
 

 

EVALUATING RISK OF WATERBORNE DEBRIS 

 

A Dissertation 

by 

ANITA HELENE BROWN  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  John M. Niedzwecki 

Committee Members, Luciana R. Barroso 

 Mary Beth Hueste 

 H. Joseph Newton 

Head of Department, Robin Autenrieth 

 

May 2021 

 

Major Subject: Civil Engineering 

 

Copyright 2021 Anita H. Brown 

 

 

 



 

ii 

 

ABSTRACT 

 

The problem of surface and subsurface waterborne debris is of increasing concern 

on a global scale. Recent surges in the number and intensity of worldwide tsunami and 

storm events, as well as growing populations and continuous land development have 

exacerbated the predicament. These events have resulted in both man-made and natural 

debris entering outflows to coastal waterways and eventually oceans. Depending on the 

type and concentration of debris that is introduced into a flow field, it has the potential to 

increase the risk of damage to aquatic infrastructure and ecosystems. Decreased 

performance and failure of critical infrastructure as well as diminished health of wildlife 

due waterborne debris are potential consequences that have already been observed. The 

behavior of debris is highly dependent on the type of debris and characteristics of the 

waterway flow field, which makes debris transport and trajectory a complex phenomenon 

to model. 

The need to better understand and characterize the subsets of debris behavior and 

interactions that lead to these negative outcomes is the focus of this research. A 

probabilistic model is developed to quantitatively investigate the nature of the risks 

associated with waterborne debris and capture the inherent uncertainties in modeling its 

behavior. A fault tree framework is used to establish the relationships between sub-events 

that lead to the disruptive behavior of waterborne debris. Specific focus is given to 

illustrative examples for the entanglement of whales in derelict fishing gear for the US 

Atlantic and Pacific coastlines and impact loading from large waterborne debris on fixed 
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structures in a channel. The risk of entanglement is characterized by the type of fishing 

gear, including its usage rates and loss rates, the region of study, and the seasonal 

migration of whales. The risk of impact loading is characterized by the rate of occurrence 

of debris-generating events, debris characteristics, channel dimensions, flow conditions, 

and the position and dimensions of the structure. Several methods of visualization reveal 

the sensitivity of the model to parameter definitions. The developed comprehensive model 

provides an adaptable risk-based framework for assembling available data to be 

interpreted into meaningful assessments for a wide range of applications. 
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CHAPTER 1  

INTRODUCTION  

 

As waterborne debris continues to pose a growing threat to both the natural 

environment and infrastructure globally, developing an understanding of the associated 

risks and consequences of waterborne debris becomes an increasingly important matter. 

The number of debris-generating events will likely increase as the global climate continues 

to change, and further, it is reasonable to assume that higher quantities pollution from 

manmade debris will be produced with the rising global population. The more prevalent 

waterborne debris becomes, the more imperative it will become to understand the full 

range of consequences and address the pertinent issues surrounding this problem. 

From microplastics to drifting cargo containers, the range of risks associated with 

large quantities of debris is vast, and the varying properties of marine debris pose diverse 

sets of hazards to bodies of water and their inhabitants. Types, sizes, origins, and 

deterioration rates of debris are a few of the many characteristics that aid in defining these 

hazards. Waterborne debris can be transported at the fluid surface or within the water 

column, settle on coasts, riverbeds, or ocean floors, or become trapped in the ever-growing 

ocean gyres. According to the National Oceanic and Atmospheric Administration 

(NOAA), marine debris is one of the most prevalent pollution problems with regards to 

marine environments (NOAA Marine Debris Division, 2015). Waterborne debris has been 

observed to negatively affect aquatic wildlife, interfere with the inflow into power 

generation structures, and impact navigation, shipping, and tourism industries (Critchell 
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et al, 2015; Wan et al, 2017). These effects can lead to innumerable possibilities of long-

term or short-term consequences on the natural environment, lives, and economics.  

There is growing evidence of entanglement of marine life and ingestion of plastic 

debris by marine life down to the smallest marine organisms (Eriksen et al., 2014). 

Impairment of vital biological functions and decline of the general wellbeing of marine 

life are plausible consequences of these events. The entanglement of cetaceans in fishing 

gear is one of the most prominent threats to cetacean safety, especially for baleen whales 

(Dolman et al., 2018). In a review conducted by Stelfox et al. (2016) of published and grey 

literature from 1997 onwards pertaining to the impact of ghost fishing on marine 

mammals, reptiles, and elasmobranchs, it was found that marine mammals accounted for 

70% of all reported entanglements included in the literature review, with humpback and 

North Atlantic right whales as the two highest recorded species. Although determining the 

full extent of these crises is difficult as most instances go unobserved, and therefore 

undocumented, the predicament is still evident. Preventing entanglements is best 

addressed by the general avoidance of areas where populations are present and through 

the enforcement of constructed policies (Dolman et al., 2018), however fishery operations 

and migration routes can overlap as whales follow sources of food. 
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[https://nmssanctuaries.blob.core.windows.net/sanctuaries-

prod/media/archive/news/nov15/whale-entangled-lyman-hws-1200x600.jpg] 

Figure 1.1 Whale entangled by fishing gear at its tail flukes. (Lyman, 2014) 

 

Large debris such as fallen trees or shipping containers have the potential to 

damage riverine infrastructure once waterborne. Lateral forces generated from impacts, 

drag, or hydrostatic forces each contribute to the occurrences of damaged structures. In 

addition to lateral loading, when debris accumulates and debris jams form, the affects to 

the flow field can lead to the removal of sediment or flooding conditions (Diehl, 1997; 

Wallerstein et al., 1997). In the Madeira River, located north of Brazil in the Amazon 

rainforest, the accumulation of woody debris is a significant problem that regularly 

impacts efficient energy generation at the Santo Antonio hydroelectric power plant (Castro 

et al., 2018; Katsuno et al., 2018). The significant accumulation of drifting log debris 

resulting from the erosion of emergent and riparian trees is of constant concern. 

Authorities have attempted to mitigate this continued problem by establishing debris 

containment grids. 

https://nmssanctuaries.blob.core.windows.net/sanctuaries-prod/media/archive/news/nov15/whale-entangled-lyman-hws-1200x600.jpg
https://nmssanctuaries.blob.core.windows.net/sanctuaries-prod/media/archive/news/nov15/whale-entangled-lyman-hws-1200x600.jpg
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In 2005, Hurricane Katrina hit the southern United States and severely damaged 

approximately forty-five bridges in the states of Alabama, Louisiana, and Mississippi 

resulting in a total cost of repair and replacement estimated to be in excess of one billion 

dollars (Padgett et al., 2008). Although much of the damage was due to storm surge-

induced loading, several were damaged due to impact loading from unconstrained barges, 

oil rigs, and boats. For example, the eastbound I-10 Pascagoula River Bridge was damaged 

after being impacted and experienced over 1 m of transverse displacement of a six-span 

unit (Padgett et al., 2008). More recently, twenty-two construction barges broke free of 

their moorings during Hurricane Sally. This hurricane event resulted in severe structural 

damage to the Pensacola Bay Bridge project after four barges, some of which carried 

mounted cranes, impacted the bridge deck structures (Robinson, 2020; Skanska, 2020; 

Slowey 2020). 

 

 

Figure 1.2 Damage to the Pensacola Bay (3 Mile) Bridge from Hurricane Sally 

(Robinson, 2020) 
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Manaadiar (2018) noted that an average of over 1500 shipping containers, of 

typical sizes of 2.43m (8ft) wide, 2.59m (8.5ft) high, and 6.09m (20ft) or 12.19m (40ft) 

long, are lost at sea per year as a result of both catastrophic and non-catastrophic losses 

based on surveys conducted by the World Shipping Council (WSC) from 2008 to 2016. 

These shipping container losses can be a consequence of adverse weather conditions, 

negligence, or failure to comply with limits set by the Container Securing Manual. Very 

recently, the ONE Apus ship suffered a catastrophic loss of 1,816 shipping containers, 

some of which carried “dangerous goods”, in the North Pacific Ocean due to adverse 

weather (Maria, 2020). Daniel et al. (2002) reported that although the containers will most 

often sink, there is a possibility for a portion of containers to float partially submerged or 

release potentially harmful contents into the ocean environment. In Taiwan in 2001, 

Typhoon Nari caused over 1000 shipping containers to be swept into the Keelung River 

Basin from seven container storage yards located on a floodplain. This storm event led to 

blockages at 14 bridges, two of which were destroyed due to impact loading that occurred 

at the bridge decks. Overbank flow from blocked bridges resulted in the flooding of over 

300 hectares (741.3 acres) of land in Keelung City, the loss of 11 lives, 31 injured people, 

and 250 inundated houses (Lee et al., 2006). 

Wan et al. (2017) reported that it is generally estimated that 80% of marine debris 

comes from land-based sources. For manmade debris, this occurs through mechanisms 

such as river and atmospheric transport, littering, shipping, and fishing (Lebreton et al, 

2016). Lebreton et al. (2016) correlated the production of pollution to population densities, 
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urban development, and seasonal changes. Once the debris becomes waterborne, its final 

destination and influences en route are highly dependent on the origin and type of debris. 

Damage to ecosystems is prominently reported on by the media in the form of 

entanglements, ingestion, and habitat loss. Damaged infrastructure has the potential to 

negatively impact regional operations and economics. Increasing incidences of debris 

accumulation along coasts and against structures and incidences of impact loading on 

structures by debris has led to increasing concerns regarding structural performance. The 

presence of large woody debris is particularly complex because, though it has the potential 

to damage infrastructure and induce flooding, it can be essential for stream ecosystems 

and biodiversity (Ruiz-Villanueva et al., 2016). The ability to quantify the risk associated 

with these events is ideal for developing preventative strategies and mechanisms. 

Damage caused by waterborne debris can be cast as a probabilistic risk problem 

through the careful consideration of the causes and sources of debris generation, the 

hazards associated with debris transport, and the consequences of its presence in a body 

of water. These considerations make the formulation of a method to quantify the risks 

associated with waterborne debris highly dependent on the mechanisms that drive 

waterborne debris generation and the region of study. This research intends to develop and 

implement a risk-based model and evaluate its capabilities in making predictions. To 

achieve this goal, probability theory is utilized along with a fault-tree framework to 

construct the general risk-based model template, and relevant data from specific 

applications is collected from open literature to tailor the model and generate predictions. 

The applications of entanglement of whales in fishing gear and impact loading on 
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structures are chosen to demonstrate the flexibility of the developed general model. The 

capacity of the model to address and remedy knowledge gaps is investigated. Various 

visualization schema to illustrate and interpret the resulting predictions are implemented. 
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CHAPTER 2  

BACKGROUND 

 

In this section, a brief summary of background information related to injury to 

marine life due to waterborne debris and debris-structure interactions is presented. The 

injury to marine life background discusses the entanglement of marine mammals, 

specifically whales, and its connection to the phenomenon known as ghost fishing that 

plagues the fishing industry. This discussion will be used to identify key events in 

characterizing the risk of entanglement. The discussion surrounding debris-structure 

interactions focuses on pinpointing the key events that lead to the occurrence of negative 

interactions between debris and riverine structures, mainly highway bridges. Additionally, 

this section reviews the development of established risks models in contexts related to this 

research. Risk models addressing the risk of deadly collisions between boats and wildlife, 

the potential for the formation of debris accumulations against bridge piers, and the risk 

of collisions between bridge piers and aberrant vessels are discussed. Each of the presented 

models are relevant to how a general risk model framework can be formulated. 

 

2.1. Injury to Marine Life 

NOAA lists four main concerns for how marine animals are shown to be impacted 

by marine debris: ingestion, entanglement, habitat damage, and introduction of non-native 

species (NOAA Office of Response and Restoration, 2017). Ingestion occurs when marine 

debris is mistaken for food or unintentionally consumed. This occurrence can result in 
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starvation, poisoning, or digestive issues in marine life. Entanglement restricts the 

movement of animals, potentially causing injuries, drowning, starvation, or suffocation. 

Marine debris damages and impacts habitats by smothering plant life and polluting aquatic 

environments. Invasive species may travel with the introduced marine debris and modify 

the surrounding ecosystem. 

There are innumerable amounts of literature and studies available that survey and 

characterize the abundance of anthropogenic marine debris for specific regions, however, 

there is not an adequate amount of coordination between the procedures used by 

researchers for collecting and reporting observed data across regions. These debris 

collection surveys generally focus on identifying the sources, categories, and/or sizes of 

the encountered debris. It is estimated that by volume at most 10% of the marine debris 

accumulated in oceans is attributed to fishing gear (Macfadyen et al., 2009; World Animal 

Protection, 2018). Factors such as environmental conditions, gear conflict, gear condition, 

and inappropriate disposal each contribute to the presence of derelict fishing gear (Brown 

and Macfadyen, 2007; NOAA Marine Debris Program, 2015). Once this fishing gear 

becomes derelict, most often referred to in relevant literature as abandoned, lost or 

otherwise discarded fishing gear (ALDFG), and is subject to the transport and flow of the 

body of water, it is free to negatively impact marine organisms and habitats as a source of 

disturbance, litter, or entanglements (Brown and Macfadyen, 2007). 

Although active fishing can be found to be just as culpable as ALFDG, addressing 

the entanglement of whales requires understanding the phenomenon known as ghost 

fishing, where gear will continue to catch both target and non-target species of marine life, 
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even when no longer being controlled by the fishermen (Smolowitz, 1978; Brown and 

Macfadyen, 2007; NOAA Marine Debris Program, 2015; Gilman et al., 2016). The 

common categories of fishing gear are identified and explained in Table 2.1. Brown and 

Macfadyen (2007) pinpointed the factors that contribute to the occurrence of ghost fishing 

as the rate at which gear is lost, the catching efficiency of a specific type of gear, and the 

types of marine species that are occupying in the area, including their abundance and 

vulnerability. NOAA Marine Debris Program (2015) poses the following questions that 

are to some extent analogous to these factors: 

 

(1) At what rate is gear lost annually? 

(2) How long can gear continue to ghost fish? 

(3) How effective is the gear at ghost fishing? 

(4) How is value placed on the loss of both commercial AND non-commercial 

species? 

(5) What are the costs of ALDFG on the environment? 

 

Rates of loss, discard, and abandonment of fishing gear are commonly estimated using 

fisher surveys (Brown and Macfadyen, 2007; Gilman et al., 2016). The overall catching 

efficiency of fishing gear is related to the mortality rates of captured species and the 

duration of the gear’s catching efficiency until it is no longer able to catch any species. 

Both aspects can potentially be estimated using monitored study sites and fitted regression 

decay models (Gilman et al., 2016). 
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Because many of the identified factors have a dependence on the specific study 

area, completing assessments across regions can be valuable. Currently there is a lack of 

quantitative assessment methods that allow for numerical comparisons from region to 

region (Dolman et al., 2018). Mattila and Lyman (2014) asserts that the remoteness of 

some regions and the perceived priority of the threat of entanglements influence the 

comprehensiveness of records and depth of investigations. Difficulties in conducting 

comparative research studies related to ALDFG stems from logistical and cost-prohibitive 

difficulties, inconsistent units of measure across regional studies, and varying 

international, national, and regional regulations and compliance (NOAA Marine Debris 

Program, 2015). Uncertainty in the repercussions and extent of ghost fishing also 

contribute to the complexity in quantifying the effects of ghost fishing. Therefore, 

quantifying the risk of entanglement regardless of region would require a flexible method 

that can ultimately bring together data from a variety of sources for valid interpretations. 
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Table 2.1 Descriptions of Fishing Gear Types (Morgan and Chuenpagdee, 2003) 
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2.2. Debris-Structure Interactions 

The two most common debris of concern for marine structural systems, such as 

bridges, are vegetation and ice debris (Briaud et al, 2006). The three types of debris 

hazards, with a focus on vegetative debris, to highway bridges as defined within a 1979 

Federal Highway Administration (FHWA) report by Chang and Shen (1979) are: 

 

(1) destruction from debris accumulation,  

(2) destruction caused by direct impact and drag force, and  

(3) other miscellaneous hazards. 

 

The first type of debris hazard refers to the phenomenon when a piece of debris 

becomes lodged and, consequently, causes more debris to accumulate until flow 

conditions change and the waterway opening is either partially or fully blocked. This event 

is illustrated in Fig. 2.1. The second type comes from forceful impacts from waterborne 

debris. The additional pressure from accumulations can wash away embankment fill and 

highway approaches, cause the bridge deck to be dislodged for low lying decks, or lead to 

collapsed piers. The mechanisms of general accumulation are relevant to characterizing 

general debris-structure interactions and provide insight into the mechanisms that incite 

lateral loading on bridges, including impact loading. 
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Figure 2.1 Illustration of accumulate debris 

 

Waterborne debris will continue to be transported by currents until it reaches areas 

of no current, gets caught on or lodged against an obstruction in the water, or the water 

depth becomes too shallow (Parola et al., 2000). Overall, the accumulation of debris can 

be envisioned as a process that begins with a debris element that becomes lodged against 

an obstruction or a stabilizing element that provides a basis for a jam framework to 

gradually build itself around (Manners and Doyle, 2008). Debris interactions with a single 

pier is the most common and simplest modeling scenario for debris accumulations against 

a structure. Through laboratory testing, the shape of debris jams has been observed to often 

resemble a half-cone (Diehl, 1997, Lagasse et al., 2010; Panici and de Almeida, 2018). 

The major factors that lead to an accumulation have been established in literature as the 

channel geometry in comparison to debris dimensions and quantities, the flow field, and 

the existence and characteristics of obstructions (Melville and Dongol, 1992; Diehl, 1997; 

Lyn et al., 2006; Lagasse et al., 2010; Panici and de Almeida, 2018). As pictured in Fig. 
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2.2, the accumulation of debris can reach excessive heights if allowed to build up over 

long periods of time. Natural debris in rivers has added complexity in that it also can serve 

to stabilize channels, provide cover for wildlife, and add geomorphic complexity 

(Manners and Doyle, 2008). If designed appropriately, the existence of debris should not 

interfere with the performance of the structure. 

 

 

Figure 2.2 Woody debris accumulated against FM 60 (Raymond Stotzer Parkway) 

Overpass crossing the Brazos River (Photo Credit: Anita H. Brown) 

 

Aside from general accumulations, impact loading is typically studied and verified 

through laboratory testing in the context of extreme events, such as tsunamis, hurricanes, 

and major floods. Descriptions of published literature on conducted experimental testing 
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to determine the force generated by impact loading from collisions with waterborne debris 

are provided in Table 2.2. These tests characterize impact loads and assess the 

relationships between relevant factors. Analogous to the accumulation of debris, the 

channel geometry, flow field, debris dimensions and properties, and structural properties 

are all factors relevant to characterizing the impact load.  

Debris control systems and debris diversion devices have been developed to 

attempt to mitigate these debris-structure interactions. This is done by halting the 

waterborne debris upstream and preventing the waterborne debris from reaching the 

structure, or by redirecting the waterborne debris to pass by the structure with limited to 

no interactions. Wallerstein et al. (1997) reviewed debris management technologies 

employed at riverine structures in Europe and the United States by collecting and 

compiling information from engineers and plant managers between September 1995 to 

October 1996. Bradley et al. (2005) focused on the debris control countermeasures for 

bridge structures and culverts. Use of these devices is catered to a specific structure 

location and its debris loading demands and emphasizes the need for location-based 

analyses. 

Included within the report by Chang and Shen (1979) was a survey conducted by 

forty-four participating states that supports the notion that debris is a regional concern and 

addressing debris concerns and maintenance issues is based on local risks. Of the 

responses, 42 reported that debris was causing maintenance problems with 4 of the forty-

two reporting a major problem, 25 moderate, and the remaining minor. According to the 

more recent 2019 National Bridge Inventory reports, 35.3% of highway bridges (218,028 
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of 617,084) reported a rating between four and six in the category of Channel and Channel 

Protection. The National Bridge Inspection Standards specify that a designation of six 

indicates that debris is slightly restricting the channel and a designation of four indicates 

large deposits of debris are present in the channel (U.S. DOT FHWA, 2020). Therefore, 

quantifying the risk of impact loading requires a flexible method that can account for each 

of the major factors that provoke debris-structure interactions as they pertain to a specific 

structure.  
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Table 2.2 Experimental testing for assessing impact loading from waterborne 

debris in extreme conditions 
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2.3. Risk-Based Model Applications 

There is precedent for quantifying the risk associated with hazards specific to 

marine life and riverine structures. Each of the following presented models uses an 

approach that consists of identifying the key components that bring about a specified 

hazard and developing methods of quantifying those components in an effort to obtain a 

numerical value that expresses the overall risk of the hazard. The risk models covered 

include the risk of deadly collisions between marine life and boats, the risk of debris 

accumulation at bridges, and the risk of bridge collapse due to collisions from aberrant 

vessels. 

 

2.3.1. Risk of Deadly Collisions between Marine Life and Boats 

Martin et al. (2015) developed a quantitative framework to investigate the risk of 

deadly collisions between marine wildlife, particularly marine mammals, and boats. 

Developing the framework required identifying the key components in the collision 

process and their relationships. The relationships between the key components identified 

by Martin et al. (2015) are organized using a conceptual diagram illustrated in Figure 2.3. 

The habitat characteristics describe attributes such as waterway configuration and 

bathymetry. The wildlife characteristics contains the size, speed, and number of wildlife, 

the depth at which they travel, and the number of deaths and recovered carcasses. The boat 

characteristics contain the size, number, and speed of boats and their compliance with 

relevant regulations. Each of these sets of characteristics aid in determining the likelihood 

of collisions and the likelihood of a collision ending in the death of the marine life. 
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Figure 2.3 Conceptual diagram of the collision process between boats and marine 

life, based on illustration by Martin et al. (2015) to describe the relationships 

between key components. 

 

The calculation of the rate of collision is built based upon the encounter rate between boats 

and marine life, that is the rate at which the trajectories of the boats and marine wildlife 

intersect in both time and space. The rate of collision, λc, is expressed as 

 

λc = λe P(Strike depth) (1− P(Avoidancem)) (1− P(Avoidanceb)) (2.1) 
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where λe is the mean encounter rate between the marine mammal and a vessel, P(Strike 

depth) is the probability that the whale is within striking depth when an encounter occurs, 

P(Avoidancem) is the probability of the mammal m avoiding the boat, and P(Avoidanceb) 

is the probability of the boat driver b avoiding the mammal. The death rate, λε, is expressed 

as 

 

λε = λc P(Death|Strike speed) (2.2) 

 

where P(Death|Strike speed) is the probability of death of the mammal given the striking 

speed at which the collision takes place. Evaluations using random walks and correlated 

random walks were conducted to run simulations and determine the general relationship 

between the number of encounters and vessel speed. Measures and procedures that attempt 

to reduce the number of ship-strikes such as slowing vessels and decreasing shipping 

activity in certain areas have been employed beginning with the 1999 Mandatory Ship 

Reporting System (Dolman et al., 2018). A similar comparative analysis was conducted 

by Crum et al. (2019) to quantify the differences in the relative risk of lethal vessel 

collisions to right whales before and after NOAA implemented a speed restriction rule 

with added consideration for vessel traffic data and spatially explicit estimates of right 

whale abundance. 
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2.3.2. Risk of Bridges Prone to Debris Accumulations 

For bridge piers, woody debris accumulation at bridge piers can lead to 

exasperated scour due to acceleration and contraction of flow and increased flood risk in 

neighboring areas due to blocked waterway openings. Schmocker and Hager (2011) 

analyzed drift blocking probability for bridge decks using a scaled experimental study that 

emphasized the influence of drift dimension, freeboard, flow characteristics, and bridge 

characteristics on the resulting probability. Diehl (1997) explored guidelines to assess the 

potential for drift accumulation using data from published literature on 2,577 reported drift 

accumulations and field investigations of 144 drift accumulations. This qualitative 

analysis relied on flowcharts that are organized based on basin, channel, and bridge 

characteristics and using direct and indirect evidence. It was found that reducing the 

potential for drift accumulation can be done by designing bridge decks with adequate 

freeboard, long spans, solid and rounded piers, and strategic pier placement. Panici et al. 

(2020) proposed a simplified methodology that uses both direct and indirect observational 

data to assess the risks to bridges prone to debris accumulations using the flowchart 

illustrated in Figure 2.4. The direct evidence consisted of documented instances of debris 

accumulation at the bridge under assessment such as bridge inspection reports, 

photographic evidence, and repair work logs. Indirect evidence consisted of factors that 

were suggestive of the likelihood of debris accumulations forming based on nearby areas, 

such as data on upstream bridges, data on downstream bridges, and heavily forested 

floodplains. 
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Figure 2.4 Proposed flowchart by Panici et al. (2020) for assessing debris 

accumulation potential at bridge piers 

 

Based on the UK’s Design Manual for Roads and Bridges BD 97/12 (2012), Panici et al. 

(2020) proposed that the vulnerability of a bridge can be assessed through the 

determination of a priority factor, Pf, with an additional factor that accounts for the 

likelihood of accumulations occurring. The amended equation for Pf is expressed as 
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Pf = H ∙ F ∙ M ∙ Tr ∙ V ∙ D (2.3) 

 

where H is dependent on the bridge scour history, M is based on the foundation material 

of the bridge, F is dependent on the type of foundation, Tr is dependent on the type of 

river, V is dependent on the type of road the bridge supports, and D is the appended factor 

that depends on the likelihood of debris accumulations as outlined in Figure 2.4. The 

assignment of values for each of these variables is based on evidence for the particular 

bridge being studied. The Design Manual for Roads and Bridges BD 97/12 (2012) 

incorporates the consequences of scour through the Relative Scour Depth, which is a ratio 

of the total scour depth to the depth to the underside of the foundation (Panici, 2020). The 

priority factor calculated from Eqn. 2.3 and the Relative Scour Depth are used to assign a 

Scour Risk Rating from a family of curves whose purpose is to identify bridges with a 

high risk of failure (DMRB, 2012). The development of this approach allows for the 

identification of bridges liable to debris accumulations based on direct and indirect 

evidence. 

 

2.3.3. Annual Frequency of Bridge Collapse Due to Vessel Collision 

The American Association of State Highway and Transportation Officials 

(AASHTO) used a probabilistic analysis to develop an equation that calculates the annual 

frequency of bridge collapse due to vessel collision (AASHTO, 2012). The annual 

frequency of bridge collapse due to vessel collision, AF, is expressed as 
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 AF = (N)(PA)(PG)(PC)(PF) (2.4) 

 

where N is the annual number of vessels classified by type, size, and loading condition 

which can strike the bridge; PA is the probability of vessel aberrancy; PG is the geometric 

probability of a collision between an aberrant vessel and bridge element; and PF is an 

adjustment factor that accounts for protection from vessel collision. The determination of 

the probability of aberrancy, PA, is dependent on pilot error, adverse weather conditions, 

and/or mechanical failure. It is a product of a base rate of aberrancy and correction factors 

set based on an evaluation of accident statistics that account for bridge location, currents, 

crosscurrents, and vessel traffic density. The geometric probability, PG, is the conditional 

probability that the vessel will hit the bridge given that it is aberrant. It is dependent on 

factors such as geometry of the waterway, water depth, pier location and bridge clearance, 

vessel path and velocity, vessel size and draft, and environmental conditions. A normal 

distribution is typically used to describe the vessel path as illustrated in Figure 2.5. 

Comparable to this illustration, experimental studies have been conducted to describe 

debris lateral spread and mean trajectories in the context of extreme hydrodynamic events 

and statistically fit to normal distributions have been (Matsutomi, 2009; Stolle et al., 

2018). The probability of collapse, PC, is dependent on the lateral capacity of the bridge 

elements to resist vessel impact force. The protection factor, PF, provides a means of 

adjusting the frequency of collapse when protective measures are put in place (AASHTO, 
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2012). Then, for a particular location with various types of vessels and multiple vulnerable 

bridge elements, the overall frequency of collapse of a bridge, AFTotal, can be expressed as 

 

AFTotal = ∑∑AFij

NP

j=1

NV

i=1

 (2.5) 

 

where NV is the number of vessel types that pass the bridge and NP is the number of bridge 

elements vulnerable to collisions (Manuel, et al. 2006). 

 

 

Figure 2.5 Geometric Probability of Pier Collision, where BM = width of each vessel 

classification category and BP = width of pier (AASHTO, 2012) 
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CHAPTER 3  

MOTIVATION AND SIGNIFICANCE 

 

Waterborne debris continues to be a growing threat to both the environment and 

marine infrastructure. Understanding the associated risks of waterborne debris based on 

causal relationships between key components enables better awareness and response. Risk 

analysis is a valuable tool for approaching problems involving decision making. Isolating 

events based on a subject’s vulnerability to damages or losses due to waterborne debris 

requires tracing these events back to their causes. The flexibility of a risk-based model 

that is built on causal relationships lies in its capacity to efficiently adapt to fluctuations 

in the amount of available information and one’s confidence in the accuracy of that 

information. The formulation of risk-based analyses allows for the identification of 

methods to prevent the occurrence of negative consequences. Aspects of the problem of 

interest can be specifically targeted when constructing procedures for reducing the overall 

risk associated with a particular event. Each of the applications and risk models explored 

as part of the background built their quantitative risk equations in a similar fashion. 

Contributing events were identified to define sub-events that caused a particular failure 

and evidence was gathered to properly define each event. The relationships between these 

sub-events were then mathematically expressed to develop a governing equation. The 

focus of the research presented herein is the development of probabilistic quantitative 

techniques to apply to the assessment of injury to marine life through the entanglement of 
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whales in fishing gear and debris-structure interactions through impact loading and 

accumulation of debris against structural elements.  

ALDFG threatens the wellbeing of many marine species globally. Protecting the 

livelihood of these diverse species is imperative for maintaining balanced ecosystems. 

Lacerations and distress caused from adverse interactions with fishing gear directly 

influence the morbidity and mortality of marine species. Fatalities are especially damaging 

to marine mammal and sea turtle populations, many of which maintain endangered and 

protected statuses (NOAA Marine Debris Program, 2015). Use of materials such as nylon, 

polyethylene, and polypropylene have allowed for improved gear designs in an effort to 

keep up with the global demands for fish (Macfadyen et al., 2009; Stelfox et al., 2016). 

Unfortunately, these non-biodegradable synthetic materials that are often used in the 

manufacturing of fishing gear make interactions between marine species and fishing gear 

a prolongated issue. Any increases in the scale of global fishing operations may further 

exasperate this issue by generating more opportunities for potential gear loss. There is 

value in developing a probabilistic method that has the ability to calculate the risk 

associated with lost fishing gear that characterizes both the direct and indirect 

consequences of gear loss. The inconsistencies across regions in approaching the problem 

of ALDFG and the continual updates in policies over time make it necessary to develop a 

method of analysis that is compatible across regional sets of data and varying periods of 

time.  

When large debris enters a marine environment, there is risk of generating 

waterways blockages and interfering with the uninhibited operation of infrastructure. 
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When impact forces from waterborne debris damage structures to the point of 

inoperability, economic losses due to the cost of repairs and social consequences due to 

broken transportation connections between areas arise. Assessing the entry of large debris 

into a body of water requires reviewing the frequency of instances of human error and 

natural causes. The design and geometry of aquatic structures and their placement within 

a waterway is unique to every structures as is the types of waterborne debris that may be 

encountered in a particular region. Once the risk of waterborne debris interacting with a 

structure can be assessed, further steps can be taken to ensure that the response of the 

structure is contained for that specific interaction. In the case of structural design, certain 

features can be strategically targeted to limit debris-structure interactions. For this reason, 

it is valuable to develop a structure-specific risk-based model that can evaluate the risk of 

collision for a structure and guide the process of making design decisions. 

Probabilistic techniques that define the risk associated with specific events 

provides an adaptive means of quantifying the risk associated with any well-defined event. 

This research implemented a probabilistic technique for quantifying risk in the context of 

the entanglement of whales in fishing gear and the impact of waterborne debris against 

bridge piers. The loss rates of fishing gear, location, timespan, catching efficiency based 

on gear type, and presence of whales in the area are all used to define the risk of 

encountering fishing gear that can lead to the entanglement of whales. The developed 

model allows for comparable analyses across regions of study. The channel dimensions, 

debris characteristics, flow conditions, and structure position are used to define the risk of 
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collision between waterborne debris and a structure. The developed model can be adapted 

for specific structural scenarios. 

 

3.1. Objectives 

The goal of this research is to develop a methodology and framework for 

quantifying the risks associated with waterborne debris using a risk-based method of 

analysis and implement and assess the methodology in the context of the entanglement of 

whales by fishing gear and collisions between structures and waterborne debris. 

 

The objectives of this research are to: 

(1) Conduct literature searches to collect and examine relevant data and information 

available in open literature. 

(2) Explore other types of models, research findings, and current practices/procedures 

developed to address the physical processes related to waterborne debris 

generation and behavior. 

(3) Develop a probabilistic predictive model using reported data and available 

information that has the ability to evaluate the risks associated with whale 

entanglement due to waterborne debris and the risks associated with impact 

loading on bridge piers due to collisions from waterborne. 

(4) Implement and evaluate the capabilities of the probabilistic predictive model to 

make predictions and its sensitivity to parameter definitions and identify areas for 

model improvement. 
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3.2. Research Overview 

In sections 1, 2, and 3 the introduction, background and literature review, 

motivation, significance, and objectives of the research are presented. In section 4, the 

generalized template used to create event specific risk-based models and conduct risk 

analyses is developed as the determination of the likelihood of obtaining a certain system 

outcome. This section provides the theoretical basis for developing risk-based models in 

any context. Methods for introducing observed data into the probabilistic risk model, 

evaluating its sensitivity to available information, and generating model predictions are 

discussed.  

Section 5 presents an application of the generalized risk model template to 

assessing the likelihood of whale entanglement using the key components of the event 

occurrence. The sensitivity of the model to one’s confidence in the accuracy of the data 

and the parametrization of the model is discussed. The derivations and analyses completed 

in this section follow those conducted by Brown and Niedzwecki (2020). Section 6 

presents an application of the generalized risk model to assessing the risk of impact 

loading between waterborne shipping containers and bridge piers using the key 

components of the event occurrence. The sensitivity of the model to one’s confidence in 

the accuracy of the data and the parametrization of the model is discussed. 

In section 7, key conclusions from each application are discussed. Suggestions are 

made for model improvement and future directions for this research to close revealed 

knowledge gaps. 
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CHAPTER 4  

DEVELOPMENT OF EVENT SPECIFIC RISK-BASED MODELS 

 

The development of an event specific risk-based simulation model, designed to 

allow for the blending of observable data and reasoned probability distributions to fill in 

knowledge gaps and predict the likelihood of a system outcome, is presented. The general 

model formulation is constructed around a fault tree framework that requires articulating 

the system as a synthesis of sub-events to reflect information relevant to the event being 

investigated. Clear descriptions of fundamental events that compose the sub-events and 

their interconnections that bring about the top event are of the upmost importance in 

making predictions using the risk-based model. 

 

4.1. Introduction 

The investigation of the behavior of systems and processes for the development of 

a quantitative model begins with characterization. According to Haldar and Mahadevan 

(2000), a system can be described as deterministic or stochastic. A deterministic system 

implies the availability of a mathematical expression that allows for an explicit solution 

based on specified parameter values; a final value can be directly evaluated. A stochastic 

system is one that cannot explicitly model the quantitative relationships between 

components of a system; multiple outcomes can be observed and are presumed to describe 

a random variable. For a stochastic system, probability theory is used as a tool to obtain a 
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final solution that states the likelihood of a certain system outcome occurring due to 

specified inputs. 

 

Figure 4.1 Characterizing deterministic vs. stochastic systems 

 

Risk and reliability-based approaches rooted in probability theory become 

necessary when dealing with stochastic systems that rely on decision-making processes 

where uncertainty exists surrounding system performance and safety. In set theory, a 

sample space is composed of all possible outcomes. In terms of system performance, a 

conceived model can yield either favorable or unfavorable outcomes, where an 

unfavorable outcome occurs when some established limit state is violated. Reliability is 

typically considered the probability of maintaining a favorable outcome, while risk is the 

probability of experiencing an unfavorable outcome (Haldar and Mahadevan, 2000; 

Melchers and Beck, 2018). Therefore, when all possible outcomes in a sample space are 

considered and favorable versus unfavorable outcomes are mutually exclusive and 
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collectively exhaustive, risk and reliability act as complementary pairs that cover the entire 

sample space. If E1 is used to denote favorable outcomes and E2 denotes unfavorable 

outcomes, and the events are mutually exclusive and collectively exhaustive, then their 

relationship can be mathematically expressed as 

 

P(E1) + P(E2) = Reliability + Risk = 1.0 (4.1) 

 

When one is determined, the other can be subsequently deduced. This is based on the 

second axiom of probability, which states that the sum of the probabilities of all possible 

outcomes (the probability of the sample space) is 1.0 (Haldar and Mahadevan, 2000; Ang 

and Tang, 2007). It becomes necessary to conceive clear descriptions for the classification 

of outcomes as favorable (positive) or unfavorable (negative) so that risk and reliability 

can each be properly addressed. 

In addition to the classification of outcomes, risk involves studying negative 

consequences, the events that instigate a specified outcome, and the uncertainty 

surrounding the consequences. The important components of risk associated with the 

occurrence of a specific hazard event are loss and vulnerability. Specific hazard events 

can be specified in terms of intensity, duration, location, and probability of occurrence 

(Aven, 2008; Roberts et al., 2009). Loss is associated with the elements at risk, which can 

resemble monetary impact of damage, fatalities, and time. Vulnerability addresses factors 

that affect the ability of a community to prepare for, respond to, and recover from the 
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occurrence of a hazard. Overall, the risk associated with a particular outcome can be 

thought of as the probability of a negative consequence brought about by specific 

contributions from these identified contributing events. Each risk components plays an 

important role in how limit states and risk are defined when determining the risk associated 

with a specified event. Thus, the development of a risk-based model for a particular 

outcome requires the identification, articulation, and incorporation of pertinent sub-events 

in the model. 

The uncertainties associated with these fundamental contributing events can make 

the modeling process quite challenging. Epistemic uncertainty, which reflects imperfect 

knowledge or inaccuracies in the understanding of the process being modeled (Ang and 

Tang, 2007), can be reduced as additional information including field data is incorporated 

into the model through the descriptions of the sub-events. The quantification of 

uncertainty associated with a risk model and the model parameters can be completed using 

statistical analysis. 

This section focuses on the development of a general template for risk-based 

modeling that is constructed around a fault tree framework to organize sub-events that can 

be tailored to address a wide variety of specific engineering design events. Probability 

concepts essential to the development of a risk-based model equation are covered. 

Generalized sub-events that account for the identification of hazards, the elements at risk, 

and the vulnerability of the elements are explored to organize the fundamental contributing 

events in a manner that uses of available information and data. Epistemic uncertainty is 
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addressed through the careful interpretation of available data that is blended with carefully 

selected probability density functions that are used to fill in key knowledge gaps. 

 

4.2. General Model Template for Quantifying Risk 

The process of developing a general iterative template that transforms observed 

data for use in a risk-based predictive model, illustrated in Figure 4.2, begins with the 

selection of an event topic and completing an initial review of the published literature 

related to the chosen application. Reviewing published findings pertaining to the subject 

of interest allows for a better understanding of the applicability of a risk model in the field 

of study. For example, in a structural context, risk can be taken as the probability of failure 

of a system to satisfy performance criterion, including the consequences of a possible 

failure. Location and scenario-based data related to the types and properties of components 

affecting the system are extracted from the published literature and assessed and organized 

into sub-events. Statistical analysis is used to either convert the relevant data into discrete 

probabilistic information using proportions and percentages or to determine central values 

and variations in the data whose nature becomes captured in the parameters of analytical 

probability density functions that describe the sub-events. The sub-events and their 

interrelationships that compose the initial predictive model act as the fundamental 

contributing events whose descriptions encapsulate the behavior of the system and identify 

modes of failure. The probabilistic information is input into the initial predictive model, 

which is used to make predictions on encountering negative consequences, aid in 

interpretations of data, and visualize a range of scenarios. The resulting predictions are 
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critically evaluated against observations and specifics for model improvement can be 

noted. In this iterative process, as new information is acquired, speculative probability 

distribution functions used in the modeling process can be refined and the sub-events 

modified. 

 

 

Figure 4.2 General iterative template for continued improvement of risk assessment 

predictions 

 

This process is formalized using a fault tree framework as recommended by Ang 

and Tang (1984) to help guide the decision process for complex systems. Fault tree models 

aid in identifying components of a decision problem for complex systems in which 

outcomes representing modes of failure and consequences are identified and evaluated. 
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This top-down approach is effective in organizing and capturing information contributing 

to the top event through a series of supportive sub-events (Lee et al, 1985; Haldar and 

Mahadevan, 2000; Aven, 2008; Melchers and Beck, 2018). This approach is ideal for 

targeting specific features of a stochastic system. The risk model can be improved as new 

information needed to characterize additional sub-events is identified, creating an iterative 

process. The conceptual relationships between the sub-events and the top event dictate the 

mathematical development of the governing risk equation. The method for establishing a 

risk-based model introduced in this research merges probability theory and Boolean logic 

with a fault tree framework to characterize the relationships between events. The top event 

acts as an output, while the behavior of the sub-events act as a layered input. The use of 

an AND gate implies the intersection of events, where the output event occurs only if all 

input events occur. An OR gate implies the union of events, where the output event occurs 

if at least one input event occurs (Lee et al, 1985; Aven, 2008). 

The probabilistic interpretation of the AND gate is the intersection of the specified 

sub-events, where all sub-events must occur for the top event to occur. For simplicity, 

sometimes it is advantageous for events to be considered independent once the sub-events 

are fully broken down into their individual fundamental events. This implies that the 

occurrence of one event does not affect the occurrence of another. For N independent 

events, A1…AN, the intersection of events is calculated as the multiplication of probabilities 

of the sub-events that lead to the top event. The mathematical representation of the 

intersection of N independent events is defined as 
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P(⋂ Ai

N

 i = 1

)  = P(A1∩…∩AN) = P(A1) ×…× P(AN) = ∏ P(Ai)

N

i = 1

 (4.2) 

 

where, × indicates the product between values. If the events are not considered 

independent, then it is necessary to acquire data connected to the conditional relationships 

between sub-events. Then the mathematical representation of the intersection of N 

dependent events is defined as 

 

P(⋂ Ai

N

 i = 1

)  = ∏P(Ai | ⋂ Aj

N

j = i+1

)

N

i = 1

 (4.3) 

 

The probabilistic interpretation of the OR gate is the union of events, where at least 

one sub-event must occur for the top event to occur. For N mutually exclusive events, 

B1…BN, the union of events is calculated as the sum of probabilities of the sub-events that 

lead to the top event as shown in Eqn. 4.4. Mutual exclusion implies disjoint events, where 

only one event occurs at a time. 

 

 

P(⋃Bi

N

i = 1

)  =  P(B1 ∪…∪ BN) = P(B1) +…+ P(BN) = ∑P(Bi)

N

i = 1

 (4.4) 
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If N is collectively exhaustive, spanning the set of all possible events, then Eqn. 4 

will equal 1.0. Without the mutual exclusion descriptor, it is necessary to include the 

contributions of intersections terms. The union of N non-mutually exclusive events is 

written using the inclusion-exclusion principle as  

 

P(⋃Bi

n

i = 1

)=  ∑

[
 
 
 
 

(−1)c − 1 ∑ P {⋂ Bi

i ∈ C

}

C ⊆ {1,…,N}

|C| = c ]
 
 
 
 

N

c = 1

 (4.5) 

 

where, c controls the number of terms pulled into each combination without repetition of 

subset C for each iteration of c (Andreescu and Feng, 2004; Roberts and Tesman 2009). 

An example using the union of three events is given by Eqn. 6, where the notation 

P(BiBj…) denotes the intersection of events to be calculated using Eqns. 2 or 3, depending 

on whether there is independence between events.  

 

 

P(B1 ∪ B2 ∪ B3) = P(B1) + P(B2) + P(B3)− P(B1B2) − P(B1B3)

− P(B2B3) + P(B1B2B3) 
(4.6) 

 

Judgement on the necessity of including the intersection terms for non-mutually 

exclusive events and approximating the sub-events as mutually exclusive can be made 

based on the order of magnitudes for the probabilities and their products. Additionally, it 



 

41 

 

is possible to use de Morgan’s rule to define the union of N events if the data presents 

itself in an appropriate way (Ang and Tang, 2007). This format makes use of the 

complementary events, B̅i, making the union of events 

 

 

The creation of a final risk-based equation relies on the merging of these 

probability concepts. Utilization of other logic gate concepts to represent exclusion or 

conditional relationships between events is also possible as event descriptions become 

more complex. It is important to note that the probabilities used to describe the 

fundamental events can be defined using discrete probability values or probability density 

functions. Describing the fundamental events as probability distributions with specified 

distribution parameters allows for better incorporation of uncertainty into the risk model. 

 

4.3. Event Specific Risk Model Formulation 

The process of developing a general risk-based model framework that is capable 

of addressing specific events using set and probability theory is presented in this section. 

The identification of fundamental data-driven sub-events, and how assumptions of 

independence and mutual exclusivity of the events affect the mathematical representation 

are examined. Using the organizational structure of a fault-tree, it is advantageous to 

generalize the types of sub-events that will present themselves when characterizing a 

P(⋃Bi

N

i = 1

)  =1−  P(⋃Bi̅

N

i = 1

) (4.7) 
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stochastic system. The sub-events established for the risk-based model are interconnected 

with the types of observable data available and should be grounded in the components of 

risk: hazard, loss, and vulnerability. Using this approach, the basic sub-events are 

considered to be a combination of spatial and temporal conditions and physical 

characteristics. Spatial conditions relate to location or position and can be used to account 

for spatial variability. Temporal conditions are those variables related to time, either as 

occurring over a period of time or at a specified time within a period. The temporal 

conditions sub-event can be used to account for factors such as seasonal changes and 

migrations or allow for the inclusion of mitigating factors that occur at regular intervals. 

Physical characteristics can be further broken down into size, shape, mass, strength, and/or 

type attributes. If the sub-events are acting independently and it is necessary for all the 

sub-events to occur for the top event to occur, then the intersection of the sub-events can 

be expressed mathematically as 

 

P(Top Event) 

 

 

 = P(Spatial Conditions ∩ Temporal Conditions ∩ Physical Characteristics) 

 = P(Spatial Conditions) × P(Temporal Conditions) × P(Physical Characteristics) 

 
= s × t × h 

(4.8) 
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where, in the most compact notation, s represents the spatial conditions, t represents the 

temporal conditions, and h represents the necessary physical characteristics. If the sub-

events are not independent, then it becomes necessary to consider the conditional 

relationships between events. The intersection of the sub-events would then be expressed 

as  

 

P(Top Event)   

 
=  P(Spatial Conditions ∩ Temporal Conditions ∩ Physical Characteristics) 

 

 

=  P(Spatial Conditions  |  Temporal Conditions ∩ Physical Characteristics) 

         × P(Temporal Conditions | Physical Characteristics)  

         × P(Physical Characteristics) 

 

 =  (s |  t ∩ h) × (t | h) × (h) (4.9) 

 

4.3.1. Specification of Physical Characteristics 

In some cases, it may be beneficial to further breakdown a particular sub-event 

into several distinct sub-events. For example, consider the intersection of the required 

physical characteristics of the system. If each physical characteristic (e.g. size, shape, 

mass, strength, etc.) is decomposed into its own fundamental event with index i, hi, then 

the intersection of the N required independent physical characteristics of the system, can 

be expressed as 
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P(Physical Characteristics) = h = ⋂ hi

N

i = 1

 = ∏ hi

N

i = 1

 (4.10) 

 

If the N required physical characteristics of the system are instead dependent events, then 

the probability of having the necessary physical characteristics is instead expressed as 

 

P(Physical Characteristics) = h = ⋂ hi

N

i = 1

= ∏(hi | ⋂ hj

n

j = i+1

)

N

i = 1

 (4.11) 

  

If it is more accurate to represent the physical characteristics as the union of the 

fundamental characteristics, where only at least one physical characteristic is required, 

then the equation describing the physical characteristics is derived based on assumptions 

of mutual exclusion. Mutually exclusive physical characteristics hi would mathematically 

be expressed as 

 

P(Physical Characteristics) = h = ⋃ hi

N

i = 1

 = ∑ℎ𝑖

N

i = 1

 (4.12) 

 

If N is collectively exhaustive, spanning the set of all possible events, then the summation 

in Eqn. 4.12 will equal 1.0. The union of non-mutually exclusive physical characteristics, 

hi, is written using the inclusion-exclusion principle as 
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P(Physical Characteristics) = h = ⋃ hi

N

i = 1

 = ∑

[
 
 
 
 

(−1)c − 1 ∑ {⋂ hi

i ∈ C

}

C ⊆ {1,…,N}
|C| = c ]

 
 
 
 N

c = 1

 (4.13) 

 

where, c controls the number of terms pulled into each combination without repetition of 

subset C for each iteration of c (Andreescu and Feng, 2004; Roberts and Tesman 2009). 

If exploring the risk of the top event due to a specific physical characteristic with index i, 

then hi can be substituted into Eqns. 4.8 and 4.9. Judgement on approximating the sub-

events as mutually exclusive and not including intersection terms can be made on a case-

by-case basis. 

 

4.3.2. Specification of Temporal and Spatial Conditions 

The concept of the union of events is especially important when considering spatial 

and temporal conditions because it may be necessary to combine data sets that span 

different intervals of space and time. Consider the risk for a period of time that can be 

expressed based on data in any given units (e.g. years, months, minutes). The probability 

of the top event occurring at time j is given by 

 

P(Top Event in Time j) = (s ∩ t ∩ h)j (4.14) 
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where the spatial conditions and physical characteristics can also be specified for time j. 

The independence or dependence of the sub-events dictates whether Eqn. 4.14 reduces to 

the form of Eqn. 4.8 or 4.9. Mutual exclusivity of events over a period of time is dependent 

on whether the sets if sub-events are disjoint over time, i.e., whether or not the events 

leading to time j affect the occurrence of the top event at time j. If the sub-events are 

assumed mutually exclusive, then 

P(Top Event) =∑(s ∩ t ∩ h)j

M

j = 1

 (4.15) 

where, M is the amount of time spanning the dataset, h is the physical characteristics 

defined using Eqns. 4.10, 4.11, 4.12, or 4.13 for time j to M, and the independence or 

dependence of the sub-events dictates whether Eqn. 4.15 further proceeds in the form of 

Eqn. 4.8 or 4.9. If considerations are given to how each physical characteristic, hi, changes 

over time while maintaining any of the definitions given by Eqns. 4.10 through 4.13, then 

an additional subscript is given to account for these changes, hij. The total number of 

physical characteristics becomes Nj as opposed to N to represent the possibility of the 

number of reported physical characteristics changing with time, depending on the 

information available in the datasets. 

When the quantity of observable data available for analysis is limited, it is 

reasonable to consider the combination of data from different geographic regions. The 

union of spatial events from mutually exclusive regions of interest can be expressed as 
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P(Top Event) =∑
1

Mk

∙ [∑(s ∩ t ∩ h)jk

Mk

j = 1

]

Q

k = 1

 (4.16) 

 

where, Q is the number of regions being considered, Mk is the amount of time spanning 

the datasets for region k, h is the physical characteristics defined using Eqns. 4.10 through 

4.13, and the independence or dependence of the sub-events dictates whether Eqn. 4.16 

proceeds in the form of Eqn. 4.8 or 4.9. Each physical characteristic is described as hijk if 

they experience concurrent changes in time and space. Thus, Eqn. 4.16 represents the 

central equation needed to develop an event specific risk-based model. 

The relationships that one establishes between the sub-events are a subjective 

interpretation of the data and published findings. Assumptions regarding independence 

and mutual exclusivity of the events directly affects the mathematical representation of 

the risk equation. Knowledge of how each sub-event directly influences the top event aids 

in implementing preventative methods to control the occurrence of the top event. As each 

sub-event is better understood, the preemptive methods can be explicitly expressed. The 

developed template for creating a risk-based model allows for a flexible approach where 

the best fitting risk model can be constructed. 

 

4.4. Risk Model Implementation and Assessment 

Because of the undeniable existence of uncertainty in a stochastic system, even for 

a well-defined system, it is important to reflect on the sensitivity and variability of the risk 

model estimates to the definitions of the sub-events. Well-defined sub-events give direct 
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interpretations of the risk model estimates and make it possible to determine the individual 

contributions of each event to the overall risk. The descriptions of the sub-events should 

reflect how certain the researcher is about the accuracy of the data, which drives the 

decision of designing the model to make conservative versus precise estimates. Because 

the necessary data is not always available, at times the researcher will be required to use 

their best judgement and adopt a Bayesian-like approach where a prior distribution is 

conceived, and data is later incorporated, either supporting the choice or replacing it with 

actual data, as it becomes available.  

 

4.4.1. Methods of Generating Model Predictions 

Four practical procedures for generating model predictions and monitoring the 

behavior of the risk-based model are assigning specific discrete probability values to 

represent sub-events, considering ranges of discrete probability values, producing 

calculations by independent sampling from distribution functions used to represent each 

sub-event, and directly estimating the analytical forms of the distribution functions that 

characterize each sub-event based on the representation of the data. Using discrete 

probability values to represent each sub-event entails taking the observed data and using 

statistical measures of central tendency, e.g., mean, median, or mode, to approximate 

values for sjk, tjk, and hijk to substitute directly into the risk equation to calculate “average” 

estimates. Considering ranges of discrete probability values aids in determining how 

individual sub-events specifically affect the estimates of the system behavior. Conditions 
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and characteristics with the most influence on the risk of the top event occurring can be 

readily identified and interpreted if the sub-events are detailed in their descriptions. 

When continuous distribution functions are introduced to represent the sub-events 

as random variables, then not only are the central tendencies of the observed data captured, 

but also the variations and uncertainty in the data and one’s confidence in the assumed 

density function and its parameters. The appropriate density functions can be selected 

through the recognition of the underlying probability distribution function based on 

individual and multidimensional histogram representations of the data. The density 

functions representing the introduced general sub-events of spatial conditions, temporal 

conditions, and physical characteristics as random variables can be denoted as fS(s), fT(t), 

and fH(h). Any restrictions or decisions made on the type of probability density function 

chosen to represent the sub-events are dependent on the collected data. At times it will be 

reasonable to consider transformations and modifications of the chosen distribution. If the 

random variables are constrained to a specific domain, then it is recommended that a 

truncated distribution is used. Forming a truncated distribution is equivalent to 

normalizing the distribution by completing a conditional probability given that the values 

of the random variable fall within a given interval (Benjamin and Cornell 2014). 

 

f
X
(x|x ∈ Interval) = 

f
X
(x)

FX(x ∈ Interval)
 (4.17) 
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Once a density function is assumed, if estimates are made using independent 

sampling from sub-events, then the resulting risk estimate will also be in the form of a 

histogram with an underlying distribution. Alternatively, the analysis can proceed using 

the analytical forms of the various distribution functions describing the sub-events. 

Assuming independence and mutual exclusion between sub-events becomes 

beneficial if it is desired to express the risk estimate in its purely analytical form. To 

demonstrate this, consider independent sub-events Xi which lead to a top event Y. Then, 

the intersection of the sub-events, Y = X1X2…XN is the product of their individual 

distributions. 

 

 

f
Y
(x1,x2,…,xN) =  fX1

(x1) ∙  fX2
(x2) ∙  … ∙  fXN

(xN) (4.18) 

 

The summations that are introduced due to the union of mutually exclusive sub-events 

makes it necessary to complete convolution integrals (Benjamin and Cornell, 2014; 

Melchers and Beck, 2018). If the sub-events are not independent, then for the additive 

event Y = X1 + X2, 

 

f
Y
(y)=∫ f

X1, X2
(y − x1, x1)dx1=

∞

-∞

∫ f
X1, X2
(x2, y− x2)dx2

∞

-∞

 (4.19) 

 

If X1 and X2 are independent, then the distribution describing the top event Y becomes the 

convolution integral 
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f
Y
(y)= (f

X1
∗  f

X2
) (y) =∫ f

X1
(y− x2) ∙ fX2

(x2)dx2 =
∞

-∞

∫ f
X1
(x1) ∙ f

X2

(y− x1)dx1

∞

-∞

 (4.20) 

 

For N independent events, Y = X1 + X2 +…+ XN, this becomes 

 

f
Y
(y)= (f

X1
∗ f

X2
∗… ∗ f

XN
) (y) (4.21) 

 

In its analytic form, the risk equation is built as a combination of the algebraic 

representations of probability theory introduced in Eqns. 4.18 through 4.21 based on the 

interrelationships of the sub-events. A change of variables is required when transforming 

a joint probability distribution function, fY(x1,x2,…,xN), into a distribution function in terms 

of fY(y) so that direct interpretations of the parameters describing the top event can be 

made. The change of variables is completed by solving 

 

f
Y
(y) = 

f
X1, X2,…,XN

(x1, x2,…,xN)

| det (J(g−1(y)))|
 (4.22) 

 

where Y = g(X1, X2, …, XN), g-1(y) is its inverse, J(g-1(y)) is the Jacobian Matrix formed by 

{dy/dg-1(y)}, and |det (J(g-1(y)))| is absolute value of the determinant of the Jacobian 

(Haldar and Mahadevan 2000). 
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Using these methods to obtain an analytical equation can become quite complex 

as the risk equation becomes a more complicated description of the interrelationships 

between sub-events. As random variables become described by more complicated 

distributions and the risk-based equation becomes more complex, it is important to 

remember that (1) a probability density function (PDF), fY(y), is nonnegative; fY(y) ≥ 0.0; 

(2) a cumulative distribution function (CDF), FY(y), is zero at −∞ and one at +∞; FY(−∞) 

= 0.0 and FY(+∞) = 1.0; (3) the CDF, FY(y), is nondecreasing and FY(y) ≥ 0.0; and (4) for 

continuous random variables, the CDF is also continuous and has a derivative, which is 

the PDF (Haldar and Mahadevan, 2000). As a result of the second statement, it is important 

to realize that over the support of the random variable, the probability density function 

must integrate to 1.0, that is: 

 

∫ f
Y
(y) dy

+∞

−∞

 = 1.0 (4.23) 

 

In the case of a continuous random variable, this requirement is especially important for 

complex risk functions where random variables are described by different types of 

distributions. In some cases, when the general form of the final distribution becomes 

unrecognizable, the making use of proportionality and a normalizing constant is 

recommended for completing products and integrations. 

Although the underlying probability density function does not directly give 

probabilities, it does provide information on the behavior of system in the form of central 
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tendencies and spread. In addition, the probability of either not exceeding or exceeding a 

specified limit, y0, can be calculated using integration to obtain either the CDF, FY(y), or 

Survival Function, 1 - FY(y). 

 

P(Y ≤  y
0
) = FY(y0

) =∫ f
Y
(y) dy

y
0

−∞

 (4.24)  

P(Y  ≥  y
0
)= 1 − FY(y0

) =∫ f
Y
(y)

1

y
0

dy (4.25) 

 

This assessment can provide the likelihood of the model overestimating or 

underestimating the risk of the top event occurring, which gives a measure of accuracy. 

When a risk equation cannot be analytically determined, it is recommended that 

sampling and simulation methods be utilized to generate histograms to estimate the 

distribution function that best describes the top-event. This numerical approach to 

evaluation, whose results are also valid, involves repeated random sampling of values 

from the distributions that describe each sub-event and repeatedly calculating the risk of 

the top event. The sampling method and number of iterations employed are dependent on 

what is found to be appropriate. Aside from direct independent sampling, other sampling 

algorithms include Monte Carlo-based methods such as Markov Chain Monte Carlo 

methods (e.g. Gibbs Sampling and Metropolis-Hastings) (Ang and Tang, 1984; Hoff 2009; 

Melchers and Beck, 2018). From the collection of calculated values, one can use kernel 

density estimates and statistical methods to estimate the parameters of the underlying 
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probability distribution. Reflection on the specific event predictions can suggest where 

additional information could result in improved model predictions. 

 

4.4.2. Methods for Evaluating Model Accuracy and Sensitivity 

Exploring the sensitivity of the model to slight changes in the model structure 

provides insight into how the output of the model changes as the availability of data 

fluctuates, which variables have the most influence on the final outputs, and how well the 

sub-events are described by their probability density functions and parameters. Parameter 

estimation methods such as method of moments, method of maximum likelihood, and 

order statistics and statistical tests such as hypothesis testing and goodness-of-fit tests are 

advantageous for determining the parameters that best describe the probability distribution 

for a given random variable representing a sub-event based on observed data (Benjamin 

and Cornell, 2014; Melchers and Beck, 2018). These methods described in Table 4.1 can 

be applied to the distribution describing the sub-events or top event, so that the parameters 

of the risk model can be determined and the adequacy of the risk model in depicting each 

sub-event can be assessed. 
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Table 4.1 Parameter estimation methods and statistical tests 

(Benjamin and Cornell, 2014; Melchers and Beck, 2018) 

 

 

Method/Test Application 

Model Parameter Estimation Methods 

Method of Moments For estimating population parameters, used to describe central values, 

dispersion, symmetry, or peakedness 

• nth moment: 𝐸(X n) = ∫ x n f
X
(x)

  ∞

 - ∞
dx (continuous distribution) 

 

• nth moment: 𝐸(X n) =∑ [x np
X
(xi)all i ] (discrete distribution) 

Method of 

Maximum 

Likelihood 

Involves maximizing a likelihood function L(θ|x) to find under which 

parameter descriptions for θ1, θ2,…,θm the observed data y1, y2,…,yn is 

most probable 

•   L(θ|x)=∏ f (xi|θ)

n

i = 1

 

•  log[L(θ|x)]=∑ log[f (xi|θ)]

n

i = 1

 

•  ∑
∂

∂θj

log[f (xi|θ)]

n

i=1

 = 0 

Order Statistics The kth order statistic is the kth value of ordered data; it is related to 

rank statistics, medians, extreme values, quantiles, and ranges 

Statistical Testing of Parameters 

Hypothesis Testing Procedure for drawing conclusions about parameter values based on 

observed data. Involves a null hypothesis, a decision rule for when to 

reject or fail to reject the null hypothesis, and an alternate hypothesis. 

Goodness-of-fit 

Tests (e.g. χ2 and 

Kolmogorov-

Smirnov (K-S) 

Tests) 

A model hypothesis test based on deviations between predicted values 

from the model and observed data. Involves a null hypothesis that is the 

proposed model, a decision rule reliant on a sample statistic that 

captures deviations between observations and model predictions, and an 

alternate hypothesis 
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4.5. Application of Template 

In the sections to follow, the template developed in this section will be applied to 

examples related to the entanglement of whales by fishing gear and the force of collision 

of waterborne debris against a structure. For each unique application, the sub-events that 

bring about the hazard are identified and characterized using data collected through 

thorough literature reviews. The general iterative template illustrated in Fig. 4.2 is used as 

guidance for each assessment. Unraveling these examples will demonstrate the wide range 

of possible applications. 

 

4.6. Discussion and Conclusions 

This section presents a general methodology for developing an event specific risk-

based model that predicts the likelihood of a system outcome for a variety of stochastic 

applications. The model integrates a fault tree framework that requires thoughtful 

articulation of the event of interest and its interrelated supportive sub-events. This requires 

a basic understanding of the physical characteristics of a system and the spatial and 

temporal conditions as presented in the formulation. The template introduces probabilistic 

and statistical methods that can be applied to mathematically characterize general sub-

events that encompass the spatial conditions, temporal conditions, and physical 

characteristics of the system. The resulting model gives mathematical interpretations to 

probabilistic representations of these fundamental events. Focused descriptions of sub-

events within the fault-tree makes the template applicable to many research topics for a 

variety of fields. 
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Use of the model to obtain accurate estimates is dependent on the amount of observed 

data available that is relevant to the fundamental events established. The event specific 

risk-based model as presented can be utilized to address epistemic uncertainty by the 

careful interpretation of available data and the careful blending of documented data with 

relevant probability density functions that are selected to fill in any knowledge gaps 

reflecting incomplete information. Refinement of the model occurs with increased data 

and leads to confidence in the risk-based model predictions. With the availability of 

parameters to help define the behavior of each sub-event, alternate scenarios can easily be 

explored. Characterizing the sensitivity of the risk model parameterization is possible 

through various visualization schema and statistical analyses. This study provides a 

straightforward approach for the development of risk-based models. It is expected that 

with the investigation of specific events, a deeper understanding of the refinement of sub-

events, the need for more field data, and modeling on a larger scale will be part of the 

evolution process of event specific risk-based modeling. 
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CHAPTER 5  

ASSESSING THE RISK OF WHALE ENTANGLEMENT WITH FISHING GEAR 

DEBRIS* 

 

This section follows the work done by Brown and Niedzwecki (2020). The loss 

and abandonment of fishing gear has resulted in one of the most visible signs of growing 

pollution in the marine environment. The entanglement of whales in fishing gear has been 

the subject of increasing documentation. The interpretation of the documented incidents 

to address the risk of whale entanglement is presented. An initial risk-based model is 

derived that reflects published information on multi-year fishing gear accumulation rates 

and entanglement data. A fault tree framework is adopted to organize the data, allowing 

for the continual improvement of the risk-based model predictions through the 

incorporation of new data and inclusion of additional sub-events. Analytic distribution 

functions are introduced to augment incomplete data and explore hypothetical scenarios. 

Data reported for the US Atlantic and Pacific coastlines are used in illustrative examples, 

that address both regional and multi-regional applications, and the sensitivity of the risk-

based predictions to the reported field data. 

 

 

* Reprinted with permission from “Assessing the risk of whale entanglement with fishing 

gear debris.” by Anita H. Brown and John M. Niedzwecki, 2020. Marine Pollution 

Bulletin, 161(2020): 111720, Copyright [2020] by Elsevier Ltd. 
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5.1. Introduction 

The fishing industry is an international enterprise with contributions from both 

large corporations and local commerce. Global oversight organizations and committees 

have been established, but the size of the industry makes it practically impossible to track 

the activities of every vessel. Consequently, the actual quantities of lost fishing gear and 

its accumulation lurking beneath the ocean surface are not precisely known. It has been 

estimated that on a global scale as much as 10% of marine debris is attributed to fishing 

gear (Macfadyen et al., 2009; World Animal Protection, 2018) and this percentage will 

likely vary by region and locality. Macfadyen et al (2009) list some of the factors that 

affect the amount of lost fishing gear as adverse weather; cost of retrieval; gear conflicts; 

illegal, unregulated and unreported (IUU) fishing; vandalism/theft; and accessibility of 

collection facilities. Plastics used in fishing gear can take hundreds of years to break down 

in marine environments, only to perhaps culminate into the associated problem of 

microplastics (Barnes et al., 2009; Macfadyen et al., 2009). Due to currents and the 

connectivity of oceans and rivers, the site where the fishing gear appears is not necessarily 

indicative of where the fishing gear originated (Saez et al., 2020). This is observed in the 

appearance of naturally occurring convergence zones where debris accumulates 

(Macfadyen et al., 2009). 

In addition to economic and social impacts, abandoned, lost or otherwise discarded 

fishing gear poses a particular problem for large species of marine life, such as whales. 

Entanglement can result in the restriction of their movement and has been documented to 

cause mild to severe injuries to whales, and additionally, if not removed, could lead to 
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drowning or suffocation. Injuries to these marine animals can affect their ability to 

reproduce and feed (Saez et al., 2020). Outside of the incidents of bycatch during active 

fishing, there is a specific risk to a variety of large marine inhabitants that also includes 

dolphins, seals, sea turtles, and sharks.  Large marine animals, several of which maintain 

endangered or threatened status (Macfadyen et al., 2009; Gilman et al, 2016), tend to swim 

long distances during seasonal migrations, making them susceptible to crossing paths with 

debris in commercial fishing zones and shipping lanes while pursuing food sources. 

The National Oceanic and Atmospheric Administration (NOAA) has documented 

large whale entanglements off the U.S. West Coast (California, Oregon, and Washington) 

dating back to 1982 (NOAA Fisheries, 2019; Saez et al., 2020). NOAA has recorded a 

generally increasing trend in the number of whale entanglement cases reported on the 

West Coast with the average number of confirmed cases rising from 9 confirmed cases to 

41 confirmed cases between the spans of 1982 to 2013 and 2014 to 2017, respectively 

(NOAA Fisheries, 2019; Saez et al, 2020). Saez et al. (2020) specifically notes factors that 

have led to an increased public awareness and sensitivity to this problem. These 

contributing factors include increased monitoring of changes in the spatial distribution and 

abundance of whales, changes in fishing methods, and changes in ocean conditions.  In 

the North Atlantic, it is estimated that 82% of right whales have experienced entanglement 

during their life (Waters, 2016), compared to the 409 population estimate of North Atlantic 

right whales by the North Atlantic Right Whale Consortium for the end of 2018 (Pettis et 

al, 2020). 
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Although there are entanglement cases documented, these reports are only 

comprised of confirmed cases. It remains unknown exactly how many marine mammals 

in total are affected by these incidents, and unfortunately, as more debris accumulates in 

the oceans, entanglement incidents can be expected to increase in frequency. Data that 

identifies the specific type of fishing gear that is at fault is somewhat difficult to ascertain 

and, though identifiable in some cases, it represents only a subsection of the total 

confirmed cases. A majority of the large whale entanglement cases from NOAA for the 

West Coast were caused by an unidentifiable source (Saez et al., 2020), and since 

standardization in reporting is difficult, a flexible approach is necessary in developing a 

predictive model. The uncertainties associated with the reported data collected suggests 

that probabilistic risk-based methods could prove useful in gaining more insight into this 

complex problem, since they are well suited for dealing with stochastic systems in which 

the precise relationships between components of a system cannot be quantitatively 

modeled (Haldar and Mahadevan, 2000). Many circumstances exist where data is 

available but creating meaningful interpretations of the data can be quite difficult. Thus, 

creating a model that can be used to estimate the probability of a specified event occurring, 

described by favorable or unfavorable outcomes, is valuable. This is because the 

probability concepts used to develop the model remain valid regardless of the quality and 

extensiveness of the available data (Ang and Tang, 2007). A method to quantify the threat 

of marine debris to large species of marine mammals that allows for the estimation and 

incorporation of regional risk quantities is presented.  
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The general iterative approach used in this study that incorporates reported data 

and the continual refinement of the risk-based predictive model is conceptualized in Figure 

5.1. Focusing on a topic of interest leads to the review of published literature and allows 

for the identification of key parameters. After extracting and organizing the relevant data, 

it is then converted into estimates of probabilistic information needed as input for the risk 

model. As additional data is discovered the predictive model can be improved and updated 

along with new ideas that might improve the visual interpretation and predictive 

capabilities of the model.  Illustrative examples are developed using data available for the 

US North Atlantic coastline, which includes Maine, New Hampshire, Massachusetts, 

Rhode Island, and Connecticut, and the Pacific coastline that includes Washington, 

Oregon, and California revealing the increasing complexity and capability of the risk-

based model approach. The ability to explore patterns and scenarios using graphical 

visualization is used to illustrate the potential of this modelling approach.  
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Figure 5.1 General iterative template for the continued improvement of risk 

assessment predictions. Reprinted with permission from Brown and Niedzwecki 

(2020). 

 

5.2. Development of the Risk Model 

An effective way to organize a risk model is to utilize fault trees. This 

organizational structure provides a logical interpretive structure for supporting a top event 

using sub-events, that is, basic elements that cause the top event to occur (Lee et al, 1985; 

Haldar and Mahadevan, 2000; Aven, 2008). This approach is ideal for targeting specific 

features of a subject that can be improved as new information becomes available and can 

also lead to the introduction of additional sub-events to improve the model predictions.  In 

this study the top event is the entanglement of whales by fishing gear and assessing the 

likelihood of it occurring. The intersection of the sub-events, calculated as the product of 
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probabilities assuming independence between sub-events, leads to the occurrence of the 

top event.  The regional sub-events addressed here reflect the type of fishing gear 

introduced into the environment, and its potential to entangle marine life in the vicinity. 

The various sub-events identified are assigned numerical values tied to the data 

available. A fishing gear type that can result in entanglement is viewed as a combination 

of the proportions of gear types that are used in the region and the types of gear that have 

been observed to cause entanglements. The presence of whales in the region is subject to 

information on their migration patterns and its overlap with seasonal commercial fishing 

locations.  Another important factor is the proportion of regional fishing gear that is lost 

annually or over some specified time scale.  Data pertaining to these particular sub-events 

was collected and grouped based on the specific regional data as reported in the open 

literature. 

The probability of the top event occurring is calculated as the intersection of the 

independent sub-events, and therefore, the product of the individual probabilities. These 

sub-events are the location overlap, fishing gear loss rates, and fishing gear type. It is 

assumed that the contribution of each gear type used in the region to the entanglement of 

marine animals is a disjoint event, therefore each gear type can therefore be considered 

separately. In this formulation it is assumed that there is no overlap between gear types, 

so the union of events is their summation without the intersection terms. Thus, the 

probability of encountering a specific fishing gear type i that will cause entanglement can 

be expressed as 
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P(Encounter for Gear type i) = P(Location) × P(Gear Loss for type i) 

   × P(Gear Type i) 
(5.1) 

 = λ×(γ
i
 β

i
 wi) (5.2) 

 

where, the symbol × is used to indicate multiplication between scalar values, λ is the 

probability of marine life in the location, γi is the probability of gear loss for gear type i, 

and the product of βi and wi are the weighted probability of gear type i.  For a particular 

location and set of data, it is necessary to consider the types of gear that have historically 

been the cause of entanglements in whales and how heavily that particular type of gear is 

used by the fishing industry in that region. The value of βi is the percent usage of gear type 

i by the region’s fishing industry and wi is a weighting assigned based on the historical 

entanglement cases. Specific details identifying the domains of these variables are 

provided in Table 5.1. 
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Table 5.1 Descriptions of variables associated with the sub-events for the whale 

entanglement risk-based model. Reprinted with permission from Brown and 

Niedzwecki (2020). 

Basic Event Sym. Description Restrictions 

P(Location) λ 

The probability that the fishing gear and 

marine animals are inhabiting the same 

space 

[0,1] 

 n Number of gear types being considered ≥ 1 

P(Gear Loss) γ
i
 

The probability that gear type i is 

lost/mishandled 
[0,1] 

P(Type) = β
i
 wi 

β
i
 

The percent usage of gear type i in the 

region by the fishing industry. Assigned 

based on proportions of the all the types of 

gear used in the region, so must sum to 

100%. 

[0,1] 

∑ β
i

n
i =1  

wi 

Weighting assigned based on culprits of 

previous entanglement cases in the region. 

Assigned based on proportion entanglements 

attributed to gear type i out of total number 

of cases. 

[0,1] 

∑ wi
n
i =1  

 

Then, for N fishing gear types, the probability of encountering and causing entanglement 

from fishing gear in the region is: 

 

P(Encounter)  = λ × [∑ γ
i
 β

i
 wi

N

i=1

] (5.3) 

 

The product between the resulting probability with the total amount of gear deployed 

provides a means to estimate the amount of gear that will potentially have negative 

encounters with marine mammals. The complement of this probability provides the 
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amount of fishing gear that will not have negative encounters because it is properly 

removed, retrieved, out of range, or not an entangling type of gear. 

 

5.3. Annual Multi-Year Fishing Gear Entanglements 

Not all the fishing gear that is accidentally or intentionally lost at sea is available 

for entanglement of large whales. Thus, the predictive model should account for the 

percentage of gear that is removed by nature or other means. Of particular interest is the 

ability of the model to consider annual or multi-year scenarios which can account for 

accumulation of fishing gear. Eqn. 5.3 can be modified by introducing a debris removal 

rate of rj for each year reflecting, for example, removal of fishing gear through clean-up 

efforts or fishing gear that has settled to where it no longer poses a risk of entanglement 

for the whales. Then, the contribution for Year j can be expressed as 

 

Pj(Encounter) =  (1- rj) × λj [∑ γ
ij
 β

ij
 wij

N

i = 1

]

j

  (5.4) 

 

where, the term (1 – rj) represents the fishing gear that remains after removal. When 

determining the accumulation over a series of years, it is important to remember that the 

contributions of each year act as disjoint events and are additive, that is, the amount of 

fishing gear lost in the current or previous years does not change the amount lost in 

subsequent years.  It is also true that what is lost in a previous year has the possibility of 

being removed during a subsequent year, so the fishing gear removal rate can vary and 
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affect multiple year events. Then, the probability of encounter for a sequence of M years 

can be expressed as 

 

PM(Encounter) = ∑{[∏ (1 − rm)

j

m = 𝑀

]× λj [∑ γ
ij
 β

ij
 wij

Nj

i = 1

]}

M

j

 (5.5) 

 

where rm is the removal rate representing the percentage of gear removed in Year m and 

the product operates in reverse, counting down from M to j. The resulting equation is a 

stacked relationship between the current year being examined and the previous years. 

To illustrate the single and multiple year estimates consider the following 

examples. For a single year, M = 1, a numerical estimate can be obtained using Eqn. 5.4. 

For a two-year sequence, M = 2, a numerical estimate can be made by expanding Eqn. 5.5, 

resulting in the following equation 

 

P2(Encounter) = {( 1- r2)(1 - r1) λ1 [∑ γ
i1

 β
i1

 wi1

N1

i = 1

]}

j = 1

 

                                                                               +{(1 - r2) λ2 [∑ γ
i2

 β
i2

 wi2

N2

i = 1

]}

j = 2

 

(5.6) 
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If one is combining datasets from multiple regions, then the multi-year and multi-

regional risk-based model for entanglement of whales for a variety of types of fishing gear 

becomes  

 

P(Encounter for Q Regions)   

 =∑(
1

Mk

∙ ∑{[ ∏ (1 - rmk)

𝑗

m = Mk

]× λjk [∑ γ
ijk
 β

ijk
 wijk

Nj

 i = 1

]}

Mk

j = 1

)

𝑄

k = 1

 (5.7) 

 

where, Q is the number of regions being considered, Mk is the amount of time spanning 

the dataset for region k, and rmk is the removal rate specified in time and space. The 

variables λjk, γijk, βijk, and wijk have an added index to allow for specifications based in time 

and space. 

If the data allows, the model can be further advanced by adding a spatial condition 

based on the region of interest and possibly time that examines the spatial overlaps 

between whale migration routes and regional fishery locations. Then, 

 

P(Encounter for Q Regions)   

 =∑(
1

Mk

∙∑{[ ∏ (1− rmk)

j

m = Mk

]× ψ
jk
 λjk [∑ γ

ijk
 β

ijk
 wijk

Njk

 i = 1

]}

Mk

j = 1

)

Q

k = 1

 (5.8) 

 

where ψjk is the spatial overlap that can be specified in time and space. 
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Macfadyen et al. (2009) specifically recommends addressing abandoned, lost or 

otherwise discarded fishing gear using preventative, mitigative, or curative measures. The 

derived equation provides the flexibility to account for efforts made in each of these 

categories by allowing parameters to incorporate the rate of gear loss, the ramifications of 

using certain types of gear without innovation or modifications, and gear removal efforts. 

 

5.4. US North Atlantic and Pacific Coastline Data Sets 

5.4.1. Assessing λ Values for the P(Location) 

Based on the availability of data, P(Location) is treated as a temporal condition 

based on the migrations of whales. Whales participate in seasonal migrations each year 

due for breeding and feeding. Whale tracking is commonly used not only for tourism 

purposes, but also to alert the shipping industry because collisions with large ships are an 

additional threat to marine mammal populations (Waters, 2016). Based on data from whale 

watching sites it is estimated that whales spend about half the year consistently in the New 

England and Pacific regions (Discover New England, n.d.; Visit California, 2019). A 

majority of reports reference the entanglement of gray, right, and humpback whales 

(Johnson et al, 2005; Saez et al., 2020). Right whales are found along the North Eastern 

Seaboard of the United States in the spring and summer months where they migrate to 

feed. In the fall and winter months they travel southward for feeding; this is also typically 

when the calving occurs (Waters, 2016). If whales spend half of the year in a region, then 

a value of λ = 0.5 can be assumed. 
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5.4.2. Assessing γ Values for the P(Gear Loss) 

Richardson et al (2019) used meta-analysis to compile information from published 

data on abandoned, lost or otherwise discarded fishing gear reported in different time 

scales as percentages, proportions, lengths, or weights from 1950 to May 2018, and then 

estimated the global gear loss rates by gear type. These values are listed in Table 5.2 and 

are used to develop an average value for γ for the model predictions, as the actual loss 

rates are unknown. 

 

Table 5.2 Global estimates of fishing gear loss rates by gear type 

(Richardson et al., 2019). Reprinted with permission from Brown and Niedzwecki 

(2020). 

Gear Type Percentage 

(γi) 

All Traps 8.6% 

Pots/Traps 19% 

Fyke Nets 4.1% 

Pound Nets 2.6% 

All Nets 5.7% 

Gillnets and Entangling 

Nets 

5.8% 

Miscellaneous Nets 1.2% 

Purse Seine Net fragments 6.6% 

Seine Net fragments 2.3% 

Trawl Net fragments 12% 

All Lines 29% 

Handlines 23% 

Pole-lines 65% 

Longlines 20% 

Trolling lines 22% 
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5.4.3. Assessing β and w Values for the P(Type) 

The quantity β is used to represent the percent usage of a particular fishing gear 

type in a specific region. This value would be best described using regional data on yearly 

gear deployments, but since exact data is unavailable, the value of β is estimated from the 

fish landing proportions in each region. Chuenpagdee et al. (2003) and Morgan and 

Chuenpagdee (2003) only provide information on the top 4 fishing gear types by weight, 

which are listed in Table 5.3 for each Fishery Management Council region. The states 

which comprise each Council are provided in Table 5.4. In the New England Region 

pots/traps make up 15% of the industry, dredges are 7%, bottom and midwater trawl nets 

combine for 59%, and the remaining 19% is comprised of other types of gear. In the 

Pacific Region pots/traps make up 4% of the industry, purse seine nets are 48%, bottom 

and midwater trawl nets combine for 31%, and the remaining 17% is comprised of other 

types of gear. 
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Table 5.3 Fish landing proportions by gear type (by weight) for Fishery 

Management Council Regions 

(Chuenpagdee et al., 2003; Morgan and Chuenpagdee, 2003). Modified with 

permission from Brown and Niedzwecki (2020). 
Type  

(*bottom and midwater combined, ** bottom and pelagic combined) 

Percentage 

(βi) 

New England  

Pots and Traps 15% 

Dredges 7% 

*Trawl nets 59% 

Other (*Gillnets, Hooks and lines, **Longlines, Purse seine) 19% 

Pacific  

Pots and Traps 4% 

Purse Seine 48% 

*Trawl nets 31% 

Other (*Gillnets, Hooks and lines, **Longlines, Dredges) 17% 

Mid-Atlantic  

Dredges 14% 

Pots and traps 8% 

Purse seine 60% 

Trawl - bottom 6% 

Other (*Gillnets, Hooks and lines, **Longlines, Trawl-midwater) 12% 

South Atlantic  

Hooks and lines 5% 

Pots and traps 23% 

Purse seine 29% 

Trawl-bottom 20% 

Other (Dredges, *Gillnets, **Longlines, Trawl-midwater) 23% 

Gulf of Mexico  

Pots and traps 4% 

Purse seine 73% 

*Trawl nets 16% 

Other (Dredges, *Gillnets, Hooks and lines, **Longlines) 7% 

North Pacific  

Gillnet-midwater 7% 

Purse seine 16% 

*Trawl nets 68% 

Other (Dredges, Gillnet-bottom, Hooks and lines, **Longlines, Pots and traps) 9% 

West Pacific  

Gillnet-bottom 1% 

Hooks and lines 32% 

Longline-pelagic 63% 

Purse seine 3% 

Other (Dredges, Gillnet-midwater, Longline-bottom, Pots and traps, *Trawl 

nets) 

1% 
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Table 5.4 U. S. Regional Fishery Management Councils by Region (U.S. Regional 

Fishery Management Councils, n.d.) 

Region Description 

North Pacific Alaska, (Gulf of Alaska, Bering Sea, and Aleutian Islands) 

Western 

Pacific 

Hawai’i, Guam, American Samoa, Commonwealth of the Northern 

Mariana Islands, and eight remote islands 

Pacific Washington, Oregon, California 

New England Maine, New Hampshire, Massachusetts, Rhode Island, and 

Connecticut 

Mid-Atlantic New York, New Jersey, Pennsylvania, Delaware, Maryland, 

Virginia and North Carolina 

South Atlantic North Carolina, South Carolina, Georgia and east Florida to Key 

West 

Gulf of 

Mexico 

Louisiana, Mississippi, Alabama, Texas, and the west coast of 

Florida. 

Caribbean Puerto Rico, United States Virgin Islands 

 

The quantity w is a weighting value that accounts for how likely a particular type 

of gear is to cause an entanglement. This value considers available data on reported 

entanglement cases in the region and the proportion of cases attributed to the gear type. 

For the New England Region, Johnson et al. (2005) conducted a study on the entanglement 

of right and humpback whales in the western North Atlantic Ocean between the years 

1994 and 2002. Fishing gear involved in the entanglements were documented by the gear 

type, but the specific year associated with each case was not provided. A total of 61 cases 

were examined, but unfortunately the gear type could only be identified or recovered in 

45 of those cases. The four categories of fishing gear considered were pots and traps, 

gillnets, other, and unknown. Considering only the 36 cases where the gear type was 

identifiable, 89% (32 of 36) of the gear identified in the entanglement cases were attributed 
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to pots and traps and gillnets. Of the 36 identifiable cases, 52.8% (19 of 36) were identified 

as entanglement with pots and traps, 36.1% (13 of 36) were attributed to gillnets, and 

11.1% (4 of 36) were categorized as other. 

For the Pacific Region, the West Coast Whale Entanglement Summaries from the 

US Dept of Commerce, the National Oceanic & Atmospheric Administration (NOAA), 

and the National Marine Fisheries Service (NMFS) were utilized to identify whale 

entanglement cases. In 2015 there were a total of 18 entanglement cases reported, with 13 

(72.2%) attributed to pot and trap fisheries and the remaining to gillnet fisheries (NOAA 

Fisheries, 2019). In the subsequent years the total number of cases were twenty-nine, 

fourteen, and twenty-four respectively with 27 of 29 (93.1%), 10 of 14 (71.4%), and 17 of 

24 (70.8%) associated with pot and trap fisheries and the remaining to gillnet fisheries. 

These percentages were based only on the identifiable cases, which represent only a 

portion of the total confirmed entanglement cases. 

 

5.5. Example: New England Region Multi-Year Average Estimate 

For the New England Region, the data used to determine the weighting, w, for 

whale entanglements spans from 1994 to 2002, but as previously noted is not broken down 

specifically by year. As a result, it is used as a single data set to perform calculations. The 

gear types can be isolated into the categories of pots and traps, gillnets, and other, and 

results a value of N = 3. Since only one set of data is available, Eqn. 5.3 is used for this 

example. The assignment of values for γi, βi, and wi are from Table 5.5 and the value of λ 

was selected as 0.5. The gear loss rate for the category other is assumed to be 14.43% and 
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is calculated as the average of the loss rates of all traps (8.6%), all nets (5.7%), and all 

lines (29%). The exact usage rate of gillnets is unknown and must be assumed. A value of 

6% was selected because it must be < 7% based on the information provided by 

Chuenpagdee et al. (2003) and Morgan and Chuenpagdee (2003). Substituting these 

values into Eqn. 5.3, an estimate of the probability of encounter, i.e., whale entanglement 

can be made. Specifically, 

 

P(Encounter)  = λ× [∑ γ
i
 β

i
 wi

N = 3

i = 1

] (5.9) 

 = 0.5[γ
1
 β

1
 w1 + γ

2
 β

2
 w2 + γ

3
 β

3
 w3] 

= 0.5 [(0.19)(0.15)(0.528) + (0.058)(0.06)(0.361) + (0.1443)(0.79)(0.11)] 

 

 ≈ 0.014 → 1.4%  

The interpretation of this result is that for the New England Region, approximately 

1.4% of gear deployed in a year will be available for negative encounters (entanglement) 

with whales. Hypothetically, say, if 100,000 units of gear are deployed off the New 

England Coast, then approximately 1,400 units of gear would be available for the 

entanglement of whales. From the 1.4% pots and traps contribute approximately 0.75%, 

gillnets contribute approximately 0.06%, and other types contribute approximately 0.63%. 

When fishing gear is abandoned, lost or otherwise discarded it is subject to transport by 
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storms, offshore currents, or other factors that will reduce this estimate by establishing a 

removal rate, as introduced in Eqn. 5.4. 

Table 5.5 Assignment of values for the New England Region, used in Example 1. 

Reprinted with permission from Brown and Niedzwecki (2020). 

𝒊 
Gear Loss (γi) 

(Table 5.2) 

Gear Usage (βi) 

(Table 5.3) 

Weighting 

(wi) 

1 = Pots and 

Traps 
γ1 = 19% β1 = 15% w1 = 52.8% 

2 = Gillnets γ2 = 5.8% 
β2 = 6% 

w2 = 36.1% 
*assumption, < 7% 

3 = Other γ3 = 14.43% β3 = 79% w3 = 11.1% 
*assumption, avg 

 

 

5.6. Example: Pacific Region Multi-Year Estimate 

For the Pacific Region it is possible to illustrate multi-year predictions for the 

entanglement of whales because the data provided for determining the weighting, w, is 

provided yearly from 2015 to 2018. This data spans a sequence of 4 years, thus M = 4 in 

Eqn. 5.5. The gear types for each year can be isolated into the categories of pots and traps, 

gillnets, and other, making Nj = 3. Because the value of Nj is the same for all 4 years Nj 

becomes N = 3 for each year. 

Assuming that γij, βij, and λj are held constant annually, and that no fishing gear is 

removed from the region from year to year so that rj = 0, only the weighting, wij, differs 

annually. A summary for the assignment of values is available in Table 5.6. As a result of 

these assignments, the product is equal to 1 and the j summation can be moved inside to 

obtain: 
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PM = 4(Encounter) =∑ {(1) × λj [∑ γ
ij
 β

ij
 wij

Nj

i = 1

]}

M = 4

j = 1

 
(5.10) 

 = λ × [∑ (γ
i
 β

i
∑ wij

M = 4

 j = 1

)

N = 3

i = 1

]  

 

Table 5.7 provides guidance for completing the summation used for this example. 

The probability of encounter, i.e., whale entanglement, is estimated to be P ≈ 0.012 = 

1.2%. The interpretation of this value is that for the Pacific Region approximately 1.2% 

of gear deployed from 2015 to 2018 will be available for negative encounters 

(entanglement) with whales. Again, hypothetically if 100,000 units of gear are deployed 

per year on the West Coast, then approximately 4,800 units of gear will be available for 

the entanglement of whales over the 4-year period. 

 



 

79 

 

Table 5.6 Assignment of values for the Pacific Region, used in Example 2. 

Reprinted with permission from Brown and Niedzwecki (2020). 

j rj nj i 

Gear Loss 

(γij) 

 (Table 2) 

Gear Usage (βij) 

 (Table 3) 

Weighting 

(wij) 

1 = 2015 r1 = 0% n1 = 3 1 = Pots and Traps γ11 = 19% β11 = 4% w11 = 72.2% 

2 = Gillnets γ21 = 5.8% β21 = 3% w21 = 27.8% 

3 = Other γ31 = 14.43% β31 = 93% w31 = 0.0% 

2 = 2016 r2 = 0% n2 = 3 1 = Pots and Traps γ12 = 19% β12 = 4% w12 = 93.1% 

2 = Gillnets γ22 = 5.8% β22 = 3% w22 = 6.9% 

3 = Other γ32 = 14.43% β32 = 93% w32 = 0.0% 

3 = 2017 r3 = 0% n3 = 3 1 = Pots and Traps γ13 = 19% β13 = 4% w13 = 71.4% 

2 = Gillnets γ23 = 5.8% β23 = 3% w23 = 28.6% 

3 = Other γ33 = 14.43% β33 = 93% w33 = 0.0% 

4 = 2018 r4 = 0% n4 = 3 1 = Pots and Traps γ14 = 19% β14 = 4% w14 = 70.8% 

2 = Gillnets γ24 = 5.8% β24 = 3% w24 = 29.2% 

3 = Other γ34 = 14.43% β34 = 93% w34 = 0.0% 

 

Table 5.7 Solving Eqn. 5.5 using values assigned to the Pacific Region in Example 2. 

Reprinted with permission from Brown and Niedzwecki (2020). 

i λ γ
i
 β

i
 j wij  λ γ

i
 β

i
 ∙∑ wij

4
j  

1 
(0.5)(0.19)(0.04) 

1 0.722 

0.012 

2 0.931 

3 0.714 

4 0.708 

λ γ
1
 β

1
= 0.0038  ∑w1j = 3.075 

2 
(0.5)(0.058)(0.03) 

1 0.278 

0.0008 

2 0.069 

3 0.286 

4 0.292 

λ γ
2
 β

2
= 0.00087  ∑w2j = 0.925 

3 

(0.5)(0.1443)(0.93) 

 

1 0 

0 

2 0 

3 0 

4 0 

λ γ
3
 β

3
= 0.067  ∑w3j = 0 

Total Sum 1.2% 
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5.7. Example: Combining New England & Pacific Regions Data 

Given the limited quantities of data available for analysis, it is reasonable to 

consider the combination of data from different geographic regions. For illustrative 

purposes, combining the data from the New England and Pacific Regions using Eqn. 5.7 

results in a probability of encounter of 1.7%. The interpretation is that for the combined 

New England and Pacific Regions approximately 1.7% of gear deployed in a year will be 

available for negative encounters (entanglement) with whales. Then, for a hypothetical 

deployment rate of 100,000 units of gear per year, this means that approximately 1,700 

units of gear available for entanglement. As noted previously, natural events can 

redistribute the debris and the rate of redistribution can be different for each region. 

 

 

5.8. Visualization of Variability and Sensitivity 

Recognizing the difficulties in consistently assessing the source and type of 

entanglement of large marine mammals as reflected in the data, the risk-model can be used 

to explore and gain insight into the resulting variability and sensitivity of the model 

predictions. Graphical visualization is an essential feature in understanding the numerical 

results and reflecting on what additional information might improve model predictions. 

 

5.8.1. Variability 

The variability of the basic risk model predictions to changes in data can initially 

be examined using Eqn. 5.3 and the resulting Figures 5.2 and 5.3. In order to facilitate the 
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interpretation, the number of variables and their range of variation is minimized. In 

particular, the number of fishing gear types is specified as N = 3 so that the values of the 

percent usage, βi, and historical cases weighting, wi, are restricted to planes. Variations in 

the gear type usage, βi, weighting, wi, location parameter, λi, or the gear loss rate, γi, result 

in linear changes in the final probability predictions. For these simulations the values λ = 

0.5; βi = {0.15, 0.05, 0.80}; wi = {0.70, 0.25, 0.05}; and γi = {0.20, 0.06, 0.15} were 

selected for consistency.  

The figures are developed by selecting one variable to vary, while holding the 

others constant. This allows one to identify the influence of each variable on the risk model 

predictions. In Figure 5.2a, the gear usage, βi, gives the percent usage for a given gear 

type. By varying this value along each axis, the effect of using different proportions of 

each gear type on the risk model predictions is revealed. Gear type i = 1, representing pots 

and traps, has the highest weighting and loss rate of the three gear categories. The 

weighting is defined as the proportion of documented cases in the open literature 

associated with a specified gear type, so having the highest weighting indicates that pots 

and traps are most likely to be at fault for causing entanglements, while having the highest 

loss rate indicates that they are most likely to be lost. Thus, in Figure 5.2a the value of β1 

has the most influence as it approaches a value of 1.0, and the increased usage of this gear 

type will quickly increase P(Encounter). In Figure 5.2b, each axis corresponds to the 

weighting parameter for each of the three gear types. Gear type, i = 3, representing the 

category “other”, has the highest usage. This indicates that most of the gear used by the 

industry does not fall into the categories of pots and traps or gillnets. Thus, in Figure 5.2b, 
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w3 has the most influence as it approaches a value of unity, and results in an increased risk 

of entanglement. The linear relationship between variables illustrated by these figures is 

intended to allow one to determine the gear types that are most at fault for whale 

entanglements based on documented instances and industry usage. This visualization is 

based on three categories, but should a new category emerge one would need to rethink 

the combinations of axes. This would result in additional graphs of this nature and perhaps 

a recombination of axes that would be used to better understand the relationships between 

the gear type categories. 

Another possible visualization of the gear loss rates, γi, is presented in Figure 5.3. 

Here all the possible gear loss rates are restricted to vary within a cube of unit volume 

shown in Figure 5.3a.  From Figure 5.3b it is easier make sense of this information in 

visualizing the P(Encounter) by considering horizontal slices through the cube space that 

correspond to a particular range of γ1 and γ2 values.  Here the values of γ3 = 0, 0.5, and 

1.0 were selected.  It can be deduced that the loss of pots and traps (γ1) has the most control 

over the resulting estimate of P(Encounter). This can be explained in view of the pots and 

traps (i = 1) having the largest weighting value. This high weighting indicates that pots 

and traps are the most at fault for causing entanglements of whales, so losing more of this 

type of gear would likely result in more encounters and a higher likelihood of 

entanglements. 
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Figure 5.2 (a) The effect of industry gear usage by gear type, βi, and (b) weighting 

assigned based on historical entanglement cases by gear type (wi) on the Probability 

of Encounter, with gear types 1 = pots and traps, 2 = gillnets, 3 = other, and 

restrictions ∑βi = 1 and ∑wi = 1. Reprinted with permission from Brown and 

Niedzwecki (2020). 
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Figure 5.3 (a) The effect of gear loss rates by gear type, γi, on the Probability of 

Encounter, with γ1 = pots and traps, γ2 = gillnets, γ3 = other types, and restriction γi 

∈ (0,1) and (b) sliced visualization of the Probability of Encounter with varying 

gear loss rates. Reprinted with permission from Brown and Niedzwecki (2020). 
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5.8.2. Sensitivity of Probabilistic Modeling Approach 

The strength in developing a risk-based model is that, once it is established, one 

can explore the sensitivity of the predictions to various underlying assumptions and 

scenarios. Since the information is converted to probabilistic information, one can also 

examine the accuracy of the model predictions and can illustrate the need for improved 

data on specific variables. In addition, one can explore which parameters most influence 

on the model predictions, and then seek to improve information regarding those 

parameters. A series of relevant examples is presented next to illustrate this aspect. 

First, we consider how PM(Encounter) based upon Eqn. 5.5 changes over a 

sequence of years for different values for the yearly removal rate, rj. The base values for 

each of the parameters selected are assigned as βij = {0.15, 0.05, 0.80}j=1,2,3; wij = {0.70, 

0.25, 0.05}j=1,2,3; γij = {0.20, 0.06, 0.15}j=1,2,3; and λj=1,2,3 = 0.5. The two boundaries of the 

domain of ri represent the cases of no lost fishing gear being removed in Year j (ri = 0) 

and all lost fishing gear being removed in Year j (ri = 1). In Figure 5.4 constant fishing 

gear removal each year is presented; if the fishing gear inputs remain constant, a plateau 

will be reached. Removing more gear annually than is input yearly (ri > 1) is the only way 

to obtain a decrease mathematically and conceptually over time based on Eqn. 5.5. 
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Figure 5.4 Probability of Encounter due to accumulation of gear over a period of 

years. Reprinted with permission from Brown and Niedzwecki (2020). 

 

The true values of the assigned probabilities are likely unknown. In the examples 

presented thus far, discrete values were chosen for each sub-event based on the available 

data and then ranges of values were considered. As more data sets become available it 

becomes possible to describe each sub-event as a random variable using a probability 

distribution function. In instances where very limited or no data is available for a particular 

sub-event, one can consider a Bayesian way of thinking, where prior distributions are 

created and chosen based on one’s beliefs. Then, selected distribution functions can act as 

a placeholder until evidence from collected data can later be interpreted and included in 

the model. 
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To demonstrate the incorporation of probability distributions, the removal rate is 

assumed to be a random variable that follows a truncated normal distribution in the interval 

[0,1] with mean, μR, and standard deviation, σR (Benjamin and Cornell 2014; Burkardt, 

2014). The truncated normal distribution is selected because of the symmetry around the 

mean value. A truncated normal distribution with lower and upper truncation points of a 

and b respectively is described by 

 

 

 f(x ; μ, σ, a, b)=

{
 
 

 
 ϕ (

x - μ
σ
)

Φ (
b - μ

σ
) −  Φ (

a - μ
σ
)

, a ≤ x ≤ b

0 , otherwise

 (5.11) 

 

where μ and σ are the mean and standard deviation of the ‘parent’ normal distribution, and 

ϕ and Φ are the probability density and cumulative distribution functions of the ‘parent’ 

normal distribution (Burkardt, 2014). 

The values of βij, wij, γij, and λj are assumed to be discrete variables, where βij = 

{0.15, 0.05, 0.80}j=1,2,3, wij = {0.70, 0.25, 0.05}j=1,2,3, γij = {0.20, 0.06, 0.15}j=1,2,3, and 

λj=1,2,3 = 0.5. Samples were drawn from the truncated normal distribution describing the 

removal rate, R, with a specified mean value μR = 0.3 and a standard deviation σR = 0.1, 

that is, R ~ N(0.3,0.1). Assuming a time span of 20 years, 100 independent samples were 

drawn from the distribution each year, for a total of 2000 samples. These values are 

presented in Figure 5.5a along with a normalized histogram in Figure 5.5b. The sampled 
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values from R were then used in Eqn. 5.5 to perform 100 simulations in order to estimate 

the PM(Encounter) due to accumulation of fishing gear within a 20-year period. 

 

 
Figure 5.5 Modeling the removal rate using a truncated normal distribution (a) 100 

samples drawn per year from R ~ N(0.3,0.1) for a span of 20 years, and (b) a 

normalized histogram of samples. Reprinted with permission from Brown and 

Niedzwecki (2020). 
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As time progresses the variability in the predicted results increases, as can be 

observed in Figure 5.6. This is due to the additive nature of Eqn. 5.5, in that the annual 

variability is affected by the uncertainty of previous years’ predictions. It becomes 

possible to capture the variability of PM(Encounter) using probability distribution 

functions for each year, as seen with Year 10, PM=10(Encounter). Conducting the same 

analysis with different distributions to describe the removal rate, R ~ N(μR, σR), results in 

different estimates of P(Encounter). Figures 5.7a, 5.7b, and 5.7c demonstrate that the final 

P(Encounter) is highly dependent on the standard deviation assigned to the distribution of 

the removal rate, which is contingent on how strongly it is believed that the removal rate 

follows the assumed distribution function. As the standard deviation is increased, the 

probability distribution for the random variable R is shown in Figure 5.7c to approach that 

of a uniform distribution. 

The mean and standard deviation of the removal rate are varied and illustrated in 

Figures 5.8a and 5.8b. This illustrates how parameters of a selected distribution function 

can be used to better reflect the information available. Smaller standard deviations can be 

used to reflect higher accuracy and confidence in the data. It can be observed for lower 

values of the standard deviation in Figure 5.8b that the P(Encounter) hovers closer to the 

exact solutions calculated by treating the variables as discrete valued variables. 
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Figure 5.6 The variation of the Probability of Encounter over m years using 

removal rate values sampled from R ~ N(0.3,0.1) (truncated normal), with a focus 

on Year 10, where P(10) = P(M = 10)(Encounter). Reprinted with permission from 

Brown and Niedzwecki (2020). 
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Figure 5.7 Simulations of calculating the Probability of Encounter due to 

accumulation of gear over m years; removal rate values are sampled from R ~ 

N(0.3,σ) (truncated normal) using standard deviations of (a) σ = 0.05, (b) σ = 0.1, 

and (c) σ = 1.0. Reprinted with permission from Brown and Niedzwecki (2020). 
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Figure 5.8 P(Encounter) over m years using removal rate values sampled from (a) R 

~ N(0.1,0.1) , R ~ N(0.3,0.1), and R ~ N(0.5,0.1) (truncated normal) and (b) from R ~ 

N(0.1,0.05) , R ~ N(0.3,0.05) , and R ~ N(0.5,0.05) (truncated normal), including 

distributions for Year 10, where P(10) = P(M = 10)(Encounter). Reprinted with 

permission from Brown and Niedzwecki (2020). 
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This indicates the need to check the relationship between the parameters used in 

the distribution function representing the removal rate and the resulting sensitivity in 

estimating the probability of encounter. In order to understand how the parameter selection 

used to describe the removal rate affects the estimates of P(Encounter), the parameters of 

each distribution were plotted against each other for PM = 10(Encounter) in Figures 5.9a 

and 5.9b. In Figure 5.9a, as the mean removal rate is increased, i.e. a higher portion of 

fishing gear is removed from the region, there is a decrease in the mean of P(Encounter) 

for each standard deviation assigned to the removal rate. In general, as the mean removal 

rate is increased there is seen to be less dependence on the standard deviation of the 

removal rate. Skewness and heavy tails for the truncated distribution led to more spread 

in the mean of P(Encounter) for lower values of the μR. The minimal spread occurs at a 

mean of μR = 0.5, where the distribution for the removal rate becomes symmetric. In Figure 

5.9b, the sensitivity of the standard deviations for P(Encounter) shows that as the standard 

deviation of the underlying distribution is increased, the values converge to an 

uninformative distribution. This is equivalent to knowing less information about the 

behavior of the random variable as would be reflected by the selection of a uniform 

distribution. 
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Figure 5.9 Variation of the means and standard deviations for the P(Encounter) in 

Year 10, P(10) ~ N(μP(10), σP(10)), using simulations of the Removal Rate, R ~ N(μR, 

σR) (truncated normal); (a) mean assessment and (b) standard deviation 

assessment. Reprinted with permission from Brown and Niedzwecki (2020). 
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Next, we consider fishing gear loss rates, γi, for each of the three categories of gear 

(pot and traps, gillnets, and other) where each are assumed to be random variables. Here 

it is assumed that each fishing gear type can be modeled as truncated normal distributions; 

γ
1 ~ N(0.2,σγ1

), γ
2
 ~ N(0.06,σγ2

), and γ
3
 ~ N(0.15,σγ3

). Gear loss for pots and traps was 

isolated by sampling from its distribution using different parameter values to directly 

determine its effect on P(Encounter) in Figures 5.10a and 5.10b. As the standard deviation 

is decreased from 0.5 in Figure 5.10a to 0.1 in Figure 5.10b, the three cases are shown to 

separate. 

In order to better visualize the effects of the distribution for the gear loss rate of 

pots and traps, γ
1 ~ N(μγ1

,σγ1
), on the estimates of P(Encounter), the parameters of each 

were plotted against each other as illustrated in Figures 5.11a and 5.11b. In Figure 5.11a, 

increasing the mean loss rate results in a subsequent increase in P(Encounter). In Figure 

5.11b the standard deviation of P(Encounter) increases with the standard deviation of the 

loss rate. As seen previously when the removal rate was treated as a random variable, the 

standard deviation of P(Encounter) begins to converge as the loss rate distribution 

function approaches to an uninformative uniform distribution function. 
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Figure 5.10 Distributions of P(Encounter) for differing sampling distributions for 

the loss rate of gear type 1 (γ1; pots and traps); (a) σγ1 = 0.5 and (b) σγ1 = 0.1. 

Reprinted with permission from Brown and Niedzwecki (2020). 
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Figure 5.11 Variation of the means and standard deviations for the P(Encounter) ~ 

N(μP(Encounter), σP(Encounter)), using gear loss simulations of γ1 ~ N(μγ1, σγ1) (truncated 

normal) (a) mean assessment and (b) standard deviation assessment. Reprinted 

with permission from Brown and Niedzwecki (2020). 

 

This insight can be utilized when revisiting the earlier Examples 1 and 2 by 

interpreting the values presented in Tables 5.5 and 5.6 as the mean values for the random 

variable γi and treating the other variables as deterministic values. The parameters for the 
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estimated distributions of P(Encounter) and PM = 4(Encounter) are given by Table 5.8 for 

different assigned standard deviations of γi. The alignment of these predictions with the 

results from Examples 1 and 2 illustrates that when there is more confidence in assigning 

distribution parameters, there is better alignment between results using random variables 

versus a deterministic approach. 

 

Table 5.8 Evaluation of distribution parameters for P(Encounter) using data from 

the New England and Pacific Regions. Reprinted with permission from Brown and 

Niedzwecki (2020). 

Standard Deviation for Gear Loss Parameters of P(Encounter) 

Example 1 – New England Region (Table 5.5) 

σγi = 0.01 
μ

P = 0.0148 

σP = 0.0031 

σγi = 0.1 
μ

P
 = 0.0169 

σP = 0.0055 

σγi = 0.5 
μ

P
 = 0.0374 

σP = 0.0166 

Example 2 – Pacific Region (Table 5.6) 

σγi = 0.01 
μ

P(4) 
= 0.012 

σP(4) = 0.0007 

σγi = 0.1 
μ

P(4)
 = 0.0141 

σP(4) = 0.0014 

σγi = 0.5 
μ

P(4)
 = 0.0292 

σP(4) = 0.0041 

 

By introducing the analytical form of the various distribution functions describing 

the sub-events, it is possible to both model the information gathered from various sources 

and to directly assess the accuracy of the risk-based model predictions. To demonstrate 
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this, Eqn. 5.2 is used, where P(Encounter) is calculated for a specific gear type. Due to 

the independence between each of the variables, a product of the individual distributions 

can be used represent a joint distribution function. Suppose the probability of gear loss for 

a particular gear type and the percent usage of a particular gear type are treated as random 

variables while the location parameter and the weighting assigned to each gear type retain 

their discrete distributions. The exact losses due to both the commercial and local fishing 

industries are difficult to estimate and the exact contributions of each to the proportions 

of gear usage are unknown, making the model parameters difficult to quantify. This makes 

fishing gear loss and gear usage suitable variables to be described using probability 

distribution functions. Based on this idea, one can express the distribution function 

describing the probability of encounter mathematically as 

 

 

where the product of the probability density functions for the location parameter, gear loss, 

gear usage, and weighing are shown on the right-hand side of Eqn. 5.12. Assume that the 

gear loss rate can be modeled as a truncated normal distribution, γ ~ N(μγ,σγ), and the gear 

usage follows a truncated Rayleigh distribution as a function of the parameter θβ, where β 

~ Rayleigh(θβ); both are confined to the interval 0 to 1. Let the location and weighting 

distribution functions be described as discrete distributions where they are only valid for 

values of λ0 and w0, respectively. That is, 

f
P(Encounter)

(λ, γ, β, w) =  f
Λ
(λ) ∙ f

Γ
(γ) ∙ f

Β
(β) ∙ f

W
(w) (5.12) 
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f
Γ
(γ ; μ

γ
 , σγ , 0 , 1)  =

{
 
 

 
 ϕ (

γ - μ
γ

σγ
)

Φ(
1 - μ

γ

σγ
) −  Φ(

0 - μ
γ

σγ
)

,  0 ≤ γ ≤ 1

0 , otherwise

 (5.13) 

f
Β
(β; θβ) = 

{
 
 

 
 β

θβ
2  exp(−

1
2
(

β
θβ
)

2

)

1 − exp(−
1
2
(

1
θβ
)

2

)

0 ≤  β ≤ 1

0 elsewhere

 (5.14) 

f
Λ
(λ) = {

1 λ = λ0

0 elsewhere
 (5.15) 

f
W
(w)= {

1 w = w0

0 elsewhere
 (5.16) 

 

Based on these assumptions, the resulting joint distribution function for the probability 

of encounter can be expressed as the joint distribution of λ, γ, β, and w as expressed in 

Eqn. 5.12. A change of variables is required to reconstruct this joint probability 

distribution function, fP(Encounter)(λ,γ,β,w), in terms of the probability of encounter, 

fP(Encounter)(p), where p is the random variable of P(Encounter). The change of variables is 

completed by solving,  

f
P,Λ,Β,W

(p,λ,β,w) = 
f
Γ,Λ,Β,W
(γ,λ,β,w)

|det {
∂(p,λ,β,w)
∂(γ,λ,β,w)

}|
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=

f
Γ
(γ) ∙ f

Λ
(λ) ∙ f

Β
(β) ∙ f

W
(w)

|

|

|

det

{
 
 
 

 
 
 

∂p
∂γ

∂p
∂λ

∂p
∂β

∂p
∂w

∂λ
∂γ

∂λ
∂λ

∂λ
∂β

∂λ
∂w

∂β
∂γ

∂β
∂λ

∂β
∂β

∂β
∂w

∂w
∂γ

∂w
∂λ

∂w
∂β

∂w
∂w}
 
 
 

 
 
 

|

|

|

 
 

 
=

f
Γ
(γ) ∙ f

Λ
(λ) ∙ f

Β
(β) ∙ f

W
(w)

|det{

λβw γβw λγw λγβ

0 1 0 0

0 0 1 0

0 0 0 1

}|

 
 

 
=

f
Γ
(γ) ∙ f

Λ
(λ) ∙ f

Β
(β) ∙ f

W
(w)

λβw
 

 

 

=
f
Γ
(

p
λβw
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Then, the marginal density function that characterizes the probability of encounter can be 

calculated from the joint distribution using integration. 
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+∞

- ∞

+∞
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The limits of integration are dependent on the support of the distribution describing the 

variables. In this case, because each of the random variables is describing a probability, 

their domains are from 0 to 1 inclusive. Because the weighting and location parameters 

are assigned discrete distributions and only take specified values, the equation can be 

further simplified to 

 

 

In terms of the assigned probability distributions that is, 

 

 

Converting the probability density so that it is in terms of P(Encounter) is advantageous 

for making direct interpretations of the parameters describing the probability of encounter 

distribution function. Then, to determine the Probability of Exceedance of a specified 

value, p0, the complementary cumulative distribution is written as 

f
P(Encounter)

(p) = ∫ f
B
(β) ∙ f

Γ
(

p

λ β w
)  ∙ 

1

λ β w
 dβ
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0

 (5.19) 
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As noted previously, by adopting the analytical form of the probability density 

functions it is possible to assess the accuracy of the risk-based model and the sensitivity 

of its predictions to incomplete information. 

Including the debris removal rate requires an additional variable in Eqns. 5.12-

5.22. It is best to specify its distribution as the complementary event, f1-R(1-r), representing 

the percentage of fishing gear that is left behind, to allow for the product to be used in the 

joint distribution. If the function describing the removal rate, fR(r), is known, then the 

complementary event can be found by shifting the function. Then, 

 

 

f
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Γ
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Β
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Because of the assumption of independence between sub-events, layered 

convolution integrals based on the concept previously introduced in Eqn. 4.21 can be 

utilized to address the summations over i, j, and k.  

 

f
PI
(p) = (f

Pi = 1
∗ f

Pi = 2
∗… ∗ f

Pi = Njk

) (p) (5.24) 

f
PJ
(p) = (f

PI, j = 1
∗ f

PI, j = 2
∗… ∗ f

PI, j = Mk

) (p) (5.25) 

f
PK
(p) = (f

PI, J, k = 1
∗ f

PI, J, k = 2
∗… ∗ f

PI, J, k = Q
) (p) (5.26) 

 

The modeling of incomplete data can be achieved by recognizing the underlying 

probability density functions or exploring the impact of possible distributions on the 

predictions. The recognition of an underlying distribution is demonstrated in Figures 5.12a 

and 5.12b, where simulated data is fit with continuous distributions. For the example 

provided, the data is simulated from known probability distribution functions, however in 

reality, it is unlikely that data will be available with this resolution. As the quantities of 

accurate data related to whale entanglement via fishing gear increases, smaller bin sizes 

and better characterization of the behavior of the data using continuous distribution 

functions will result. Figures 5.12c, 5.12d, 5.12e, and 5.12f provide comparative plots 

between proceeding with the analysis for determining the risk of entanglement using 

simulated discrete data versus an idealization of the discrete data using continuous 

distribution functions. If the analysis proceeds using the discrete data, the result is as 
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shown in Figure 5.12c and 5.12d, where multidimensional histograms and pulses of color 

provide a rigid representation of how the risk-model behaves. Proceeding with continuous 

representations of the data as in Figure 5.12e and 5.12f allows for smoother visualization 

of the 3-dimensional and contour graphics. Although the two methods provide different 

levels of visualization, the accuracy of results of each analysis is entirely dependent on 

how well the continuous distribution functions match the behavior of the data. 

It can be seen that continuous distribution functions result in reasonable 

representations of discrete data, and with some adjustment, could be further refined if 

necessary. This is illustrated in Figures 5.13a, 5.13b, 5.13c, and 5.13d where slight 

changes in each of the parameter assignments for β and γ are shown to alter the contours 

of the joint distribution functions. This demonstrates how alternate scenarios could be 

implemented, as this approach is not limited to the probability density functions explored 

in this study. So, if more appropriate analytical functions are deemed to better fit the data, 

the formulation of the joint distributions can be modified and introduced into the risk-

based model. 

 

 



 

106 

 

 

Figure 5.12 Simulated data for (a) β ~ Rayleigh(θβ = 0.15√(2/π)) and (b) γ ~ N(μγ = 

0.19, σγ = 0.1) to compare resulting (c) 3-D histogram and (d) heat map of data to 

(e) 3-D and (f) contour visualization of fitted continuous distribution functions. 

Reprinted with permission from Brown and Niedzwecki (2020). 
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Figure 5.13 Comparison of the contours of the analytical joint distribution 

functions modeling the probability of encounter, fP(Encounter)(γ, β), with incremental 

changes in parameter values. Specifically, (a) μγ = 0.19, σγ = 0.1, θβ = 0.15√(2/π); (b) 

μγ = 0.19, σγ = 0.1, θβ = 0.1√(2/π); (c) μγ = 0.19, σγ = 0.15, θβ = 0.15√(2/π); and (d) μγ 

= 0.15, σγ = 0.1, θβ = 0.15√(2/π). Reprinted with permission from Brown and 

Niedzwecki (2020). 

 

In order to check the effect of these parameter changes on the estimates for the 

probability of encounter the mean value of the probability of encounter distribution for 

each variation was taken as the informative measurement for comparison. It is worth 

noting that the mean values calculated using the joint distribution in Eqn. 5.12 matched 
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those of the distribution introduced in Eqn. 5.20, so calculations can be completed using 

either format. The base parameters were assigned so that the mean of each distribution 

matched the values used in calculating the contribution of pots and traps to whale 

entanglement in the New England Region for Example 1. 

The parameter assignments of μγ = 0.19, σγ = 0.1, and θβ = 0.15√(2/π) with λ = 0.5 

and w = 0.528, shown in Figure 5.13a, resulted in a mean value of 0.76% and standard 

deviation of 0.05% which is well within a standard deviation of the 0.75% estimate 

calculated using discrete values in Example 1. The interpretation of the calculated mean 

value is that, on average, the model will report that 0.76% of pots and traps deployed in a 

year in the New England Region will be available for entanglements with whales. The 

next variation in Figure 5.13b has the parameter assignments of μγ = 0.19, σγ = 0.1, and θβ 

= 0.1√(2/π) with λ = 0.5 and w = 0.528. This is equivalent to decreasing the mean of the 

Rayleigh distribution describing β to 0.1 and underestimating the portion of pots and traps 

being used by industry. The resulting distribution has a mean of 0.51% and standard 

deviation of 0.02%, which is noticeably less than the initial estimate and results in an 

underestimate. Figure 5.13c uses the parameter assignments of μγ = 0.19, σγ = 0.15, and θβ 

= 0.15√(2/π) with λ = 0.5 and w = 0.528. In this case, the standard deviation of the 

distribution describing γ is increased to reflect less certainty in the choice of distribution 

to represent the loss of pots and traps. This variation now provides a conservative estimate 

for the probability of encounter with a mean of 0.85% and standard deviation of 0.08%. 

Lastly, Figure 5.13d uses the parameter assignments of μγ = 0.15, σγ = 0.1, and θβ = 

0.15√(2/π) with λ = 0.5 and w = 0.528 to represent estimating less pots and traps lost each 
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year than the true amount. This results in an underestimation of the probability of 

encounter with a mean of 0.64% and standard deviation of 0.04%. Any changes to the 

definitions of the location parameter, λ, and weighting, w, which would reflect spatial or 

temporal changes in the presence of whales and additional information on past 

entanglement cases respectively, result in linear changes in the mean value of the 

probability of encounter because of their current discrete distribution definitions. 

The likelihood of the risk-model underestimating the probability of encounter can 

be calculated using the probability of exceedance introduced in Eqn. 5.22. The probability 

that the true value exceeds the estimated value, if the estimated value is taken as the mean 

value of the distribution, was approximately 41% for the parameter assignments in Figures 

5.13a and 5.13b, and approximately 40% for the parameter assignments in Figures 5.13c 

and 5.13d. This means that the model has approximately a 40% likelihood of 

underestimating the true number of whale entanglements using the current definitions of 

the sub-events and generated data. With sufficient amounts of accurate data and well-

defined sub-events, the accuracy of the risk-based model can be assessed in this manner. 

In addition to comparisons to the results of the discrete valued examples, other methods 

can be used for model comparisons as more data is compiled. Goodness-of-fit tests and 

confidence intervals become advantageous for selecting an underlying continuous 

distribution to model the data of each sub-event. Visualization will become more 

challenging as more sub-events are introduced to refine the risk-based model, and the use 

of coupled graphical representations will be needed. 
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5.9. Discussion and Conclusions 

This research addresses the development of a methodology for quantifying the risk 

associated with abandoned, lost or otherwise discarded fishing gear as it pertains to the 

entanglement of whales.  The model presented introduces parameters that provide a means 

to quantify the impact of mishandling of fishing gear, the types of fishing gear used by 

industry, and gear subject to transport by storms, offshore currents, or other factors that 

reduce the amount of fishing gear in a particular region. The examples presented illustrate 

different scenarios for how the model can be applied both for discrete representations of 

data and analytical functions. In the first example, data relevant to the New England region 

was used to calculate the risk of entanglement for whales in the region using average 

estimates. The next example demonstrated the ability of the model to generate multi-year 

entanglement estimates by combining Pacific region datasets. The third example further 

demonstrated the process for combining data from different geographic regions, 

specifically using information from the New England and Pacific regions. For situations 

where data is sparse or nonexistent, the use of continuous distribution functions was 

introduced as an alternative to accommodate these knowledge gaps. This approach allows 

one to investigate the sensitivity of the model to specific sub-event information. For sub-

events where incomplete information exists, distributions can be selected that allow their 

parameter values to be defined to approach a uniform distribution when no information is 

available. The risk-based model predictions can be used to estimate the units of gear 

available for entanglement based on deployment rates or can be used to calculate the 

likelihood of underestimating the true risk. As the accuracy of the data used in the risk-
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based model is increased, the model has the potential to be used as guidance to decrease 

the number of entanglement events.  

The risk-based model as currently implemented is focused on independent 

entanglement events by gear type and does not explore multiple entanglement events by 

an individual whale. Other kinds of entanglements, including that from active and fixed 

gear, could be modeled as additional sub-events based on spatial variability between 

seasonal whale migration routes and regional fishery locations that attract the migrating 

whales. The lack of field data remains the biggest challenge to improving the breadth and 

accuracy of the risk model predictions. The information used in this research represents 

data reported in the open literature as well as idealizations of that data. In practice, one 

might consider introducing a reasonable distribution based on experience and use that in 

the modeling process until additional data is available to confirm or disprove the choice. 

The strength of the methodology presented is its ability to take varied amounts of 

field observations and recast it for mathematical interpretation to be used in the risk-based 

model predictions. The general framework developed allows researchers to examine 

alternative hazard scenarios by incorporating additional data on both regional and global 

scales in a structured way and is not limited to this specific application. The fault tree 

approach allows one to address other research topics in a similar fashion through the 

focused descriptions of compiled field data, which can then be used to define an outcome 

based on the selection of the sub-events. The use of a variety of visualization schema is 

essential in characterizing possible scenarios in determining the sensitivity of the risk 
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model parameterization. The approach presented in this study provides a starting point for 

developing other risk-based models for quantifying threats to marine life. 
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CHAPTER 6  

ASSESSING THE RISK OF DEBRIS-STRUCTURE INTERACTIONS DUE TO 

IMPACT LOADING 

 

Interpretations of available information to address the risk of waterborne debris 

colliding with a structure are presented. A risk-based model is derived that reflects 

published information on large waterborne debris generation and behavioral data. The 

fault tree framework previously developed to organize data and allow for the continual 

improvement of risk-based model predictions is adapted for this new application. This 

objective is completed through the redevelopment of sub-events based on available data 

reported on shipping containers and extreme hydrodynamic events which is used in 

illustrative examples. The debris collision is characterized in terms of the debris 

characteristics, channel dimensions, flow conditions, the geometry of the target structure, 

and rate of occurrence of debris-generating events. The risk-based model is used to 

develop graphs characterizing the collision force magnitude as a function of the 

probability of collision for a given return period. The occurrence of either single or 

sequential collision events are illustrated and discussed. Analytic distribution functions 

are introduced to develop a joint distribution function of the top event that supports clear 

interpretations of result. The sensitivity of the risk-based predictions to the reported field 

data is investigated. 

 



 

114 

 

6.1. Introduction 

Extreme hydrodynamic events such as tsunamic, hurricanes, and major flooding 

are global occurrences that can at times disturb necessary regional and international 

economic and social connections. Bridges and channels are necessary for the transport of 

goods and services, power generation structures provide essential hydroelectricity to 

localities, and dams hold back substantial amounts of water to protect downstream areas. 

Damage to any of these structures could result in catastrophic consequences for a region, 

especially loss of life, and inhibit emergency services. With these extreme events, fallen 

trees and large debris that would not be capable of being transported during typical 

conditions become liberated with the heighted floodwaters and higher flow velocity and 

free to impact aquatic structures. 

The severity of threats to every structure are unique to each structure and location. 

Heavily forested regions will likely be prone to damage after collisions from large woody 

debris. Coastal regions close to ports and shipyards will be wary of aberrant vessels and 

loose shipping containers. Naito et al. (2014) developed a procedure to assess the site-

specific potential for debris impact in the context of tsunamis using a debris classification 

strategy. The strategy involves determining the type of debris that will be present and 

understanding its capacity to impart structural damage based on the debris mass, stiffness, 

size, and buoyancy. Although extreme events are often required to move the debris and 

make it waterborne, the generation of this debris can come from a variety of 

circumstances. Natural occurrences such as rates of tree mortality and seasonal changes, 

or human activities such as mechanical failures or human error also affect the production 
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of significant quantities of large-size waterborne debris (Chang and Shen, 1979; Manners 

and Doyle, 2008; Manuel et al., 2006). 

Because each structure is unique in the threats it faces, a flexible approach is 

necessary in developing a predictive model that can be used for numerous structural 

contexts. The uncertainties associated with the conditions required for a collision to occur 

suggest that a probabilistic risk-based method would be best for gaining insight into this 

application. Similar to the model development for the entanglement of whales, a method 

to develop meaningful interpretations of available data and quantify threats of waterborne 

debris that allows for the estimation and incorporations of regional specifics is valuable. 

Illustrative examples are developed using data available on the collisions of waterborne 

debris with bridge piers to further reveal the increasing complexity and capability of the 

risk-based model approach. 

 

6.2. Development of the Risk Model 

Riverine and coastal structures are constantly susceptible to damage from large 

debris that has entered a body of water due to anthropogenic behavior, natural hazards, or 

seasonal changes. This damage can occur due to impact loading or through the 

accumulation of debris against a structure. The focus here is on quantifying the risk of 

damage to a structure due to impact loading from waterborne debris. The actual response 

of the structure to the load can be treated a separate problem and is not addressed in this 

study. The sub-event requirements for a collision generating a certain force against a 

structure are that debris enters the body of water and becomes waterborne, the path of the 
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waterborne debris intersects with the placement of the structure causing a spatial overlap, 

and the waterborne debris collides at a certain force. The likelihood of debris entering a 

body of water uncontrolled is a physical characteristic sub-event dependent on the type of 

debris and its origin. For example, large woody debris requires consideration of tree 

mortality, bank erosion, weather conditions, and logging practices (Chang and Shen, 1979; 

Manners and Doyle, 2008), while aberrant vessels require focus on natural hazards, 

weather conditions, pilot error, or mechanical failure (Manuel et al., 2006). The path of 

the waterborne debris intersecting with the placement of the structure is a spatial condition 

sub-event that is a function of the channel morphology, debris size and orientation, and 

flow conditions. The force of the collision is regarded as a physical characteristic sub-

events that is dependent on the mass and stiffness of the waterborne debris and the velocity 

at which it is transported. For this example, the sub-events are assumed to be independent 

and the risk of each collision is considered independent and a disjoint event. The risk 

calculated using this formulation is per collision event for a single element of debris. The 

types of debris are also assumed mutually exclusive. 

 

6.2.1. Mathematical Representation of Sub-Events 

To create the risk equation, we begin by first considering the risk of a collision of a 

force associated with specified types of debris such as drifting ships or barges, shipping 

containers, or large woody debris. The probability of a collision and the subsequent force 

due to a debris type i can be expressed as 

 



 

117 

 

 

 

where, in this discrete notation, ηi is the probability of debris type i becoming waterborne, 

ψi is the probability of the path of waterborne debris of type i overlapping with the 

placement of the structure, and δi is the probability of a specified impact loading from 

waterborne debris type i. In terms of the notation used in Eqns. 4.8 through 4.16, ψi = s, 

the spatial condition, and {ηi, δi} = {h1, h2}, the physical characteristics. In this discrete 

representation of the probability of collision, each variable represents a discrete 

probability value and is thus bound to the interval [0,1]. The path and force are both 

functions of some combination of the waterborne debris orientation, velocity, mass, 

stiffness, and size. To determine the path and force, information regarding the waterborne 

debris properties must be known. Then, the probability of a collision of a certain force due 

to debris type i is more specifically given by 

 

 

P(Collision with Debris Type i)  

 
= P(Becomes Waterborne ∩ Spatial Overlap ∩ Debris Force) 

 = η
i
 × ψ

i
 × δi (6.1) 

P(Collision with Debris Type i)  (6.2) 

 = η
i
 × (ψ

i
 | θi ∩ vi ∩ μ

i
 ∩ ℓi) × (δi | θi ∩ vi ∩ μ

i
∩ κi)  
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where, θi describes the orientation distribution at which waterborne debris of type i is 

likely to travel, vi describes the velocity distribution, μi describes the mass distribution, ℓi 

describes the size distribution, and κi describes the stiffness distribution. When combining 

the risk associated with various debris types, the designation of debris types as mutually 

exclusive allows for a summation of events. Then, for N types of debris, the probability of 

collision becomes 

 

P(Collision) = [∑ η
i
 × (ψ

i
 | θi ∩ vi ∩ μi

 ∩ ℓi) × (δi | θi ∩ vi ∩ μi
∩ κi)

N

i = 1

]   (6.3) 

 

This resulting equation reveals itself to be comparable to that used to calculate the annual 

frequency of bridge collapse due to collisions from aberrant vessels (Manuel et al., 2006; 

AASHTO, 2012). 

To account for regular changes that might occur in a dataset that spans a specific time 

interval, an added temporal condition can be introduced into Eqn. 6.3. This term can be 

interpreted as a mitigation factor that accounts for the introduction of preventative 

methods, such as debris-diversion techniques that are intended to decrease the risk of 

collisions. Specifically, 

 

P(Collision) = [∑(1 - ri) × η
i
 × (ψ

i
 | θi ∩ vi ∩ μi

 ∩ ℓi) × (δi | θi ∩ vi ∩ μi
∩ κi)

N

i = 1

]   (6.4) 
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where the techniques used can vary in effectiveness based on the type of debris. In its 

current form, Eqn. 6.4 provides a means to evaluate the risk at a specific structure. Further, 

when considering the risk over longer periods of time using available debris collision data 

that can be associated with different structures, if the collision events at each structure are 

considered mutually exclusive, they are additive. Then a multi-structure risk equation for 

Q structures can be expressed as 

 

P(Collision)   (6.5) 

= ∑{
1

Mk

∙∑ [∑(1 - rijk)ηijk
× (ψ

ijk
| θijk∩vijk∩μ

ijk
∩ℓijk)× (δijk | θijk∩vijk∩μ

ijk
∩κijk)

Njk

i = 1

]

Mk

j = 1

} 

𝑄

k = 1

 

 

where Njk are the number of debris types at time j for structure k, Mk is the time span of 

the dataset for structure k. Each sub-event can be specified by debris type, time, and 

location. 

 

6.3. Continuous Representation of the Risk Model 

In order to address the risk probability as developed in Eqn. 6.5 analytically, consider 

the basic representation of the probability of collision using continuous density functions 

noted in the development of Eqn. 6.1, that is 
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With the use of a continuous representation for the probability of collision, it becomes 

possible to describe the variables η, ψ, and δ in greater detail without the domain restriction 

of [0,1] imposed by the discrete representation. The function describing the probability of 

becoming waterborne, fH(η), can be determined based on rate of occurrence of debris-

generating events, where a value η0 would describe an upper limit for the period being 

studied. Specifying the functions that describe the transport path of waterborne debris, 

fΨ(ψ), and the force a collision generates, fΔ(δ), requires a clear understanding of the 

physics involved.  

 

6.3.1. Modeling Waterborne Debris Colliding with a Fixed Structure 

In order to determine the probability of collision between a structure and floating 

debris, the placement of the structure and the path of the transported debris leading to a 

collision requires predicting the lateral and vertical position of the debris relative to both 

the width and depth of the channel and the position of the structure as illustrated in Fig. 

6.1a, 6.1b, and 6.1c. Debris transport most often occurs along the thalweg which is the 

point of highest flow velocity (Parola et al., 2000). If debris transport is assumed to follow 

the shape of the flow field, then the flow field can be used to estimate the path of the 

debris. The level of submersion relative to the vertical position of the structure is relevant 

for problems where the structure does not cover the entire depth or when a specific point 

of structural vulnerability such as a bridge deck during heavy flooding conditions is 

f
P(Collision)

(η, ψ, δ) =  f
Η
(η) ∙ f

Ψ
(ψ) ∙ f

Δ
(δ) (6.6) 
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examined. For a supporting bridge pier, let ψijk represent the path of the debris, then the 

probability of the collision with the structure can be expressed as 

 

P(xjk −
ℓstr, jk

2
− 
ℓijk

2
sin θijk  ≤ ψijk

 ≤ xjk+ 
ℓstr, jk

2
+ 
ℓijk

2
 sin θijk)  

 

= ∫ f
Ψijk
(ψ

ijk
)

xjk+ 
ℓstr, jkr

2
 + 
ℓijk
2
 sin θijk

xjk − 
ℓstr, jkr

2
 − 
ℓijk
2

sin θijk

dψ
ijk

 (6.7) 

 

where, xjk is the lateral position of the structure, ℓstr, jk is the length of the structure 

perpendicular to the direction of flow, ℓijk is the longest length measurement of the debris, 

and θijk is the orientation of the debris in the flow. Both the debris length and orientation 

can be treated as random variables if desired and sampled from distributions, fΘ(θ) and 

fL(ℓ). If the vertical component is included, then double integration is required to account 

for both directions. The new limits of integration for the vertical direction are determined 

similarly to that of the lateral direction, but the vertical location of the critical point, zjk, is 

used and the path, ψijk, now has two directional components, ψ(1),ijk and ψ(2),ijk that account 

for lateral movement and debris buoyancy. 
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Figure 6.1 Path of waterborne debris relative to a structure: (a) lateral movement, 

(b) vertical movement, and (c) overlap between the path of the debris and position 

of the structure 

 

6.3.2. Modeling the Collision Force 

The impact force can be predicted empirically using collision tests or calculated using 

established equations. Although there is no true consensus on how to model impact 

loading from debris, the force of collision is often treated as a single degree of freedom 

system that assumes structural stiffness and inertia are large enough to prevent movement 

      

 

  

(a) 

(b) 

(c) 
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at impact. The three main approaches used to estimate the force generated in impact 

problems are a contact stiffness approach, that uses a 1DOF spring-mass system illustrated 

in Fig. 6.2 with an associated stiffness from the interaction between the debris and 

structure; an impulse momentum approach that requires assumptions on stoppage time and 

the shape of the force function with time; and a work-energy approach, that requires 

knowledge of the stopping distance for the debris (Haehnel and Daly, 2004; Ko et al., 

2014). 

 

 

Figure 6.2 1DOF spring-mass system 

 

The American Society of Civil Engineers (ASCE) addresses debris impact loading 

from tsunamis with a minimum inundation depth of 3 ft or greater and impact loading 

from flooding (ASCE, 2017). The load is applied at critical flexure and shear points within 

the inundation depth for members. Several equations for quantifying the force of impact 

are compiled in Table 6.1.   
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Table 6.1 Debris impact loading equations 

(Haehnel and Daly, 2002; Ko et al., 2014; ASCE, 2016) 
Approach Equation Variables 

Impulse-

Momentum 
F = 

π mpvI

2Δt
 

F = Maximum impact force 

mp = Total mass of the debris 

vI = Impact velocity of the debris 

Δt = Time to reduce the debris velocity to zero 

Work-energy F = 
mu2

S
 

F = Maximum impact force 

m = Total mass of the debris 

u = Impact velocity of the debris 

S = Stopping distance of the debris (from point of 

contact) 

Flexible 

Impact 

2008 FEMA 

Fi = CmvI√km 

 

2012 FEMA Modification 

Fi = 1.3 umax√kmd (1+c) 

Fi = Impact force 

Cm = Added mass coefficient (2.0) 

vI  = Flow velocity at the site 

k = Effective stiffness of the debris 

m = Mass of the debris 

umax = Flow velocity 

md = Mass of debris 

c = Hydrodynamic mass coefficient 

ASCE 

(tsunami) 

Fni = umax√kmd 

 

Fi = ItsuCoFni 

Fni = Nominal max instantaneous debris impact 

force 

Fi = Design instantaneous debris impact force 

umax = Max flow velocity at site with depth sufficient 

to float debris 

k = Minimum of effective stiffness of impacting 

debris (EA/L) and lateral stiffness of the 

impacted structural elements deformed by 

impact 

md = Mass of the debris  

Itsu = Importance Factor 

Co = Orientation coefficient, 0.65 for logs and 

poles, shipping containers 

ASCE 

(flood) 
F = 

πWVbCICOCDCBRmax

2gΔt
 

F = Impact force 

W = Debris weight 

Vb = Velocity of object (assume equal to water 

velocity) 

g = Acceleration due to gravity 

Δt = Impact duration (time to reduce velocity to 

zero) 

CI = Importance coefficient 

CO = Orientation coefficient 

CD = Depth coefficient 

CB = Blockage coefficient 

Rmax = Maximum ratio for impulsive load 
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For this example, the unmodified flexible impact equation, which allows one to account 

for the stiffness of the impacting debris, assuming it is less than that of the structural 

element, illustrated in Eqn. 6.9 is used to define the force as a probability density function. 

The flexible impact equation is analogous to the contact stiffness approach, which Haehnel 

and Daly (2002) found to align most accurately with their scaled laboratory tests. 

 

 

 F = u√kmd (6.9) 

 

where u is the max flow velocity, k is the effective stiffness, and md is the mass of the 

debris. In terms of the notation used introduced previously, that is,  

 

δijk = vijk√κijkμ
ijk

 
(6.10) 

 

In order to use Eqn. 4.22 to complete the change of variables needed to obtain fΔ(δ) from 

the joint distribution, fΔ(v,κ,μ), let the functions fV(v), fK(κ), and fM(μ) represent the 

distributions describing the velocity, stiffness, and mass of debris, respectively. For the 

following derivation, the indices ijk are implied at each step but not included to facilitate 

the derivation: 
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f
Δ,Κ,Μ
(δ,κ,μ) = 

f
V,Κ,Μ
(v,κ,μ)

|det {
∂(δ,κ,μ)
∂(v,κ,μ)

}|
 

(6.11) 

 
=

f
V
(v) ∙ f

Κ
(κ) ∙ f

Μ
(μ)

|

|
det

{
 
 

 
 

∂δ
∂v

∂δ
∂κ

∂δ
∂μ

∂κ
∂v

∂κ
∂κ

∂κ
∂μ

∂μ
∂v

∂μ
∂κ

∂μ
∂μ}
 
 

 
 

|

|

 
 

 
=

f
V
(v) ∙ f

Κ
(κ) ∙ f

Μ
(μ)

|det{

√κμ
μv

2√κμ

κv

2√κμ

0 1 0

0 0 1

}|

 
 

 
=

f
V
(v) ∙ f

Κ
(κ) ∙ f

Μ
(μ)

√κμ
 

 

 

=

f
V
(

δ

√κμ
) ∙ f

Κ
(κ) ∙ f

Μ
(μ)

√κμ
 

(6.12) 

 

Then, the marginal density function in terms of force can be calculated from the joint 

distribution derived in Eqn. 6.12 by integrating over the stiffness and the mass. 

 

f
Δ
(δ) =∫ ∫ f

Δ,Κ,Μ
(δ,κ,μ)

+∞

- ∞

+∞

- ∞

dκ dμ 
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= ∫ ∫

1

√κμ
 f

V
(

δ

√κμ
) ∙ f

Κ
(κ) ∙ f

Μ
(μ)

+∞

- ∞

+∞

- ∞

dκ dμ (6.13) 

 

Then the distribution function describing the probability of the collision force exceeding 

some value, δ0 is then given by 

P(δ ≥ δ0) =∫ f
Δ
(δ)

+∞

δ0

dδ 
 

 
= ∫ ∫ ∫

1

√κμ
 f

V
(

δ

√κμ
) ∙ f

Κ
(κ) ∙ f

Μ
(μ)

+∞

- ∞

+∞

- ∞

dκ dμ

+∞

δ0

dδ (6.14) 

 

An alternate method to obtain probability distributions that describe the chance of overlap 

and impact force is to use sampling methods using the probability distributions built from 

observed laboratory data on debris transport and impact force. Repetitive experimental 

procedures such as the collision experiments documented in Table 2.2 are ideal for 

building distributions. If enough data points are gathered through laboratory experiments, 

histograms representations can be used to get a sense of the proper distribution that best 

describes the variable. 

 

6.3.3. Modeling the Probability of Debris-Structure Collision 

Introducing the functions describing fH(η), fΨ(ψ), and fΔ(δ), allows the cumulative 

joint distribution based on Eqn. 6.6, FP(η,ψ,δ), that describes the probability of a collision 

with a force of at least δ0 occurring within time η0, to be expressed as 
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FPijk
(η

ijk
 , ψ

ijk
 , δijk)    

 =∫ f
Ηijk
(η

ijk
)

η
0

0

dη
ijk

 ∙∫  f
Ψijk
(ψ

ijk
)

x + 
ℓstr
2

 + 
ℓi
2

 sin θi

 x − 
ℓstr
2
 − 
ℓi
2

 sin θi 

dψ
ijk

 ∙∫ f
Δijk
(δijk)

+∞

δ0

dδijk (6.15) 

 

The probability of the collision estimate is controlled by the period of time being studied 

through η0, the placement and geometry of the structure through the limits of integration 

on fΨ(ψ), and the amount of force generated, δ0. As derived in Eqn. 6.7, the path of the 

debris must overlap with the location of the structure. The force distribution derived in 

Eqn. 6.14 allows for the calculation of the probability of a collision that exceeds a force, 

δ0, during time period η0. The indices i, j, and k specify the type of debris, time within the 

span of the dataset, and structure of interest, respectively. Including the mitigation factor, 

r, requires an additional variable in Eqns. 6.6 and 6.15. It is best to specify its distribution 

as the complementary event, f1-R(1-r), representing the debris that is not prevented from 

passing debris-diversion devices. If the function describing the mitigative factor, fR(r), is 

known, then the complementary event is a function translation. Then, 

 

 

Because of the assumption of independence between subevents, layered 

multidimensional convolution integrals based on the concept introduced in Eqn. 4.21 can 

be utilized to address the summations over i, j, and k for each type of debris, time interval, 

and structure.  

f
P(Collision)

(η, ψ, δ, r) =  f
Η
(η) ∙ f

Ψ
(ψ) ∙ f

Δ
(δ) ∙ f

R
(1- r) (6.16) 
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f
PI
(η,ψ,δ) = (f

Pi = 1
∗ f

Pi = 2
∗… ∗ f

Pi = Njk

) (η,ψ,δ) (6.17) 

f
PJ
(η,ψ,δ) = (f

PI, j = 1
∗ f

PI, j = 2
∗… ∗ f

PI, j = Mk

) (η,ψ,δ) (6.18) 

f
PK
(η,ψ,δ) = (f

PI, J, k = 1
∗ f

PI, J, k = 2
∗… ∗ f

PI, J, k = Q
) (η,ψ,δ) (6.19) 

 

6.4. Illustrative Event: Impact of Lost Shipping Containers 

6.4.1. Estimating P(Collision) with a Single Shipping Container 

Consider the risk of shipping containers with 6.1 m (20 ft) and 12.2 m (40 ft) length 

classifications colliding with a single structure. To model this scenario let N = 2, M = 1, 

and Q = 1. In this example, only the lateral position in the channel is addressed, with no 

assumptions made about level of submergence or buoyancy of containers. Evaluating 

P(Collision) requires specifying the parameters of the probability distributions for fH(η), 

fΨ(ψ), fΘ(θ), fL(ℓ), fV(v), fK(κ), and fM(μ). 

Allow fH(η), the probability that a certain type of debris becomes waterborne, to be 

described by an exponential distribution. An exponential distribution is given by 

 

f
Y
(y) = λe − λ y (6.20) 

 

where, λ is the rate parameter and y ≥ 0. If the event of debris entering a waterway and 

becoming waterborne is thought of as a Poisson process, then the time between events can 

be modeled as an exponential distribution. Then, for an interval of time being studied, the 

probability of becoming waterborne is dependent on the time for the event to occur and 
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the probability of the event occurring within η0. The rate parameter can be assigned for 

each debris type based on the reason the debris becomes waterborne, i.e. rate of occurrence 

of storms and flooding, container ship spills, etc. For this example, let λ(i = 1,2) = 0.0125, 

which is equivalent to an 80-year return period. This emulates the event produced by 

Typhoon Nari in 2001, which caused over 1000 shipping containers to be swept into the 

Keelung River Basin in Taiwan (Lee et al, 2006). 

 

Figure 6.3 Exponential distribution function characterizing the occurrence of a 

debris generating event with an 80-year return period 

 

Allow the functions characterizing the mass, fM(μ), stiffness, fK(κ), and velocity, fV(v), 

to be described by lognormal distributions. Use of this density function assumes that the 

natural log of a random variable is normally distributed. The lognormal distribution is 

given by  
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f
Y
(y) = 

1

y ζY √2π
exp [−

1

2
(

ln y− λY

ζY

)

2

] (6.21) 

ζY
 2 = Var(ln y)= ln [1 + (

σY

μ
Y

)

2

] (6.22) 

λY = E(ln y)= ln μ
Y
−

1

2
ζY
 2

 (6.23) 

 

where, λY and (ζY)2 are the expected value and variance of ln(y), respectively, and the 

support is 0 inclusive to ∞. The restriction of this probability density function to the 

positive domain is ideal for random variables such as these that will not take negative 

values. For defining the mass and stiffness, ASCE 7-16 Table 6.11-2 (ASCE, 2017) states 

the typical mass (weight) of a 6.1 m (20 ft) shipping container as approximately 2,270 kg 

(5 kips) empty and 13,150 kg (29 kips) loaded with a stiffness of 42,900 kN/m (245 kip/in). 

A 12.2 m (40 ft) shipping container is typically 3,810 kg (8.4 kips) empty and 17,240 kg 

(38 kips) loaded with a stiffness of 29,800 kN/m (170 kip/in). For illustrative purposes, 

the loaded mass of each container size was taken as the mean of each distribution 

describing the mass, that is μM(i = 1) = 13,150 kg and μM(i = 2) = 17,240 kg. The mean of each 

distribution describing the stiffness was taken as μK(i = 1) = 42,900 kN/m and μK(i = 2) = 

29,800 kN/m. Standard deviations were set as σM(i = 1,2) = 2000 kg for mass and σK(i = 1,2) = 

2000 kN/m for stiffness. If large amounts of surveyed data are available on container 

properties, then that information can alternatively be used to assign a distribution. For 
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other types of debris where direct estimates of stiffness are not available, the stiffness 

distribution parameters can be estimated using k = EA/L. 

 

Figure 6.4 Lognormal distribution characterizing the mass of a shipping container 

of length 6.1 m or 12.2 m with parameters μM(i = 1) = 13,150 kg, μM(i = 2) = 17,240 kg, 

and σM(i = 1,2) = 2000 kg 

 

 

Figure 6.5 Lognormal distribution characterizing the stiffness of a shipping 

container of length 6.1 m or 12.2 m with parameters μK(i = 1) = 42,900 kN/m, 

 μK(i = 2) = 29,800 kN/m, and σK(i = 1,2) = 2000 kN/m 
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When considering impact loading for large debris, it is often assumed that the 

debris velocity is equal to or less than the water flow velocity. The reduction allows for 

the possibility of capturing energy losses due to dragging against the channel bed or 

interactions between other debris (ASCE, 2017). The mean velocity of the distribution 

was selected to be μV(i = 1,2) = 7 m/s because 4.5 m/s to 9 m/s is said to be a reasonable, 

expected flow speed for containers (Paczkowski et al., 2012). The standard deviation was 

set as σV(i = 1,2) = 2 m/s. 

 

 

Figure 6.6 Lognormal distribution characterizing the flow velocity with parameters 

μV(i = 1,2) = 7 m/s and σV(i = 1,2) = 2 m/s 

 

Because the lengths of containers are standardized, the distribution describing the 

length, fL(ℓ), is defined using discrete distributions valid for ℓ0,(i = 1) = 6.1 m (20 ft) and ℓ0,(i 

= 2) = 12.2 m (40 ft). The discrete distribution is given by 
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Figure 6.7 Discrete distributions characterizing the shipping container lengths of 

ℓ0,(i = 1) = 6.1 m and ℓ0,(i = 2) = 12.2 m 

 

Although it is possible to assign a continuous distribution to describe how the container is 

likely to align itself with the flow, the orientation, fΘ(θ), is initially also assigned a discrete 

probability distribution with θ0,(i = 1,2) = 90°. This assignment assumes that the containers 

will align to where the longest dimension is perpendicular to the flow to capture the largest 

surface area. A continuous distribution is recommended if the force equation is dependent 

on the debris orientation at impact (e.g., oblique impacts). 

 

f
L
(ℓ) = {

1 ℓ = ℓ0
0 elsewhere

 (6.24) 
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Figure 6.8 Discrete distribution characterizing the shipping container orientation 

as θ0,(i = 1,2) = 90° 

 

Lastly, allow the path of the debris, fΨ(ψ), to be described by a truncated normal 

distribution given by 

 

f
Y
(y) = 

1

σY √2π
exp [−

1
2
(
y − μ

Y

σY
)

2

]

Φ (
b− μ

Y

σY
) − Φ (

a − μ
Y

σY
)

 (6.25) 

 

The choice of the zeroed position can be made based on the path of highest flow or the 

center of the channel. With either designation the positive and negative domains are 

necessary to describe the position of the structure relative to the path, and the distribution 

must be truncated to fit the width of the channel, Wc, where the flow becomes zero. If it is 

assumed that the debris will most likely travel in the point of highest flow, then the mean 
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of fΨ(ψ) can be assumed to always be zero. For this demonstration, the center of the 

channel and the point of highest flow are assumed to align, so the mean is defined as μΨ(i 

= 1,2) = 0. The more uncontrolled the flow and higher the flow velocity, the more the path 

distribution should flatten towards a uniform distribution, based on the standard deviation. 

For this example, a standard deviation of σΨ(i = 1,2) = 20 is selected to flatten the distribution 

for a channel of width Wc = 30 m. 

 

 

Figure 6.9 Normal distribution function characterizing the debris path with 

parameters μΨ(i = 1,2) = 0 and σΨ(i = 1,2) = 20 for a channel width of 30 m 

 

Using these parameter assignments for each variable, the distribution describing 

the force generated by an impact is given by 



 

138 

 

 f
Δi
(δi) =∫ ∫
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To evaluate this integral, an independent sampling method was utilized to determine the 

distribution describing the force, δ. The result of this method is illustrated in Fig. 6.10a. 

Due to its shape, the force was fit with a lognormal distribution with parameters (μΔ, σΔ)(i 

= 1) = (5225.3, 1569.8) kN and (μΔ, σΔ)(i = 2) = (5099.5, 1533.4) kN using maximum 

likelihood estimates. The survival functions of these distributions illustrated in Fig. 6.10b 

give the probability of the force exceeding a value δ0 for a specific debris type. For 

example, the probability of the force exceeding 5000 kN is approximately 50.3% and 

46.8%, while the probability of exceeding 8000 kN is 5.3% and 3.6% for a 6.1 m loaded 

container and 12.2 m loaded container, respectively.  
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Figure 6.10 Lognormal probability of generating a collision force δ (a) probability 

density function and (b) survival function of δ for shipping containers with lengths 

6.1 m (20 ft) and 12.2 m (40 ft) 
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The distribution estimating the probability of a collision at a force of at least δ0 is given 

by 

 

FP(η,ψ,δ)  =∫ f
Ηijk
(η

ijk
)

η
0

0

dη
ijk
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 (6.27) 

 

As illustrated in Fig. 6.11, for each calculation, the lateral position of the structure, x, is 

set at 0, as if the structure intersects with the path of highest flow and the width of the 

structure perpendicular to the flow, ℓstr, is 3 m. 

 



 

141 

 

 

Figure 6.11 Flow conditions for example problem 

 

Three-dimensional representation of the joint distribution, fP(Collision)(η,ψ,δ), using 

the distribution assignments for fH(η), fΨ(ψ), and fΔ(δ) and varying parameter values is 

illustrated by Fig. 6.12a, 6.12b, 6.12c, and 6.12d. The sensitivity of the joint distribution 

function to the definitions of the underlying distributions describing the sub-events 

becomes evident. Fig. 6.12a contains the original parameter definitions. In Fig. 6.12b, the 

mean of the exponential distribution describing η is increased. This is analogous to 

decreasing the return period of the debris-generating event. In Fig. 6.12c, the standard 

deviation of the normal distribution describing ψ is decreased to represent the waterborne 

debris following a more specified path. Lastly Fig. 6.12d illustrates an increased standard 

deviation in the lognormal distribution describing δ, which represents less certainty in the 

force generated by a collision. Visualizing how variations in the parameters used to 

express uncertainty in the assigned probability distributions in this manner reveals the 
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variability of the risk-model behavior and its sensitivity to parameter selection. Model 

visualization becomes more complex as additional variables and dimensions are added. 

 

 

Figure 6.12 Illustration of the joint distribution functions and their sensitivity to (a) 

the original parameter definitions, (b) an increased mean for the exponential 

distribution describing η, (c) a decreased standard deviation for the normal 

distribution describing ψ, and (d) an increased standard deviation for the 

lognormal distribution describing δ. 

 

The cumulative joint distribution function, FP(Collision)(η,ψ,δ), describes the 

likelihood of a collision force of δ0 or greater occurring within timeframe η0 with a 

specified structure. For a 6.1 m container, the likelihood of a collision of force 5000 kN 
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or greater to occur within a year is 0.20% using an 80-year return period for the debris-

generating event and positioning a 3 m wide structure at x = 0 within a 30 m wide channel. 

For a 12.2 m container, the same likelihood of collision is 0.31%.  Figure 6.13 illustrates 

the probability of collision exceeding a force δ for each container size as a function of 

force for a debris-generating event occurring within a given year with a 1-year, 10-year, 

or 80-year return period. It is evident that lower return periods and larger debris each result 

in an increase in the likelihood of a collision. The likelihood of collision for a return period 

of 10 years increases to approximately 1.6% for a 6.1 m container and 2.5% for a 12.2 m 

container. The breakdown of that 2.5% risk of collision for a 12.2 m container is calculated 

as the product of a 54.2% chance of overlap, 46.8% chance of the force generated from a 

collision being at least 5000 kN, and a 10% likelihood of a debris-generating event 

occurring within a year. 
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Figure 6.13 Probability of Debris Collision as a function of collision force δ and 

return period RP. 

 

The union of collision events between the two container sizes to obtain the 

likelihood of collision from either container size requires a convolution integral between 

fP(i=1)(η,ψ,δ) and fP(i=2)(η,ψ,δ) as introduced in Eqns. 4.21 and 6.17. Because the rate of 

occurrence for the debris-generating event is defined as the same event for both debris 

types, the convolution is completed over only the force and overlap distributions. This 

resulted in a combined risk of collision of approximately 0.49% due to a 51.7% chance of 

overlap, 76.6% chance of the collision force exceeding 5000 kN, and a 1.25% likelihood 

that a debris-generating event occurs within a year. The combined probability of collision 

exceeding a force δ as a function of force for a debris-generating event occurring within a 

given year with a 5-year, 10-year, or 80-year return period is illustrated in Figure 6.14. 
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Figure 6.14 Probability of Debris Collision due to either container size as a function 

of collision force δ and return period RP. 

 

6.4.2. Modeling Multiple Container Collisions and Accumulation of Debris 

The current model evaluates the risk of a broadside impact for a single container 

of length 6.1 m or 12.2 m. The force equation used does not account for oblique impacts 

or multiple collisions within the same event, whether simultaneously as a cluster or 

sequentially. For a cluster of debris entering a waterway, estimates on the center of mass, 

the “stiffness”, and the “mass” of the cluster are required to treat the situation as a single 

collision. The cluster would theoretically collide with the structure and potentially break 

apart. 

The approach for sequential collisions involves additional considerations. For each 

specific debris type, accounting for multiple collisions for a single debris-generating event 

is the intersection of collision events and therefore the product over the number of 

containers for each specific size. The process of each individual collision is similar to the 



 

146 

 

approach used previously, however extra consideration must be given to the probability 

of overlap based on the channel characteristics, debris path, and structure dimensions and 

to the probability distribution describing the force generated by each collision. The debris-

generating event is still defined based on the type of debris. The union across debris types 

would still require a convolution as applied previously, but the convolution integral would 

occur after each product over the number of items per type is taken. Using the discrete 

representation that is, 

 

P(Collision)   

= {∑ η
i
 × [∏(ψ

hi
 | θhi ∩ vhi ∩ μ

hi
 ∩ ℓhi)× (δhi | θhi ∩ vhi ∩ μ

hi
∩ κhi) × ehi

Di

h = 1

]

N

i = 1

} (6.28) 

 

where Di is the number of debris elements for type i that enter the waterway, and each 

sub-event must be adjusted based on the debris element and the variable ehi describes the 

stability of each collision. Adjusting the distribution functions for the force generated and 

probability of overlap requires an assumption on whether the debris element that strikes 

the structure prior to element h is shed. The shedding of a debris element is dependent on 

the stability of the collision. If the previous elements remain, then for the collision force 

calculation, they act as a buffer or damper that lessens the impact force with each added 

container. Because of this occurrence, instead of considering the impact force it becomes 

more valuable to examine the generation of other lateral forces, especially the drag force. 

The drag force is given by 



 

147 

 

FD = 
1

2
 ρ (vw)

2CD A (6.29) 

 

where ρ is the fluid density, vw is the fluid velocity, CD is the drag coefficient, and A is the 

projected area. Then, a drag coefficient will need to be assumed based on an estimated 

accumulation shape. Derivation of the analytical form of the probability distribution 

function for the drag force proceeds in a manner analogous to the derivation of the impact 

force distribution in Eqns. 6.9 through 6.14.  
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Then, the marginal density function in terms of force can be calculated from the joint 

distribution derived in Eqn. 6.31 by integrating over the fluid velocity. This gives a drag 

force distribution function of 

 

f
Δ
(δ) =∫ f

Δ,Vw
(δ,vw)

+∞

- ∞

dvw 
 

 
=∫

2

ρ CD (vw)2
  f

A
(

2δ

 ρ CD (vw)2
)  ∙ f

Vw
(vw)

+∞

-∞

dvw (6.32) 

 

where the distribution functions fVw(vw) and fA(a) describe the velocity of the fluid and the 

projected area of the accumulation, respectively. Here the fluid density and drag 

coefficient are treated as constants and therefore discrete values. Then probability of the 

force exceeding some value, δ0 is given by 

 

P(δ ≥ δ0) =∫ f
Δ
(δ)

+∞

δ0

dδ 
 

 
= ∫ ∫

2

ρ CD (vw)2
  f

A
(

2δ

 ρ CD (vw)2
)  ∙ f

Vw
(vw)

+∞

-∞

dvw

+∞

δ0

dδ (6.33) 

 

The likelihood of overlap can be expected to grow with the number of accumulated 

elements, as the addition of accumulated elements leads to an increase in the effective 

width of the structure. In the analytical representation of the probability distribution 
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functions, this will influence the limits of integration on Eqn. 6.7 for each debris element 

and each iteration of the simulation. 

 

6.4.3. Estimating P(Collision) for Accumulated Shipping Containers 

Rather than developing analytical formulas as in the first example for impact 

loading, this application will demonstrate the use of probabilistic based simulations based 

on the identified sub-events. To allow for the example to be envisioned two-

dimensionally, the container draft is held constant at 0.914 m for all containers, the 

nominal draft of a full container (Paczkowski et al., 2012). Only 6.1 m containers are 

included in this simulation of near-simultaneous collisions. The simulation begins with 

determining the number of containers to enter the waterway. This value can be treated as 

a random variable, however, here it is set at 50 waterborne containers (6.1 m) per 

simulation. The lateral position of a container in the waterway is randomly drawn from 

the normal distribution for the debris path ψ, fΨ(ψ). An orientation θ is randomly drawn 

using a normal distribution truncated from 0° to 180° with parameters μθ = 90° and σθ = 

45°, and the projected length of the element is then calculated. The stability of the collision 

is assigned based on the position of the debris element relative to the position of the 

structure. The closer the element is to the structure, the more likely it is to interact and 

become caught. The tipping point around the corner of the structure for an element is used 

to determine develop a piecewise function that characterizes the stability. The maximum 

of the piecewise function was a probability of eh = 0.95 for an interval of - ℓstr to ℓstr and 

linearly declines to 0 in either direction to ±(ℓstr + ℓ/2). The stability assigned is used to 
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draw from a Bernoulli distribution, which yields a 1 or 0 to determine if the debris becomes 

stuck. For each element that becomes stuck, the width of the structure is updated to account 

for the increased effective width. This process is repeated sequentially for every debris 

element. 

Because the collisions are considered to be near-simultaneous, the drag force from 

the accumulated debris is calculated after all the debris elements have been considered. 

The projected area is estimated by taking the product of the final width and the nominal 

draft. As illustrated in Fig. 6.15a and Fig. 6.15b, the random selection from probability 

distributions allows the configuration of the accumulated debris to change with each 

simulation. Only the elements that become caught during the simulation are shown. In Fig. 

6.15a, the longitudinal position of each element corresponds to the order in which the 

debris elements enter the accumulation. Alternatively, Fig. 6.15b assigns the same 

longitudinal position to each debris element as only the width of the accumulation is used 

to conservatively calculate the drag force. The global geometry of the accumulation is not 

utilized. 
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Figure 6.15 Example container spill simulations used to calculate the lateral 

accumulated area and drag force. 

 

The flow velocity, vw, is drawn from a lognormal distribution as with the previous 

application, but with parameters μvw = 10 m/s and σvw = 2 m/s because the flow velocity is 

expected to be greater than the speed at which the debris was traveling. The drag 

coefficient, CD = 2.1 is approximated from the plot generated by Bearman and Trueman 

(1972) from experimental data on rectangular prisms. The fluid density is assigned as the 

density of water, ρw = 997 kg/m3. This simulation is repeated 1000 times, each time 

calculating the drag force, to generate a histogram of the drag force that estimates a 

distribution fΔ(δ). The resulting histogram was fit with a lognormal distribution with 

parameters μδ = 1911.5 kN and σδ = 1121.6 kN. 
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With knowledge of the force distribution, the probability of collision generating a drag 

force greater or equal to some value δ0 can be calculated by incorporating the probability 

of the debris generating event occurring, 0.0125. For a drag force of 5000kN or greater 

the resulting probability of collision is 0.03% with a 2.07% chance that the containers will 

collide in a manner that generates a force of at least 5000kN and a 1.25% likelihood of the 

debris generating event occurring. The probability increases to 0.17% for a drag force of 

at least 3000kN with a 13.5% probability that the containers will collide in a manner that 

generates a drag force of 3000kN or greater and 1.25% probability of the debris generating 

event occurring. Similar to the previous application, the probability of collision exceeding 

a drag force δ is illustrated in Fig. 6.16. as a function of force for a debris-generating event 

occurring within a given year with a 5-year, 10-year, or 80-year return period. Each of 

these events were based on 50 waterborne containers. This simulated probabilistic 

approach provides a computationally efficient process for making conservative 

predictions compared to particle tracking methods and computational fluid dynamics 

techniques. 
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Figure 6.16 Probability of Debris Collision as a function of collision drag force δ 

and return period RP. 

 

6.5. Discussion and Conclusions 

The ability of the model to address the increasing complexity for a specific event 

was illustrated in the example of the floating debris impact with a structure, as the impact 

evolved from single to multiple impacts and debris accumulation. The incorporation of 

existing design formulae relevant to a specific event was illustrated prior to any numerical 

evaluation and the comparison of different design criteria could also be incorporated into 

the eventual numerical simulations. The examples also demonstrated risk-based model 

predictions could be used to predict the magnitude of specific events as a function of the 

probability of occurrence for specified return periods. As the complexity of the modeling 

process increased, the value of visualizing the process of debris accumulation was shown 

to be of importance in understanding the numerical predictions. The demonstrated 
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example is based on the usage of the unmodified flexible impact model and must be 

modified if completing calculations for other force models. The parameters of the 

distributions describing the mass, stiffness, and velocity are dependent on data collection. 

Laboratory testing and surveyed data will aid in assigning parameter values and 

determining the relationships between variables so that accuracy can be increased and 

events such as force due to oblique impacts can be explored and included. Other types of 

debris where lengths are not standardized, such as woody debris, can also be explored 

using continuous distributions rather than the discrete distributions used in this application 

to represent the lengths of shipping containers. Considerations for the vertical position of 

debris can also be explored by expanding the model. Calculations from this risk model 

can be used for design decisions given its ability to adjust for channel morphology and 

behavior, structural properties, and debris types. The rate of occurrence of a debris-

generating event was based on the return period of a storm event in the presented example, 

however other types of debris-generating events can also be explored. Recognizing the 

flexibility of the formulation presented, one could modify the event focus to be the bridge 

deck, make adjustments to the channel morphology and flow behavior, modify the 

structural properties and geometry, and interchange the debris type. Then, for a given 

structure, the probability of a collision occurring given specific design considerations can 

be calculated, and designs can be adjusted in order to minimize the risk of collision. 

 



 

 

CHAPTER 7  

CONCLUSIONS 

The introduction of debris into aquatic environments has long resulted in damaged 

ecosystems and infrastructure. The consequences of waterborne debris are closely related 

to its origin and characterization which can be incorporated into carefully defined sub-

events that capture the uncertainty and randomness of these processes. This research 

provides the ability to quantify the risks associated with waterborne debris, which is 

important for developing preventative strategies and addressing concerns. 

In this research, probability theory and statistical concepts are adopted to develop 

a generalized framework for quantifying risk that aids in decision making and design 

processes. The methodology developed can be used to create new and more complex 

quantitative risk models for a wide variety of applications, or it can be used to update 

existing risk-based models. The formulation of the models to assess the risk of whale 

entanglement due to fishing gear and the risk of collision of large debris with infrastructure 

in this research has demonstrated the flexibility of this approach. Parametric definitions 

for the probability distributions functions carefully selected to represent the identified sub-

events reveal the model sensitivity and the ability of the model to adapt for varying 

amounts of data. 

The main objectives of this research were to conduct literature searches to collect 

and examine relevant data and information available in open literature; explore the 

applications of other types of models, research findings, and current practices/procedures 

developed to address the physical processes related to waterborne debris generation and 
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behavior; and develop a probabilistic predictive model that utilizes reported data and 

available information that has the ability to evaluate the risks associated with whale 

entanglement due to waterborne debris and the risks associated with impact loading on 

bridge piers due to collisions from waterborne. Implementation and evaluation of the 

probabilistic predictive model’s capacity to make predictions and its sensitivity to 

parameter definitions aided in identifying areas for model improvement. 

In sections 1, 2, and 3 the introduction, background, motivation, significance, 

objectives, and research overview are presented. These sections establish the key 

information needed to initiate the understanding of the problem of waterborne debris, 

specifically its relation to the entanglement of whales in fishing gear and interactions 

between large debris and infrastructure. Other risk models are briefly explored. The 

problem of lost fishing gear was found comparable to the phenomenon known as ghost 

fishing. Laboratory and field experiments for large debris were investigated. 

In section 4, the methodology for developing an event-specific risk-based model 

is established. Basic sub-events that can describe any event are identified as physical 

characteristic, temporal conditions, and spatial conditions. Specific applications require 

focused descriptions of each sub-event. The mathematical representation of the 

generalized model is developed through the introduction of probability theory and 

statistical concepts. Methods for generating predictions are discussed and four main 

methods are isolated that use either discrete representations of data to calculate statistical 

measures of central tendency or modifiable continuous probability density functions to 

additionally evaluate statistical measures of variability. 
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Section 5 concentrates on the application of whale entanglement along the US 

North Atlantic coastline and the Pacific coastline. The identified sub-events are the fishing 

gear encounter is a type that can result in entanglement, which is a combination of the 

proportions of gear types that are used in the region and the types of gear that have been 

observed to cause entanglements; whales are present in the region; the proportion of 

regional fishing gear that is lost annually or over some specified time scale; and the 

removal rate of fishing gear from the regional body of water. The discrete model analysis 

demonstrated its ability to generate average, multi-year, and multi-regional estimates. 

Several visualization techniques were utilized to demonstrate the influence of each sub-

event on the overall risk calculation. Probability distributions were incorporated into the 

model by treating each sub-event as a random variable. Visualization demonstrated how 

to capture uncertainty in the data and model parameters. The probability of exceedance 

was used to calculate the likelihood of underestimating the true number of whale 

entanglements using the current definitions of the sub-events and generated data. 

Section 6 addresses debris-structure interactions in the form of collisions and 

accumulations of shipping containers at a fixed structure. The identified collision sub-

events are that debris enters the body of water and becomes waterborne, the path of the 

waterborne debris intersects with the placement of the structure causing a spatial overlap, 

and the waterborne debris collides at a certain force. Accumulation included an additional 

sub-event related to the stability of the accumulation at the structure. Two illustrative 

examples were conducted to demonstrate the flexibility of the model utilizing sampling 

and simulation methods to generate predictions. The first example estimated the 
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probability of collision with a single container of length 6.1 m or 12.2 m using the 

unmodified flexible impact model. The second example estimated the probability of 

collision for accumulated shipping containers of length 6.1 m using a drag force model. 

These examples demonstrate how detailed design specifications can be incorporated into 

the risk model.  

The ability to create risk models that can be tailored to specific applications is 

invaluable. Many natural systems and processes contain inherent randomness that 

deterministic models cannot capture. Using a risk model requires understanding of the 

fundamental events that dictate the function of a system. Implementing risk models can 

generate solutions to reduce losses by specifically targeting risk reductions in the 

fundamental events. It can be concluded from this research that the generalized event 

specific risk-based model developed is suitable for generating valid predictions for the 

applications studied. The probability density functions selected were tailored to fit each 

sub-event. As the knowledge of each application grows, the model allows for the alteration 

of both function and parameter selection. 

For future work it is recommended that additional data be collected for each 

application as it becomes available and additional sub-events identified and added to 

further improve the depth and accuracy of the models. For the application of whale 

entanglement, the current model considers the temporal overlap between fishing seasons 

and whale migration routes. Knowledge of the physical migration routes of whales using 

whale siting data to overlap with fishing vessel locations to model spatial variability will 

enhance the strength of the model predictions. For the application of debris-structure 
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interactions, a deeper understanding of how debris accumulations form, including 

predictions of vertical accumulation geometry, and the stability of non-instantaneous 

accumulations can be explored. The relative motion between the containers and structure 

can also be examined by focusing on redefining the probability of overlap between objects. 

Other hydrodynamic or hydrostatic forces can be investigated in a similar manner to 

address other phenomena such as erosion and the depth of scour at bridge piers or wave 

action at breakwater structures. Validation of the model results can be completed through 

laboratory and field testing. Future studies may consider other applications for which to 

adopt a quantitative risk model. Applications must be carefully chosen based on the 

appropriateness of a risk model because although the risk model remains valid, it may not 

be feasible to pursue. 
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APPENDIX A 

MATLAB CODE: WHALE ENTANGLEMENT 

Objects are linked to documents that contain the code. 

EntanglementPlots.

pdf
 

This script conducts the discrete valued analysis and generates 

scatter plots 

EntanglementSimul

ation.pdf
 

This script simulates analysis using continuous probability 

distribution functions and generates visualization  

TrunDi.pdf

 

This function is used to conduct the sensitivity analysis calculations 

RunTrunDi.pdf

 

This script runs the above function to perform generate visualization 

Entanglement3D.p

df
 

This script generates the 3D histogram and contour graphics 
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APPENDIX B 

MATLAB CODE: DEBRIS COLLISION 

Objects are linked to documents that contain the code. 

Collision.pdf

 

This script calculates the probability of collision for individual 

container sizes and the convolution of sizes 

AccumulationLoop.

pdf
 

This script simulates the accumulation of a specified number of 

containers for a single size. 

 

 

 

 

 

 

 


