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ABSTRACT 

 

A model is developed herein for predicting the onset of thermally induced buckling 

in the horizontal and vertical planes for rail structures.  As described below, the model 

may be considered to be an extension of previous efforts spanning most of the twentieth 

century, and particularly should be considered as an extension of the three degrees of 

freedom model presented in the CRR Report No. 2017-01 by D. H. Allen and G. Fry. 

Building on both previous analytic and computational solutions, a finite element model is 

developed for the purpose of predicting the thermal buckling temperature as a function of 

the track and support structure material properties, the track and support system 

geometries, the applied track loading, and the initial lateral displacement within the track. 

Particular emphasis is placed on nonlinearity and history dependence of the lateral track 

resistance to deformation. The resulting model is deployed herein to solve problems 

demonstrating usefulness of the model. 
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CHAPTER I  

INTRODUCTION* 

 

Rails are known to undergo a variety of failure mechanisms that can cause 

significant property damage and loss of life (FRA 2020). It is therefore propitious to 

develop advanced models for the purpose of mitigating such mishaps. Toward this end, 

one such model is presented herein. 

A common cause of rail misalignment is thermal buckling, as shown in Fig. 1. The 

Federal Railroad Administration (FRA 2020) reports that there have been 6,862 rail 

accidents within the United States in the last four years. Of these, approximately 0.7% are 

listed as being caused by rail buckling. However, an additional 10% of reported accidents 

may be related to thermal buckling such as broken rail bases (1.0%), buff/slack action 

excess (1.9%), kicking or dropping cars (2.2%), head shelling (2.3%), harmonic rock off 

(1.6%), and transverse/compound fissure (1.0%). These reported figures suggest that 

thermal buckling may be a causal factor in significant loss of life and damage costing 

perhaps as much as billions of dollars.  

 

 

 

 

_________________ 
*Partially reproduced with permission from the authors, “Finite Element Formulation and Verification for 

Thermal Buckling of Rail Structures in the Horizontal Plane” by D Allen and G Fry [2017], CRR Report 

No. 2017-01 
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Figure 1 Photograph Showing Thermally Induced Buckling of a Railway 

(Reprinted with Permission from Allen and Fry, 2017) 

 

Unfortunately, guidelines for mitigating the effects of thermal buckling have not 

to date been developed, and this is due to at least in part to the fact that thermal buckling 

is a rather complicated phenomenon caused by the following factors: temperature 

distribution within the rail, rail pinning, crosstie balance, lateral track walk, friction acting 

between the ties and the ballast, vertical lift-off and the structural configuration of the 

underlying railway base. Thus, there is a need to develop a technique for avoiding thermal 

buckling in rails.  

The literature on this subject is long and deep. Historically, Galileo introduced the 

problem of a beam in bending in 1637 (Galileo 1637).  More than a century later, the first 

cogent model for beam bending was reported by Euler and Bernoulli (Euler 1744).  In the 

early twentieth century this approach was used to model the structural response of rails 

(Timoshenko 1915, 1927).  Over the most recent half century a rigorous beam formulation 
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of the rail thermal buckling problem has emerged (Kerr 1974, 1978). This formulation 

presented has been utilized within the finite element method to predict lateral thermal 

buckling as a function of temperature, track residual deformation, nonlinear ballast 

interface resistance (Tvergaard and Needleman 1981). Nonlinear effects such as loss of 

contact between the rail and the wheel, rail lift-off from the tie and tie lift-off from the 

ballast have also been modelled (Dong, Sankar and Dukkipati 1994). Additionally, a 

continuous effort has been made to investigate the stability of continuously welded rail 

(CWR) (Kish, Samavedam and Jeong 1985, Kish, Kalay, Hazell, Schoengart and 

Samavedam 1993, Kish, Clark and Thompson 1995, Kish and Samavedam 1997 and 2005, 

Kish, Samavedam and Wormley 2001, and Klaren and Loach  1965) and the effects of 

thermal buckling in rails (Kish and Samavedam 1982, 1990, 1991, 1999 and 2013, Kish, 

Sussman and Trosino 2003 and Kristoff 2001). Furthermore, models excluding vehicle 

loads effects, also called static models, were developed for tangent and curved track with 

misalignments (Samavedam 1979, Kish and Samavedam 1991). Finally, further research was 

conducted to develop a dynamic model of track thermal buckling and stability 

(Samavedam, Kish and Jeong 1986 and 1987, Samavedam, Purple, Kish and Schoengart 

1993, Samavedam 1995 and 1997, Samavedam, Kanaan, Pietrak, Kish and Sluz 1995, 

Samavedam et al. 1997 and Samavedam and Kish 2002). 

More recently, a more detailed finite element formulation has been employed to 

include the effects of both fastener stiffness and vertical deformations on the prediction of 

lateral thermal buckling (Lim et al 2003). Furthermore, an analytical model has been 

developed for predicting the effects of tie and fastener resistance on lateral thermal 
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buckling (Grissom and Kerr 2006). Geometric nonlinear models have been developed for 

thermal buckling and nonlinear post-buckling of Euler-Bernoulli beams supported on 

elastic foundations and evaluated by shooting method (Li and Batra 2007, Yang and 

Bradford 2016). Lastly, complex three-dimensional models of continuously welded rail 

(CWR) have been developed using commercially available FE codes for buckling analysis 

of tracks subjected to thermal loading under a variety of different assumptions: linear 

friction (Pucillo 2016), interspersed railway tracks (Kaewunruen et al. 2018) multi-body 

dynamic interaction in consideration of nonlinear friction and uplift of the track (Miri et 

al. 2021).  

Therefore, it is clear that there exists a need to develop a model that is capable of 

simulating the response of the rail due to thermal buckling when geometric nonlinearity, 

elastic foundation, track uplift and nonlinear friction occurring at the ballast-rail interface 

are incorporated simultaneously. The current research is focused on making use of the 

significant findings reported above to develop a model that is both convenient to deploy 

and capable of accurately predicting lateral thermal buckling in rails in the vertical and 

horizontal planes.  
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CHAPTER II  

MODEL DEVELOPMENT* 

 

Consider a generic rail mounted on a railway, as shown in Fig. 2.  Note that the x 

coordinate axis is aligned in the direction of travel, and the y and z coordinate axes are 

aligned with the horizontal and vertical directions, respectively, thereby resulting in a 

right-handed coordinate system. Note that as a result of the right-handed coordinate 

system hereby described, a right-handed sign convention was also adopted throughout the 

development of the model, such that a counterclockwise rotation in in the x-y plane is 

considered positive, while a positive rotation in the x-z plane is by convention clockwise.   

 

 

Figure 2 Generic Rail with Right-Handed Coordinate System as Shown (Reprinted 

with Permission from Allen and Fry, 2017) 

_________________ 
*Partially reproduced with permission from the authors, “Finite Element Formulation and Verification for 

Thermal Buckling of Rail Structures in the Horizontal Plane” by D Allen and G Fry [2017], CRR Report 

No. 2017-01 
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When viewed in the horizontal plane, a typical rail with mechanical and thermal 

loading is shown in Fig. 3. 

 

 

Figure 3 Horizontal View of Typical Rail Loaded Mechanically and Thermally 

(Reprinted with Permission from Allen and Fry, 2017) 

 

In order to construct a model for thermal buckling of the track structure, it is 

assumed that the structure may be adequately modeled as a Euler-Bernoulli beam-column, 

implying that it is long and slender (Euler 1744, Allen and Haisler1985, Grissom and Kerr 

2006). Furthermore, as Lim and coworkers (Lin et al. 2003) have shown that the out-of-

plane deformation component might be significant, it will be assumed herein that this 

component of deformation must be included in the model to accurately predict lateral 

thermal buckling. Using these two assumptions, the track structure shown in Fig. 3 may 

be idealized as a single slender beam, as shown in Fig. 4. As shown in the figure, the 
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centroidal axis of the rail may deform in all three coordinate directions, and the 

components of this displacement are denoted by 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) and 𝑤(𝑥, 𝑡), respectively.  

Similarly, the components of stress 𝜎𝑥𝑥(𝑥, 𝑦, 𝑧, 𝑡), 𝜎𝑥𝑦(𝑥, 𝑦, 𝑧, 𝑡) and 𝜎𝑥𝑧(𝑥, 𝑦, 𝑧, 𝑡)  are 

shown on an arbitrary cross-section of the rail in Fig. 5.   

 

 

Figure 4 Top View of the Rail Showing Horizontal Transverse Displacement 

Component in the Deformed Configuration (Reprinted with Permission from Allen 

and Fry, 2017) 
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Figure 5 Components of Stress on an Arbitrary Cross-Section of the Rail 

(Reprinted with Permission from Allen and Fry, 2017) 

 

A top view of a free body diagram of a section of the rail is constructed in Fig. 6, 

wherein the load per unit length applied to the centroidal axis of the rail is composed of 

components 𝑝𝑥(𝑥, 𝑡) and 𝑝𝑦(𝑥, 𝑡) in the x and y coordinate directions, respectively.  In 

addition, the normal component of force per unit length applied to the bottom of the rail 

due to the normal displacement component 𝑣(𝑥, 𝑡) is denoted as −𝑘𝑦𝑣(𝑥, 𝑡), where 

𝑘𝑦(𝑥, 𝑡) is the lateral coefficient of friction and the negative sign is employed so that the 

base stiffness is non-negative when the resultant is positive due to downward displacement 

of the rail. Similarly, the axial component of force per unit length applied to the bottom of 

the rail due to the axial component of displacement 𝑢(𝑥, 𝑡) is denoted as −𝑘𝑥𝑢(𝑥, 𝑡), 

where 𝑘𝑥(𝑥, 𝑡) is the axial coefficient of friction. 
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Figure 6 Top View of Free Body Diagram of Cut Rail (Reprinted with Permission 

from Allen and Fry, 2017) 

 

Note also that the stress distribution on the two vertical cuts within the rail are 

denoted generically by the two infinitesimal stress boxes on these faces.  Finally, note that 

the differential element is depicted in the deformed configuration, so that the axial force 

affects the transverse displacement of the rail.  This necessarily causes the response of the 

rail to be geometrically nonlinear. 
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A side view of a free body diagram of a section of the rail is constructed in Fig. 7, 

wherein the load per unit length applied to the centroidal axis of the rail is composed of 

components 𝑝𝑥(𝑥, 𝑡) and 𝑝𝑧(𝑥, 𝑡) in the x and z coordinate directions, respectively.  In 

addition, the out-of-plane component of force per unit length applied to the bottom of the 

rail due to the out-of-plane displacement component w(𝑥, 𝑡) is denoted as −𝑘𝑧𝑤(𝑥, 𝑡), 

where 𝑘𝑧(𝑥, 𝑡) is the vertical coefficient of friction and the negative sign is employed so 

that the base stiffness is non-negative when the resultant is positive due to downward 

displacement of the rail.  
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Figure 7 Side View of Free Body Diagram of Cut Rail 

 

Note also that the stress distribution on the two vertical cuts within the rail are 

denoted generically by the two infinitesimal stress boxes on these faces.  Finally, note that 

the differential element is depicted in the undeformed configuration and it is assumed that 

the axial force does not affect the vertical displacement of the rail, thus removing the 

geometric nonlinearity present in the horizontal plane. 

Consistent with Euler-Bernoulli beam theory the force and moment resultants in 

the x-y and x-z planes are now defined as follows (Allen and Haisler 1985): 
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𝑃 = 𝑃(𝑥, 𝑡) ≡ ∫ 𝜎𝑥𝑥𝑑𝐴𝐴
        (1) 

𝑉𝑦 = 𝑉𝑦(𝑥, 𝑡) ≡ ∫ 𝜎𝑥𝑦𝑑𝐴𝐴
        (2) 

𝑉𝑧 = 𝑉𝑧(𝑥, 𝑡) ≡ ∫ 𝜎𝑥𝑧𝑑𝐴𝐴
        (3) 

𝑀𝑦 = 𝑀𝑦(𝑥, 𝑡) ≡ ∫ 𝜎𝑥𝑥𝑧̅𝑑𝐴𝐴
        (4) 

𝑀𝑧 = 𝑀𝑧(𝑥, 𝑡) ≡ −∫ 𝜎𝑥𝑥𝑦̅𝑑𝐴𝐴
       (5) 

 

where A is the cross-sectional area of the rail, 𝑦̅ is the horizontal distance from the centroid, 

and 𝑧̅ is the vertical distance from the centroid. The resultants defined in equations (1)-(5) 

can be utilized to replace the stress boxes, so that the free body diagrams shown in Fig. 8 

and Fig. 9 can be constructed. 
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Figure 8 Resultant Forces and Moments Applied to a Differential Element of the 

Rail in the Horizontal Plane (Reprinted with Permission from Allen and Fry, 2017) 
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Figure 9 Resultant Forces and Moments Applied to a Differential Element of the 

Rail in the Vertical Plane 

 

Note that the rotational resistance per unit length, 𝑟𝑧(𝑥, 𝑡), has been included in the 

free body diagram shown in Fig. 8. As illustrated in Fig. 10, this resistance, due to the 

crosstie and fastener resistance to the rotation of the track, was previously introduced by 

Grissom and Kerr (Grissom and Kerr 2006). The inclusion of this term is explained by the 

fact that since the ballast and the fasteners impede rigid-body rotation of the crossties with 

the track, the crossties apply a moment in the opposite direction from the rotation of the 

track about the z-axis, and this moment s applied to the rail by the fastener connections. 
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These moments are therefore pointwise in nature, but are depicted as distributed moments 

per unit length, 𝑟𝑧(𝑥, 𝑡), as a simplification to the model.  

This rather ingenious aspect of the model has the advantage that it captures the 

physical effects of the crossties on the rail response without actually requiring the crossties 

to be included as structural members, a complicating factor included in at least one more 

complex model (Lim et al. 2003).  

 

 

Figure 10 Depiction of the Rotational Resistance of the Fasteners and Crossties 

(Reprinted with Permission from Allen and Fry, 2017) 

  

Assuming linear thermoelastic behavior, the axial stress within the rail is given by 

the following constitutive equation: 
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𝜎𝑥𝑥 = 𝐸(𝜀𝑥𝑥 − 𝛼𝛥𝑇)         (6) 

 

where is E the modulus of elasticity of the rail, 𝜀𝑥𝑥 is the axial strain within the rail, 𝛼 is 

the coefficient of thermal expansion within the rail, and 𝛥𝑇 is the temperature change from 

the rail neutral temperature, which is assumed to be temporally variable, but spatially 

constant in the current paper. In addition, as shown in Fig. 11 and Fig. 12, the Euler-

Bernoulli assumption that plane sections remain plane during the deformations results in 

the following kinematic relationship (Allen and Haisler 1985): 

 

𝑢(𝑥, 𝑦) = 𝑢(𝑥, 0) − 𝜃𝑧(𝑥)𝑦̅ + 𝜃𝑦(𝑥)𝑧 ̅     (7) 

 

where 𝑢(𝑥, 0) is the axial displacement of the real neutral surface, which will be denoted 

throughout the remainder of this paper simply as 𝑢(𝑥), 𝜃𝑦 = −
𝑑𝑤

𝑑𝑥
 is the rotation of the 

rail neutral surface about the y coordinate axis and 𝜃𝑧 =
𝑑𝑣

𝑑𝑥
 is the rotation of the rail neutral 

surface about the z coordinate axis. 
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Figure 11 Depiction of the Kinematics of Displacement in an Euler-Bernoulli Beam 

in the Horizontal Plane (Reprinted with Permission from Allen and Fry, 2017) 
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Figure 12 Depiction of the Kinematics of Displacement in an Euler-Bernoulli Beam 

in the Vertical Plane 

 

Furthermore, the axial strain is approximated by (Tvergaard and Needleman 1981, 

Grissom and Kerr 2006):  

 

𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
+
1

2
(
𝑑𝑣

𝑑𝑥
)
2

        (8) 

 

Substituting equation (7) into equation (8), and equation (6) into this result gives 

the following: 
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𝜎𝑥𝑥 = 𝐸 [
𝑑𝑢

𝑑𝑥
− 𝑦̅

𝑑𝜃𝑧

𝑑𝑥
+ 𝑧̅

𝑑𝜃𝑦

𝑑𝑥
+
1

2
(
𝑑𝑣

𝑑𝑥
)
2

− 𝛼𝛥𝑇]      (9)  

 

In addition, it is assumed that the relation between the rotational stiffness and the 

track rotation is given by the following constitutive relation:  

 

𝑟𝑧 = −𝑆𝜃𝑧          (10)  

 

Note that in the above equation it is assumed that the relation between the rotation 

of the track structure about the Z coordinate axis and the angle of rotation is linear 

(Grissom and Kerr 2006). Whereas limited experimental data support this assumption 

(Grissom and Kerr 2006), it is to be noted that the rotational stiffness, S, depends strongly 

on the type of fastener used (Grissom and Kerr 2006). 

Furthermore, in the current research it will be assumed that S depends not only on 

the type of fasteners connecting the track to the crossties, but it is also a weak function of 

the number of cycles of loading, 𝑛𝑐, previously applied to the truck structure. Thus, at any 

point in time the relationship described by equation (10) is assumed to apply, but the value 

of S is at that point in time a constant depending on both the type of fasteners deployed 

and 𝑛𝑐, thereby quasi-linearizing this effect on the rail response. This assumption is based 

on anecdotal observation suggesting that the ballast settlement, grinding, spallation and 

rearrangement over time can affect the rotational resistance of the crosstie-fastener system 



 

20 

 

to track rotation, and such an assumption will be validated experimentally in future 

research. 

Applying Newton’s first law to the forces in the x coordinate direction and 

moments about the y and z axis in Fig. (8) and (9) together with equations (1)-(10) will 

result in the general three-dimensional formulation shown in Table 1 for a generic rail 

subjected to mechanical and spatially constant thermal loading (Kerr 1974, 1978, Allen 

and Haisler 1985). 

 

 

Independent Variables: x, t 

Known Inputs: 

 Loads:  𝑝𝑥 = 𝑝𝑥(𝑥, 𝑡),  𝑝𝑦 = 𝑝𝑦(𝑥, 𝑡), 𝑝𝑧 = 𝑝𝑧(𝑥, 𝑡)   0 < 𝑥 < 𝑙 

 Temperature change: 𝛥𝑇 = 𝛥𝑇(𝑡) = 𝑘𝑛𝑜𝑤𝑛 

 Geometry:  𝐴, 𝐼𝑦𝑦, 𝐼𝑧𝑧 , 𝐿, 𝑦̅, 𝑧̅   

 Material Properties: 𝛼, 𝐸, 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 , 𝑆 

Unknowns: 𝑢, 𝑣, 𝑤, 𝜎𝑥𝑥, 𝑃, 𝑉𝑦, 𝑉𝑧,𝑀𝑦, 𝑀𝑧 = 9 unknowns 

Field Equations: 

        No. of Equations 

(11) 
𝑑𝑃

𝑑𝑥
= −𝑝𝑥 + 𝑘𝑥𝑢      1 

(12) 
𝑑𝑉𝑦

𝑑𝑥
= −𝑝𝑦 + 𝑘𝑦𝑣      1 

(13) 
𝑑𝑉𝑧

𝑑𝑥
= −𝑝𝑧 + 𝑘𝑧𝑤      1 

(14) 
𝑑𝑀𝑦

𝑑𝑥
= 𝑉𝑧        1 

(15)     
𝑑𝑀𝑧

𝑑𝑥
= −𝑉𝑦 − (𝑆 − 𝑃)

𝑑𝑣

𝑑𝑥
     1 

(16) 
𝑑𝑢

𝑑𝑥
=

(𝑃+𝑃𝑇)

𝐸𝐴
−
1

2
(
𝑑𝑣

𝑑𝑥
)
2

      1 

(17) 
𝑑2𝑤

𝑑𝑥2
= −

𝑀𝑦

𝐸𝐼𝑦𝑦
       1 

(18) 
𝑑2𝑣

𝑑𝑥2
=

𝑀𝑧

𝐸𝐼𝑧𝑧
       1 

(19) 𝜎𝑥𝑥 =
(𝑃+𝑃𝑇)

𝐴
−
𝑀𝑧𝑦̅

𝐼𝑧𝑧
+
𝑀𝑦𝑧̅

𝐼𝑦𝑦
− 𝐸𝛼𝛥𝑇    1 

Table 1 Model for Predicting the Rail Response 
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        ________ 

       Total  9 

   

where it should be noted that: 

x is the coordinate axis in the longitudinal direction of the rail structure 

y is the coordinate axis in the horizontal direction of the rail structure 

z is the coordinate axis in the vertical direction of the rail structure 

𝑢(𝑥) is the displacement of the centroid of the rail in the x coordinate direction 

𝑣(𝑥) is the displacement of the centroid of the rail in the y coordinate direction 

𝑤(𝑥)  is the displacement of the centroid of the rail in the z coordinate direction 

𝑃𝑇 = 𝐸𝐴𝛼∆𝑇 is the thermally induced axial force resultant in the x coordinate 

direction 

𝑉𝑦 is the lateral force resultant in the y coordinate direction 

𝑉𝑧 is the vertical force resultant in the z coordinate direction 

𝑀𝑦 is the resultant moment about the y coordinate axis 

𝑀𝑧 is the resultant moment about the z coordinate axis 

𝑝𝑥 is the externally applied force per unit length in the x coordinate direction 

𝑝𝑦 is the externally applied force per unit length in the y coordinate direction 

𝑝𝑧 is the externally applied force per unit length in the z coordinate direction 

𝜎𝑥𝑥 is the normal stress component in the x direction 

A is twice the cross-sectional area of the rail 

𝐼𝑦𝑦 is twice the moment of inertia of the rail about the y axis 

𝐼𝑧𝑧 is twice the moment of inertia of the rail about the z axis 
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𝐿 is the length of the buckled region of the rail 

𝑘𝑥 is the x-component of the coefficient of friction of the rail-ballast system 

𝑘𝑦 is the y-component of the coefficient of friction of the rail-ballast system 

𝑘𝑧 is the z-component of the coefficient of friction (track modulus) of the rail 

ballast system  

E is Young’s modulus of the rail 

𝛼 is the coefficient of thermal expansion of the rail 

𝛥𝑇 is the temperature change of the rail from the rail neutral temperature 

 

It should be apparent that the problem formulated in Table 1 represents a well-

posed boundary value problem when appropriate boundary conditions are imposed. 

However, as there are 9 coupled equations in 9 unknowns, it might be exceedingly difficult 

to solve, depending on the loading conditions and the material property involved. In 

particular, the friction coefficients 𝑘𝑥 and 𝑘𝑦 are observed to be nonlinear, whereas 𝑘𝑧 

was assumed to behave linearly. Accordingly, although at least one solution has in fact 

been obtained for specialized conditions (Grissom and Kerr 2006), closed-form solutions 

are difficult to obtain for this problem. Alternatively, computational solutions are possible 

using the finite element method, and this approach will be the subject of the next section. 
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CHAPTER III  

VARIATIONAL FORMULATION* 

 

In the present research the displacement components 𝑢(𝑥), v(𝑥) and 𝑤(𝑥) are 

treated as primary unknowns. From equation (9) it can be seen that once these are 

determined the actual stress components follow quite simply, and the remaining unknowns 

can be calculated using equation (1)-(5). In order to construct a finite element algorithm 

for predicting the primary unknowns it is first necessary to construct a variational principle 

in terms of these unknowns. In order to do this, first reduce the term 𝑉𝑦 out of the problem 

by rearranging equation (15) and substituting this result into equation (12), thereby 

resulting in the following equation: 

 

𝑑

𝑑𝑥
[−

𝑑𝑀𝑧

𝑑𝑥
− (𝑆 − 𝑃)

𝑑𝑣

𝑑𝑥
] = −𝑝𝑦 + 𝑘𝑦𝑣        (20) 

 

Secondly, reduce the term 𝑉𝑧 out of the problem by considering equation (14) and 

substituting it into equation (12), thereby resulting in the following equation: 

 

𝑑

𝑑𝑥
[
𝑑𝑀𝑦

𝑑𝑥
] = −𝑝𝑧 + 𝑘𝑧𝑤          (21) 

 

_________________ 
*Partially reproduced with permission from the authors “Finite Element Formulation and Verification for 

Thermal Buckling of Rail Structures in the Horizontal Plane” by D Allen and G Fry [2017], CRR Report 

No. 2017-01 
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 A variational form of equations (11), (20) and (21) may now be constructed by 

integrating each against an admissible variation in 𝑢(𝑥), v(𝑥) and 𝑤(𝑥), respectively, 

thereby resulting in the following variational principle (Reddy 1984): 

 

∫ [
𝑑𝑃

𝑑𝑥
+ 𝑝𝑥 − 𝑘𝑥𝑢]

𝐿

0
𝛿𝑢𝑑𝑥 + ∫ [

𝑑

𝑑𝑥
[−

𝑑𝑀𝑧

𝑑𝑥
− (𝑆 − 𝑃)

𝑑𝑣

𝑑𝑥
] + 𝑝𝑦 − 𝑘𝑦𝑣]

𝐿

0
𝛿𝑣𝑑𝑥 + 

 +∫ [
𝑑

𝑑𝑥
[
𝑑𝑀𝑦

𝑑𝑥
] + 𝑝𝑧 − 𝑘𝑧𝑤]

𝐿

0
𝛿𝑤𝑑𝑥 = 0     (22) 

 

where 𝐿 is an arbitrary longitudinal dimension over which the integration is to be 

performed and the symbol 𝛿 represents an admissible variation in the quantity it precedes. 

Integrating the differentiated terms in equation (22) by parts results in the following: 

 

−∫ 𝑃𝛿 (
𝑑𝑢

𝑑𝑥
)

𝐿

0

𝑑𝑥 + ∫ 𝑝𝑥𝛿𝑢
𝐿

0

𝑑𝑥 − ∫ 𝑘𝑥𝑢𝛿𝑢
𝐿

0

𝑑𝑥 + [(𝑃𝛿𝑢)]0
𝐿 + 

−∫ (−
𝑑𝑀𝑧

𝑑𝑥
− (𝑆 − 𝑃)

𝑑𝑣

𝑑𝑥
) 𝛿 (

𝑑𝑣

𝑑𝑥
) 𝑑𝑥

𝐿

0

+∫ 𝑝
𝑦
𝛿𝑣

𝐿

0

𝑑𝑥 −∫ 𝑘𝑦𝑣𝛿𝑣
𝐿

0

𝑑𝑥 + 

+[((−
𝑑𝑀𝑧
𝑑𝑥

− (𝑆 − 𝑃)
𝑑𝑣

𝑑𝑥
)𝛿𝑣)]

0

𝐿

−∫
𝑑𝑀𝑦

𝑑𝑥

𝐿

0

𝛿 (
𝑑𝑤

𝑑𝑥
)𝑑𝑥 + ∫ 𝑝𝑧𝛿𝑤

𝐿

0

𝑑𝑥 + 

−∫ 𝑘𝑧𝑤𝛿𝑤
𝐿

0
𝑑𝑥 + [(

𝑑𝑀𝑦

𝑑𝑥
𝛿𝑤)]

0

𝐿

= 0       (23) 

 

Substituting equations (14), (15), (16) and (18) into equation (23) now results in the 

following: 
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−∫ [𝐸𝐴
𝑑𝑢

𝑑𝑥
− 𝑃𝑇 +

𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2

] 𝛿 (
𝑑𝑢

𝑑𝑥
)

𝐿

0
𝑑𝑥 + ∫ 𝑝𝑥𝛿𝑢

𝐿

0
𝑑𝑥 − ∫ 𝑘𝑥𝑢𝛿𝑢

𝐿

0
𝑑𝑥 + [(𝑃𝛿𝑢)]0

𝐿 + 

 −∫
𝑑

𝑑𝑥
(𝐸𝐼𝑧𝑧

𝑑2𝑣

𝑑𝑥2
) 𝛿 (

𝑑𝑣

𝑑𝑥
) 𝑑𝑥

𝐿

0
+ ∫ (𝑆 + 𝑃𝑇 − 𝐸𝐴

𝑑𝑢

𝑑𝑥
−
𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2
)
𝑑𝑣

𝑑𝑥
𝛿 (

𝑑𝑣

𝑑𝑥
)𝑑𝑥

𝐿

0
+

 +∫ 𝑝𝑦𝛿𝑣
𝐿

0
𝑑𝑥 − ∫ 𝑘𝑦𝑣𝛿𝑣

𝐿

0
𝑑𝑥 + [𝑉𝑦𝛿𝑣]0

𝐿
− ∫

𝑑

𝑑𝑥
(𝐸𝐼𝑦𝑦

𝑑2𝑤

𝑑𝑥2
)

𝐿

0
𝛿 (

𝑑𝑤

𝑑𝑥
)𝑑𝑥 + 

+∫ 𝑝𝑧𝛿𝑤
𝐿

0
𝑑𝑥 − ∫ 𝑘𝑧𝑤𝛿𝑤

𝐿

0
𝑑𝑥 + [(𝑉𝑧𝛿𝑤)]0

𝐿 = 0       (24) 

 

Now, integrating by parts the last higher order terms in equation (24) results in the 

following variational principle:  

 

∫ 𝐸𝐴
𝑑𝑢

𝑑𝑥

𝐿

0

𝛿 (
𝑑𝑢

𝑑𝑥
)𝑑𝑥 + ∫ (𝐸𝐼𝑧𝑧

𝑑2𝑣

𝑑𝑥2
)𝛿 (

𝑑2𝑣

𝑑𝑥2
)𝑑𝑥

𝐿

0

+∫ (𝐸𝐼𝑦𝑦
𝑑2𝑤

𝑑𝑥2
)

𝐿

0

𝛿 (
𝑑2𝑤

𝑑𝑥2
)𝑑𝑥 + 

−∫ (𝑆 + 𝑃𝑇)
𝑑𝑣

𝑑𝑥
𝛿 (

𝑑𝑣

𝑑𝑥
) 𝑑𝑥

𝐿

0
+ ∫ 𝐸𝐴

𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥
𝛿 (

𝑑𝑣

𝑑𝑥
)𝑑𝑥

𝐿

0
+ ∫

𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2
𝛿 (

𝑑𝑢

𝑑𝑥
)𝑑𝑥 +

𝐿

0

       + ∫
𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
3
𝛿 (

𝑑𝑣

𝑑𝑥
)𝑑𝑥 +

𝐿

0 ∫ 𝑘𝑥𝑢𝛿𝑢
𝐿

0
𝑑𝑥 + ∫ 𝑘𝑦𝑣𝛿𝑣

𝐿

0
𝑑𝑥 + ∫ 𝑘𝑧𝑤𝛿𝑤

𝐿

0
𝑑𝑥 = ∫ 𝑝𝑥𝛿𝑢

𝐿

0
𝑑𝑥 +

       + ∫ 𝑃𝑇
𝐿

0
𝛿 (

𝑑𝑢

𝑑𝑥
) 𝑑𝑥 + ∫ 𝑝𝑦𝛿𝑣

𝐿

0
𝑑𝑥 + ∫ 𝑝𝑧𝛿𝑤

𝐿

0
𝑑𝑥 + [(𝑃𝛿𝑢)]0

𝐿 + [𝑉𝑦𝛿𝑣]0
𝐿
+

       + [𝑉𝑧𝛿𝑤]0
𝐿+[𝑀𝑦𝛿𝜃𝑦]0

𝐿
+[𝑀𝑧𝛿𝜃𝑧]0

𝐿        (25) 

 

 The above is the final form of the variational principle to be implemented within 

the finite element method. 
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CHAPTER IV  

FINITE ELEMENT FORMULATION* 

 

Equation (25) may now be discretized for a generic frame element.  To do this, it 

is assumed that, within a generic element of length, 𝐿𝑒, the displacement field may be 

approximated by the following (Reddy 1984, Allen and Haisler 1985): 

 

𝑢𝑒 = 𝑐1 + 𝑐2𝑥̄ 

𝑣𝑒 = 𝑐3 + 𝑐4𝑥̄ + 𝑐5𝑥̄
2 + 𝑐6𝑥̄

3 

𝑤𝑒 = 𝑐7 + 𝑐8𝑥̄ + 𝑐9𝑥̄
2 + 𝑐10𝑥̄

3       (26) 

 

where 𝑥̄ is the local x coordinate beginning at the left end of element 𝑒. 

Satisfying boundary conditions at the end points of the local element will result in 

the following from of equation (26) (Reddy 1984): 

 

𝑢𝑒 = 𝜙1
𝑒𝑢1

𝑒 + 𝜙2
𝑒𝑢2

𝑒 

𝑣𝑒 = 𝜙3
𝑒𝑣1

𝑒 +𝜙4
𝑒𝜃𝑧1

𝑒 + 𝜙5
𝑒𝑣2

𝑒 + 𝜙6
𝑒𝜃𝑧2

𝑒  

𝑤𝑒 = 𝜙7
𝑒𝑤1

𝑒 + 𝜙8
𝑒𝜃𝑦1

𝑒 + 𝜙9
𝑒𝑤2

𝑒 + 𝜙10
𝑒 𝜃𝑦2

𝑒       (27) 

 

 

 

_________________ 
*Partially reproduced with permission from the authors, “Finite Element Formulation and Verification for 

Thermal Buckling of Rail Structures in the Horizontal Plane” by D Allen and G Fry [2017], CRR Report 

No. 2017-01 
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where 𝑢1
𝑒 and 𝑢2

𝑒 are the axial displacement components at the left and right ends of 

element e, 𝑣1
𝑒, 𝑣2

𝑒, 𝑤1
𝑒and  𝑤2

𝑒 are respectively the lateral and vertical displacement 

components at the left and right ends of element e, and 𝜃𝑦1
𝑒 , 𝜃𝑦2

𝑒 , 𝜃𝑧1
𝑒  and 𝜃𝑧2

𝑒  are 

respectively, the rotation components about the y and z axes at the left and right ends of 

element e.  The shape functions, 𝜙𝑖
𝑒, are given by (Allen and Haisler 1985, Reddy 2005): 

 

𝜙1
𝑒 = (1 −

𝑥̄

𝐿𝑒
) 

𝜙2
𝑒 = 

𝑥̄

𝐿𝑒
 

𝜙3
𝑒 = 1 − 3 (

𝑥̄

𝐿𝑒
)
2

+ 2(
𝑥̄

𝐿𝑒
)
3

 

𝜙4
𝑒 = 𝑥̄ (1 −

𝑥̄

𝐿𝑒
)
2

 

𝜙5
𝑒 = 3(

𝑥̄

𝐿𝑒
)
2

− 2(
𝑥̄

𝐿𝑒
)
3

 

𝜙6
𝑒 = 𝑥̄ [(

𝑥̄

𝐿𝑒
)
2

−
𝑥̄

𝐿𝑒
]   

𝜙7
𝑒 = 𝜙3

𝑒 = 1 − 3(
𝑥̄

𝐿𝑒
)
2

+ 2(
𝑥̄

𝐿𝑒
)
3

 

𝜙8
𝑒 = −𝜙4

𝑒 = −𝑥̄ (1 −
𝑥̄

𝐿𝑒
)
2̄

 

𝜙9
𝑒 = 𝜙5

𝑒 = 3(
𝑥̄

𝐿𝑒
)
2

− 2(
𝑥̄

𝐿𝑒
)
3
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𝜙10
𝑒 = −𝜙6

𝑒 = −𝑥̄ [(
𝑥̄

𝐿𝑒
)
2

−
𝑥̄

𝐿𝑒
]       (28) 

 

The assumed displacement field within a generic element represented by equations (27) 

and (28) may now be substituted into variational principle (25), thereby resulting in 

algebraic equations of the following form for a generic element (Reddy 1984, Allen and 

Haisler 1985): 

 

∑𝐾𝑖𝑗
𝑒

10

𝑗=1

𝑞𝑗
𝑒 +∑𝐵𝑖𝑗

𝑒

10

𝑗=1

𝑞𝑗
𝑒 +∑𝐺𝑖𝑗

𝑒

10

𝑗=1

𝑞𝑗
𝑒 +∑𝐻𝑖𝑗

𝑒

10

𝑗=1

𝑞𝑗
𝑒 +∑𝑀𝑖𝑗

𝑒

10

𝑗=1

𝑞𝑗
𝑒 +∑𝑁𝑖𝑗

𝑒

10

𝑗=1

𝑞𝑗
𝑒 = 𝐹𝑖

𝑒                 

𝑖 = 1, … 10             (29) 

 

where each term above accounts for one or more terms in equation (25), as shown below 

in equations (30)-(36): 

 

[𝐾𝑖𝑗
𝑒 ] =  ∫ 𝐸𝐴

𝑑𝑢

𝑑𝑥

𝐿

0
𝛿 (

𝑑𝑢

𝑑𝑥
) 𝑑𝑥 + ∫ (𝐸𝐼𝑧𝑧

𝑑2𝑣

𝑑𝑥2
) 𝛿 (

𝑑2𝑣

𝑑𝑥2
) 𝑑𝑥

𝐿

0
+ ∫ (𝐸𝐼𝑦𝑦

𝑑2𝑤

𝑑𝑥2
)

𝐿

0
𝛿 (

𝑑2𝑤

𝑑𝑥2
) 𝑑𝑥  (30) 

[𝐵𝑖𝑗
𝑒 ] =  − ∫ (𝑆 + 𝑃𝑇)

𝑑𝑣

𝑑𝑥
𝛿 (

𝑑𝑣

𝑑𝑥
) 𝑑𝑥

𝐿

0
       (31) 

[𝐺𝑖𝑗
𝑒 ] =  ∫ 𝐸𝐴

𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥
𝛿 (

𝑑𝑣

𝑑𝑥
)𝑑𝑥

𝐿

0
         (32) 

[𝐻𝑖𝑗
𝑒 ] =  ∫

𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2

𝛿 (
𝑑𝑢

𝑑𝑥
) 𝑑𝑥

𝐿

0
         (33) 

[𝑀𝑖𝑗
𝑒 ] =  ∫

𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
3

𝛿 (
𝑑𝑣

𝑑𝑥
) 𝑑𝑥

𝐿

0
         (34) 

[𝑁𝑖𝑗
𝑒 ] =  ∫ 𝑘𝑥𝑢𝛿𝑢

𝐿

0
𝑑𝑥 + ∫ 𝑘𝑦𝑣𝛿𝑣

𝐿

0
𝑑𝑥 + ∫ 𝑘𝑧𝑤𝛿𝑤

𝐿

0
𝑑𝑥       (35) 
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[𝐹𝑖𝑗
𝑒] =  ∫ 𝑝

𝑥
𝛿𝑢

𝐿

0
𝑑𝑥 + ∫ 𝑃𝑇

𝐿

0
𝛿 (

𝑑𝑢

𝑑𝑥
) 𝑑𝑥 + ∫ 𝑝

𝑦
𝛿𝑣

𝐿

0
𝑑𝑥 + ∫ 𝑝

𝑧
𝛿𝑤

𝐿

0
𝑑𝑥     (36) 

 

Furthermore, note that nonlinear matrices 𝐻𝑖𝑗
𝑒  and 𝑀𝑖𝑗

𝑒  presented in equations (33) and (34) 

will be neglected in the implementation of this model under the assumption that linear 

small strain theory is sufficient to accurately predict lateral thermal buckling in rails. In 

addition, 

 

{𝑞
𝑗
𝑒} ≡  

{
 
 
 
 
 

 
 
 
 
 
𝑢1
𝑒

𝑣1
𝑒

𝑤1
𝑒

𝜃𝑦1
𝑒

𝜃𝑧1
𝑒

𝑢2
𝑒

𝑣2
𝑒

𝑤2
𝑒

𝜃𝑦2
𝑒

𝜃𝑧2
𝑒 }
 
 
 
 
 

 
 
 
 
 

          (37) 

 

And, 
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[𝐾𝑒] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝑒𝐴𝑒

𝐿𝑒
0 0 0 0 −

𝐸𝑒𝐴𝑒

𝐿𝑒
0 0 0 0

0
12𝐸𝑒𝐼𝑧𝑧

𝑒

(𝐿𝑒)3
0 0

6𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)2
0 −

12𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)3
0 0

6𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)2

0 0
12𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)3
−
6𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)2
0 0 0 −

12𝐸𝑒𝐼𝑦𝑦
𝑒

(𝐿𝑒)3
−
6𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)2
0

0 0 −
6𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)2
4𝐸𝑒𝐼𝑦𝑦

𝑒

𝐿𝑒
0 0 0

6𝐸𝑒𝐼𝑦𝑦
𝑒

(𝐿𝑒)2
2𝐸𝑒𝐼𝑦𝑦

𝑒

𝐿𝑒
0

0
6𝐸𝑒𝐼𝑧𝑧

𝑒

(𝐿𝑒)2
0 0

4𝐸𝑒𝐼𝑦𝑦
𝑒

𝐿𝑒
0 −

6𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)2
0 0

2𝐸𝑒𝐼𝑧𝑧
𝑒

𝐿𝑒

−
𝐸𝑒𝐴𝑒

𝐿𝑒
0 0 0 0

𝐸𝑒𝐴𝑒

𝐿𝑒
0 0 0 0

0 −
12𝐸𝑒𝐼𝑧𝑧

𝑒

(𝐿𝑒)3
0 0 −

6𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)2
0

12𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)3
0 0 −

6𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)2

0 0 −
12𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)3
6𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)2
0 0 0

12𝐸𝑒𝐼𝑦𝑦
𝑒

(𝐿𝑒)3
6𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)2
0

0 0 −
6𝐸𝑒𝐼𝑦𝑦

𝑒

(𝐿𝑒)2
2𝐸𝑒𝐼𝑦𝑦

𝑒

𝐿𝑒
0 0 0

6𝐸𝑒𝐼𝑦𝑦
𝑒

(𝐿𝑒)2
4𝐸𝑒𝐼𝑦𝑦

𝑒

𝐿𝑒
0

0
6𝐸𝑒𝐼𝑧𝑧

𝑒

(𝐿𝑒)2
0 0

2𝐸𝑒𝐼𝑧𝑧
𝑒

𝐿𝑒
0 −

6𝐸𝑒𝐼𝑧𝑧
𝑒

(𝐿𝑒)2
0 0

4𝐸𝑒𝐼𝑧𝑧
𝑒

𝐿𝑒 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(38) 

 

Furthermore, for linearly varying distributed lateral and vertical loads given by: 

 

𝑝𝑦(𝑥̄) = 𝑝𝑦
0 + (𝑝𝑦

𝐿𝑒 − 𝑝𝑦
0)
𝑥̄

𝐿𝑒
 

𝑝𝑧(𝑥̄) = 𝑝𝑧
0 + (𝑝𝑧

𝐿𝑒 − 𝑝𝑧
0)

𝑥̄

𝐿𝑒
        (39) 
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{𝐹𝑒} =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑝𝑥𝐿
𝑒

2
− 𝐸𝑒𝐴𝑒𝛼𝑒𝛥𝑇𝑒

𝑝𝑦
0𝐿𝑒

2
+
3𝐿𝑒

20
(𝑝𝑦

𝐿𝑒 − 𝑝𝑦
0)

𝑝𝑧
0𝐿𝑒

2
+
3𝐿𝑒

20
(𝑝𝑧

𝐿𝑒 − 𝑝𝑧
0)

−
𝑝𝑧
0(𝐿𝑒)2

12
−
(𝐿𝑒)2

30
(𝑝𝑧

𝐿𝑒 − 𝑝𝑧
0)

𝑝𝑦
0(𝐿𝑒)2

12
+
(𝐿𝑒)2

30
(𝑝𝑦

𝐿𝑒 − 𝑝𝑦
0)

𝑝𝑥𝐿
𝑒

2
+ 𝐸𝑒𝐴𝑒𝛼𝑒𝛥𝑇𝑒

𝑝𝑦
0𝐿𝑒

2
+
7𝐿𝑒

20
(𝑝𝑦

𝐿𝑒 − 𝑝𝑦
0)

𝑝𝑧
0𝐿𝑒

2
+
7𝐿𝑒

20
(𝑝𝑧

𝐿𝑒 − 𝑝𝑧
0)

𝑝𝑧
0(𝐿𝑒)2

12
+
(𝐿𝑒)2

20
(𝑝𝑧

𝐿𝑒 − 𝑝𝑧
0)

−
𝑝𝑦
0(𝐿𝑒)2

12
−
(𝐿𝑒)2

20
(𝑝𝑦

𝐿𝑒 − 𝑝𝑦
0)}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

       (40) 

 

Note that the boundary terms are not included because they will cancel one another 

when the global equations are assembled. 

When equations (31)-(36) might be neglected, the standard finite element 

formulation for a linear thermoelastic beam undergoing small displacements is recovered.  

However, in the current case it remains to account for all the terms presented in equation 

(25) or (31)-(36).   

Consider first the fourth term in equation (25), which corresponds to the right-hand 

side of equation (31). This term is given by: 
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{𝐵𝑒} = −(𝑆 + 𝑃𝑇)

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0

0
6

5𝐿𝑒
0 0 0.10 0 −

6

5𝐿𝑒
0 0 0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0.10 0 0
2𝐿𝑒

15
0 −0.10 0 0 −

𝐿𝑒

30

0 0 0 0 0 0 0 0 0 0

0 −
6

5𝐿𝑒
0 0 −0.10 0

6

5𝐿𝑒
0 0 −0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0.10 0 0 −
𝐿𝑒

30
0 −0.10 0 0

2𝐿𝑒

15 ]
 
 
 
 
 
 
 
 
 
 
 

  (41) 

 

Now consider the fifth term in equation (25), which corresponds to the right-hand 

side of equation (32). This term in nonlinear, being first order in both 𝑢(𝑥) and 𝑣(𝑥) at 

any point in time. In the case wherein it is sufficiently accurate to assume that 𝑢(𝑥, 𝑡 +

Δ𝑡) may be approximated by the values of the previous step, 𝑢(𝑥, 𝑡), the result is as 

follows: 

 

{𝐺𝑒(𝑡 + Δ𝑡)} = 𝐸𝐴 (
𝑢2
𝑒(𝑡)−𝑢1

𝑒(𝑡)

𝐿𝑒
)

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0

0
6

5𝐿𝑒
0 0 0.10 0 −

6

5𝐿𝑒
0 0 0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0.10 0 0
2𝐿𝑒

15
0 −0.10 0 0 −

𝐿𝑒

30

0 0 0 0 0 0 0 0 0 0

0 −
6

5𝐿𝑒
0 0 −0.10 0

6

5𝐿𝑒
0 0 −0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0.10 0 0 −
𝐿𝑒

30
0 −0.10 0 0

2𝐿𝑒

15 ]
 
 
 
 
 
 
 
 
 
 
 

  (42) 

 



 

33 

 

Now consider the eighth, ninth and tenth terms in equation (25), which correspond to 

equation (35).  In the case wherein it is sufficiently accurate to assume that the coefficients 

of friction, 𝑘𝑥 and 𝑘𝑦 vary linearly in x in each element, the result is as follows: 

 

[𝑁𝑒] =  [
𝐴 𝐵
𝐶 𝐷

]          (43) 

 

Where 

 

[𝐴] =

 

[
 
 
 
 
 
 
 
 
𝑘𝑥
𝐿𝐿𝑒

3
+
(𝑘𝑥
𝑅−𝑘𝑥

𝐿)𝐿𝑒

12
0 0 0 0

0
13𝑘𝑦

𝐿𝐿𝑒

35
+
3(𝑘𝑦

𝑅−𝑘𝑦
𝐿)𝐿𝑒

35
0 0

11𝑘𝑦
𝐿(𝐿𝑒)

2

210
+
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

60

0 0
13𝑘𝑧𝐿𝑒

35
−
11𝑘𝑧(𝐿𝑒)

2

210
0

0 0 −
11𝑘𝑧(𝐿𝑒)

2

210

𝑘𝑧(𝐿𝑒)
3

105
0

0
11𝑘𝑦

𝐿(𝐿𝑒)
2

210
+
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

60
0 0

𝑘𝑦
𝐿(𝐿𝑒)

3

105
+
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
3

280 ]
 
 
 
 
 
 
 
 

  

 

[𝐵] =

 

[
 
 
 
 
 
 
 
 
𝑘𝑥
𝐿𝐿𝑒

6
+
(𝑘𝑥
𝑅−𝑘𝑥

𝐿)𝐿𝑒

12
0 0 0 0

0
9𝑘𝑦

𝐿𝐿𝑒

70
+
9(𝑘𝑦

𝑅−𝑘𝑦
𝐿)𝐿𝑒

140
0 0 −

13𝑘𝑦
𝐿(𝐿𝑒)

2

420
−
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

70

0 0
9𝑘𝑧𝐿𝑒

70

13𝑘𝑧(𝐿𝑒)
2

420
0

0 0
13𝑘𝑧(𝐿𝑒)

2

420
−
𝑘𝑧(𝐿𝑒)

3

140
0

0
13𝑘𝑦

𝐿(𝐿𝑒)
2

420
+
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

60
0 0 −

𝑘𝑦
𝐿(𝐿𝑒)

3

140
−
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
3

280 ]
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[𝐶] =

 

[
 
 
 
 
 
 
 
 
𝑘𝑥
𝐿𝐿𝑒

6
+
(𝑘𝑥
𝑅−𝑘𝑥

𝐿)𝐿𝑒

12
0 0 0 0

0
9𝑘𝑦

𝐿𝐿𝑒

70
+
9(𝑘𝑦

𝑅−𝑘𝑦
𝐿)𝐿𝑒

140
0 0

13𝑘𝑦
𝐿(𝐿𝑒)

2

420
+
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

60

0 0
9𝑘𝑧𝐿𝑒

70
−
13𝑘𝑧(𝐿𝑒)

2

420
0

0 0 −
13𝑘𝑧(𝐿𝑒)

2

420

𝑘𝑧(𝐿𝑒)
3

140
0

0 −
13𝑘𝑦

𝐿(𝐿𝑒)
2

420
−
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

70
0 0 −

𝑘𝑦
𝐿(𝐿𝑒)

3

140
−
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
3

280 ]
 
 
 
 
 
 
 
 

  

 

[𝐷] =

 

[
 
 
 
 
 
 
 
 
𝑘𝑥
𝐿𝐿𝑒

3
+
(𝑘𝑥
𝑅−𝑘𝑥

𝐿)𝐿𝑒

4
0 0 0 0

0
13𝑘𝑦

𝐿𝐿𝑒

35
+
2(𝑘𝑦

𝑅−𝑘𝑦
𝐿)𝐿𝑒

7
0 0 −

11𝑘𝑦
𝐿(𝐿𝑒)

2

210
−
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

28

0 0
13𝑘𝑧𝐿𝑒

35

11𝑘𝑧(𝐿𝑒)
2

210
0

0 0
11𝑘𝑧(𝐿𝑒)

2

210

𝑘𝑧(𝐿𝑒)
3

105
0

0 −
11𝑘𝑦

𝐿(𝐿𝑒)
2

210
−
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
2

28
0 0

𝑘𝑦
𝐿(𝐿𝑒)

3

105
+
(𝑘𝑦
𝑅−𝑘𝑦

𝐿)(𝐿𝑒)
3

168 ]
 
 
 
 
 
 
 
 

  

 

 

and  

 

 𝑘𝑥(𝑥) = 𝑘𝑥
𝐿 + (𝑘𝑥

𝑅 − 𝑘𝑥
𝐿)

𝑥

𝐿𝑒
 

 𝑘𝑦(𝑥) = 𝑘𝑦
𝐿 + (𝑘𝑦

𝑅 − 𝑘𝑦
𝐿)

𝑥

𝐿𝑒
  

 𝑘𝑧(𝑥) = 𝑘𝑧 = 𝑐𝑜𝑛𝑠𝑡.         (44) 

 



 

35 

 

where in addition 𝑘𝑥,𝑦
𝐿  and 𝑘𝑥,𝑦

𝑅  are the values of the axial and lateral coefficients of friction 

at 𝑥 = 0, 𝐿𝑒 within the element and 𝑘𝑧 is the vertical coefficient of friction (or track 

modulus) within the element. 

The above element equations may be assembled into a global finite element 

formulation using the standard assembly technique, and this has been accomplished by the 

authors.  This then completes the finite element formulation.  
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CHAPTER V  

VALIDATION OF THE FINITE ELEMENT ALGORITHM* 

 

The following sections will present several example problems for the purpose of 

validating the finite element algorithm developed herein. 

Validation Problems for the Linear Case 

The finite element algorithm is now validated for the linear case (𝑘𝑦 = 𝑘𝑦
0 = 

constant) with the following example problems. Note that the AREMA 115L-10 rail head 

section was chosen arbitrarily to represent a generic rail of typical dimensions. Therefore, 

its material and geometric properties were utilized throughout this report in accordance 

with industry specifications (Nippon Steel Corporation 2020) such that the response of a 

realistic rail section could be modeled.  

Example Problem #1 

Given: A double-cantilevered beam is subjected to an evenly distributed transverse 

loading 𝑝𝑦 = 𝑝𝑦
0 = 104𝑁/𝑚.  In addition, E=2.06x1011 N/m2, Izz=8.99x10-6 m4, 𝑝𝑥 =

𝑘𝑥 = 𝑘𝑦 = 𝑆 = 0 and l=12 m. 

Required: a) Solve for 𝑣 = 𝑣(𝑥, 𝑝𝑦
0, 𝐸, 𝐼𝑧𝑧) analytically 

b) Obtain a solution for 𝑣 = 𝑣(𝑥, 𝑝𝑦
0, 𝐸, 𝐼𝑧𝑧) using the finite element method and 

compare the two solutions 

 

_________________ 
*Partially reproduced with permission from the authors, “Finite Element Formulation and Verification for 

Thermal Buckling of Rail Structures in the Horizontal Plane” by D Allen and G Fry [2017], CRR Report 

No. 2017-01 



 

37 

 

Solution: a) For this case (𝛥𝑇 = 𝑘𝑦 = 0) the formulation simplifies to the following: 

 

 
𝑑2

𝑑𝑥2
(𝐸𝐼𝑧𝑧

𝑑2𝑣

𝑑𝑥2
) = 𝑝𝑦

0         (E1.1) 

 

Now integrate equation (E1.1) to obtain: 

 

 
𝑑

𝑑𝑥
(𝐸𝐼𝑧𝑧

𝑑2𝑣

𝑑𝑥2
) = 𝑝𝑦

0𝑥 + 𝑐1        (E1.2) 

 

where 𝑐1 is a constant of integration. Integrating a second time gives: 

 

 𝐸𝐼𝑧𝑧
𝑑2𝑣

𝑑𝑥2
= 𝑝𝑦

0 𝑥
2

2
+ 𝑐1𝑥 + 𝑐2        (E1.3) 

 

where 𝑐2 is a constant of integration. Integrating a third time gives: 

 

 
𝑑𝑣

𝑑𝑥
=

1

𝐸𝐼𝑧𝑧
[𝑝𝑦
0 𝑥

3

6
+ 𝑐1

𝑥2

2
+ 𝑐2𝑥 + 𝑐3]       (E1.4) 

 

where 𝑐3 is a constant of integration. Integrating a fourth time gives: 

 

 𝑣 =
1

𝐸𝐼𝑧𝑧
[𝑝𝑦
0 𝑥

4

24
+ 𝑐1

𝑥3

6
+ 𝑐2

𝑥2

2
+ 𝑐3𝑥 + 𝑐4]      (E1.5) 
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Next apply the following boundary condition: 

 

 𝑣(𝑥 = 0) = 0 ⇒ 𝑐4 = 0        (E1.6) 

 

Next apply the following boundary condition: 

 

 
𝑑𝑣

𝑑𝑥
(𝑥 = 0) = 0 ⇒ 𝑐3 = 0        (E1.7) 

 

Substituting equations (E1.6) and (E1.7) into equation (E1.5) results in the following: 

 

 𝑣 =
1

𝐸𝐼𝑧𝑧
[𝑝𝑦
0 𝑥

4

24
+ 𝑐1

𝑥3

6
+ 𝑐2

𝑥2

2
]      (E1.8) 

 

Next apply the following boundary condition: 

 

 𝑣(𝑥 = 𝑙) = 0 ⇒ 0 = 𝑝𝑦
0 𝑙

4

24
+ 𝑐1

𝑙3

6
+ 𝑐2

𝑙2

2
      (E1.9) 

 

Now apply the final boundary condition: 

 

 
𝑑𝑣

𝑑𝑥
(𝑥 = 𝑙) = 0 ⇒ 0 = 𝑝𝑦

0 𝑙
3

6
+ 𝑐1

𝑙2

2
+ 𝑐2𝑙               (E1.10) 
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Equations (E1.9) and (E1.10) are two equations in the two unknown coefficients 

𝑐1 and 𝑐2. Solving for these two unknowns results in the following: 

 

 𝑐1 = −𝑝𝑦
0 𝑙

2
𝑐2 = 𝑝𝑦

0 𝑙
2

12
               (E1.11) 

 

Substituting (E1.11) into (E1.8) therefore results in the following exact solution: 

 

 𝑣 =
𝑝𝑦
0

𝐸𝐼𝑧𝑧
[
𝑥4

24
−

𝑙

12
𝑥3 +

𝑙2

24
𝑥2]              (E1.12) 

 

In addition, substituting (E6) and (E10) into (E3) results in: 

 

 
𝑑𝑣

𝑑𝑥
=

𝑝𝑦
0

𝐸𝐼𝑧𝑧
[
𝑥3

6
−

𝑙

4
𝑥2 +

𝑙2

12
𝑥]             (E1.13) 

 

b) The finite element algorithm is now deployed using 6 elements of equal length.  

Comparative results are shown in Fig. 13. 

 



 

40 

 

 

Figure 13 Comparison of Computational Result to Exact Solution for Example 

Problem #1 in the Horizontal Plane 

 

Note that by following the procedure shown in part a) it is possible to obtain an 

equivalent exact solution for the vertical displacement in the x-z plane, which results in 

the following: 

 

𝑤 =
𝑝𝑧
0

𝐸𝐼𝑦𝑦
[
𝑥4

24
−

𝑙

12
𝑥3 +

𝑙2

24
𝑥2]      (E1.14) 

 

The finite element algorithm is now deployed using six elements of equal length and 

setting 𝐼𝑦𝑦 = 𝐼𝑧𝑧 and 𝑝𝑧
0 = 𝑝𝑦

0. Comparative results are shown in Fig. 14.  
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Figure 14 Comparison of Computational Result to Exact Solution for Example 

Problem #1 in the Vertical Plane 

 

As expected, the vertical and horizontal displacements are equivalent for equal loads, 

geometry, and material properties.  

Example Problem #2 

Given: A cantilevered beam is subjected to the triangular distributed transverse 

loading shown in Fig. 15 with 𝑝𝑦 = 𝑝𝑦
0 = 104𝑁/𝑚.  In addition, E=2.06x1011 N/m2,  

Izz=8.99x10-6 m4, 𝑝𝑥 = 𝑘𝑥 = 𝑘𝑦 = 𝑆 = 0 and l=12 m. 
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Figure 15 Depiction of a Prismatic Cantilever Beam Subjected to Transverse 

Triangular Loading (Reprinted with Permission from Allen and Fry, 2017) 

 

Required: a) Solve for 𝑣 = 𝑣(𝑥, 𝑝𝑦
0, 𝐸, 𝐼𝑦𝑦) analytically 

 b) Obtain a solution for v= 𝑣(𝑥, 𝑝𝑦
0, 𝐸, 𝐼𝑧𝑧) numerically and compare the two 

solutions 

Solution: a) To obtain the analytic solution to this problem, first note that  

 

 𝑝𝑦(𝑥) = 𝑝𝑦
𝑙 𝑥

𝑙
          (E2.1) 

 

Now recall that the beam shear, 𝑉𝑧(𝑥), is given by the following: 

 

 
𝑑𝑉𝑦

𝑑𝑥
= −𝑝𝑦          (E2.2) 

Therefore, substituting (E2.1) into (E2.2) and integrating results in the following: 
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 ∫
𝑑𝑉𝑦

𝑑𝑥
𝑑𝑥 = −∫𝑝𝑦

𝑙 𝑥

𝑙
𝑑𝑥 ⇒ 𝑉𝑦(𝑥) = −𝑝𝑦

𝑙 𝑥
2

2𝑙
+ 𝑐1     (E2.3) 

 

Now consider the following boundary condition: 

 

 𝑉𝑦(𝑥 = 𝑙) = 0         (E2.4) 

 

Substituting (E2.4) into (E2.3) gives the following: 

 

 𝑐1 =
𝑝𝑦
𝑙 𝑙

2
⇒ 𝑉𝑦(𝑥) = −

𝑝𝑦
𝑙

2𝑙
(𝑥2 − 𝑙2)       (E2.5) 

 

Now recall the beam moment, 𝑀𝑧(𝑥), is given by the following: 

 

 
𝑑𝑀𝑧

𝑑𝑥
= −𝑉𝑦          (E2.6) 

 

Therefore, substituting (E2.5) into (E2.6) results in the following: 

 

 
𝑑𝑀𝑧

𝑑𝑥
=

𝑝𝑦
𝑙

2𝑙
(𝑥2 − 𝑙2)          (E2.7) 

 

Integrating equation (E2.7) therefore gives the following: 

 



 

44 

 

 𝑀𝑧(𝑥) =
𝑝𝑦
𝑙

2𝑙
(
𝑥3

3
− 𝑙2𝑥) + 𝑐2        (E2.8) 

 

Now consider the following boundary condition: 

 

 𝑀𝑧(𝑥 = 𝑙) = 0         (E2.9) 

 

Substituting (E2.9) into (E2.8) gives the following: 

 

 𝑐2 =
𝑝𝑦
𝑙 𝑙2

3
⇒ 𝑀𝑧(𝑥) =

𝑝𝑦
𝑙

2𝑙
(
𝑥3

3
− 𝑙2𝑥 +

2𝑙3

3
)              (E2.10) 

 

Now consider the following equation: 

 

 
𝑑2𝑣

𝑑𝑥2
=

𝑀𝑧

𝐸𝐼𝑧𝑧
                  (E2.11) 

 

Substituting (E2.10) into (E2.11) thus results in: 

 

 
𝑑2𝑣

𝑑𝑥2
=

𝑝𝑦
𝑙

2𝑙𝐸𝐼𝑧𝑧
(
𝑥3

3
− 𝑙2𝑥 +

2𝑙3

3
)                (E2.12) 

 

Integrating the above thus gives: 
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 𝜃𝑧(𝑥) =
𝑑𝑣

𝑑𝑥
=

𝑝𝑦
𝑙

2𝑙𝐸𝐼𝑧𝑧
(
𝑥4

12
−
𝑙2𝑥2

2
+
2𝑙3𝑥

3
) + 𝑐3             (E2.13) 

 

Now consider the following boundary condition: 

 

 𝜃𝑧(𝑥 = 0) = 0                (E2.14) 

 

Substituting (E2.14) into (E2.13) gives the following: 

 

 𝑐3 = 0 ⇒ 𝜃𝑧(𝑥) =
𝑝𝑦
𝑙

2𝑙𝐸𝐼𝑧𝑧
(
𝑥4

12
−
𝑙2𝑥2

2
+
2𝑙3𝑥

3
)             (E2.15) 

 

It follows that: 

 

 𝜃𝑧(𝑥 = 𝑙) =
𝑝𝑦
𝑙 𝑙3

4𝐸𝐼𝑧𝑧
                (E2.16) 

 

Integrating equation (E.15) gives the following: 

 

 𝑣(𝑥) =
𝑝𝑦
𝑙

2𝑙𝐸𝐼𝑧𝑧
(
𝑥5

60
−
𝑙2𝑥3

6
+
𝑙3𝑥2

3
) + 𝑐4              (E2.17) 

 

Now consider the following boundary condition: 
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 𝑣(𝑥 = 0) = 0                 (E2.18) 

 

Substituting (E2.18) into (E2.17) results in the following: 

 

 𝑐4 = 0 ⇒ 𝑣(𝑥) =
𝑝𝑦
𝑙

2𝑙𝐸𝐼𝑧𝑧
(
𝑥5

60
−
𝑙2𝑥3

6
+
𝑙3𝑥2

3
)             (E2.19) 

 

It follows that 

 

 𝑣(𝑥 = 𝑙) =
11𝑝𝑦

𝑙 𝑙4

120𝐸𝐼𝑧𝑧
               (E2.20) 

a) The finite element solution is obtained using 6 elements of equal length. Comparative 

results are shown in Fig. 16. 

 

 

Figure 16 Comparison of Computational Result to Exact Solution for Example 

Problem #2 in the Horizontal Plane 
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Note that by following the procedure shown in part a) it is possible to obtain an 

equivalent exact solution for the vertical displacement in the x-z plane, which results in 

the following: 

 

𝑤(𝑥) =
𝑝𝑧
𝑙

2𝑙𝐸𝐼𝑦𝑦
(
𝑥5

60
−
𝑙2𝑥3

6
+
𝑙3𝑥2

3
)       (E2.21) 

 

The finite element algorithm is now deployed using six elements of equal length and 

setting 𝐼𝑦𝑦 = 𝐼𝑧𝑧 and 𝑝𝑧
0 = 𝑝𝑦

0. Comparative results are shown in Fig. 17.  

   

 

Figure 17 Comparison of Computational Result to Exact Solution for Example 

Problem #2 in the Vertical Plane 

 

As expected, the vertical and horizontal displacements are equivalent for equal loads, 

geometry, and material properties. 
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Example Problem #3 

Given: A simply supported beam is subjected to a temperature change of 𝛥𝑇 = 50 °𝐶.  

Properties are E=2.06x1011 N/m2, Izz=8.99x10-6 m4, A=0.0145 m2, 𝑝𝑥 = 𝑘𝑥 = 𝑘𝑦 = 𝑆 = 0, 

l=12.0 m and 𝛼 = 1.05𝑥10−5 /°𝐶. 

Required: a) Find a form of 𝑝𝑦 = 𝑝𝑦(𝑥) that provides an analytic solution for 

 𝑣 = 𝑣(𝑥, 𝑝𝑦
0, 𝐸, 𝐼𝑧𝑧) 

b) obtain a solution using finite elements and compare the two 

Solution: a) The solution solves the following differential equation: 

 

 𝐸𝐼𝑧𝑧
𝑑4𝑣

𝑑𝑥4
+ 𝑃𝑇

𝑑2𝑣

𝑑𝑥2
= 𝑝𝑦       (E3.1) 

 

In order to obtain an analytic solution, assume that the solution is of the form: 

 

 𝑣(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4      (E3.2) 

 

Next, consider the boundary conditions: 

 

 at x=0, l: 𝑣 = 0,
𝑑2𝑣

𝑑𝑥2
= 0        (E3.3) 

 

In order for (E3.2) to be a correct assumption, it must satisfy both (E3.1) and (E3.3).  First, 

satisfy (E3.3) as follows: 
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𝑑2𝑣

𝑑𝑥2
=

𝑑

𝑑𝑥2
(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3𝑥
3 + 𝑎4𝑥

4) = 2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥
2   (E3.4) 

 

Satisfying (E3.3) with (E3.4) results in the following: 

 

 𝑎2 = 0, 𝑎4 = −
𝑎3

2𝑙
         (E3.5) 

 

Substituting (E3.5) into (E3.2) gives the following: 

 

 𝑣(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎3𝑥
3 −

𝑎3

2𝑙
𝑥4       (E3.6) 

 

Satisfying (E3.3) gives the following for (E3.6) 

 

 𝑎0 = 0, 𝑎1 = −
𝑎3𝑙

2

2
         (E3.7) 

 

Substituting (E3.7) into (E3.6) gives: 

 

 𝑣(𝑥) = 𝑎3 (−
𝑙2𝑥

2
+ 𝑥3 −

𝑥4

2𝑙
)        (E3.8) 

 

Substituting (E3.8) into (E3.2) results in the following: 

 



 

50 

 

𝐸𝐼𝑧𝑧
𝑑4

𝑑𝑥4
[𝑎3 (−

𝑙2𝑥

2
+ 𝑥3 −

𝑥4

2𝑙
)] + 𝑃𝑇

𝑑2

𝑑𝑥2
[𝑎3 (−

𝑙2𝑥

2
+ 𝑥3 −

𝑥4

2𝑙
)] = 𝑝𝑦 ⇒ 

𝑝𝑦 = −
12𝑎3𝐸𝐼𝑧𝑧

𝑙
+ 𝑃𝑇𝑎3 (6𝑥 − 6

𝑥2

𝑙
)       (E3.9) 

 

Thus, the distributed loading given by (E3.9) provides the exact solution given by (E3.8). 

 

b) The finite element solution for twelve elements of equal length is compared to the 

exact solution in Fig. 18, wherein it can be seen that convergence is obtained for a 

value of 𝑎3 = −0.001. 

 

 

Figure 18 Comparison of Computational Result to Analytical Solution for Example 

Problem #3 in the Horizontal Plane 
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Example Problem #4 

Given: A double-cantilevered beam is subjected to a distributed transverse load, where 

E=2.06x1011 N/m2, Izz=8.99x10-6 m4, 𝑘𝑦 = 𝑘𝑦
0 = 105 𝑁/𝑚2, A=0.0145 m2 and l=12.0 m.  

In addition, 𝛼 = 1.05𝑥10−5 /°𝐶, 𝛥𝑇 = 50 °𝐶 and 𝑝𝑥 = 𝑘𝑥 = 𝑆 = 0. 

Required: a) Find a form of 𝑝𝑦 = 𝑝𝑦(𝑥) that provides an analytic solution for 

 𝑣 = 𝑣(𝑥, 𝑝𝑦
0, 𝐸, 𝐼𝑧𝑧), assuming that 𝑢(𝑥) = 0, 0 ≤ 𝑥 ≤ 𝑙. 

b) obtain a solution using finite elements and compare the two 

Solution: a) The solution solves the following differential equation: 

 

𝐸𝐼𝑧𝑧
𝑑4𝑣

𝑑𝑥4
+ 𝑃𝑇

𝑑2𝑣

𝑑𝑥2
+ 𝑘𝑦𝑣 = 𝑝𝑦      (E4.1) 

 

Suppose that we choose the following: 

 

𝑣(𝑥) = 𝐶1 [𝑥
2 −

2𝑥3

𝑙
+
𝑥4

𝑙2
]       0 ≤ 𝑥 ≤ 𝑙      (E4.2) 

 

where l is the length of the beam and 𝐶1 is a loading constant.  It can be seen that the above 

assumed solution satisfies the following boundary conditions: 

 

𝑣(𝑥 = 0, 𝑙) = 0 

𝑑𝑣

𝑑𝑥
(𝑥 = 0, 𝑙) = 0        (E4.3) 
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In order to obtain the forcing function, 𝑝𝑦, equation (E4.2) is now substituted into 

equation (E4.1) and solved, thereby resulting in the following: 

 

𝑝𝑦(𝑥) = 𝐶1𝐸𝐼𝑧𝑧
𝑑4

𝑑𝑥4
[𝑥2 −

2𝑥3

𝑙
+
𝑥4

𝑙2
] + 𝐶1𝑃

𝑇
𝑑2

𝑑𝑥2
[𝑥2 −

2𝑥3

𝑙
+
𝑥4

𝑙2
] + 𝐶1𝑘𝑦

0 [𝑥2 −
2𝑥3

𝑙
+
𝑥4

𝑙2
] 

 

=
24𝐶1𝐸𝐼𝑧𝑧

𝑙2
+ 𝐶1𝑃

𝑇 (2 −
12𝑥

𝑙
+
12𝑥2

𝑙2
) + 𝐶1𝑘𝑦

0 [𝑥2 −
2𝑥3

𝑙
+
𝑥4

𝑙2
]    (E4.4) 

 

Equation (E4.2) is then the solution for a double cantilever beam with constant coefficient 

of friction and constant temperature change given by equation (2) subjected to forcing 

function given by equation (E4.4) and with boundary conditions (E4.3).   

 

b) The finite element solution gives the results shown in Fig. 19 for the case wherein 

C1=0.01. 
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Figure 19 Comparison of Computational Result to Exact Solution for Example 

Problem #4 in the Horizontal Plane 

 

It can be seen from the above example problem that the finite element model reproduces 

the exact solution for the linear case, with convergence obtained with 12 elements of equal 

length. 

Modeling the Rail Response for the Nonlinear Case 

Now consider the fifth term in equation (25) once again. The fifth term is nonzero 

and therefore nonlinear whenever there is axial displacement. Finally, consider the eighth 

and ninth terms in equation (25). These terms will necessarily be nonlinear whenever the 

coefficients of friction, 𝑘𝑥 and 𝑘𝑦, are not constant, and this circumstance is the main 

purpose of the current study. The nonlinearity enters via the dependence of the friction 

coefficients on the displacement components, u and v, respectively.  As shown in Fig. 20, 

single tie push tests (STPT) confirm the nonlinearity for the lateral coefficient 𝑘𝑦.   
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Figure 20 Typical Lateral Load vs. Displacement from STPT Tests (Read et al. 

2011) 

 

For a given rail structure configuration, the above response may be adequately 

modeled with a power law of the following form (Tvergaard and Needleman 1981, Allen 

et al. 2016): 

 

𝑘𝑦(𝑣) = 𝑘𝑦
0 − 𝑘𝑦

1 (
𝑣

𝑣0
)
𝑛

        (45) 

 

It should be noted piecewise linear (Lim et al 2003), hyperbolic tangent equations 

(Grissom and Kerr 2006) and even upper limiting values (Grissom and Kerr 2006) have 

been used to curve fit the response illustrated in Fig. 20. However, the predicted buckling 

results do not appear to be very sensitive to the form of equations used. Thus, the power 

law form given by equation (45) is employed in this research. As shown in Fig. 21, this 
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type of curve fit does an adequate job of predicting the observed nonlinearity in the 

coefficient of lateral friction. Accordingly, the same type of equation is employed for the 

longitudinal coefficient of friction. 

 

 

Figure 21 Comparison of Predicted Coefficient of Lateral Friction to Experimental 

Data Using Equation 45 (Reprinted with Permission from Allen and Fry, 2017) 

 

As can be seen from Fig. 21, the coefficient of lateral friction can be highly 

nonlinear.  Accordingly, failing to account for this nonlinearity in the model can lead to 

significant predictive error.  Therefore, it is essential to include the ability to predict this 

nonlinearity in the model (Tvergaard and Needleman 1981, Lim et al. 2003, Grissom and 

Kerr 2006, Allen et al 2006).  Toward this end, a standard time marching scheme is 

adopted herein, in which the externally applied mechanical load is gradually increased in 
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a series of time steps, with Newton iteration deployed to capture the nonlinearity on each 

time step (Little et al. 2016).   

 Briefly, this is accomplished by first obtaining an approximate solution in which 

it is assumed that in the term 𝑘𝑦 the displacement from the previous time step is used, 

thereby resulting in the following initial approximation for the global form of equation 

(29).   

 

 ∑ 𝐾𝑖𝑗
10
𝑗=1 𝛥𝑞𝑗

0 + ∑ 𝐵𝑖𝑗
10
𝑗=1 𝛥𝑞𝑗

0 + ∑ 𝐺𝑖𝑗
10
𝑗=1 𝛥𝑞𝑗

0 + ∑ 𝑁𝑖𝑗
10
𝑗=1 𝛥𝑞𝑗

0 = 𝛥𝐹𝑖 (46) 

 

 

This erroneous value of 𝛥𝑢𝑚(𝑥) and 𝛥𝑣𝑚(𝑥) can be utilized to reduce the error by 

employing the following simple iteration method: 

 

 (𝐺𝑖𝑗)
𝜂
= (𝐺𝑖𝑗(𝑞𝑗

𝜂−1
)) 

 (𝑁𝑖𝑗)
𝜂
= (𝑁𝑖𝑗(𝑞𝑗

𝜂−1
))        (47) 

 

where η is the iteration number (Ketter and Prawel 1969, Little et al. 2016).  Equation (46) 

is then reevaluated using the updated estimate of the matrices 𝐺𝑖𝑗 and 𝑁𝑖𝑗 obtained from 

equation (47). The iterative process is terminated when the following condition is 

satisfied: 

 

 
‖𝛥𝑞𝑖

𝜂
−𝛥𝑞𝑖

𝜂−1
‖

‖𝛥𝑞
𝑖
𝜂
‖

≤ 𝑒𝐴𝐿         (48) 
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where the double vertical lines signify the Euclidean norm, and 𝑒𝐴𝐿 is a preset value of 

allowable error.  The total displacement field is subsequently evaluated as follows: 

 

 𝑞𝑖(𝑥(𝑡 + 𝛥𝑡)) = 𝑞𝑖(𝑥(𝑡)) + 𝛥𝑞𝑖
𝜂
(𝑥(𝑡 + 𝛥𝑡))     (49) 

 

The above procedure is to be verified via example problems. 

Validation Problems for the Nonlinear Case 

The finite element algorithm is now validated for the nonlinear case with the following 

example problems. 

Example Problem #5 

Given: A beam that is simply supported at both ends is subjected to an incremental lateral 

distributed loading 𝑝𝑦 = 𝑐𝑜𝑛𝑠𝑡 = 10 𝑁/𝑚, where E=2.06x1011 N/m2, Iyy=Izz=8.99x10-6 

m4, A=0.0145 m2, l=12.0 m, and 𝑝𝑥 = 𝑝𝑧 = 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 𝑆 = 𝛥𝑇 = 0.  The beam is 

subjected to an axial load, P, at the end x=0. 

Required: a) Obtain an approximate analytic solution for 𝑣 = 𝑣(𝑥) and determine the 

axial load, 𝑃𝑐𝑟, that will cause the column to buckle. 

b) Determine the location of the maximum lateral displacement and evaluate it. 

c) Obtain a solution using the finite element method and compare the two. 

Solution: a) The analytic solution solves the following variational equation: 

 

∫ 𝐸𝐼𝑧𝑧
𝑙

0

𝑑2𝑣

𝑑𝑥2
𝛿 (

𝑑2𝑣

𝑑𝑥2
) 𝑑𝑥 + ∫ 𝑃

𝑑𝑣

𝑑𝑥

𝑙

0
𝛿 (

𝑑𝑣

𝑑𝑥
) 𝑑𝑥 − ∫ 𝑝𝑦𝛿𝑣𝑑𝑥 = 0

𝑙

0
  (E5.1) 
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The analytic solution is assumed to be of the following form: 

 

𝑣(𝑥) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑥
2       (E5.2) 

 

It follows that 

 

𝑑𝑣

𝑑𝑥
(𝑥) = 𝑎2 + 2𝑎3𝑥        (E5.3) 

 

where the coefficients are to be determined. The displacement boundary condition on the 

left end implies that: 

 

𝑣(𝑥 = 0) = 0 ⇒ 𝑎1 = 0       (E5.4) 

 

Thus, equation (E5.2) simplifies to the following: 

 

𝑣(𝑥) = 𝑎2𝑥 + 𝑎3𝑥
2        (E5.5) 

 

The displacement boundary condition on the right end implies that 

 

𝑣(𝑥 = 𝑙) = 0 = 𝑎2𝑙 + 𝑎3𝑙
2 ⇒ 𝑎2 = −𝑎3𝑙     (E5.6) 

 

Substituting (5.6) into (5.5) therefore results in: 
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𝑣(𝑥) = 𝐶(𝑥2 − 𝑥𝑙)        (E5.7) 

 

where the coefficient C is to be determined by satisfying (E5.1).  Substituting (E5.7) into 

(E5.1) thus results in the following: 

 

(4𝐸𝐼𝑧𝑧𝑙𝐶 +
1

3
𝑃𝑙3𝐶 +

1

6
𝑙3𝑝𝑦) 𝛿𝐶 = 0      (E5.8) 

 

Since 𝛿𝐶 is arbitrary, it follows that  

 

𝐶 = −
𝑝𝑦𝑙

2

6
[

1

(
1

3
𝑃𝑙2+4𝐸𝐼𝑧𝑧)

]       (E5.9) 

 

Substituting (E5.9) into (E5.7) gives the displacement field: 

 

𝑣(𝑥) = −
𝑝𝑦𝑙

2

6
[

1

(
1

3
𝑃𝑙2+4𝐸𝐼𝑧𝑧)

] (𝑥2 − 𝑥𝑙)                         (E5.10) 

 

To obtain the buckling load, the second variation of equation (E5.8) is taken, thereby 

resulting in the following: 

 

(4𝐸𝐼𝑧𝑧𝑙 +
1

3
𝑃𝑐𝑟𝑙

3) 𝛿𝐶 = 0                (E5.11) 
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Since 𝛿𝐶 is arbitrary, it follows that 

 

𝑃𝑐𝑟 = −12
𝐸𝐼𝑧𝑧

𝑙2
                  (E5.12) 

 

b) The maximum lateral displacement can be seen to occur at the midpoint of the beam, 

so that: 

 

4

max
2

1
( / 2)

124
4

3

y

zz

p l
v v x l

EI Pl

 
 
 = = =
  +    

              (E5.13) 

 

Note also that the end rotation can also be evaluated by differentiating equations 

(E5.13) as follows: 

 

𝜃(𝑥) ≡
𝑑𝑣

𝑑𝑥
(𝑥) = −

𝑝𝑦𝑙
2

6
[

1

(
1

3
𝑃𝑙2+4𝐸𝐼𝑧𝑧)

] (2𝑥 − 𝑙)            (E5.14) 

 

The predicted value of θ(x=0) = θ0 can now be substituted into the above to obtain 

the following: 

 

𝜃0 =
𝑝𝑦𝑙

3

6
[

1

(4𝐸𝐼𝑧𝑧+
1

3
𝑃𝑙2)

]             (E5.15) 
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Substituting the above result back into equation (E5.13) thus gives the following: 

 

max 0 / 4FEv l=               (E5.16) 

 

c) In order to account for the coupling between the axial and lateral displacement 

components it is necessary to solve the problem with multiple elements using the finite 

element method.  Fig. 22 shows the results of the finite element prediction using six 

elements of equal length, wherein it can be seen that both the predicted maximum 

displacement buckling load match the results obtained above. 

 

 

Figure 22 Comparison of Finite Element Approximation to Variational Solution for 

Example Problem #5 
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Example Problem #6 

Given: A double-cantilevered beam is subjected to a distributed loading, where 

E=2.06x1011 N/m2, Iyy=Izz=8.99x10-6 m4, A=0.0145 m2, l=12.0 m,𝛼 = 1.05𝑥10−5 /°𝐶, 

𝑝𝑥 = 𝑝𝑧 = 𝑘𝑥 = 𝑘𝑧 = 𝑆 = 0 and 𝛥𝑇 = 50 °𝐶.  In addition, the lateral coefficient of 

friction parameters used to fit the data in Fig. 22 are 𝑘𝑦
0 = 1.16𝑥106𝑁/𝑚2, 𝑘𝑦

1 =

6.5𝑥105𝑁/𝑚2, 𝑣0 = 0.005 𝑚 and n=0.05.  

Required: a) Obtain an analytic solution for 𝑣 = 𝑣(𝑥, 𝑝𝑦
0, 𝐸, 𝐼𝑧𝑧). 

b) Obtain a solution using finite elements and compare the two 

Solution: a) The solution solves the following differential equation: 

 

𝐸𝐼𝑧𝑧
𝑑4𝑣

𝑑𝑥4
+ 𝑃𝑇

𝑑2𝑣

𝑑𝑥2
+ 𝑘𝑦𝑣 = 𝑝𝑦      (E6.1) 

 

Suppose that we choose the following: 

 

𝑣(𝑥) = 𝐶1[𝑥
2 −

2𝑥3

𝑙
+
𝑥4

𝑙2
] 0 ≤ 𝑥 ≤ 𝑙      (E6.2) 

 

where l is the length of the beam and 𝐶1 is a loading constant.  It can be seen that the above 

assumed solution satisfies the following boundary conditions: 

 

𝑣(𝑥 = 0, 𝑙) = 0 

𝑑𝑣

𝑑𝑥
(𝑥 = 0, 𝑙) = 0        (E6.3) 



 

63 

 

 

In order to obtain the forcing function, 𝑝𝑦, equation (E6.2) is now substituted into 

equation (E6.1) and it is solved, thereby resulting in the following: 

 

𝑝𝑦(𝑥) = 𝐶1𝐸𝐼𝑧𝑧
𝑑4

𝑑𝑥4
[𝑥2 −

2𝑥3

𝑙
+
𝑥4

𝑙2
] + 𝐶1𝑃

𝑇 𝑑2

𝑑𝑥2
[𝑥2 −

2𝑥3

𝑙
+
𝑥4

𝑙2
]+ 

+𝐶1

[
 
 
 

𝑘𝑦
0 − 𝑘𝑦

1 [
𝐶1  [𝑥

2 −
2𝑥3

𝑙
+
𝑥4

𝑙2
]

𝑣0
]

𝑛

]
 
 
 

[𝑥2 −
2𝑥3

𝑙
+
𝑥4

𝑙2
] =

24𝐶1𝐸𝐼𝑧𝑧
𝑙2

+ 

+𝐶1𝑃
𝑇 (2 −

12𝑥

𝑙
+
12𝑥2

𝑙2
) + 𝐶1 [𝑘𝑦

0 − 𝑘𝑦
1 [

𝐶1 [𝑥
2−

2𝑥3

𝑙
+
𝑥4

𝑙2
]

𝑣0
]

𝑛

] [𝑥2 −
2𝑥3

𝑙
+
𝑥4

𝑙2
] (E6.4) 

The above forcing function will produce the displacement field given in equation 

(E6.2).   

b) The next step is to compare the computational results obtained with the finite 

element algorithm to the exact solution represented by equations (E6.2) and (E6.4).  

Toward this end, an allowable error of 𝑒𝐴𝐿 = 5.0𝑋10
−6 has been utilized.  Fig. 23 shows 

the predicted vs. exact results for three different element meshes.  On the basis of these 

results it is concluded that a 20-element mesh is sufficiently accurate for the purpose of 

approximating the displacement field within a rail structure modeled by equations (11)-

(19). Furthermore, Fig. 24 shows the finite element predictions using the 20-element mesh 

on a few different iterations.  On the basis of this, it is concluded that only a few iterations 

are necessary to accurately predict the effects of nonlinearity in the friction between the 

ballast-crosstie interface.    
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Figure 23 Comparison of Finite Element Approximations for Three Different 

Meshes to Theoretical Solution for Example Problem #6 

 

 

Figure 24 Comparison of Finite Element Approximations for Different Iterations 

(20 element mesh) to Theoretical Solution for Example Problem #6 
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Example Problem #7 

Given: A beam that is cantilevered at one end and simply supported at the other is 

subjected to a constant lateral distributed loading 10 /yp const N m= =  , where 

E=2.06x1011 N/m2, Izz=8.99x10-6 m4, A=0.0145 m2, l=12.0 m, and 

0x x yp k k S T= = = =  = .  The beam is subjected to an axial load, P, at the simply 

supported end. 

Required: a) Obtain an approximate analytic solution for ( )v v x=  and determine the axial 

load, crP , that will cause the column to buckle. 

b) Determine the location of the maximum lateral displacement and evaluate it. 

c) Obtain a solution using the finite element method and compare the two. 

Solution: a) The analytic solution solves the following variational equation: 

 

2 2

2 2

0 0 0

0

l l l

zz y

d v d v dv dv
EI dx P dx p vdx

dx dx dx dx
  

   
− − =   

  
      (E7.1) 

 

The analytic solution is assumed to be of the following form: 

 

2 3 4

1 2 3 4 5( )v x a a x a x a x a x= + + + +       (E7.2) 

 

It follows that 
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2 3

2 3 4 5( ) 2 3 4
dv

x a a x a x a x
dx

= + + +       (E7.3) 

 

where the coefficients are to be determined. The boundary conditions on the left end are 

as follows: 

 

1( 0) 0 0v x a= =  =                  (E7.3a) 

3( 0) 0 0z

zz

M
x a

EI
= =  =                            (E7.3b) 

 

Thus, equation (E7.2) simplifies to the following: 

 

3 4

2 4 5( )v x a x a x a x= + +        (E7.4) 

 

The boundary conditions on the right end are as follows: 

 

2 3

2 4 5( ) 0v x l a a l a l= =  = − −                (E7.5a) 

 

2 3

2 4 5( ) 0 3 5
dv

x l a a l a l
dx

= =  = − −               (E7.5b) 

 

Reducing the above two equations to a single unknown C gives the following: 
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( )3 3 4( ) 3 2v x C l x lx x= − +        (E7.6) 

 

where the coefficient C is to be determined by satisfying (E7.1).  Substituting (E7.6) into 

(E7.1) thus results in the following: 

 

5 7 536 72 3
0

5 210 20
zz yEI l C Pl C l p C

 
− − = 

 
     (E7.7) 

 

Since C  is arbitrary, it follows that  

 

2

3 1

36 7220

5 210

y

zz

p
C

EI Pl

 
 

=  
  −    

      (E7.8) 

 

Substituting (E7.8) into (E7.6) gives the displacement field: 

 

( )3 3 4

2

3 1
( ) 3 2

36 7220

5 210

y

zz

p
v x l x lx x

EI Pl

 
 

= − + 
  −    

    (E7.9) 
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To obtain the buckling load, the second variation of equation (E7.7) is taken, thereby 

resulting in the following: 

 

236 72
0

5 210
zz crEI P l C

 
− = 

 
                (E7.10) 

 

Since C  is arbitrary, it follows that 

 

2
21 zz

cr

EI
P

l
=                   (E7.11) 

 

b) The maximum lateral displacement can be obtained by taking the derivative of 

equation (E7.7) and setting it to zero.  This will result in the following: 

 

4

max
2

1
( 0.4 ) 0.039

36 72

5 210

y

zz

v v x l p l

EI Pl

 
 

 =   
  −    

            (E7.10) 

 

c) Since the analytic solution is cubic in x, the finite element solution can be obtained by 

using a single finite element.  The buckling load is determined by incrementally 

increasing the axial load until an instability occurs in the predicted results.  Fig. 25 

shows the results of the finite element prediction, wherein it can be seen that both the 
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predicted maximum displacement matches equation (E7.10) and the predicted 

buckling load matches equation (E7.9). 

 

 

Figure 25 Comparison of Finite Element Approximation (10 elements mesh) to 

Analytical Solution for Example Problem #7 

 

Validation Problems for the Case of Lift-Off 

In general, lift-off induced buckling occurs due to the geometry of the rail structure 

and the loss in friction the ballast typically would exert on the track during downward 

vertical motion. Firstly, due to the geometry of the rail cross-section, buckling normally 

occurs about the horizontal x-y plane because 𝐼𝑦𝑦 is much greater than 𝐼𝑧𝑧, meaning that 

the rail will fail about the weak z-z axis. Furthermore, even when the rail bends about the 

y axis, buckling will occur about the z axis. Additionally, when the rail lifts off, the friction 

goes to zero, thus removing the resistance to motion exerted on the rail from the ballast, 

thereby inducing buckling. Figure 26, shown below, depicts this phenomenon.  
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Figure 26 Depiction of the Rail Lift-off Problem 

 

The finite element algorithm is now validated for the lift-off case with the 

following example problem. 

Example Problem #8 

Given: A beam that is resting on an elastic foundation is subjected to a concentrated 

vertical load, as shown in Fig. 27, with 𝐹𝑧 = 𝑐𝑜𝑛𝑠𝑡 = 1000 𝑁. In addition, E=2.06x1011 

N/m2, Iyy=Izz=8.99x10-6 m4, A=0.0145 m2, l=12.0 m, 𝑘𝑧 = 1.16𝑥106 𝑁/𝑚2 and 

𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧 = 𝑘𝑥 = 𝑘𝑦 = 𝑆 = 𝛥𝑇 = 0. 
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Figure 27 Depiction of a Prismatic Beam Resting on an Elastic Foundation 

Subjected to Concentrated Loading 

 

Required: a) Obtain an analytic solution for 𝑤 = 𝑤(𝑥). 

b) Obtain a solution using the finite element method and compare the two. 

Solution: a) The analytic solution solves the following differential equation: 

 

𝑑2

𝑑𝑥2
(𝐸𝐼𝑧𝑧

𝑑2𝑤

𝑑𝑥2
) + 𝑘𝑧𝑤 = 𝑝𝑧       (E8.1) 

 

In order to obtain an analytical solution for this structure, (E8.1) can be simplified 

and rewritten as: 

 

𝑑4𝑤

𝑑𝑥4
+ 4𝛽4𝑤 = 0         (E8.2) 
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where: 

 

𝛽 = √
𝑘𝑧

4𝐸𝐼𝑦𝑦

4
          (E8.3) 

 

 The analytic solution to this equation is found to be (Oden and Ripperger 1981) as 

follows: 

𝑤(𝑥) = 𝛿𝐴cosℎ(𝛽𝑥)cos(𝛽𝑥) +
𝜃𝐴

2𝛽
(sinℎ(𝛽𝑥)cos(𝛽𝑥) + cosℎ(𝛽𝑥)sin(𝛽𝑥))  (E8.4) 

 

where 𝛿𝐴 and 𝜃𝐴 represent the unknown deflection and slope at the end A of the beam, 

respectively. The unknown coefficient 𝜃𝐴 can be solved for by imposing symmetry of the 

slope as follows: 

 

𝑑𝑤

𝑑𝑥
(
𝑙

2
) = 0          (E8.5) 

 

which results in the following: 

 

𝜃𝐴 = −𝛿𝐴𝛽 (tanℎ (
𝛽𝑙

2
) − tan (

𝛽𝑙

2
))       (E8.6) 

 

Substituting (E8.6) into (E8.4) and setting the sum of all the forces in the vertical direction 

equal to zero, results in the following: 
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𝛿𝐴 = 𝛽𝐹𝑧 {𝑘𝑧 [sinℎ (
𝛽𝑙

2
) cos (

𝛽𝑙

2
) + cosℎ (

𝛽𝑙

2
) sin (

𝛽𝑙

2
) − (tanℎ (

𝛽𝑙

2
) −

                       tan (
𝛽𝑙

2
)) (sinℎ (

𝛽𝑙

2
) sin (

𝛽𝑙

2
))]}

−1

      (E8.7) 

 

 Thus, (E8.4) and (E8.7) represent the analytical solution to (E8.1) on the left-hand 

side of the beam. Note that on the right-hand side of the beam, (E8.1) becomes: 

𝑤(𝑥) = 𝛿𝐴cosℎ(𝛽(𝑙 − 𝑥))cos(𝛽(𝑙 − 𝑥)) +
𝜃𝐴

2𝛽
(sinℎ(𝛽(𝑙 − 𝑥))cos(𝛽(𝑙 − 𝑥)) +

                             cosℎ(𝛽(𝑙 − 𝑥))sin(𝛽(𝑙 − 𝑥)))      (E8.8) 

 

c) The finite element solution is obtained using 6 elements of equal length. 

Comparative results are shown in Fig. 28. 

 

 

Figure 28 Comparison of Computational Result to Exact Solution for Example 

Problem #8 

 

This completes the validation of the computational model for predicting buckling in rails.  
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CHAPTER VI  

RESULTS 

 

The following sections of this report illustrate the results of the research efforts to 

date. Briefly, these efforts are focused on mitigating rail buckling via sensitivity analysis. 

Most recently, the focus has been on modeling the effects of rail lift-off on lateral buckling. 

Analysis of Sensitivity of Buckling due to Variations in Rail Physics 

The rail buckling model developed herein is being deployed for the purpose of 

prioritizing rail buckling mitigation strategies. Toward this end, sensitivity studies were 

performed for the following variables: temperature change (𝛥𝑇), lateral friction coefficient 

(𝑘𝑦), rotational stiffness (also known as rail pinning, 𝑆), lateral track walk and vertical 

coefficient of friction (known as track modulus, 𝑘𝑧). 

The sensitivity is the rate of change of the buckling load with respect to the target 

variable. It can be seen that this is represented by the slope in the following diagrams, 

whereby the effects on the buckling load due to a change in the variable of interest can be 

assessed. Symmetric (u-shaped) buckles were therefore modelled on 40-foot-long sections 

of the rail, induced by monotonically increasing both the axial and transverse loading until 

buckling occurs in the rail structure.  

Temperature Sensitivity 

First consider the sensitivity of the buckling load to changes in temperature.  As 

shown in Fig. 29, the predicted buckling load decreases with increasing temperature 

change. The sensitivity of the buckling load is the slope of the curve, whereby it can be 
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observed that there is a slight increase in sensitivity of the buckling load to temperature 

change with increasing temperature change.   

 

 

Figure 29 Predicted Effect of Temperature Change on Buckling Resistance of a 

Typical Rail Structure 

 

Lateral Coefficient of Friction Sensitivity 

Consider now the sensitivity of the buckling load to changes in the lateral 

coefficient of friction, which represents the transverse component of friction between the 

ballast and the crosstie. As shown in Fig. 30, the predicted buckling load increases with 

increasing coefficient of lateral friction. Furthermore, there is no observed change in the 

sensitivity with increasing ballast-crosstie friction.   
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Figure 30 Predicted Effect of Ballast-Crosstie Coefficient of Lateral Friction 

Change on Buckling Resistance of a Typical Rail Structure 

 

Rail Pinning Sensitivity 

Consider next the sensitivity of the buckling load to changes in rotational stiffness 

(rail pinning), which, as previously explained, represents the crosstie-fastener resistance 

to the rotation of the track. As shown in Fig. 31, the predicted buckling load decreases 

with increasing rotational stiffness. Small or negligible change in the sensitivity can be 

observed with increasing resistance to track rotation.   
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Figure 31 Predicted Effect of Rotational Stiffness Variation on Buckling Resistance 

of a Typical Rail Structure 

  

Lateral Track Walk Sensitivity 

Consider now the sensitivity of the buckling load to changes in initial lateral 

deformation, often referred to as lateral track walk. As shown in Fig. 32, the predicted 

buckling load decreases with increasing lateral track walk. The sensitivity appears to 

behave nonlinearly and changes in the magnitude of the lateral track walk of at least 0.5-

in are observed to affect it significantly.  

 



 

78 

 

 

Figure 32 Predicted Effect of Lateral Track Walk Change on Buckling Resistance 

of a Typical Rail Structure 

 

Vertical Lift-Off Sensitivity 

Lastly, consider the sensitivity of the buckling load to changes in track modulus, 

𝑘𝑧, which represents the vertical component of friction acting at the interface of the ballast 

with the rail structure. The track modulus is therefore defined as a measure of the vertical 

stiffness of the rail foundation (Selig and Li 1994), which represents the elastic modulus 

of the foundation. In order to fully investigate the sensitivity of the buckling load to 

changes in track modulus, it was necessary to consider both the cases of no lift-off and 

that of vertical lift-off of the track structure. The sensitivity to changes in the magnitude 

of the track modulus are therefore shown for both cases in Fig. 33 and 34, respectively. 

From Fig. 33, it can be clearly inferred that when the rail does not lift-off, the buckling 

load is insensitive to changes in 𝑘𝑧. However, as shown in Fig. 34, the buckling load is 

significantly affected by changes in track modulus when the track structure experiences 

lift-off. The sensitivity for this case is highly nonlinear, and it can be inferred that lift-off 
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resulting from a softer foundation removes resistance due to lateral friction thereby 

dramatically reducing the buckling load. Note that typical values of  𝑘𝑧 (Kerr 2000) were 

utilized in these results (800-6000-lb/in2). 

 

 

Figure 33 Predicted Effect of Track Modulus on Buckling Resistance of a Typical 

Rail Structure for the Case of No Lift-Off 

 

 

Figure 34 Predicted Effect of Track Modulus on Buckling Resistance of a Typical 

Rail Structure for the Case of Lift-Off 
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Summary of Lift-Off Induced Lateral Thermal Buckling 

The model presented herein was deployed in an effort to analyze the effects of 

track lift-off on lateral buckling, with the objective of validating the following hypotheses: 

 

I. Lift-off is inversely proportional to the track modulus (𝑘𝑧)  

II. The buckling load is a strong function of the track modulus (𝑘𝑧) when lift-off 

occurs 

III. When lift-off does not occur, the buckling load is a weak function of the track 

modulus (𝑘𝑧) 

 

Due to the geometric shape of the cross-section of the rail, 𝐼𝑦𝑦 ≫ 𝐼𝑧𝑧, so buckling 

vertically (about the y axis) rarely if ever happens in rails. Based on industry observations, 

what typically happens is that the rail lifts vertically and buckles laterally.  

In order to accurately predict the response of the rail structure to vertical 

displacement, the same assumption implemented in at least one more complex model 

(Dong, Sankar and Dukkipati 1994) has been incorporated as follows: 

 

∀𝑤(𝑥) > 0    ⇒    𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 0       (50) 

 

Equation (50) ensures that whenever the track system lifts off from the ballast the 

coefficients of friction are taken as zero. This relationship is checked at every time step 

and iteration of the model.  

  The results presented above are consistent with the results of the sensitivity 

analysis previously presented, and will be validated by comparing the buckling load of a 
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very long section of track structure that is induced to buckle asymmetrically (s-shaped) 

for the cases of no-lift and lift-off induced buckling.  

 

 Example Problem #9 

Case 1: No Lift-Off 

Given: A beam that is cantilevered at one end and pinned at the other is subjected to a 

compressive axial load P = 50,000 lb, a transverse constant distributed load 𝑝𝑦 =  𝑐𝑜𝑛𝑠𝑡 =

10 𝑙𝑏/𝑓𝑡2, and a vertical constant distributed load 𝑝𝑧 =  𝑐𝑜𝑛𝑠𝑡 = −10 𝑙𝑏/𝑓𝑡2,. In 

addition, E=4.30x109 lb/ft2, Iyy = 6.35x10-3 ft4, Izz= 8.99x10-6 ft4,  A=1.56x10-1 ft2, l=250 

ft, 𝑘𝑥 = 𝑘𝑦 = 28.8 lb/ft2, 𝛥𝑇 = 15 °𝐹, 𝛼 = 5.83𝑥10−6 1/°𝐹 𝑎𝑛𝑑 𝑝𝑥 = 𝑘𝑧 = 𝑆 = 0. 

Case 2: Lift-Off 

Given: A beam that is cantilevered at one end and pinned at the other is subjected to a 

compressive axial load P = 17,000 lb, a transverse constant distributed load 𝑝𝑦 =  𝑐𝑜𝑛𝑠𝑡 =

10 𝑙𝑏/𝑓𝑡2, and 6 vertical concentrated loads 𝐹𝑧 = −50,000 𝑙𝑏 located within 60 ft from 

the cantilevered end of the beam. In addition, E=4.30x109 lb/ft2, Iyy = 6.35x10-3 ft4, Izz= 

8.99x10-6 ft4,  A=1.56x10-1 ft2, l=250 ft, 𝑘𝑥 = 𝑘𝑦 = 28.8 lb/ft2, 𝑘𝑧 = 80 lb/ft2 , 𝛥𝑇 =

15 °𝐹, 𝛼 = 5.83𝑥10−6 1/°𝐹 𝑎𝑛𝑑 𝑝𝑥 = 𝑆 = 0. 

Required: a) Use the finite element method to obtain the magnitude of the buckling load 

for case 1 and case 2 and compare the two. 

Solution: a) The finite element solution was obtained for a mesh of 25 elements and 200 

iterations. The buckling load is determined by incrementally increasing the axial load until 
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an instability occurs in the predicted results.  Fig. 35 shows the results of the finite element 

prediction for both case 1 and case 2.  

 

 
Figure 35 Comparison of Finite Element Approximations for Different Iterations of 

the Buckling Load Obtained for Case 1 (top) and Case 2 (bottom) 

 

The buckling load for the case of no lift-off was found to be 20,000-lb (C). The 

lift-off case was then simulated with an axial load P = 17,000-lb (C). The buckling load 

for the lift-off case was then found to be 3,000-lb (C). It was therefore shown that the 

buckling load decreases significantly with lift-off of the track structure and is thus 

dependent on the track modulus. Note once again that lift-off is predicted only for 
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circumstances wherein the track modulus is relatively low. Finally, for extremely small 

values of 𝑘𝑧, lift-off is entirely mitigated so that buckling is once again obviated. Note that 

the lift-off problem was modeled up utilizing arbitrary values of the coefficients of 

friction, as further research outside the scope of this paper is expected to properly establish 

realistic friction coefficients for the rail structure. However, the track modulus was 

estimated to typically range between 800 and 6000 psi (Kerr 2000) for rail structures, and 

therefore this range was utilized to show vertical amplitude and axial extension as function 

of the track modulus as shown in Fig. 36.  

 

 

Figure 36 Axial Extension (top) and Vertical Amplitude (bottom) as Functions of 

the Track Modulus 
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Therefore, it can be seen that for the lift-off case, axial extension at the buckling 

load is not sensitive to variations of the track modulus, as expected due to the fact that 

axial deformation depends on axial loading and does not depend on 𝑘𝑧. However, vertical 

deformation at lift-off is highly dependent on the track modulus, and Fig. 36 further 

corroborates the hypothesis that lift-off is induced by relatively low track modulus and 

additionally, that there exists an even smaller value of the track modulus for which lift-off 

does not occur. Finally, Fig 36 shows that there also exists a range of really high values of 

the track modulus for which lift-off is also mitigated, thus also obviating lateral buckling.    
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CHAPTER VII  

CONCLUSIONS* 

 

A formulation has been presented herein for the purpose of modeling lateral 

buckling in rail structures resting on ballast with nonlinear coefficients of friction, and this 

formulation has been cast within a nonlinear finite element formulation. The formulation 

has been validated against both linear and nonlinear example problems where closed-form 

solutions exist, and it has been shown that the formulation presented herein is both 

efficient and accurate when compared to analytical solutions.  

Unfortunately, analytical solutions do not exist for the vast majority or realistic 

circumstances involving rail structures, and this comprises the primary reason for 

producing the computational model developed herein. It is envisioned that this model may 

be utilized in the future by railway engineers to assess the necessity for interventions or 

replacement of sections of the track structure for the purpose of avoiding costly and 

sometimes life-threatening track buckles. Toward this end, the present model has been 

deployed in order to demonstrate its application to realistic rail structures. It is envisioned 

that rail buckling mitigation strategies can be improved via sensitivity analyses and 

predictions of rail lift-off induced lateral buckling. 

 

 

 

_________________ 
*Partially reproduced with permission from the authors, “Finite Element Formulation and Verification for 

Thermal Buckling of Rail Structures in the Horizontal Plane” by D Allen and G Fry [2017], CRR Report 

No. 2017-01 
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