from graphs? (2) How to incorporate the discriminative information in the

graphs into the learned representation based on class labels? By investigating these questions, a

novel method to learning graph vector representations is proposed, namely Discriminative Graph

Autoencoder (DGA). We summarize the main contributions of this chapter as follows:

• A novel graph representation learning method DGA is proposed, which is able to efficiently

and effectively learn a smooth vector representation.

• Present an autoencoder architecture to leverage the discriminative information in graphs based

on class labels.

• Validate DGA effectiveness and efficiency through classification and visualization on real-

world datasets.

2.2 Problem Statement

Notations and the mathematical definition of the core problem to solve are presented as follows.

2.2.1 Notations

Given a set of graphs G = {G1, ..., Gn} where n is the number of graphs, each graph

is denoted as G = (V,E) ∈ G, where V = {v1, ..., v|V |} denotes its vertex set and E =

{euv|if an edge connecting u and v exists} is its edge set. l(e) and l(v) denote the labels of edge e

and vertex v, respectively. p(v) denotes the index of v in the canonical permutation of vertices in G.

Y = {y1, y2, . . . , yn} denotes the graph level label of G. AG is the adjacency matrix of G.

AG(u, v) =


l(e), if euv ∈ E

0, otherwise
(2.1)

⊕
denotes an aggregated concatenation operation on a set of elements. For example,

⊕
x∈X x

denotes a long vector, matrix, or tensor, which is the result of concatenating all the elements in X .

[a b] denotes the concatenate a and b. vec(·) is the vectorization (flatten) function for matrix,
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Figure 2.1: Discriminative Graph Autoencoder

it concatenate each column of the matrix to become a column vector. ◦ denotes the function

composition operation.

Based on the notations described above, we formally define our problem as follows: Given

a set of graphs G and their labels Y , the goal is to map each graph Gi ∈ G to a d-dimensional

vector representation hi ∈ Rd, i.e., Learning a mapping function ϕ : {G, y} → h which produces

informative representations of each graph G while preserving the discriminative information

according to y.

2.3 Discriminative Graph Autoencoder

In this section, the proposed method Discriminative Graph Autoencoder (DGA) is introduced

to deal with the previously mentioned challenges. While some recent work [14, 34] has put their

focus on addressing the sparsity problem, they can only provide a pairwise similarity matrix for all

graph pairs instead of a vector representation of each graph. Applications are thus constrained to

kernel-based algorithms like SVM instead of general data mining algorithms, e.g. neural networks,

nor any visualization can be done, which requires low-dimensional vector representations.

Our approach tackles the sparsity problem and produces vector representations simultaneously.

The key ideas of DGA are shown in Figure 2.1. Given an input graph G to be encoded, we
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first decompose it into several subgraphs. These subgraphs and the adjacency matrix of G are

then inputted into an encoder network. The output of the encoder corresponds to the vector

representation of G we intend to learn, i.e., ϕ(G). To preserve the graph structures and the

discriminative information of labels, ϕ(G) is used for predicting the graph label y of G and is

further input into a decoder network to reconstruct the original input subgraphs and adjacency

matrix. Equipped with this model architecture, the mapping function ϕ(·) could be decomposed

into two functions as follows:

ϕ = he ◦ F. (2.2)

where F (·) denotes the mapping function for graph sampling and he(·) represents the encoding

function.

Graph sampling is an effective way to collect information from a graph. The graph kernels only

seek predefined substructures and use their frequencies of occurrence to represent a graph. Graphs

that only contain few of the predefined substructures may obtain sparse representations, making

the performance of similarity measurement less effective. In addition, some graphs may contain

substructures beyond those predefined substructures since the list is not comprehensive, thus the

corresponding information cannot be captured by the representations. Our key idea of the graph

sampling function F (G) is to use arbitrary subgraphs found in each graph to represent the graphs

instead of searching for certain predefined types of substructures, which preserves more structural

information comparing to frequency-based approaches. For each input graph, a certain number of

subgraphs are extracted around the selected vertices in the graph, which are combined with the

adjacency matrix of the entire graph to prepare the input to autoencoder.

The autoencoding is used to capture the structural information from the sampled inputs for

representation learning. It can learn a smooth representation and avoid the sparsity problem. To

capture discriminative information in the graph autoencoder, the key idea of the proposed algorithm

is to let the autoencoder reconstruct the input and predict the graph label yi from the learned

representation ϕ(Gi) at the same time. It is achieved by defining a new objective function instead

of using the original autoencoder objective function which purely minimizing the reconstruction
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error between the input and output.

2.3.1 Graph Sampling

Our goal of graph sampling is to sample the raw structural data from the graph G and pack the

information in a matrix F (G) with a predefined shape. A natural way of graph sampling is to use

adjacency matrices which may contain structural information of the graphs. However, two problems

prevent us from using this solution. First, adjacency matrices are usually of different sizes. Take

data flow graphs of computer programs as an example. Different programs may contain different

numbers of variables corresponding to different numbers of vertices, resulting in different sizes of

adjacency matrices. Second, adjacency matrices are vulnerable to changes in the vertex order. Two

graphs of the same structure may have significant differences in their adjacency matrices if their

vertices are in different orders.

To tackle the challenges, we propose a graph sampling method that uses subgraphs together

with the adjacency matrix to present the information in a graph as shown in Equation 2.3.

F (G) =
[⊕
v∈C

(f ◦ g)(v) vec(AG)
]T
, (2.3)

where
⊕

is the concatenation operation on all the vectors in a set, f(·) is the vectorization operation

on a single subgraph, and g(·) is the subgraph extraction operation around the given vertex v ∈ C,

C is a specially selected subset of vertex set V , vec(·) is the matrix vectorization function, AG is

the adjacency matrix of graph G.

F (G) is a matrix consists of multiple vectors. Each of the vectors encodes the information

of a vectorized subgraph except the last vector, which encodes the information of the truncated

adjacency matrix of G. AG is part of F (G) because the autoencoder needs to have an overview of

the entire graph and the relationship between the subgraphs. It is also essential for reconstructing

the entire graph after decoding.

F (·) is decomposed into the selection of central vertices C, subgraph extraction g(·), and

vectorization function f(·), which are introduced in the following sections.
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2.3.1.1 Vertex Selection

A set of vertices C is selected as the central vertices for subgraph extraction. Before the

selection, it is necessary to put an order to the information in the graph which is essential for the

following encoding part. Even two similar graphs if their vertices are arranged in a different order,

the adjacency matrices could be not similar at all. The goal of sorting the vertices is to decrease the

difference in the adjacency matrices of the graphs and subgraphs when the graphs are similar to

each other, and increase the difference in the adjacency matrices of the graphs and subgraphs when

they are not similar. The goal is achieved by canonical labeling [47]. After the canonical labeling, it

is easier to tell whether graphs are similar or not from their adjacency matrices. Canonical labeling

gives each vertex v in the graphG = {V,E} a unique index p(v) ∈ {x|1 ≤ x ≤ |V |}, p(vi) = p(vj)

if and only if i = j. The indices are the ranks of vertices sorted in canonical order. It is an indication

of relations between vertices in two isomorphic graphs. For example, G and G′ = {V ′, E ′} are

isomorphic, vi ∈ V should be identical to v′j ∈ V ′ if p(vi) = p′(v′j).

BLISS [48] is one of the most famous algorithms in graph isomorphism. We follow their idea to

index the vertices in the graph according to their structural information of the graphs without the

label information l(v) or l(e), which makes our method more general. Some graphs already have

clear orders of the vertices within the graphs, for which the indexing process is not necessary.

With the label p(v) we are able to select the central vertices set C according to Equation 2.4.

C = {v|p(v) = ax+ 1, 0 ≤ x ≤ s− 1, x ∈ Z}, (2.4)

a = argmax
i∈Z

(s− 1) ∗ i+ 1,

s.t.(s− 1) ∗ i+ 1 ≤ |V |,
(2.5)

where a is the gap between two selected vertices in the sequence of vertices sorted by their p(v), s is

the user-defined size of central vertices set C. The vertices are selected with a common interval of

a. The goal is to evenly distribute the selected vertices in the graph. In Equation 2.5, (s− 1) ∗ i+ 1

is the index of the last vertex in C. a is the interval between the indices of the selected vertices so
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that the vertices are evenly separated. It is selected to maximize the index of the last vertex in C to

ensure the indices of the selected vertices are distributed in V .

2.3.1.2 Subgraph Extraction

Subgraph extraction function g(·) is defined to extract a subgraph around a given vertex.

Algorithm 1 Subgraph Extraction
1: Input: G, central, r
2: Output: R
3: queue← PriorityQueue
4: queue.comparator← Vertex Comparator
5: queue← {central}
6: visited(central)← TRUE
7: while |R| < r do
8: u← queue.pop()
9: R.add(u)

10: for v in u’s neighbour do
11: if not visited v then
12: queue.push(v)
13: visited(v)← TRUE
14: end if
15: end for
16: end while
17: Return subgraph(R)

In Algorithm 1, it shows how one subgraph is extracted from G with a selected vertex as central

and a user-defined size |Vg(v)| = r, where Vg(v) is the vertex set of the extracted subgraph. It is

similar to a breadth-first search (BFS) with a priority queue optimization. The search starts from

the vertex central and ends when the number of vertices reaches the subgraph size limit r. The

priority queue is always able to select the next vertex by comparing their p(v) value, which can

always break the tie between vertices. From line 2 to 5, the queue is initialized with a single object

central in it. From line 6 to 15, the subgraph keeps expanding until reaches r vertices. From line 7

to 8, the priority queue with vertex comparator pops out the best vertex candidate u and adds it to
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the subgraph according to the following rules. First, it selects the vertices with the shortest distance

from the central. Second, it selects the v which equals to argminv∈V p(v) to further break the ties.

From line 9 to 14, it pushes the neighbors of u into the priority queue as potential candidates for

subgraph expanding.

2.3.1.3 Vectorization

As shown in Equation 2.6, the vectorization function f(·) takes a subgraph as input and put its

information into a compatible form with the autoencoder he.

f(g) =
[
vec(Ag)

T (
⊕
v∈Vg

l(v))T
]T
, (2.6)

where g is the input graph, Ag is the adjacency matrix of g,
⊕

is the concatenate operation on

a set of elements, Vg is the vertex set of g. Notably, the order of the vertices in g is first sorted

according to p(v) where v ∈ Vg. The adjacency matrix Ag and the concatenate operation is all

sorted according to the vertex order. The final output of f(g) is a matrix, the first part of which is

the vectorized adjacency matrix Ag. The rest of the row is the sequence of the labels of the vertices

in the subgraph. Therefore, the size of the final output is |Vg| × |Vg| + |Vg|. It contains all the

information we need for the subgraph and ready to be encoded.

2.3.2 Autoencoding

A straightforward architecture for the autoencoder is multi-layer perceptron [49], However, it is

not flexible with different sizes of the input and cannot leverage discriminative information. We

use it as one of our baseline methods in the experiments. Thus, we proposed a novel architecture

with a separate branch to leverage the discriminative information of the graph labels. Motivated by

the “sequence to sequence learning model” [50], two LSTM [51] networks are used to better fit the

various sizes of the graphs.

As shown in Figure 2.1, the discriminative autoencoder consists of the encoder he(·), decoder

hd(·), and predictor hp(·). After graph sampling, the vectorized subgraphs of graph G is input into
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the encoder he. The encoder produces a low dimensional smooth vector representation of G denoted

as ϕ(G). ϕ(G) is input to the predictor hp to produce a label prediction for G denoted as ŷ. It is

also input to hd to reconstruct the original input graph. The two branches starting from the learned

representation corresponds to two terms, L1 and L2, in the objective function,. L1 is defined for

minimizing the autoencoder reconstruct error for the information in the input graph G. L2 is defined

for minimizing the error of predicting the label of the input graph G from the learned representation

ϕ(G).

2.3.2.1 Encoding

For the encoder LSTM network, the vectorized information F (G) of a graph of shape (s+ 1,

r ∗ (r + 1)) is input to LSTM in s+ 1 steps, where s = |C| is the number of subgraphs extracted,

r = |Vg(v)| is the size of each graph. Then, among the s+ 1 output of the encoder LSTM network,

only the last one is collected. This collected output is the learned representation ϕ(G).

2.3.2.2 Decoding

ϕ(G) is used by the decoder LSTM to reconstruct the input. The decoder LSTM network uses

ϕ(G) as the input of the first step. For the rest s steps of the LSTM decoder, only padding vectors

filled with ones are used as input. So there are total s+ 1 steps for the input to the decoder LSTM.

To reconstruct the s + 1 subgraphs input to the encoder, all s + 1 outputs are collected from the

decoder.

The non-discriminative graph autoencoder is optimized by minimizing the following objective

function:

L1(θ) = − 1

n

n∑
i=1

L((hd ◦ he ◦ F )(G), F (G)) (2.7)

where L(·, ·) is the categorical cross-entropy. θ is the parameter set of the autoencoder. The output

subgraphs should be in reverse order to ease the optimization of the autoencoder [12].

With the decoded adjacency matrix and the information of the subgraphs. The graph can be

reconstructed in its original space. Apply the graph sampling procedure on the adjacency matrix
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to map the vertices to the vertices in the subgraphs, so that the reconstructed vertex labels in the

subgraphs can be mapped to the graph.

2.3.2.3 Discriminative Information

Besides the structural information of the input graph G, the label information y could also be

used to increase the rate of discriminative information in the learned representations among graphs.

To leverage discriminative information, the learned representation ϕ(G) is used as shown in

Equation 2.8.

L2(θ) = − 1

n

n∑
i=1

L((hp ◦ he ◦ F )(Gi), yi), (2.8)

where y is the binarized label of the graphs. yi,j = 1 if yi = j, otherwise yi,j = 0, θ is the parameter

set of the discriminative autoencoder, hp(·) is a single-layer perceptron predictor use softmax as

activation function, L(·, ·) is categorical cross-entropy. Optimizing against this loss function would

force the autoencoder to focus on the information that can distinguish one class of graphs from the

other classes, instead of treating each class of graphs equally.

2.3.2.4 DGA Objective Function

The autoencoder is optimized against the sum of two loss functions for representation learning,

which is balanced by the parameter λ shown in Equation 2.9. The overall objective function requires

the learned representations not only contain as much information in the extracted subgraphs, but

also incorporate the discriminative information in graph labels.

L(θ) = − 1

n

n∑
i=1

L((hd ◦ he ◦ F )(Gi), F (Gi))

+λL((hp ◦ he ◦ F )(Gi), yi).

(2.9)

2.3.3 Time Complexity

The time complexity of Discriminative Graph Autoencoder is analyzed as follows. The complex-

ity of the discriminative autoencoder depends on many complex parameters. Moreover, it is not the
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Table 2.1: Datasets Statistics

Datasets
Statistics |G| |V | |E| Class

MUTAG 188 17 39 2
NCI1 4110 29 64 2
PTC 344 25 51 2

PROTEIN 1113 39 145 2

bottleneck of the proposed method. Therefore, the time complexity analysis focuses on the graph

sampling part. The complexity of the vertex indexing is O(|V |), which is the complexity of BLISS

algorithm. The complexity for a simple breadth-first search to extract a subgraph of size r is O(r).

However, a priority queue is used for finding the best vertices which put additional complexity to

the method. The time complexity of each push or pop operation of the priority queue is O(log r).

There are r operations in total, where r is the size of the subgraph. Therefore, the complexity

for extracting one subgraph is O(r log r). Vectorize one subgraph would cost O(r2), which is the

size of the output vector f(g). The total complexity of f(g(v)) is O(r2 + r log r) = O(r2). So

the complexity for generating s subgraphs is O(r2s). Thus, the overall complexity of the graph

sampling is O(|V |+ r2s).

2.4 Experiments

We empirically evaluate the representations learned from the proposed model DGA on two

different tasks, i.e., classification and visualization. Three questions are mainly analyzed: (1) How

efficient is DGA in learning graph representations? (2) How effective are the learned represen-

tations for graph classification? (3) How informative is the visualization of the learned vector

representations in low dimensional space?
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2.4.1 Experimental Setup

2.4.1.1 Datasets

The datasets used are benchmark datasets for graph classification, which consist of MUTAG,

NCI1, PROTEIN, and PTC. MUTAG [52], NCI1[53], and PTC [54] are datasets of chemical

compounds. PROTEIN [55] is a dataset of the protein structures. The number of examples for each

class is balanced. The statistics information of these datasets are shown in Table 2.1, where |G| is

the number of graphs in each dataset, |V | and |E| denote the average number of vertices and edges.

Class is the number of different classes in the labels of the graphs in the datasets.

2.4.1.2 Baselines

Four different types of baseline methods are used for comparison as follows. First, Graphlet

Kernels (GK) [24], Shortest-Path graph kernels (SP) [26], fast subtree kernels (WL) [17] are used

as traditional baselines. They are frequency-based methods of counting subgraphs, vertex pairs,

and subtrees respectively. Second, the advanced baselines are Deep Graph Kernels [34] and PCSN

[43]. Deep Graph Kernels are three graph kernels derived from the three traditional approaches

above, namely DGK, DSP, and DWL. Third, we also implemented a naive approach of Multi-Layer

Perceptron autoencoder (MLP), which only uses the adjacency matrix as input. Fourth, to show

the effectiveness of discriminative information, a non-discriminative graph autoencoder (GA) is

implemented, which only uses L1 as the loss function.

2.4.1.3 Parameter Setting

For three traditional baseline methods, we follow the parameter setting in the original paper.

For deep graph kernels, the length of the subgraph embedding is set to 128. For PCSN, we set

w = k = 12, which are the sizes of the sampling information in the graphs. The following

parameters are set to DGA for the experiments. 1. Number of subgraphs selected s = 12. 2. Size of

each subgraph r = 12. 3. The length of the final embedding is 128. 4. λ = 1 in the loss function

L(θ). These parameters are set based on cross-validation, the parameter analysis.
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Table 2.2: Time For Graph Sampling

Datasets
Methods

PCSN DGA

MUTAG 00.83s 00.75s
NCI1 25.15s 21.36s
PTC 01.74s 01.61s

PROTEIN 10.60s 08.70s

2.4.2 Efficiency

The efficiency of graph sampling is evaluated and compared with the state-of-the-art method

PCSN [43] on four datasets shown in Table 2.2. We follow similar experimental settings in [43].

Since the complexity of LSTM autoencoder is much lower than the graph sampling process, the

evaluation is mainly targeting the efficiency of graph sampling, which is potentially the bottleneck

of the efficiency of the entire process. The number of subgraphs and the size of the subgraphs are

set to 12 for both of the methods.

The total time for PCSN and DGA in graph sampling and network input generating is shown

in Table 2.2. The results show that Discriminative Graph Autoencoder performs slightly better

than PCSN on all benchmark datasets. Our proposed DGA method is very efficient since it is very

careful in using the expensive traditional graph isomorphism algorithm as subroutines. It uses vertex

indexing only once and without considering the labels. The subgraph sampling is also boosted with

priority queue optimization.

2.4.3 Graph Classification

Graph classification aims at assigning unlabeled graphs into target categories based on available

labeled training graphs. In this section, we evaluate DGA on the four datasets stated above with the

graph classification task.

For each of the algorithms to be tested, the following steps are conducted to produce the results.

First, the datasets are divided to conduct a 10-fold cross-validation. Second, during each fold, each
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Table 2.3: Classification Accuracy with Standard Deviation

MUTAG NCI1 PTC PROTEIN
GK 81.66±2.11 62.28±0.29 57.26±1.41 71.67±0.55
SP 85.22±2.43 73.00±0.24 58.24±2.44 75.07±0.54
WL 83.48±6.51 80.13±0.50 56.97±2.01 72.92±0.56

DGK 82.66±2.11 62.48±0.25 57.32±1.13 71.68±0.50
DSP 87.44±2.72 73.55±0.51 60.08±2.55 75.68±0.54
DWL 82.94±2.68 80.31±0.46 59.17±1.56 73.30±0.82
PCSN 92.63± 4.21 78.59± 1.89 60.00± 4.82 75.89± 2.76
MLP 76.05±9.71 67.05±2.39 59.31±4.96 73.76±3.54
GA 92.57±5.84 72.74±1.75 70.93±3.89 77.45±3.29

DGA 93.63±5.21 74.55±1.46 71.24±4.60 77.71±2.37

of the algorithms is trained on the corresponding training dataset and then used to convert all the

testing graphs into vector representations. Finally, an SVM is trained on the converted training

dataset (i.e., labeled vector representations) and tested on the converted testing dataset.

Table 2.3 shows the accuracy of all the experiments, which is defined as the quotient of the

number of correctly classified instances divided by the total number of instances in the testing

dataset. From the results, we can see that our method has the highest accuracy on most of the

datasets. DGA has a significant increase in accuracy in PTC. By comparing the GA and DGA,

we can see the power of discriminative information in the representations. DGA has an extra loss

function of L2 to keep the representation focusing more on the discriminative information in the

graphs. By this loss function, the accuracy rises on four of the datasets.

2.4.4 Graph Visualization

One useful application of graph representation learning is to produce meaningful visualizations

that layout graphs in a low-dimensional space. The visualization performance is also an indicator

of the quality of the representations. DGA is compared with three traditional baselines, GK,

SP, and WL, on MUTAG dataset, and achieved a significant increase in this task. Deep graph

kernels and PCSN are not selected in this experiment as they are not capable of generating vector
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(a) GK (b) SP (c) WL (d) DGA

Figure 2.2: Visualization of Learned Representations

representations of graphs. To achieve the best performance for the baselines during the experiment,

they are first trained to produce high dimensional representations. Then, PCA is used for reducing

the dimensionality of these representations to 2. The proposed method DGA is directly trained to

produce a 2-D representation. The representations learned from all four methods are visualized in a

2-D space shown in Figure 2.2.

Each point in the figure is the projection of one representation learned from a graph in the dataset.

The colors of the points correspond to the class labels L(G) of the graphs. In Figure 2.2a, the GK

cannot provide valid visualization of the learned representations since all instances are mapped

to one point. This is mainly because the learned representations are long and extremely sparse,

which results in a concentration effect after PCA. SP and WL methods have better performances in

visualization which are shown in Figure 2.2b and Figure 2.2c. However, it clearly shows striped

or grid patterns in the distributions of points. The main reason is the vector space of the learned

representations is not smooth. The representations are rigid integer coordinations representing

headcounts for substructures and cannot represent the fine-grained information in graphs. The

representations are so rigid and stick to the integer coordinated grids in the hyperspace that even

after the PCA dimensionality reduction the grids can still be seen. The visualization results using

the representations generated from DGA is shown in Figure 2.2d. Comparing to other methods,

it has three advantages: (1) it can directly produce valid low-dimensional data representation; (2)

the vector space of the learned representations is smooth, which avoids the damage caused by the

rigidity in the representations; (3) it can use the discriminative information to better visualize the
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differences between different classes of graphs.
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3. EFFICIENT NEURAL ARCHITECTURE SEARCH WITH NETWORK MORPHISM AND

BAYESIAN OPTIMIZATION*

The training time of a neural network is significantly longer than most of the shallow models. It

makes neural architecture search takes much longer time than traditional hyperparameter tuning

for shallow models since it searches through a large number of neural network instances and trains

each of them completely. In this chapter, we propose a novel method to make use of the weights in

previously trained neural networks to boost the training of a new neural network during the neural

architecture search process.

3.1 Introduction

Existing NAS algorithms are usually computationally expensive. The time complexity of NAS

is O(nt̄), where n is the number of neural architectures evaluated during the search, and t̄ is the

average time consumption for evaluating each of the n neural networks. Many NAS approaches,

such as deep reinforcement learning [6, 56, 57, 58, 59], gradient-based methods [60, 61, 62] and

evolutionary algorithms [63, 64, 65, 66, 67, 68], require a large n to reach a good performance.

Moreover, many of them train each of the n neural networks from scratch, which is very slow.

Initial efforts have been devoted to making use of network morphism in neural architecture

search [69, 70]. It is a technique to morph the architecture of a neural network but keep its

functionality [71, 72]. Therefore, we are able to modify a trained neural network into a new

architecture using the network morphism operations, e.g., inserting a layer or adding a skip-

connection. Only a few more epochs are required to further train the new architecture towards

better performance. Using network morphism would reduce the average training time t̄ in neural

architecture search. The most important problem to solve for network morphism-based NAS

methods is the selection of operations, which is to select an operation from the network morphism

*Reprinted with permission from “Auto-Keras: An Efficient Neural Architecture Search System" by Haifeng Jin,
Qingquan Song, Xia Hu, 2019. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1946–1956, Copyright 2019 by Association for Computing Machinery.
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operation set to morph an existing architecture to a new one. The network morphism-based NAS

methods are not efficient enough. They either require a large number of training examples [69], or

inefficient in exploring the large search space [70]. How to perform an efficient neural architecture

search with network morphism remains a challenging problem.

As we know, Bayesian optimization [73] has been widely adopted to efficiently explore black-

box functions for global optimization, whose observations are expensive to obtain. For example,

it has been used in hyperparameter tuning for machine learning models [8, 73, 74, 75, 76, 77], in

which Bayesian optimization searches among different combinations of hyperparameters. During

the search, each evaluation of a combination of hyperparameters involves an expensive process of

training and testing the machine learning model, which is very similar to the NAS problem. The

unique properties of Bayesian optimization motivate us to explore its capability in guiding the

network morphism to reduce the number of trained neural networks n to make the search more

efficient.

It is non-trivial to design a Bayesian optimization method for network morphism-based NAS

due to the following challenges. First, the underlying Gaussian process (GP) is traditionally

used for learning the probability distribution of functions in Euclidean space. To update the

Bayesian optimization model with observations, the underlying GP is to be trained with the searched

architectures and their performances. However, the neural network architectures are not in Euclidean

space and hard to parameterize into a fixed-length vector. Second, an acquisition function needs to

be optimized for Bayesian optimization to generate the next architecture to observe. However, in the

context of network morphism, it is not to maximize a function in Euclidean space, but finding a node

in a tree-structured search space, where each node represents a neural architecture and each edge is

a morph operation. Thus traditional gradient-based methods cannot be simply applied. Third, the

changes caused by a network morphism operation is complicated. A network morphism operation

on one layer may change the shapes of some intermediate output tensors, which no longer match

input shape requirements of the layers taking them as input. How to maintain such consistency is a

challenging problem.
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In this chapter, an efficient neural architecture search with network morphism is proposed, which

utilizes Bayesian optimization to guide through the search space by selecting the most promising

operations each time. To tackle the aforementioned challenges, an edit-distance neural network

kernel is constructed. Being consistent with the key idea of network morphism, it measures how

many operations are needed to change one neural network to another. Besides, a novel acquisition

function optimizer, which is capable of balancing between exploration and exploitation, is designed

specially for the tree-structure search space to enable Bayesian optimization to select from the

operations. In addition, a graph-level network morphism is defined to address the changes in the

neural architectures based on layer-level network morphism. The proposed approach is compared

with the state-of-the-art NAS methods [70, 78] on benchmark datasets of MNIST, CIFAR10, and

FASHION-MNIST. Within a limited search time, the architectures found by our method achieves

the lowest error rates on all of the datasets.

In addition, we have developed a widely adopted open-source AutoML system based on our

proposed method, namely AutoKeras. It is an open-source AutoML system, which can be download

and installed locally. The system is carefully designed with a concise interface for people not

specialized in computer programming and data science to use. To speed up the search, the workload

on CPU and GPU can run in parallel. To address the issue of different GPU memory, which limits

the size of the neural architectures, a memory adaption strategy is designed for deployment.

The main contributions of the chapter are as follows:

• Propose an algorithm for efficient neural architecture search based on network morphism guided

by Bayesian optimization.

• Conduct intensive experiments on benchmark datasets to demonstrate the superior performance

of the proposed method over the baseline methods.

• Develop an open-source system, namely AutoKeras, which is one of the most widely used

AutoML systems.
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3.2 Problem Statement

The general neural architecture search problem we studied in this chapter is defined as: Given

a neural architecture search space F , the input data D divided into Dtrain and Dval, and the cost

function Cost(·), we aim at finding an optimal neural network f ∗ ∈ F , which could achieve the

lowest cost on dataset D. The definition is equivalent to finding f ∗ satisfying:

f ∗ = argmin
f∈F

Cost(f(θ∗), Dval), (3.1)

θ∗ = argmin
θ
L(f(θ), Dtrain). (3.2)

where Cost(·, ·) is the evaluation metric function, e.g., accuracy, mean sqaured error, θ∗ is the

learned parameter of f .

The search space F covers all the neural architectures, which can be morphed from the initial

architectures. The details of the morph operations are introduced in 3.3.3. Notably, the operations

can change the number of filters in a convolutional layer, which makes F larger than methods with

fixed layer width [61].

3.3 Network Morphism Guided by Bayesian Optimization

The key idea of the proposed method is to explore the search space via morphing the neural

architectures guided by Bayesian optimization (BO) algorithm. Traditional Bayesian optimization

consists of a loop of three steps: update, generation, and observation. In the context of NAS, our

proposed Bayesian optimization algorithm iteratively conducts: (1) Update: train the underlying

Gaussian process model with the existing architectures and their performances; (2)Generation:

generate the next architecture to observe by optimizing a delicately defined acquisition function; (3)

Observation: obtain the actual performance by training the generated neural architecture. There are

three main challenges in designing a method for morphing the neural architectures with Bayesian

optimization. We introduce three key components separately in the subsequent sections coping with

the three challenges.
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Figure 3.1: Neural Network Kernel. Given two neural networks fa, fb, and matchings between the
similar layers, the figure shows how the layers of fa can be changed to the same as fb. Similarly,
the skip-connections in fa also need to be changed to the same as fb according to a given matching.

3.3.1 Edit-Distance Neural Network Kernel for Gaussian Process

The first challenge we need to address is that the NAS space is not a Euclidean space, which

does not satisfy the assumption of traditional Gaussian process (GP). Directly vectorizing the neural

architecture is impractical due to the uncertain number of layers and parameters it may contain.

Since the Gaussian process is a kernel method, instead of vectorizing a neural architecture, we

propose to tackle the challenge by designing a neural network kernel function. The intuition behind

the kernel function is the edit-distance for morphing one neural architecture to another. More edits

needed from one architecture to another means the further distance between them, thus less similar

they are. The proof of the validity of the kernel function is presented in Appendix B.

3.3.1.1 Kernel Definition

Suppose fa and fb are two neural networks. Inspired by Deep Graph Kernels [34], we propose

an edit-distance kernel for neural networks. Edit-distance here means how many operations are

needed to morph one neural network to another. The concrete kernel function is defined as:

κ(fa, fb) = e−ρ
2(d(fa,fb)), (3.3)

where function d(·, ·) denotes the edit-distance of two neural networks, whose range is [0,+∞), ρ

is a mapping function, which maps the distance in the original metric space to the corresponding
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distance in the new space. The new space is constructed by embedding the original metric space

into a new one using Bourgain Theorem [79], which ensures the validity of the kernel.

Calculating the edit-distance of two neural networks can be mapped to calculating the edit-

distance of two graphs, which is an NP-hard problem [80]. Based on the search space F defined in

Section 3.2, we tackle the problem by proposing an approximated solution as follows:

d(fa, fb) = Dl(La, Lb) + λDs(Sa, Sb), (3.4)

where Dl denotes the edit-distance for morphing the layers, i.e., the minimum edits needed to

morph fa to fb if the skip-connections are ignored, La = {l(1)a , l
(2)
a , . . .} and Lb = {l(1)b , l

(2)
b , . . .}

are the layer sets of neural networks fa and fb, Ds is the approximated edit-distance for morphing

skip-connections between two neural networks, Sa = {s(1)a , s
(2)
a , . . .} and Sb = {s(1)b , s

(2)
b , . . .} are

the skip-connection sets of neural network fa and fb, and λ is the balancing factor between the

distance of the layers and the skip-connections.

Calculating Dl: We assume |La| < |Lb|, the edit-distance for morphing the layers of two neural

architectures fa and fb is calculated by minimizing the follow equation:

Dl(La, Lb) = min

|La|∑
i=1

dl(l
(i)
a , ϕl(l

(i)
a )) +

∣∣∣|Lb| − |La|∣∣∣, (3.5)

where ϕl : La → Lb is an injective matching function of layers satisfying: ∀i < j, ϕl(l
(i)
a ) ≺ ϕl(l

(j)
a )

if layers in La and Lb are all sorted in topological order. dl(·, ·) denotes the edit-distance of widening

a layer into another defined in Equation (3.6),

dl(la, lb) =
|w(la)− w(lb)|
max[w(la), w(lb)]

, (3.6)

where w(l) is the width of layer l.

The intuition of Equation (3.5) is consistent with the idea of network morphism shown in

Figure 3.1. Suppose a matching is provided between the nodes in two neural networks. The sizes
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of the tensors are indicators of the width of the previous layers (e.g., the output vector length of a

fully-connected layer or the number of filters of a convolutional layer). The matchings between the

nodes are marked by light blue. So a matching between the nodes can be seen as matching between

the layers. To morph fa to fb with the given matching, we need to first widen the three nodes in fa

to the same width as their matched nodes in fb, and then insert a new node of width 20 after the

first node in fa. Based on this morphing scheme, the edit-distance of the layers is defined as Dl in

Equation (3.5).

Since there are many ways to morph fa to fb, to find the best matching between the nodes that

minimizes Dl, we propose a dynamic programming approach by defining a matrixA|La|×|Lb|, which

is recursively calculated as follows:

Ai,j = max[Ai−1,j + 1,Ai,j−1 + 1,Ai−1,j−1 + dl(l
(i)
a , l

(j)
b )], (3.7)

where Ai,j is the minimum value of Dl(L
(i)
a , L

(j)
b ), where L(i)

a = {l(1)a , l
(2)
a , . . . , l

(i)
a } and L(j)

b =

{l(1)b , l
(2)
b , . . . , l

(j)
b }.

Calculating Ds: The intuition of Ds is the sum of the the edit-distances of the matched skip-

connections in two neural networks into pairs. As shown in Figure 3.1, the skip-connections with

the same color are matched pairs. Similar to Dl(·, ·), Ds(·, ·) is defined as follows:

Ds(Sa, Sb) = min

|Sa|∑
i=1

ds(s
(i)
a , ϕs(s

(i)
a )) +

∣∣∣|Sb| − |Sa|∣∣∣, (3.8)

where we assume |Sa| < |Sb|. (|Sb| − |Sa|) measures the total edit-distance for non-matched

skip-connections since each of the non-matched skip-connections in Sb calls for an edit of inserting

a new skip connection into fa. The mapping function ϕs : Sa → Sb is an injective function. ds(·, ·)

is the edit-distance for two matched skip-connections defined as:

ds(sa, sb) =
|u(sa)− u(sb)|+ |δ(sa)− δ(sb)|

max[u(sa), u(sb)] +max[δ(sa), δ(sb)]
, (3.9)
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where u(s) is the topological rank of the layer the skip-connection s started from, δ(s) is the number

of layers between the start and end point of the skip-connection s.

This minimization problem in Equation (3.8) can be mapped to a bipartite graph matching

problem, where fa and fb are the two disjoint sets of the graph, each skip-connection is a node

in its corresponding set. The edit-distance between two skip-connections is the weight of the

edge between them. The weighted bipartite graph matching problem is solved by the Hungarian

algorithm (Kuhn-Munkres algorithm) [81].

3.3.1.2 Proof of Kernel Validity

Gaussian process requires the kernel to be valid, i.e., the kernel matrices are positive semidefinite,

to keep the distributions valid. The edit-distance in Equation (3.4) is a metric distance proved by

Theorem 1. Though, a generalized RBF kernel in the form of e−γd(x,y) based on a distance in metric

space may not always be a valid kernel, our kernel defined in Equation (3.3) is proved to be valid by

Theorem 2.

Theorem 1. d(fa, fb) is a metric space distance.

Proof of Theorem 1: See Appendix B. �

Theorem 2. κ(fa, fb) is a valid kernel.

Proof of Theorem 2: The kernel matrix of generalized RBF kernel in the form of e−γD2(x,y) is

positive definite if and only if there is an isometric embedding in Euclidean space for the metric

space with metric D [82]. Any finite metric space distance can be isometrically embedded into

Euclidean space by changing the scale of the distance measurement [83]. By using Bourgain

theorem [79], metric space d is embedded to Euclidean space with little distortion. ρ(d(fa, fb)) is

the embedded distance for d(fa, fb). Therefore, e−ρ2(d(fa,fb)) is always positive definite. So κ(fa, fb)

is a valid kernel. �

3.3.2 Optimization for Tree Structured Space

The second challenge of using Bayesian optimization to guide network morphism is the opti-

mization of the acquisition function. The traditional acquisition functions are defined in Euclidean
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space. The optimization methods are not applicable to the tree-structured search via network

morphism. To optimize our acquisition function, we need a method to efficiently optimize the

acquisition function in the tree-structured space. To deal with this problem, we propose a novel

method to optimize the acquisition function on tree-structured space.

Upper-confidence bound (UCB) [84] is selected as our acquisition function, which is defined as:

α(f) = µ(yf )− βσ(yf ), (3.10)

where yf = Cost(f,D), β is the balancing factor, µ(yf ) and σ(yf ) are the posterior mean and

standard deviation of variable yf predicted by the Gaussian process. It has two important properties,

which fit our problem. First, it has an explicit balance factor β for exploration and exploitation.

Second, α(f) is directly comparable with the cost function value c(i) in search history H =

{(f (i),θ(i), c(i))}. The UCB estimates the lowest possible cost given the neural network f . f̂ =

argminfα(f) is the generated neural architecture for next observation.

The tree-structured space is defined as follows. During the optimization of α(f), f̂ should be

obtained from f (i) and O, where f (i) is an observed architecture in the search history H, O is a

sequence of operations to morph the architecture into a new one. Morph f to f̂ with O is denoted as

f̂ ←M(f,O), whereM(·, ·) is the function to morph f with the operations in O. Therefore, the

search can be viewed as a tree-structured search, where each node is a neural architecture, whose

children are morphed from it by network morphism operations.

The most common defect of network morphism is it only grows the size of the architecture

instead of shrinking them. Using network morphism for NAS may end up with a very large

architecture without enough exploration on the smaller architectures. However, in our tree-structure

search, we not only expand the leaves but also the inner nodes, which means the smaller architectures

found in the early stage can be selected multiple times to morph to more comparatively small

architectures.

Inspired by various heuristic search algorithms for exploring the tree-structured search space and
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optimization methods balancing between exploration and exploitation, a new method based on A*

search [85] and simulated annealing [86] is proposed. A* algorithm is widely used for tree-structure

search. It maintains a priority queue of nodes and keeps expanding the best node in the queue. Since

A* always exploits the best node, simulated annealing is introduced to balance the exploration and

exploitation by not selecting the estimated best architecture with a probability.

Algorithm 2 Optimize Acquisition Function
1: Input: H, r, Tlow
2: T ← 1, Q← PriorityQueue()
3: cmin ← lowest c inH
4: for (f,θf , c) ∈ H do
5: Q.Push(f)
6: end for
7: while Q 6= ∅ and T > Tlow do
8: T ← T × r, f ← Q.Pop()
9: for o ∈ Ω(f) do

10: f ′ ←M(f, {o})
11: if e

cmin−α(f
′)

T > Rand() then
12: Q.Push(f ′)
13: end if
14: if cmin > α(f ′) then
15: cmin ← α(f ′), fmin ← f ′

16: end if
17: end for
18: end while
19: Return The nearest ancestor of fmin inH, the operation sequence to reach fmin

As shown in Algorithm 2, the algorithm takes minimum temperature Tlow, temperature de-

creasing rate r for simulated annealing, and search historyH described in Section 3.2 as the input.

It outputs a neural architecture f ∈ H and a sequence of operations O to morph f into the new

architecture. From line 2 to 6, the searched architectures are pushed into the priority queue, which

sorts the elements according to the cost function value or the acquisition function value. Since UCB

is chosen as the acquisiton function, α(f) is directly comparable with the history observation values

c(i). From line 7 to 18, it is the loop optimizing the acquisition function. Following the setting in A*
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search, in each iteration, the architecture with the lowest acquisition function value is popped out to

be expanded on line 8 to 10, where Ω(f) is all the possible operations to morph the architecture f ,

M(f, o) is the function to morph the architecture f with the operation sequence o. However, not all

the children are pushed into the priority queue for exploration purpose. The decision of whether it

is pushed into the queue is made by simulated annealing on line 11, where e
cmin−α(f

′)
T is a typical

acceptance function in simulated annealing. cmin and fmin are updated from line 14 to 16, which

record the minimum acquisition function value and the corresponding architecture.

3.3.3 Graph-Level Network Morphism

The third challenge is to maintain the intermediate output tensor shape consistency when

morphing the architectures. Previous work showed how to preserve the functionality of the layers

the operators applied on, namely layer-level morphism. However, from a graph-level view, any

change of a single layer could have a butterfly effect on the entire network. Otherwise, it would

break the input and output tensor shape consistency. To tackle the challenge, a graph-level morphism

is proposed to find and morph the layers influenced by a layer-level operation in the entire network.

Follow the four network morphism operations on a neural network f ∈ F defined in [70], which

can all be reflected in the change of the computational graph G. The first operation is inserting

a layer to f to make it deeper denoted as deep(G, u), where u is the node marking the place to

insert the layer. The second one is widening a node in f denoted as wide(G, u), where u is the

node representing the intermediate output tensor to be widened. Widen here could be either making

the output vector of the previous fully-connected layer of u longer, or adding more filters to the

previous convolutional layer of u, depending on the type of the previous layer. The third is adding

an additive connection from node u to node v denoted as add(G, u, v). The fourth is adding an

concatenative connection from node u to node v denoted as concat(G, u, v). For deep(G, u), no

other operation is needed except for initializing the weights of the newly added layer. However, for

all other three operations, more changes are required to G.

First, we define an effective area of wide(G, u0) as γ to better describe where to change in the

network. The effective area is a set of nodes in the computational graph, which can be recursively
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defined by the following rules: 1. u0 ∈ γ. 2. v ∈ γ, if ∃eu→v 6∈ Ls, u ∈ γ. 3. v ∈ γ, if ∃ev→u 6∈ Ls,

u ∈ γ. Ls is the set of fully-connected layers and convolutional layers. Operation wide(G, u0)

needs to change two set of layers, the previous layer set Lp = {eu→v ∈ Ls|v ∈ γ}, which needs

to output a wider tensor, and next layer set Ln = {eu→v ∈ Ls|u ∈ γ}, which needs to input a

wider tensor. Second, for operator add(G, u0, v0), additional pooling layers may be needed on

the skip-connection. u0 and v0 have the same number of channels, but their shape may differ

because of the pooling layers between them. So we need a set of pooling layers whose effect

is the same as the combination of all the pooling layers between u0 and v0, which is defined as

Lo = {e ∈ Lpool|e ∈ pu0→v0}. where pu0→v0 could be any path between u0 and v0, Lpool is the

pooling layer set. Another layer Lc is used after to pooling layers to process u0 to the same width as

v0. Third, in concat(G, u0, v0), the concatenated tensor is wider than the original tensor v0. The

concatenated tensor is input to a new layer Lc to reduce the width back to the same width as v0.

Additional pooling layers are also needed for the concatenative connection.

3.3.4 Time Complexity Analysis

As described at the start of Section 3, Bayesian optimization can be roughly divided into three

steps: update, generation, and observation. The bottleneck of the algorithm efficiency is observation,

which involves the training of the generated neural architecture. Let n be the number of architectures

in the search history. The time complexity of the update is O(n2 log2 n). In each generation, the

kernel is computed between the new architectures during optimizing acquisition function and the

ones in the search history, the number of values in which is O(nm), where m is the number of

architectures computed during the optimization of the acquisition function. The time complexity for

computing d(·, ·) once is O(l2 + s3), where l and s are the number of layers and skip-connections.

So the overall time complexity is O(nm(l2 + s3) + n2 log2 n). The magnitude of these factors is

within the scope of tens. So the time consumption of update and generation is trivial comparing to

the observation.
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3.4 AutoKeras

Based on the proposed neural architecture search method, we developed an open-source AutoML

system, namely AutoKeras. It is named after Keras [87], which is known for its simplicity in creating

neural networks. Similar to SMAC [8], TPOT [88], Auto-WEKA [74], and Auto-Sklearn [76], the

goal is to enable domain experts who are not familiar with machine learning technologies to use

machine learning techniques easily. However, AutoKeras is focusing on the deep learning tasks,

which is different from the systems focusing on the shallow models mentioned above.

Although, there are several AutoML services available on large cloud computing platforms,

three things are prohibiting the users from using them. First, cloud services are not free to use,

which may not be affordable for everyone who wants to use AutoML techniques. Second, the cloud-

based AutoML usually requires complicated configurations of Docker containers and Kubernetes,

which is not easy for people without a rich computer science background. Third, the AutoML

service providers are honest-but-curious [89], which cannot guarantee the security and privacy of

the data. An open-source software, which is easily downloadable and runs locally, would solve

these problems and make the AutoML accessible to everyone. To bridge the gap, we developed

AutoKeras.

It is challenging, to design an easy-to-use and locally deployable system. First, we need a

concise and configurable application programming interface (API). For the users who don’t have

rich experience in programming, they could easily learn how to use the API. For the advanced

users, they can still configure the details of the system to meet their requirements. Second, local

computation resources may be limited. We need to make full use of the local computation resources

to speed up the search. Third, the available GPU memory may be of different sizes in different

environments. We need to adapt the neural architecture sizes to the GPU memory during the search.

3.4.1 System Overview

The system architecture of AutoKeras is shown in Figure 3.2. We design this architecture to fully

make use of the computational resource of both CPU and GPU, and utilize the memory efficiently by
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Figure 3.2: AutoKeras System Overview. (1) The user calls the API. (2) The Searcher generates
neural architectures on CPU. (3) Graph builds real neural networks with parameters on RAM from
the neural architectures. (4) The neural network is copied to GPU for training. (5) Trained neural
networks are saved on storage devices. The Searcher is updated based on the training results. Step
(2) to (5) will repeat until it reaches the time limit.

only placing the currently useful information on the RAM, and save the rest on the storage devices,

e.g., hard drives. The top part is the API, which is directly called by the users. It is responsible for

calling corresponding middle-level modules to complete certain functionalities. The Searcher is the

module of the neural architecture search algorithm containing Bayesian Optimizer and Gaussian

Process. These search algorithms run on CPU. The Model Trainer is a module responsible for

the computation on GPUs. It trains given neural networks with the training data in a separate

process for parallelism. The Graph is the module processing the computational graphs of neural

networks, which is controlled by the Searcher for the network morphism operations. The current

neural architecture in the Graph is placed on RAM for faster access. The Model Storage is a pool of

trained models. Since the size of the neural networks are large and cannot be stored all in memory,

the model storage saves all the trained models on the storage devices.

A typical workflow for the AutoKeras system is as follows. The user initiated a search for the

best neural architecture for the dataset. The API received the call, preprocess the dataset, and pass it

to the Searcher to start the search. The Bayesian Optimizer in the Searcher would generate a new
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architecture using CPU. It calls the Graph module to build the generated neural architecture into

a real neural network in the RAM. The new neural architecture is copied the GPU for the Model

Trainer to train with the dataset. The trained model is saved in the Model Storage. The performance

of the model is feedback to the Searcher to update the Gaussian Process.

3.4.2 Application Programming Interface

The design of the API follows the classic design of the Scikit-Learn API [90, 91], which is

concise and configurable. The training of a neural network requires as few as three lines of code

calling the constructor, the fit and predict function respectively. To accommodate the needs of

different users, we designed two levels of APIs. The first level is named as task-level. The users

only need to know their task, e.g., Image Classification, Text Regression, to use the API. The second

level is named search-level, which is for advanced users. The user can search for a specific type of

neural network architectures, e.g., multi-layer perceptron, convolutional neural network. To use this

API, they need to preprocess the dataset by themselves and know which type of neural network,

e.g., CNN or MLP, is the best for their task.

Several accommodations have been implemented to enhance the user experience with the

AutoKeras package. First, the user can restore and continue a previous search which might be

accidentally killed. From the users’ perspective, the main difference of using AutoKeras comparing

with the AutoML systems aiming at shallow models is the much longer time consumption, since a

number of deep neural networks are trained during the neural architecture search. It is possible for

some accident to happen to kill the process before the search finishes. Therefore, the search outputs

all the searched neural network architectures with their trained parameters into a specific directory

on the disk. As long as the path to the directory is provided, the previous search can be restored.

Second, the user can export the search results, which are neural architectures, as saved Keras models

for other usages. Third, for advanced users, they can specify all kinds of hyperparameters of the

search process and neural network optimization process by the default parameters in the interface.
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Figure 3.3: CPU and GPU Parallelism. The Searcher obtains the next neural architecture to be
trained and starts the training on GPU in a separate process. Then, instead of waiting for the training
to finish, it directly starts to generate the next neural architecture on CPU.

3.4.3 CPU and GPU Parallelism

To make full use of the limited local computation resources, the program can run in parallel on

the GPU and the CPU at the same time. If we do the observation (training of the current neural

network), update, and generation of Bayesian optimization in sequential order. The GPUs will be

idle during the update and generation. The CPUs will be idle during the observation. To improve

efficiency, the observation is run in parallel with the generation in separated processes. A training

queue is maintained as a buffer for the Model Trainer. Figure 3.3 shows the Sequence diagram of

the parallelism between the CPU and the GPU. First, the Searcher requests the queue to pop out a

new graph and pass it to GPU to start training. Second, while the GPU is busy, the searcher requests

the CPU to generate a new graph. At this time period, the GPU and the CPU work in parallel. Third,

the CPU returns the generated graph to the searcher, who pushes the graph into the queue. Finally,

the Model Trainer finished training the graph on the GPU and returns it to the Searcher to update the

Gaussian process. In this way, the idle time of GPU and CPU are dramatically reduced to improve

the efficiency of the search process.
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3.4.4 GPU Memory Adaption

The size of the neural networks needs to be limited according to the GPU memory. Otherwise,

the system would crash because of running out of GPU memory. Many approaches have been taken

to search for memory-efficient neural architectures [92]. In AutoKeras, we implement a memory

estimation function on our own data structure for the neural architectures. An integer value is used

to mark the upper bound of the neural architecture size. Any new computational graph whose

estimated size exceeds the upper bound is discarded. However, the system may still crash because

the management of the GPU memory is very complicated, which cannot be precisely estimated. So

whenever it runs out of GPU memory, the upper bound is lowered down to further limit the size of

the generated neural networks.

3.5 Experiments

In the experiments, we aim at answering the following questions. 1) How effective is the search

algorithm with limited running time? 2) How much efficiency is gained from Bayesian optimization

and network morphism? 3) Does the proposed kernel function correctly measure the similarity

among neural networks in terms of their actual performance?

For more details on the experimental setup and implementation please refer to Appendix A.

Three benchmark datasets, MNIST [11], CIFAR10 [93], and FASHION [94] are used in the

experiments to evaluate our method. They prefer very different neural architectures to achieve good

performance.

Four categories of baseline methods are used for comparison, which are elaborated as follows:

• Straightforward Methods: random search (RAND) and grid search (GRID). They search the

number of convolutional layers and the width of those layers.

• Conventional Methods: SPMT [73] and SMAC [8]. Both SPMT and SMAC are designed for

general hyperparameters tuning tasks of machine learning models instead of focusing on the deep

neural networks. They tune the 16 hyperparameters of a three-layer convolutional neural network,

including the width, dropout rate, and regularization rate of each layer.

42



• State-of-the-art Methods: SEAS [70], NASBOT [78]. We carefully implemented the SEAS as

described in their paper. For NASBOT, since the experimental settings are very similar, we

directly trained their searched neural architecture in the paper. They did not search architectures

for MNIST and FASHION dataset, so the results are omitted in our experiments.

• Variants of the proposed method: BFS and BO. Our proposed method is denoted as AK. BFS

replaces the Bayesian optimization in AK with the breadth-first search. BO is another variant,

which does not employ network morphism to speed up the training. For AK, β is set to 2.5, while

λ is set to 1 according to the parameter sensitivity analysis.

In addition, the performance of the deployed system of AutoKeras (AK-DP) is also evaluated in the

experiments. The difference from the AK above is that AK-DP uses various advanced techniques

to improve the performance including learning rate scheduling, multiple manually defined initial

architectures.

The general experimental setting for evaluation is described as follows: First, the original

training data of each dataset is further divided into training and validation sets by 80-20. Second, the

testing data of each dataset is used as the testing set. Third, the initial architecture for SEAS, BO,

BFS, and AK is a three-layer convolutional neural network with 64 filters in each layer. Fourth, each

method is run for 12 hours on a single GPU (NVIDIA GeForce GTX 1080 Ti) on the training and

validation set with batch size of 64. Fifth, the output architecture is trained with both the training

and validation set. Sixth, the testing set is used to evaluate the trained architecture. Error rate is

selected as the evaluation metric since all the datasets are for classification. For a fair comparison,

the same data processing and training procedures are used for all the methods. The neural networks

are trained for 200 epochs in all the experiments. Notably, AK-DP uses a real deployed system

setting, whose result is not directly comparable with the rest of the methods. Except for AK-DP, all

other methods are fairly compared using the same initial architecture to start the search.
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Table 3.1: Classification Error Rate

Methods MNIST CIFAR10 FASHION
RANDOM 1.79% 16.86% 11.36%
GRID 1.68% 17.17% 10.28%
SPMT 1.36% 14.68% 9.62%
SMAC 1.43% 15.04% 10.87%
SEAS 1.07% 12.43% 8.05%
NASBOT NA 12.30% NA
BFS 1.56% 13.84% 9.13%
BO 1.83% 12.90% 7.99%
AK 0.55% 11.44% 7.42%
AK-DP 0.60% 3.60% 6.72%

3.5.1 Evaluation of Effectiveness

We first evaluate the effectiveness of the proposed method. The results are shown in Table 3.1.

The following conclusions can be drawn based on the results.

(1) AK-DP is evaluated to show the final performance of our system, which shows the deployed

system (AK-DP) achieved state-of-the-art performance on all three datasets.

(2) The proposed method AK achieves the lowest error rate on all the three datasets, which

demonstrates that AK is able to find simple but effective architectures on small datasets (MNIST)

and can explore more complicated structures on larger datasets (CIFAR10).

(3) The straightforward approaches and traditional approaches perform well on the MNIST

dataset, but poorly on the CIFAR10 dataset. This may come from the fact that: naive approaches

like random search and grid search only try a limited number of architectures blindly while the two

conventional approaches are unable to change the depth and skip-connections of the architectures.

(4) Though the two state-of-the-art approaches achieve acceptable performance, SEAS could not

beat our proposed model due to its subpar search strategy. The hill-climbing strategy it adopts only

takes one step at each time in morphing the current best architecture, and the search tree structure is

constrained to be unidirectionally extending. Comparatively speaking, NASBOT possesses stronger

search expandability and also uses Bayesian optimization as our proposed method. However, the
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low efficiency in training the neural architectures constrains its power in achieving comparable

performance within a short time period. By contrast, the network morphism scheme along with the

novel searching strategy ensures our model to achieve desirable performance with limited hardware

resources and time budges.

(5) For the two variants of AK, BFS preferentially considers searching a vast number of

neighbors surrounding the initial architecture, which constrains its power in reaching the better

architectures away from the initialization. By comparison, BO can jump far from the initial

architecture. But without network morphism, it needs to train each neural architecture with a much

longer time, which limits the number of architectures it can search within a given time.

3.5.2 Evaluation of Efficiency

In this experiment, we try to evaluate the efficiency gain of the proposed method in two aspects.

First, we evaluate whether Bayesian optimization can really find better solutions with a limited

number of observations. Second, we evaluated whether network morphism can enhance training

efficiency.

We compare the proposed method AK with its two variants, BFS and BO, to show the efficiency

gains from Bayesian optimization and network morphism, respectively. BFS does not adopt

Bayesian optimization but only network morphism, and use breadth-first search to select the network

morphism operations. BO does not employ network morphism but only Bayesian optimization.

Each of the three methods is run on CIFAR10 for twelve hours. The two figures in Figure 3.4 shows

the same results but with different X-axes. The Y-axis is the lowest error rate achieved. The X-axes

are the number of neural networks searched and the searching time.

Two conclusions can be drawn by comparing BFS and AK. First, Bayesian optimization can

efficiently find better architectures with a limited number of observations. When searched the same

number of neural architectures, AK could achieve a much lower error rate than BFS. It demonstrates

that Bayesian optimization could effectively guide the search in the right direction, which is much

more efficient in finding good architectures than the naive BFS approach. Second, the overhead

created by Bayesian optimization during the search is low. In the left part of Figure 3.4, it shows BFS
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Figure 3.4: Evaluation of Efficiency. The two figures plot the same result with different X-axis.
BFS uses network morphism. BO uses Bayesian optimization. AK uses both.

and AK searched similar numbers of neural networks within twelve hours. BFS is a naive search

strategy, which does not consume much time during the search besides training the neural networks.

AK searched slightly less neural architectures than BFS because of higher time complexity.

Two conclusions can be drawn by comparing BO and AK. First, network morphism does not

negatively impact search performance. In the left part of Figure 3.4, when BO and AK search a

similar number of neural architectures, they achieve similar lowest error rates. Second, network

morphism increases training efficiency, thus improve the performance. As shown in the left part

of Figure 3.4, AK could search much more architectures than BO within the same amount of time

due to the adoption of network morphism. Since network morphism does not degrade the search

performance, searching more architectures results in finding better architectures. This could also be

confirmed in the right part of Figure 3.4. At the end of the searching time, AK achieves lower error

rate than BO.

To show the quality of the edit-distance neural network kernel, we investigate the difference

between the two matrices K and P . K ∈ Rn×n is the kernel matrix, where Ki,j = κ(f (i), f (j)).

P ∈ Rn×n describes the similarity of the actual performance between neural networks, where

P i,j = −|c(i) − c(j)|, where c(i) is the cost function value in the search history H described in

Section 3.3. We use CIFAR10 as an example here, and adopt error rate as the cost metric. Since

the values in K and P are in different scales, both matrices are normalized to the range [−1, 1].
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(a) Kernel Matrix (b) Performance Similarity

Figure 3.5: Kernel and Performance Matrix Visualization. (a) shows the proposed kernel matrix. (b)
is a matrix of similarity in the performance of the neural architectures.

The difference between K and P are measured quantitatively with mean square error, which is

1.12× 10−1.

K and P are visualized in Figure 3.5a and 3.5b. Lighter color means larger values. There

are two patterns can be observed in the figures. First, the white diagonal of Figure 3.5a and 3.5b.

According to the definiteness property of the kernel, κ(fx, fx) = 1,∀fx ∈ F , thus the diagonal of

K is always 1. It is the same for P since no difference exists in the performance of the same neural

network. Second, there is a small light square area on the upper left of Figure 3.5a. These are the

initial neural architectures to train the Bayesian optimizer, which are neighbors to each other in

terms of network morphism operations. A similar pattern is reflected in Figure 3.5b, which indicates

that when the kernel measures two architectures as similar, they tend to have similar performance.
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4. JOINT HYPERPARAMETER TUNING FOR NEURAL ARCHITECTURE SEARCH

Neural architecture search is the most important component of automated deep learning but not

the only component. For a deep learning solution, besides the neural architecture, there are many

other hyperparameters to tune, for example, the type of optimizer or the learning rate. Moreover,

these hyperparameters are correlated with the neural architecture instead of independent from each

other. How to tune these hyperparameters together with the neural architecture is the key problem if

neural architecture search is to be used in an overall automated deep learning process. In this chapter,

we propose a new AutoML framework to map the neural architecture and other hyperparameters into

the same hyperparameter space. In addition, we also propose a search algorithm with warm-start in

the hyperparameter tuning process to improve the efficiency of the framework.

4.1 Introduction

From an application perspective, people adopting deep learning would like to receive a complete

deep learning solution as the output, which includes not only the tuned neural network but also

the preprocessing steps and optimizers with tuned hyperparameters. Moreover, practitioners prefer

more efficient AutoML systems. In other words, they would like to find a good and complete deep

learning solution with fewer trials.

To address such requirements, we developed a new version of AutoKeras, an AutoML library

for deep learning. It automates the process of model selection, hyperparameter tuning, and neural

architecture search. It encapsulates the end-to-end process from raw datasets to trained machine

learning models into an extremely simple and flexible interface. Novice users can implement deep

learning models with a few lines of code, while the advanced users can also easily customize

different parts of the model to their needs. It implements a greedy algorithm to warm-start the

search space and fine-tunes the best model in the warm-start model list, which can find a good

solution for a given task with less number of trials.

AutoKeras specializes in raw data types like images and texts in addition to structured data,
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Figure 4.1: Three Levels of APIs

which is supported by existing AutoML libraries [74, 76, 88, 95]. It is also flexible enough to

cover multi-modal data and multi-task use cases. AutoKeras is built base on Keras Tuner [96],

Keras [87], and TensorFlow [97]. The models created by AutoKeras can be easily exported as Keras

models, which can be deployed in various production environments with the help of the TensorFlow

ecosystem.

4.2 API Design

The API design of AutoKeras follows the style of Keras, which is well received by the deep

learning community. It has three levels of APIs, namely, task API, IO API, and functional API,

ranging from the simplest to the most configurable. The code of using these APIs are shown

in Figure 4.1 with diagrams showing the corresponding neural network models. The parts with

question marks are tuned automatically.

The task API requires the least amount of configurations from the user. As shown in Figure 4.1

from line 3 to 5, an example of the image classification task is implemented within three lines of

code. Six different tasks are supported in task APIs, including classification and regression for

image, text, and structured data.

The IO API (input/output API) supports multi-modal data and multi-task use cases. In Figure 4.1
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from line 7 to 10, the dataset is a set of images with attributes, for example, an image of a house

with attributes describing the total area and location of the house. Each data sample is associated

with two prediction targets, a label for classification and a real value for regression. The user needs

to specify the inputs and outputs format of the model as shown in line 8 and 9. The training data are

passed in lists in the same order in line 10.

The functional API enables advanced users to tailor the search spaces according to their needs. It

resembles the Keras functional API to let the user build the computational graph of the deep learning

model with the building blocks. The example from line 12 to line 19 connects both preprocessing

steps and neural network blocks, which applies data normalization and data augmentation to the

data before passing it to a neural network with ResNet [98] and XceptionNet [99]. Notably, on

line 15, the version of the ResNet is specified as v2, which further reduces the size of the search

space. There are many such configurable hyperparameters for other blocks as well. They are tuned

automatically if left unspecified. Moreover, the users can also create custom neural network blocks

to use with the functional API.

AutoKeras is fully compatible with the TensorFlow and Keras ecosystem. The fit function in

AutoKeras supports all the arguments supported by the Keras fit function. The model found by

AutoKeras can be easily exported as a Keras model. With the help of the TensorFlow ecosystem, it

is ready for deployment in various production environments.

4.3 System Architecture

In this section, we introduce the system architecture of AutoKeras, which is explained from

two perspectives: the core workflow of running an AutoML task in the system and important

components of the system.

4.3.1 Core Workflow

Figure 4.2 shows the core workflow of the AutoKeras system, which is drawn in data flow

diagram format. The core AutoKeras workflow consists of the following steps. First, AutoKeras

analyzes the training data to determine e.g. whether a column in structured data is categorical or
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Figure 4.2: The Core Workflow of AutoKeras System

numerical, whether the image data contains the channel dimension, or whether the classification

labels need to be encoded. Second, it uses this information to construct a suitable search space that

encompasses both neural architecture patterns and common hyperparameters. Third, it goes through

the search loop. Every time the search algorithm would generate a set of hyperparameter values to

build a model from the search space. The model is trained on the training set and evaluated on the

validation set. The result is sent back to the search algorithm. Finally, all the searched models are

stored on disk.

4.3.2 Components

AutoKeras uses Keras and TensorFlow to build machine learning models. Keras Tuner, a

hyperparameter tuning framework for Keras, provides the infrastructure for implementing the search

space and the searching algorithm in AutoKeras.

Figure 4.3 shows the major components of the AutoKeras system. To make the figure more

illustrative, the dependencies of AutoKeras (TensorFlow, Keras, Keras Tuner) are also shown in the

figure. Each box represents a class. Arrows with solid lines represent class extensions. For example,

the Block class extends the HyperModel class. Arrows with dashed lines represent usages. For

example, the Block class uses the Layer class in Keras.

As we introduced in the API design section, user can directly access the classes in the AutoModel

box, which provides the APIs to the users. The API classes use the AutoTuner class for searching

the model and Graph class as the overall search space. The AutoTuner extends the Tuner class in

Keras Tuner, which is responsible for managing the search process like instantiating the model,
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Figure 4.3: Important Components of AutoKeras System

fitting the model on training data, and tracking the evaluation results. Inside the tuner, the Greedy

Oracle, which extends in the Oracle class in Keras Tuner, is responsible for receiving the evaluation

results and generating new hyperparameter values.

The Graph class extends the HyperModel class in Keras Tuner, which is responsible for defining

a search space. When instantiated to a Keras model, it uses the optimizer, loss, metrics from Keras.

A search space can be built into a model with a set of hyperparameter values. The overall search

space in Graph consists of smaller building blocks, which are implemented in with subclasses of

the Block class, which all extends the HyperModel class since the building blocks are also search

spaces. The building blocks can be sorted into 5 different categories. The preprocessing blocks are

for preprocessing steps like data normalization, data augmentation, or categorical feature encoding.

The basic blocks are the commonly used neural network blocks like convolutional blocks or fully-

connected blocks. The reduction blocks are to reshape the output tensors of the previous blocks into

vectors for compatibility to the following blocks. The head blocks are the output heads for specific

tasks like classification and regression. The wrapper blocks are model selection blocks for specific

tasks, for example, a block for image data is a model selection between ResNet, XceptionNet, and
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vanilla convolutional networks. All these blocks when instantiated to models will use the Layer

classes in Keras.

There are also some other components in AutoKeras. The Analyser class is to analyze the data

before the search starts. The Preprocessor class is to preprocess the data before feeding it into the

model, for example, encoding the classification labels. It uses the TensorFlow Dataset class for

manipulation of the data, which is capable of large scale streaming datasets.

4.4 Methodology

In this section, we introduce how we map all the hyperparameters into the same search space

and the details of the search algorithm.

4.4.1 Search Space

The search space of AutoKeras includes the state-of-the-art neural network models for the

supported tasks. For models like EfficientNet [100] and BERT [101], pretrained weights can be

applied. Besides the neural networks, it also tunes the hyperparameters from the preprocessing

steps and the training process, for example, image data augmentation, text vectorization, categorical

feature encoding, optimizer, learning rate, and weight decay.

We map all these hyperparameters into the same space including the neural architectures.

Despite the complexity in the neural architecture search space, it can be represented by conditional

hyperparameters. For example, we can use one hyperparameter to decide how many skip connections

in a neural network. For each skip-connection, we use two additional hyperparameters to decide

its starting point and end point. The value of one hyperparameter decides the number of other

hyperparameters. We designed the hyperparameter space supporting such hyperparameter usages.

Therefore, all hyperparameters, no matter it belongs to the neural architecture or not, can be treated

equally by the search algorithm. In this way, we enabled hyperparameter joint tuning with the neural

architectures.
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4.4.2 Search Algorithm

AutoKeras implements a greedy search algorithm, which starts from a list of predefined models

that are known to have good performance and exploit them. It is greedy since it always selects the

current best model and generates new models in its neighborhood.

The process of the algorithm can be summarized as follows. First, it iterates through a list

of models to evaluate the target dataset. Second, it selects the current best model and builds a

hyperparameter tree from it. The leaves in the tree are hyperparameters. An example of the hierarchy

of hyperparameters is shown in Figure 4.4. The subtrees represent different parts of the model

like ResNet and classification head, the leaves of which are not shown in the figure but exist. The

learning rate is an actual hyperparameter, so it is a leaf. Third, it generates a new hyperparameter

value set by replacing the values of subtree leaves. The subtree is selected according to a probability

distribution, which considers both the dependency relation between the hyperparameters and the size

of the subtree. The less number of leaves a subtree contains, the more likely it is selected. Therefore,

the search algorithm prefers exploitation on the neighborhood of a good model to exploration over

new models. The new values are randomly generated. Fourth, go back to the second step and

repeats until reach the maximum number of trials set by the user.
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Dataset MNIST CIFAR10 IMDB Titanic Housing
Task ImageClf ImageClf TextClf StructDataClf StructDataReg

Metric Accuracy Accuracy Accuracy Accuracy MSE
State of the Art 99.82% 98.90% 96.80% ≈100% 0.23

AutoKeras 99.04% 97.10% 93.93% 82.20% 0.28
AutoGluon 98.70% 96.79% 85.70% 82.58% 0.28

AutoKeras Days 0.51 1.8 1.2 0.002 0.06
AutoGluon Days 0.08 6.0 0.05 0.0001 0.0002

Table 4.1: Experimental Results

4.5 Experiments

Our experiments evaluate AutoKeras performance on some of the most widely-used bench-

mark datasets: MNIST [11], CIFAR10 [93], IMDB Reviews [102], Titanic [103], and California

Housing [104]. We measure accuracy for the classification tasks and mean squared error for the

regression tasks. As a baseline, we compare results to AutoGluon [105], an established AutoML

solution developed by Amazon. The training data is used for both model training and the model

search process, while the test data is kept exclusively for evaluating the final model to avoid “test

set overfitting”. To obtain these results, no other configuration options were passed to AutoKeras in

addition to the training data; meanwhile, AutoGluon required manually specifying the number of

training epochs. We used a single Nvidia Tesla V100 GPU with 16GB of memory to search over 10

models for each experiment.

Experimental results are shown in Table 4.1. For image and text classification tasks, AutoKeras

outperformed the baseline method and achieved results close to state-of-the-art solutions [100, 106,

107]. For structured data tasks, AutoKeras achieved similar results to the baseline method, which are

not as good as the state-of-the-art solutions [108, 109]. Comparing with image or text classification,

more expert-provided domain knowledge is involved when designing the state-of-the-art solution

for structured data tasks. It highlights a limitation of AutoML: the inability to leverage information

other than the provided dataset. Lastly, for CIFAR10, the running time of AutoKeras is significantly

lower than the AutoGluon baseline due to leveraging an adaptive number of epochs. For the
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IMDB Reviews, Titanic, and California Housing datasets, the difference in running time is due to

differences in the search spaces.
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5. AUTOMATED DATA AUGMENTATION

Among all the modules of automated deep learning, one module stands out for its large number

of hyperparameters to tune and its importance in the overall process, which is data augmentation.

The data augmentation step contains a large number of operations to select from, which increases

the size of the search space exponentially. In this chapter, we propose a novel method for automated

data augmentation, which does not need to go through the search loop to select the hyperparameters,

but augment the data with a dynamic data augmentation strategy in a one-shot style.

5.1 Introduction

Data augmentation is a technique to create synthetic data from existing data with controlled

perturbation. For example, in the context of image recognition, data augmentation refers to applying

image operations, e.g., cropping and flipping, to input images to generate augmented images, which

have labels the same as their originals. In practice, data augmentation has been widely used to

improve the generalization in deep learning models and is thought to encourage model insensitivity

towards data perturbation [98, 110, 111]. Although data augmentation works well in practice,

designing data augmentation strategies requires human expertise, and the strategy customized for

one dataset often works poorly for another dataset. Recent efforts have been dedicated to automating

the design of augmentation strategies. It has been shown that training models with a learned data

augmentation policy may significantly improve test accuracy [1, 112, 113, 114, 115].

However, we do not yet have a good theory to explain how data augmentation improves model

generalization. Currently, the most well-known hypothesis is that data augmentation improves

generalization by imposing a regularization effect: it regularizes models to give consistent outputs

within the vicinity of the original data, where the vicinity of the original data is defined as the

space that contains all augmented data after applying operations that do not drastically alter image

features [116, 117, 118]. Previous automated data augmentation works claim that the performance

gain from applying learned augmentation policies arises from the increase in diversity [113, 114,
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119]. However, the “diversity” in the claims remains a hand-waving concept: it is evaluated by

the number of distinct sub-policies utilized during training or visually evaluated from a human

perspective. Without formally defining diversity and its relation to regularization, the augmentation

strategies can only be evaluated indirectly by evaluating the models trained on the augmented data,

which may cost thousands of GPU hours [119]. It motivates us to explore the possibility of using an

explicit diversity measure to quantify the regularization effect of the augmented data may have on

the model. Thus, we can directly maximize the diversity of the augmented data to strengthen the

regularization effect to improve the generalization of the model.

There are many existing work aiming at solving the auto data augmentation problem. The

first work that tried to learn data augmentation policy from data is AutoAugment (AA) [119].

Specifically, AutoAugment utilizes a recurrent neural network (RNN) as the controller to find the

best policy in a separate search process on a small proxy task (smaller model size and dataset size).

Once the search process is over, the learned policies are transferred to the target task and fixed

during the whole training process. These learned augmentation policies significantly improve the

generalization of deep models [119]. However, its search time is huge: it costs roughly 5,000 GPU

hours to search for the best policies on a smaller dataset they call “reduced CIFAR-10”, which

consists of 4,000 randomly chosen images.

Most of the following works adopted the AutoAugment search space and formulation with

improved optimization algorithms [1, 112, 114, 115]. Population-based augmentation (PBA) [114]

replaces the fixed policy with a dynamic schedule of policies evolving along with the training

process. Fast AutoAugment (Fast AA) [112] proposes a “density match” method to accelerate the

search process and treats the augmented data as missing points in the training set. RandAugment

(RA) [113] eliminates the separate search process by randomly applying augmentation sub-policies,

which best resembles our work. Adversarial AutoAugment (Adv. AA) [1] achieves state-of-the-art

results by utilizing an RNN controller to learn policies that could generate augmented data with

higher loss.

In this chapter, we mathematically show that training models on augmented data impose a
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Figure 5.1: The DivAug framework overview. At the sampling stage, each data in the mini-batch
is augmented by multiple randomly generated sub-polices. Notice the probability vectors of these
augmented data are also obtained. Then k-means++ seeding algorithm is used to sample a subset
of augmented data whose probability vectors are far apart from each other and thus diversifies the
augmented data. At the training stage, the generated data is used to train the model.

regularization effect. Namely, the loss implicitly contains a data-driven regularization term that

is in proportion to the variance of probability vectors, where probability vectors are the outputs

from models trained with the augmented data. From above, we measure the diversity of a set of

augmented data by the variance of their corresponded probability vectors. Based on the measure,

we propose a search-free automated data augmentation framework named DivAug. As illustrated

in Figure 5.1, the framework has two stages: the sampling stage, where we automate the data

augmentation process according to the diversity measure, and the training stage, where we train the

model using the augmented data. Specifically, at the sampling stage, for each image, we sample a

subset of augmented images with high diversity by applying the k-means++ seeding algorithm [120],

where the augmented data accompanied with probability vector which is far away from that of the

original data is sampled with high probability.

Following our mathematical derivation, the regularization effect increases with the diversity

of the augmented data. Consequently, the stronger regularization effect can lead to better model

generalization, which is observed in terms of improved model performance. Our main contributions

can be summarized as follows:

• We mathematically show that, if a model is trained on augmented data, a regularization term,
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which is proportional to the variance of probability vectors, can be decomposed from the loss

function

• From this, we propose a new measure for quantifying the diversity of augmented data. We

validate in our experiments that the relative gain in the accuracy of a model after applying

data augmentation is highly correlated to our proposed measure.

• Based on the proposed measure, we design an sampling-based framework to explicitly

maximize diversity. Without requiring a separate search process, the performance gain from

DivAug is comparable to the state-of-the-art method with better efficiency.

• Our method is search-free and unsupervised. We show that our method can further boost

the performance of the semi-supervised learning algorithm, making it highly applicable to

real-world problems, where labeled data is scarce.

Table 5.1: Summary of automated data augmentation.

Method non-fixed search-free unsupervised without proxy tasks
AA [119] 7 7 7 7

Fast AA [112] 7 7 7 3

PBA [114] 3 7 7 7

Adv. AA [1] 3 7 7 3

RA [113] 7 3 3 3

DivAug (proposed method) 3 3 3 3

As shown in Table 5.1, we outline a general taxonomy of automated data augmentation methods,

characterized by four core properties. Non-fixed: augmentation policies are dynamically changed

along with the training process; search free: automated data augmentation methods do not require a

separate search process; unsupervised: automated data augmentation methods do not require label

information to find the best policy; and without proxy tasks: automated data augmentation methods

perform the search directly on target tasks.
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5.2 Methodology

In this section, we introduce the design and implementation of DivAug. First, we describe our

search space in Section 5.2.1. Then we mathematically show that after employing augmented data,

the training loss implicitly contains a data-driven regularization term that is in proportion to the

variance of probability vectors (Section 5.2.2). Subsequently, we propose to measure the diversity

of a set of augmented data by the variance of their corresponded probability vectors. Based on the

measure, we derive a sampling-based automated data augmentation method to explicitly maximize

the diversity of augmented data (Section 5.2.3).

5.2.1 Search Space

We adopt the basic structure of the well-designed search space introduced in AutoAugment [119].

There are totally 16 image operations in our search space, including Sharpness, ShearX/Y,

TranslateX/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize,

Color, Brightness, Cutout [121], Sample Pairing [122], and Contrast. Let O =

{Sharpness, · · · ,Contrast} be the set of all available operations. Each operation op ∈ O has

two parameters: p, the probability of applying the operation; and m, the magnitude of the opera-

tion. To avoid creating confusion in notations, we use op(·;m) to represent image transformation

specified by op, with magnitude m. Given an image x, the operation op(x; p,m) is defined as:

op(x; p,m) =

 op(x;m), with probability p.

x, with probability 1− p.

Each operation comes with a maximum range of magnitudes to avoid extreme image transformations.

For example, Rotate operation is only allowed to rotate images at most 30 degrees. The maximum

range of magnitude for each operation is set to be the same as those reported in the AutoAugment.

Meanwhile, we normalize the magnitude parameter m to within [0, 1], where 1 stands for the

maximum acceptable magnitude. One example for illustrating the operation is shown in Figure 5.2.

In general, previous automated data augmentation methods search for the top augmentation
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Figure 5.2: The schema of operation Rotate(·;0.7,1.0), where 1.0 is the normalized magnitude of the
operation. Notice Rotate(·;0.7,1.0) denotes rotating the image by 30 degrees with the probability of
0.7.

policy, which is a set of five sub-policies, with each sub-policy consisting of two operations to be

applied to the original images in sequence. Let t be the sub-policy that consists of two consecutive

operations, namely, t(x) = op2(op1(x; p1,m1); p2,m2). For the sake of description convenience,

we simplify the notation as t := op2 ◦ op1. Given the search space, previous automated data

augmentation methods explore and rank the possible policy candidates in a separate search process.

Once the search process is over, the top five policies are collected to form a single final policy, which

is a set containing 25 distinct sub-policies. The final policy is fixed throughout the training process.

For each image in a mini-batch, only one sub-policy will be randomly selected to be applied [119].

However, the fixed policy may be sub-optimal due to the following two factors. First, there

does not exist a sub-policy universally better than all other sub-policies throughout the training

process [1, 114, 123]. For example, sub-policies that can reduce generalization error at the end of

training is not necessarily a good sub-policy at the initial phase [124]. Second, the choices (hence

diversity) of the augmented data is limited by the fixed set of unique sub-policies. From the above

analysis, we design our search space similar to the previous methods with two differences. First,

to introduce more stochasticity, we relax both the probability p and magnitude m as continuous

parameters with value range [0, 1]. Second, the final policy in our search space is defined as the
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universal set that contains all the possible sub-policies. In contrast, the final policy in other work’s

search space is set to a fixed set of 25 unique sub-policies. We note that RandAugment [113]

samples the sub-policies uniformly over the search space similar to ours. The major distinctions in

RandAugment are 1) the magnitude parameter m is fixed discrete integer value, 2) the probability

parameter p is fixed to 1. That means RandAugment always applies operations on the original data.

5.2.2 Regularization Effects of Data Augmentation

We start by introducing the setting and notations of representation learning. Consider a neural

network fθ(x) parameterized by θ (italic for vectors and bold for matrices). fθ map the input x

into a vector representation fθ(x) ∈ RD with D output dimensions. We aim to minimize loss

functions l : RD × R → R over a dataset {(xi, yi)}Ni=1, where yi ∈ {1, · · ·D}. Let p̂(y|x) =

Softmax(fθ(x)) be the probability vector, where the Softmax function is used to normalize the

neural network’s output fθ(x) into a probability distribution. We denote the loss function to be

minimized as L =
∑N

i=1 Li, where Li = l(p̂(y|xi), yi). We denote the gradient of l with respect

to the first argument as l′ ∈ RD. Similarly, we use l′′ ∈ RD×D to represent the Hessian matrix of

l with respect to the first argument. We use t to represent the sub-policy, and T is the set of all

available sub-policies. xti is the augmented data in the vicinity of xi obtained by applying t to xi.

We use 〈·, ·〉 to denote inner-product. For a set S , we use |S| to represent its cardinality. With these

notations, after applying data augmentation, the new loss function becomes:

L′i = Et∼T[l(p̂(y|xti), yi)]. (5.1)

Suppose data augmentation does not significantly modify the feature map. Using the first order

Taylor approximation, we can expand Equation (5.1) around point ψi:

L′i ≈l(ψi, yi)+

Et∼T[〈p̂(y|xti)− ψi, l′(ψi, yi)〉]. (5.2)
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The second term in Equation (5.2) can be cancelled by picking ψi = Et∼Tp̂(y|xti), i.e., ψi is the

averaged probability vector of all samples within the vicinity of xi. If we further expand Equation

(5.1) around point ψi = Et∼Tp̂(y|xti) by considering the second order term, we have:

L′i ≈ l(ψi, yi) + Et∼T[∆>i l
′′(ψi, yi)∆i]. (5.3)

∆i := p̂(y|xti)−ψi is the difference between the probability vector p̂(y|xti) referring to the augmented

data xti, and the averaged probability vector ψi. The second term in Equation (5.3) is so called

the “data-driven regularization term”, which is exact the variance of the probability vector p̂(y|xti),

weighted by l′′(ψi, yi). That means employing augmented data imposes a regularization effect by

implicitly controlling the variance of model’s outputs.

5.2.3 The DivAug Framework

To establish the relationship between the diversity of augmented data and their regularization

effect, we propose a new diversity measure, called Variance Diversity, for the augmented data whose

regularization effect can be quantified. Based on this, we derive a sampling-based framework that

explicitly maximizes the Variance Diversity of the augmented data.

5.2.3.1 Diversity Measure of Augmented Data

We start by proposing a new diversity measure for augmented data, whose regularization effect

can be quantified.

From Equation (5.3), after training models on augmented data, a data-driven regularization term

can be decomposed from the loss function *. From above, we quantify the diversity of a set of

augmented data by the variance of their corresponding probability vectors. Formally, given a model

fθ, for a set of augmented data S = {xtj}Sj=1, where xtj is generated from the same original data x

*This regularization effect is also found in [117] and has been validated empirically. The main difference between
our setup and those in [117] is that the model assumes to be a general kernel classifier in [117].
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Figure 5.3: An example to illustrate the diversity between augmented data. DivAug explicitly looks
for augmented data whose corresponding probability vectors are far away from each other in the
decision space.

by applying different sub-policy tj , we define the diversity of S as:

D(S) = Extj∈S∆>∆. (5.4)

p̂(y|xtj) := Softmax(fθ(xtj)) is the probability vector corresponding to xtj , and ∆ = p̂(y|xtj)−

Extj∈S p̂(y|xtj). Actually, if l′′(ψi, yi) in Equation (5.3) is set as the identity matrix, the diversity of

augmented data is exact the data-driven regularization term in Equation (5.3). According to Equation

(5.4), we name our diversity measure “Variance Diversity”. We note that this is a unsupervised

model-specific measure, which depends only on the model prediction without involving any label

information.

Intuitively, as illustrated in Figure 5.3, if a set of augmented data has large Variance Diversity,

that means their corresponding probability vectors are far away from each other. Therefore, it

is harder for models to give consistent predictions for diversely augmented data. This forces the

models to generalize over the vicinity of original data.
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Algorithm 3 DivAug

1: Input: input image x; model fθ; all possible operations O={Sharpness,· · · , Contrast}
2: Parameters:the number of augmented images per input image E; the number of selected

augmented images per input image used for training S
3: Output:S := a set of S augmented images of input image x
4: for j = 1, · · · , E do
5: Sample operations op1, op2 ∼ O uniformly at random
6: p1 ∼ Uniform(0, 1); p2 ∼ Uniform(0, 1)
7: m1 ∼ Uniform(0, 1);m2 ∼ Uniform(0, 1)
8: Get sub-policy tj := op1(· ; p1,m1) ◦ op2(· ; p2,m2)
9: Generate xtj = t(x)

10: Compute p̂(y|xtj)= Softmax(fθ(x
tj))

11: end for
12: Generate a set of augmented images S of size S, which is a random subset of {xtj , j =

1, · · · , E}, using k-means++ seeding algorithm on {p̂(y|xtj) : j = 1, · · · , E}
13: ReturnS

5.2.3.2 Design of DivAug

According to the definition of Variance Diversity and Equation (5.3), the increase of Variance

Diversity directly strengthens the regularization effect of augmented data. Based on this insight,

our DivAug framework generates a set of diversely augmented data and minimizes the loss over

them. Specifically, DivAug consists of two stages: the sampling stage and the training stage. At the

sampling stage, for each original data xi, we first randomly generate a set of sub-policies {tj}mj=1,

where {xtji }mj=1 are the set of augmented data xtji corresponding to tj . Then we sample a subset of

augmented data Si ⊂ {x
tj
i }mj=1, where |Si| = S < m. The second stage is the training stage, where

we feed the sampled augmented data to the model. Our DivAug framework is illustrated in Figure

5.1. Formally, with the notations introduced in Section 5.2.2 and Section 5.2.3.1, given a neural

66



network fθ, we minimize the following objective:

min
θ

1

N

N∑
i=1

[
1

S

∑
xti∈Si

l(p̂(y|xti), y)], (5.5)

s.t. Si = argmax
Si⊂{x

tj
i }

m

j=1
,

|Si|=S

E
x
tj
i ∈Si

∆>i ∆i. (5.6)

where ∆i = p̂(y|xtji ) − E
x
tj
i ∈Si

p̂(y|xtji ). From Equation (5.6), we target at selecting a subset of

augmented data Si, whose corresponded probability vectors have maximum variance. Unfortunately,

getting the solution of Equation (5.6) poses a significant computational hurdle. Instead of computing

the optimal solution, we efficiently sample Si with the k-means++ seeding algorithm [120], which

is originally made to generate a good initialization for k-means clustering. k-means++ seeding

selects centroids by iteratively sampling points in proportion to their squared distances from the

closest centroid that has been chosen. Here, we define the distance between a pair of probability

vector as their Euclidean distance. Therefore, k-means++ samples a subset of augmented data

where their probability vectors are far apart from each other, which practically leads to a large

Variance Diversity. For more details, the k-means++ seeding algorithm is shown in Algorithm 4 in

the Appendix C. We show the algorithm of DivAug in Algorithm 3 and remark that the operation is

randomly generated. Meanwhile, the two hyperparameters S andE do not need to be tuned on proxy

tasks and can be chosen according to available computation resources. Similar to RandAugment,

DivAug is a sampling-based method that does not require a separate search process. Note that

there is no label information involved in Algorithm 3, which means DivAug is suitable for both

semi-supervised learning and supervised learning.

5.3 Experiments

Our experiments aim to answer the following research questions:

• RQ1. What is the effect of Variance Diversity on model generalization?

• RQ2. How effective is the proposed DivAug compared with other automated data augmenta-
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tion methods under the supervised settings?

• RQ3. How well does DivAug improve the performance of semi-supervised learning algo-

rithms?

5.3.1 Experimental Settings

Below, we first introduce the datasets and the default augmentation method for them. Then, we

will introduce the hyperparameter setting of Divaug (S and E in Algorithm 3) , and the baseline

methods for comparison.

• CIFAR-10 & CIFAR-100 [125]: The training sets of the two datasets are composed of

50,000 colored images with 10 and 100 classes, respectively. Each image in these two

datasets is in size of 32× 32. For CIFAR datasets, the default augmentation crops the padded

image at a random location, and then horizontally flips it with the probability of 0.5. Then,

it applies Cutout [121] to randomly select a 16 × 16 patch of the image, and set the pixels

within the selected patch as zeros.

• ImageNet [126]: ImageNet includes colored images of 1,000 classes. The training set has

roughly 1.2M images, and the validation set has 50,000 images. The default augmentation

randomly crops and resizes images to a size of 224× 224, and then horizontally flips it with a

probability of 0.5. Subsequently, it performs ColorJitter and PCA to the flipped image [110].

For DivAug, we set E = 8 and S = 4 for the experiments in Section 5.3.2 and 5.3.3, excluding

the ImageNet experiment. For ImageNet, we set E = 4 and S = 2 due to limited resources. For

the semi-supervised learning experiment, we set E = 4 and S = 2. We did not tune these two

hyperparameters, and we choose them mainly according to the available GPU memory.

The methods for comparison are as below: We compare Algorithm 3 with AutoAugment

(AA) [119], Fast AutoAugment (Fast AA) [112], Population Based Augmentation (PBA) [114],

RandAugment (RA) [113] and Adversarial AutoAugment (Adv. AA) [1]. For each image, the

augmentation policy proposed by different methods and the default augmentation are applied in

sequence.

68



5.3.2 Correlation Between Variance Diversity and Generalization

To answer RQ1, we calculate the Variance Diversity of augmented data generated by AA, Fast

AA, RA, the default augmentation introduced in Section 5.3.1, and DivAug†. Then, we report the

test accuracy of models trained on augmented data generated by different methods.

Because Variance Diversity is an unsupervised, model-specific measure, for a fair comparison,

we first train a Wide-ResNet-40-2 model on CIFAR-10 without applying any data augmentation

methods. Then we use it as the fθ in Equation (5.4) to evaluate all different automated data

augmentation methods. To verify the correlation between generalization and Variance Diversity, we

calculate the Variance Diversity of augmented data as follows: for each image in the training set, an

automated augmentation method is used to randomly generate four augmented images. Then we

calculate the Variance Diversity of these four images according to Equation (5.4). We report the

averaged Variance Diversity over the entire training set in Figure 5.4.

Figure 5.4: The performance gain is positively correlated to Variance Diversity. In general, almost
all points lies near the diagonal, and the relative gain in test accuracy increases with larger Variance
Diversity.

†We do not include Adv. AA because the official code is not released. For PBA, the official code is based on Ray
and hard to migrate our codebase for a fair comparison.
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Table 5.2: Test accuracy (%) on CIFAR-10 and CIFAR-100. For ImageNet, we report the validation
accuracy (%). We compare our method with the default data augmentation (Baseline), AA, Fast
AA, PBA, RA, and Adv. AA. Our results are averaged over four trials except ImageNet.

Dataset Model Baseline AA Fast AA PBA RA Adv. AA DivAug

CIFAR-10

Wide-ResNet-40-2 94.7 96.3 96.4 - 96.1 - 96.9±.1
Wide-ResNet-28-10 96.1 97.4 97.3 97.4 97.3 98.1 98.1±.1

Shake-Shake (26 2x96d) 97.1 98.0 98.0 98.0 98.0 98.1 98.1±.1
PyramidNet+ShakeDrop 97.3 98.5 98.3 98.5 98.5 98.6 98.5±.1

CIFAR-100
Wide-ResNet-40-2 74.0 79.3 79.4 - - - 81.3±.3

Wide-ResNet-28-10 81.2 82.9 82.7 83.3 83.3 84.5 84.2±.2
Shake-Shake (26 2x96d) 82.9 85.7 85.1 84.7 - 85.9 85.3±.2

ImageNet ResNet-50 76.3 77.6 77.6 - 77.6 79.4 78.0

Figure 5.4 demonstrates the performance gain and Variance Diversity are positively correlated

(the detailed test accuracy is shown in the first row of Table 5.2). As shown in the figure, all

automated data augmentation methods could improve the Variance Diversity of augmented data

over the default augmentation. Specifically, AA and Fast AA has small Variance Diversity. It makes

sense because both of them try to minimize the distribution shift of the augmented data from the

original distribution. For example, Fast AA treats the augmented data as the missing point in the

training set. As a result, for CIFAR-10, all of the reported sub-policy proposed by AA and Fast AA

do not contain the counter-intuitive operation SamplePair [112, 119], which limits the Variance

Diversity of the augmented data generated by them. In contrast, DivAug has the largest Variance

Diversity because it tries to explicitly maximize the Variance Diversity of the augmented data.

Notice RA has larger Variance Diversity compared to AA and Fast AA. This might be a result of

RA randomly sample operations. As a result, RA samples more distinct sub-policies than AA and

Fast AA do and leads to larger diversity. Here we remark that although RA has larger Variance

Diversity compared to AA and Fast AA, the model’s relative gain in accuracy is smaller compared

to those of AA and Fast AA. We provided a detailed analysis in the Appendix D.

5.3.3 The Effectiveness of DivAug Under the Supervised Settings

The main propose of automated data augmentation is to further improve the generalization of

models over traditional data augmentation techniques. To answer RQ2, we compare our proposed
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method with several baselines under the supervised learning settings.

5.3.3.1 Experiment on CIFAR-10 and CIFAR-100

Following [112, 113, 119], we evaluate our proposed method with the following models:

Wide-ResNet-28-10, Wide-ResNet-40-2 [127], Shake-Shake (26 2x96d) [128], and Pyramid-

Net+ShakeDrop [129, 130]. The details of hyperparameters are shown in Appendix Table E.1.

CIFAR-10 Results: In Table 5.2, we report the test accuracy of these models. For all of these

models, our proposed method can achieve better performance compared to previous methods. We

achieve 0.7%, 0.8%, 0.7%, 0.8% improvement on Wide-ResNet-28-10 compared to AA, Fast AA,

PBA and RA, respectively. Overall, DivAug significantly improves the performances over baselines

while achieves comparable performances to those of Adv. AA.

The effect of k-means++ : As illustrated in Section 5.2.1, we remark that RA basically samples

sub-policies uniformly in our search space. In contrast, DivAug samples sub-policies using k-

means++ seeding algorithm, which pushes the augmented data farther away from each other in

the decision space of a given model. Thus, RA can be viewed as the random version of DivAug:

the sub-policies picked by RA has an identical percentage of different operations throughout

the training process. To understand the effect of k-means++ and how DivAug improves the test

accuracy over RA, we further visualize the distribution of sub-policies selected by DivAug with

Wide-ResNet-40-2 on CIFAR-10 over the training process. We found that the percentages of some

operations picked from the sampled sub-policies, such as TranslateY, ShearY, Posterize,

and SampleParing, gradually increase along with the training process. In contrast, some

color-based operation, such as Invert, Brightness, AutoContrast, and Color, gradually

decrease along with the training process. In Figure 5.5, we plot the statistics of the two most

contrasting operations which exhibit said phenomena, namely, Posterize and Invert. This

behavior is consistent with the discovery that there does not exist an operation beating all other

operations throughout the training process [1, 114]. Also, the average probability of applying

operations in the selected sub-policies slowly increases with the training process. That means

DivAug tends to mildly shift the distribution of augmented images away from the original one
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over the training process. From above, it suggests that the sub-policies selected by DivAug evolve

throughout the training process.

Figure 5.5: The distribution of selected sub-policies evolves along with the training process. For
illustration propose, we only plot the statistics of the two most contrasting operations which exhibit
said phenomena, namely Posterize and Invert. (a) The statistics of Posterize and Invert in the sub-
policies selected by DivAug. (b) The averaged probability of applying operations in the sub-policies
selected by DivAug.

Training Efficiency Analysis: DivAug is estimated to be significantly faster than Adv. AA for

the following reasons. Following the time cost metric in [118], we estimate the inference cost (see

Algorithm 3 line 7) equals half of the training cost. Under the setting of E = 8 and S = 4, DivAug

additionally generates four times more augmented data for training. In contrast, Adv. AA needs to

generate eight times more augmented data to achieve the results reported in Table 5.2. Moreover, it

also needs a separate phase to search for the best policy. Although the search time for Adv. AA is

not reported in [1]. The estimated costs are summarized in Table 5.3.

Table 5.3: Comparison of the total cost of DivAug and Adv. AA on CIFAR-10 relative to RA. The
training cost of Adv. AA is cited from [1].

RA Adv. AA DivAug
Training(×) 1.0 8.0 + Search Cost 4.5
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CIFAR-100 Results: As shown in Table 5.2, DivAug generally achieves non-trivial perfor-

mance gain over all other methods excluding Adv. AA. However, we note that DivAug does not

require label information or a separate search process. Also, DivAug is significantly faster than Adv.

AA.

5.3.3.2 Experiment on ImageNet

Following [112, 113, 119], we select ResNet-50 [98] to evaluate our proposed method. The

details of the hyperparameters are shown in Appendix Table E.1. As shown in Table 5.2, DivAug

outperforms other baselines except Adv. AA. We remark that due to the limited resources, the two

hyperparameters in Algorithm 3 are set to E = 4 and S = 2, respectively. The performance gain

from DivAug is expected to be further improved with larger E and S.

5.3.4 The Effectiveness of DivAug Under the Semi-Supervised Setting

One of the key techniques in semi-supervised learning [131] (SSL) is consistency regularization,

which encourages the model to produce similar probability vectors when the input data is perturbed

by noise. It has been proven that the augmented data produced by state-of-the-art automated

methods can serve as a superior source of noise under the consistency regularization framework

[132, 133]. Specifically, UDA [132] utilizes RA as the source of perturbation and achieves non-

trivial performance gain. Also, it has been theoretically shown that the success of UDA stems from

the diversity of augmented data generated by RA [132].

However, most automated data augmentation methods require label information to search for

the best policy. Thus, this prerequisite limits their application in SSL. In contrast, our proposed

method is suitable for SSL because it is unsupervised and tries to explicitly maximize diversity.

This leads to the following question: can SSL benefit from our proposed DivAug (RQ3)? To answer

this question, following UDA, we change the source of perturbation from RA to DivAug (detailed

hyperparameters are shown in the Appendix). Here, we report the averaged results over four trials.

As shown in Table 5.4, DivAug can further boost the performance of UDA under different settings.

Moreover, the performance gap grows larger when there is less labeled data available. This might
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be because, when there is limited labeled data, the regularization effect brought by diversity plays a

much bigger role in model performance.

Table 5.4: Error rate (%) comparison with existing methods on CIFAR-10 with 1000, 2000, and
4000 labeled data. All the compared methods use the architecture Wide-ResNet-28-2. For fair
comparison, we reproduced the UDA(RA)∗ result by ourselves using the same codebase.

Methods
CIFAR-10

1000 2000 4000
Pseudo-Label[134] 30.91±1.73 21.96±0.42 16.21±0.57

Π-Model[135] 31.53±0.98 23.07±0.66 17.41±0.63
Mean Teacher[136] 17.32±4.00 12.17±0.22 9.19±0.28

MixMatch[137] 7.75±0.32 7.03±0.15 6.42±0.10
UDA(RA)∗ 7.37±0.15 6.50 ±0.14 5.44±0.15

UDA(DivAug) 6.94 ±0.12 6.26±0.15 5.40±0.12
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6. CONCLUSIONS AND FUTURE WORK

In this dissertation, we propose a series of methods and frameworks to address different problems

in the process of efficient neural architecture search in automated deep learning. In this chapter,

we conclude the dissertation and propose the problems to be studied in the future following this

dissertation.

6.1 Conclusions

First, we propose a method for learning vector representations from graphs to effectively extract

information from the neural architectures. The proposed method, namely, discriminative graph

autoencoder (DGA), can learn smooth vector representations for graphs, which also leverages

discriminative information based on the graph labels. Specifically, it samples subgraphs from

each of the graphs and vectorizes them to feed to the discriminative autoencoder, and then the

autoencoder is optimized for two goals: reconstructing the subgraphs and predicting the labels.

Experiments on real-world datasets demonstrate that DGA effectively and efficiently learns vector

representations from graphs which performed well on classification and visualization tasks.

Second, we propose a novel method for efficient neural architecture search with Bayesian

optimization and network morphism. It enables Bayesian optimization to guide the search by

designing a neural network kernel, and an algorithm for optimizing acquisition function in tree-

structured space. The proposed method is wrapped into an open-source AutoML system, namely

AutoKeras, which can be easily downloaded and used with an extremely simple interface. The

method has shown good performance in the experiments and outperformed several traditional

hyperparameter-tuning methods and modern neural architecture search methods.

Third, we propose a new joint neural architecture search and hyperparameter tuning framework

including a hyperparameter space and a greedy search algorithm. The algorithm warm starts the

search and prefers exploitation over exploration to maximize the efficiency of the joint tuning.

It can handle multi-task learning and multi-modal data. The search space is fully customizable.
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The method is developed as a new version of AutoKeras with simple APIs to efficiently provide

end-to-end deep learning solutions to the users. The model found by AutoKeras can be easily

exported and deployed in the production environment with the help of the TensorFlow ecosystem.

Fourth, to address the problem of automated data augmentation, we propose a new measure

for quantifying the diversity of augmented data called Variance Diversity by investigating the

regularization effect of data augmentation. We validate in experiments that the performance

gain from automated data augmentation is highly correlated to Variance Diversity. Based on this

measure, we derive the DivAug framework to explicitly maximize Variance Diversity during data

augmentation. We demonstrate our proposed method has the practical utility of achieving better

performance without the need to search for top policies in a separate phase. Therefore, DivAug can

benefit both the supervised tasks and the semi-supervised tasks.

With these methods and frameworks, we successfully address the challenges in the process of

efficient neural architecture search for automated deep learning. It covers the neural architecture

representation learning, search algorithm, neural architecture evaluations, the joint search space,

and some essential parts to be automated in the entire deep learning solution.

6.2 Future Work

In the future, the following open questions may be studied following this dissertation.

First, the AutoML methods may be expanded to more tasks. Most of the existing work on

AutoML are using classification and regression tasks as the evaluation of the proposed methods.

However, for many tasks, like image segmentation [138], object detection [139, 140], and network

analysis [141, 142], task-specific methods may have better performance than general methods.

Second, improving the scalability of the AutoML methods is essential for the adoption of

AutoML on real-world problems. For many real-world applications of deep learning, the training

dataset can be extremely large, like ImageNet. Running AutoML solutions on such large datasets is

not applicable with a single machine. To enable users to use AutoML solutions on large datasets,

distributed search and training of the neural network would be a valid approach. How to effectively

use the given computational resources for training different models is a non-trivial optimization
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problem, which involves many trade-offs. For example, one can start the trials with models with

longer training time early so that more trials can be done, or finish some quick trials before the large

models so that we may already have some estimations of their performances.

Third, improving the human interaction during the AutoML process would give the user a better

experience. Many advanced users of AutoML may want to know more about the AutoML process,

for example, what hyperparameters are in the search space, and how are the hyperparameters

influencing the performance. They may need this information for their fine-tuning of the model on

the final stage before putting it to production. A graphical user interface would be a good solution.

How to deliver this information to the users visually is an important problem. It may use various

data visualization methods to allow the users to explore this information interactively.

Fourth, considering the various deploy environment of the machine learning models, searching

for a model with the user-provided constraints is also an important problem. For example, the user

may want to deploy the model in an embedded system, which became a common scenario with the

recent advancement in the internet of things (IoT) research. However, the memory resources of such

end-devices are usually limited. For some time-sensitive applications, it may also have constraints

on the inferencing time of the model. How to find a good model with the provided constraints would

be the key to enable much more use cases of AutoML in various deployment environments.
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APPENDIX A

REPRODUCIBILITY OF NAS EXPERIMENTS

In this section, we provide the details of our implementation and proofs for reproducibility.

• The default architectures used to initialized are introduced.

• The details of the implementation of the four network morphism operations are provided.

• The details of preprocessing the datasets are shown.

• The details of the training process are described.

• The process of using ρ(·) to distort the approximated edit-distance of the neural architectures

d(·, ·) is introduced.

Notably, the code and detailed documentation are available at AutoKeras official website (https:

//autokeras.com).

A.1 Default Architectures

As we introduced in the experiment section, for all other methods except AK-DP, are using the

same three-layer convolutional neural network as the default architecture. The AK-DP is initialized

with ResNet, DenseNet, and the three-layer CNN. In the current implementation, ResNet18 and

DenseNet121 specifically are chosen as the among all the ResNet and DenseNet architectures.

The three-layer CNN is constructed as follows. Each convolutional layer is actually a convolu-

tional block of a ReLU layer, a batch-normalization layer, the convolutional layer, and a pooling

layer. All the convolutional layers are with kernel size equal to three, stride equal to one, and

number of filters equal to 64.

All the default architectures share the same fully-connected layers design. After all the convolu-

tional layers, the output tensor passes through a global average pooling layer followed by a dropout
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layer, a fully-connected layer of 64 neurons, a ReLU layer, another fully-connected layer, and a

softmax layer.

A.2 Network Morphism Implementation

The implementation of the network morphism is introduced from two aspects. First, we describe

how the new weights are initialized. Second, we introduce a pool of possible operations which the

Bayesian optimizer can select from, e.g. the possible start and end points of a skip connection.

The four network morphism operations all involve adding new weights during inserting new

layers and expanding existing layers. We initialize the newly added weights with zeros. However,

it would create a symmetry prohibiting the newly added weights to learn different values during

backpropagation. We follow the Net2Net [71] to add noise to break the symmetry. The amount of

noise added is the largest noise possible not changing the output.

There are a large amount of possible network morphism operations we can choose. Although

there are only four types of operations we can choose from, a parameter of the operation can be

set to a large number of different values. For example, when we use the deep(G, u) operation, we

need to choose the location u to insert the layer. In the tree-structured search, we actually cannot

exhaust all the operations to get all the children. We will keep sampling from the possible operations

until we reach eight children for a node. For the sampling, we randomly sample an operation

from deep, wide and skip (add and concat), with equally likely probability. The parameters of

the corresponding operation are sampled accordingly. If it is the deep operation, we need to

decide the location to insert the layer. In our implementation, any location except right after a

skip-connection. Moreover, we support inserting not only convolutional layers, but activation layers,

batch-normalization layers, dropout layer, and fully-connected layers as well. They are randomly

sampled with equally likely probability. If it is the wide operation, we need to choose the layer

to be widened. It can be any convolutional layer or fully-connected layer, which are randomly

sampled with equally likely probability. If it is the skip operations, we need to decide if it is add or

concat. The start point and end point of a skip-connection can be the output of any layer except the

already-exist skip-connection layers. So all the possible skip-connections are generated in the form
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of tuples of the start point, end point, and type (add or concat), among which we randomly sample

a skip-connection with equally likely probability.

A.3 Preprocessing the Datasets

The benchmark datasets, e.g., MNIST, CIFAR10, FASHION, are preprocessed before the neural

architecture search. It involves normalization and data augmentation. We normalize the data to the

standard normal distribution. For each channel, a mean and a standard deviation are calculated since

the values in different channels may have different distributions. The mean and standard deviation

are calculated using the training and validation set together. The testing set is normalized using

the same values. The data augmentation includes random crop, random horizontal flip, and cutout,

which can improve the robustness of the trained model.

A.4 Performance Estimation

During the observation phase, we need to estimate the performance of a neural architecture to

update the Gaussian process model in Bayesian optimization. Since the quality of the observed

performances of the neural architectures is essential to the neural architecture search algorithm, we

propose to train the neural architectures instead of using the performance estimation strategies used

in literatures [10, 58, 143]. The quality of the observations is essential to the neural architecture

search algorithm. So the neural architectures are trained during the search in our proposed method.

There two important requirements for the training process. First, it needs to be adaptive to

different architectures. Different neural networks require different numbers of epochs in training

to converge. Second, it should not be affected by the noise in the performance curve. The final

metric value, e.g., mean squared error or accuracy, on the validation set is not the best performance

estimation since there is random noise in it.

To be adaptive to architectures of different sizes, we use the same strategy as the early stop

criterion in the multi-layer perceptron algorithm in Scikit-Learn [91]. It sets a maximum threshold

τ . If the loss of the validation set does not decrease in τ epochs, the training stops. Comparing

with the methods using a fixed number of training epochs, it is more adaptive to different neural
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architectures.

To avoid being affected by the noise in the performance, the mean of metric values of the last τ

epochs on the validation set is used as the estimated performance for the given neural architecture.

It is more accurate than the final metric value on the validation set.

A.5 Distance Distortion

In this section, we introduce how Bourgain theorem is used to distort the learned calculated edit-

distance into an isometrically embeddable distance for Euclidean space in the Bayesian optimization

process.

From Bourgain theorem, a Bourgain embedding algorithm is designed. The input for the

algorithm is a metric distance matrix. Here we use the edit-distance matrix of neural architectures.

The outputs of the algorithm are some vectors in Euclidean space corresponding to the instances.

In our case, the instances are neural architectures. From these vectors, we can calculate a new

distance matrix using Euclidean distance. The objective of calculating these vectors is to minimize

the difference between the new distance matrix and the input distance matrix, i.e., minimize the

distortions on the distances.

We apply this Bourgain algorithm during the update process of the Bayesian optimization. The

edit-distance matrix of previous training examples, i.e., the neural architectures, is stored in memory.

Whenever new examples are used to train the Bayesian optimization, the edit-distance is expanded

to include the new distances. The distorted distance matrix is computed using Bourgain algorithm

from the expanded edit-distance matrix. It is isometrically embeddable to the Euclidean space. The

kernel matrix computed using the distorted distance matrix is a valid kernel.
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APPENDIX B

PROOF OF THE VALIDITY OF THE KERNEL

Theorem 1. d(fa, fb) is a metric space distance.

Proof of Theorem 1:

Theorem 1 is proved by proving the non-negativity, definiteness, symmetry, and triangle inequal-

ity of d.

Non-negativity:

∀fx fy ∈ F , d(fx, fy) ≥ 0.

From the definition of w(l) in Equation (3.6), ∀l, w(l) > 0. ∴ ∀lx ly, dl(lx, ly) ≥ 0. ∴ ∀Lx Ly,

Dl(Lx, Ly) ≥ 0. Similarly, ∀sx sy, ds(sx, sy) ≥ 0, and ∀Sx Sy, Ds(Sx, Sy) ≥ 0. In conclusion,

∀fx fy ∈ F , d(fx, fy) ≥ 0.

Definiteness:

fa = fb ⇐⇒ d(fa, fb) = 0 .

fa = fb =⇒ d(fa, fb) = 0 is trivial. To prove d(fa, fb) = 0 =⇒ fa = fb, let d(fa, fb) = 0.

∵ ∀Lx Ly, Dl(Lx, Ly) ≥ 0 and ∀Sx Sy, Ds(Sx, Sy) ≥ 0. Let La and Lb be the layer sets of fa and

fb. Let Sa and Sb be the skip-connection sets of fa and fb.

∴ Dl(La, Lb) = 0 and Ds(Sa, Sb) = 0. ∵ ∀lx ly, dl(lx, ly) ≥ 0 and ∀sx sy, ds(sx, sy) ≥ 0.

∴ |La| = |Lb|, |Sa| = |Sb|, ∀la ∈ La, lb = ϕl(la) ∈ Lb, dl(la, lb) = 0, ∀sa ∈ Sa, sb = ϕs(sa) ∈ Sb,

ds(sa, sb) = 0. According to Equation (3.6), each of the layers in fa has the same width as the

matched layer in fb, According to the restrictions of ϕl(·), the matched layers are in the same

order, and all the layers are matched, i.e. the layers of the two networks are exactly the same.

Similarly, the skip-connections in the two neural networks are exactly the same. ∴ fa = fb. So

d(fa, fb) = 0 =⇒ fa = fb, let d(fa, fb) = 0. Finally, fa = fb ⇐⇒ d(fa, fb) .

Symmetry:

∀fx fy ∈ F , d(fx, fy) = d(fy, fx).
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Let fa and fb be two neural networks in F , Let La and Lb be the layer sets of fa and fb. If

|La| 6= |Lb|, Dl(La, Lb) = Dl(Lb, La) since it will always swap La and Lb if La has more layers. If

|La| = |Lb|, Dl(La, Lb) = Dl(Lb, La) since ϕl(·) is undirected, and dl(·, ·) is symmetric. Similarly,

Ds(·, ·) is symmetric. In conclusion, ∀fx fy ∈ F , d(fx, fy) = d(fy, fx).

Triangle Inequality:

∀fx fy fz ∈ F , d(fx, fy) ≤ d(fx, fz) + d(fz, fy).

Let lx, ly, lz be neural network layers of any width. If w(lx) < w(ly) < w(lz), dl(lx, ly) =

w(ly)−w(lx)
w(ly)

= 2 − w(lx)+w(ly)

w(ly)
≤ 2 − w(lx)+w(ly)

w(lz)
= dl(lx, lz) + dl(lz, ly). If w(lx) ≤ w(lz) ≤ w(ly),

dl(lx, ly) = w(ly)−w(lx)
w(ly)

= w(ly)−w(lz)
w(ly)

+ w(lz)−w(lx)
w(ly)

≤ w(ly)−w(lz)
w(ly)

+ w(lz)−w(lx)
w(lz)

= dl(lx, lz) + dl(lz, ly).

Ifw(lz) ≤ w(lx) ≤ w(ly), dl(lx, ly) = w(ly)−w(lx)
w(ly)

= 2−w(ly)

w(ly)
−w(lx)
w(ly)

≤ 2−w(lz)
w(lx)
−w(lx)
w(ly)

≤ 2−w(lz)
w(lx)
−

w(lz)
w(ly)

= dl(lx, lz) + dl(lz, ly). By the symmetry property of dl(·, ·), the rest of the orders of w(lx),

w(ly) and w(lz) also satisfy the triangle inequality. ∴ ∀lx ly lz, dl(lx, ly) ≤ dl(lx, lz) + dl(lz, ly).

∀La Lb Lc, given ϕl:a→c and ϕl:c→b used to compute Dl(La, Lc) and Dl(Lc, Lb), we are able to

construct ϕl:a→b to compute Dl(La, Lb) satisfies Dl(La, Lb) ≤ Dl(La, Lc) +Dl(Lc, Lb).

LetLa1 = { l | ϕl:a→c(l) 6= ∅ ∧ ϕl:c→b(ϕl:c→a(l)) 6= ∅}. Lb1 = { l | l = ϕl:c→b(ϕl:a→c(l
′)), l′ ∈

La1}, Lc1 = { l | l = ϕl:a→c(l
′) 6= ∅, l′ ∈ La1}, La2 = La−La1, Lb2 = Lb−Lb1, Lc2 = Lc−Lc1.

From the definition ofDl(·, ·), with the current matching functionsϕl:a→c andϕl:c→b,Dl(La, Lc) =

Dl(La1, Lc1)+ Dl (La2 , Lc2) and Dl(Lc, Lb) = Dl(Lc1, Lb1)+ Dl(Lc2 , Lb2). First, ∀la ∈ La1

is matched to lb = ϕl:c→b(ϕl:a→c(la)) ∈ Lb. Since the triangle inequality property of dl(·, ·),

Dl(La1, Lb1) ≤Dl(La1, Lc1)+ Dl(Lc1, Lb1). Second, the rest of the la ∈ La and lb ∈ Lb are free to

match with each other.

Let La21 = { l | ϕl:a→c(l) 6= ∅ ∧ ϕl:c→b(ϕl:c→a(l)) = ∅}, Lb21 = { l | l = ϕl:c→b(l
′) 6=

∅, l′ ∈ Lc2}, Lc21 = { l | l = ϕl:a→c(l
′) 6= ∅, l′ ∈ La2}, La22 = La2 − La21, Lb22 = Lb2 − Lb21,

Lc22 = Lc2 − Lc21.

From the definition ofDl(·, ·), with the current matching functionsϕl:a→c andϕl:c→b,Dl(La2, Lc2) =

Dl(La21, Lc21) +Dl (La22, Lc22) and Dl(Lc2, Lb2) = Dl(Lc22, Lb21) +Dl(Lc21, Lb22).

∵ Dl(La22, Lc22) +Dl(Lc21, Lb22) ≥ |La2|
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and Dl(La21, Lc21) +Dl(Lc22, Lb21) ≥ |Lb2|

∴ Dl(La2, Lb2) ≤ |La2|+ |Lb2| ≤ Dl(La2, Lc2) +Dl(Lc2, Lb2).

So Dl(La, Lb) ≤ Dl(La, Lc) +Dl(Lc, Lb).

Similarly, Ds(Sa, Sb) ≤ Ds(Sa, Sc) +Ds(Sc, Sb).

Finally, ∀fx fy fz ∈ F , d(fx, fy) ≤ d(fx, fz) + d(fz, fy).

In conclusion, d(fa, fb) is a metric space distance. �

96



APPENDIX C

k-means++ SEEDING ALGORITHM

As shown in Algorithm 4, the core idea of k-means++ seeding algorithm is to sample S centers

sequentially, where each new center is sampled with probability proportional to the squared distance

to its nearest center. The set of centers returned by Algorithm 4 is theoretically guaranteed to far

away from each others [120].

Algorithm 4 k-means++seeding Algorithm [120]

1: Input:G := {pi : pi ∈ RD}; Target size S
2: Output:Center set C of size S
3: C1 = {c1}, where c1 is sampled uniformly at random from G
4: for t = 2, · · · , S do
5: Et(x) := minc∈Ct−1 ||x− c||2
6: ct ← sample x from G with probability E2

t (x)∑
x∈G E

2
t (x)

7: Ct ← Ct−1 ∪ ct
8: end for
9: ReturnCS

97



APPENDIX D

CORRELATION ANALYSIS FOR VARIANCE DIVERSITY

Recently, two measures, Affinity and Diversity, are introduced in [124] for quantifying distribu-

tion shift and augmentation diversity, respectively. Across several benchmark datasets and models,

it has been observed that the performance gain from data augmentation can be predicted not by

either of these alone but by jointly optimizing the two [124]. Specifically, Affinity quantifies how

much a sub-policy shifts the training data distribution from the original one. For a set of augmented

data, our proposed diversity measure is calculated based on the variance of their probability vectors.

Meanwhile, the diversity measure proposed in [124] is defined as the training loss of a given model

over the augmented data. Below, we give the formal definition of Affinity and Loss Diversity:

Definition 1 (Affinity [124]). Let Dtrain and Dval be training and validation datasets drawn i.i.d.

from the same clean data distribution, and let D′val be derived from Dval by applying a stochastic

augmentation strategy, a, once to each image in Dval, D′val = {(a(xi), y) : ∀(xi, y) ∈ Dval}.

Further let m be a model trained on Dtrain and A(m,D) denote the model’s accuracy when

evaluated on dataset D. The affinity τ [a;m;Dval] is defined as:

τ [a;m;Dval] = A(m,D′val)−A(m,Dval) (D.1)

Definition 2 (Loss Diversity [124]). Let Dtrain be the training set, and D′train be the augmented

training set resulting from applying a stochastic augmentation strategy α. For a set of augmented

data S = {x′i}, where x′i is obtained by applying α to xi, stochastically. Further, given a model

m which is trained on D′train, let L′i be the training loss corresponding to x′i. The Loss Diversity

between {x′i}, Dloss({x′i}), is defined as:

Dloss(S) = Ex′i∈SL
′
i

* (D.2)
*The original definition of Loss Diversity is defined for the entire training set. To make it comparable to Variance
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Figure D.1: The performance gain is positively correlated to Variance Diversity. Also, the Loss
Diversity and Variance Diversity are highly correlated. The marker size in the legend indicates the
relative gain in test accuracy of different methods. (a) The Loss Diversity and the Variance Diversity
of augmented data generated by different methods. All points lie near the diagonal of the Figure. In
general, the relative gain in test accuracy increases with larger Variance Diversity (b) The Affinity
and Variance Diversity of augmented data generated by different methods.

As we analyzed, given a set of augmented data that has large Variance Diversity, it is hard for

models to give consistent predictions for them, which will result in a large training loss. Thus, Loss

Diversity and Variance Diversity are highly correlated. The main difference between them is that

Variance Diversity is an unsupervised measure, i.e., Variance Diversity is not related to the label

information.

We further plot the performance gain from each augmentation methods against the Affinity,

Loss Diversity, and Variance Diversity of the augmented data generated by them in Figure D.1.

In the legend, the marker size indicates the test accuracy of a Wide-ResNet-40-2 model trained

with different automated data augmentation methods (The detailed results are shown in the first

row of Table 5.2). Figure D.1 demonstrates the Loss Diversity and Variance Diversity are highly

correlated, which is consistent with our theoretical analysis. Following [124], we show the Affinity

and Variance Diversity of augmented data generated by different methods in Figure D.1 (b). There

is a clear trend that the Loss Diversity and Variance Diversity contradict with the Affinity to some

extent. We remark that although RA has larger Variance Diversity than AA and Fast AA, the

performance gain from RA is smaller. According to the hypothesis in [124], this can be explained

Diversity, we extend the concept to a set of augmented data generated from the same original data xi.
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by RA has smaller Affinity than those of AA and Fast AA. In contrast, although DivAug has the

largest Variance Diversity, largest Loss Diversity, and the smallest Affinity, DivAug performs best

in terms of test accuracy. We hypothesize that there might exist a sweet spot between Diversity and

Affinity, and how to achieve this sweet spot is an interesting future direction for the automated data

augmentation methods.
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APPENDIX E

DIVAUG EXPERIMENT DETAILS

We list the details of training hyperparameters from the experiments in Section 5.3.3 in Table

E.1.

For the semi-supervised learning experiment in Section 5.3.4, we follow the settings in [132]

and employ Wide-ResNet-28- 2 [127] as the backbone model and evaluate UDA [132] with varied

supervised data sizes. For the experiments on CIFAR-10 with supervised data size 1000, 2000, and

4000, the hyperparameters of them are identical as below: we train the backbone model for 200K

steps. We use a batch size of 32 for labeled data and a batch size of 448 for unlabeled data. The

softmax temperature τ is set to 0.4. The confidence threshold β is set to 0.8. The backbone model is

trained by an SGD optimizer with a learning rate of 1e−4, weight decay of 5e−4, and the Nesterov

momentum with the momentum hyperparameter set to 0.9. We remark that all hyperparameters are

identical to those reported in [132], except for two differences: we train the backbone model for

200K steps instead of 500K, and we do not apply Exponential Moving Average to the parameters of

the backbone model.
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Table E.1: Training hyperparameters of CIFAR-10, CIFAR-100 and ImageNet under the supervised
settings. LR represents learning rate, and WD represents weight decay. We do not specifically tune
these hyperparameters, and all hyperparameters are consistent with those reported in Adversarial
AutoAugment [1].

Dataset Model Batch Size LR WD Epoch LR Schedule

CIFAR-10

Wide-ResNet-40-2 128 0.1 5e−4 200 cosine
Wide-ResNet-28-10 128 0.1 5e−4 200 cosine

Shake-Shake (26 2x96d) 128 0.2 1e−4 600 cosine
PyramidNet+ShakeDrop 128 0.1 1e−4 600 cosine

CIFAR-100
Wide-ResNet-40-2 128 0.1 5e−4 200 cosine

Wide-ResNet-28-10 128 0.1 5e−4 200 cosine
Shake-Shake (26 2x96d) 128 0.1 5e−4 1200 cosine

ImageNet ResNet-50 512 0.2 1e−4 120 cosine
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