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ABSTRACT 

A dynamic growth model for Southern Flounder (SFL) Paralichthys lethostigma 

was developed and evaluated, to promote understanding of this species' ecophysiology in 

the cause of its improved management.  The new model, labeled E.F-RMD, and 

parameterized specifically for SFL, was based on the Stella® model Ecophys.Fish (E.F); 

but, E.F-RMD included a more mechanistic representation of tissue oxygen-delivery 

called the "respiratory model, dynamic" (RMD).  The integrated model E.F-RMD uses 

simulation of cardio-respiratory processes to estimate oxygen availability in support of 

bioenergetic growth for SFL.  A unique feature of E.F-RMD is the inclusion of 

cutaneous-sourced oxygen supplementation. 

The combined model was evaluated by comparing E.F-RMD estimated juvenile 

SFL growth, expressed as weight-over-time (Wt) and percent weight change per day 

(%Wtchg/day), to growth data collected by the Texas Parks and Wildlife Department’s 

Coastal Fisheries Division for juvenile SFL raised in cool (17 – 22°C) and warm (20 – 

26°C) recirculating systems indoors, and in outdoor ponds.  For the indoor growth trials, 

routine respirometry also was performed, to measure metabolic responses.  Published 

data on SFL growth also were used in E.F-RMD evaluation.   

Correlation (R2) and Consilience (C, a provisional measure of holistic goodness-

of-fit) analyses compared modeled to observed values for Wt and %Wtchg/day.  For Wt, 

all C values were significant (α = 0.05).  For %Wtchg/day, C values varied from 
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significant to marginally significant.  JointC values (all datasets considered together) 

were significant both for Wt and %Wtchg/day. 

From these evaluations, the following conclusions were drawn:  1) E.F-RMD can 

reliably simulate juvenile SFL growth as measured by Wt and %Wtchg/day.  2) Growth 

results suggest ṀO2 via cutaneous respiration in flounder is significant for juvenile fish, 

but declines exponentially as the SFL grows.  Rather than being a set percentage, 

cutaneous ṀO2 declines as weight and skin thickness increase with age.  3) Growth 

comparison to literature data indicates E.F-RMD accommodates well to changes in 

temperature and O2, but less so to salinity. 
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Figure 9.  Arrhenius plot of mean ṀO2 for SFL. ......................................................... 25 
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CHAPTER I  

OVERVIEW 

 

Southern Flounder (SFL; Figure 1) Paralichthys lethostigma is an important 

commercial and sport fish in sub-temperate waters of the western Atlantic Ocean and the 

Gulf of Mexico.  Primarily a euryhaline species of coastal habitats, SFL occurs in the 

Atlantic from the Carolinas southward to middle-Florida and in the Gulf of Mexico 

(GoM) from northern Florida, then westward, with greatest abundance along the 

Louisiana and Texas coasts (Wenner and Archambault 2005, VanderKooy 2015).  

Mature individuals of SFL are found primarily near shore and in estuaries (Wenner and 

Archambault 2005), which often places the management of this flatfish species under 

State control.  In Texas, this responsibility rests with Texas Parks and Wildlife 

Department's Coastal Fisheries Division (TPWD-CF).  TPWD-CF is actively engaged in 

ecosystem-based management of Texas coastal fishes and fisheries.  In partnership with 

the Coastal Conservation Association (CCA) and the American Electric Power company, 

TPWD-CF operates the CCA Marine Development Center (MDC) in Corpus Christi, 

Texas.  The MDC is one of three TPWD-CF facilities dedicated to marine stock 

enhancement and associated research, education, and public outreach.  SFL is a current 

focus of TPWD-CF and its marine stock enhancement program because of the apparent 

decline of SFL in the South Atlantic (Flowers et al. 2019) and GoM (Froeschke et al. 

2011) during the past several decades. 
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Figure 1.  Southern Flounder Paralichthys lethostigma.   
Left: 38 days post-hatch.  Right: Adult.  Source: CCA Marine Development Center, Corpus Christi, Texas 

 

An essential part of ecosystem-based fisheries management is bioenergetic 

modeling, which enables estimation of the size of cultured-fish optimal for release into 

the wild  (Latour et al. 2003) and the estimation of consequent numbers of released fish 

needed for effective stock enhancement.  The Stella® model "Ecophys.Fish" (E.F), 

developed by Neill et al. (2004), has proven useful for simulating bioenergetics and 

growth of Red Drum Sciaenops ocellatus, which is another euryhaline fish prominent in 

the efforts of TPWD-CF to enhance stocks of marine fish in Texas waters.  E.F was 

deemed appropriate for adaptation to SFL.  However, a recognized deficiency of E.F in 

its original form, is that it utilizes a strictly-empirical respiratory sub-model for 

calculating active metabolic rate (AMR), which is the oxycaloric equivalent of maximal 

rate of oxygen uptake available to support growth, locomotion and other aerobic 

activities.  To afford E.F a more mechanistic basis for estimating maximal oxygen-

uptake rate consistent with AMR, development of a Stella®-based dynamic respiratory 

model was undertaken for simulating maximal rates of oxygen (O2) uptake specifically 

for the SFL, with the ultimate objective of integrating the dynamic model into a SFL 
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version of the E.F model.  A mechanism-based dynamic model of SFL cardiac and 

respiratory processes seemed especially appropriate for SFL, given the prominent role of 

cutaneous respiration in flatfishes (Kirsch and Nonnotte 1977, Nonnotte and Kirsch 

1978, Steffensen et al. 1981, Steffensen and Lomholt 1985). 

This dissertation focuses on developing a SFL respiratory model, called the 

“respiratory model, dynamic” or RMD.  The approach starts by providing a natural 

history of the SFL in Chapter II, followed in Chapter III by introducing physiological 

ecology and bioenergetics of fishes with particular emphasis on the SFL.  The computer-

modeling process is a critical aspect of this investigation and is explored in Chapter IV.  

Special emphasis is given to computer modeling basics and also to the history of 

bioenergetics models, and simple versus dynamic modeling.  Considered are standard 

model programs used by ecologists with special emphasis on fisheries modeling, and 

flounder modeling as applicable to E.F.  Chapter V provides a more in-depth discussion 

of the physiological principles that RMD is intended to simulate.  Investigation of RMD, 

including the rationale and analysis of the components that constitute the model, will be 

the subject of chapter VI.  The integration of RMD into a more expansive SFL growth 

model will be the subject of Chapter VII.  Chapter VIII will present the processes and 

data used to validate RMD as a reliable simulator of maximal O2 uptake by the modeled 

SFL via analysis and discussion of a respirometry experiment used to collect data from 

live flounder, validation of methodology and results.  Finally, interpretation and 

discussion of the modeling results and implications for ecosystem-based management 

efforts with a SFL focus are presented in Chapter IX. 
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CHAPTER II  

NATURAL HISTORY OF THE SOUTHERN FLOUNDER 

 

Southern Flounder is a euryhaline species that frequents coastal waters of eastern 

North America and Central America, ranging from the Carolinas down to mid-Florida in 

the Atlantic (Wenner and Archambault 2005) and around the GoM from middle Florida 

to northern Mexico (VanderKooy 2015), Figure 2.  SFL does not occur within the  

Florida keys (Froese and Pauly 2016).  This geographic separation likely began during 

the Pleistocene when sea levels were lower due to glaciation and resulted in allopatric 

sub-speciation as determined by mitochondrial DNA analysis.  Thus, it has been 

proposed that the Atlantic and GoM populations of SFL be classified as taxonomic sub-

species.  However, small percentages of Atlantic haplotypes have been detected in the 

GoM population and vice versa (Anderson et al. 2012). 

 

 

Figure 2.  Computer generated distribution map of Southern Flounder.   
Reprinted from Aquamaps (Accessed March 25, 2016). 
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The Southern Flounder Life Cycle 

The life cycle of the SFL begins in the late fall or early winter with spawning 

activities of mature adults, two years of age or older, after they have migrated to offshore 

waters from estuaries, bays, and even rivers (Wenner and Archambault 2005, 

VanderKooy 2015).  Fertilized SFL eggs are buoyant and hatch into ~2.5-mm larvae in 

about 48 hours at 21.1° C (Wenner and Archambault 2005).  Early larvae are pelagic, 

growing best in higher salinity water (VanderKooy 2015), and retaining the bilateral eye 

morphology of their phylogenetic ancestors (Friedman 2008) until they are about 40 

days old when metamorphosis begins with the migration of the right eye to what will 

become the head's upper surface, a process taking approximately 10 days to complete 

(Reagan and Wingo 1985). 

In the winter months of January and February, the now-juvenile flounder, aided 

by ocean currents (Wenner and Archambault 2005), begin migrating inshore towards 

estuaries (VanderKooy 2015).   Following migration inshore, the young SFL settle in 

estuaries that optimally are brackish or of low salinity.  Upon completion of 

metamorphosis and adoption of definitive flatfish morphology, SFL juveniles assume a 

primarily demersal, ambush-predator lifestyle, feeding primarily at night on small 

crustaceans such as mysids until they approach adulthood when they become piscivorous 

(Reagan and Wingo 1985, Wenner and Archambault 2005, VanderKooy 2015).  SFL 

remain in estuarine waters, growing until reaching sexual maturity when they may 

engage in the annual late-fall, seaward migration to spawn and then return to the estuary, 
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repeating this phase of their life cycle for the remainder of their estimated life span of 4 

years for males and 8 years for females (Fischer and Thompson 2004). 

Sexual Determination and Dimorphism 

Sexual determination in the SFL is a complex process.  Genotypic males, based 

on all observations to date, develop only into phenotypic males; whereas, a genotypic 

female may develop into a phenotypic female or male, depending upon ambient 

environmental temperature when the individual is 75 to 120 mm in total length (TL) and 

has a mass of 3.3 to 11.25 g. (Luckenbach 2005).  If the ambient temperature is above or 

below the temperature interval of 18-28°C during this development stage, genotypic 

females tend to develop into phenotypic males (Luckenbach 2005).  This sexual-

determination mechanism is likely an important factor in causing the approximately 6:1 

female to male ratio observed in Texas waters  (VanderKooy 2015).  The evolutionary 

determinants for this selection process are currently unknown, but a clue may be that 

females appear to live twice as long as males and can grow to be much larger (Fischer 

and Thompson 2004).  Greater longevity increases the females’ temporal fecundity, and 

a larger body size equates to greater gonadal size and thus greater fecundity as more 

eggs are produced, both of which increase the viability of the species (Futuyma 1998). 

Threats and Conservation 

As a target of commercial and sport fishing, SFL became more popular in the 

1960s resulting in significant over-fishing of the species in the early1970s  (Martine 

2008, VanderKooy 2015).  In response, federal- and state-legislated restrictions of 

fishing equipment and catch were initiated, both for commercial and sport fishing.  
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These management actions led to reduced flounder landings, which placed less stress on 

GoM flounder populations (VanderKooy 2015).  However, as welcome as these changes 

have been, flounder populations still face two significant anthropogenic pressures—the 

first being the continuing effects of overharvesting, either from directed fishing or as 

bycatch (Martine 2008), and the second being the more pervasive consequence of 

increasing mean global temperatures which decreases egg viability while increasing 

larval and juvenile predation (Martine 2008).  Furthermore, higher temperature affects 

sex determination within the SFL population, skewing the male to female numbers ratio 

towards more phenotypic males, thereby affecting the species’ overall fecundity 

(Martine 2008, Ospina-Alvarez and Piferrer 2008). 

Exacerbating threats to recruitment within, and survival of, SFL populations has 

increased the need to supplement the wild population with hatchery-reared juveniles 

(VanderKooy 2015).  Concurrently, this has increased the need for increased knowledge 

of SFL autecology and consequent computer-modeling to facilitate management of SFL 

stocks. 
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CHAPTER III  

PHYSIOLOGICAL ECOLOGY OF THE SOUTHERN FLOUNDER 

 

According to F. E. J. Fry, the study of animal function within its environment can 

be grouped under just three mechanistic headings; “what it can do, how it works, and 

what makes it go.”  Fry associated these headings with the biological disciplines of 

autecology, physiology, and biochemistry (Fry 1971); all three disciplines are 

encompassed, for the most part, within physiological ecology (PE).  It was Fry’s seminal 

paper, “Effects of the Environment on Animal Activity,” (Fry 1947), that has helped 

guide research in PE, especially that of fishes.  

While there is a growing body of data and literature on the PE of the SFL, 

prominent gaps exist.  Therefore, to comprehensively consider the PE of the SFL, these 

gaps must be filled by casting a broader net to include data from other species within the 

order Pleuronectiformes, i.e., other flounder species, such as plaice, sole, turbot, and 

halibut (Friedman 2008), as appropriate.  My analysis will consider environmental 

factors outlined by F.E.J. Fry as they apply to the context of metabolic scope (MS), in 

conjunction with the phenotypic adaptations associated with SFL existence as a 

generally solitary, euryhaline, and demersal predator (Wenner and Archambault 2005, 

VanderKooy 2015). 

Energy, Environmental, and Evolution 

Jorgensen (1983) observed that the study of energy dynamics, i.e., bioenergetics, 

within the organism, is important for understanding the union of physiology with 
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ecology.  This view reflects Fry’s concept of activity as the “manifestations of the 

energy that is released by metabolism” (Fry 1947); activity, in Fry's view, includes not 

only locomotion and other aspects of "rapid" movement typical of animals, but also non-

overtly-mechanical energy expenditures such as those for growth and excretion which 

are characteristic of all living organisms.  Fry further clarified the distinction between 

metabolism and activity by categorizing the components of metabolism, emphasizing 

metabolic scope (MS) and, erecting a complementary "physiological classification of 

environment."  This ecophysiological structure has had a significant impact on the field 

of fisheries ecology (Kerr 1990).  These autecology concepts about Pleuronectiformes 

need to be delved into in more detail.   

Metabolic Scope 

Fry’s paradigms of metabolism vs. activity, and his physiological classification 

of environment, provide a cognitive structure for relating the chaotic external 

environment and the ordered internal one of the organism.  Although Fry's ideas can and 

have been applied to homeotherms, especially concerning altitude-induced hypoxia 

(Hochachka 1985), the greater application has been found in the study of poikilotherm 

autecology, particularly about the concept of MS in relation to the limiting effects of 

environmental O2 on metabolic rate (Boddington 1978, Chabot et al. 2016, Claireaux 

and Chabot 2016).  This application has been due in no small part to the strength of the 

conceptual framework of MS and environmental-factor classification perfected over 

many decades.  Applying Fry’s paradigm to the MS of various fish species (Neill et al. 

1994, Neill et al. 2004, Fonseca et al. 2010) has proven beneficial, and shall be used 
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herein as the basis for an analysis of the PE of flounders in general and the SFL in 

particular.  

The effects of environmental factors on MS form the basis of Fry’s theory (Kerr 

1990, Neill et al. 1994, Del Toro-Silva et al. 2008, Claireaux and Chabot 2016).  The 

basic concept underlying MS is shown in Figure 3, related to metabolic-rate components 

to O2 concentration.  Still, MS can also be represented in relation to other factors such as 

temperature.  Measures analogous to MS also can be developed for responses beyond 

metabolism per se, such as animal and population growth and community development 

(Neill et al. 1994).   Nonetheless, metabolic rate as a function of environmental O2 

availability is the key relationship on which my work has focused.  In this regard, the 

standard metabolic rate (SMR) is the amount of O2 consumed to produce adenosine 

triphosphate (ATP) for the maintenance of an organism’s basic physiological processes 

(Claireaux and Chabot 2016).  That is, SMR is the minimum amount of O2 needed to 

keep the resting organism alive and to sustain the basal physiological performance of the 

whole organism, for a key tenant of Fry’s paradigm is that an organism needs to be 

considered in its totality as the emergent property of all lower organizational levels 

(Claireaux and Chabot 2016).  While SMR represents the basal metabolism necessary 

for sustaining life, organisms seldom operate at this minimum level.  They typically 

sustain metabolic rates commensurate with maintaining routine locomotion and other 

activities (i.e., RMR). 

As metabolic rate increases, physical and physiological constraints such as 

limitations in chemical reaction rates and availability of substrates (e.g., O2 or food) for 
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obtaining free energy and resources, and the inherent inefficiency of these reactions due 

to heat loss imposed by the second law of thermodynamics (Haynie 2001), set a 

theoretical maximum metabolic rate (MMR).    As a result, an active animal’s achievable 

metabolic rate will be restricted when available environmental O2 concentrations decline 

(Figure 3).   

 

 

Figure 3.  Idealized representation of active, routine, and standard metabolic rates 

in relation to oxygen concentration.   
Metabolic scope is defined as the value difference between standard and active rates, with metabolic scope 

for growth (MSgrowth) being the energy difference between routine and active rates as the energy available 

for growth as described by Fry (1947) and Neill et al. (1994). 
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Whereas the active metabolic rate (AMR) places an upper and somewhat variable 

ceiling on metabolic rate, the SMR represents a minimum below which energy flow 

through the organism is insufficient to maintain homeostatic conditions for long-term 

survival.   

Metabolic scope thus represents the potential dynamic energy range, given 

existing environmental conditions and physiological-maintenance demands, available to 

an organism to support its engagement in other activities such as swimming, growth, and 

reproduction (Boddington 1978, Neill et al. 1994, Neill et al. 2004, Claireaux and 

Lefrancois 2007, Fonseca et al. 2010, Claireaux and Chabot 2016, Farrell 2016).  In 

practice, MSgrowth provides a useful measure for evaluating the MS of individual 

organisms or their populations by analyzing environmental effects on growth rate over 

time (Neill et al. 2004, Del Toro-Silva et al. 2008, Fonseca et al. 2010).  Identities of 

these environmental factors and how they impact MS are central to Fry’s classification 

of the environment. 

Environmental Factors 

Ecologists before F.E.J. Fry recognized the effects of the environment on an 

organism’s performance, but Fry’s categorization of the environment into classes of 

factors by their impacts on metabolism was an important paradigm shift (Claireaux and 

Chabot 2016).  In his 1947 paper, Fry identified these factors as lethal, masking, 

directive, controlling, limiting, and accessory.  Over the years, he refined his concepts by 

clarifying those environmental factors making up each class, and dropping the 

“accessory” class, leaving the five-factor classes remaining in use today (Fry 1947, 



 

13 

 

1971, Claireaux and Chabot 2016).  These five-factor classes are characterized and 

discussed below.  Examples will be provided for Pleuronectiformes as a group, with 

more detail for SFL in cases where specific factor-effects have been studied. 

Lethal Factors 

Lethal factors, such as toxic substances, can “…destroy the integration of the 

organism.” (Fry 1971).  Lethal factors have two components:  The first is the incipient 

lethal level “beyond which the organism can no longer live for an indefinite period of 

time.”  The second component is the effective time “… required to bring about a lethal 

effect at a given level…” of the environmental factor once past the incipient lethal level.  

These interacting components are often encapsulated by LD50, the median (50%) lethal 

dose of a particular factor (Fry 1971).  Essentially any environmental factor or 

combination of factors that can lead to unrecoverable disruption of the organism’s 

biochemical and physiological integrity may be considered lethal, with common 

examples being extreme temperature (Fry 1947, 1971, Neill et al. 1994) and toxins (Fry 

1971).  Other authors, expanding on Fry’s original examples, have added low O2 (e.g., 

anoxia) to the lethal category  (Claireaux and Chabot 2016). 

Organisms are capable of some physiologic adaption called “acclimation,” a 

phenomenon that Fry addressed concerning fish that demonstrate different lethal-

temperature limits depending on the temperature at which the fish previously had been 

maintained (Fry 1971).  Consequently, a fish’s upper incipient-lethal temperature limit 

will be lower for a low-temperature acclimated fish than for one acclimated to a higher 

temperature, as shown in Figure 4. 
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Figure 4.  Representational thermal tolerance diagram.   
Adapted from data on Pufferfish Spheroides maculatus, presented by Fry (1971). 

 

Lethal factors also include predation and dissolved gases (Neill et al. 1994).  The 

literature on lethal effects of toxins, particularly the effects of crude oil on SFL is 

available (Miller 1987, Park et al. 2013, Brown-Peterson et al. 2015, Bayha et al. 2017).  

While relevant, a thorough analysis would result in a departure from the intended 

objective concerning more ordinary environmental factors pertinent to SFL growth 

modeling.  Therefore, focus here will be restricted to salinity, temperature and DO.   

Of the three factors under discussion, lethal salinity is least documented.  Mature 

individuals of euryhaline species can acclimate to a wide range of salinities, based on 
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studies by Daniels et al. (1996), SFL do not tolerate low salinity levels during larval 

development.  The survival of SFL larvae is greater than 50 % at salinities above 20 

parts per thousand (ppt).  Below 20 ppt, survival appears to decline, falling to 29 % at 10 

ppt with total mortality at 0 ppt, consistent with other findings that physiological 

adaption to lower salinities by SFL occurs only in post-larval stages (VanderKooy 

2015).  

Lethal Factors in Plueronectiformes 

A literature review of thermal limits within the Plueronectiformes can be 

somewhat conflicted as the criteria for “lethal” may vary by source or simply not be well 

defined.  Furthermore, limits may shift over the lifespan of the species.  Nonetheless, 

literature exists on the lethal limits of temperature, and oxygen for Plueronectiformes.  

References have been consolidated within the table found in Appendix A. 

In many of the studies cited, a thermal maximum is specified, but the values are 

not necessarily the incipient upper-lethal limit; some are simply the point at which the 

organism exhibits or begins exhibiting a negative behavioral response, such as kinetic 

avoidance (Deubler and Posner 1963).  Minimum temperature limits are less well 

documented, but of those available, the lower limits given are reported specifically as 

lower-lethal limits. 

For references in which acclimation temperatures are given, the tolerance limits 

are graphically represented by species in Figure 5.  Fortunately, thermal limits for SFL 

are better represented, particularly with respect to maximal temperature limits derived 

from juvenile SFL data by van Maaren et al. (2000).  Upper temperature limits for other 
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species of flatfishes are reported for Winter Flounder Pseudopleuronectes americanus 

(Grimes et al. 1989), Deep Flounder Pseudorhombus elevates and Ovate Sole 

Solea ovata (Menasveta 1981), and Summer Flounder Paralichthys dentatus (Stierhoff 

et al. 2006), while lower limits are available for SFL (Prentice 1989) and Winter 

Flounder (Grimes et al. 1989).   

 

 

Figure 5.  Thermal tolerance limits.   
Data for five species of flatfishes.  The trend-line is for SFL data only.  Upper thermal limits, solid 

markers; lower thermal limits, open markers.  Data obtained from literature sources listed in Appendix A.  

See text for the full discussion. 
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With respect to upper temperature limits, there is an observable difference in the 

upper lethal (or near lethal) temperatures for Winter and Summer Flounders, which are 

found in cooler waters of more northerly latitudes (Grimes et al. 1989).  The data suggest 

that the upper lethal limit for Winter and Summer Flounders is near 30°C; whereas, SFL 

and other more southerly distributed species appear to have an upper temperature limit 

near 39°C for individuals acclimated to temperatures above 25°C.   

Malloy and Targett (1991) do not provide an acclimation temperature (thus, their 

data are not presented in Figure 5) but indicate the lower temperature limit for the 

Summer Flounder to be approximately 3°C, well below the lower-limit range of 4.1 up 

to 9.3°C for SFL acclimated to 20°C as reported by Prentice (1989).  Field observations 

by Moore (1976) of fish mortality in the bays, estuaries, and channels of Port Aransas, 

TX following an overnight freeze in February 1973, provide some support for these 

lower temperature limits in flounder.  Among the individuals of 35 fish species reported 

by Moore (1976) as victims of the freeze, two Gulf Flounder Paralichthys albiguttata 

were found moribund in channel waters at 7°C where average winter temperatures range 

between 13 to 14°C.  Thus, it is not unreasonable to presume that the lower temperature 

limit of SFL falls between 5 and 10°C, depending upon acclimation temperature. 

Returning to the issue of upper lethal-temperature levels for SFL, the effects of 

acclimation are demonstrated by the SFL trend-line in Figure 5, indicating that SFL 

exhibits a decline in the upper thermal tolerance limit with a decline in acclimation 

temperature.  Using data from van Maaren et al. (2000), the difference between the 
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upper lethal limit and acclimation temperatures (i.e., TUL – Taccl) are plotted (see Figure 

6) against the measured acclimation temperatures.   

 

 

Figure 6.  Trend in SFL upper temperature limit and acclimation temperature 

difference relative to acclimation temperature. 

 

Based on this figure, the following linear trend-line may be derived: 

 𝑇𝑈𝐿−𝑎𝑐𝑐𝑙 =  −0.664 ×  𝑇𝑎𝑐𝑐𝑙 + 29.542 (1) 

The resultant slope indicates that the difference between the upper lethal 

temperature and acclimation temperature declines at a rate of approximately 0.7°C for 



 

19 

 

every 1°C increase in acclimation temperature until linearity begins to fail as Tul 

converges with Taccl.   

Because metabolic rate is tied to temperature in poikilotherms, in many fish an 

increase in ambient temperature places a greater demand on the respiratory and 

cardiovascular systems to supply O2, via blood, to more active tissues.  As cardiac output 

(Q̇)1 demands increase, the heart muscle requires additional O2.  Eventually, these 

demands exceed the heart’s capacity to acquire sufficient O2 to perform the work, thus Q̇ 

reaches its maximum, then abruptly declines (Eddy and Handy 2012).  This limit has 

been observed in flounder (Mendonca and Gamperl 2010).  Based on van Maaren et al. 

(2000) data, the TUL for juvenile SFL acclimated to 29°C is approximately 39°C.  

Although van Maaren et al. (2000) do not provide any Q̇ data, they show that SFL O2 

consumption begins to plateau at 39°C suggesting that this temperature may represent 

the maximum thermal limit.     

Unlike temperature, which has upper and lower boundaries, the same is not 

practically valid concerning dissolved oxygen (DO) limits.  While O2 is toxic to fish as it 

is with mammals at very high concentrations (D'Aoust 1969), the levels necessary for O2 

toxicity are not naturally encountered; on the contrary, given low solubility of O2 in 

water, low DO (hypoxia) or no DO (anoxia) are almost daily concerns for many fish, 

 

 

1 Q̇ is defined as heart rate (HR, beats per minute) multiplied by stroke volume (SV, mL of blood 

expelled per heartbeat).  See Chapter V for more discussion. 
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including SFL (Steffensen et al. 1982, Tallqvist et al. 1999, Stierhoff et al. 2006, 

Ishibashi et al. 2007, Mandic et al. 2009, Davidson et al. 2016).   

Flounder appear moderately well adapted to hypoxia, with a lower DO limit 

typically below 2 mg O2/L water as shown in the DO Lower Limit column of the table in 

Appendix A.   

In a study by Deubler and Posner (1963), post-larval SFL were acclimated to 

various temperatures, then exposed to increasingly hypoxic water, then observed to 

determine when 100% avoidance kinesis occurred.  They reported that at an acclimation 

temperature of 6.1°C, SFL withdrawal was complete after 23 minutes at a DO of 1.09 

mg/L.  For the 14.4°C acclimated group, withdrawal was complete after 13 minutes 

when DO reached 0.68 mg/L, while at an acclimation temperature of 25.3°C, it took 7 

minutes for complete withdrawal at a DO of 1.03 mg/L.  The observation of reduced 

time-to-avoidance with increased ambient temperature is consistent with increased 

metabolic rate, which has also been shown to negatively influence survival time for 

poikilotherms under hypoxic conditions (Nilsson 2010).  

Kinetic avoidance provides a useful mechanism to determine when DO becomes 

sufficient to trigger adaptive neurophysiological feedback mechanisms.  That hypoxia-

induced kinesis occurs is also indicative of a species lack of capacity to withstand 

anoxia.  In anoxia-tolerant species such as the crucian Carp Carassius carassius, and 

freshwater turtles of the genera Trachemys and Chrysemys, brain activity is suppressed 

by the release of the inhibitory neurotransmitter gamma aminobutyric acid (GABA) 

which decreases behavioral response and, via inaction, metabolic rate (Vornanen et al. 
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2009, Nilsson 2010).  The Common Sole, while being relatively hypoxia tolerant, does 

not appear to be anoxia tolerant as Dalla Via et al. (1997) report that the Sole exhibits 

signs of panic, characterized by burst swimming upward into the water column, as DO 

falls below 5% air saturation at 20°C.  SFL, while hypoxia tolerant, enter the zone of 

respiratory dependence as DO nears 1.1 mg/L (Deubler and Posner (1963).  However, 

avoidance is not the same as reaching the limiting oxygen concentration (LOC) which is 

the point at which oxygen concentration ([O2]) begins to limit either standard (LOCs) or 

routine (LOCr) metabolic rates, but should SMR be limited by DO then that condition is 

ultimately lethal (Neill et al. 1994, Neill et al. 2004). 

Further evidence for a tolerance of hypoxia, but not anoxia, within flounder 

species is provided by Poupa (1991) and Ostadal (2014), who compared the capacity of 

strips of cardiac muscle excised from various species to maintain contractility over time 

after the tissue was made anoxic by cyanide inhibition of aerobic ATP production  

(Figure 7).  In Ostadal’s report of Johansen’s analysis, each cardiac muscle strip’s initial 

contractility following mounting to a force meter was set, and the decay in tension over 

time measured as a percentage decline from baseline at 12°C.  The rate of contractile 

decay across time varied between species, with Hagfish and Varanus (monitor lizards) 

cardiac tissue possessing a dramatic anoxic capacity.  For flounder, a decline to 50% of 

the initial measured force required approximately 40 minutes, indicating that while 

flounders are not as anoxia resistant as the Hagfish, they appear to have a greater anoxia-

coping capacity than Cod.  Contrast this to human cardiac tissue at 24°C, which has a 

50% reduction in contractility in only a few minutes. 
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Figure 7.  Anoxia tolerance of cardiac muscle in vertebrates.   
Percent decline from maximal muscle tension (Tm %) over time in muscle with cyanide-inhibited (NaCN 

at 3 mM) mitochondrial ATP production.  Reprinted with permission from Poupa (1991). 

 

Controlling Factors  

As defined by Fry (1971), controlling factors are those “which govern the 

metabolic rate by their influence on the state of molecular activation of the components 

of the metabolic chain.”  Here Fry’s primary consideration was the importance of 

temperature with respect to maximum and minimum metabolic rates (Fry 1971).  In 

essence, then, Fry’s controlling factor is the reaction kinetics of metabolic molecules 

with respect to temperature (Haynie 2001), which can be expressed graphically using an 

Arrhenius plot, a representative example is shown in Figure 8 below.     
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In Figure 8, two hypothetical metabolic pathways (A and B) are presumed to 

occur in, and influence, a hypothetical organism as a whole.  The slope of metabolic 

pathway B indicates this pathway has a lower activation energy requirement than 

pathway A.  Each pathway’s maximum metabolic rate is likely to become initially 

limited by thermodynamic regulation of molecular activity, availability of substrates, 

and activation energies (Haynie 2001).  The eukaryotic cell’s ultimate upper temperature 

limitations are due to the thermal denaturing of cellular proteins and membranes (Tansey 

and Brock 1972).  The minimum metabolic rate is when the metabolic process is simply 

too slow to “keep the organism in being” (Fry 1971).  For example, the Deubler and 

Posner (1963) data, in which the latency of low-DO avoidance in SFL decreased as 

temperature increased, is consistent with the role of temperature as a controlling factor 

of metabolic rate (Fry 1947, 1958, 1971).  
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Figure 8.  Representational Arrhenius plot.   
Inverse temperature (Kelvin) effects on ln of metabolic rate indicators (e.g., O2 consumption rate or 
growth rate).  See text for description.   

 

Controlling Factors in Plueronectiformes 

The controlling effect of temperature on metabolic rate in SFL also can be shown 

using an Arrhenius plot.  Using SFL SMR O2 mass flow rate (ṀO2)2, weight and 

 

 

2 When O2
 consumption, or flow, is measured as a change in mass per unit of time, e.g., 

milligrams O2 per hour, the abbreviation ṀO2 is appropriate.  When measured as a change in volume, e.g., 

milliliters O2 per hour, the abbreviation V̇O2 is preferable.  In practice, however, V̇O2 is often used 
interchangeably with ṀO2 (the reverse being less common, but still valid).  V̇O2 and ṀO2 are used 

interchangeably herein for consistency with referenced work. 
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temperature data collected by Mr. Herschiel Tuley at the Texas Parks and Wildlife, CCA 

Marine Development Center (MDC), Flour Bluff, TX (unpublished data), an Arrhenius 

plot was produced (Figure 9) demonstrating the effects of temperature on metabolic rate 

in SFL ranging from 0.42 g to 70 g.  Data in Figure 9 are mean values obtained from 45 

SFL.  Despite the variance in the measured ṀO2 and the relatively narrow temperature 

range of the available data (low 16.4°C, high 26.6°C, median 21.1°C) the trend in the 

data indicates the Arrhenius effect of temperature on routine metabolism of juvenile 

SFL. 

 

 

Figure 9.  Arrhenius plot of mean ṀO2 for SFL. 
Measured at the Texas Parks and Wildlife Department, Marine Development Center, Corpus Christi, TX.  

Data unpublished.  Weight range 0.42 g to 70 g.  See text for discussion. 
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The Arrhenius plot also clearly indicates variance in ṀO2 measurements at any 

given temperature.  Such variance results from difference in SFL mass, routine activity, 

and measurement error (Figure 10).  Measurement error may also be due to the 

comparatively small sample size, instrument noise, or higher routine-activity level in 

some of the SFL measured. 

Smaller fish have a greater per gram ṀO2 than larger fish, following the ¾-

power rule developed by Kleiber (1932), and subsequently attributed to differences in 

the turnover rate of chemical energy, which is inversely related to mass (Kleiber 1975, 

Schmidt-Nielsen 1984, McNab 2002).  This greater ṀO2 per gram demand of tissue is 

hypothesized to be met in lower-mass SFL by the contribution of cutaneous-sourced O2 

which is a known contributor to overall ṀO2 in many aquatic and semi-aquatic species 

(Steffensen et al. 1981, Meredith et al. 1982, Feder and Burggren 1985 Nov 1, 

Rombough 1998, Glover et al. 2013) but which declines in flounder as they grow, due to 

decline in the surface-area to mass ratio, and their dermis thickens (Burton et al. 1984, 

Burton and Burton 1989, Zhu et al. 2005).  Recent thinking (West et al. 2000) suggests 

that the ¾ rule relates to the evolution of energy efficient, three-dimensional fractal 

material transport networks; building on the concept of maximized energy efficiency as 

an evolutionary adaptation dating back to at least Lotka (1922).  If so, then supplemental 

cutaneous ṀO2 in SFL and other fish may be an evolutionary adaptation to meet 

metabolic demand or O2 distribution.  The alternate argument that supplemental 

cutaneous ṀO2 may simply permit a higher resting metabolic rate cannot be fully 

discounted in SFL.  However, metabolic rate does not appear to increase in other fish 
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exposed to hyperoxia (Dejours et al. 1977, Berschick et al. 1987), suggesting that once 

metabolic ṀO2 demands are met, additional O2 supplementation has no effect. 

 

   

Figure 10.  Southern Flounder mean ṀO2 (mg O2/g fish·h) ± SD compared to 

weight (g).   
Data unpublished, collected at the Marine Development Center, Flour Bluff, TX, by Mr. Herschiel Tuley.  

Averages are for SFL with ≥ 3 ṀO2 measures.  Fit curve for ṀO2 = 0.88·Wt-0.63, R2 = 0.58. 

 

Some general conclusions can be drawn from the MDC data regarding 

temperature effects on SFL metabolism, the primary example being the temperature 

quotient (Q10) as defined in equation (2) 

 𝑄10 =  (𝑀2 𝑀1⁄ )10 (𝑇2− 𝑇1)⁄  (2) 
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where M1 and M2 are the ṀO2 (mg O2/g fish·h) values for reference temperatures T1 and 

T2 (°C or K). 

The Q10 value for the MDC data set can be estimated using the trend-line 

formula, calculated using Excel, from the Figure 9 Arrhenius plot:   

 ln 𝑀̇𝑂2 =   −10.556 ×
1

𝐾
103  +  33.974 (3) 

 Using the maximum (T2 = 26.6°C) and minimum (T1 = 16.4°C) temperature 

values, and applying appropriate conversions, respective ṀO2 values of 0.29 mg O2/g 

fish·h and 0.08 mg O2/g fish·h were calculated.  Applying these values to equation (2), 

the estimated Q10 for the MDC SFL may be produced: 

 𝑄10 =  (0.29 0.08⁄ )10 (26.59 − 16.37)⁄ = 3.5 (4) 

This value is substantially higher than independent SFL respirometry-based Q10 

values reported by van Maaren et al. (2000), who listed Q10 values over several 

temperature ranges: 1.29 between 25°C and 29°C, 2.37 between 13°C and 17°C, 2.5 

between 17°C and 21°C, and 2.68 between 21°C and 25°C.  The discrepancies between 

van Maaren et al. (2000) and MDC SFL Q10 values may be due to differences in the 

mass of fish measured as the van Maaren et al. (2000) fish were more limited in size 

range at 5.5 g ± 1.9 g.  Also, the van Maaren et al. (2000) respirometry measurements 

were conducted using ten fish to give a population mean mass-specific ṀO2; whereas, 

the MDC results are based on respirometry results from individual fish.  

Limiting Factors 

A limiting factor constrains metabolic reactions through the direct or indirect 

limitation of resources such as oxygen or substrates from feed.  Another frequently 
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neglected aspect of maximum rate limitation is the rate at which metabolite removal 

occurs (Fry 1971).   In Fry’s view, the primary limiting factors are shortages of those 

materials essential for metabolism to occur—materials such as food for nutrients and 

nourishment, water, and O2, as well as the removal of the end products of metabolism 

such as metabolites (e.g., nitrogenous wastes) and carbon dioxide (Fry 1971).  While all 

are important, the most critical moment-to-moment limiting factor to which Fry drew 

primary attention is the acquisition and utilization of O2 (Fry 1947, 1971, Neill et al. 

1994, Claireaux and Chabot 2016). 

Limiting Factors in Plueronectiformes 

Availability of oxygen and energy-yielding substrates from food places limits on 

metabolic rate (Fry 1971, Yamashita et al. 2001) and within the literature the limiting 

effects of oxygen concentration, and its interaction with the controlling effects of 

temperature and fish size on flounder metabolism, are well established (Duthie 1982, 

van Maaren et al. 2000, Joaquim et al. 2004, Del Toro-Silva et al. 2008, Mendonca and 

Gamperl 2010, Capossela et al. 2012).  When these factors co-vary, their interaction 

becomes complex, e.g., the joint influence of temperature and DO on flounder 

respiration rate, as measured by opercular movement (Watters and Smith 1973, 

Capossela et al. 2012).  The effects of temperature and DO on respiration rate are, 

respectively, positive and negative.  With increased body temperature, a corresponding 

increase in the organism’s metabolism will increase O2 demand until the maximum 

metabolic rate is reached (see Figure 3), which is the functional integral of the 

organism’s combined chemical kinetic rates (Fry 1971).  This will have a behavioral 
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influence as the fish’s buccal-pumping rate rises to increase water flow over the gills 

(V̇w) to meet the higher metabolic demand.  In addition, V̇w exponentially increases with 

decreased DO, until physiological and/or physical capacity limits are reached, as the fish 

attempts to move oxygenated water more quickly through the gills, the combined effect 

of which is the reduction in overall efficiency of O2 extraction from the water and 

increased metabolic work.  When low DO is combined with increased temperature, the 

net effect is a greater increase in V̇w than would be expected from low DO alone.  Even 

when DO levels are at physiologically normal levels, the V̇w at 30°C will be uniformly 

higher than at 22°C (Capossela et al. 2012). 

The effects of temperature on heart rate (HR) and swimming speed in flounder 

are also well established, with HR increasing commensurate with temperature (Joaquim 

et al. 2004, Mendonca and Gamperl 2010).  Interestingly, the cardiac stroke volume (i.e., 

the amount of blood pumped by the heart per beat) in flounder appears to be only 

marginally influenced by temperature (Joaquim et al. 2004, Mendonca and Gamperl 

2010) and swimming speed (Joaquim et al. 2004).  Thus, in flounder, Q̇ appears 

primarily responsive to HR, which contrasts with the relation typical for other fish in 

which Q̇ is mainly increased by an increase in stroke volume  (Satchell 1991).  The 

literature-based data on the effects of temperature and DO on V̇w, which impacts oxygen 

extraction efficiency (Capossela et al. 2012), and temperature on Q̇ are critical 

components of metabolic rate and of the Southern Flounder respiratory model.   

The limiting effects of DO are mostly realized upon reaching the limiting oxygen 

concentration (LOC) for routine metabolism (LOCr); i.e., the DO level at which RMR 
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becomes dependent on DO.  The LOCr thus represents the DO level at which routine 

metabolic rate is no longer sustainable, causing the fish to curtail its activities (e.g., 

swimming, food processing) or seek better oxygenated or/and cooler waters (Neill et al. 

1994).  As DO declines further still, even SMR no longer can be sustained by aerobic 

means; the DO at which this occurs has been termed the critical oxygen concentration 

(or tension).  At sustained DO values below that critical for standard metabolism, the 

organism must die or rely on anaerobic mechanisms.   

For the low-DO-tolerant SFL, the LOCr should be correspondingly low.  To 

evaluate this hypothesis, LOCr for SFL was estimated from data collected during 

previously-mentioned respirometry experiments.  Analysis of the data set revealed a 

mean LOCr of 2.01 ± 0.74 mg O2/L water.  Deubler and Posner (1963) estimated the 

lethal DO limit was about 1.1 mg O2/L water in the SFL, suggesting that once LOCr is 

reached, the lethal limit for minimal metabolism lies only about 1 mg O2/L water lower. 

Along with low DO, Fry (1971) also considered the limiting effects of high 

carbon dioxide (CO2), which through enzymatically-facilitated reaction with water is 

converted into carbonic acid (H2CO3).  Carbonic acid will further dissociate to 

bicarbonate ion (HCO3
-) and hydrogen ion (H+), affecting the acid-base balance in the 

tissues by lowering pH (Cameron 1989), which can affect swimming speed due to its 

impact on muscle physiology (Fry 1971).  Furthermore, changes in pH, either up or 

down, can also limit or control hemoglobin O2 affinity (Weber and de Wilde 1975). 

While pH can act as a limiting factor (Fry 1971), the acid-base balance system is 

subject to temperature control (Cameron 1989).  Furthermore, in fish the process of CO2 
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re-formation, that is the catalysis of HCO3
- and H+ within erythrocytes by carbonic 

anhydrase to form water and CO2 for elimination from the organism, may itself be 

limited by the availability of chloride ions (Cl-) within the erythrocyte as this ion appears 

to be necessary for active transport of HCO3
- across the erythrocyte membrane (Perry 

1986), exemplifying how access to nutrients and metabolites necessary for 

osmoregulation can also affect metabolism. 

The effect of pH on flounder does not appear to be notably different from that in 

other fishes.  However, there is evidence that Starry Flounder Platichthys stellatus can 

separate and delay the impact of metabolic acidosis from respiratory acidosis by several 

hours following exhaustive exercise (Wood et al. 1977).  

Masking Factors 

Homeostatic maintenance of an organism’s internal milieu requires acquisition 

and utilization of resources and expenditure of energy (Eddy and Handy 2012), with the 

amount, or channeling, of energy available to the organism having consequent effects on 

available metabolic scope.  A masking factor is an additional environmental factor that 

modifies the expenditure of energy for a particular physiological operation (Fry 1971).  

This definition of a masking factor differs from Fry’s original concept (Fry 1947), 

wherein masking factors were described as having an inhibitory effect on a “second 

identity” such that it would not operate normally if the masking factor were present.  

This is likely due to the realization by Fry that masking effects on energy exchange 

within a system can be either positive or negative, as demonstrated by the two examples 

provided in his 1971 paper.   
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In his first example, water salinity changes the metabolic energy required to 

maintain homeostatic ion levels within the tissues.  Therefore, as water salinity increases 

so may the amount of energy expended for ion excretion, although the fish’s internal 

environment with respect to ion concentrations will remain relatively constant; 

consequently, the animal’s overall metabolic scope is reduced (Fry 1971). 

In his second example, Fry discusses the anatomical retia mirabilia 

countercurrent heat exchanger in tuna and lamnid sharks.  The retia mirabilia is a 

vascular structure within or associated with the red muscle that evolved to resist heat 

loss by allowing heat from the blood, leaving the muscles to warm the blood returning 

from the gills which are close to thermal equilibrium with the environment.  This 

structure enables the muscle to be maintained at a higher than ambient temperature 

without much added metabolic cost.  This may incur an indirect metabolic cost as the 

warmer muscle tissue will respond to the increase in temperature by maintaining a 

higher metabolic rate (Fry 1971).  

Masking factors typically induce an obligatory load on metabolism necessary for 

maintaining physiological homeostasis (Neill et al. 1994), which includes ion-

osmoregulation and thermal control (Fry 1971, Neill et al. 1994).  However, masking 

effects may also include metabolic work done to resist pathological consequences of 

certain pollutants and parasites (Neill et al. 1994, Neill et al. 2004).  While pollutants 

and parasites are important ecological considerations, discussion of masking factors 

within Pleuronectiformes will focus on the physiological masking involved in thermal 

control and ion-osmoregulation. 
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Masking Factors in Plueronectiformes 

Any masking effect of thermoregulation in Pleuronectiformes are unlikely to 

significantly impact, given that flatfishes, like the majority of fish species, are 

ectothermic (Eddy and Handy 2012).  Intriguingly, the overall average resting metabolic 

rate of flatfishes appears to be relatively low, as evidenced in a review of the average 

resting metabolic rates of six taxonomic fish orders (Gadiformes, Pleuronectiformes, 

Salmoniformes, Perciformes, Anguilliformes, and Cypriniformes).  Clarke and Johnston 

(1999) reported that the Cypriniformes (Carps, Minnows) and Anguilliformes (Eels) had 

the lowest rates.  However, the Pleuronectiformes did have greater metabolic-rate 

variability than the other taxonomic orders, although this is potentially due to better 

environmental adaptations rather than physiological variance (Clarke and Johnston 

1999). 

For euryhaline Pleuronectiformes species, ion-osmoregulation represents a 

continuous but variable metabolic load, depending upon the ion and osmotic gradients 

between the external and internal environment (Evans et al. 2005, Soengas et al. 2007, 

Tseng and Hwang 2008).  For example, in the SFL, the metabolic impact of ion-

osmoregulation is greatest when juvenile SFL make the transition from high-salinity 

seawater (SW) to low-salinity freshwater (FW), and vice-versa when sexually mature 

SFL travel to the open ocean to spawn.  Tipsmark et al. (2008) performed an extensive 

investigation of juvenile SFL responses to salinity shifts.  Their analysis found that SFL 

undergo a “crisis-then-regulation” response of up to 4 days following the shift from FW 

to SW and vice versa.  During this transition, they found immunoreactive changes within 
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gill cells which “increased plasma cortisol and protein expression of Na+, K+-ATPase 

and Na+, K+, 2Cl− cotransporter in the primary gill filament.”  Also reported were 

changes to insulin-like growth factors, claudin protein synthesis (responsible for forming 

tight junctions between gill epithelial cells), and messenger RNA changes.  Changes in 

cell gene expression and protein synthesis cause an increase in cellular metabolism, 

impacting the resting metabolic rate.  From this information, it may be inferred that SFL 

need adequate time (> 4 days) to acclimate to environmental salinity shifts.  Once 

adaptation has taken place, however, the effects of different salinities appear to have 

impacts that are statistically significant, but with minimal practical impact on SFL 

temperature tolerance (van Maaren et al. 2000).  Salinity has been shown to affect 

growth rate on SFL, with a salinity of approximately 5 ppt being optimal (Yamashita et 

al. 2001). 

Directive Factors 

Any perceived gradient factor which influences metabolic response, to include 

behavioral responses, were considered directive factors by Fry (1947).  In later years, 

Fry would clarify sensory perception as a transductive response, i.e., any environmental 

condition which is either directly sensed via sensory organs (e.g., eyes and ears) or non-

sensorial means, such as light effects on hormone levels, can direct the organism’s 

physiology or behavior (Fry 1971).  Other environmental factors that may be included as 

directive are temperature (Fry 1947, 1971), toxins (Fry 1971), and O2 concentration 

(Neill et al. 1994).  
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With respect to fish, directive behavioral selection due to thermokinesis, i.e., 

movement of a fish to a preferred temperature within the habitat, is an important 

consideration in the study of fish metabolism as acclimation temperature can affect a 

fish’s temperature preference (Fry 1971).  In a test environment offering the fish a 

temperature gradient, selection for the preferred temperature likely will affect the 

measured metabolic rate (Fry 1958). 

Directive Factor in Plueronectiformes 

Transductive responses to shifts in environmental conditions are the hallmark of 

directive factors (Fry 1971).  For demersal SFL living in coastal estuaries and streams, 

the ability to move in response to unfavorable environmental conditions may be more 

limited.  This may explain why SFL and other flatfish have broader temperature and DO 

tolerances than other fishes.  Deubler and Posner (1963) used DO and temperature as 

directive factors to assess tolerance limits by studying the withdrawal behavior of post-

larval SFL acclimated to various temperatures in response to DO.  Their study showed 

post-larval SFL acclimated to 6.1°C, 14.4°C, and 25.3°C were able to tolerate average 

DO levels ranging as low as 1.09, 0.68, and 1.03 mL O2/L water, respectively; avoidance 

behavior was initiated in some SFL once DO fell below 3.7 mL O2/L water.  The 

primary difference between the three temperature-treatment groups was the respective 

average time-to-escape durations of 23 min, 13 min, and 7 min.  As temperature directly 

influences metabolic rate, it is not surprising that hypoxia and thermal directive factors 

are tied to the fish’s V̇O2 and environmental temperature, which is the conceptual basis 

behind the Q10 ratio shown in equation (2). 
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Other potential directive factors for SFL may include salinity and light levels 

(Yamashita et al. 2001) and toxic contaminants (Brown-Peterson et al. 2015).   

Swimming for most flatfish is energetically expensive due to their negative 

buoyancy (Joaquim et al. 2004).  Thus, many flatfish species, when faced with a 

directive-factor stressor, appear to engage in a “burst-avoid-recover” strategy by 

engaging in anaerobic fueled maximal swim effort followed by a period of rest to 

recover from lactic acid build-up (Wood et al. 1977, Duthie 1982).  This strategy reduces 

acute demand on immediate aerobic MS by spreading the aerobic metabolic work of 

recovery over time.  This allows the fish to place the lowest demand on MS at any given 

moment.  Concerning avoidance behavior, this may drive two potential strategies.  The 

first being a high tolerance to stressors such as low DO, and the second to avoid parts of 

the habitat where sudden environmental change may be likely.  Support for the former 

idea can be gleaned from the aforementioned low-DO tolerance capacity of flatfish like 

the SFL (Deubler and Posner 1963), but there is also evidence that some flatfish species 

like the juvenile Summer Flounder have developed a more heightened avoidance 

response to low DO which may cause them to avoid habitats prone to diel hypoxia 

(Brady and Targett 2010).   

Preferred temperatures in flatfish vary by species and geographic location 

(Casterlin and Reynolds 1982, Scott 1982) but appear quite broad.  Within Winter 

Flounder, the preferred temperature range is 8 to 27°C,  with a mean preference for 

waters at about 18.7°C  (Casterlin and Reynolds 1982).  No clear temperature preference 

appears to have been established in SFL, although Reagan and Wingo (1985) report SFL 
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have been collected in waters with temperatures ranging from 5 to 35°C.  This range 

agrees with McDonald et al. (2016), who reported a lower temperature limit in juvenile 

and adult SFL down to 4°C.  As reported by van Maaren et al. (2000), the upper lethal 

temperature limit ranged from 33 to 39°C for the 13 and 29°C-acclimated SFL groups, 

respectively. 

Evolutionary Considerations 

Metabolic scope and environmental factors logically had a role in 

Pleuronectiformes’ evolutionary adaptation to a euryhaline existence.  Current evidence 

suggests Pleuronectiformes began evolutionary adaption to the demersal niche of 

estuarine habitats during the Eocene epoch (Friedman 2008).  These adaptations 

introduced new environmental-factor relationships with potential impacts upon MS.  

These include: 1) an increase in osmoregulatory metabolic load (a masking factor) from 

changes in salinity (Soengas et al. 2007, Tseng and Hwang 2008);  2) higher metabolic 

demand while swimming compared with non-demersal fish (Joaquim et al. 2004), 

parallel with adaption to a more sedentary, ambush-predator lifestyle (Wenner and 

Archambault 2005) and atrophy of the air bladder causing negative buoyancy (Hughes 

1963);  3) physiological and morphological adaptations to the greater fluctuation in DO 

found in estuaries (Stevens et al. 2006, Mandic et al. 2009). 

If, as Lotka (1922) postulates, environmental adaptation is the evolutionary 

consequence of selection for the most energy-efficient metabolic pathways, then the 

SMR of extant SFL is the lowest possible (or achievable) for survival in coastal habitats 

for this species.  While Lotka’s hypothesis is difficult to quantify without a means of 
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comparing the metabolic rates of extant to extinct Plueronectiformes, it does raise the 

possibility that the MS of extant Plueronectiformes provides the greatest energy potential 

for maintaining homeostasis in coastal environments when exposed to lethal, controlling, 

limiting, masking and directive factors.  How Pleuronectiformes and SFL respond 

physiologically to these factors is of prime importance, given the need to model these 

physiological responses to predict the amount of available energy needed for growth. 

Summary 

In his work categorizing and qualifying the environmental factors that impact 

metabolism and metabolic scope within an organism, F.E.J. Fry established an 

ecological paradigm to assess the organism’s interaction with its environment.  The 

concept of metabolic scope allows an organism’s autecology to be considered, then 

systematized relative to those factors that regulate (control), load (mask), restrict (limit), 

kill (lethally interdict) or guide (direct) the organism’s metabolic responses as well as its 

distributional responses to heterogeneity of environment within its habitat (Fry 1947, 

1971, Neill et al. 1994).  Of the many factors with which any poikilotherm must contend, 

temperature and DO are exceptionally influential—temperature, because it influences 

metabolic rate through its thermodynamic effects on cellular reaction rates, and oxygen 

because it catalyzes the energy-yielding reactions necessary for powering metabolic 

work. 

Fry's conceptual model can be transformed into a computer simulation model that 

permits quantitative representation and prediction of an organism’s physiological and 

behavioral responses to environmental conditions, as represented in Figure 11. 
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Figure 11.  Interrelationship of environment, physiology, and behavior.   
Reprinted with permission from Dr. William H. Neill. 
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CHAPTER IV  

ECOPHYSIOLOGICAL MODELING 

 

All models are wrong, but some are useful – Box (1979) 

Introduction to Dynamic Systems Models 

Mathematical modeling is characterized by Van den Berg (2011) as “…a 

description of an experimentally delineated phenomenon by means of mathematics, with 

the view to capturing the salient aspects of the phenomenon at hand.”  If done correctly, 

biological models can provide new insights, from biological systems to populations, 

unattainable through standard experimentation due to cost, size of the experiment, or 

ethical concerns.  However, done improperly, the results can range from conspicuously 

wrong, to the potentially more damaging situation wherein output appears reasonable but 

is incorrect and misleading.  Attempts to avoid such errors have led to the optimization 

of modeling procedures.  Only by following best practices can we hope to achieve a 

model that best represents the system being modeled.  

As the study of biology and ecology has progressed, so has the need become 

greater to model the interlocking components that make up complex systems.  A system 

may, for this discussion, be broadly defined as a conceptualization of a component of a 

larger “organized whole” whether that be an organism or an ecosystem (Grant et al. 

1997, Van den Berg 2011).  Graphic representation of a simple system is shown in 

Figure 12, wherein input X impacts the state of the system Y with output Z.  How these 
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components interrelate determines whether the system is a “static,” “comparative static,” 

or “dynamic” system (Hannon and Ruth 1997, Van den Berg 2011).  If each variable is 

considered as a function of time, t, and Y(t) is set to a steady-state function, then Z(t) will 

be determined by the function X(t), that is Z(t) is the output to X(t).  If t is set to a 

specific point in time (e.g., t = 1), the system would be considered static, but if t changes 

then the system will change over time and become comparative static (Hannon and Ruth 

1997) such that Z will have a specific value relative to X at any given t.  If Y(t) is not 

steady-state, then X(t) will influence but not directly determine Z(t), thus making the 

system dynamic (Hannon and Ruth 1997, Van den Berg 2011).  Unlike the static model, 

Z will not necessarily have the same value for X at any given t because Y(t) introduces a 

dynamic component into the system (Van den Berg 2011). 

 

 

Figure 12.  Simple dynamic system.   
Based on Van den Berg (2011). 

 

Alternatively, a model’s design may be statistically or mechanistically based 

(Enberg et al. 2008).  Statistically based models are generally, but not necessarily, 

characteristically static or static comparative, while mechanistically based models aim to 

simulate the multiple processes that influence an organism’s anabolic and catabolic 

metabolism, and trend towards being dynamic models.  Models described by Enberg et 
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al. (2008) as statistical are those of von Bertalannfy and Roff, with mechanistic 

examples given as the Fish Bioenergetics model developed at the University of 

Wisconsin-Madison, the dynamic energy budget (DEB) of Kooijman, and Ecophys.Fish.     

Static and statistical modeling has provided useful information and insight into 

ecology and physiological ecology (PE), particularly for organismal growth and 

metabolic scaling predictions (von Bertalanffy 1950, McNab 2002, West and Brown 

2005, Enberg et al. 2008, Kerkhoff 2012, McNab 2012).  Dynamic and mechanistic 

models make the system more responsive to changes in conditions as would be 

encountered in nature, increase model fidelity, but introduce the need to manipulate and 

manage more variables and interactions.  Before the introduction of computers, this was 

a daunting task; therefore, it is not surprising that application of systems modeling had to 

wait until after the development of the electronic computer for systems modeling to gain 

a footing in research (Grant et al. 1997). 

Though computers in the 1960s permitted the processing of ever more complex 

ecological models (Grant et al. 1997), their scarcity limited the availability of systems 

modeling to only a few researchers.  Perhaps one of the most significant technological 

contributions to the benchtop researcher has been the development of personal 

computers and dynamic systems modeling software.  Non-dynamic systems modeling 

programs and options are currently available, such as direct programming using 

computer languages (C, JAVA, basic, etc.) or programs designed for general research 

such a Matlab® or Dynamo (Ford 1999) and statistical models like R (Bolker 2008).  

Moreover, software innovation has now provided researchers the ability to model the 
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dynamic system itself, using a graphic interface in which system processes and flows are 

represented using icons similar to those shown in Figure 12.  The advantage of this 

design is that no prior programming experience is necessary, making modeling more 

accessible to those without programming experience, although the researcher must still 

provide the mathematical rules and relationships defining and relating model 

components.  Several programs use this modeling methodology, including Stella®, 

Vensim®, Powersim® (Ford 1999), and MATLAB Simulink (Mangourova et al. 2011). 

Regardless of the software used to model a dynamic system, it is important to lay 

the groundwork for the types of models and what constitutes a successful model.  This 

will be accomplished by analyzing the components of modeling theory, which outline 

the models conceptual framework upon which the specific components are overlaid.  

The discussion will then lead to an introduction of static and dynamic metabolic growth 

models as the development of Respiratory Model, Dynamic (RMD) is ultimately 

intended to be integrated into such a model.  The discussion of dynamic growth models 

will include an introduction to Ecophys.Fish (Neill et al. 2004), an isee Systems, Stella® 

dynamic systems modeling program originally developed for use with Red Drum but has 

also been adapted to use with two sole species S. solea3 and S. senegalensis (Fonseca et 

al. 2010).  In discussion of the Ecophys.Fish growth model, the Stella® modeling 

 

 

3 Solea solea has multiple common English names as reported by Tous et al. (2015): Black Sole, 
Common Sole, Dover Sole, Parkgate Sole, River Sole, Sea Partridge, Slip, Southport Sole, Tounge, and 

True Soul.  The common name chosen for use in this dissertation is “Common Sole.” 
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“system platform” also will be addressed as this is also the modeling system used to 

develop RMD.  The discussion will then culminate in a review of static SFL growth 

prediction models from the literature. 

From the growth model discussion, the emphasis shift to discussion of static and 

dynamic V̇O2 modeling in fisheries research and the need to develop such a model for 

the SFL. 

Modeling Theory and Application 

Concurrent with the rise in dynamic systems modeling as a technical enterprise 

was developing a modeling process, i.e., the steps necessary for developing and applying 

a successful model.  Unfortunately, no consistent approach to modeling theory seems to 

have evolved; so, each text written on modeling methodology comes with a differing set 

of approaches (Grant et al. 1997, Hannon and Ruth 1997, Ford 1999, Caswell 2001, 

Bolker 2008, Van den Berg 2011).  These methods are not necessarily detrimental as 

different model objectives might necessitate different approaches.  In general, though, 

most modeling processes contain these basic principles: 

1) Identify, decide, and define the problem (i.e., what needs to be modeled). 

2) Decide on the type of model to use. 

3) Identify the flow, variables, and other processes needed to emulate the 

problem. 

4) Develop, build, and program the model. 

5) Evaluate the model in relation to real-world data and conditions. 
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6) Once satisfied, the model provides a reasonable approximation of the 

processes it is designed to emulate, use the model to predict environmental or 

experimental outcomes based on known or hypothetical conditions. 

These six steps will serve as the framework for discussing the modeling process 

used to develop and validate RMD for general utility and as an intended input 

component for a SFL-oriented version of the E.F growth model.  Therefore, it is prudent 

to review the development of growth models, particularly for fish, and SFL in particular. 

Fish Growth and Bioenergetics Models 

Since the first scientific discourse on the limits of biological growth by Galileo 

(1638), the concept of growth, i.e., the relative change in mass of the individual 

organism over time, has garnered interest among naturalists and biologists.  Indeed, the 

cursory consideration permitted here on the history of growth studies is predestined to 

present a narrow perspective and omit some rich history of this topic.  Nonetheless, a 

few names do come forward within the literature with sufficient frequency to merit 

inclusion.  While early work by Thompson (1942) had discussed growth using statistical 

models based on data gathered for humans, it was the theory of growth by Ludwig von 

Bertalanffy (von Bertalanffy 1934, 1938) that was to have the greatest influence on 

ecology (Enberg et al. 2008).  Basing his work on the insights first put forward by Putter 

(1920), von Bertalanffy, publishing in German and English, was initially influenced by 

studies on the rate of chemical reactions.  Eventually, von Bertalanffy concluded that 

growth resulted from a balance between the catabolism of body mass and anabolism of 

surface, through which an organism assimilates resources (von Bertalanffy 1950, 
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Kerkhoff 2012).  Von Bertalanffy’s work resulted in two general growth models 

designed to emulate the observed growth rate of organisms, one for estimating length 

and the other for mass.  These have been used extensively by biologists and ecologists 

within fisheries.  Both models implement logarithmic (negative exponential) growth.  

Von Bertalanffy presented the general length-model shown in equation (5). 

 

where L∞ is the final length for time t tending to infinity (i.e., asymptotic mean length),4  

l0, is the length at time (t) = 0, and e is the natural-log base. 

The value of L∞ may alternatively be thought of as the maximum possible length 

of the organism, and the transformation rate k as a declining growth rate constant 

(Enberg et al. 2008).  Von Bertalanffy’s consideration of the basic components that go 

into L∞ and k distinguish his model because these two variables are rate limiters to 

growth.  Although not explicitly stated, the amount of energy available not only is a 

consideration of material available for anabolism but also the energy used during 

catabolism, a concept explored in detail by Fry’s concept of MS (Fry 1947, 1971) and 

Neill and Bryan’s MSgrowth (Neill and Bryan 1991). 

If the initial length of the organism is considered to be zero, then the equation (5) 

can be re-written, per Enberg et al. (2008), as 

 

 

4 This is the net result kept simple for clarity.  In his paper von Bertalanffy (1938) defines L∞ = 
E/k, where E is the amount of introduced reacting material and k is the rate of transformation of substance 

a (e.g., food and nutrients) into b (e.g., body tissue).   

 𝑙 = 𝐿∞ −  (𝐿∞ −  𝑙0 )𝑒−𝑘𝑡 (5) 
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 𝑙 =  𝐿∞(1 − 𝑒−𝑘(𝑡−𝑡0)) (6) 

 

where L∞ is again the asymptotic mean length of the fish if it grew forever, k is a 

curvature parameter, and t0 is the “mathematical age” of the fish at which length (l) is 

theoretically zero. 

Conversion of von Bertalanffy’s equation to growth estimates by weight requires 

including an anabolism constant (a) and an age-length relation exponent (b) as mass 

increases the number of dimensions that must be considered.  Equation (7) shows the 

von Bertalanffy formula for weight as described by Enberg et al. (2008) 

 𝑊 =  𝑎𝑊∞(1 − 𝑒−𝑘(𝑡−𝑡0))
𝑏
 (7) 

 

 The von Bertalanffy model has proven useful for growth estimates, although the 

exponent values a and b originally used by von Bertalanffy have since been shown to be 

inappropriate (Enberg et al. 2008).  Another criticism of the model is its assumption that 

all catabolism and anabolism are used for growth and maintenance (Enberg et al. 2008).  

This assessment has given rise to bioenergetic growth models such as that by Roff 

(1983) who split energy and resource expenditure between somatic and gonadal tissue, 

mathematically expressed in equation (8) (Roff et al. 2006).  An important component of 

the Roff model is the “gonadosomatic index” (GSI) which is the gonad mass to somatic 

mass ratio.  The GSI was an attempt to tie in the metabolic cost of reproduction to the 

overall MS, assuming that the remainder would be available for growth (Roff et al. 

2006). 
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 𝑊𝑡+1 = 𝑓(𝑊𝑡) − 𝑔(𝐺𝑊𝑡) (8) 

where, Wt+1 represents one reproductive cycle with the function f(Wt) being the rate of 

growth between t and t+1.  The function g(GWt) represents the amount of somatic 

biomass allocated to the gonads over the same period (Roff et al. 2006). 

Though the Roff (1983) model, when expanded to address the growth functions, 

is more complicated than the von Bertalannfy model, it nonetheless remains a static 

model that makes several assumptions about somatic and gonadal growth rates and 

assumes some allometric relationships that may not be correct in all circumstances 

(Enberg et al. 2008). 

As models became more complex, so did the basic metabolic theories with 

respect to energy allocation.  An example is the Dynamic Energy Budget (DEB) 

developed by Kooijman (2010), which takes as a basic premise that all organisms consist 

of energy in the form of structural body mass and reserves, the latter of which is used for 

somatic work (e.g., digestion, maintaining homeostasis), building new structures (i.e., 

growth), reproduction, etc. (Kooijman 2010).  While the DEB model can be applied 

using a wide array of software, of note is the effort by van der Veer et al. (2001) who 

applied the DEB theory using Stella® to model growth in four flatfish species, Plaice, 

European Flounder Platichthys flesus, Dab Limanda limanda, and Common Sole. 

The shift from comparative static to dynamic systems like DEB has become 

more common, and dynamic modeling software like Stella® has greatly expanded the 

ability to better resolve bioenergetic demands for fish growth such as cost of ingestion, 

digestion, egestion, activity, reproduction, and growth (Enberg et al. 2008).    
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The E.F Stella® model by Neill et al. (2004) is another good example of a 

dynamic growth model that applies Fry’s growth and metabolism theories.  Recall that 

the E.F model was originally developed to model growth in Red Drum and, later adapted 

by its authors to model growth in the freshwater Bluegill.  However, others have taken 

the basic model and adapted it to model growth in the two species of juvenile Sole, S. 

solea and S. senegalensis (Fonseca et al. 2010), Japanese Flounder Paralichthys 

olivaceus (Yamashita et al. 2017), the Pacific White Shrimp Litopenaeus vannamei 

(Walker 2009) and even the SFL (Del Toro-Silva 2008).   

Southern Flounder Growth and Bioenergetics Models 

Given the popularity of SFL as a commercial and sport fish, it is not surprising 

this species should be the subject of growth and bioenergetic models.  The most common 

static models of SFL have been mass or length projections based on catch data 

categorized by US state from samples caught along the GoM or Atlantic coasts.  These 

models will be discussed first, followed by von Bertalannfy length/weight temporal 

models, which have also been liberally applied to SFL growth, though with considerably 

more variance in final estimates.   

Southern Flounder-specific bioenergetics models have received less attention, 

with only one static model apparent within the literature (Burke and Rice 2002).  

Nonetheless, this SFL bioenergetics model provides for an independent comparison, 

based on independently collected and fitted data that helps validate aspects of RMD.  
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Comparative Static Growth Models for Southern Flounder 

By far, the majority of SFL growth models are comparative-static, often simply 

logarithmic or power functions fitted to measured length and weight, length and age, or 

weight and age data.  Southern Flounder are widely distributed along North America’s 

GoM and southern Atlantic coastline, so growth of this species has been estimated for 

every relevant US coastal state by researchers over several decades.  These growth 

estimates are well synopsized by the Gulf States Marine Fisheries Commission 

(VanderKooy 2015).  Length and weight growth estimates for juvenile SFL up to 160 

mm from four GoM States (Texas, Louisiana, Georgia, and NW Florida) and South 

Carolina on the Atlantic coast are shown in Figure 13 along with additional growth 

estimates obtained from the literature for Mississippi (Corey et al. 2017) and South 

Carolina (Wenner and Archambault 2005) as well as growth data obtained from the 

TPWD-CF’s, Marine Development Center over 8 years from 2009 to 2017.  

VanderKooy (2015) cited primary sources, and the derived formulae used from all 

sources, are provided in the caption.  Although the majority of cited growth models are 

based on data for adult SFL, the graphic data are limited to SFL <160 mm TL and < 60 g 

to compare those estimates to the MDC data and to decide whether these adult models 

can be adequately scaled down to fit growth for juvenile SFL. 
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Figure 13.  Comparison of SFL total length (mm) vs. weight (g) literature growth 

models to MDC data.   
Legend notes: M = males (dashed line), F = females (dotted line), C = Combined (solid line).  Static model 

original citation/source, state data collected, empirical formulae, r-squared and n value, if available: MDC 
Data Fit, Texas, C_Log10 Wt = 2.6745 x Log10 TL - 4.465, r2 = 0.948, n = 693.  Blanchet (2010), 

Louisiana, F_Log10 Wt = 3.18369 x Log10 TL – 5.386116.  Corey et al. (2017), Mississippi, C_Wt = (2.82 

x 10-6) x TL3.24, r2 = N/A, n = 395.  Fischer and Thompson (2004), Louisiana, C_Wt = (3.47 x 10-6) x 

TL3.21, r2 = 0.98, n = 1236.  Harrington et al. (1979), Texas, C_Log10 Wt = 3.13 x Log10 TL – 5.26, r2 = 
0.984, n = 2211.  Music and Pafford (1984), Georgia, M_Log10 Wt = 2.98 x Log10 TL – 4.89, r2 = 0.95, n 

= 12; F_Log10 Wt = 2.97 x Log10 TL – 4.84, r2 = 0.98, n = 105; C_ Log10 Wt = 3.09 x Log10 TL – 5.16, r2 

= 0.98, n = 233.  Nall (1979), Florida, C_ Log10 Wt = 3.1 x Log10 TL – 4.92, r2 = N/A, n = 175.  Stunz et 

al. (2000), Texas, M_Log10 Wt = 3.31 x Log10 TL – 5.69, r2 = 0.975, n = 33; F_Log10 Wt = 3.3 x Log10 TL 
– 5.66, r2 = 0.991, n = 206; C_ Log10 Wt = 3.27 x Log10 TL – 5.61, r2 = 0.99, n = 239.  Wenner and 

Archambault (2005), South Carolina, C_Wt = 0.0063 x (TL in cm/10)3.1678, r2 = N/A, n = N/A.  Wenner et 

al. (1990), South Carolina, M_Log10 Wt = 3.17 x Log10 TL – 5.38, r2 = 0.984, n = 675; F_Log10 Wt = 3.15 

x Log10 TL – 5.33, r2 = 0.995, n = 926; C_ Log10 Wt = 3.13 x Log10 TL – 5.28, r2 = 0.994, n = 1753. 

 

With few exceptions, the variance of the predictive SFL weights for a given 

length show little divergence until TL exceeds about 60 mm.  However, even past 60 
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mm TL variation of only 4 to 5 g is seen at 120 mm for most of the models with notable 

exceptions being those by Harrington et al. (1979) and the male and female models by 

Music and Pafford (1984) which showed greater mass gain with increased length, even 

for SFL TL under 80 mm.  Also notable is the fit line from the MDC data, which 

predicts less mass with increased size.  The lower values of the MDC data are possibly 

due to fewer data points for juvenile SFL over 80 mm, and the data are being 

extrapolated for greater lengths and weights while most of the other models are based on 

adult SFL size and weight data which were extrapolated to lesser lengths and mass.  

Another possibility is the MDC SFL were simply underweight (for their TLs) compared 

to other sources due to differences in growth conditions.  Nevertheless, the MDC growth 

curve appears to correlate well for SFL less than 80 mm TL.  Some of the variability 

between models might be due to regional variation in length-weight relations for SFL.  

However, based on the overall consistency in the observed TL vs. weight for SFL living 

in coastal waters from Texas up to the Carolinas, it is likely most of the variance is due 

to a combination of varying sample size or possible sample-selection bias (i.e., sampling 

SFL only over a specific size). 

Von Bertalannfy Growth Modeling for Southern Flounder 

Since its introduction to the fisheries community, the von Bertalannfy temporal 

length-growth model—see equation (6)—has been widely applied.  Data for the model 

can be obtained by measuring the fish and establishing a mean length (typically total 

length) and determining age (in years) by counting the otolith annuli (VanderKooy 

2015).  These data can then be plotted to obtain estimates of L∞, k and t0.  In theory, this 
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formula allows determination of age by measuring the fish’s length, a quick and 

convenient method useful for field estimates of age.  However, in practice, von 

Bertalanffy estimates appear to have a greater degree of variance than length and weight 

relationships.  This is not surprising as length and weight are geometrically related 

whereas length and age may be poorly correlated due to the myriad of environmental 

factors that can affect growth over time such as food and nutrient availability (i.e., 

energy to exploit MSgrowth), mean temperature, mean DO, parasites, etc.  As a result, von 

Bertalanffy estimates vary considerably within SFL population, as evidenced in Figure 

14 which shows the predicted length versus age (in years) determinations from five 

different researchers across five states as compiled by VanderKooy (2015).  As can be 

seen, there is considerable variability in the estimated L∞ for the populations reported, 

although the results highlight the sexual dimorphism in size of sub-adult and adult SFL.  

It is also interesting to note that all but one of the von Bertalanffy models estimate a 

significant initial positive mean length (79 to 159 mm) at t0.  The one outlier from 

Blanchet (VanderKooy 2015) estimated a mean t0 length of about negative 45 mm, an 

untenable starting condition.   
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Figure 14.  Von Bertalannfy rate predictions of SFL length vs. age.   
Data: M = males (dashed line), F = females (dotted line).  Legend: Source_State_Sex.  F = female, M = 

male.  From formulae compiled by VanderKooy (2015). 

 

Due to the broad temporal scale (years) typically considered with this model, 

using the derived formula to determine growth over shorter time scales (e.g., weeks) is 

problematic as variance in the initial data has greater influence at smaller scales.  For 

example, juvenile SFL growth data by age from the MDC is compared in Figure 15  to 

the sources shown in Figure 14 with the time scale converted to days.  The mean MDC 

length is for days post-hatch.  Due to the short time scale, the relationships appear linear. 
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Figure 15.  Mean MDC juvenile SFL length over time (days) with von Bertalannfy 

estimates from literature.   
Data: C = combined (MDC data only), M = males (dashed line), F = females (dotted line).  Legend: 

Original source_State_Sex.  From formulae compiled by VanderKooy (2015).  Mean MDC data shown 
with regression line, r2 = 0.84.  MDC SFL days post hatch shown (n): 35 (n = 20), 67 (n = 20), 69 (n = 50), 

72 (n = 49), 74 (n = 10), 81 (n = 20), 82 (n = 80), 85 (n = 20), 94 (n = 205), 98 (n = 60), 157 (n = 32). 

 

The intercept for the linear regression line for the MDC juvenile SFL is about 

negative 5 mm indicating that MDC SFL growth rates were lower than the majority of 

the literature data available.  Of the literature sources listed by VanderKooy (2015), only 

the data from Blanchet (2010) are similar to the MDC data.  Even here, the estimates for 

growth past about 50 days are much greater than that recorded in the MDC data.  This 

may be due to the MDC flounder spawning later in the spawning cycle compared to wild 
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SFL.  The von Bertalannfy model’s comparison to recorded data shines a light on the 

necessity for a large enough n-value when developing von Bertalannfy models to ensure 

an applicable model across all age ranges.  It would also suggest that many of the von 

Bertalannfy models reported in the literature are only broadly representative of age-

length relationships for SFL. 

Comparative Static Bioenergetics Models for Southern Flounder 

Bioenergetics considers the energy available to, and its uses and changes within, 

a biological system or organism (Haynie 2001).  Thus, energy from feed becomes a 

resource that can be measured and applied to the biological work of catabolism or 

anabolism.   

The importance of energy as a biologic resource was perhaps first recognized by 

Boltzmann in an 1886 popular lecture on the second law of thermodynamics.  

Boltzmann observed that life was the “struggle for entropy”  (Boltzmann 1886).  

Subsequent to Boltzmann’s observation, energy as a resource has been considered as a 

selective force in evolution (Lotka 1922), mass scaling (Kleiber 1932), and of course 

bioenergetics (Jobling 1994). 

Comparative static mass/length temporal growth prediction models, though quite 

useful, are somewhat limited in their utility as they consider growth (e.g., length and 

weight) but often do not account for the processes involved in growth.  For example, von 

Bertalanffy’s transformation rate k, which provides an accounting of the energy/mass 

consumed versus body mass acquired, simply combines (and therefore ignores) more 

complex bioenergetic processes into a simple variable.  When these bioenergetic 
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processes are expanded for modeling consideration, the components most used are 

allocated into the three energy components associated with metabolism, wastes 

(nitrogenous and fecal), and growth (Winberg 1960), although other sources incorporate 

wastes into the metabolic cost of feeding (Jobling 1994).   Bioenergetic models may also 

consider the energetic costs of environmental factors on these components (Fry 1947, 

1971, Neill et al. 2004).  Each component may be further broken down as warranted by 

the modeler.  For example, the bioenergetic cost of waste may be considered the 

combined cost of energy lost as indigestible material from the digestive system and 

energy expended to remove nitrogenous waste.  The concept of MS and MSgrowth are 

other ways to represent these energy allocations.   

Similar to growth models, comparative static bioenergetic models also have been 

much used over the years with a surge in application since the 1990s (Chipps and Wahl 

2008, Hartman and Kitchell 2008).  So prolific have these models become, each 

designed to measure a wide range of dependent variables such as individual or 

population growth, fecundity, predation, survival, etc.  Considerable debate has arisen 

over the ability of these models to provide accurate predictions.  This debate was begun 

by Ney (1993) but has remained unresolved as this was still an item of debate in the 

literature 15 years after Ney published his concerns (Chipps and Wahl 2008, Hartman 

and Kitchell 2008).  Nonetheless, interest in the utility of bioenergetics models by 

researchers has resulted in a collaborative effort to provide an easily accessible computer 

model for individual and population predictions; in its most current configuration the 

model, known as Fish Bioenergetics 4.0 (Deslauriers et al. 2017), which uses the R 



 

59 

 

programming language (R Core Team 2017) to provide bioenergetics models for a wide 

range of fishes, including SFL.  Unfortunately, this open-source program was non-

functional upon attempted use with SFL by the author.  It is also worth noting that the 

source for the SFL variant of this program is from a single source, a bioenergetics model 

developed by Burke and Rice (2002).   

Based on data collected from SFL caught in North Carolina, the Burke and Rice 

(2002) static bioenergetics model fits the data to several equations based on a generic 

fish bioenergetics model developed for the antecedent Fish Bioenergetics 3.0 program, 

developed by Hanson et al. (1997).  The primary equation is a general growth equation 

with secondary and tertiary equations used to calculate variables within the first equation 

(e.g., food consumptions and resting metabolism).  Given the importance of this model 

as the principle source of SFL bioenergetics and growth within the literature, it is 

prudent to delve further into this model.  The results are useful for comparison to RMD 

and the SFL variant of E.F. 

The primary Burke and Rice (2002) formula, shown in equation 9, quantifies 

growth as shown.  

 𝐺 = 𝐶(1 − 𝑓 − 𝑢 − 𝑠) − (𝑅 ∙ 𝐴𝐶𝑇) (9) 

where G is defined as both “somatic and reproductive growth” with a presumed unit 

measure of mm growth per gram of tissue per day, C is food consumption per day (g 

food/g fish·day) with f, u and s being energy lost due to egestion (feces), excretion 

(urine), and specific dynamic action (SDA).  Growth energy is further reduced by the 

product of energy lost to maintain resting (or standard) metabolism (R) and an activity 
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multiplier (ACT).  Fixed variables within this equation are f, u, s, and ACT, set to 0.104, 

0.079, 0.161, and 2.1, respectively for SFL (see Burke and Rice’s paper for each 

variable’s source).  Variables C and R, calculated from secondary equations, are shown 

in equations 10 and 16. 

The value for G is presumed to be mm/g fish·day.  Based on the formula it would 

appear to be a value of grams fish per day.  Later in their paper, growth rates are 

reported in a graph as mm/day, the values of which correspond to the G values 

calculated for a 1-gram fish.  Calculations were based on the assumption that G is 

expressed in mm/g fish·day.  Predictions of SFL growth using this assumption appear to 

provide representative results.  However, the lack of clearly defined units for G make for 

uncertainty.  Nevertheless, since this model is used as the representation of SFL growth 

for the Bioenergetics 4.0 and earlier models, further review is pertinent. 

Calculation of C is based on the assumption that daily food consumption rate is 

maximized (Cmax), such that, 

 𝐶𝑚𝑎𝑥 = 𝑎 ∙ 𝑊𝑏 ∙ 𝑓(𝑇) (10) 

where a is the intercept of consumption in grams food/g fish·day, W is wet weight of the 

fish in grams, b a weight-dependent exponent of consumption, and f(T) a temperature-

dependent function.  Burke and Rice (2002) set variables a and b to 0.1993 and -0.31, 

respectively, for the SFL.  The temperature function f(T) is derived from the earlier work 

by Hanson et al. (1997) and is itself a multilevel formula, 

 𝑓(𝑇) =  𝑉 𝑋 ∙ 𝑒(𝑋(1−𝑉)) (11) 
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where: 

 𝑉 =  
(𝑇𝑚𝑎𝑥 − 𝑇𝑎)

(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡)
 (12) 

   

 
𝑋 =

𝑍2 ∙ (1 + (1 +
40
𝑌 )

0.5

)

2

400
 

(13) 

   

 𝑍 = 𝐿𝑛(𝑄10 ) ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡 ) (14) 

 

 𝑌 =  𝐿𝑛(𝑄10) ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡 + 2) (15) 

 

Tmax is the maximum tolerable temperature (above which food consumption stops), Topt 

is the fish’s optimal temperature for growth, Ta the ambient temperature, and Q10 the 

temperature-dependent metabolic rate multiplier.  For SFL, Burke and Rice set the Tmax 

at 40°C, Topt at 30°C and Q10 to 2.126.  The value for Ta is variable, but in their paper 

Burke and Rice (2002) used 28°C. 

  The only remaining variable to calculate is the resting metabolic rate, R, in mg 

O2/g fish·h, 

 𝑅 = 𝑐 ∙ 𝑊𝑑 ∙ 𝑒(𝑚∙𝑇𝑎) (16) 

 where W is weight of the fish, Ta the ambient temperature, c the intercept of respiration 

(set at 0.018 mg O2/g fish·h for SFL), and d, and m are coefficients set at -0.1397 (no 
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unit) and 0.0811 (1/°C), respectively.  These parameters were based on data from 16 

SFL (mass ranged 25.9 to 183.6 g) acclimated at 25°C at a salinity of 33 ppt.  The 

negative value for the weight-dependent respiratory exponent d was determined by 

Burke and Rice (2002) via closed respirometry experiments and data from Taylor and 

Miller (2001).   

The exponential decline in resting metabolic rate Burke and Rice (2002) 

observed is in accordance with the expected allometric negative exponential decline with 

increased weight reported by Kleiber (1932).  However, the Burke and Rice (2002) 

model does not address the respiratory source of ṀO2 needed to meet the energy 

requirement of resting metabolism.  

Burke and Rice Model of SFL Growth 

The Burke and Rice growth model, which predicts a daily growth rate, does not 

readily lend itself to comparison to the SFL growth models previously discussed as these 

other models predict growth rates on a yearly time scale.  However, a comparison is 

possible by estimating daily growth rates for 365 days per year until equivalent yearly 

rates are achieved. 

A multi-year analysis for use compared to other models first required that G be 

calculated for a range of SFL sizes.  Starting with a 1-gram fish, G was calculated on a 

spreadsheet using equation (9) for weights up to 5000 grams in 1-gram increments.  The 

resultant table was then used as a reference table for determining length-dependent daily 

growth (in mm).  The table is graphically represented in Figure 16.   
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To calculate the estimated Burke and Rice daily growth rate, an initial length of 

50 mm was chosen as the day 1 start length as this represents an approximately 1-gram 

fish, the exact weight of which was calculated using the mass/length growth model 

developed by Wenner and Archambault (2005), which also correlates well with MDC 

growth data (Figure 13).  Because the calculated estimate for G declines as a negative 

exponential function of mass, as shown in Figure 16, growth estimates needed to be 

adjusted using the aforementioned reference table with each daily change in mass.  Thus, 

the starting length estimate for each new day was the sum of the previous day’s starting 

and additional growth rate estimate (e.g., the day 2 length (51.7 mm) is the sum of the 

day 1 length (50 mm) and the estimated day 1 growth rate of 1.7 mm for a 1-gram fish, 

while day 3 would be the 51.7 mm plus that day’s growth estimate).  The results of this 

effort, calculated over a theoretical 10 year period, are shown in Figure 17 along with the 

examples previously presented in Figure 13.  If the assumptions made are correct, the 

predicted growth curve, starting with a SFL of 50 mm in length, is within the size and 

age ranges observed by other researchers (VanderKooy 2015).   
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Figure 16.  Estimated daily growth rate in length vs. mass for SFL adapted from 

Burke and Rice (2002).   
See text for description and assumptions made. 
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Figure 17.  Comparison of Burke and Rice SFL growth model to other von 

Bertalannfy length-at-age predictions.   
Burke and Rice growth prediction shown as solid line.  See text for description and assumptions made.  

For description of von Bertalannfy models see caption for Figure 13. 

 

Dynamic Growth and Bioenergetics Models for Southern Flounder 

Unlike comparative static models (e.g., von Bertalannfy-based), which take a 

“top-down” approach to growth invoking fixed parameters, dynamic systems models can 

provide a more realistic “bottom-up” or “economic” approach by modeling the energy 

supply and expenditure of the organism to determine how much energy remains for 

growth.  While more mechanistic, dynamic models involve more variables and their 
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interactions, making evaluation more complex.  Nonetheless, results allow for greater 

synthesis through analysis of outcomes from the simulation with multiple inputs.   

The Ecophys.Fish Dynamic Growth Model 

The Stella® model Ecophys.Fish developed by Neill et al. (2004) explicitly 

incorporates Fry’s concept of metabolic scope (MS) and responses to four of his five 

environmental- factor classes: controlling, limiting, loading, and lethal.  (Directive 

factors, absent from E.F, were subsequently incorporated in EcoFish, an extension of 

E.F developed by Neill for teaching.5)  The factors of all classes affect MS and MSgrowth, 

as the model presumes that environment acts upon animal activity only via metabolism 

(Fry 1947, Neill et al. 2004).   

The E.F model is comprised of two functional modules, or “sectors” – 

metabolism and bioenergetics, which work together to simulate energy acquisition and 

expenditure.  The bioenergetics module (i.e., energy supply) derives the general energy 

density of the fish’s biomass (GEfish) based upon the flux in caloric energy gained when 

“food” is consumed (in calories/g feed, termed “GEfeed”), versus that lost as wastes or 

expended in metabolism.  As occurs in real organisms, the E.F model assumes that not 

all “food” consumed is converted to useful energy, as 10 to 25% is not digestible and 

ultimately is eliminated as feces, and another 5% is lost as nitrogenous excreta.  About 

15% of consumed energy is required to power the processes of digestion, assimilation 

 

 

5 See https://www.researchgate.net/publication/330845631_EcoFish_Introduction 
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and nutrient transformation (Neill et al. 2004).  Ecophys.Fish treats the individual “fish” 

as an energy reservoir with a certain “energy density” which in times of food shortage or 

fasting (i.e., when feed energy is insufficient to meet activity and metabolic demands) 

declines, reflecting consumption of stored energy reserves; if sustained, the decline in 

energy density of the fish's biomass results in weight loss.   

Conversely, in times of “feast,” when intake of feed energy is modeled high, the 

fish grows in biomass energy density, then in biomass, per se.  A unique feature of E.F is 

that feed consumption is also affected by MSgrowth; should MSgrowth decline due to, for 

example, low DO, feed consumption is restricted.  Thus, the E.F model accounts for not 

only those factors that contribute to growth, but also those that mitigate it by removing 

energy from the system which, not surprisingly, are the metabolic costs associated with 

life and those factors, as outlined by Fry (1971), which constrain metabolism; the 

metabolic module of E.F addresses these. 

The E.F approach to lethal factors focuses primarily on low DO, ignoring other 

lethal factors such as temperature (Neill et al. 2004).  However, a potential limitation is 

that the omission of lethal temperature from the E.F model does not necessarily restrict 

growth estimates unless extreme environmental temperature ranges are considered.  In 

the original E.F Red Drum model, the difference between ambient and acclimated DO 

levels (which can be set or variable values in Stella®) are considered to cause DO stress; 

if that DO stress level exceeds a programmed threshold, a fractional mortality “dose” 

due to low DO is accumulated over time (Neill et al. 2004).  EcoFish adds to E.F’s 
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repertoire of the lethal effects, including extreme temperature and toxic substances such 

as ammonia and copper. 

Metabolic loading (or masking) within E.F is effected by adverse salinity (S), 

which necessitates computing the effect of non-optimal salinity levels causing elevation 

of standard metabolic rate.  Considering the optimal salinity level (for Red Drum it is set 

to 10 ppt), a salinity variance (Svar) is calculated.  This is used to establish a salinity 

limit value (SalL) that is based on a set upper and lower salinity level, and adjusted to 

compute the deviation in standard metabolic rate (Sgain), while taking into consideration 

ambient temperature relative to the fish’s acclimation temperature (Neill et al. 2004). 

As has been stated, DO presents the primary limiting factor for many aquatic 

species.  Within the E.F model, the limiting effects of DO are modulated by the 

controlling effects of temperature and pH, affecting metabolic rate.  More specifically, 

temperature effects on metabolic rate impact the lower DO limit (DOlim), the value 

below which metabolic rate becomes DO-dependent.  This value, taken in conjunction 

with pH, is used to establish an adjusted DO level “A,” calculated as the lesser of either 

ambient DO or the ratio of the DO limit and pH factor and multiplied by a weight 

corrective factor to establish the DO limit for a 1-gram fish.  As with lethal factors, DO 

acclimation is considered as this will alter the simulated response.  E.F’s ability to model 

acclimation to environmental factors provides it capability for growth modeling not 

represented in non-dynamic models. 

As DO is controlled by pH and temperature, it is not surprising that E.F uses 

these two variables as controlling factors.  The powerful controlling effects of 
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temperature on poikilotherm standard metabolism is modeled in E.F as the Arrhenius 

effect.  In contrast, active metabolism is subject to limitation by the DO level, DO 

acclimation state, a Bohr effect of pH, and finally, by an environmental-quality residual 

labeled as the intercept of the marginal metabolic scope (termed MMSO).  Marginal 

metabolic scope (MMS), is a derivation based on Fry’s MS and was introduced by Neill 

and Bryan (1991).  Explicitly, MMS is the RMR ṀO2 value divided by the DO value at 

the point where ṀO2 intercepts LOCr and metabolism becomes oxygen dependent.  A 

graphical representation of these relationships is shown in Figure 18.  The MMS slope is 

multiplied by 1 mg O2/L to keep the MMS units the same as ṀO2 and provide a useful 

measure of capacity for metabolic performance (Neill et al. 2004).  In general, the larger 

the value of MMS, the greater the fish's capability for ecophysiological performance. 

Neill et al. (2004) interpreted MMS as a measure of residual fitness between fish 

and total environment, with accommodation for the fish's environmental history.  The 

"residual" part of this idea reflects the difference between environmental effects 

incorporated in the E.F model and those of total environment, much of which must 

remain unknown, perhaps even unknowable, to the modeler.  

The E.F MMSO parameter is used with other metabolic impacting processes 

such as the pH factor, and ambient, limiting and acclimation DO, along with a 

“Winberg” factor to calculate an active metabolic rate.  The Winberg factor is consistent 

with the concept of Winberg (1960), who reported that routine metabolism of typical 

fishes under natural conditions is approximately twice that of standard metabolism, i.e., 

SMR times 2. 
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Figure 18.  Relationship of marginal metabolic scope to metabolic rate, vs. DO. 

     

For E.F to be an effective model, it must properly merge the metabolic and 

bioenergetic modules.  The key to this conjoining is a mechanistic measure of metabolic 

capacity, namely the maximum amount of oxygen available to the organism, designated 

as V̇O2max.  From Figure 18, it can be seen that the V̇O2max is the V̇O2 at the point where 

any given DO level intercepts the AMR line.  This maximum rate of oxygen use 

“corresponds with maximum rates of routine and feed-processing metabolism” (Neill et 

al. 2004).  Feed processing, or specific dynamic action (SDA), has already been 

discussed as the approximately 15% of the feed consumed to meet the metabolic cost of 
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digestion and associated processes (designated “Msda” in the model) and is calculated 

by E.F as the product of SDA and the quotient of the feeding rate (Ac), a measure of 

energy acquired per fish mass per unit of time, and “oxycal,” the caloric equivalent of 

one milligram of oxygen (3.4 cal/mg O2) (Neill et al. 2004).  The maximal amount of 

energy available for processing feed (Acmax) is the product of “oxycal” and the quotient 

of MSgrowth and SDA (Neill et al. 2004).  Thus, E.F is a mathematical representation of 

the organism being modeled as an energy flow system that the fish uses to “maintain and 

extend its being” (Fry 1971). 

A significant difference between E.F and other models is the lowering of Acmax, 

as MSgrowth declines.  As MSgrowth is tied to the active metabolic rate (Mact), which in 

turn is tied to DO, a reduction in DO leads to a reduction in MSgrowth.  Thus, as Acmax 

falls, metabolic energy availability to the “gut” of the fish becomes insufficient for feed 

processing, which subsequently limits energy and material availability for growth.  

While previously discussed models consider energy availability and consumption costs, 

they generally do not account for oxygen availability, limiting the utility of those models 

to only static normoxic environments.   

Ecophys.Fish and an Introduction to Stella® 

Adapting E.F to model a particular species requires changing E.F model 

parameters and even processes, and then comparing modeled growth to actual growth 

data from that species.  Sometimes the requisite parameter changes can be estimated 

from available observations and data; other times, the process is simply one of trial and 

error to get the model to correctly simulate growth.  This process is often easier for 
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researchers if the model is presented as a “stock and flow” process which categorizes 

and separates model components into useful visual flow components.  As the dynamic 

systems modeling software Stella® uses this “stock and flow” method, and as E.F and 

RMD are Stella® based models, it is a prudent and timely opportunity to introduce the 

Stella® modeling process. 

Stella® uses four primary “building blocks” as shown in Figure 19.  Converters, 

represented by the small circles, can be used as place holders for needed inputs, be they 

constants, algebraic formulae or graphical functions.  Action Connectors, represented by 

red arrows, not only show the relationship of model components to one another but 

programmatically indicate information inputs to other Converter or Flow processes.  

Flows are schematically represented as thick arrows with a circle in the middle.  Atop 

the circles are representations of circular valve wheels viewed from the side.  This 

arrangement is meant to evoke the image of a pipe with a control valve for that is the 

mathematical function of Flows, to control the “fill” or “drain” rate, depending on their 

relationship to the affiliated Stocks.  Flow “rates” are determined either by algebraic 

formulas or fixed values.  Stocks, represented by rectangles, indicate the net 

accumulation of materials via Flow input and/or output.  Flows into and out of Stocks 

occur each time Step.   
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Figure 19.  Stella® components.   
Action Connector arrow in red. 

 

Not shown in Figure 19 are Decision Process Diamonds, represented by 

diamonds (in Stella® 7 and subsequent versions), which are place holders for, and 

contain, sub-models.  This graphic simply permits de-cluttering of the graphical model 

workspace and are used by E.F for this purpose. 

Ecophys.Fish is a highly complex model, the major metabolic and bioenergetic 

Stella® components shown in Figure 20.  
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Figure 20.  Ecophys.Fish Stella® model showing metabolism and bioenergetics 

sectors. 

 

As can be seen, several of the components of the model previously discussed are 

present in the graphical module displays but with additional components added.   

An example of the complex interaction between the primary Stella® model 

components can be seen in the feed energy flow in the Bioenergetics sector in Figure 20.  

Starting at the Stock component labeled “FeedEnergy,” which is used to “store” a set 

numerical value representing a fixed reservoir of feed energy available for the modeled 
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fish’s consumption, the one Flow component attached to “FeedEnergy” is outward per 

the arrow indication.  This Flow component “hAcxWfish” controls the caloric rate (per 

hour and per unit fish biomass) at which “FeedEnergy” is removed from the 

“FeedEnergy” Stock and transferred to “fill” the “FishEnergy” Stock in accordance with 

an algebraic equation which uses the input variables, as shown by the arrows, from 

Converters “Wfish,” “Acmax” and “Apc.”  From a modeling perspective, the value of 

“hAcxWfish” acts as a flow resistor, the Step-by-Step rate determined by the Converter 

inputs.  Although the “FeedEnergy” Stock is depleted during the model’s run, the 

“FishEnergy” Stock represents a more dynamic relationship.  While the inward flow 

from “hAcxWfish” fills the “fish Energy” stock, it is depleted by the three outward 

Flows of “hArxWfish,” the loss of energy due to routine metabolism; “hAdxWfish,” the 

metabolic cost of processing feed; and, “hAwxWfish,” the loss via waste elimination.  

Algebraic equations determine these rates with dependent variable inputs from other 

model components inputs.  It should be noted that Flow and Converter inputs can be not 

only from the Converters but also from Flows and Stocks. 

SFL Growth and Bioenergetic Modeling Using Ecophys.Fish 

The first alteration of the Neill et al. (2004) E.F model to model SFL growth was 

achieved by Del Toro-Silva (2008).  However, the original Neill et al. E.F model was 

significantly altered from the original as 25 new processes were introduced to fit the 

model to the SFL.  Thus, the Del Toro-Silva SFL model is more of a hybrid model, 

using the E.F model as the chassis upon which the new model was constructed.  
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Oxygen Transport Models in Fish 

Use of V̇O2 or ṀO2 as a measure of an organism’s metabolism (and MS) arises 

from the observation that ATP (energy) production in metazoans is primarily related to 

oxygen uptake, although anaerobic energy production may occur in special 

circumstances.  For example, during exercise, up to 15% of a flatfish’s energy may come 

from anaerobic metabolism (Duthie 1982), but because this O2 debt eventually must be 

paid, it is generally valid that O2 consumption is a measure of total metabolic activity on 

a sustained basis.  The alternative method, involving direct estimates of thermodynamics 

via bomb calorimetry, requires placing the organism in a very restricted environment and 

would require very sensitive temperature sensors given the relatively low metabolic rate 

of poikilotherms.  Despite its limitations, the utility of using oxygen flux as a 

determinant of energy-processing rates within an organism has driven the development 

of models for the transport and distribution of oxygen from the environment to the 

cellular mitochondria. 

Computer Models of Oxygen Transport in Fish 

As with the growth and bioenergetics models, without the aid of computers early 

fish cardiorespiratory models were by necessity static in nature.  It is rather interesting to 

note that one of the earliest dynamic computer-based fisheries simulations was, in fact, 

an oxygen transport model.  Developed in the late 1960s, Taylor et al. (1968) took 

advantage of the computing power afforded by a dated IBM 7040 digital computer, to 

develop a salmonid dynamic cardiovascular and respiratory model.  In their detailed 

computer model, Taylor et al. (1968) used estimates of buccal volume, gill perfusion, 
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and feedback loops to emulate physiological regulation which allowed for modeling of 

hypoxia and exercise effects; they reported good correlation with actual measured data.  

Their model did not consider mass or temperature effects as both were fixed at 1 kg and 

5°C, respectively. 

The use of the IBM 7040 computer by Taylor et al. (1968) for physiological 

modeling of fish respiration appears to have stimulated interest in others.  Shortly 

afterward, the same system was used by Scheid and Piiper (1971) for the modeling of 

the optimal theoretical lamellar morphology for use in other models.  However, using 

computer models for modeling fish performance based on the cardiorespiratory 

dynamics appears to have taken a backseat to other approaches, particularly 

bioenergetics models.  Other than Ecophys.Fish, no other Stella®-based model seems to 

have gained sufficient momentum beyond the laboratory for publication.  This is 

undoubtedly true for flatfish.  The development of RMD was implemented in-part as a 

means to address this discrepancy. 
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CHAPTER V  

PHYSIOLOGY AND PHYSICS OF OXYGEN FLOW: FOUNDATIONS OF THE 

FLOUNDER RESPIRATORY MODEL 

 

As in the model of Taylor et al. (1968) for salmonids, the Respiratory Model, 

Dynamic (RMD) was developed for SFL to model oxygen flow from the aquatic 

environment to the tissues.  This modeling effort was facilitated using the Stella® 

dynamic systems modeling software to simulate the flow of oxygen from the aquatic 

environment through the fish’s gills and skin and into the internal milieu via the 

circulatory system and finally to the tissues.  Thus, RMD was designed to emulate, as 

practical, the corresponding anatomical and physiological components of what Taylor et 

al. (1968) so eloquently termed the “teleostean cardiovascular-respiratory complex.”  To 

achieve this goal, RMD uses a modular approach consisting of a core cardiorespiratory 

module with six sub-modules to calculate processes needed by components of the core 

module and two modules for inputting environmental and fish weight processes.   

This chapter will cover the general scientific principles used to build RMD 

followed in the next chapter by discussing the RMD Stella® model itself, including 

specific calculations used, data interactions, data sources, assumptions, and concessions.   

The raison d’être of RMD is to model the flow of O2 from the aquatic 

environment to the tissues of the SFL.  Within the model, V̇O2 (mL O2/h), i.e., volume 

flow of O2, is used during the model calculation process for ease of calculations but is 

converted to O2 mass flow, ṀO2 (mg O2/g fish·h), as a final output to bring dimensions 
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in line with most literature sources.  This estimate becomes a measure of the metabolic 

rate within the SFL, which can help establish the energy available to the SFL for growth 

(i.e., MSgrowth) in an SFL version of Ecophys.Fish, which will be discussed later.   

Oxygen flow can be modeled using four physiological processes described by 

Jensen et al. (1993), based on original work by Dejours (1981).  Each mathematical 

model is the product of O2 flow, or conductance, and  O2 tension differences (often 

expressed as pressure differentials) between two different media (Dejours 1981, Jensen 

et al. 1993).  Disregarding cutaneous respiration for the present, these processes are, 1) 

ventilation – the movement of oxygenated water through the buccal cavity of the fish 

and it’s removal by the gills; 2) diffusion of O2 across the gill epithelial and capillary 

endothelial tissue membranes, then into the red blood cells where it is chemically bound 

to hemoglobin (Hb); 3) transport of the oxygenated Hb (HbO2) to the tissues via the 

bloodstream; and, 4) diffusion of O2 from the blood to the tissues where it is used to 

produce ATP for cellular work.  These processes are presented by Jensen et al. (1993) as 

oxygen mass (mg O2) flow (ṀO2) formulae, as shown in equations (17) to (20), which 

are variants of Fick’s law of diffusion (Fick 1995). 

Ventilation: 

 𝑀̇𝑂2 = 𝑉̇𝑤 ∙ 𝛽𝑤 𝑂2 ∙ (𝑃𝐼𝑂2 − 𝑃𝐸𝑂2) (17) 

 

Gill diffusion: 

 𝑀̇𝑂2 = (𝐾𝑔

𝐴𝑔

𝑙𝑔
) ∙ (𝑃𝑤𝑂2 − 𝑃𝑣𝑂2) (18) 
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Blood oxygen transport: 

 𝑀̇𝑂2 = 𝑄̇ ∙ 𝛽𝑏𝑂2 ∙ (𝑃𝑎𝑂2 − 𝑃𝑣𝑂2) (19) 

Diffusion in tissue: 

 𝑀̇𝑂2 = (𝐾𝑡 ∙
𝐴𝑡

𝑙𝑡
) ∙ (𝑃𝑎𝑂2 − 𝑃𝑡𝑂2) (20) 

where V̇w is water flow (mL water) across the gills per unit time, PO2 is O2 pressure6, A 

is diffusion area, l is diffusion distance, K is Krogh’s diffusion constant, Q̇ is cardiac 

output, and βO2 is the O2 capacitance coefficient (βO2 = dCO2/dPO2, i.e., the change in 

O2 concentration (mL O2/mL blood·mmHg) with respect to change in O2 pressure 

(mmHg).  The sub-scripted indices refer to the following: w (water), I (inspired), E 

(expired), g (gill tissue), v (venous blood), a (arterial blood), b (blood, general), and t 

(tissue). 

Equations (17) and (18) are used “as is” in RMD; these calculations provided 

V̇O2 results which were converted to ṀO2 by multiplying the V̇O2 value by the 

conversion factor of 1.42857 mg O2/mL O2 at standard temperature and pressure. 

Equation (19) was modified for use in RMD as shown in equation (21).   

 𝑉̇𝑂2 = 𝑄̇ ∙ 𝐶𝑎𝑂2 (21) 

 

 

6 Gases dissolved in liquid do not exert pressure, the correct term being tension (Schmidt-Nielsen 

1997); but, pressure is often used by convention. 
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In this variation, the estimate of arterial blood oxygen concentration (CaO2), in 

mL O2/mL blood, is substituted for the value obtained from βaO2·(PaO2 – PvO2).  The 

rationale for this is presented in the Blood Oxygen Transport section.   

The tissue diffusion equation (20) is not used in the model; the assumption being 

that generalized ṀO2 applies equally to all tissues.  This is a concession to the very 

daunting challenge of trying to model O2 diffusion across the myriad of variable 

capillary surface areas and diffusion distances of the different tissues found in the organs 

of all complex organisms.  However, the estimated ṀO2 can be used in a growth model 

such as E.F to determine the maximum available oxygen supply per gram of tissue for 

metabolism. 

The four-step approach described by Jensen et al. (1993) is by no means 

definitive.  It does, however, establish a sequential approach, with each step dependent 

up the step before it.  In other words, each step is rate-limiting for each subsequent step.  

As the first step, Ventilation then becomes the primary rate limiter.  Each subsequent 

step cannot exceed the amount of O2 obtained from Ventilation unless a supplemental 

means of O2 is available, which for many fish (particularly flatfish) is possible through 

cutaneous respiration (Kirsch and Nonnotte 1977, Steffensen et al. 1981, Feder and 

Burggren 1985 Nov 1, Rombough and Moroz 1997, Rombough 1998, Glover et al. 

2013).   

This observation creates the necessity of adding a cutaneous respiration model to 

RMD to accurately represent the total ṀO2 available to the SFL.  Subsequently, RMD 

again becomes a four-component model, with equations (17), (18), and (21) comprising 
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the core cardiorespiratory components of RMD along with the introduction of a 

supplemental cutaneous diffusion which adds a non-ventilation-limited component.  This 

modification is schematically represented in Figure 21 where O2 flow from the 

environment to the tissues is defined by the model’s three cardiorespiratory components 

(Ventilation, Gill Diffusion, and Blood O2 Transport) and the Cutaneous Diffusion 

component. 

 

 

Figure 21.  Schematic of cardiorespiratory module with gill and cutaneous 

respiration.   
*Tissue Diffusion is not a component of RMD but is shown for clarity.  See main text for details. 

 

Ventilation 

The ventilation model (equation 17) contains four variables—ventilation volume 

per unit time (V̇w), the capacitance coefficient for O2 in water (βwO2), the O2 tension of 

water entering the gill exchanger of the fish (PIO2), and the O2 tension of water exiting 

the operculum (PEO2).  The PIO2 and PEO2 differential represents the O2 extraction 

efficiency (Steffensen et al. 1982, Capossela et al. 2012) and will thus be discussed in 
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this context.  The derivation of V̇w is via the product of ventilation volume, a function of 

the buccal cavity volume and ventilation rate. 

Ventilation Volume 

Movement of water past the gills in flounder is similar to that in most fish 

involving water drawn into the buccal cavity, pushed over the gills and into the opercular 

cavity where it is expelled back out into the environment, with the exception that in 

resting flatfish water is expelled solely from the upper operculum (Yazdani and 

Alexander 1967).  The maximum volume of water drawn into the buccal cavity is 

determined by the maximum volume of the buccal cavity itself; however, resting 

ventilation volume tends to be less than the maximal volume as indicated by the ability 

of flatfish to increase ventilation volume under hypoxic conditions (Watters and Smith 

1973, Kerstens et al. 1979, Steffensen et al. 1982, Tallqvist et al. 1999). 

Reports of mean normoxic resting flatfish ventilation stroke volumes range from 

a low of 0.00265 mL water/g fish·stroke in Starry Flounder (Wood et al. 1979a) kept 

between 7.5 to 10°C, up to an average of 0.004 mL water/g fish·stroke in European 

Flounder at 10°C (Kerstens et al. 1979, Steffensen et al. 1982).  When European 

Flounder were exposed to acute hypoxic water with a PO2 of 30 mmHg (Kerstens et al. 

1979) and 40 mmHg (Steffensen et al. 1982), the ventilation volume doubled.  European 

Flounder acclimated to hypoxia and exposed to a PO2 of 30 mmHg had breathing 

volumes almost three times that of normoxic flounder at rest (Kerstens et al. 1979). 

Temperature effects on ventilation volume have been reported in flatfish by 

Watters and Smith (1973).  However, the authors do not distinguish between volume 
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increases due to increased stroke volume versus increased ventilation rate which, as will 

be discussed, does change with temperature.  Effects of temperature on ventilation stroke 

volume have been studied in Common Carp Cyprinus carpio (Klyszejko et al. 2003).  In 

the carp study, ventilation stroke volume was assessed from 10 to 25°C.  Ventilation 

stroke volume increased from 10 to 20°C but there was no difference in volumes at 20 

and 25°C, suggesting an upper-temperature limit of ventilatory stroke volume.    

Ventilation Rate 

The ventilation rate in fish also responds to water PO2 and temperature 

(Steffensen et al. 1982, Tallqvist et al. 1999, Maxime et al. 2000, Capossela et al. 2012).  

The most common method mentioned in the literature for determining ventilation rates 

in fish is to count the number of opercular movements per minute.  For temperature 

acclimated flounder in normoxic water, ventilation rates can be quite variable.  In the 

study by Wood et al. (1979b), the reported mean ventilation rate was 41.7 ± 1.6 beats per 

minute (bpm) in Starry Founder acclimated to between 7.5 to 10.5°C and salinity of 26 – 

29 ppt.  In the study by Steffensen et al. (1982), the average respiration rates in European 

Flounder and Plaice raised at 10°C, salinity 20 ppt, was 30 bpm and 25.5 bpm.  Contrast 

this with the findings of Tallqvist et al. (1999) who, for juvenile European Flounder 

(mean TL = 40 mm) acclimated at 13°C and salinity 5.0 ppt, reported normoxic 

ventilation rates of 79 ± 11 bpm in their control group and 87 ± 10 bpm in their 

experimental group.  The most obvious difference among these three studies was that 

Tallqvist et al. (1999) evaluated juvenile fish, while the other researchers evaluated adult 

fish.  This suggests that flounder respiration rate may have an inverse relation to fish 
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weight, with ventilation rate declining as total buccal volume increases with increased 

body weight.  Literature support for this hypothesis within flatfish was not available.  

Still, weight-related negative-exponential declines in respiratory rate have been observed 

in Stoplight Parrotfish Sparisoma viride (Van Rooij and Videler 1996) and Nile Tilapia 

Oreochromis niloticus (Yamamoto 1992, Barreto and Volpato 2006).  In contrast, 

ventilation rates in the Common Carp are not affected by weight (Yamamoto 1991, Luo 

et al. 2020).   

Ventilation-rate response to PO2 changes within flounder is well substantiated 

(Kerstens et al. 1979, Steffensen et al. 1982, Tallqvist et al. 1999, Capossela et al. 2012).  

The reported ventilatory response within flounders is for ventilation rate to increase as 

PO2 declines (Steffensen et al. 1982, Capossela et al. 2012), or remain relatively stable 

until reaching an upper hypoxic threshold at which point ventilation rates increase then 

plateau before declining (Tallqvist et al. 1999).  Eventually, however, once a minimal 

hypoxic threshold is reached, ventilation rate starts to decline (Steffensen et al. 1982, 

Tallqvist et al. 1999, Capossela et al. 2012).  The exact PO2 at which this occurs has 

some variability, with reported values ranging from 60 mmHg (Steffensen et al. 1982) to 

32 mmHg (Tallqvist et al. 1999), although it is possible for this threshold is even lower 

as some data ends at about 30 mmHg without indication of decline (Capossela et al. 

2012). 

Ventilation Flow 

Temperature and PO2 significantly impact V̇w in fish, although there is variation 

across species (Dejours et al. 1977, Steffensen et al. 1982, Capossela et al. 2012).  
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Unlike land vertebrates, which use PCO2 as the primary physiological driver of 

respiration, fish respiration is PO2-dependent.  So much so that while hyperoxia (i.e., 

PO2 greater than normal) has little effect on land vertebrate respiration, it suppresses fish 

respiration (Dejours et al. 1977).   

The effect of lowered temperature and PO2 is to increase V̇w and, with more 

pumped water over the gills to maintain the PO2 to meet metabolic demand.  In a study 

conducted by Capossela et al. (2012), the V̇w for two groups of Summer Flounder 

Paralichthys dentatus was measured at various PO2 levels after the two groups were 

acclimated to 22°C and 30°C, respectively.  Within the 22°C-acclimated group, V̇w 

increased five-fold, from approximately 10 mL water/g fish·h at a PO2 of 140 mmHg to 

50 mL water/g fish·h when PO2 was 30 mmHg, following a pattern of increasing V̇w 

with falling PO2.  For the 30°C acclimated group, the response trend was similar:  The 

effect of increased temperature was to increase the initial ventilation rate so that at a PO2 

of 140 mmHg the resting V̇w was about 20 mL water/g fish·h, rising to about 60 mL 

water/g fish·h when PO2 fell to 46 mmHg (the lowest PO2 for this group).  The trend of 

increased V̇w with decreased PO2 is supported by the studies of Steffensen et al. (1982) 

and Watters and Smith (1973).  Steffensen et al. (1982) observed similar responses in 

10°C-acclimated European Flounder and Plaice, although the V̇w maxima and minima 

were less than the corresponding rates reported by Capossela et al. (2012), ostensibly 

due to the lower temperature.  However, there does appear to be some nuance in the 

relationship between temperature and oxygen level.  In a study using anesthetized Starry 

Flounder by Watters and Smith (1973), the flounder were acclimated to temperatures 
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ranging from 9°C to 20°C, then evaluated at oxygen pressures ranging from 155 mmHg 

to 58 mmHg.  As with the other studies cited, the general trend was a higher V̇w with 

increased temperature when the PO2 was maintained above 120 mmHg.  For hypoxic 

PO2 values, the effect of temperature on V̇w was greater than that seen under normoxic 

conditions, although temperature still had an effect.  For example, at 9°C, the hypoxic 

V̇w value was greater than for the normoxic condition at the same temperature.  At 

higher temperatures, however, V̇w was suppressed under hypoxic conditions. 

Oxygen Capacitance 

The O2 capacitance coefficient (βO2), is the ratio of DO (mg O2/L water) to PO2 

(mmHg) in water (equation 22).  It is an expression of Henry’s Law of solubility (Welch 

1985).   

 𝛽𝑤𝑂2 =
𝐷𝑂

𝑃𝑂2
 (22) 

where βwO2 is expressed in mg O2/L water·mmHg, which can be converted to mL O2/L 

water·mmHg by multiplying the result by 0.7 mL O2/mg O2. 

Calculating βwO2 is a simple matter once DO and PO2 are known.  Oxygen 

pressure can be easily calculated as the product of the oxygen fraction (FO2) in the 

atmosphere (currently at 0.209) and the total barometric pressure (760 mmHg at sea 

level and 15°C) (Welch 1985), although other factors like water vapor pressure can 

influence the total PO2 over the water (Schmidt-Nielsen 1997).  Oxygen tension in the 

water can be influenced by oxidative chemical reactions, consumption by 

microorganisms, and production of O2 by photosynthetic microorganisms (Willmer et al. 

2005).   
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Dissolved Oxygen Estimation 

Calculating DO is complex, with “best-fit” polynomial formulae often used to 

account for the interactions of PO2, temperature and salinity (Green and Carritt 1967, 

Benson and Krause 1984, Sherwood et al. 1991).  Although the choice of a particular 

“best fit” DO formulation may be subject to differences of opinion, a selection must 

nonetheless be made.  RMD uses the algorithm developed by Green and Carritt (1967), 

which accounts for temperature, salinity, and atmospheric pressure.  The DO range for 

various temperatures and salinities at standard sea level atmospheric pressure of 760 

mmHg is shown in Figure 22.  The figure shows that increased water temperature has a 

significant negative impact on steady-state DO, averaging a decrease of slightly more 

than 1 mg O2/L water for every 5°C increase in water temperature over the temperature 

range usually encountered by SFL.  Increasing salinity decreases DO as a function of 

temperature.  The decline in DO between a liter of freshwater (salinity 0 ppt) and 

seawater (salinity 35 ppt) at 5°C is a delta of about 3 mg O2/L water while at 25°C the 

delta is approximately 1 mg O2/L water.  Reduced barometric pressure has the effect of 

lowering the overall estimated DO values, although the difference in DO between a 

barometric pressure of 760 and 750 mmHg is only about 0.1 mg O2/L water (barometric 

effects are not shown in Figure 21). 
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Figure 22.  Effect of temperature and salinity on DO. 
Based on the Green and Carritt (1967) algorithm at a barometric pressure of 760 mmHg. 

 

Extraction Efficiency 

Flatfish ventilation is affected by their benthic-adapted morphology.  Water 

drawn in through the mouth does flow over both sets of gills, as in all fish.  Water flow 

over the lower gills is normally routed and expelled through the upper opercular 

opening, although water can still be expelled through the lower operculum, especially 

during times of high respiratory demand (Yazdani and Alexander 1967).  This 

arrangement does not appear to limit flounder oxygen uptake.  As Watters and Smith 
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(1973) report, the extraction efficiency of oxygen, calculated as the difference between 

the PIO2 and PEO2, in the Starry Flounder was markedly better than the extraction 

efficiency of Rainbow Trout Oncrhynchus mykiss.  For the trout exposed to a PIO2 of 

150 mmHg, the PEO2 was approximately 90 mmHg, giving a 40% extraction efficiency; 

whereas, the flounder had a PEO2 of about 40 mmHg, for a 73% extraction efficiency.  

In both species, Watters and Smith (1973) report that O2 extraction efficiency decreases 

somewhat as PIO2 begins to decline, suggesting no compensatory respiratory response 

occurs during the initial onset of hypoxia and suggesting that in both species an inherent 

initial tolerance to hypoxia may exist.  However, once past each species’ specific 

threshold, extraction efficiency appears to improve (though not to normoxic levels) as 

physiological equilibration occurs.  Curiously, this brief decline in extraction efficiency 

is not reported by Steffensen et al. (1982) in the European Flounder or Plaice.  Their data 

suggest a steady decline in extraction efficiency consistent with the decline in PIO2.  

However, in fairness to Watters and Smith (1973), Steffensen et al. (1982) did not 

measure PIO2 values in the 120 to 130 mmHg range within which Watters and Smith 

detected this anomaly.  The Steffensen et al. (1982) study skipped PO2 measurements for 

the interval from 140 mmHg down to just under 100 mmHg. 

Diffusion Across Gills 

The gill diffusion equation (18) is an applied version of Fick’s Law of Diffusion 

which models ṀO2 across a membrane.  The membranes in question for gill respiration 

are the gill epithelial and capillary endothelial cells that separate the oxygenated water 

from the blood (Dejours 1981, Shelton 1992).  Membrane conductance processes and 
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variables for the equation affecting O2 movement are Krogh’s constant (Kg), gill area 

(Ag), and diffusion distance (lg).  The O2 tension differential is determined by the 

difference between the water's oxygen pressure (PwO2) and the pressure of O2 in the 

venous blood (PvO2).   

Diffusion of O2 across the gill is facilitated by the use of countercurrent exchange 

wherein water flow over the gills is in opposition to blood flow through the lamella 

capillaries (Jones et al. 1970, Hughes and Morgan 1973, Evans et al. 2005), a method of 

O2 extraction that is exceptionally efficient (Kamiya and Yamamoto 2019).  Modeling of 

gill countercurrent O2 exchange, though an extensive and vibrant area of research (Piiper 

1982, Malte and Weber 1985, Malte 1992, Kamiya and Yamamoto 2019), is not 

included in RMD for the simple reason that while countercurrent exchange modeling 

approximates V̇O2 across the gills, this process occurs in seconds, while RMD estimates 

V̇O2 across the gill on an hourly basis.  Gill diffusion in RMD is thus an estimate of 

hourly gill V̇O2 capacity, rather than a direct estimate of V̇O2. 

Krogh’s Constant 

Krogh’s constant, named after Danish physiologist August Krogh, is the product 

of the aforementioned O2 capacitance (or solubility) coefficient (βO2) through a 

substance (i) and the O2 diffusion coefficient (DO2), which is a measure of the average 

amount of O2 moving through a given area (typically cm2) of the substance per unit time 

(Cameron 1989) as described in equation (23).   

 𝐾𝑖𝑂2 = 𝛽𝑖𝑂2 ∙ 𝐷𝑖𝑂2 (23) 



 

92 

 

When calculating KO2, the obvious assumption is that βO2 and DO2 would 

pertain to the same substance.  In a simple model, such as the diffusion of a gas through 

a single medium like a cell membrane or gel barrier, this would be the case.  However, 

when modeling the flow of a gas molecule through organic tissue, the situation is more 

complicated as gas solubility and diffusivity differ between the two substances 

constituting the primary solvents in animal tissue: water and lipids.  Water constitutes 

the bulk of the extracellular and intracellular medium with lipids making up the bulk of 

cellular membranes (Cameron 1989).   

Oxygen is less soluble in water than in lipids (Battino et al. 1968, Windrem and 

Plachy 1980) with the measured βO2 in olive oil and water at 25°C recorded at 0.116 and 

0.0263 mL O2/mL water·mmHg, respectively (Battino et al. 1968).  Phospholipid 

membranes do not of themselves present a significant resistance to O2 diffusion; instead, 

it is the presence of other molecules, particularly cholesterol, which can create barriers to 

O2 diffusion (Subczynski et al. 1989, Subczynski et al. 1992, Subczynski and 

Wisniewska 2000).  When non-miscible solvents such as water and a lipid membrane are 

in contact, and at equilibrium, the ratio of the O2 dissolved in the lipid to the amount 

dissolved in water (i.e., βlO2/ βwO2) is known as the “partition coefficient” or the 

“distribution coefficient” (Kwon 2007).  The partition coefficient for the Battino et al. 

(1968) data, 0.116/0.0263, produces a value of 0.44.  The significance of the partition 

coefficient is its utility as a corrective factor for the estimation of DO2.   

Unlike βwO2, which can be calculated, DtO2 can be determined only through 

experimentation.  Another important factor to consider is that DO2 is temperature 



 

93 

 

dependent; so, in theory, experimental values would need to be determined across a 

range of temperatures, making estimation of DtO2 a potentially complicated process.  

Due to the complexity of determining molecular flux across micron-thick membranes 

using different membrane types, there is often much variability in reported diffusion 

rates, sometimes as many as four orders of magnitude (MacDougall and McCabe 1967).   

Sidell (1998) reported that for the aerobic skeletal muscle in two groups of Striped 

Bass Morone saxatilis acclimated to 5 and 25°C, the measured average DO2 values 

obtained by were 2.57 X 10-6 cm2/s and 2.5 X 10-6 cm2/s, respectively.  These values are 

remarkably similar despite there being a 20°C difference in temperature.  Early use of 

these values in the RMD proved insufficient to account for known temperature effects on 

membrane diffusion.  Although some tissues like muscle may have evolved the capacity 

to alter membrane properties as an acclimation response to varying temperature, the 

reported values are not in agreement with other sources such as Fischkoff and 

Vanderkooi (1975) who report a more than two-fold increase in measured diffusion rates 

in erythrocyte plasma membranes at 25°C (2.2 X 10-5 cm2/s) and 45°C (4.9 X 10-5 

cm2/s).  The diffusion rates reported by Fischkoff and Vanderkooi (1975) are about ten 

times higher than the diffusion rates reported by Sidell (1998).  These values are also 

much greater than the diffusion rates reported by Krogh (1941), who gave the respective 

diffusion rates of O2 at 20°C through muscle and connective tissue to be 2.3 X 10-7 cm2/s 
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and 1.83 X 10-7 cm2/s.7  Krogh’s slower rates of diffusion could be due to his method of 

sample preparation in which the sample tissue may have been damaged as there is some 

speculation that in healthy tissue mitochondrial oxygen consumption creates a “pumping 

action which promotes microturbulence of the cell protoplasm” (MacDougall and 

McCabe 1967).  Extensive human biomedical research regarding O2 diffusion rates at 

37°C produces rates of 1.0 X 10-5 cm2/s for connective tissue (Weibel 1984), 7.0 X 10-6 

to 2.0 X 10-5 cm2/s for small-intestine submucosa, and 1.9 X 10-5 to 3.1 X 10-5 cm2/s for 

the acellular tissue matrix Alloderm® (Androjna et al. 2008).  The nearly threefold 

difference in diffusion rates at a fixed temperature from small intestine-submucosa data 

published by Androjna et al. (2008) demonstrates the variability and difficulty in 

establishing representative diffusion rates for any given tissue. 

For modeling purposes, the study by Fischkoff and Vanderkooi (1975) of DO2 

across erythrocyte membranes at 25, 28, 37, and 45°C provided the most comprehensive 

data for use in the RMD.  Because the equilibrium O2 concentration would be greater 

within the cell membrane than in the more aqueous cell interior, it would impact the 

overall DO2 through the cell membrane; therefore, Fischkoff and Vanderkooi (1975) 

divided their initial results by the Battino et al. (1968) partition coefficient of 4.4, with 

the understanding that due to limited data it is not known if this coefficient holds across 

all temperatures and membrane types.  The partition coefficient values are supported by 

 

 

7 Values were converted from Krogh’s 1941 text values for diffusion which are in cm2 per minute 

rather than per second. 
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Windrem and Plachy (1980) who measured diffusion through phosphatidylcholine 

bilayers from 20 to 80°C.  Diffusion rates at 20°C were determined to be between 1.0 X 

10-6 cm2/s and about 1.6 X 10-6 cm2/s with long-chain phospholipids having higher rates 

of diffusion (Windrem and Plachy 1980). 

As the actual [O2] in the cell membrane and the interior of the cell are not in 

equilibrium, use of the partition coefficient DO2 values in the RMD might not be exact.  

Still, without more definitive data from other sources, these data were accepted and used 

to calculate DO2 in RMD.  Using the Fischkoff and Vanderkooi (1975) data, values were 

plotted and fit to an exponential curve as shown in Figure 23.  An exponential curve was 

determined to be the best fit and is consistent with other data for O2 diffusion in water 

(Dejours 1979) and phosphatidylcholine bilayers (Windrem and Plachy 1980). 
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Figure 23.  Plot based on erythrocyte plasma membrane diffusion rates and 

temperature as reported by Fischkoff and Vanderkooi (1975).   
Data fit with exponential empirical curve (DO2 = 0.0064e0.04·T) by temperature.  Oxygen diffusion rate 
converted to (cm2/h). 

 

Having established a representative value for βiO2 and DiO2, along with their 

caveats, the Krogh constant could be obtained.  Within RMD, the units used are mL 

O2/cm·hr·mmHg. 

Gill Surface Area Estimation 

Measuring gill surface area involves the tedious process of dissecting out the gill 

arches of a fish, counting the number and average length of gill filaments, obtaining the 

average number of lamellae per filament then obtaining the average lamellar surface 
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area using a microscope and camera lucida (Gray 1954).  Through a commendable 

effort, Gray (1954) obtained reasonable allometric estimates of gill surface areas per 

gram of body weight for 31 species of fish, including three flatfish species: Sand 

Flounder Lophopsetta maculata, Winter Flounder Pseudopleuronectes americanus, and 

Summer Flounder.  Given that SFL are within the same genus as the Summer Flounder, 

values for Summer Flounder were used for the development of RMD under the 

assumption that SFL gill surface-area relationships would be comparable.  Gray’s 

estimates for the Summer Flounder were based on an analysis of five fish with an 

average weight of 766 grams.  Results were an average gill area/g fish of 242 square 

millimeters (mm2), with maximal and minimal ranges of 328 mm2 and 206 mm2.  The 

242 mm2 was used in RMD as the average gill surface area but converted to 2.42 cm2/g 

fish for ease of calculation with other model components. 

The question as to whether the gill surface area to body weight scaling 

relationship remains constant over the lifecycle of the flounder is difficult to answer due 

to limited specific data.  A review of allometric scaling in fish and other species’ 

respiratory surface areas by Schmidt-Nielsen (1984) suggests a linear relationship when 

weight is scaled logarithmically.  The problem with logarithmic scaling is that 

differences at smaller scales are difficult to see as they get smoothed out in relation to 

the overall grand scale of such analyses.  For example, a study by Oikawa and Itazawa 

(1985) evaluating the Common Carp Cyprinus carpio showed that the gill and body 

surface area in relation to body mass had a “triphasic allometry” difference between pre-

larval (0.0016 to 0.003 g), post-larval (0.003 to 0.2 g) and juvenile and larger (> 0.2 g) 
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stages with allometric growth slopes of 7.066, 1.22 and 0.794 for each stage, 

respectively.  The pre-juvenile growth slopes indicate that gill area growth is very rapid 

early in Carp development; however, a greater gill growth rate does not necessarily 

mean an increase in gill O2 diffusion capacity as gill capillary development (i.e., 

perfusion) may not be complete.  Although there are no conclusive data that differences 

in allometric growth occur in SFL, these observations give a reason to carefully consider 

the accuracy of gill area estimates, and hence diffusion capacity, for SFL below 1 g.  

However, as SFL below 1g appear to obtain a large percentage of their O2 through 

cutaneous diffusion, as do many fish in the larval stages of development (Oikawa and 

Itazawa 1985), differences in O2 contribution by the gills at this development stage may 

not significantly impact overall V̇O2. 

Gill Diffusion Distance 

The gill diffusion length, lg, is the membrane distance separating the oxygenated 

water from the red blood cells within the lamellar capillaries.  The distance varies, with 

hypoxia intolerant species having short diffusion distances, e.g., 5 μm, while hypoxia 

tolerant species have longer distances, e.g., 10 μm (Perry and Gilmour 2010).  This 

contrasts with Randall (1970), who reported gill epithelial thickness as typically between 

1 to 5 μm.  Since oxygen must pass through both gill and capillary cell membranes, and 

assuming capillary endothelial thickness is comparable to that of gill epithelium, the 

combined diffusion distance will be at least 2 to 10 μm and within the range reported by 

Perry and Gilmour (2010).  Since the actual lg for SFL is unknown, a value of 5 μm was 

chosen for RMD. 
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Cutaneous Diffusion 

The role of cutaneous diffusion as an auxiliary mechanism for increasing ṀO2 

independent of the respiratory system has been well established for flatfish (Kirsch and 

Nonnotte 1977, Nonnotte and Kirsch 1978, Dejours 1979, Steffensen et al. 1981).  The 

process by which O2 traverses the skin of the fish to the internal environment follows the 

pattern outlined in the gill diffusion equation (18); the only change required is to alter 

the sub-scripted indices from gill (g) to cutaneous (c): 

 𝑀̇𝑂2 = (𝐾𝑐

𝐴𝑐

𝑙𝑐
) ∙ (𝑃𝑤𝑂2 − 𝑃𝑣𝑂2) (24) 

As in the gill, K is Krogh’s diffusion constant for cellular membranes, the value 

of which is assumed to be the same as for gill.  The values for PwO2 and PvO2 in equation 

(24) also carry over from the gill equation as O2 diffused through the skin is assumed to 

ultimately be integrated into the bloodstream, making PvO2 the lowest representative O2 

pressure for determining the pressure differential.  It is recognized that this concession is 

not an accurate accounting because some of the O2 diffused into the skin is consumed by 

the cutaneous tissue itself.  In some fish species, the cutaneous-sourced ṀO2 is reported 

to be exclusively consumed by the skin while in other species, including flounder, there 

is a reported net inward flux of O2 (Nonnotte and Kirsch 1978) beyond the skin, though 

some cutaneous O2 very likely is consumed by skin tissues as well.  Nevertheless, any 

influx of O2 contributes to the whole organism’s metabolic scope. 

Where cutaneous values differ, and quite significantly, relative to those of the 

gills, are the cutaneous surface area (Ac) and diffusion distance (lc).  As a respiratory 

organ, the gill has undergone selective evolutionary pressures that have induced 
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morphological changes in the lamellae conducive to increasing surface area and reducing 

diffusion distance, with variances reflective of each species' environment (Hughes 1972, 

Hughes and Morgan 1973).  Such adaptions result in rather delicate tissues protected by 

the opercula.  On the other hand, skin and scales provide protection from the external 

environment.   

The use of the skin as a site for respiration is strongly dependent on the thickness 

of the integument, which greatly affects the level of gas permeability and perfusion rate.  

Within vertebrates, cutaneous respiration is particularly significant in amphibians that 

have evolved highly vascularized and thin skin that in some species provides up to 100% 

of O2 supply (Krogh 1904, Feder and Burggren 1985 Nov 1).  Fishes, on the other hand, 

vary considerably in their use of skin respiration.  Fish that have been shown to use 

cutaneous O2 supplementation include Shanny Lipophrys pholis, Five-bearded Rockling 

Ciliata mustela, Butterfish Pholis gunnellus, Atlantic Cod Gadus morhu, Mudskipper 

Periophthalmus modestus, European Flounder, Common Sole, and the air-breathing 

swamp eels of the order Synbranchiformes.  Even in these groups, cutaneous respiration 

primarily serves to supplement O2 supply to the tissue and not as the primary O2 source 

(Nonnotte and Kirsch 1978, Feder and Burggren 1985 Feb, 1985 Nov 1, Graham et al. 

1987).  A possible exception are scale-less eels whose skin appears to better facilitate 

cutaneous respiration (Nonnotte and Kirsch 1978).  In many scaled fish species with 

cutaneous respiration, high skin capillary density is common and serves to offset the 

reduced diffusion capacity caused by the scales (Feder and Burggren 1985 Feb).  

Whether or not increased cutaneous capillarity is present in SFL is as yet undetermined.  
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Within flatfish, O2 flux through the skin always appears to be less than that 

obtained through the gill.  For example, in Plaice weighing 230 to 500 g, Steffensen et 

al. (1981) reported that under normoxic conditions (PO2 = 153 mmHg), cutaneous 

respiration accounts for approximately 27% of total V̇O2.8  This lower V̇O2 compared to 

that for the gills is because diffusion distance across the skin (lc) is considerably greater 

and diffusion area (Ac) considerably less than for the gill.  Another factor not readily 

apparent is that while the skin surface area of flatfish increases with body size, a net 

benefit to diffusion, so does skin thickness (Burton et al. 1984), limiting diffusion.  This 

dynamic has been observed in the Marbled Swamp Eel Synbranchus marmoratus and 

leads to a decline in cutaneous ṀO2 as the fish grows (Graham et al. 1987). 

Flounder offer the added complication of differing skin thickness between the 

upper (eye side) and lower (blindside) surfaces, with the lower surface having thicker 

skin than the upper.  For example, for a 250-g Winter Flounder, the upper surface skin 

thickness is between 40 to 50 μm while the lower surface thickness is around 55 μm 

(more than ten times the thickness of lamellae).  For a 1000-g flounder, the values rise to 

about 55 μm for upper and 85 μm for lower surfaces (Burton et al. 1984).  Thus, as 

Winter Flounder grow, cutaneous diffusion becomes more rate limited. 

The impact of growth on skin surface area available for diffusion is generally 

positive; however, the overall diffusion efficiency declines with growth, primarily 

 

 

8 Interestingly, their data suggests that cutaneous V̇O2 is relatively greater under hypoxic 

conditions, with the skin contributing about 37% of total V̇O2 at an ambient PO2 of 40 mmHg. 
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because body surface area increases only by 2/3 that of increasing body mass (Mb) 

following the Surface Law shown in equation (25).  Consequently, as overall tissue mass 

increases, which requires proportionally more oxygen, the rate of cutaneous O2 diffusion 

across the skin cannot keep pace. 

 𝐴𝑐 = 𝑘𝑀𝑏
2/3

 (25) 

 This formula, first described by Meeh (1879), uses the coefficient k (sometimes 

called the Meeh coefficient) to account for differences in animal shape and density 

(Calder 1984, Schmidt-Nielsen 1984).  For most animals, the value of k is estimated to 

range between 8 and 12; these values reflect that the majority of animals are essentially 

“round.”  Schmidt-Nielsen (1984) reports that the Meeh coefficient for typical fish is 

about 10.  The Meeh coefficient for flatfish does not appear to have been of sufficient 

interest ever to have been estimated (nor at least published).  More “flat” animals such as 

the bat and sugar glider are reported to have k values of 57.5 and 25.7, respectively, due 

to their flying membranes’ large surface area.  This idea encourages conjecture that 

flatfish morphology would itself support the case for an increased k value.  Nevertheless, 

based on methods used to calculate a flounder’s surface area (see below), the predicted k 

value for flatfish is also about 10.    

The impact of the Surface Law can be represented by substituting Ac in equation 

(24) with equation (25). 

 𝑀̇𝑂2 = (𝐾𝑐 ∙
𝑘𝑀𝑏

2/3

𝑙𝑐
) ∙ (𝑃𝑤𝑂2 − 𝑃𝑣𝑂2) (26) 
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As can be ascertained from equation (26), the declining surface area with 

increased body mass is further degraded as skin thickness increases with increased body 

mass.  The relationships of Mb to upper and lower epidermal thickness are described by 

Burton et al. (1984) as linear relationships with positive slopes as shown in equations 

(27) and (28).   

Estimates from Burton et al. (1984) are, for mean upper surface epidermis (in 

μm) 

 𝑙𝑢𝑝𝑝𝑒𝑟 = 0.0198𝑀𝑏 + 35.7 (27) 

; and, for mean lower surface epidermis (in μm) 

 𝑙𝑙𝑜𝑤𝑒𝑟 = 0.04886𝑀𝑏 + 43.1 (28) 

These can be expressed symbolically, substituting the numerical values with the 

standard symbols for slopes as m and intercepts as initial skin thickness, l0: 

 𝑙𝑐 = 𝑚𝑀𝑏 + 𝑙0 (29) 

Substituting equation (29) into equation (26), ṀO2 from cutaneous diffusion can 

be expressed as a function of Krogh’s coefficient, mass, and PO2 differential: 

 𝑀̇𝑂2 = (𝐾𝑐 ∙
𝑘𝑀𝑏

2/3

(𝑚𝑀𝑏 + 𝑙0)
) ∙ (𝑃𝑤𝑂2 − 𝑃𝑣𝑂2) (30) 

 The relevance of equation (30) is that it demonstrates that cutaneous ṀO2 

efficiency can be expressed as being reliant upon body-mass-dependent surface area.  

Consequently, as a flounder’s skin thickens with growth, cutaneous O2 diffusion 

becomes less efficient.  Cutaneous respiration in flounder may represent a spectrum, 

similar to the “triphasic allometry” in Common Carp gill surface area and mass reported 
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by Oikawa and Itazawa (1985).  In that case, cutaneous ṀO2 in larvae and juvenile 

flounder augments total ṀO2 as the fish grows, eventually reaching an optimal lc and Ac 

ratio beyond which surface area growth is incapable of keeping pace with increased skin 

thickness, leading to a net decline in cutaneous supplementation to total ṀO2.  This 

proposition is supported by Graham et al. (1987) with the Marbled Swamp Eel, and by 

Rombough and Moroz (1997) with the larval Walleye Stizostedion vitreum , who report 

that cutaneous diffusion, “typically becomes limiting at a body mass of approximately 

100 mg.”  Given that Walleye appear to not rely on cutaneous diffusion beyond the 

larval stage, but flounder do, the threshold of optimal lc and Ac may be higher for 

flounder.  RMD may facilitate the resolution of this issue and help guide further study. 

Estimating Flounder Surface Area 

A fundamental problem with using the Surface Law to calculate the surface area 

for SFL is not knowing the value for Meeh’s constant (k), which, as mentioned, has not 

been experimentally determined.  Another concern with this methodology is that not all 

organisms’ surface area relationships necessarily follow the 2/3 power rule.  Lacking 

experimental data, the surface area for RMD was calculated using geometric estimations.   

The flounder body is essentially an ellipse with a tail, as shown in Figure 24.  

The surface area of SFL can be estimated by calculating the ellipse area corresponding 

to the fish’s body length and width. 
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Figure 24.  Estimation of flounder surface area using the ellipse. 
Source: NOAA Photo Library. 

 

The area for an ellipse is the product of pi (π) and the radii of the width (a) and 

length (b) of the ellipse. 

 𝐴𝐸 =  𝜋𝑎𝑏 (31) 

Like most fish, size data for SFL is most often reported as the total length (TL) 

from snout to end of the caudal fin.  To calculate the body surface area of an “elliptical 

fish” without the tail, a method was devised to convert TL measurements to body length 

(BL), or the length of the body minus the tail fin and caudal vertebrae (not to be 

confused with standard length which ends at the last tail vertebrae).  If BL, and hence 

long diameter of the ellipse (i.e., b2), is assumed to have an arbitrary value of 1, then the 

fin and caudal vertebrae length can be compared to BL.  From photographs of SFL, it 

was estimated that tail lengths average approximately 1/3 body length.  Therefore, the 
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total length of the SFL is roughly 1.3·BL.  The ratio of BL to TL = 1/1.3 = 0.77.  Body 

length of SFL can be roughly estimated from TL using the conversion equation (32). 

 𝐵𝐿 = 0.77 · 𝑇𝐿 (32) 

Once BL is determined, the radii width (a) and length (b) can be determined.  

The radius of the length is half the BL (½BL).  For a true ellipse, the radius of the width 

is half that of the length radius, making the width radius a quarter of BL (¼BL).  Thus, 

armed with only TL, a rough estimate of surface area for the SFL can be calculated by 

substituting equation (32) and appropriate ratio denominators into equation (31) to 

produce equation (33) for calculating the total surface area. 

 𝐴𝑆𝐹𝐿 = 2 (𝜋 ∙ [
0.77 ∙ 𝑇𝐿

2
] ∙ [

0.77 ∙ 𝑇𝐿

4
])  (33) 

 The calculated area of equation (33) must be doubled because SFL have two 

surfaces, upper and lower.   

To be sure, the total amount of estimated surface area for diffusion will be 

somewhat larger than calculated because the formula ignores the surface area of the tail 

altogether and also fin tissue.  This method also ignores the slightly increased surface 

area due to the body’s curvature, treating each side as a flat surface.  The measure, 

therefore, is a rough and conservative estimate of total surface area at best.   

Using equation (33), the estimated total surface areas based on TL for 777 SFL 

measurements at the MDC were calculated.  Total length estimates were then compared 

to the Surface Law estimates using the corresponding weight data from the MDC SFL 

data with a Meeh coefficient of 10 based on the value given for round fish by Schmidt-

Nielsen (1984).  The results are shown in Figure 25.  The power estimate of 0.69 from 
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the MDC data is close to the 2/3 (0.67) power estimate of Meeh (1879),while the Meeh 

coefficient of 9.88 for the MDC data indicates that SFL surface area coefficient aligns 

closely with the Meeh coefficient given by Schmidt-Nielsen (1984) for fish. 

The relation of weight to TL for appropriately nourished SFL is comparable to 

other flounder species as shown in Figure 13.  Therefore, this geometric estimation of 

surface area may be useful for calculating surface areas for other flounder species, 

should such need arise, providing they too have an ellipsoid morphology. 

 

 

Figure 25.  Comparison of surface law to geometric surface area estimates. 
SFL total length and weight data used for calculations based on 777 measurements collected from 2009 to 

2017 at the MDC, Corpus Christi, TX.  Surface Law Meeh coefficient of 10 based on fish estimates from 
Schmidt-Nielsen (1984). 
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Blood Oxygen Transport 

The blood oxygen transport formula shown in equation (21) models the flow of 

O2 as carried through the circulatory system via the blood after crossing the gill 

membranes.  While the gill formula describes the transitional movement of O2 from the 

external to the internal environment, the blood oxygen transport formula describes, at 

least in theory, the distribution of this O2 throughout the volume of the internal milieu.  

The conductance processes of this formula are Q̇ and arterial blood O2 concentration 

(CaO2). 

Cardiac Output (Q̇) 

The determination of metabolic oxygen consumption in flatfish is predicated on 

estimating oxygen diffusion and blood perfusion in the gills.  Perfusion is dependent 

upon cardiac output (Q̇, mL/min·kg), which is a function of heart rate (HR) and 

ventricular stroke volume (SV, mL/kg).  Determining Q̇ in fish often requires direct 

measurement of heart rate and blood flow out of the heart using a surgically implanted 

transonic blood-flow probe placed directly around the ventral aorta (Joaquim et al. 2004, 

Mendonca and Gamperl 2010), a delicate and difficult task. 

Allometric Estimation of Stroke Volume in Flatfish 

To estimate Q̇ for RMD, estimation of SV versus body size for SFL is required.  

As no method for SV estimation could be found in the literature and given the lack of 

access to specialists with the required skill set, and equipment, it was necessary to 

develop an indirect method to achieve this objective. 
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Schmidt-Nielsen (1984), citing data on heart size from 34 species of teleost fish, 

obtained the following equation for estimating heart mass (kg) where Mb is body mass in 

kg: 

 𝑀ℎ = 0.0022𝑀𝑏
1.026 (34) 

Thus, according to Schmidt-Nielsen, heart mass is about 0.22% of body mass, 

independent of body mass variation.   

The next step was to calculate ventricle mass (Mv) and from that, because 

ventricular volume determines stroke volume, to estimate the relationship between Mv 

and SV.  This task was achieved by using morphometric data from Joaquim et al. (2004) 

for two groups of Winter Flounder (one group raised at 4°C and the other at 10°C) to 

estimate the mean values of Mb, Ventricle mass (Mv), Q̇, HR, SV, and stroke volume per 

gram of ventricular mass (SVvm).   

 Heart mass can be estimated from equation (34) using mean body weights 

obtained from the two sample groups reported by Joaquim et al. (2004) at 4°C (n = 7, 

mean weight = 567 g or 0.567 kg), designated Mh4, and 10°C (n = 8, mean weight = 675 

g or 0.675 kg), designated Mh10.   Using the provided masses (in kg) gives the following 

estimates: 

 

 𝑀ℎ4 =  0.0022 ∙ 0.5671.026 = 0.00123 𝑘𝑔 = 1.23 𝑔 (35) 

 

 𝑀ℎ10 =  0.0022 ∙ 0.6751.026 = 0.00147 𝑘𝑔 = 1.47 𝑔 (36) 
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The next step was to estimate the percentage of Mh that is ventricular mass.  This 

step was achieved using equation (37): 

 % 𝑀𝑣 =
𝑀𝑒𝑎𝑛 𝑉𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑀ℎ
 ∙ 100% (37) 

Joaquim et al. (2004) estimated that mean Mv values for the 4 and 10°C groups 

were 0.28g and 0.34 g, respectively.  Using these values, the percent ventricular mass 

can be estimated: 

 % 𝑀𝑣4 =
0.28

1.23
 ∙ 100 =  22.8% =  ~23% (38) 

   

 
% 𝑀𝑣10 =

0.34

1.47
 ∙ 100 = 23.1% =  ~23% 

 

(39) 

These particular estimates show that the relationship of ventricular mass to heart 

mass is about 23% for both temperature groups independent of weight.  If this 

relationship is assumed to be valid across all weights, then Mv can be estimated as 

approximately 23% of total Mh for flounder as shown in equation (40). 

 𝑀𝑣 =  0.23𝑀ℎ (40) 

Using this estimate of ventricular mass, the next step was to determine the 

relationship between ventricular mass and ventricular stroke volume (SVm).  This value 

also could be estimated from SVm data obtained from Joaquim et al. (2004), who give the 

SVm mean values for the 4 and 10°C groups as 1.05 (±0.12) and 0.95 (±0.11) mL/g 

ventricle, respectively, or an average of about 1 mL/g ventricle.  Assuming a 1 mL/g 

ventricle output across all weights (and species), SVm can be converted from mL/g to 
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mL/kg by multiplying by 1000 g/kg.  Thus, the per-kg SV relative to Mv and SVm 

becomes: 

 𝑆𝑉 ≅ 𝑀𝑣(1000 ∙ 𝑆𝑉𝑚) (41) 

Simplified, SV (in mL/kg) becomes: 

 𝑆𝑉 ≅ 1000𝑀𝑣 (42) 

 Estimating stroke volume for a fish of specific body mass (SVb) is calculated by 

dividing (42) by the total body mass of the fish: 

 𝑆𝑉𝑏 ≅
1000𝑀𝑣

𝑀𝑏
 (43) 

Substituting the results from equation (40) for Mv and simplifying, SVb becomes: 

 𝑆𝑉𝑏 ≅
230𝑀ℎ

𝑀𝑏
 (44) 

Substituting equation (34) for Mh in equation (44) and simplifying, SVb becomes 

a function of Mb (kg) as shown in equation (45).  Thus SV may be calculated based 

solely on the mathematical ratio of the fraction of body mass that is Mv and total body 

mass: 

 Using the formula as a rough estimate and plotting stroke volume (mL/kg) 

against log10 weight (kg), a linear estimation of SV for flatfish in general vs. log weight 

can be generated (Figure 26). 

 𝑆𝑉𝑏 ≅
0.506𝑀𝑏

1.026

𝑀𝑏
 (45) 
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Figure 26.  Estimation of flatfish stroke volume (mL/kg) vs. log10 weight (kg). 
Based on equation (45). 

 

Comparison of Allometric SV Estimation to Literature Values 

Santer et al. (1983), directly measuring the body, heart and ventricle mass for 27 

European Plaice reported the percent heart to body mass ratio to be 0.06% (± 0.023%), 

almost four times less than the value obtained here based on the Schmidt-Nielsen (1984) 

estimate.  However, the Santer et al. (1983) estimate of the ventricle to heart mass ratio 

was 58.57% (± 11.5%), over twice the estimate obtained using the above calculations.  

More importantly, Santer et al. (1983) calculated the percent ventricle to body mass ratio 

to be about 0.035% (± 0.012%) producing an estimated SV of 0.35 mL for a 1 kg fish.   



 

113 

 

Other literature sources are somewhat more favorable to the allometric estimate.  

In the study by Mendonca and Gamperl (2010), two experimental groups of Winter 

Flounder were exposed to either 1) graded hypoxia (100% to 20% of air saturation) in 

sub-groups of 8°C and 15°C acclimated fish, or 2) acute temperature increase in 8°C 

acclimated fish with the temperature increased at 2°C per hour to a maximum of about 

26°C.  Blood flow was measured via cannulation of the caudal artery, and fish allowed 

to recover for 24 hours post-operation.  Resting SV in the graded hypoxia, 8°C group, 

was 0.51 mL/kg until DO fell to about 30% air saturation at which SV rose to an average 

of 0.74 mL/kg.  The graded hypoxia 15°C-acclimated fish were estimated to have a 

resting average SV of about 0.3 mL/kg which remained relatively unchanged even at 

20% air saturation.  The discrepancy between the allometric estimate and the literature 

value may, speculatively, be due to decreased cardiac demand in the 15°C acclimated 

group.  For the acute temperature increase group (n=8, mean mass 0.54 ± 0.05 kg), SV 

ranged between 0.3 to 0.35 mL/kg below 18°C.  Above 18°C, SV increased to 0.4 

mL/kg, with a maximum of 0.45 mL/kg at 26°C.  Mendonca et al. (2007), in a 

comparison of Winter Flounder cardiac performance to that of other species, indicated 

that fish acclimated at 8–10°C had an estimated resting SV of 0.21 (±0.09) mL/kg, and a 

maximum estimated  SV of 1.1 (±0.14) mL/kg.  However, in that study, resting SV was 

obtained in anesthetized fish and maximum SV determined by artificially increasing the 

pressure of returning blood to the heart.  A more realistic appraisal of the resting versus 

active swimming SV of Winter Flounder is provided by Joaquim et al. (2004), who 

directly measured SV via transonic blood flow meters implanted in Winter Flounder 
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acclimated at 4 and 10°C and allowed to recover from surgery before experimentation 

began.  Their results show that for resting flounder, SV averages 0.5 (±0.08) and 0.47 

(±0.05) mL/kg in 4 and 10°C acclimated fish, respectively.  During active swimming, 

Joaquim et al. (2004) report SV increased to 0.8 (±0.07) and 0.74 (±0.1) mL/kg in 4 and 

10°C acclimated fish, respectively.   

The SV estimation using the allometric method is close to the resting values for 4 

and 10°C-acclimated fish reported by Joaquim et al. (2004).  Results are also within the 

SV range for the graded-hypoxia 8°C-group of the Mendonca and Gamperl (2010) study 

but greater than their 15°C-graded hypoxia and acute-temperature-increase groups.  

Allometric SV estimates are much greater than those reported by Mendonca et al. 

(2007), but as they used sedated fish, this may have reduced SV output below that of 

non-anesthetized fish as suggested by the results of the other two studies.  Therefore, it 

may be prudent and conservative to consider SV’s allometric estimation as not 

representative of a truly resting SFL, a provision commensurate with RMD’s assumption 

that SFL will be primarily resting but will have brief periods of activity over the one-

hour interval simulated by the model. 

Activity, Temperature and Hypoxia Effects on Q̇ 

Activity increases metabolic demand and Q̇, each of which rises appropriately as 

swimming speed increases (Duthie 1982, Joaquim et al. 2004, Ohlberger et al. 2005).  

Interestingly, Satchell (1991) asserts that, with increasing Q̇ in fish, “Most of this 

increase is in stroke volume, little or none in heart rate.”  According to Satchell (1991), 

this is contradictory to what is seen in “higher” vertebrates.  While this may be true for 
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most fishes, flatfish may be an exception to this rule.  In the study by Joaquim et al. 

(2004), the 4°C- and 10°C-acclimated groups, when subjected to increased speeds by 

forced swimming showed an increase in Q̇, but this increase was due almost exclusively 

to an increase in HR.  Not surprisingly, the HR increase for the 10°C group was about 

1.6 times that of the 4°C group, highlighting the significance of temperature on Q̇ in 

particular and metabolic rate in general.  The difference in SV between the two 

temperature groups was not significant, although Mendonca and Gamperl (2010) suggest 

some temperature effect on SV may occur.  

RMD takes a neutral approach to activity effects on Q̇.  Given that flounder 

spend the majority of their time resting, and because RMD is designed to assess 

metabolic rate on an hour-to-hour basis, any short-term increase in an activity does not 

greatly affect the average resting metabolic rate.    

The same is not valid for temperature and hypoxia effects on Q̇.  RMD accounts 

for temperature and hypoxia which are known to affect HR and, to a lesser extent, SV 

(Joaquim et al. 2004, Mendonca and Gamperl 2010, Capossela et al. 2012).  The process 

by which this is accomplished in the model is tied to a series of non-physiological model 

components that are reserved for later discussion. 

Oxygen concentration, like temperature, has an impact on Q̇, again with HR 

being more affected than SV (Mendonca and Gamperl 2010, Capossela et al. 2012).  The 

literature is clear that temperature has a significantly greater impact on Q̇ than does low 

PO2.  Still, the relation of Q̇ to hypoxia tolerance cannot be ignored as the two are 

intertwined.  The ability of flatfish to accommodate hypoxia appears not to be due to the 
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gills’ intrinsic efficiency, but to the cardiovascular system’s ability to meet metabolic 

demand.  Wood et al. (1979a) indicate that oxygen-transport efficiency across the gills is 

less than for highly active fishes such as Salmon.  Flatfish respond to hypoxia by 

increasing gill perfusion through an increase in Q̇, resulting in a lower ventilation-

perfusion ratio (V̇w/Q̇) compared to more active fishes.  Other potential adaptations are 

effected within the blood by increased hemoglobin O2 affinity (Weber and de Wilde 

1975). 

Blood O2 Capacitance and Arterial-Venous Difference 

Recalling that βbO2 is the ratio of the change in blood O2 concentration (CO2) to 

the change in arterial-venous PO2, the product of βbO2 and (PaO2 – PvO2)  is CaO2 as 

shown in equation (21).  RMD derives this value directly, calculating the arterial CO2 

(CaO2) by summing the amount of O2 bound to hemoglobin (HbO2, mL O2/mL blood) 

and the amount of O2 carried within the blood plasma (mL O2/mL plasma).  The amount 

of O2 dissolved in plasma is relatively minimal and varies with temperature.  Without 

any definitive data for O2 solubility in SFL blood plasma, the SFL uses the solubility of 

O2 in water.  This value could be eliminated from the model without significant 

consequence but was included for model fidelity to observation.  The primary 

component of CaO2 thus falls to the HbO2 component.  This variable is itself a function 

of the amount of Hb present in 1 mL of blood.  For a healthy SFL, this is 0.15 g Hb/mL 

blood (Watters and Smith 1973, Park et al. 2012).  The amount of oxygen carried by a 

gram of Hb in the Starry Flounder is about 1.12 mL O2/g Hb (Milligan and Wood 1987), 

assuming the Hb saturation fraction determined by the Hill equation. 
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Hemoglobin Saturation and the Hill Equation 

Except in a few rare instances, organisms reliant on blood O2 transport do so by 

binding O2 to one of four known proteins: hemoglobin, hemocyanin, chlorocruorin, or 

hemerythrin.  Depending on the organism, these proteins can be carried in solution (all 

four proteins) or within blood cells (Hb and hemerythrin).  In the majority of vertebrates, 

O2 is transported in the blood exclusively by hemoglobin contained within cells 

(Willmer et al. 2005); the exception being the Antarctic Icefish Chaenocephalus 

aceratus, which lacks Hb and relies solely on O2 dissolved in the blood plasma (Perry 

and Gilmour 2010). 

The Hb protein structure is tetrameric, consisting of two pairs of α-chain and β-

chain protein subunits.  Within each subunit is a single porphyrin ring containing an iron 

atom in ferrous (Fe2+) form, collectively called a “heme group” (Cameron 1989, Willmer 

et al. 2005).  Each heme group can reversibly bind a single O2 molecule, meaning that 

each Hb molecule can bind and transport up to four O2 molecules.  An important 

characteristic of the Hb molecule is its allosteric properties, whereby deoxygenated Hb 

maintains a “tense” state which has a low O2 affinity.  Binding of O2 to the heme group 

of a single sub-unit induces conformational changes in the other sub-units causing the 

other sub-units to become “relaxed,” increasing their affinity to O2.  This transition from 

tense to relaxed state progresses until all sub-units are bound with O2 and is the main 

contributor to the familiar sigmoidal shape of the oxy-hemoglobin saturation curve 

(Stryer 1981).  However, this sigmoidal shape may be altered by environmental and 

physiological conditions. 
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 The binding of molecular ligands to receptors was famously modeled in the 

early 20th century by Hill (1913) and Barcroft (1913), commonly referred to as the Hill 

equation.  Though not a physical descriptor of actual ligand-receptor physics (Weiss 

1997), the Hill equation is adequately descriptive of O2Hb saturation, often represented 

as Y in keeping with Hill’s chosen designation, though in this iteration, the equation can 

be modified from a more generic form to that shown in equation (46): 

 𝑌 =  
𝑃𝑂2

𝑛

𝑃50
𝑛 + 𝑃𝑂2

𝑛 (46) 

where PO2 is oxygen pressure, P50 is the oxygen pressure at 50% Hb saturation, and n is 

the Hill coefficient. 

Presumptively, the value of n represents the number of O2 binding cites on Hb 

molecule, but even Hill (1913) understood this was not a valid representation.  More 

accurately, the Hill coefficient represents an “interaction coefficient,” signifying the 

“cooperativity” of O2 with Hb (Monod et al. 1965).  In this context, the Hill coefficient 

provides only an estimate of the minimal number of Hb binding sites involved (Weiss 

1997).  Nor is the Hill coefficient a fixed value as it, and the value for P50, can vary with 

serum pH, although the variance in P50 is considerably greater than that seen for n 

(Weber and de Wilde 1975, Wood et al. 1975). 

Environmental Adaptation and Variation in Flounder Hb Saturation 

  Given the extremes of environmental DO that fish encounter (the spectrum of 

which can run from hyperoxic down to anoxic), especially compared to the more 

favorable oxygen environment of land vertebrates, it is not surprising that selection 
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pressure has resulted in greater genetic variation in fish Hb compared to that of land 

vertebrates (Weber 2000).  Across fish species, Hb adaptation reflects environmental 

history, with flatfish certainly being no exception, exhibiting variation in both pH effects 

on P50 and, to a lesser extent, on the value of n (Weber and de Wilde 1975, Wood et al. 

1975). 

Regarding the Hill coefficient in RMD, analysis of Hb characteristics in  flounder 

by Weber and de Wilde (1975) was used to calculate n.  Based on their data, the Hill 

coefficient for flounder lies within the range of 1.6 at pH 8.2 and 1.7 at pH 7.1.  

Compare to Plaice for which the reported Hill coefficient varied from 1.7 to about 1.9 at 

pH 8.2 and 7.1, respectively (Weber and de Wilde 1975).  Increasing n results in a 

steeper rise in the Hb saturation curve centered on P50. 

Shifts in Hb saturation are impacted more by changes in P50 (PO2 certainly also 

has an impact but is a property of the environment, not fish per se).  Higher P50 values 

shift the Hb saturation curve to the right, shown in Figure 27, which compares the effects 

of different P50 values and Hill coefficients between the Starry Flounder and Rainbow 

Trout.  The impact of pH, ATP, and temperature are not shown.  Fish that are more 

aerobically active and less hypoxia tolerant like trout have higher P50 values correlating 

to a lower Hb affinity to O2.  This facilitates O2 desaturation of Hb at the tissues but 

slows Hb saturation at the gills.  Conversely, less active but more hypoxia tolerant 

species like flounder tend to have P50 values that are relatively low, corresponding to a 

greater Hb affinity to O2.  This affinity facilitates O2 saturation of Hb at the gills but 

reduces the ease of O2 “unloading” in the tissues (Perry and Gilmour 2010). 
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Figure 27.  Hill coefficient and P50 effects on oxyhemoglobin saturation.   
Black lines represent Starry Flounder, gray lines represent Rainbow Trout.  Hill coefficient values adapted 

from Weber and de Wilde (1975), P50 values adapted from Perry and Gilmour (2010). 

 

Multiple factors contribute to the shifting of P50.  Figure 27 highlights the impact 

of genetic adaptation differences between Starry Flounder and Rainbow Trout Hb genes 

resulting in amino acid sequence changes within α or β protein sub-units that alter the 

“tense” and “relaxed” characteristics, and hence O2 affinity, of Hb (Weber 2000).  More 

acute physiological shifts in P50 are the results of biochemical influence.  The primary 

effector is pH, which profoundly impacts Hb affinity by lowering P50 as pH rises and 

increasing P50 as pH decreases.  This is known as the Bohr effect, named after Christian 
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Bohr (Bohr et al. 1904) to whom is attributed discovery of this phenomenon.  Other 

effectors shown to impact the O2 carrying capacitance of blood in fish, and flatfish in 

particular, include temperature, chloride level, and organic phosphates such as adenosine 

triphosphate (ATP) and guanosine triphosphate (GTP) (Weber and de Wilde 1975, 

Weber 2000).  Figure 28 presents a comparison of the effects of pH and temperature on 

P50 for three flatfish species. 

 

 

Figure 28.  Genetic, pH and temperature effects on P50.   
Data points are coded by temperature in °C.  Data for P. stellatus adapted from Watters and Smith (1973); 
P. platessa and P. flesus data adapted from Weber and de Wilde (1976). 
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The SFL respiratory model does not account for the effects of ATP, GTP, or 

chlorides on Hb affinity but does account for the effects of pH on n and P50.  The 

temperature effect is dealt with indirectly through its influence on pH, with pH 

decreasing linearly with increased temperature at a slope of -0.019/°C based on data 

presented in Cameron (1989), with a pH intercept set to 8.0 at T = 0°C.   

Root Effect 

A unique characteristic of fish Hb is the Root effect wherein certain conditions 

can lead to a reduction in the O2 carrying capacity of Hb (i.e., inability to reach 100% 

nominal saturation).  The primary effectors of the Root effect are low pH (high [CO2]) 

(Root 1931) and high [ATP] in flatfish (Weber and de Wilde 1975).  The Root effect’s 

impact is somewhat controversial as pH must often fall below, and ATP concentrations 

rise above, normal physiological range for the effect to be seen (Weber and de Wilde 

1975, Cameron 1989).  Nevertheless, some fish like Plaice do appear to exhibit some 

degree of Root effect.  However, with respect to flounder, the Root effect does not 

appear to be present at normal physiological pH and ATP concentrations (Weber and de 

Wilde 1975).  Consequently, the Root effect is not factored into RMD. 

Summary and the Oxygen Cascade 

RMD attempts to model the flow of O2 from the environment to the tissues using 

an elaboration of Fick’s Law.  This flow involves conductance and tension differentials 

(Jensen et al. 1993).  Both affect the movement of O2 which requires that work to be 

performed and thus metabolic energy to be expended.  This work capacity comes from 

three energy sources – heat, chemical energy (in the primary form of ATP), and O2 
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tension differentials.  Interestingly, of these three, only tension differentials are directly 

addressed in Fick’s formula, while effects of heat and chemical energy are implied. 

In the case of tension differentials, the work capacity is the byproduct of O2 

consumption for ATP production via attachment of a phosphate group to ADP within the 

mitochondria, a process with maintains a low [O2] relative to the external environment.  

This capacity provides the necessary work to move O2 across membranes of the 

conductance components.  Of course, the ATP produced is the primary energy source 

used by the muscles of the respiratory and cardiovascular systems to move O2 across the 

gills (V̇w) and distribute it throughout the organism (Q̇), respectively.  The minimum 

amount of ATP produced necessary to provide sufficient energy to just maintain V̇w and 

Q̇, and other metabolic functions is the definition of SMR.  Although ATP production is 

not exclusively dependent upon V̇O2 (Duthie 1982), the predominance of O2 in total 

energy production has become a primary determinant of metabolic scope for eukaryotic 

organisms.   

Understanding the physical and physiological processes involved in following 

V̇O2 from water to a cell is just the beginning of the journey.  Application of these 

processes in an effective and efficient manner is necessary to accurately simulate V̇O2 

within the SFL for use in metabolic processes such as growth across the animal’s 

lifecycle under variable thermal, saline, and oxygen environments is the goal of RMD. 
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CHAPTER VI  

THE FLOUNDER RESPIRATORY MODEL 

 

The primary objectives of this investigation were to: 1) develop Respiratory 

Model, Dynamic (RMD), a mechanistic model of the dynamics of maximal oxygen 

uptake in Southern Flounder (SFL); and, 2)  integrate RMD into the Stella® bioenergetic 

simulation model Ecophys.Fish (Neill et al. 2004), the latter first having been 

parameterized for SFL.  

Although RMD was intended to simulate the cardiorespiratory and cutaneous O2 

uptake systems of SFL, the consequent model by necessity did incorporate data from 

other flatfish species.  When possible, SFL data were used; but, if species-specific data 

were not available data preference was given to species within the same genus or closest 

taxon. 

Model Overview 

The functional and quantitative relationships described in the previous chapter 

were applied to help develop the stand-alone RMD.  A good model is the integration of 

data and principles from multiple sources intended to enable adequate simulation of the 

modeled systems’ dynamics.  Just as the basic model schematic shown in Figure 21 

acted as a springboard for discussing the physiological mechanisms and processes 

pertinent to RMD, the schematic shown in Figure 29 expands the view of these 

processes to highlight specifics used in the development of the Stella®-based RMD.   
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Figure 29.  Flounder respiratory model (RMD) schematic.   
Shaded components indicate physiological processes.  Un-shaded components indicate physical or 

environmental inputs.  Solid black arrows indicate fish weight (mass) input.  Short dashed black arrows 

indicate temperature input while short dashed blue arrows indicated venous blood PO2 input.  Long dashed 
black arrows indicate salinity input.  Large and dashed green arrows indicate oxygen flow and input, 

respectively.  Oxygen is input on the upper left and flows to the right from gill respiration, diffusion via 

gill and skin, and blood transport in turn with the final output being V̇O2 for use in a bioenergetic growth 

model, e.g., Ecophys.Fish. 

 

  Model inputs can be either static (fixed) or variable using an equation or Stella® 

graphical function that allows the variables to change with each “step” of the model 

through time (DT).  RMD’s input variables include fish weight, temperature, O2 pressure 

or fraction or DO (depending on the model variant), and salinity.  Gill diffusion distance 

and blood hemoglobin concentration may be changed to simulate disease, anemia/blood 

loss, etc.  However, these are held constant within a given “run” of the model.  
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While several factors influence physical components (e.g., salinity) and biotic 

states (e.g., animal weight), few have the impact of temperature, especially on 

poikilotherms such as SFL (Schmidt-Nielsen 1997).  Temperature plays a pivotal role in 

the model, affecting physical variables such as PO2 (a significant input in itself for all 

three major model processes), the Krogh coefficient via temperature effect on O2 

solubility, and pH.  Physiological processes are also highly influenced by changes in 

temperature. 

Other variables such as fish weight, and water and venous blood O2 

concentration, are also extensively used by the model.  Weight plays an important role in 

the allometric estimation of the gill ventilation rate (based on buccal volume), cutaneous 

and gill surface area, cutaneous thickness, and heart size for estimating SV.  Physical 

aspects of O2 tension are used to determine O2 solubility and diffusion (as driven by 

pressure differentials) through water and across tissue membranes.  To account for 

physiological responses to hypoxia, the model uses O2 tension input for the calculation 

of V̇O2 from the gills (via changes to respiration frequency and buccal stroke, or beat, 

volume) and cardiac function via hypoxia effects on HR, SV, and Hb saturation. 

Calculations of O2 output of the three main model components were handled as 

hourly V̇O2 calculations (in mL O2/g fish·h) because volumetric O2 flow is the most 

common unit used in the literature.  Because some growth models such as E.F use mass 

flow, the RMD V̇O2 output is also converted to ṀO2 in mg O2/g fish·h (not shown in the 

schematic).   
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The objective for each of the Ventilation, Diffusion (gill and cutaneous), and 

Blood Transport processes was to estimate the amount of oxygen each process provides 

given the available environmental O2.  Any potential intrinsic limitations within each 

V̇O2 model component (e.g., diffusion limitations due to temperature) limits the V̇O2 

available for subsequent V̇O2 processes.  

Model Formulas and Functions 

Dynamic models such as RMD and E.F are mathematical chimeras, combining 

established theoretical equations like the Hill and Fick equations with empirical 

equations.  Empirical equations are generated by taking available data and applying 

“best-fit” lines to provide estimates of data trends.  However, empirical equations 

inevitably discount or ignore the variance seen in real-world systems. 

Unless otherwise noted, every effort was made to have empirical equations in 

RMD closely approximate the physical and physiological data reported in the literature.  

In instances with limited literature data, fit lines were extrapolated.  For example, this 

occurred when temperature data available from the literature did not extend to the 

model’s full range.  In some instances, relationships based on literature data were 

smoothed or adjusted if model outputs exceeded or fell short of known values.  In these 

circumstances, outcomes were quite often achieved through trial and error and validated 

to the degree possible against data from experimental or literature sources. 

RMD Input Processes Classification 

To aid in understanding RMD input equations, as each is discussed, it will be 

given one or more of the following categorization descriptors: 
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• Empirical – an equation based on observed data, literature, or best-fit 

estimates (Riggs 1963). 

• Theoretical – an equation/formula established in the literature which uses 

fixed and/or variable inputs to model a physical or physiological process 

(Riggs 1963).  Examples are the Hill and Fick equations. 

• Conversion – equation changes an input value unit to another unit for use 

in further calculations.  For example, converting mL O2/g fish·h to mg 

O2/g fish·h. 

• Decision – equation includes the use of logical (e.g., IF, THEN, AND, 

OR, ELSE) or selection (e.g., MAX, MIN) functions to direct the process 

path toward output.  These types of functional relationships may include 

several equations and/or fixed values. 

In addition to equations, model converters that provide inputs into processes will 

be described as follows: 

• Fixed – input value is constant.  Constants remain the same during a 

model run but may be manually changed between runs. 

• Variable – input value may change during the model run.  Method of 

change may be based on a formula or data set (e.g., a Stella® graphical 

input). 

Model Components (Sectors) 

RMD consists of eight preparatory sub-models (designated by sector frames in 

the model) that feed into the primary model which then calculates maximum-available 
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V̇O2.  The arrangement of model stocks, flows, converters, and action connectors for all 

sectors is shown in Figure 30.  An important aspect of the model is that while most 

physiological processes typically are measured in seconds to minutes, RMD uses a time 

interval (DT) of hours; so, all model values are converted to “per hour” outputs.  This 

consideration was in tacit acknowledgment of RMD's intended integration into 

Ecophys.Fish which calculates growth on a per-hour basis. 

The presentation of each model sector follows.  Each narrative description is 

accompanied by a schematic of the sector that is being discussed.  Action connectors 

within sectors are shown.  Refer to Figure 30 to see action connectors between sectors.  

Sectors are arranged in the model to shorten flow connectors and make processes easier 

to follow, visually.  Discussion of sectors, however, will be in a manner meant to 

facilitate understanding of the data flow process. 

A concise listing of the RMD sector processes more amenable for conversion to 

other modeling systems or programming languages may also be found in Appendix B. 

. 
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Figure 30.  Flounder respiratory model (RMD) sectors. 

 

Environmental Processes 

Environmental processes shown in Figure 31 are direct inputs into the model.  

These inputs can be fixed or variable, depending on need.  Salinity, “Sal,” values are in 

parts per thousand (ppt) mass, with input ranging from 0 to 35 ppt.  Ambient 

temperature, “Ta,” is in degrees Celsius (°C) and ranges between 5 and 30°C for SFL.  

Any temperature can be input but temperature limitations within the model’s Cardiac 

Output sector result in “death” of the SFL if the temperature falls below 4°C or exceeds 

43°C.  Inputs for all converters can be constants or variable using the Stella® graphical 

function or a time-dependent equation.  These inputs represent the model’s core starting 

processes as they establish the “environment” under which the model will operate. 
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Figure 31.  RMD environmental processes sector. 

 

Environmental Oxygen 

This sub-model, shown in Figure 32, is used to calculate the O2 tension (as 

partial pressure, PO2) from “FO2,” the oxygen fraction, and ambient dissolved oxygen 

(“DOa”), in mg O2/L water.    

 

 

Figure 32.  Environmental oxygen sector. 

 

FO2 [Input: Fixed or Variable] 

“FO2” sets the oxygen fraction used to calculate the partial pressure of O2 in the 

water “PO2.”  The standard value used is 0.209 which represents the O2 mass fraction in 
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the atmosphere.  This value can be adjusted to produce lesser or greater “PO2” and 

“DOa” outputs.   

PO2 [Equation: Theoretical] 

Oxygen partial pressure, “PO2,” or tension, is determined by Henry’s Law of 

Solubility which assumes that the O2 concentration in water is in equilibrium with the 

atmosphere.  The value of “PO2” is the product “FO2” multiplied by 760 mmHg, the 

standard atmospheric pressure at sea level: 

PO2 = 760*FO2 

The use of standard atmospheric pressure of 760 mmHg must remain fixed 

because this value is used by the Green and Carritt (1967) equation to calculate “DOa.”  

The use of a different barometric pressure will introduce error into the calculations.  

Adjustments to “PO2” can be made by changing the “FO2” value. 

DOa [Equation: Empirical]  

“DOa” uses an empirical equation developed by Green and Carritt (1967), with 

inputs of “Ta,” “PO2,” and “Sal,” as follows: 

DOa = (EXP((-7.424+(4417/(Ta+273.16))+(-2.927 * LOGN(Ta+273.16)) 

+ (0.04238*(Ta+273.16))) - ((Sal - 0.03)/1.805) * ((-0.1288 + 

(53.44/(273.16 + Ta)) + (-0.0444 * LOGN(273.16 + Ta)) + 

(0.00071 * (273.16+Ta)))))/22.414 * 32/760 * PO2) 

Because three input processes determine the value of “DOa,” the output value 

depends on initial conditions.  If a specific “DOa” value is desired, the most efficacious 
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method is to adjust “FO2” to change the “PO2” output.  While “Ta” and “Sal” may in 

theory be adjusted to produce a desired “DOa,” their influences on other model 

components would likely produce erroneous results.  When running the model using 

laboratory or field data, the values of “Ta” and “Sal” can be changed to match observed 

conditions using a graphical function to produce results that are more representative of 

the conditions observed. 

Gill Ventilation 

This sector is used to calculate the flow of oxygenated water (mL water/g fish·h) 

across the gills, from which O2 is extracted.  Because the Gill Ventilation Sector (Figure 

33) estimates the amount of O2 in the water available for RMD input, it sets the maximal 

possible per hour V̇O2 value at any given DT. 

 

 

Figure 33.  Gill ventilation sector. 
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fR con [Input: Fixed] 

A fixed input constant to the breathing frequency calculation, “fR con” is used as 

a multiplier to adjust the respiratory frequency.  

fR [Equation: Decision, Empirical] 

Ventilation frequency, “fR,” is affected by temperature and PO2 (Kerstens et al. 

1979, Steffensen et al. 1982, Tallqvist et al. 1999).  Multiple methods were explored to 

derive ventilation frequency rates able to accommodate the effects of PO2 and 

temperature across various ranges for each and still provide outputs that remain 

grounded in physiological reality.  The result is an estimation of “fR” that relies upon 

establishing maximum and minimum decision processes to achieve outputs 

corresponding to the literature: 

fR = (((-0.08*Ta^2+6*Ta)*fR_con)* 160/PO2) * MIN(1, PO2/30) * 

MIN(1, PO2/20) 

The output of “fR” is dependent upon inputs of “Ta” and “PO2” as well as a 

corrective constant “fR_con.”  The ventilation frequency equation “fR” has utility but 

cannot account for all potentially unknown variables.  The solution to this problem was 

the adoption “fR_con” which can be used to adjust the output of “fR” to permit “Vw” 

values that allow for the production of V̇O2 outputs from RMD that are necessary to 

predict growth and model respirometry when integrated into E.F. 

The temperature-dependent parabola -0.08*Ta^2+6*Ta provides for the non-

linear temperature response baseline “fR” value shown in Figure 34.  Modifications to 

account for changes in PO2 are provided by taking the ratio 160/PO2 (160 mmHg is 
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assumed to be the max, but this can be set to a higher value if working with hyperoxic 

waters).  This allows the ventilation rate to automatically increase as PO2 declines so that 

the respiration rate doubles when PO2 is 80 mmHg and quadruples when PO2 is 40 

mmHg.   

 

 

Figure 34.  Baseline fR ventilation frequency. 
Ventilation rate (beats/min) = -0.08*Ta^2+6*Ta.  Values are multiplied by 60 within RMD to give 

beats/hr. 

 

When PO2 reaches 30 mmHg, ventilation rates level off and then decline or starts 

to decline immediately (Steffensen et al. 1982, Tallqvist et al. 1999).  The method 
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chosen for RMD was to limit the peak “fR” at 30 mmHg with 20 mmHg PO2 set as the 

point upon which “fR” starts to fall.  This is achieved using the minimum functions MIN 

(1, PO2/30) and MIN(1, PO2/20).  The output range of “fR” for various temperatures 

and PO2 values is shown in Figure 35.  In this graph “fR_con” was set to 25.  Peak 

ventilation rates at 30 mmHg for temperatures above 20°C exceed 250 bpm, a very high 

value.  Whether or not flounder species can accomplish this and higher rates has not 

been established, although exercising trout and salmon are reported to have ventilation 

rates as high as 1000 bpm (Eddy and Handy 2012).  If such high rates are not consistent 

with SFL capabilities, then RMD “fR” estimates may not be reasonable under extreme 

hypoxic conditions.  Given that PO2 values just touch upon such low values during 

standard respirometry experiments, “fR” estimation as implemented here appears 

adequate for normoxic to mildly hypoxic environments.  Even with exceptionally high 

“fR” values at extremely low environmental PO2 values, V̇O2 output is significantly 

inhibited. 



 

137 

 

 

Figure 35.  RMD "fR" output by temperature and PO2. 
“fR_con” = 25.  Note that temperature change effects are not linear. 

 

VsR [Equation: Decision, Empirical] 

The volume per respiratory stroke, “VsR,” (mL water/g fish·stroke) estimates the 

volume of water per gram-fish that may be pushed over the gills with each opercular 

beat.  In a resting SFL, the full buccal volume may not be used, allowing for a “buccal 

reserve” to be called upon.  As previously discussed, PO2 strongly influences water 

volume per stroke (Kerstens et al. 1979).  Less well established is the temperature 

impact on “VsR” volume in SFL.  Given that buccal volume adjustment does occur in 

other species, the decision was made to include temperature effects.  The programmed 

“VsR” volume increases linearly with temperature to a maximum of 0.014 mL water/g 
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fish·stroke, the upper limit reported by Kerstens et al. (1979) for hypoxia-acclimated 

European Flounder.   

Using 0.008 mL water/g fish as the baseline value, the effect of PO2 on buccal 

volume is adjusted up and down by multiplying this value by the ratio of 20 mmHg to 

the current PO2.  This increases “VsR” as PO2 falls until reaching 20 mmHg, after which 

“VsR” declines.  Buccal volume is limited to 0.014 mL water/g fish by the use of a MIN 

function.  The result from this calculation is compared to the product of the baseline 

volume, 0.008 mL water/g fish, and the ratio of the ambient temperature, “Ta” to the 

fish’s optimum temperature, “Topt,” and the maximum volume used as final “VsR” 

value. 

VsR = MAX(0.008 *Ta/Topt, MIN(0.008*20/PO2,0.014)) 

The “Topt” for SFL is 25°C, per van Maaren et al. (2000). 

The output range for “VsR” by temperature and PO2 is shown in Figure 36.  As 

configured, the buccal volume is proportionally related to temperature, increasing or 

decreasing with a corresponding rise or fall in temperature.  Oxygen pressure effects on 

“VsR” do not occur until PO2 falls below a threshold level.  Below the “Topt” of 25°C, 

“VsR” starts to increase at PO2 levels greater than 20 mmHg.  For example, at 10°C 

“VsR” begins to increase at 50 mmHg.  At and above 25°C, the PO2 threshold remains 

fixed at 20 mmHg.  This method of estimating buccal volume creates a PO2-dependent 

“VsR” minimum which follows the curve that each temperature-dependent “VsR” line 

intercepts at the left of the graph. 
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Figure 36.  RMD "VsR" response to temperature and PO2. 

 

Vw [Equation: Empirical]  

The amount of O2 available for metabolic work depends on the amount of 

oxygenated water that can be moved across the gills.9  “Vw” is the amount of water (in 

mL/g fish) that flows over the gills per hour and is the product of the respiratory 

frequency “fR” and buccal stroke volume “VsR.” 

Vw = fR * VsR 

 

 

9 Cutaneous respiration is a secondary source of O2 supply, but water is not actively moved across 

the skin making it less efficient in O2 extraction than the gills. 
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When combined as “Vw,” temperature and PO2 effects on “fR” (Figure 35) and 

“VsR” (Figure 36) produces the responses shown in Figure 37.  The resultant ventilation 

curve is consistent with the temperature and PO2 responses on gill ventilation as reported 

in the literature (Tallqvist et al. 1999, Capossela et al. 2012). 

 

 

Figure 37.  RMD "Vw" response by temperature and PO2. 
“fR_con” = 25. 

 

Hemoglobin Saturation 

To better explain the calculation of Hb saturation, designated as “Y” in keeping 

with usage by Hill (1910),  the discussion will start with sub-model output “Y” and work 

backwards (Figure 38).   
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Figure 38.  RMD Hb saturation calculation sector. 

 

Y [Equation: Theoretical] 

The value of “Y” is calculated using the Hill equation, shown in equation 46 of 

the previous chapter.  Per the Hill equation, only two inputs to “Y” are required: the Hill 

coefficient “n” and “P50,” both of which are dependent on the pH of the blood which is 

represented in the model as the converter “pH_blood.” 

n [Equation: Empirical] 

The value of “n” is calculated via an empirical equation based on European 

Flounder data obtained from Weber and de Wilde (1975). 

n = -0.264*pH_blood+3.7 

This formula produces an “n” value typically found over normal physiological 

pH ranges, the values of which start at just below 1.6 at a pH of 8.0 and increases to 

about 1.8 at pH 7.2 (Weber and de Wilde 1975). 
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P50 [Equation: Decision, Empirical] 

The “P50” value is calculated based on data from Weber and de Wilde (1975) for 

red blood cells in suspension at 15°C.  The calculation places “P50” just below 20 

mmHg at a pH of 7.2, decreasing to about 7 mmHg at a pH of 7.8.  To prevent negative 

values, which will occur at pH ranges greater than 8.28, a MAX function is used to keep 

the value ≥ 0.1 mmHg. 

P50 = MAX (0.1, -16.786*pH_blood+140)  

The linear inter-relationship of the calculated n and P50 values in relation to pH is 

shown in Figure 39.  Differences in the rounding of output values create a slightly more 

negative slope for the “P50” estimates.  Biochemical factors such as ATP and GTP, 

which can alter n and P50 at a specific pH in living flounder (Weber and de Wilde 1976, 

Weber 2000), are not currently represented in RMD. 
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Figure 39.  Relationship of Hill coefficient “n” and “P50” to pH, used in RMD. 

pH Blood [Equation: Decision, Theoretical] 

Computation of “pH blood” within the “Hb Saturation” sub-model is influenced 

by the external source input “Ta,” and by sub-model inputs, “pH Ta zero” and “T 

Slope.”  The model also allows “pH blood” to be manually set rather than be estimated 

based on the above inputs.  This is achieved through the use of input converters “pH Set” 

and “pH Switch.” 

pH blood = IF pH_Switch = 1 THEN (T_Slope*Ta+pH_Ta_zero) ELSE 

pH_Set 
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The inputs to “pH blood” are as follows: 

pH Switch [Input: Fixed] 

As with “DO Switch,” this converter is a simple mechanism to allow direct blood 

pH input.  Setting “pH Switch” to 1 satisfies the logical requirement in “pH blood” to 

use the pH formula.  A value other than 1 will use the value of “pH Set.” 

pH Set [Input: Fixed or Variable] 

This converter is used to set blood pH to a user-specified value rather than 

RMD’s calculated value.  This feature is useful when integrating RMD with other 

models, such as E.F, to set pH which is generally only slightly higher than the 

surrounding water (Evans et al. 2005). 

pH Ta Zero [Input: Fixed] 

This converter sets the pH to 8 at 0°C.  This converter could be integrated into 

the “pH blood” formula for simplicity but is kept separate to facilitate user change in the 

intercept point of “pH blood.” 

T Slope [Input: Fixed] 

Blood pH is negatively correlated with increasing ambient temperature in 

poikilotherms with the slope of the relationship differing among species (Cameron 

1989).  For poikilotherms as a group, a normal range is -0.008 to -0.021 pH/°C with an 

average slope of around -0.016 to -0.019 pH/°C  (Cameron 1989).  Because the 

relationship of blood pH to temperature for flounder has not been established, a 

conservative approach was taken and the value for “T_Slope,” was set to -0.019.  This 
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baseline relationship of pH to temperature is shown below in Figure 40 with “pH Ta 

Zero” set to 8. 

 

 

Figure 40.  Baseline RMD blood pH response to temperature. 
pH intercept, “pH Ta zero” = 8. 

  

Blood Oxygen Carrying Capacity 

The amount of O2 which can be carried within the blood is managed by the 

“Blood O2 Capacity” sector shown in Figure 41.   
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Figure 41.  RMD blood oxygen carrying capacity sector. 

 

CplaO2 [Equation: Conversion] 

The figure includes the plasma O2 carrying capacity “CplaO2,” assumed to be 

equivalent to “DOa” in water but with units in mL O2/mL plasma. 

CplaO2 = DOa*0.0007 

Hb g per mL [Input: Fixed] 

The O2 carrying capacity of blood is primarily dependent upon O2 bound to Hb.  

The amount of Hb in the blood in g Hb/mL blood must be known to determine this 

value.  Hemoglobin concentration differs among species and can be affected by blood 

loss from injury or disease (e.g., anemia).  RMD uses the converter “Hb g per mL,” with 

the value chosen as 0.15 g Hb/mL blood based on data from Olive Flounder 

Paralichthys olivaceus presented by Park et al. (2012) and Starry Flounder by Watters 

and Smith (1973). 
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Hbs [Input: Fixed] 

The O2 to Hb concentration value ([O2]/[Hb]) is represented by “Hbs” in mL 

O2/g Hb.  Extensive data for humans sets this value at about 1.31 mL O2/g·Hb 

(McLellan and Walsh 2004).  However, within fish, the amount of O2 bound to Hb 

varies across species (Weber 2000).  Fortunately, Milligan and Wood (1987) analyzed 

Starry Flounder blood and reported a resting [O2]/[Hb] value of 0.05 mmol O2/g Hb.   

This value corresponds to a value of 1.12 mL O2/g Hb and is the value used in RMD. 

Max Hb O2 Sat [Equation: Theoretical] 

The converter “Max Hb O2 Sat” calculates the maximum potential amount of O2 

(in mL) that may be carried by 1 mL of blood at any given moment.  It does so by 

multiplying the inputs from “Hbs,” “Hb g per mL,” and the blood O2 saturation fraction 

“Y” from the “Hb Saturation” sector. 

Max Hb O2 Sat = Hb g per mL*Hbs*Y 

CaO2 [Equation: Theoretical] 

Establishing the total O2 carrying capacity of the blood in mL O2/mL blood is 

achieved by summing the results of “Max Hb O2 Sat” and “CplaO2.”   

CaO2 = Max Hb O2 Sat+CplaO2 

The “CaO2” value is used, along with “Q” to determine the V̇O2 capacity of the 

circulatory system which will be discussed below. 
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CvO2 [Equation: Theoretical] 

Though not incorporated in the model, this equation is used to provide 

information on the estimated O2 concentration remaining in the venous blood in mL 

O2/mL blood using three inputs, “Hb g per mL,” “Hbs,” and “SvO2,” from the “PvO2 

Derivation” sector. 

CvO2 = Hb_g_per_mL*Hbs*SvO2 

Venous Blood Oxygen Pressure (PvO2) Derivation 

Calculation of the venous blood O2 pressure, “PvO2,” needed to generate the 

tension differences between water O2 pressure for the gill diffusion equation (18) and 

arterial blood O2 pressure for the blood oxygen transport equation (19) is accomplished 

within the ‘PvO2 Derivation” sector shown in Figure 42.   

 

 

Figure 42.  RMD PvO2 derivation sector. 

 

A valid criticism of RMD is its reliance on modeling physiological processes, 

which can vary within seconds to minutes, and assuming those values can be applied 

across the model’s hourly time scale.  With respect to PvO2, the process is further 

complicating because PvO2 is an estimated value of [O2] in the venous blood, i.e., O2 not 
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consumed by tissues after passing through the capillaries.  However, RMD is intended to 

account only for the maximal rate of O2 supply, not O2 consumed.  Predicting the 

average PvO2 over an hour to obtain the ΔPO2 estimates for use in the Fick equation 

could be dealt with by setting the PvO2 value to a value or values found in the literature.  

An approach using fixed values might be sufficient in many situations, but a dynamic 

response is required to accommodate at least some of the effects of pH and temperature 

on Hb affinity (Soldatov 2003).   

  “PvO2” relies an estimate of the average O2 venous blood saturation or “SvO2,” 

the value of which is derived from inputs “n” and “Y” from the “Hb Saturation” sector.  

The value of “PvO2” is then calculated using “SvO2,” and “n” and “P50” also from the 

“Hb Saturation” sector.  As pH and temperature affect the value of “n,” this variable is 

used to adjust the output value of “PvO2.”  Thus, the derived PvO2 in RMD is not an 

accurate physiologically-based calculation but is presumed to be a reasonable estimate. 

SvO2 [Equation: Empirical] 

The venous blood O2 saturation fraction in the Starry Flounder stays remarkably 

high, ranging from 52.6% under hypoxic conditions to about 72% under normoxic 

conditions at a pH of about 7.5 (Watters and Smith 1973).  Data provided by Wood et al. 

(1979a) on the same species placed the SvO2 at about 66% under normoxic conditions 

with a blood pH of about 7.9. 

Because pH and temperature affect SvO2, an attempt was made to account for 

their influence when calculating “PvO2” while also retaining some connection to 

physiological processes.  The process chosen derives an estimate based on a general 
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assumption of the Hill coefficient, namely that n can be thought of as representing the 

minimum estimate of the number of binding sites within a Hb molecule (Weiss 1997).  

During passage through the capillaries, most O2 molecules dissociate from Hb but some 

O2 remains bound.  It is reasonable to assume that the average number of heme groups 

still bound to O2 in venous blood will be closer to this minimal estimate than in arterial 

blood.  Thus, within a given volume of venous blood, n may be thought of as a rough 

representation of the average (perhaps maximum average) amount of oxygen carried in a 

given volume of venous blood. 

There are four O2 binding sites available on a single Hb molecule.  Each of the 

four Hb chains (two α and two β) represents a saturation fraction capacity of 0.25.  Thus, 

if n were equal to 1, then Hb in venous blood is more likely to have one Hb sub-unit 

remain bound with O2 after passing through the capillaries, resulting in a venous blood 

saturation level of 25%.  As not all Hb in a given volume of blood is likely to desaturate 

evenly (some Hb molecules may fully desaturate while others may retain one or two 

molecules of O2), the average value of n can be a fractional number (Hill 1913).  For 

example, the Hill coefficient for the European Flounder ranges between 1.6 and 1.8 

depending on blood pH (Weber and de Wilde 1975).  Thus, the average number of Hb 

chains in a given volume of European Flounder venous blood still bound to O2 

molecules after passing through the capillaries would be expected to fall within this 1.6 

to 1.8 range.   

Subtracting n from 4 (the maximum number of possible binding sites) yields the 

number of Hb chains in venous blood not bound to O2.  Starting with n and dividing by 
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the number of unbound Hb chains (4-n) in a volume of venous blood, an estimate of 

theoretical venous blood O2 saturation may be derived.  When this value is multiplied by 

“Y,” the starting arterial blood saturation level, the result is an estimate for SvO2 as 

follows: 

SvO2 = Y*(n/(4-n)) 

The effects of DO calculated against three pH settings (7.0, 7.4, and 7.8) and 

temperatures (10, 20, and 30°C) using the “SvO2” equation are shown in Figure 43.  

Under normoxic conditions, “SvO2” values for the pH modeled fall between 68% and 

81% saturation, results which are slightly higher than the values reported by Watters and 

Smith (1973) and Wood et al. (1979a). 

This approach appears sufficient to provide an adequate estimate of “SvO2” for 

generating equivalent PO2 differentials for use in the Fick equation variants.  However, 

room for improvement of this aspect of RMD remains. 
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Figure 43.  RMD SvO2 output by DO (ppm) by pH and temperature. 
Color represents pH: red = pH 7.0, black = pH 7.4, blue = pH 7.8.  Temperature represented by line style: 

solid = 10°C, short dash = 20°C, long dash = 30°C.  Roughness of graphs due to step changes in RMD 

calculations. 

 

PvO2 [Equation: Theoretical] 

Venous blood O2 pressure PvO2 can be estimated by re-arranging the Hill 

equation and substituting SvO2 for Y: 

 𝑃𝑣𝑂2 =  [(𝑆𝑣𝑂2 ∙ 𝑃50
𝑛)/(1 − 𝑆𝑣𝑂2)]1/𝑛 (47) 

The natural question that arises is does equation (47) produce representative 

values of flounder PvO2?  Wood et al. (1979a) reported that for Starry Flounder in water 

with a mean PO2 of 138.7 mmHg at temperatures between 7.5°C to 10.5°C and a pH of 
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7.87, the PvO2 was 13.4 mmHg.  The RMD calculated “PvO2” value for a “PO2” of 138 

mmHg at pH 7.87 and 10°C is 12.4 mmHg.   

Watters and Smith (1973) in three separate tests of sedated Starry Flounder at 

11.4, 11.7, and 19.4°C with the corresponding mean inspired PO2 of 59.0, 126.3, and 

148.5 mmHg and pH of 7.5 report mean PvO2 values of 23.4, 42.9, and 29.8 mmHg.  The 

RMD calculated “PvO2” values using the Watters and Smith (1973) parameters were 

22.9, 25.7, and 26 mmHg, respectively.  Why Watters and Smith (1973) data had such 

disparity in the PvO2 values for PO2 set at 126.3 mmHg and 148.5 mmHg is not evident 

but may be due to an increased Q̇ response to the mild hypoxia environment which could 

decrease the time available to off-load O2 in the capillaries.  Although RMD output does 

not match the PO2 of 126.3 mmHg PvO2 estimate, the other estimates are more 

encouraging. 

When set to the parameters outlined by Cech et al. (1977) in Winter Flounder 

with a Ta of 10°C,  pH of 7.8, and PO2 = 90 mmHg, the RMD “PvO2” was 14.4 mmHg 

versus a reported PvO2 of 31 mmHg.  This may result from a hypoxia response in the 

fish resulting in a lesser O2 diffusion rate at the tissue level due to increased Q̇ or other 

physiological responses such as in blood ATP concentration which causes a Bohr shift in 

the oxygen saturation curve (Wood et al. 1975).   

The similarity of RMD results to those of the Wood et al. (1979a) study and two 

of the three Watters and Smith (1973) experiments is encouraging, although the larger 

difference relative to the third Watters and Smith (1973) experiment suggests there may 

be additional effects not modeled. 
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Cardiac Output 

The Cardiac Output sector (Figure 44) is the last physiological sub-model 

necessary for V̇O2 calculations.  The output of this sector is cardiac output, represented 

by “Q,” which is the product of heart rate “HR” and stroke “SV.”  While a simple 

calculation, the components “HR” and “SV” are adjusted by temperature and PO2 using 

converters “SV PO2 f,” “SV Temp f,” “HR PO2 f,” and “HR Ta” where the “f” in the 

first three converters indicates the inclusion of correction “factors” which are small 

adjustments to SV or HR.  The influence of “Ta” on “HR” and “SV” is greater than the 

influence of “PO2” which generally has little impact on “Q” except under hypoxic 

conditions.  The remaining “SV” input variable “Vvol” calculates the ventricular volume 

of the SFL “heart” using the weight estimate described in Chapter V. 

 

 

Figure 44.  Cardiac output (Q) derivation sector. 
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HR Ta [Equation: Empirical] 

Variable “HR Ta” provides a Ta-dependent heart rate in beats per hour (bph) 

using a calculated fit to HR data collected from Summer Flounder by Capossela et al. 

(2012).  The equation uses a parabolic equation to generate a peak HR of about 4212 bph 

(70.2 beats per minute, bpm) at 23°C as shown in Figure 45.  The parabola reaches zero 

at about 4°C and 41°C, the physiological equivalent to heart stoppage.  Thus, the 

equation invokes minimum and maximum lethal temperature limits for SFL metabolism.  

The lower limit is 1°C lower than the 100% mortality temperature observed for SFL by 

Prentice (1989).  The ultimate maximal lethal temperature for an acclimated SFL is less 

well established.  A study by van Maaren et al. (2000) reported a lethal temperature of 

39°C in a 29°C acclimated SFL.  To provide a margin of error for a greater maximal 

lethal temperature, the parabola calculation used sets the maximal lethal temperature at 

41°C.  With these caveats established, the “HR Ta” decision and empirical formula used 

in RMD is as follows: 

HR_Ta = MAX(0, ((-0.2*Ta^2+9*Ta-31) * 60)) 

The use of the MAX function limits the “HR Ta” value to positive values only. 
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Figure 45.  RMD temperature-dependent heart rate calculation. 
Heart rate in beats per minute (bpm) and beats per hour (bph).  Zero intercepts correspond to minimum 

and maximum lethal temperatures. 

 

HR PO2 f [Equation: Decision, Empirical] 

With baseline “HR” established by “HR Ta,” the variable “HR PO2 f” serves as a 

correction factor which modifies the HR output based on PO2.  Because the “HR Ta” 

value can vary dramatically, the effect of “PO2” on “HR” must have an equal effect on 

“HR” across all “Ta” inputs.  Data from Mendonca and Gamperl (2010) supports a 

decline in HR with decreasing PO2 in Winter Flounder acclimated to 8°C.  Interestingly, 

this decline was not evident for 15°C acclimated fish.  However, in the study by 
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Capossela et al. (2012), the two groups of Summer Flounder acclimated at 22°C and 

30°C each showed a decline in HR with decreasing PO2.  These data sets were used as 

the basis for estimating “HR PO2 f.” 

HR_PO2_f = MIN(1, (0.0054 * PO2 + 0.68)) 

This equation sets the limit at which hypoxia begins to decrease “HR,” to a 

“PO2” of ≤ 60 mmHg.  Above 60 mmHg “HR PO2 f” is set to 1 (equal to no HR 

correction) meaning that under mild hypoxia and normoxia “HR” is only affected by 

“Ta.”  Once “PO2” falls below 60 mmHg as shown in Figure 46, then “HR PO2 f” 

output begins to decline with a minimal “HR PO2 f” correction factor (intercept) of 0.68 

when Ta = 0°C. 
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Figure 46.  RMD “HR PO2 f” response to PO2. 

 

HR [Equation: Theoretical] 

The final HR calculation is done in converter “HR” which is the product of “HR 

Ta” and “HR PO2 f.” 

HR = HR_PO2_f*HR_Ta 

Vvol [Equation: Theoretical, Conversion] 

Ventricular volume, “Vvol,” uses equation (45) to estimate the SV for a fish of 

given weight in mL per kilogram.  As fish weight “Wfish,” is entered into the model in 

grams, it must be converted to kilograms for this equation, by dividing “Wfish” by 1000.  
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Vvol = (0.506*(Wfish/1000)^1.026)/(Wfish/1000) 

SV PO2 f [Equation: Decision, Empirical] 

Winter Flounder data from Mendonca and Gamperl (2010) are again used to 

derive this formula wherein SV increases when O2 saturation falls below 30%.  

Assuming at 100% saturation that water PO2 = 160 mmHg (based on a total atmospheric 

pressure of 760 mmHg), then 30% of 160 mmHg is 48 mmHg.  However, for 

consistency with other hypoxia estimates, the hypoxia response threshold for “SV PO2 

f” was set at 60 mmHg.  When estimated PO2 falls below this 60 mmHg threshold, 

“SV_PO2_f” applies a correction factor that increases “SV” up to a maximum value of 

1.4, although this value is unlikely to be reached in normal applications of the model.  

When “SV PO2 f” values are above 60 mmHg, then the “SV PO2 f” output is fixed at 1 

(see Figure 47). 

SV PO2 f = MAX(1, (1+(0.4-0.4*(PO2/60)))) 
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Figure 47.  RMD “SV PO2 f” response to PO2. 

 

SV Ta f [Equation: Decision, Empirical] 

The temperature-dependent correction factor “SV Ta f” adjusts “SV” based on 

“Ta” input.  The formula used to calculate “SV Ta f” is based on Winter Flounder data 

from Mendonca and Gamperl (2010).  As the SV fraction increases with Ta (see Figure 

48), a minimum (MIN) function is used to limit the correction factor to no more than 1.4. 

SV Ta f = MIN((EXP(0.0135*Ta)),1.4) 

The value of “SV Ta f” reaches its maximum at about 25°C, the SFL optimal 

temperature per van Maaren et al. (2000), then levels out.  As with “HR Ta,” because no 
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data above 26°C is provided by Mendonca and Gamperl (2010), it is presumed that the 

value stays constant, although SV may decrease along with “HR” as thermal stress 

increases.  Below 25°C the influence of Ta on “SV” decreases, with “SV Ta f” reaching 

1 at Ta = 0°C.  As currently modeled, RMD assumes that at all temperatures for which 

SFL survive, there is a > 1.0 correction factor influence on SV. 

 

 

Figure 48.  RMD “SV Ta f” response to Ta. 
Peak SV response reached at “Topt” and assumed to remain level.   
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SV [Equation: Theoretical, Conversion] 

Using “Vvol” to establish a “normal” ventricular volume, the result is modified 

by fractional inputs “SV PO2 f” and “SV Ta f” to produce an estimate of stroke volume, 

“SV.”  Re-conversion of the allometric “Vvol” formula from kg to g is also 

accomplished in this calculation. 

SV = (Vvol*Wfish/1000)*SV_Ta_f*SV_PO2_f 

Q [Equation: Theoretical]   

Having established “SV” and “HR,” the product of these two values will provide 

the cardiac output “Q.” 

Q = HR*SV 

The effects of “Ta” and “PO2” on “Q” output in RMD are shown in Figure 49.  

The graph shows that due to the compensatory mechanisms used in RMD, changes to 

PO2 do not greatly impact “Q,” unlike thermal effects that exert a substantial influence. 
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Figure 49.  RMD “Q” output vs. Ta across PO2 for 1 g SFL. 

 

VO2 Derivation 

All RMD components, or sub-models, discussed have been involved in the 

derivation of support data necessary for calculating ṀO2.  Data from these sub-models 

are then fed into the “VO2 Derivation Sector” (Figure 50), which uses equation 

converters along with flow process and modeled stocks to compute an estimated 

maximal V̇O2 availability output.  Starting on the left, O2 supply models corresponding 

to ventilation, gill diffusion, blood transport, and cutaneous diffusion, as defined by 

equations (17) – (19) and (24), represent the first three flow processes, labeled “VO2 w,” 
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“VO2 gill,” and “VO2 Q.”  However, each flow process is essentially an independent 

model for estimating V̇O2; thus, integrating them in series limits V̇O2 to the flow process 

with the lowest output value.  That is, if the output value of “VO2 w” is less than the 

estimated capacity of “VO2 gill” and “VO2 Q” then this flow process becomes the 

overall V̇O2 rate limiter.  Generally, “VO2 w” is the rate limiter for most simulations in 

which components are set for normal environmental conditions.  It is possible, however, 

that circumstances can be created, particularly during simulated exposure to low PO2 and 

low or high temperature, such that “VO2 gill” or “VO2 Q” may become the rate limiters.  

Artificial restrictions can also be modeled such as anemia or blood loss (via reduction of 

“Hb g per mL”) or gill damage (via reductions of “Gill surface area”), as might occur 

from industrial oil spills (Brown-Peterson et al. 2015).   
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Figure 50.  RMD VO2 derivation sector. 

 

 

The cutaneous contribution to V̇O2, “VO2 Skin,” is not limited by other 

respiratory processes as it constitutes a direct, additive input to the total V̇O2.  However, 

all V̇O2 flow processes are impacted, either directly or indirectly, by “Ta” and “PO2.”   

Discussion of the “VO2 Derivation Sector” will follow the model’s left-to-right 

flow starting with the acquisition of O2 through ventilation. 

Ventilation 

The ventilation components of the “VO2 Derivation” model are shown in Figure 

51.  External sector inputs to “VO2 w” include “Vw,” “PO2,” “PvO2,” and “Wfish.”  

Within this sector, the solubility of O2 in water is provided by “BwO2.”  Estimation of 

V̇O2 as affected by the ventilation process is performed in the flow component “VO2 
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w”: that ventilation output is transferred to the stock component “VO2 vent” for use by 

“VO2 gill” (not shown).  To prevent outputs of “VO2 w” (representing excess O2 not 

consumed), from accumulating in the “VO2 vent” stock cache, the flow component 

“VO2 vent loss” is used to clear the stock after each calculation step.  Though primarily 

a modeling-process requirement, the use of “VO2 vent loss” roughly reflects the fact that 

O2 not consumed during respiration returns to the environment, or limits the uptake of 

“new” O2. 

 

 

Figure 51.  Ventilation component of VO2 derivation. 

 

BwO2 [Equation: Theoretical, Conversion] 10 

The O2 water capacitance coefficient, defined as Δ[O2]/ΔPO2 in units of mL O2/L 

water·mmHg, is determined by the formula: 

BwO2 = (DOa*0.7)/PO2 

 

 

10 Standard nomenclature for capacitance coefficients is the Greek capital beta, β, but as Stella 

does not support Greek letters, the Latin B is used. 
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As “DOa” is in mg O2/L, it is converted to mL O2/L by multiplying the DO value 

by the conversion factor 0.7 mL O2/mg O2. 

VO2 w [Equation: Theoretical, Conversion] 

Ventilation equation (17) inputs of “Vw” and “BwO2” are needed to calculate 

the conductance component of the diffusion equation (Jensen et al. 1993).  Diffusion 

components of equation (17), inspired O2 (PIO2) and expired O2 (PEO2), correspond to 

the PO2 in the water entering the buccal cavity and exiting the operculum, respectively.  

The value of PIO2 is equivalent to the “PO2” in inspired water, which is calculated in the 

Environment Processes sector.  Expired PO2 is the PO2 remaining in water exiting the 

operculum following extraction of O2 by the gills.  The estimation of PEO2 presents 

additional challenges for the experimenter and the modeler.  For the experimenter, 

measuring PEO2 requires care to prevent expired water mixing with the external 

medium.  Oxygen in water exiting the gills can be measured by placing a cone over the 

operculum (Kerstens et al. 1979, Steffensen et al. 1982) or by inserting a sampling 

cannula into the operculum (Capossela et al. 2012).  Measuring PEO2 is not possible for 

the modeler, but an alternative solution exists. 

  The O2 extraction efficiency of the water-perfusion counter-current gas 

exchange is efficient, so much so that in theory, PEO2 is near that of venous PO2  

(Hughes and Morgan 1973).  Thus, the substitution of PvO2 for PEO2 and PO2 for PIO2 

in the ventilation equation allows estimation of the O2 differential.  The efficacy of this 

approach may be validated through a comparison of the estimated extraction efficiencies 
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when using PO2 and PvO2 against measured extraction efficiencies obtained by 

measuring PIO2 and PEO2. 

Fish gill O2 extraction efficiency is calculated with equation (48), which takes the 

ratio of the difference between inspired and expired PO2 over the inspired PO2 (Dejours 

1981).  Substituting PO2 for PIO2 and PvO2 for PEO2 extraction efficiency can be 

estimated. 

 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑃𝐼𝑂2 − 𝑃𝐸𝑂2

𝑃𝐼𝑂2
 ≅  

𝑃𝑂2 − 𝑃𝑣𝑂2

𝑃𝑂2
 (48) 

Extraction efficiency estimations using RMD calculated across PO2 and PvO2 

ranges for a 500 g SFL at 10, 22, and 30°C are shown in Figure 52.  RMD estimates 

appear comparable to extraction efficiencies reported for Summer Flounder, which is 

within the same genus as SFL, acclimated to 22°C and 30°C by Capossela et al. (2012).  

Compared to data for European Flounder acclimated to 10°C, RMD extraction efficiency 

calculations are higher than those presented by Steffensen et al. (1982), particularly at 

PO2 levels > 60 mmHg.   
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Figure 52.  Comparison of RMD calculated O2 extraction efficiency to literature. 
Extraction efficiency data for P. flesus at 10°C (triangle) from Steffensen et al. (1982), and for P. dentatus 

at 22°C (circle) and 30°C (diamond) from Capossela et al. (2012).  RMD settings: salinity = 5 ppt, Weight 
= 500g.  RMD estimated pH, P50, n values: at 10°C, pH = 7.8, P50 = 8.9, n = 1.6; at 22°C, pH = 7.6, P50 = 

13, n = 1.7; at 30°C, pH = 7.4, P50 = 15, n = 1.7. 

 

Substituting PO2 for PIO2 and PvO2 for PEO2, “VO2 w” is re-formulated within 

RMD as follows:  

VO2 w = (Vw*Wfish)*(BwO2/1000)*(PO2-PvO2) 

The product of “Vw” and “Wfish” estimates the oxygenated water flow over the 

gills in mL/hr.  This value is multiplied by “BwO2” adjusted to give the O2 capacitance 

in mL O2/mL water·mmHg.  When multiplied by the O2 tension differential in mmHg, 
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the product is the estimated V̇O2 from gill ventilation in an SFL of given weight in mL 

O2/hr. 

The remaining components of the ventilation calculation, the Stella® stock “VO2 

vent” and flow “VO2 vent loss,” are used, respectively, to “store” or cache the data from 

“VO2 w,” which is then input into the next component of “VO2 Derivation”; and, to 

“drain” the stock (i.e., clear the cache) should the value in the “VO2 vent” stock value 

exceed the capacity of the “VO2 gill” flow component.  Under normal circumstances, 

once water flows through the buccal cavity of a fish, across its gills and out the 

operculum, any O2 remaining in the expelled water is no longer available for 

consumption.  The use of “VO2 vent loss” in the model provides the model equivalent, 

preventing the creation of an O2 “reservoir” from any residual V̇O2 that might remain in 

the stock. 

Gill Diffusion 

The gill diffusion component of RMD shown in Figure 53 estimates the flow of 

O2 that occurs across the gill and capillary network using equation (18).  It is contained 

within the Stella® flow component “VO2 gill.”  External sector inputs into “VO2 gill” 

include “PO2” and “PvO2” which have been previously discussed.  Additional inputs are 

provided by converters labeled “O2 Diff,” “Krogh,” “Gill dX,” and “Gill surface area.”  

These O2 conductance components will be addressed first followed by a discussion of 

integrating all the input components into “VO2 gill.”   
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Figure 53.  Gill diffusion component of VO2 derivation. 

 

O2 Diff [Equation: Empirical, Decision] 

Oxygen diffusion across a cell membrane in cm2/h is estimated using the 

converter “O2 Diff.”  The empirical formula used was obtained from the data provided 

by Fischkoff and Vanderkooi (1975) as shown in Figure 23. 

O2 Diff = 0.0064*EXP(0.04*Ta) 

Krogh [Equation: Theoretical, Conversion] 

The “Krogh” converter calculates the Krogh constant in mL O2/cm·h·mmHg.  

The Krogh constant is the product of the O2-water capacitance coefficient “BwO2” and 

O2 diffusion “O2 Diff.”  As with the calculation of “VO2 w,” the capacitance coefficient 

“BwO2” is divided by 1000 to obtain per mL units, or in this case, the equivalent per 

cubic centimeter (cm3) of water. 

Krogh = O2_Diff*(BwO2/1000) 
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Gill SA [Equation: Empirical, Decision] 

Baseline gill surface area “Gill SA” is set to 2.42 cm2/g fish based on average gill 

surface area from Summer Flounder (AKA Fluke) data as reported by Gray (1954). 

Gill surface area = 2.42 *Wfish 

Gill dX [Input: Fixed] 

Gill diffusion distance “Gill dX” is nominally set to 0.0005 cm (5 μm) but this 

value can be reduced as desired.  The use of cm is in keeping with other diffusion 

distances within the model.   

VO2 gill [Equation: Theoretical] 

“VO2 gill” uses a Stella® flow component to calculate the O2 flow, using 

equation (18) with inputs from “Krogh,” “Gill SA,” and “Gill dX,” and O2 tension 

components “PO2” and “PvO2.” 

VO2 gill = Krogh*(Gill_SA/dX)*(PO2-PvO2) 

The output of “VO2 gill” is sent to the stock component labeled “VO2 diff.”  

This represents the V̇O2 amount that has diffused across the gill and capillary-cell 

membranes available for the next component in the V̇O2 cascade, “VO2 Q.”  As with 

“VO2 w,” any O2 that does not diffuse across the gills (i.e., remains dissolved water) is 

lost back to the environment.  To prevent the accumulation of “VO2 gill” output within 

the “VO2 diff” stock, the contents of “VO2 diff” are removed with each model cycle 

(i.e., DT) by the flow component “VO2 diff loss.” 
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Blood Oxygen Transport 

Blood O2 transport within the RMD “VO2 Derivation” model is represented only 

by the Stella® flow component “VO2 Q” shown in Figure 54.  The output of “VO2 Q” 

flows into “VO2 Tissue” stock where it is combined with the output of “VO2 skin,” 

discussed below. 

 

 

Figure 54.  Blood O2 transport component of VO2 derivation sector. 

 

VO2 Q [Equation: Theoretical] 

The calculation of “VO2 Q” in mL O2/h is based on the Fick equation shown in 

equation (19) as the product of cardiac output “Q,” in mL blood/h, and the arterial O2 

concentration “CaO2,” in mL O2/mL blood, which is converted to the carrying capacity 

of blood, in mL O2/mL blood·mmHg, through the division of “CaO2” by “PO2.”  

Arterial O2 pressure is assumed equal to “PO2” so that the calculated O2 tension 

becomes the difference between this value and the calculated venous PO2, “PvO2.” 

VO2 Q = Q*(CaO2/PO2)*(PO2-PvO2) 

The capacity of “VO2 Q” generally exceeds that of the “VO2 w” and “VO2 gill.”  

However, the inclusion of “VO2 Q” allows the modeling of those circumstances wherein 

“Q” or “CaO2” outputs are sub-par such as might be encountered at extreme 
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temperatures for “Q” or if “Hg g per mL” were to be reduced to simulate anemia or 

blood loss in SFL. 

Cutaneous O2 Diffusion 

Using equation (24), RMD calculates cutaneous O2 diffusion, “VO2 Skin, with 

inputs from converters skin surface area, “Skin SA,” and skin thickness estimates for 

upper, “upper Skin dX,” and lower, “lower Skin dX,” surfaces of the SFL.  The model 

also includes a converter to allow for manual adjustments of cutaneous diffusion 

efficiency as shown in Figure 55. 

 

 

Figure 55.  Cutaneous diffusion component of VO2 derivation sector. 

 

Skin SA [Equation: Theoretical] 

The equation used for “Skin SA” is based on the MDC SFL data fit-line shown in 

Figure 25 in which surface area was first estimated using TL data and equation (33).  

Recall that the empirical equation based on the MDC data gave an estimated Meeh 

constant close to the predicted value of 10 and a body weight power exponent was 

slightly greater than 0.69, versus the ideal Surface Law value of 0.67.  However, the 0.69 
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value is within the range of the minimum exponent value of 0.53 in dairy cattle and the 

maximum exponent value of 0.74 in domestic fowl, as reported by Calder (1984).   

The surface area calculation for SFL does not address the potential additional 

surface area for O2 diffusion afforded by the SFL tail and fins.  Nor the does the estimate 

take into account the possible additional surface area due to curvature of the SFL body, 

as the area formula assumes a flat surface.  To account for these additional surface areas, 

the decision was made to use a weight exponent of 0.7. 

Skin SA = 10*Wfish^0.7 

Upper Skin dX & Lower Skin dX [Equation: Empirical, Conversion] 

RMD uses equations for upper and lower skin distance adapted from Winter 

Flounder skin thickness empirical equations reported by Burton et al. (1984).  The 

equations have been slightly altered, and results converted to cm from μm by dividing 

the results by 10,000. 

Upper Skin dX = (0.0198*Wfish+36)/10000 

Lower Skin dX = (0.04886*Wfish+45)/10000 

Skin eff f [Input: Fixed] 

The variable “Skin eff f” allows the skin diffusion efficiency to be manually 

adjusted should the RMD user desire to determine the effects of reduced cutaneous 

respiration on overall V̇O2.  The default setting of “Skin eff f” is 1, indicating no change 

in cutaneous respiration produced by “VO2 Skin.”  If, for example, the effect of being 

buried in sediment, which impacts water flow over the skin, is to be simulated, then the 
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value may be reduced to any fraction less than 1.  Setting “Skin eff f” to zero will 

eliminate altogether the contribution of cutaneous respiration to the V̇O2 output of RMD. 

VO2 Skin [Equation: Theoretical] 

Calculation of the V̇O2 via skin contribution to RMD is achieved using equation 

(24) as applied by the Stella® flow component “VO2 Skin” using inputs from “Skin SA,” 

“Upper Skin dX,” “Lower Skin dX,” and “Skin eff f.”  Because “Skin SA” is estimated 

using equation (33) which calculates the surface area of the whole SFL (i.e., both upper 

and lower skin surfaces), the value of “Skin SA” is divided by 2 to give the mean SA for 

a single side of the SFL.   

Additional inputs are provided by “Krogh,” as it is assumed that diffusion 

capacity through cutaneous tissue membranes is the same as via gill tissue membranes.  

Oxygen tension difference is determined using “PO2” and “PvO2.”  

VO2 Skin = ((Krogh*((Skin_SA/2)/upper_Skin_dX)*(PO2-PvO2)) + 

(Krogh*((Skin_SA/2)/lower_Skin_dX)*(PO2-

PvO2)))*Skin_eff_f 

The output of “VO2 Skin” is sent to the stock component “VO2 Tissue” where 

this value is added to the value produced by “VO2 Q.”  Thus, “VO2 Tissue” is the 

integration point within RMD for respiratory and cutaneous-sourced V̇O2. 

RMD V̇O2 Output 

The cumulative values of “VO2 Q” and “VO2 Skin” are summed and stored in 

the Stella® stock “VO2 Tissue” which is “drained” by the final output component of the 

primary model “VO2” as shown in Figure 56. 
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Figure 56.  V̇O2 output component of VO2 derivation sector. 

 

VO2 [Equation: Theoretical] 

The value of “VO2” is the sum of “VO2 Q” and “VO2 Skin” and “drains” the 

“VO2 Tissue” stock each step of RMD execution. 

VO2 = VO2_Q+VO2_Skin 

“VO2” is the prime output of RMD, representing the O2 flow capacity in mL 

O2/h based on SFL weight, input temperature, salinity, ambient pressure and, if desired, 

pH and DO.  As the total V̇O2 available for a SFL of a given weight, it represents the 

gross volume of O2 available per hour.  While of interest, this value is not generally 

useful when evaluating metabolic rate as it does not provide a value per unit weight.  To 

determine the mass value “VO2” output must undergo one more processing step which 

is accomplished in the last RMD sector to be discussed, “Oxygen Supply.” 

Oxygen Supply 

The “Oxygen Supply” sector, shown in Figure 57, consists of a series of 

converters that translate the output of “VO2” into several useful formats with differing 

units for use in other models or comparison to literature data.   
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Figure 57.  Oxygen supply derivation sector. 

 

Because RMD relies on input data best expressed in mL O2, the first step in unit 

conversion is to express “VO2” as a per-unit of mass (in this case, grams). 

mL O2 g [Equation: Conversion] 

Using inputs from “VO2” and “Wfish,” “VO2” output is simply divided by 

“Wfish” to give a V̇O2 output labeled “mL O2 g” with units in mL O2/g fish·h.  Because 

the model uses hourly time intervals, the hour reference is left off of labels for 

simplicity. 

mL O2 g = VO2/Wfish 

The output of “mL O2 g” is then used by several other converters to obtain useful 

units. 

mL O2 kg [Equation: Conversion] 

In “mL O2 kg” the results of “mL O2 g” are converted to mL O2/kg·h. 

mL O2 kg = mL_O2_g*1000 
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mg O2 g [Equation: Conversion] 

Here, “mL O2 g” is converted from a volume O2 flow (V̇O2), in mL O2/g fish·h, 

to a mass flow (ṀO2) value, in mg O2/g fish·h, using the conversion value of 1.4286 mg 

O2/mL O2, which is the molecular weight (32 g/mole) divided by 22.4 liters/mole, the 

volume of 1 mole of O2 at standard temperature and pressure, dry (Lide 2003). 

mg O2 g = mL_O2_g*1.4286 

The output of “mg O2 g” is significant because Ecophys.Fish uses this unit of 

measure.  The integration of “mg O2 g” into E.F will be discussed in the next chapter. 

mg O2 kg [Equation: Conversion] 

“mg O2 kg” converts “mg O2 g” into mg O2/kg·h. 

mg O2 kg = mg_O2_g*1000 

oxycal [Input: Fixed] 

This converter sets the oxycaloric equivalent value of 1 mg O2 at 3.4 calories/mg 

O2 (Brett and Groves 1979). 

cal g & cal kg [Equation: Conversion] 

Using inputs from “mg O2 g” and “oxycal,” “cal g” converts the output of RMD 

into a caloric value of cal/g fish·h.  Substituting “mg O2 kg” for “mg O2 g,” the 

converter “cal kg” provides an output estimate in cal/kg fish·h. 

cal g = mg_O2_g*oxycal 

cal kg = mg_O2_kg*oxycal 
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Skin mg O2 [Equation: Conversion] 

The converter “Skin mg O2” was added to RMD to facilitate review of the 

cutaneous contribution to ṀO2, in mg O2/g fish·h, using inputs from “VO2 Skin” and 

“Wfish.” 

Skin mg O2 = (VO2_Skin/Wfish)*1.4286 

Percent Skin [Equation: Theoretical] 

The converter “Percent Skin” was added to the model to assess the percentage of 

the cutaneous ṀO2 contribution to the overall ṀO2 output.  The output values of 

“Percent Skin” can be compared to cutaneous respiration percentages reported in the 

literature to validate that the RMD cutaneous respiration settings produce comparable 

results. 

Percent Skin = (Skin_mg_O2/mg_O2_g)*100 

The “Krogh” coefficient in the “VO2 Skin” equation is the product of “BwO2” 

and “O2 Diff.”  Both of these inputs are products of “Ta,” “Dosat,” and “PO2,” the 

interplay of which has a great influence on “Percent Skin.”  Figure 58 shows the effect 

of DO from 7 to 4 on skin diffusion efficiency at 25°C with “Skin eff f” = 1 for a SFL up 

to 500 g.  When the temperature is dropped to 15°C with a DO of 4 mg O2/L water, the 

effect increases the contribution of “VO2 Skin” to the total V̇O2 output.  This is because 

PO2 is less (although DO is the same and “O2 Diff” declines), resulting in a higher 

“BwO2” so that the percent contribution by the skin is comparable to the value seen at 

DO of 5 at 25°C.   
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Figure 58.  RMD percent contribution of cutaneous respiration to total V̇O2. 
Effect of DO from 7 to 4 on percent contribution at 25°C (solid lines).  Effect of change in temperature 
shown for 15°C with DO = 4 (dashed line).  See text for explanation. 
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CHAPTER VII  

INTEGRATION OF THE FLOUNDER RESPIRATORY MODEL WITH 

ECOPHYS.FISH 

 

The final output of Respiratory Model, Dynamic (RMD) estimates the hourly 

oxygen flow (V̇O2) available per gram of tissue.  The model simulates the both O2 

uptake at the gills and the cutaneous contribution to V̇O2 as a function of SFL body size 

(and by default, age), with larva up to juvenile sizes benefiting more from cutaneous-

sourced O2 than adults.  

The V̇O2 output of RMD was intended as input to the coupled bioenergetics 

growth model Ecophys.Fish (E.F) (Neill et al. 2004), introduced in Chapter IV, provides 

the growth model with a V̇O2 estimate-based mechanistic system of ecophysiological 

responses.  This chapter will address the integration of RMD into E.F, and the methods 

used to optimize the E.F-RMD hybrid model for best fit of outputs to those observed in 

experiments.   

Production of an E.F-RMD version benefitted from addition of several new 

components.  These new E.F-RMD components will be discussed at the end of the 

chapter, including two new sub-models developed for simulation of starvation death and 

to display specific respirometry outputs useful for fitting E.F-RMD to data from the 

Cool-Warm experiment at MDC.  For components left un-altered in the integration of 

RMD, the reader is referred to Neill et al. (2004) for an in-depth description of the E.F 

model.   
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Configuration of the E.F-RMD Model 

The Stella® graphical representation of E.F-RMD configured to assess SFL 

growth data obtained from the MDC experiment is shown in Figure 59.  In this 

representation, the primary E.F components have been grouped into two sectors, 

“Metabolic Rate and Control” which models the effects of environmental factors 

established by Fry (1971), to simulate MSgrowth.  The other sector, “E.F Growth,” is the 

growth-simulating component of E.F.  Above these are the RMD sectors described in the 

previous chapter.   

Also shown are the new sectors that predict death due to starvation (black framed 

sector), control the simulated respirometry (small green framed sector), and the 

determination of RMR at the point of limiting oxygen concentration (LOCr).  The ratio 

of RMR and LOCr is used to determine the marginal metabolic scope (MMS) (large 

green sector). 
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Figure 59.  Ecophys.Fish-Respiratory Model, Dynamic: STELLA® model of Southern Flounder growth. 
MDC Cool - Warm model. 
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Shared Inputs 

Both RMD and E.F require environmental inputs to function.  For E.F-RMD, the 

temperature, pH, and salinity inputs are grouped and shared.  Oxygen-related 

components are grouped in a separate sector (either as PO2 or DO).  Unlike the basic 

RMD model, which determines DO from PO2 based on the fraction of O2 in the 

environment, E.F-RMD uses two alternative DO inputs; either the Green and Carritt 

(1967) calculation to produce “DOsat,” which assumes a fixed O2 fraction, or “DOa,” 

which is based on the amount of O2 on a volumetric basis in the simulated respirometer 

modeled within RMD.   

Integration of RMD into E.F 

RMD provides source control of the maximal available V̇O2.  The converter 

“VO2” combines respiratory and cutaneous sourced V̇O2 in ml O2/h and is the primary 

RMD export to E.F, where it is converted to mg O2/g fish·h and labeled “Mact max,” the 

maximum active metabolic rate given current environmental conditions and 

physiological limitations.  The substitution of RMD-derived V̇O2 within E.F removes 

any influence of the E.F-derived “Mact” by the “Limiting” decision diamond.  The 

integration of E.F with RMD moves the role in calculating the limiting influence of [O2] 

on metabolic rate to the inherent and emergent O2 control mechanisms within RMD.   
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Input from E.F into RMD 

To serve as a respiratory sub-model of E.F, RMD requires feedback to account 

for changes in environmental conditions.  Ecophys.fish’s primary state-change output is, 

as befitting a growth model, the weight of the subject fish, “Wfish,” which significantly 

impacts RMD’s V̇O2 calculations.   

Model Parameterization for Growth and Respirometry 

Growth occurs only if a surplus of energy is available after meeting the 

organism’s routine metabolic requirements (Fry 1971, Neill et al. 1994).  Energy for 

growth is sourced from chemical combustion of food with O2 (von Bertalanffy 1957, 

Neill et al. 2004, Stevens et al. 2006, Kerkhoff 2012).  Growth can be limited or 

accelerated by adjusting the metabolic and the caloric energies allocated for growth 

and/or by adjustments to the metabolic costs such as the RMR and costs associated with 

digestion and waste removal.  While multiple variables can be adjusted in either sector, 

only a few keystone variables need adjustment.  If altered, a keystone variable 

substantially impacts the outcome without causing outcomes to exceed normal 

physiological ranges and/or inappropriate impacts on other processes. 

The components of the metabolic sector which have the most influence on 

metabolic rate in the control of growth are all inputs to “MSgrowth”: “Mact max,” 

“Winberg,” and “Smin.”  Within the growth sector, “GEFeed” and “FeedRateMax” 

affect energy availability while “sda” and “FeedDigestibility%” affect energy costs or 

loss.  The process by which these components are adjusted is discussed in the next 

sections.  
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Growth Control: Metabolism 

Not surprisingly, the parameter “MSgrowth” plays a key role in affecting 

simulated growth.  It is calculated by subtracting the product of the “Winberg” value and 

the standard metabolic rate “Mstd” from “Mact max” as indicated: 

MSgrowth = Mact_max-Winberg*Mstd 

V̇

Essentially “MSgrowth” is an energy-balance model, with available energy for 

growth provided by “Mact max.”  Metabolic energy is removed via the maintenance 

“costs” represented by “Winberg” and “Mstd.”  Increasing “Mact max” and/or 

decreasing “Winberg” and/or “Mstd” increases MSgrowth and vice versa.   

Changing the flows affecting “MSgrowth” is a simple matter.  This is certainly 

true for “Winberg,” which is a fixed value, but as “Mact max” and “Mstd” are the end 

products of a multitude of other variables and calculations, the use of one or more 

keystone processes in proceeding calculations has proven more effective. 

MSgrowth Control: Mact Max 

Controlling the effect “Mact max” has on growth means controlling the V̇ O2 

output of RMD.  There are, of course, multiple components of the model that could be 

altered to achieve this.  However, the most effective means of adjusting V̇ O2 was finding 

and using a variable that impacts all V̇ O2 calculations while maintaining the model’s 

fidelity within physiological limits. 

Fortunately, the model’s design is such that adjustments to gill ventilation, “Vw,” 

the first O2 supply source, impact all subsequent V̇ O2 calculations except cutaneous 

O2, which can be adjusted by changing the skin diffusion efficiency fraction found in 
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“Skin eff f.”  Because cutaneous diffusion efficiency declines at a fixed rate with growth 

and is a passive process dependent upon environmental conditions, “Skin eff f” is 

generally not changed. 

Use of fR Con for Managing Growth and Respirometry 

Variation of "fR con" proved effective for adjusting modeled water flow over the 

gills, and thus ventilation-sourced V̇O2 from “VO2 w” (“VO2 w” being the product of 

ventilation volume “VsR” and ventilation frequency “fR” – see previous chapter).  Of 

the two variables, “fR” has the greatest capacity for adjustment and is why the 

adjustment constant “fR con” was included in the model.  It is through “fR con” that the 

“VO2” and subsequently “Mact max” value can be most efficaciously adjusted. 

When fitting E.F-RMD to a growth model, the value of “fR con” may be set to a 

value that best approximates the observed growth when the model is run.  In this 

circumstance, a variance in the “fR con” value may be permissible.  However, when 

fitting the model using simulated respirometry to observed data, the value of “fR con” 

may require a particular value to achieve accurate results.   

Simulated respirometry was used for the determination of the limiting oxygen 

concentration for routine metabolism (LOCr), which is the DO level corresponding with 

the intercept of routine metabolic rate (RMR) with the active metabolic rate, construed 

as equivalent to “Mact max.”  As simulated respirometry proceeds, “Mact max” declines 

as “DO” in the simulated “respirator tank” becomes limiting.   

When fitting E.F-RMD to respirometry data, the objective is for simulated RMR 

to intercept “Mact max” at the observed LOCr.  Achieving this requires some precision. 
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The “Mact max” value at the start of simulated respirometry must be at a specific value, 

and V̇O2 (i.e., rate of O2 is removed from the respirometer) must also be at a specific rate 

so that the slope of the decline for “Mact max” intercepts RMR at the correct DO level.  

Because of the importance of “fR con” in determining “Vw,” its value must also be 

precisely set, if the model respirometry output is to be fit to the desired LOCr value. 

MSgrowth Control: Winberg 

The input variable “Winberg” is an application of “Winberg’s rule,” which 

nominally sets RMR as a multiple of SMR (Winberg 1960, Neill et al. 2004).  The 

Winberg value is often assumed to be about 2, i.e., RMR is twice SMR, but this may not 

always be the case.  Potentially the “Winberg” value may vary by species and/or across 

environmental conditions.  From the modeler’s perspective, the uncertainty of the 

“Winberg” value is advantageous as it allows adjustments within the model while still 

allowing for the maintenance of model fidelity.  Still, there are limits to the allowable 

variance of “Winberg.”  A Winberg value of 1 simply means that RMR equals SMR, 

which is unlikely unless the fish is comatose.  Too high a Winberg value and the RMR 

would be too metabolically costly for the fish to survive and grow.  While no firm range 

has been established, when adjusting the model Winberg value, an attempt was made to 

keep it within the 2 ± 0.5 range. 

MSgrowth Control: Mstd 

Standard metabolic rate is a function of “Mstd,” which in E.F is a function of the 

loading effect of salinity “S,” thermal acclimation “Taccl,” and thermal stress “Tstress” 

effects as shown. 
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Mstd = S*EXP(q1*Taccl)*EXP(q2*Tstress) 

Adjustment to “Mstd” can be achieved through the thermal variables “q1,” the 

acclimated thermal steady-state rate constant, and “q2,” the thermal stress transient state 

rate constant (Neill et al. 2004).  While either “q” variable may be adjusted to impact 

“Mstd,” only “q1” was used for fitting E.F-RMD to data, to avoid any unforeseen 

interactions that might occur when changing more than one parameter within an 

exponential function. 

An adjustment may also be made to “Mstd” by changing the salinity loading (or 

masking) factor “S” which in E.F is defined: 

S = Smin+Sgain*Svar 

Of the three variables that define “S,” it is “Smin,” the minimum of “S” at 

optimal salinity, that provides the most useful means of adjustment.  Calculation of 

“Smin” is shown below as a function of fish weight and “Smin0,” which is defined by 

Neill et al. (2004) as “the ultimate intercept of standard metabolic rate.” 

Smin = Smin0*Wfish^-0.2 

When fitting E.F-RMD to other growth models, the preferred method for 

metabolic adjustment to “Mstd” was achieved by making adjustments to “Smin0” and 

using the thermal acclimation variable “q1.” 

In summary, growth control for fitting E.F-RMD output to measured growth data 

can be accomplished of “MSgrowth.”  The metabolic scope for growth variables deemed 

best for fitting E.F-RMD output to data are “fR con,” “Winberg,” “Smin0,” and “q1.”  
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The resulting “MSgrowth” value is then exported to the “E.F Growth” sector where, 

because the energy unit of choice for E.F is the calorie (specifically calories per day), 

“MSgrowth” is converted to calories/time by multiplying any given metabolic rate by 

the oxycaloric conversion factor of 3.4 cal/mg O2 (Neill et al. 2004). 

Growth Control: Caloric Intake 

Modulation of caloric content and consumption of “feed” to affect model growth 

is well established (von Bertalanffy 1938, 1957, Roff 1983, Neill et al. 2004, Stevens et 

al. 2006).  The three variables within the “E.F Growth” sector that affect “feed” caloric 

content are “GEFeed,” “FeedRate,” and “FeedRateMax.”  Of these three variables, only 

“GEFeed” and “FeedRateMax” are useful for controlling available “calories” as 

“FeedRate” is a fixed value of 1.  Caloric consumption, and hence calories not available 

for growth, may be modified through adjustment of the specific dynamic action constant 

“sda” (a percentage estimate of energy expended for digestion) and 

“FeedDigestibility%” a percent measure of how much food consumed is digestible, the 

remaining fraction being non-digestible waste.  The metabolic cost of nitrogenous waste 

is not adjustable and fixed within E.F at 5% of available energy. 

Caloric Control: GEFeed 

The most direct method to control feed-energy intake within E.F-RMD is 

through the adjustment of “GEFeed,” which establishes the caloric content of feed per 

gram as-fed (Neill et al. 2004).  Caloric content of food has a significant effect on a 

flounder’s growth rate (Seikai et al. 1997).  For example, growth-maximizing feeds such 

as the Mysid Shrimp Taphromysis bowmani Bacescu have an energy content of over 
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4000 cal/g feed dry weight (Johnson and Hopkins 1978).  Change in “GEFeed” is at the 

discretion of the modeler; however, a fixed value between 1000 to 4000 cal/g feed 

typically is mandated by known energy-density of the particular feed or forage.  

Changing “GEFeed” within a model run certainly is not prohibited, and even becomes 

appropriate under simulated conditions of temporal variation in feed composition or 

availability.  However, as a general rule, using a fixed “GEFeed” for each model run 

eliminates the introduction of any possible confounders to calculating growth.  All 

growth comparisons conducted for the validation of E.F-RMD were accomplished using 

fixed “GEFeed” values for each growth simulation conducted.  

Caloric Control: FeedRateMax 

Control of caloric intake can also be achieved by adjusting the rate at which feed 

is consumed.  Within E.F this is controlled by the function “FeedRateMax.”  The 

standard “FeedRateMax” value used within E.F is a negative-power function of weight, 

as shown in equation 49. 

 𝐹𝑒𝑒𝑑𝑅𝑎𝑡𝑒𝑀𝑎𝑥 = 𝑇𝑓 ∙ 𝑊𝑓𝑖𝑠ℎ
𝑏 (49) 

The output of function “FeedRateMax” represents the maximal daily rate of 

feeding and physiological processing (Neill et al. 2004), with exponent b being a 

negative value that sets the rate of decline in feed rate per-unit body weight, with further 

adjustments to the maximum feed rate possible through the use of a temperature-

dependent quadratic equation represented by Tf.   

This “FeedRateMax” model is consistent with growth studies of Japanese 

Flounder, by Iwata et al. (1994) and Seikai et al. (1997), who found daily feed rate is 
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influenced by both weight and temperature.  Iwata et al. (1994) demonstrated that as 

weight increased, feed rate declined.  In contrast, temperature effects were more 

nuanced, with growth rate peaking at an optimal temperature range and stabilizing or, in 

some cases, slightly declining when the ambient temperature was below and above an 

optimal temperature. 

The effects of increasing body weight on feed rate decline may have been 

independently identified by Neill et al. (2004) when modeling the “FeedRateMax” for 

Red Drum Sciaenops ocellatus.  The initial use of a simple power function proved 

insufficient, necessitating the introduction of a natural negative log function for the b 

exponent in equation (49) to fit the observed data.  However, other variants of E.F have 

used a fixed b value of -0.3 which has also worked well for E.F-RMD. 

Although temperature effects were not factored into the “FeedRateMax” 

calculation of the Red Drum E.F model, the success of Neill et al. (2004) in factoring 

weight effects on feed rate validates the utility of controlling feed energy within the 

model using “FeedRateMax.”  Thus, weight effects, via exponent b, and temperature 

effects, via variable Tf, in the basic equation were pursued to further refine caloric 

growth control within E.F-RMD. 

Using the observations of Iwata et al. (1994) as a reference, temperature effects 

on feed rate were expressed using the parabolic formula shown in equation (50) 

 𝑇𝑓 = −𝑥𝑇2 + 𝑦𝑇 (50) 

where x and y are constants and T is the temperature in °C.   
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The values for x and y may need to be independently determined by the modeler 

for each data set analyzed.  For example, the following “FeedRateMax” formula was 

used to fit E.F-RMD growth output to a growth algorithm from pond-grown SFL for 

data collected by Sea Center Texas at Galveston ponds. 

FeedRateMax = ((-0.000046*Ta^2+0.0046*Ta)* Wfish^-0.3) 

Figure 60 graphically shows the Tf value across temperatures when Tf = -

0.000046*Ta^2+0.0046*Ta. 

 

 

Figure 60.  Example Tf output for FeedRateMax fit to SCT pond data. 
Formula: Tf = -0.000046*Ta^2+0.0046*Ta. 
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Under certain conditions, when the weight range of the fish being modeled is 

limited, it may be possible to use a “FeedRateMax” function that accounts only for 

temperature effects.  This exception was discovered when fitting the “FeedRateMax” to 

data for SFL raised at the MDC under Warm and Cool temperatures.  Initially, two 

“FeedRateMax” equations were used to obtain a proper growth match for each 

temperature condition.  However, when the “FeedRateMax” value for each group was 

graphed (see Figure 61), it became apparent that an overall temperature linear trend 

existed independent of weight.  When calculated, “FeedRateMax” increased with 

temperature according to the following equation: 

FeedRateMax = 0.0001*Ta^2 

This calculation permitted the use of a single, linear equation that could be used 

to predict “FeedRateMax” under both temperatures regimes without the need for two 

independent equations.   
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Figure 61.  Calculated FeedRateMax fit to MDC Warm and Cool data. 
FeedRateMax Warm (FeedRateMax_W – red) and Cool (FeedRateMax_C – blue) fit using thermal and 

weight effects calculation.  Linear fit line and equation based on the trend-line calculated using Excel.  

The significant thermal excursions in Cool data were due to power failure during the study resulting in 
tank warming until power was restored. 

 

As stated, the linear relationship (excursion aside) between these two data sets 

may be the exception, and care should be taken not to assume a linear thermal 

relationship independent of weight exists in all situations. 

Caloric Control: Feed Costs and Inefficiency 

Not all calories liberated from feed are available for metabolism and growth.  

Digestion of the food and subsequent nutrient-processing impart an energy cost, 

represented by “sda.”  Within E.F-RMD, the “sda” value is fixed but can be adjusted 



 

197 

 

before running the model.  The current “sda” is set to 0.14, or a 14% cost for digestion 

and other feed-processing costs. 

Another variable to consider is “FeedDigestibility%” which is a measure of the 

feed that is “digestible” and provides calories for metabolism and growth.  The nominal 

setting for “FeedDigestibility%” is 0.9, or 90%, but this may be reduced as needed 

before running the model.  For prepared feeds of inferior quality, it may be considerably 

lower. 

E.F-RMD Alterations and Additions 

The developer of Ecophys.Fish, Dr. William Neill, continued his work with E.F 

beyond the model reported in Neill et al. (2004), including the added capability for 

simulated respirometry.  This feature has been incorporated into E.F-RMD with minor 

modifications. 

To aid in the review and analysis of E.F-RMD during its development, two add-

on models permitted the prediction of “starvation death” of an SFL should conditions be 

inadequate to support the maintenance of body energy and mass, and a sub-model for 

determining LOCr, the limiting oxygen concentration for routine metabolism, which 

represents the convergence of maximum (active) and routine metabolism.  Neither of 

these two sub-models is necessary for E.F-RMD to function, but they provide 

significantly added awareness of the model’s output performance, particularly when 

fitting model output to data; thus, they may be considered integral parts of E.F-RMD. 
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Respirometry Controls 

Respirometry controls are found in the “Respirometry Controls” sector shown in 

Figure 62.  The converters found in this sector are used to activate the respirometry 

function.  They establish when this occurs during the growth simulation and set the 

“respirometer” volume. 

 

 

Figure 62.  RMD respirometry controls sector. 

 

DoResp? [Input: Fixed] 

The converter “DoResp?” is the switch used to turn the respirometry function on 

or off.  If the value is set to zero, then the respirometry function is deactivated according 

to the criteria found it “O2 in” and “O2 out.”  A value other than zero will activate the 

respirometry function (setting value to 1 is expected). 

TimeRespStart [Equation: Decision] 

The converter “TimeRespStart” sets the time for starting respirometry, which is   

24-time steps (i.e., DTs) prior to the proscribed end run-time.  Since the model time 

intervals are in hours, this corresponds to 24 hours before the model stop time. 
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TimeRespStart = STOPTIME-24  

The “TimeRespStart” value is also used by the E.F “FeedRate” function to 

trigger fish “fasting” by setting the “FeedRate” value to zero, 24 hours before the start of 

respirometry, i.e., TimeRespStart - 24. 

TestTime [Equation: Decision] 

The converter “TestTime” allows the model run to be paused, if desired, when 

respirometry starts.  The pause allows the user to inspect state of the model at the 

beginning of simulated respirometry.  This feature can be deleted or disabled by 

changing “PAUSE” to “TIME” in the equation.   

TestTime = IF DoResp? = 0 THEN TIME ELSE (IF TIME = 

TimeRespStart + 1 THEN PAUSE ELSE TIME) 

RespVol [Input: Fixed or Variable] 

“RespVol” sets the respirator’s “water volume,” in liters.  Volumes are generally 

set to between 1 to 4 L.  The larger the volume, the greater the “volume” of O2 available 

within the “ml O2” stock, and the longer before LOCr is reached.  This allows 

adjustment of the rate of O2 decline in the “ml O2” stock at any given V̇O2, with larger 

volumes providing slower rates of decline, and therefore more sensitivity when 

determining LOCr. 

DOa [Decision, Theoretical] 

One respirometry controller not within the “Respirometry Control” sector is 

“DOa” which is found in the “Environmental Oxygen” sector.  This decision function 
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calculates DO decline when virtual respirometry is activated by converting the value of 

“ml O2” stock back to mg O2/L.  Otherwise, the value for this parameter is the same as 

the estimated DO from “DOsat.” 

DOa = IF DoResp? = 0 THEN DOsat ELSE (IF TIME < TimeRespStart 

THEN DOsat ELSE (ml_O2/0.7)/RespVol) 

Respirometry 

Respirometry was added to E.F-RMD by attaching flow and stock components to 

the “VO2 w” inlet flow in the “VO2 Derivation” sector of RMD.  In its basic form, 

RMD assumes an unlimited “water” supply to the “VO2 w” flow (symbolized by a cloud 

on the end of the flow icon).  By adding a flow and stock to the V̇O2 model, see Figure 

63, O2 “volume” available to “VO2 w” can be limited to simulate a closed respirometry 

system.  Components of the model are “O2 in” which models O2 volume (in mL) being 

supplied per hour, “ml O2” is the stock function which “collects” the available O2 while 

“O2 out” clears the value in “ml O2” after each DT when in non-respirometry mode.  

When respirometry is started, “O2 in” and “O2 out” controls are set to zero so the 

amount of O2 available to the model becomes fixed to the amount “trapped” in the “ml 

O2” stock. 
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Figure 63.  RMD respirometry component model. 
“VO2 w” included to show how model integrates into V̇O2 derivation. 

 

O2 in [Equation: Decision, Theoretical] 

The “O2 in” flow function controls the amount of O2 in mL available for use by 

the model using Boolean functions and four input processes: “DoResp?,” “DOsat,” 

“RespVol,” and “TimeRespStart.” 

O2 in = IF DoResp? = 0 THEN (DOsat*0.7)*RespVol ELSE (IF TIME < 

TimeRespStart THEN (DOsat*0.7)*RespVol ELSE 0) 

If “DoResp?” is set to 0 (i.e., off), then the volume of O2 availability to the model 

is limitless.  The amount of O2 (in mL) at any given moment is determined by the 

theoretical function (DOsat*0.7)*RespVol.  As DO is in mg O2/L water, multiplying by 

0.7 converts this value to mL O2/L water.  Multiplying by “RespVol” in L reduces the 

value to available O2 volume.  If “DoResp?” is set to any value but zero, then the 

respirometry function is enabled but will not activate until the model run time meets the 

criteria established by “TimeRespStart.”  Before starting the respirometry function, O2 

availability is determined by (DOsat*0.7)*RespVol.  When respirometry start time is 
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reached the value of “O2 in” is set to zero, stopping any O2 “flow” into the “ml O2” 

stock. 

O2 out [Equation: Decision] 

The flow function “O2 out” acts as a valve, allowing the value of the stock “ml 

O2” to “drain out” after each time interval, as the flow value equals that of the stock 

value if “DoResp?” = 0.  If the respirometry function is activated, this “valve” is “shut” 

by setting the “O2 out” value to zero, thus fixing the “ml O2” stock value to that of the 

“O2 in” value at the DT just before the respirometry start time. 

O2 out = IF DoResp? = 0 THEN ml_O2 ELSE (IF TIME < 

TimeRespStart THEN ml_O2 ELSE 0) 

Starvation and Death 

The integrated E.F-RMD introduces several new sub-model components, the first 

of which is “Starvation Death?” (Figure 64), developed specifically for E.F-RMD to 

model fish death due to starvation. 
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Figure 64.  Starvation death sector. 

 

The starvation sub-model consists of two flow and stock components which 

determine maximum fish weight at a given time and whether any weight decline results 

in death.  Nominally, death occurs whenever Wfish has declined by 50 % of its previous 

maximum. 

newWmax [Equation: Decision] and Wmax [Input: Variable] 

This stock-flow arrangement uses Boolean statements to maintain a tally of 

“Wfish,” retaining the positive value of the difference if “Wfish” is larger than the stock 

value of “Wmax,” the maximum of previous DT fish-weight values within the current 

model run (initial value is also “Wfish”).  If “Wfish” is less than the previous 

calculation, the value of “newWmax” is set to zero.  Because stocks accumulate, i.e., 

sum, all input flows, if the “newWmax” output is zero, then stock “Wmax” retains the 

greatest weight reached up to that point in the model run. 



204 

newWmax = IF Wfish > Wmax THEN Wfish - Wmax ELSE 0 

LethalWloss% [Input: Fixed] 

This converter sets the percentage of weight loss at which the “fish” will 

succumb to “starvation.”  The default setting is 50, representing a 50% loss of body 

weight. 

LethalWlossEvent [Equation: Decision, Theoretical] 

This equation produces a binary output if “Wfish” declines below the 

“LethalWloss%” value of “Wmax” to determine if the lethal weight loss threshold is 

reached.  With “LethalWloss%” set to 50, then “LethalWlossEvent” will be 1 if “Wfish” 

falls below 50% of “Wmax,” otherwise the output will be 0. 

LethalWlossEvent = IF Wfish < (1-LethalWloss%/100)*Wmax THEN 1 

ELSE 0 

Dying? [Equation: Decision, Theoretical] and Dead [Input: Variable] 

This stock-flow arrangement of “Dying?” and “Dead” creates a logic switch, the 

binary output of which determines whether the SFL meets the criterion for death. 

Dying? = IF (Dead = 0) AND (LethalWlossEvent = 1) THEN 1 ELSE 0 

If “LethalWlossEvent” is 0 (i.e., weight loss threshold has not been reached), and 

the value of the stock “Dead” is 0, then the output of “Dying?” is 0, and the stock value 

of “Dead” remains 0.  If the “LethalWlossEvent” output is 1 (weight loss threshold 

reached) and the SFL is not already dead (i.e., “Dead” = 0), then the output of “Dying?” 

is 1 and the stock value of “Dead” becomes 1, signaling a death event. 
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StopSimIfDead [Equation: Decision, Theoretical] 

If the value of stock “Dead” is 1, the converter “StopSimIfDead” creates a 

mathematical exception error within Stella® by dividing 1, the value of “Dead,” by zero.  

Otherwise, the value of “StopSimIfDead” remains at zero.   

StopSimIfDead = IF Dead = 1 THEN Dead/0 ELSE 0 

When a mathematical error occurs, Stella® stops the simulation and displays a 

warning to the user, a built-in and intentional feature of the program. 

EndTime [Equation: Decision] 

This function allows the modeler to know the time of “death” for the model’s 

“From” and “To” run time specifications.  For example, if the Stella® run specifications 

are set as “From: 1” and “To: 100” and the “death” criterion is met at model run time 

sequence 62, then the “EndTime” value will be 62; otherwise, it will display the final 

“To” value of 100 (i.e., the “STOPTIME” value). 

EndTime = IF Dead = 0 THEN STOPTIME ELSE TIME 

Alive or Dead at EndTime? [Equation: Theoretical] 

Though this converter is a mathematical function, the output of “Alive or Dead at 

EndTime?” is used as a decision switch by the Status Indicator, shown as a green dot in 

Figure 64.  The Status Indicator is a Stella® feature that allows visual confirmation of 

model conditions.  As configured in this model, the Status Indicator remains green as 

long as the value of “Alive or Dead at EndTime?” is 1 (i.e., “Dead” = 0).  If “Dead” = 1, 
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the output value becomes zero, and the Status Indicator flashes red to alert the modeler 

that starvation-death has occurred. 

Alive_or_Dead_at_EndTime? = 1-Dead 

Indication of death triggers model termination.  This is a useful tool which can be 

used to predict lethal factors that impact growth, such as temperature and DO. 

LOCr Calculation 

Adding respirometry capability to E.F-RMD was not undertaken without 

purpose.  Being able to conduct virtual “respirometry” enables the model to be properly 

parameterized so that model metabolic output indices such as LOCr, RMR, and MMS fit 

can be measured or calculated.  This is accomplished in the “LOCr Calculation” sector, 

the structure of which is shown in Figure 65.  External inputs to this model are 

“TimeRespStart,” which was discussed above, “Mact max,” also previously discussed, 

“EF VO2,” the E.F calculated V̇O2, and “DOa,” a decision function that calculates DO 

decline when virtual respirometry is activated. 
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Figure 65.  RMD LOCr calculation sector. 

External inputs to this model are “TimeRespStart,” which was discussed above, 

“Mact max,” also previously discussed, “EF VO2,” the E.F calculated V̇O2, and “DOa.” 

Within the “LOCr calculation” sector are two flow and stock functions which calculate 

LOCr and RMR.  Calculation of LOCr uses the flow component labeled “InputDOa” 

and the stock “LOCr.”  The calculation of RMR uses the flow component labeled 

“inputEF VO2” and stock “RMR.” 

InputDOa [Equation: Decision, Empirical] 

The “InputDOa” equation uses Boolean functions to determine that if two 

conditions are met, that the time sequence is one greater than the respirometry start time 

and that the “EF VO2” values are greater than 95% the “Mact max” value.  If these 

conditions are met, the output value is the difference between “DOa” and the value of 
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the stock “LOCr” per time-change interval.  Because the two conditions are only met 

once during any given model run, the value that “fills” the stock is the LOCr value. 

InputDOa = (IF (TIME > TimeRespStart + 1) AND (EF_VO2 > 0.95 * 

Mact_max) THEN DOa - LOCr ELSE 0)/DT 

InputEF VO2 [Equation: Decision]

This flow-stock function inputs the E.F-calculated V̇ O2 into the stock “RMR” at

the moment when LOCr is reached.  The default input value is 0 unless certain criteria 

are met:  if either the value of flow “InputDOa” or stock “LOCr” exceed 0.001 mg O2/L 

water (which will not happen unless the “InputDOa” criteria are met) and the value of 

stock “RMR” is 0, then “inputEF VO2” inputs the value of “EF VO2” into stock 

“RMR.”  Once the “RMR” equals the “EF VO2,” the decision criterion that “RMR” 

equals zero is no longer met, and the default output of the flow returns to zero. 

inputEF VO2 = (IF ((inputDOa > 0.001) OR (LOCr > 0.001)) AND 

(RMR = 0) THEN EF_VO2 ELSE 0)/DT 

MMS [Equation: Theoretical, Decision] 

The margin of metabolic scope “MMS” is the ratio of the values in stock “RMR” 

to “LOCr.”  “MMS” is calculated for each DT, but the value of “LOCr” is zero until 

“InputDOa” criteria are met.  To prevent a mathematical fault error from occurring when 

the “LOCr” is zero, a MAX function is used to set the denominator no less than a value 

0.001. 

MMS = RMR/MAX(0.001,LOCr) 
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Summary 

The integration of E.F-RMD goes beyond E.F’s obvious fusion with RMD.  Each 

model consists of sub-models developed as independent models in their own right before 

being integrated into each major model.  The first and most basic step in the integration 

process is to identify common variables so that these can be shared to reduce overall 

model complexity.  The most obvious examples with E.F-RMD are environmental input 

conditions such as temperature, salinity, DO, PO2, and pH.  Less obvious is fish weight 

which plays a significant role in cardiac and buccal volumes, gill and skin surface area 

within RMD and the determination of metabolic rates within E.F. 

Beyond fish weight and environmental inputs, integration of the RMD V̇O2 

output into E.F required proper union of the two models' functionalities.  The parts of 

E.F that yielded an empirical measure of active metabolic rate (Mact) were successfully 

replaced by RMD, to provide for a system of more mechanistic relations faithful to 

known respiratory and circulatory physiology of fish.  Moreover, RMD explicitly 

embraced cutaneous respiration that logically is so important to oxygen-uptake in 

Southern Flounder and other flatfishes at smaller sizes. 

Finally, the integrated model was equipped with features that enhanced its utility 

and convenience.  These included components for simulating respirometry with display 

of RMR, LOCr and MMS endpoints, and for simulating mortality due to starvation. 
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CHAPTER VIII  

MODEL EVALUATION 

 

No model is perfect, and all models are built on the assumption that the output 

provides information relevant to real-world observations.  The inherent limitation of 

models similar to E.F-RMD is that they are efforts to use basic equations to capture 

dynamic events influenced by multitudes of physical, chemical, and biological 

interactions.  If properly conceived, models provide useful and credible information.  

Therefore, how we assess that utility and credibility is an important component of the 

modeling process. 

Determining the efficacy of a model may be facilitated by the adoption of an 

evaluation process.  As mentioned in Chapter IV, approaches to modeling theory are 

varied but agree on the broader steps of conceptualizing and structuring, creating, 

evaluating, and applying the model (Grant et al. 1997, Hannon and Ruth 1997, Ford 

1999, Caswell 2001, Bolker 2008, Van den Berg 2011).   

Statistical Measurement of Model Consistency with Observed Data 

The E.F-RMD model was evaluated by assessing “goodness-of-fit” (GoF) 

between observed (Yobs) and modeled (Ymod) output values via Pearson’s coefficient of 
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determination (R2)11 (Quinn and Keough 2002) and “Consilience” (C) (Neill et al. 

2018).12  Unlike R2, which measures the GoF to a least-squares regression line, C is a 

measure of the GoF to the “line of perfect agreement” between Yobs and Ymod,   Perfect 

agreement between paired values of Yobs and Ymod for all pairs in a dataset yields C = 

1.  A value of C less than 1 indicates a less than perfect fit, with the value going negative 

for fits worse than a random scatter of points with the same mean and variance as the 

Yobs set.  Unlike other GoF statistics designed to assess the accuracy of statistical 

models, C is “…intended to capture and portray mechanistic truth about the system 

being modeled” (Neill et al. 2018).  

Consilience values are considered significant if C > C′(α), where C′ is the critical 

value of C for a given α.  For a given value of α, the value of C′ is calculated relative to 

sample size using an “empirical reverse power-hyperbolic function” described by Neill 

et al. (2018).  For all analyses reported, a C value was considered significant for a given 

data set if C was greater than C′ at α = 0.05, written as C′(0.05). 

The determination of C′ allows for calculation of the probability distributions 

across sample sizes for different α values (Neill et al. 2018).  Although α = 0.05 is 

 

 

11 In keeping with the rationale given by Neill et al. (2018), R2 is used instead of r2 as RMD and 
E.F-RMD are complex dynamic models, and they are more similar to multiple rather than simple 

regression models. 
12For a more detailed explanation of Consilience, please see “Consilience: A Holistic Measure of 

Goodness-of-Fit”: 
https://www.researchgate.net/publication/328465276_Consilience_A_Holistic_Measure_of_Goodness-of-

Fit_revised_21Oct2018 
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considered significant, the calculated probability of C having a greater value than C′, 

written as Pr(C>C′), may be lesser or greater than the P<0.05 objective.     

All GoF comparisons were performed using a Microsoft Excel spreadsheet 

developed by Neill et al. (2018) which may be found online at: 

http://people.tamu.edu/~w-neill/Consilience/HGoFtemplateM5-18Mar18.xlsx 

The P-values given for C analysis of RMD and E.F-RMD outputs to observed 

data are the spreadsheet-calculated type-l error probability.  All significant (P<0.05) 

Consilience estimates presented in tables will be indicated with an asterisk (*). 

Example Models 

To better differentiate between R2 and C, two hypothetical models (A and B) are 

shown in Figure 66.  If their R2 values are equal, then models A and B produce values of 

Ymod with equally "good" fits to their respective linear-regression lines, but that does 

not indicate how well the outputs of models A or B agree with Yobs.  In this example, 

model B has a greater C value than Model A, meaning that Model B’s output values are 

in better agreement with the observed data than those of Model A, even though both 

models have the same R2.  The calculated C′(0.05) value for both models is 0.628, given 

that both have the same Yobs values.  For Model A, computed C = 0.321 and, as it falls 

below the C′(0.05) value, is not significant.  For Model B, computed C = 0.887, which is 

greater than the C′(0.05) value and is thus significant.   

Using R2 results only, it would be difficult to declare which model best matches 

the observed data.  Consilience analysis allows us to do just that.   
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Figure 66.  Example showing differences between the coefficient of determination 

and consilience measures. 
Model A shown as solid circles with short-dash fit-line.  Model B shown as solid triangles with long-dash 

fit-line.  C′(0.05) = 0.628.  Pr(C>C′): Model A, P>0.1, Model B, P<0.01. 
 

 

Data Variation and Correlation Analysis 

While there are many limitations to E.F-RMD and other deterministic models, 

the most conspicuous is the general lack of realistic output variation.  Whereas observed 

data for a population of fish can vary considerably within a given time-period (e.g., fish 

weight in a population of the same age), a deterministic model will invariably produce 

the same output values given the same initial and experimental conditions.  The absence 

of data variation in model output simplifies a complex system by masking the nuances of 
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un-modeled effects and error in measuring responses from biological systems.  Such 

masking can have benefits as deterministic model results can give the modeler 

perspective on a variable’s specific performance under specific conditions, which can be 

of benefit when trying to understand causes of observed system behavior.  Should the 

modeler wish to understand the performance of a variable under different conditions, 

then the model input variables can be reconfigured and the model re-run.   

In circumstances where GoF is imprecise due to large data variance, there is the 

option to fit a trend-line through the observed data to “smooth the data” to obtain an 

average value for a given dependent variable.  While having utility, this process does 

change the nature of the analysis as the investigator is no longer comparing modeled 

output with actually observed data.  Rather, GoF comparison would be between a 

simplistic model (i.e., a best-fit trend-line equation)13 and a complex one (e.g., E.F-

RMD).  In this situation, statistical analysis is now between two estimated mean trend-

lines with fewer degrees of freedom.  Reduction of variance using a trend-line equation 

simplifies the process of fitting a dynamic model.  The end-result is a dynamic model 

that can provide an estimated mean dependent variable value for a given independent 

variable and the dependent variable’s trend across multiple independent variables (e.g., 

value and change in V̇O2 with respect to change in body weight).  Thus, when modeling 

to observed data with high variance, one may find that a dynamic model has good 

 

 

13 Trend-line best fit being determined by the least-squares regression equation which produces 

the greater R2. 
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Consilience with outputs from the trend-line model, despite both models having poor 

Consilience with the observed data. 

In circumstances with less observed data variance, Consilience and R2 analysis of 

observed data and trend-line will be more comparable.  Since the modeler does not 

always get to choose the type and quality of available data – and may not even have 

access to the raw data – understanding model analysis options with their abilities and 

limitations is important.  Accordingly, the results of the analysis can be appropriately 

represented, and more importantly, not misrepresented. 

Data Sources and Analysis Methods 

The data sets used for fitting and evaluating RMD and E.F-RMD are discussed 

below.  These unpublished data were obtained from the Texas Parks and Wildlife, 

Coastal Fisheries Division, Marine Development Center (MDC), Corpus Christi, TX, 

and Sea Center Texas (SCT), Lake Jackson, TX.  These are good examples of how the 

amount of information within a data set can vary.  Even when working with constrained 

data, modeling can be accomplished, and analysis can be conducted, albeit with 

limitations.  

MDC Cool – Warm Experiment 

Mr. Herschiel Tuley graciously provided the data set from laboratory 

experiments conducted at the MDC.  Juvenile SFL (n = 59) were divided into two 

groups: Cool (17 – 22°C, initial n = 32) and Warm (20 – 26°C, initial n = 27).  These 

thermal regimes were imposed over 177 days.  Subject fish were fed mysids twice daily 

to satiation; periodically, the fish were weighed and some subjected to routine 
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respirometry (Springer and Neill 1988, Walker et al. 2011) , to measure growth rate and 

to assess growth and weight effects on ṀO2.14  Water salinity for Cool and Warm groups 

averaged 30.7 ppt (SD ± 2.7).  Dissolved oxygen levels, measured prior to the start of 

each respirometry session, averaged 7.2 mg O2/L water (SD ± 0.67).  Over the course of 

the experiment, SFL were weighed five times, with average fish weights ranging from 

2.24 g to 12.79 g.  Table 1 shows the average weight for each temperature group 

recorded at the start of the experiment (2 Aug 2017, day 0) and weights on days 12, 47, 

111, and 175, along with the number of fish measured, and average tank water 

temperature.  Hours subsequent to the 2 Aug 2017 start date are also listed, because E.F-

RMD simulations involve an hourly time-step (DT). 

 

  

 

 

14 Due to power failure caused by a hurricane, the Cool group was exposed to higher temperatures 

over 48 hours resulting in an overlap in temperature exposures. 
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Table 1.  MDC Cool-Warm experiment, measured SFL weights and temperature. 

 Cool Tanks 

Date 

Days after 

2 Aug 

Hours after 

2 Aug n 

Avg. Wt 

(g) 

Wt 

SD 

Med. Ta 

(°C) 

2-Aug-17 0 0 32 2.24 0.34 20.57 

14-Aug-17 12 288 31 2.31 0.29 19.81 

18-Sep-17 47 1128 31 3.05 0.39 20.95 

21-Nov-17 111 2664 31 6.23 1.03 19.42 

24-Jan-18 175 4200 28 10.06 1.36 18.66 

 
 

 Warm Tanks 

Date 
Days after 

2 Aug 
Hours after 

2 Aug n 
Avg. Wt 

(g) 
Wt 
SD 

Med. Ta 
(°C) 

2-Aug-17 0 0 27 2.80 0.27 25.95 

14-Aug-17 12 288 24 2.69 0.55 25.95 

18-Sep-17 47 1128 23 3.82 0.79 24.79 

21-Nov-17 111 2664 21 8.13 1.63 25.17 

24-Jan-18 175 4200 17 12.79 1.73 22.09 

 

The growth data from Table 1 were plotted (Figure 67) and fit with exponential 

growth curves, with the intercept forced to the average weight observed on day zero.  

Microsoft Excel® was used to determine the exponential equation trend-lines.  These 

trend-lines were used by E.F-RMD to help fit the model output to the observed data.  

However, for analysis, E.F.-RMD results were only compared against the five observed 

growth values from Table 1 by taking the E.F-RMD estimated weight at the 

corresponding hour of model run-time. 
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Figure 67.  MDC Cool-Warm experiment, fish weight vs. days after beginning of 

experiment. 
Observed mean weight (circles) for Cool (blue) and Warm (red) treatments, overlaid with trend-lines with 

their equations. 

 

Respirometry evaluations were conducted at 1 to 2-week intervals during the 

experiment and prior to the experiment’s termination.  

Sea Center Texas, Pond Data 

Weight and time (day) post-hatch data were obtained for SFL as measured by 

SCT staff from grow-out ponds located near Lake Jackson, TX during November, 

December, and January over three years (2009-2012).  Fish were weighed at intervals 

over each of the 3 years, starting at 67 days post-hatch.  Time post-hatch, weights, 
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number of fish measured, and average weights plus deviations are shown in Table 2.  

Hours post-hatch are also listed because E.F-RMD simulations have a one-hour DT. 

 

Table 2.  SCT Galveston pond data measured SFL weights. 

Days post-hatch Hours post-hatch n Avg. Wt (g) Wt SD 

67 1608 20 0.68 0.29 

72 1728 49 0.17 0.07 

81 1944 20 0.91 0.42 

82 1968 80 0.67 0.37 

85 2040 20 0.24 0.07 

94 2256 5 1.17 0.37 

98 2352 60 1.01 0.42 

157 3768 32 3.05 0.82 

 

As with the MDC data, fish-weight averages from Table 2 were plotted vs. time 

(Figure 68) and fit with a power curve.  Because the size data first became available on 

day 67, the graph starts at day 60.  Microsoft Excel® was used to calculate weight-at-

time trend-lines.  The trend-lines were used by E.F-RMD to help fit the model output to 

the observed data.  However, for analysis (just as with the MDC data), E.F.-RMD 

outputs were only compared against the eight observed mean-weight values from Table 

2 by taking the E.F-RMD estimated weight at the corresponding hour of model run-time. 

Temperature data for the SCT pond study were not reported; so, modeling used 

average temperature data for Galveston Bay, obtained from the National Oceanic and 
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Atmospheric Administration (NOAA 2020).  Average temperatures for Galveston Bay 

are 20°C in November, 15°C in December, and 13.3°C in January.  Because temperature 

fluctuations over the time periods analyzed are not known, E.F-RMD growth was fit to 

the pond growth data using this linear temperature relationship:   Ta = -0.0031*TIME + 

24.988.  Note that this equation yields 20°C and 13.3°C, respectively, at the start and end 

of simulation.  Salinity was set to 30 ppt and pH at 8.3. 

 

 

Figure 68.  Galveston pond data for SFL weight (Mean ± SD) vs. time, with trend-

line. 
Trend-line, R2 = 0.552. 
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Comparison of RMD to Cool - Warm Data 

Automated routine respirometry (Springer and Neill 1988, Neill et al. 2004, 

Walker 2009) was performed with individual SFL, each fasted for one day before a test 

of several hours duration.  Respirometry results for all the MDC Cool (Figure 69) and 

Warm (Figure 70) tests in relation to SFL weight are shown below.  The ṀO2 values 

measured are assumed to be representative of routine metabolic rate.  Power trend-lines 

were created for each temperature regime, and RMD configured for best-fit to each 

trend-line.  Observed fish weight was correlated with the approximate RMD weight for 

comparison of observed averaged and estimated ṀO2.  Model settings used to fit the 

data are shown in Table 3.   

 

Table 3.  RMD fit values. 

 Cool Warm 

Temperature (°C) 18 23 

Salinity (ppt) 32 32 

DO (mg O2/L) 7.9 7.1 

PO2 (mmHg) 154 151 

pH 7.7 7.6 

fR con 5 18 

Skin Eff f 0.84 1 
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Attentive readers may notice the maximum weight shown in the graphs are 

greater than the final weights from the growth analysis shown in Figure 67.  This is due 

to additional weight data incorporated after data was collated for weight analysis.   

 

 

Figure 69.  ṀO2 via routine respirometry for Cool treatment and RMD best-fit vs. 

SFL weight. 
Mean ṀO2 values ± SD (blue circles with vertical error bars) from Cool treatment, together with power 

trend-line fit.  RMD MO2 (triangles) indicates outputs of RMD fit. 
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Figure 70.  ṀO2 via routine respirometry for Warm treatment and RMD best-fit 

vs. SFL weight. 
Mean ṀO2 values ± SD (red circles with vertical error bars) from Warm treatment, together with power 
trend-line fit.  RMD MO2 (triangles) indicates outputs of RMD fit. 

 

Analysis of Observed Data 

Analysis of RMD best-fit output to the Cool and Warm mean observed data 

resulted in low R2 values for both conditions (Table 4).  Consilience between observed 

values and RMD outputs was low but still significant. 
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Table 4.  Consilience and R2 for observed data with RMD ṀO2 output. 

 Cool Warm 

n 12 30 

R2 0.338 0.401 

C (co-var-based) 0.559 0.572 

C′(0.05) 0.554 0.361 

Pr(C>C') 0.01<P<0.05* P<0.01* 

 

Consilience graphs comparing average Cool (Figure 71) and Warm (Figure 72) 

observed data with modeled data ṀO2 are shown below.  Observed data values are 

presented with standard-deviation error bars to highlight the variability in the observed 

data. 

 

 

Figure 71.  Observed average (±SD) Cool vs. RMD ṀO2 values, compared with the 

line of perfect agreement. 
R2 = 0.338, C =  0.559. 
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Figure 72.  Observed average (±SD) Warm vs. RMD ṀO2 values, compared with 

the line of perfect agreement. 
R2 = 0.401, C =  0.572. 

 

Trend-line Analysis 

Trend-line analysis is a model-to-model comparison that may provide guidance 

for evaluating dynamic model response related to the mean response of two or more 

variables in the observed data.  However, while trend-lines provide a more precise guide 

for fitting model output, it must be kept in mind that trend-lines are best-fit averages.  

The modeler can easily become overly-focused on modeling to the mean (i.e., trend-line) 

rather than modeling to the data. 

For example, in the graphs comparing the Cool (Figure 69) and Warm (Figure 

70) data from the MDC growth experiments, the trend-lines indicate that the per-gram 

ṀO2 decreases as fish weight increases.  RMD ṀO2 data also shows this trend, although 
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it is apparent that RMD underestimates the ṀO2 in fish < 12 g for the Cool and Warm 

treatments.  The higher ṀO2 in smaller fish within RMD reflects the cutaneous 

respiration input.  I suggest that this is a contributor to the observed ṀO2 trend.  This 

could be the result of failure of RMD to adequately account for changes in membrane 

permeability with temperature, overestimation of skin thickness, or inability to account 

for the existence of specialized skin circulation, all of which may affect cutaneous 

respiration (Burggren 1988). 

Consilience analysis of model output to trend-lines can quantify model output for 

fitting the model.  For example, consider the C and R2 analysis of RMD results to the 

Cool and Warm data trend-lines is shown in Table 5.  The analysis was accomplished by 

estimating ṀO2 using the Excel-derived power equation for the trend-line for each 

weight sample recorded and compared to RMD results.  Results indicate significant 

results for both temperature treatments. 

 

 Table 5.  Consilience and R2 of trend-line data to RMD ṀO2 output. 

 Cool Warm 

n 12 30 

R2 0.995 0.995 

C (co-var-based) 0.746 0.694 

C′(0.05) 0.554 0.361 

Pr(C>C') P<0.01* P<0.01* 
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E.F-RMD Simulations of SFL Growth 

E.F-RMD growth and percent-growth-per-day outputs were evaluated against 

MDC growth and respirometry data for Cool-Warm groups and SCT pond growth data 

from ponds located in Lake Jackson, TX (near Galveston, TX).   

The starting weight for E.F-RMD was set to the lowest weight recorded and 

model start time adjusted to coincide with start date of the experiment (MDC data) or the 

number of days post-hatch (SCT data).  The model end time was set to the time (in 

hours) when the final observed weight was recorded.  Mean growth trend-lines were 

used to guide model settings, but the determination criteria for a successful growth 

match was how closely the final simulated weight compared to the final observed 

weight. 

Starting weight-pair values for each data set were omitted from C and R2 

analysis, as model start weights were set equal to the first recorded data weights. 

Percent Weight Change per Day Calculation 

In addition to growth analysis by weight over time, C and R2 analysis was also 

conducted for percent weight change per day (%Wtchg/day), with percent weight change 

based on the difference in a given weight (Mi) from the initial (i.e., starting) observed 

weight (M0), per the calculation shown in equation (51). 

 %𝑊𝑡𝑐ℎ𝑔 =  
𝑀𝑖 − 𝑀0

𝑀0
 × 100 (51) 

Then, the result was divided by the number of days between starting time and 

time of that particular evaluation, to compute %Wtchg/day. 
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MDC Cool – Warm Growth and Respirometry Comparison 

The Cool – Warm growth and respirometry data were used as the primary data 

source for adapting and refining E.F-RMD into an effective growth model.  To further 

ensure the E.F-RMD growth estimate’s fidelity while maintaining the “metabolic 

physiology” integrity of the model, 24 hours before the model’s run terminated, a 

simulated respirometry session was initiated.  The model was then adjusted using the 

processes discussed earlier so that “Mact max” intercepted the estimated routine 

metabolic rate (RMR) at the observed lower oxygen concentration for routine 

metabolism (LOCr).  This ensured that the model’s estimated RMR was congruent with 

the average RMR seen during the final respirometry session conducted for the Cool and 

Warm groups prior to the termination of the experiment (see Table 6).  Being able to 

shape the model to generally match its performance to observed metabolic scope for 

growth (MSgrowth) and margin of metabolic scope (MMS) – while maintaining the 

model's fidelity to published information on SFL and other flatfishes – increased overall 

confidence in E.F-RMD. 

 

Table 6.  Observed values from MDC Cool and Warm experiment. 

 Cool Warm 

Mean Ta (°C) 18.1 21.6 

Mean end Wt (g) 9.0 5.7 

RMR (mg O2/g fish·h) 0.13 0.23 

LOCr (mg O2/L water) 2.82 2.74 

MMS 0.046 0.084 
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Input Processes 

The input settings used to configure E.F-RMD for Cool and Warm conditions are 

shown in Table 7.  The measured temperature series used as input for simulating Cool 

and Warm treatments are shown in Figure 73.  The prominent upward spiking in 

temperature at about 600-800 hours – especially conspicuous for the Cool treatment – 

was due to power failure caused by Hurricane Harvey.   

Because DO varies inversely with temperature, the temperature fluctuations are 

shown in Figure 73 resulted in corresponding variation in estimated DO levels.  The E.F-

RMD calculated DO levels for each condition are shown in Figure 74. 
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Table 7.  E.F-RMD fixed input for MDC Cool – Warm experiment. 
 

Cool Warm 

Starting Weight (g) 2.24 2.8 

Salinity (ppt) 30 30 

Mean PO2 (mmHg) 159 159 

pH 8.3 8.3 

“Respirometer” Volume (L) 2 4 

fR con 24.55 50.3 

Winberg 1.58 2.415 

Skin Eff f 1 1 

Smin0 0.043 0.043 

q1 0.062 0.062 

q2 0.09 0.09 

GEFeed (cal/g) 1000 1000 

sda 0.14 0.14 

FeedDigestibility% 90 90 
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Figure 73.  MDC Cool - Warm temperature regimes over the growth period. 
Prominent temperature spike in Cool treatment at hours 600-800 due to equipment power failure. 

 



 

232 

 

 

Figure 74.  Estimated Cool - Warm DO regimes over the growth period. 

Results and Analysis 

 

As a dynamic model, E.F-RMD produces outputs that vary according to the input 

regime.  For the MDC Cool – Warm experiment, temperature necessarily differed 

between Cool and Warm treatments and varied over the course of the experiment.  The 

only environmental variable that remained stable was salinity, which was maintained 

near 30 ppt.  In the E.F-RMD variant configured for the MDC Cool – Warm experiment, 

pH was fixed at 8.3 instead of being allowed to vary with temperature in keeping with 

the model’s pH function.  While simplifying the inputs, fixing pH resulted in a gill O2 

extraction efficiency near 99% during the non-respirometry phase of the model run, and 

low P50 and PvO2 values (see Table 8 and Table 12).  These values are below those 
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generated under conditions of variable pH.  Thus, the “Mact max” output of the RMD 

portion of E.F-RMD is truly near the maximum possible active metabolic rate for both 

temperature conditions. 

Cool Results – Growth and %Wtchg/day 

Model input processes and values that remained fixed over the course of the 

growth phase of simulation are shown in Table 8. 

 

Table 8.  E.F-RMD respiratory variables with fixed input values – Cool treatment. 

PO2 (mmHg) 159 

P50 (mmHg) 0.68 

PvO2 (mmHg) 0.9 

O2 Extraction efficiency (%) 99 

 

RMD estimated growth compared to the Cool trend-line growth is shown as a 

Stella® graph in Figure 75.  The graph shows that E.F-RMD can be configured to match 

the trend-line model quite well, but it does not necessarily indicate how well the model 

weights compare to observed data.   

The E.F-RMD simulated SFL weights were taken at model run times 

corresponding to the times of observed weight measurements from Table 1 for the Cool 

treatment, as shown in Table 9.  
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Figure 75.  Stella® graph of E.F-RMD simulated vs. regression-"predicted" weight 

for the Cool treatment. 
Model “Wfish” in blue (1); weight from regression of observed values on Hours “Wobsrgr” in red (2).  

The small dip in “Wfish” seen at the end of the growth period occurs at hour 4216 when DO begins to 

drop with the onset of simulated respirometry, when simulated fish were “fasted.” 

 

Table 9.  Observed vs. E.F-RMD simulated weight and %Wtchg/day for Cool 

treatment.  
Observed Avg. Wt from Table 1.  %Wtchg/day calculated from Wt columns using equation (51). 

 
Cool Observed Cool E.F-RMD 

Hours Avg. Wt (g) %Wtchg/day Est. Avg. Wt (g) %Wtchg/day 

0 2.24  - 2.24  - 

288 2.31 0.26 2.47 0.86 

1128 3.05 0.77 3.44 1.14 

2664 6.23 1.60 5.69 1.39 

4200 10.06 1.99 9.92 1.96 
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Results from Consilience analysis are shown in Table 10 for Cool-configured 

E.F-RMD estimated growth by weight and %Wtchg/day.  Goodness-of-fit graphs for 

weight (Figure 76) and %Wtchg/day (Figure 77) are shown below the table.  Consilience 

between E.F-RMD output and Cool data for Weight and %Wtchg/day were significant. 

 

Table 10.  Holistic goodness-of-fit: E.F-RMD vs. MDC Cool for growth-related 

responses. 

 Wt %Wtchg/day 

R2 0.990 0.903 

C (co-var-based) 0.995 0.891 

C′(0.05) 0.842 0.842 

Pr(C>C') P<0.01* 0.01<P<0.05* 

 

 

Figure 76.  Observed MDC Cool means vs. E.F-RMD simulated weight relative to 

the line of perfect agreement. 
R2 = 0.990, C =  0.995. 
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Figure 77.  Observed MDC Cool means vs. E.F-RMD simulated %Wtchg/day 

relative to the line of perfect agreement. 
R2 = 0.903, C =  0.891. 

 

Cool Results – Respirometry 

The ability of E.F-RMD to accurately fit observed metabolic rates may be seen in 

Figure 78, which  shows E.F-RMD outputs for “DOa,” “Mact max,” “EF VO2,” “Mstd,” 

and “Mrmr” for the terminal respirometry session.  When simulated respirometry is 

initiated, as indicated by the drop in “DOa” and “Mact max,” the point of intercept when 

“Mact max” equals “Mrmr,” is the limiting oxygen concentration (i.e., DO level) for 

routine metabolic rate, that is, the LOCr. 
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Figure 78.  Stella® E.F-RMD respirometry responses for MDC Cool. 

 

Table 11 shows that when configured for the Cool treatment, E.F-RMD 

accurately fit the Cool respirometry data.  The model estimated SFL weight was 0.82 g 

higher than the observed data, and the mean Ta was 0.2°C lower.  The similarity of 

weights simply means that the average weight of all the SFL chosen to undergo the final 

respirometry session was approximately the same as the model estimated weight when 

the simulated respirometry began. 
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Table 11.  Comparison of MDC Cool respirometry endpoints with E.F-RMD 

outputs. 

 Cool 

Observed 

E.F-RMD 

Simulated 

Mean Ta at LOCr (°C) 18.1 17.9 

SFL Wt (g) 9.0 9.82 

RMR (mg O2/g fish·h) 0.13 0.13 

LOCr (mg O2/L water) 2.82 2.82 

MMS 0.046 0.046 

 

 

Warm Results – Growth and %Wtchg/day 

Model output processes and values that stayed fixed over the course of the Warm 

treatment model run are shown in Table 12. 

 

Table 12.  E.F-RMD respiratory variables with fixed input values – Warm 

treatment. 

PO2 (mmHg) 159 

P50 (mmHg) 0.68 

PvO2 (mmHg) 0.9 

O2 Extraction efficiency (%) 99 

 

Model growth compared to the mean growth trend-line for the Warm treatment is 

shown as a Stella® graph in Figure 79.  E.F-RMD estimated weights, taken at model run 
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times corresponding to observed weight sample times, are shown in Table 13.  Also 

shown are the %Wtchg/day values calculated from observed data and model output. 

 

 

Figure 79.  Stella® graph of E.F-RMD simulated vs. regression-"predicted" weight 

for the Warm treatment. 
Model “Wfish” in blue (1); weight from regression of observed values on Hours “Wobsrgr” in red (2). 
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Table 13.  Observed vs. E.F-RMD simulated weight and %Wtchg/day for Warm 

treatment. 
Observed Avg. Wt from Table 1.  %Wtchg/day calculated from Wt columns using equation (51). 

 Warm Observed Warm E.F-RMD 

Hours Avg. Wt (g) %Wtchg/day Est. Wt (g) %Wtchg/day 

0 2.80 - 2.80 - 

288 2.69 -0.31 3.08 0.83 

1128 3.82 0.78 3.85 0.80 

2664 8.13 1.72 6.98 1.34 

4200 12.79 2.04 12.51 1.98 

 

Visual inspection of Figure 79 suggests that Warm E.F-RMD, with the inputs 

shown in Table 7, was less consilient with the data than was its Cool-treatment 

counterpart (Figure 75).  And, in fact, Consilience analysis (Table 14) indicated a 

reduction in C values (vs. those for presented for the Cool treatment, in Table 10), both 

for Wt and %Wtchg/day.  That for %Wtchg/day declined to 0.84, which for a sample of 

size 5, is only marginally significant at alpha = 0.05.  Figures 80 and 81 provide plots of 

modeled vs observed means for both Wt and %Wtchg/day, for the Warm treatment.  

 

Table 14.  Goodness-of fit: E.F-RMD to MDC Warm 

 Wt %Wtchg/day 

R2 0.983 0.708 

C (co-var-based) 0.991 0.838 

C′(0.05) 0.842 0.842 

Pr(C>C') P<0.01* 0.05<P<0.1 
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The apparent cause of lack-of-fit for the Warm treatment was negative growth 

observed for Warm treatment fish during the experiment's first 12 days.  Cause of this 

aberrant response is unknown and naturally beyond the capabilities of E.F-RMD to 

simulate. 

 

 

Figure 80.  Observed MDC Warm means vs. E.F-RMD simulated weight relative to 

the line of perfect agreement. 
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Figure 81.  Observed MDC Warm means vs. E.F-RMD simulated %Wtchg/day 

relative to the line of perfect agreement. 
R2 = 0.708, C =  0.838. 

 

Warm Results – Respirometry 

The E.F-RMD outputs for simulates respirometry are shown in Figure 82, for 

Warm inputs (Table 12).  The procedures and output variable names were the same as 

those for the Cool treatment. 
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Figure 82.  Stella® E.F-RMD respirometry responses for MDC Warm. 

 

Table 15 shows the outputs of E.F-RMD compared to the Warm respirometry 

data.  Again, as configured, the model output matches the RMR and LOCr values.  The 

average weight of the actual fish chosen to undergo respirometry during the Warm 

experiment was 5.7 g while the model estimated weight at the time of respirometry was 

12.3 g.  This is not an indication that E.F-RMD is over-estimating SFL weight as it is the 

estimated average weight based on the fit to the growth curve.  It just so happened the 

juvenile SFL randomly chosen for respirometry weighed less than the estimated mean 

weight based on the observed growth curve.  However, the weight difference may have 

impacted E.F-RMD’s estimated LOCr at “Mact max” and “Mrmr” interface values.  The 

model attempted to fit these metabolic values based on a fish weighing 6.6 g more than 
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the fish actually placed in the respirometer.  Model Ta at the time of respirometry was 

also 1.4°C lower than observed at final respirometry, but this should not have markedly 

affected the model’s outcome. 

 

Table 15.  Comparison of MDC Warm respirometry endpoints with E.F-RMD 

outputs. 

 
Warm 

Observed 
E.F-RMD 
Simulated 

Mean Ta at LOCr (°C) 21.6 20.2 

SFL Wt (g) 5.7 12.3 

RMR (mg O2/g fish·h) 0.23 0.23 

LOCr (mg O2/L water) 2.74 2.74 

MMS 0.084 0.084 

 

Integrated Cool-Warm Data Comparison 

C and R2 analysis for growth in weight and %Wtchg/day, given an appropriate 

metabolic sub-model, indicated that E.F-RMD was capable of accurately simulating 

juvenile SFL weight and the rate of weight change for the Cool treatment, but accuracy 

deteriorated somewhat for the Warm treatment.  Considering that Warm-treatment SFL 

actually lost weight during the early phase of the experiment suggests the occurrence of 

events or processes beyond the scope of the model. 
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SCT Pond Growth Data 

Without actual temperature data, and without any respirometry data for 

parameterizing RMD, several of the input processes used with the MDC Cool – Warm 

data were used to fit E.F-RMD to the SCT pond growth-data (Table 16).  The most 

significant difference between the pond growth version of E.F-RMD and that for MDC 

Cool – Warm was the calculation used for “FeedRateMax” (described above) which 

involves both temperature and body weight.  In addition, the “GEFeed” variable was 

increased to 2000 cal/g compared to the 1000 cal/g required for Cool-Warm.  The 

increase was consistent with the presumed high protein salmon starter feed provided the 

SCT pond fish per Mr. Paul Cason of Texas Parks and Wildlife Department (personal 

communication, October 21, 2020).  
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Table 16.  E.F-RMD fixed inputs and parameters for SCT Galveston pond study. 

 

Galveston 
pond 

Starting Weight (g) 0.68 

Salinity (ppt) 30 

Mean PO2 (mmHg) 159 

pH 8.3 

fR con 26 

Winberg 2.0 

Skin Eff f 1 

Smin0 0.043 

q1 0.062 

q2 0.09 

GEFeed (cal/g) 2000 

sda 0.14 

FeedDigestibility% 90 

 

E.F-RMD simulated weights and %Wtchg/day results corresponding to the post-

hatch (hours) weight-sampling times are shown in Table 17.  The observed %Wtchg/day 

values fluctuated conspicuously over time.  Such fluctuation is likely the artifact of 

differing growing conditions between sampled ponds or even sampling error caused by 

variation in sampling methods, locations and times.  For example, sample data for post-

hatch day 81 was from a single pond, while day 82 weight data was from 4 ponds.  

Further, even though the ponds may have been co-located and subject to the same 

general environmental conditions, other factors might have differed such as salinity, feed 

quality and schedule, and the presence or absence of stressors such as toxins, parasites, 
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and predation.  Despite the many potential sources of variation, the SCT pond data do 

show a growth trend.  When E.F-RMD is configured to the settings in Table 16, the 

model estimated weights by day post-hatch appears to follow the trend-line curve but 

with values greater than the trend-line average.  Visual comparison of the measured vs. 

modeled weights in Figure 83 shows that most of the model estimates fall within one 

standard deviation at days 81, 82, 94, and 98, but not on days 72 or 85 where much 

lower weights were measured.  Recall that E.F-RMD starting weight was set to 0.68 g 

and output adjusted so that growth resulted in an end weight (3.05 g) that matched data, 

so it is not surprising these values correspond. 

 

Table 17.  Observed SCT pond vs. E.F-RMD estimated weights. 

  Pond Observed E.F-RMD Simulated 

Days 
post-hatch 

Hours 
post-hatch Avg. Wt (g) %Wtchg/day Est. Wt (g) %Wtchg/day 

67 1608 0.68 - 0.68 - 

72 1728 0.17 -14.91 0.74 1.76 

81 1944 0.91 2.37 0.87 2.00 

82 1968 0.67 -0.13 0.89 2.06 

85 2040 0.24 -3.62 0.94 2.12 

94 2256 1.17 2.64 1.1 2.29 

98 2352 1.01 1.53 1.18 2.37 

157 3768 3.05 3.86 3.05 3.87 
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Figure 83.  E.F-RMD simulated vs. SCT pond observed SFL weights and fit curve. 

 

Consilience analysis of E.F-RMD to SCT pond data weights and %Wtchg/day is 

shown in Table 18.  Significant Consilience (see Figure 84) was observed between the 

E.F-RMD-simulated and observed weights.  Given that temperature was assumed to 

decline linearly over the course of the growth run for the SCT pond data, it would appear 

that E.F-RMD can be a useful tool for estimating SFL weights when not all 

environmental conditions are known.  

However, when E.F-RMD %Wtchg/day results were compared to the estimated 

%Wtchg/day for the pond data, there was no C significance (see Figure 85).  This result 
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is likely due to the aforementioned factors that may impact daily growth in ponds, 

together with normal sampling errors.  While E.F-RMD can indeed exhibit negative 

growth in response to adverse environmental conditions and feed deficiency, there 

seemed no justification for programming such effects into the SCT pond variant of E.F-

RMD.  

Conclusion: Application of E.F-RMD to SCT Pond Study  

All things considered, the performance of E.F-RMD relative to the SCT pond 

study seemed robust – despite the lack of significance in C for %Wtchg/day. 

 

Table 18.  Goodness-of fit: E.F-RMD to SCT pond data 

 Wt %Wtchg/day 

R2 0.917 0.282 

C (co-var-based) 0.931 0.469 

C′(0.05) 0.696 0.696 

Pr(C>C') P<0.01* P>0.1 
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Figure 84.  Observed SCT pond means vs. E.F-RMD simulated Wt relative to the 

line of perfect agreement. 
R2 = 0.917, C =  0.931. 

 

 

Figure 85.  Observed SCT pond means vs. E.F-RMD simulated %Wtchg/day 

relative to the line of perfect agreement. 
R2 = 0.282, C =  0.469. 
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Evaluation of E.F-RMD Simulations Relative to Published Study of SFL Growth 

Published research on SFL growth also was used to provide a check of model 

performance.  Of particular value was growth data reported by Luckenbach et al. (2007), 

who as part of an investigation of insulin-like growth factor 1 in SFL, conducted two 

SFL growth trials, each at a pair of temperatures.  In experiment 1, juvenile SFL with 

initial average weight about 1.9 g were raised at 23°C and 28°C over a 123 day period at 

a salinity of 5 ppt.  In experiment 2, juvenile SFL with initial average weight of 0.28 g 

were raised at 23°C and 28°C over a 197 day period.  Salinity in the second experiment 

started at 27 ppt, but was lowered over the course of the experiment to 4 ppt. 

To model the declining salinity of Luckenbach et al.’s experiment 2, a stock and 

flow model was added to E.F-RMD as shown in Figure 86.  The stock salinity reservoir, 

“Sal res,” starts at 27 ppt, and is used as the salinity value for experiment 2 with “salt” 

being “removed” by “Sal out” at a fixed daily rate as defined by the ratio between the 

initial and end salinity (27 – 4 = 23) over the total time of the experiments (in hours).  

This results in a linear salinity decline over the duration of the experiment. 

Sal out = 23/(STOPTIME-STARTTIME) 

 

 

Figure 86.  Salinity reduction model. 
Used in E.F-RMD configured for analysis of Luckenbach et al. (2007) experiment 2. 
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The addition of declining salinity provided an opportunity to test E.F-RMD in an 

environment with a changing masking load.  Unfortunately, Luckenbach et al. (2007) did 

not specify the DO or pH, so it was assumed that fish were normoxic throughout the 

experiment, and pH was set to 8.3 for consistency with the Cool-Warm data analysis.  

Air-saturated DO is inversely related to salinity, so the simulated DO for experiment 2 

increased as salinity declined by approximately 1 mg O2/L water over the course of the 

trial, for both temperature treatments.  Experiment 1's simulated DO levels remained 

constant over the trial.  

Luckenbach et al. (2007) measured growth four times over 120 days for 

Experiment 1, and 6 times over 200 days for Experiment 2 (Table 19). 
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Table 19.  Experiments 1 and 2 weight data reprinted from Luckenbach et al. 

(2007). 

Experiment 1 

Day Hour 

Avg. Wt (g) 

23°C 28°C 

1 24 1.86 1.91 

30 720 5 6 

60 1440 11 11 

120 2880 53 36 
    

Experiment 2 

Day Hour 

Avg. Wt (g) 

23°C 28°C 

1 24 0.28 0.28 

60 1440 1 1 

90 2160 6 6 

130 3120 14 14 

160 3840 32 21 

200 4800 53 32 

 

Growth data, by hours, for each experiment and temperature condition were 

plotted, and polynomial trend-line equations fitted (Figure 87).   
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Figure 87.  Luckenbach et al. (2007) experiment 1 and 2 average SFL weight-at-

time with added trend-lines. 
Experiment 1 (circles) was conducted over 123 days.  Experiment 2 (triangles) was conducted over 197 
days.  Marker color: blue = 23°C, red = 28°C.  Adapted from Luckenbach et al. (2007) 

 

The fit equations used for growth comparison are presented in Table 20.  

Variable TIME is in hours. 
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Table 20.  Best-fit polynomial equations (2nd order) for Luckenbach et al. (2007) 

experiments. 

Experiment Temperature (°C) Fit Equation 

1 
23 0.0000056*TIME^2+0.0014*TIME+1.83 

28 0.000004*TIME^2+0.0014*TIME+1.9 

2 
23 0.0000025*TIME^2-0.001*TIME+ 0.3 

28 0.0000015*TIME^2-0.0004*TIME+0.28 

 

Initial conditions for E.F-RMD are shown in Table 21.  Trial runs with the 

modified E.F-RMD model were initially conducted using the “FeedRateMax” 

temperature-only formulation to analyze the Cool – Warm data.  This proved to be 

somewhat effective, but the “FeedRateMax” used in the SCT pond data, which also 

factors in fish weight, was used for the fits described below as it produced better results. 
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Table 21.  E.F-RMD environmental inputs and parameters for Luckenbach et al. 

(2007) study. 
 

Exp. 1 23°C Exp. 1 28°C Exp. 2 23°C Exp. 2 28°C 

Starting Weight (g) 1.86 1.91 0.28 0.28 

Salinity (ppt) 5 5 17 - 4 17 - 4 

Mean PO2 (mmHg) 159 159 159 159 

DO (mg O2/L water) 8.58 7.89 7.6 – 8.6 7.0 – 7.9 

pH 8.3 8.3 8.3 8.3 

fR con 35 35 40 45 

Winberg 1.8 1.9 2.07 2.05 

Skin Eff f 1 1 1 1 

Smin0 0.043 0.043 0.043 0.043 

q1 0.062 0.062 0.062 0.062 

q2 0.09 0.09 0.09 0.09 

GEFeed (cal/g) 2000 2000 2000 2000 

sda 0.14 0.14 0.14 0.14 

FeedDigestibility% 90 90 90 90 
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E.F-RMD Simulation of Luckenbach et al. (2007) Study 

E.F-RMD simulated weights for each experimental condition were obtained from 

the model run-time “hour” that correspond to the day weight measurements reported by 

Luckenbach et al. (2007) are shown in Table 22.  Percent weight change per day for 

observed and modeled growth are presented in Table 23. 

 

Table 22.  Luckenbach et al. (2007) vs. E.F-RMD simulated weights. 

Experiment 1 

Day Hour 

23°C 28°C 

Obs Wt (g) E.F-RMD Wt (g) Obs Wt (g) E.F-RMD Wt (g) 

1 24 1.86 1.86 1.91 1.91 

30 720 5 7.08 6 4.56 

60 1440 11 16.68 11 10.77 

120 2880 53 52.68 36 39.77 
      

Experiment 2 

Day Hour 

23°C 28°C 

Obs Wt (g) E.F-RMD Wt (g) Obs Wt (g) E.F-RMD Wt (g) 

1 24 0.28 0.28 0.28 0.28 

60 1440 1 1.79 1 0.78 

90 2160 6 4.42 6 1.59 

130 3120 14 14.38 14 5.91 

160 3840 32 27.61 21 14.31 

200 4800 53 54.29 32 33.3 
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Table 23.  Luckenbach et al. (2007) and E.F-RMD simulated %Wtchg/day. 

Experiment 1 

Day Hour 

23°C 28°C 

Obs 
%Wtchg/day 

E.F-RMD 
%Wtchg/day 

Obs 
%Wtchg/day 

E.F-RMD 
%Wtchg/day 

1 24 - - - - 

30 720 5.63 9.35 7.14 4.62 

60 1440 8.19 13.28 7.93 7.73 

120 2880 22.91 22.77 14.87 16.52 
      

Experiment 2 

Day Hour 

23°C 28°C 

Obs 
%Wtchg/day 

E.F-RMD 
%Wtchg/day 

Obs 
%Wtchg/day 

E.F-RMD 
%Wtchg/day 

1 24 - - - - 

60 1440 4.29 8.99 4.29 2.98 

90 2160 22.70 16.43 22.70 5.20 

130 3120 37.69 38.74 37.69 15.47 

160 3840 70.80 61.00 46.25 31.32 

200 4800 94.14 96.45 56.64 58.96 

 

E.F-RMD simulations for the four experimental conditions are shown below as 

Stella® graphs.  Each compares E.F-RMD simulated growth against the growth trend-

lines from Table 20 .  Each Stella® graph is followed by a goodness-of-fit table and 

Consilience graph for weight and %Wtchg/day.   
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Experiment 1, 23°C Growth 

Simulated E.F-RMD growth compared to that observed in experiment 1 at 23°C 

is graphed in Figure 88. 

 

 

Figure 88.  Stella® graph of E.F-RMD simulated SFL weight vs. Luckenbach et al. 

experiment 1, 23°C trend-line curve. 

 

Weight and %Wtchg/day Consilience analysis for Luckenbach et al. (2007) 

experiment 1 at 23°C data and the corresponding E.F-RMD values taken at the same 

sampling hours are shown in Table 24.  Results were significant both for weight and 

%Wtchg/day.  Consilience graphs for weight (Figure 89) and %Wtchg/day (Figure 90) 

compare the E.F-RMD estimates to observed values at the same sample times relative to 

the line of perfect agreement. 
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Table 24.  Goodness-of fit: E.F-RMD to Luckenbach et al. experiment 1, 23°C. 

 Wt %Wtchg/day 

R2 0.993 0.977 

C (co-var-based) 0.991 0.924 

C′(0.05) 0.905 0.905 

Pr(C>C') P<0.01* 0.01<P<0.05* 

 

 

Figure 89.  Observed vs. E.F-RMD modeled weight relative to the line of perfect 

agreement, for Luckenbach et al. experiment 1, 23°C. 
R2 = 0.993, C = 0.991 . 
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Figure 90.  Observed vs. E.F-RMD modeled %Wtchg/day relative to the line of 

perfect agreement, for Luckenbach et al. experiment 1, 23°C. 
R2 = 0.977, C =  0.924. 
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Experiment 1, 28°C Growth 

Simulated E.F-RMD growth compared to that observed in experiment 1 at 28°C 

is graphed in Figure 91. 

 

 

Figure 91.  Stella® graph of E.F-RMD simulated SFL weight vs. Luckenbach et al. 

experiment 1, 28°C trend-line curve. 

 

Results of the Consilience analysis between the observed and modeled weight 

and %Wtchg/day are shown in Table 25.  As with the 23°C experiment, the 28°C 

experiment Weight and %Wtchg/day results were significant.  Weight comparison of 

E.F-RMD to experiment 1, 28°C relative to the line of perfect agreement is shown in 

Figure 92, while the %Wtchg/day comparison is presented in Figure 93. 
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Table 25.  Goodness-of fit: E.F-RMD to Luckenbach et al. experiment 1, 28°C. 

 Wt %Wtchg/day 

R2 1.000 0.974 

C (co-var-based) 0.989 0.917 

C′(0.05) 0.905 0.905 

Pr(C>C') P<0.01* 0.01<P<0.05* 

 

 

Figure 92.  Observed vs. E.F-RMD modeled weight relative to the line of perfect 

agreement, for Luckenbach et al. experiment 1, 28°C. 
R2 = 1.000, C =  0.989. 
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Figure 93.  Observed vs. E.F-RMD modeled %Wtchg/day relative to the line of 

perfect agreement, for Luckenbach et al. experiment 1, 28°C. 
R2 = 0.974, C =  0.917. 
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Experiment 2, 23°C Growth 

The estimated E.F-RMD growth compared to experiment 2, 23°C growth curve 

is graphed in Figure 94. 

 

 

Figure 94.  Stella® graph of E.F-RMD simulated SFL weight vs. Luckenbach et al. 

experiment 2, 23°C trend-line curve. 

 

Results of the Consilience analysis of the Luckenbach et al. (2007) data growth 

trend-line for experiment 2, 23°C, to the E.F-RMD weight and %Wtchg/day simulation 

are shown in Table 26.  Both weight and %Wtchg/day showed significance.  Consilience 

graphs comparing weight are shown in Figure 95, while and %Wtchg/day comparison is 

shown in Figure 96.   
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Table 26.  Goodness-of fit: E.F-RMD to Luckenbach et al. experiment 2, 23°C. 

 Wt %Wtchg/day 

R2 0.988 0.971 

C (co-var-based) 0.995 0.988 

C′(0.05) 0.786 0.786 

Pr(C>C') P<0.01* P<0.01* 

 

 

Figure 95.  Observed vs. E.F-RMD modeled weight relative to the line of perfect 

agreement, for Luckenbach et al. experiment 2, 23°C. 
R2 = 0.988, C =  0.995. 
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Figure 96.  Observed vs. E.F-RMD modeled %Wtchg/day relative to the line of 

perfect agreement, for Luckenbach et al. experiment 2, 23°C. 
R2 = 0.971, C =  0.988. 
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Experiment 2, 28°C Growth 

The simulated E.F-RMD growth compared to experiment 2, 28°C growth curve 

is graphed in Figure 97. 

 

 

Figure 97.  Stella® graph of E.F-RMD simulated SFL weight vs. Luckenbach et al. 

experiment 2, 28°C trend curve. 

 

Results of the Consilience analysis of the Luckenbach et al. (2007), experiment 

2, 28°C data growth trend-line to the E.F-RMD weight estimate are shown in Table 27.  

Weight correlation was significant between the data and E.F-RMD simulation while 

%Wtchg/day was not significant.  The Weight Consilience graph is shown in Figure 98, 

with the %Wtchg/day graph shown in Figure 99.   

The lower R2 and C values for experiment 2, especially at 28°C, may be 

indicative of weakness in E.F-RMD’s ability to capture SFL growth effects of changing 

salinity, especially at elevated temperature.  Also, there may have been 
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misrepresentation of weight effects on metabolic or bioenergetic processes in SFL of 

such small size as those used in the second experiment. 

 

Table 27.  Goodness-of fit: E.F-RMD to Luckenbach et al. experiment 2, 28°C. 

 Wt %Wtchg/day 

R2 0.911 0.787 

C (co-var-based) 0.913 0.756 

C′(0.05) 0.786 0.786 

Pr(C>C') P<0.01* 0.05<P<0.1 

 

 

 

Figure 98.  Observed vs. E.F-RMD modeled weight relative to the line of perfect 

agreement, for Luckenbach et al. experiment 2, 28°C. 
R2 = 0.911, C =  0.913. 
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Figure 99.  Observed vs. E.F-RMD modeled %Wtchg/day relative to the line of 

perfect agreement, for Luckenbach et al. experiment 2, 28°C. 
R2 = 0.787, C =  0.756. 

 

 

Conclusion: Application of E.F-RMD to Luckenbach et al. (2007) 

E.F-RMD results are significantly consilient under both temperature treatments 

for Luckenbach et al.’s (2007) experiment 1, both for weight-over-time and 

%Wtchg/day.  C values also were significant for weight at both temperatures in 

experiment 2, but %Wtchg/day was significant only for the 23°C condition.   

Changing salinity in experiment 2 may have exposed a potential limitation of 

E.F-RMD.  While the E.F model does adjust to salinity, the RMD component does not.    

Integrated Analysis of E.F-RMD Performance for the Three Studies 

Objective assessment of E.F-RMD output relative to the observed growth data 

enables evaluation of the model’s real utility, as an approach and as a tool for better 

understanding of SFL growth processes.  The honest modeler must concede that 

significant goodness-of-fit between model and data can be taken as validation of the 
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model only for those given conditions.  The real value of a growth model such as E.F-

RMD lies in its ability to accurately simulate growth of the subject species in a variety of 

situations.  Strengthening model validity is achievable by measuring model-data 

consilience across multiple studies.  In the present instance, the available studies of SFL 

growth are three:  MDC Cool - Warm, SCT pond, and Luckenbach et al. (2007). 

An aggregate measure of Consilience (Neill et al. 2018) was applied, whereby 

Ymod-Yobs comparisons for the two emergent responses, Wt (over time) and 

%Wtchg/day, from the three studies were each treated as 3 independent samples 

(CaseMatch = No) for which joint Consilience (jointC) could be computed.  This 

approach – treating 3 sets of same-Y response (e.g., Wt over time) as 3 sets of not-same 

Ymod responses, then computing their jointC – was not addressed by Neill et al. (2018), 

but senior-author Neill can find no particular fault in this approach.  

Accordingly, jointC analysis of the three data sets was conducted for each 

variable, using the compact Consilience-calculator developed by Dr. Ray H. Kamps 

(Neill et al. 2018).  Each data set was assigned a weighted value by the calculator of 

approximately 0.33.  For jointC analysis, the data and simulated results from all subsets 

of the three studies were aggregated as a single Ymod-Yobs series. 

The results of jointC analysis for the three data sets (Npairs1= 8, Npairs2 = 7, 

Npairs3 = 16; NpairsAll = 31) for weight and %Wtchg/day are shown in Table 28.  

Goodness-of-fit for E.F-RMD simulations to observed weights across all three data sets 

produced a jointC that was significant.  Due to the poor growth fit for SCT pond, and to 
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a lesser extent, for Luckenbach et al. experiment 2, jointC for the %Wtchg/day was not 

as large, but still was significant. 

 

Table 28.  Goodness-of fit: jointC for weight and %Wtchg/day, all data sets. 

 Wt %Wtchg/day 

JointC 0.968 0.757 

C′(0.05) 0.356 0.356 

Pr(C>C') P<0.01* P<0.01* 

 

Goodness-of-fit graphs for weight (Figure 100) and %Wtchg/day (Figure 101) 

are shown below.  As with the jointC analysis, Cool – Warm data are combined into one 

data set, as are the Luckenbach et al. experiments data.   
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Figure 100.  Observed vs. MDC, SCT, and Luckenbach et al. model weights relative 

to the line of perfect agreement. 
JointC =  0.968. 

 

 

Figure 101.  Observed vs. MDC, SCT, and Luckenbach et al. model %Wtchg/day 

relative to the line of perfect agreement. 
JointC =  0.757. 
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Overall Conclusion: E.F-RMD as an Effective Growth Model 

Observed vs. Model Consilience 

Consilience of E.F-RMD outputs for weight-at-time with observation was 

significant (P<0.05) for all seven subsets of data; for %Wtchg/day, C was significant for 

four of the seven data sets.  Non-significance was observed for %Wtchg/day for MDC 

Warm, SCT pond, and Luckenbach et al. experiment 2 at 28°C.  A synopsis of 

significant versus non-significant results for weight-at-time and %Wtchg/day is shown 

in Table 29. 

 

Table 29.  Consilience significance for all studies. 
Significant (+), not significant (-). 

Data Weight %Wtchg/day 

MDC Cool + + 

MDC Warm + - 

SCT Pond + - 

Luckenbach et al., Exp 1 23°C + + 

Luckenbach et al., Exp 1 28°C + + 

Luckenbach et al., Exp 2 23°C + + 

Luckenbach et al., Exp 2 28°C + - 
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Observed vs. Model Joint Consiliences 

JointC between modeled and observed results for the three studies in aggregate 

was significant, both for weight-at-time and %Wtchg/day, with weight-at-time 

presenting higher consilience (jointC = 0.968, P<0.01).  It is to be expected that weights 

for growing animals over time are less "noisy" than are what amounts to their time 

derivatives, %Wtchg/day.  Thus, %Wtchg/day presents the more conservative measure 

of animal growth.  And, to the extent that even jointC for %Wtchg/day was large and 

significant, E.F-RMD is declared a valid and useful model for simulating SFL growth 

and is thus potentially useful as a tool for use in Southern Flounder stock management. 
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CHAPTER IX  

SUMMARY AND CONCLUSIONS 

 

The Southern Flounder Paralichthys lethostigma (SFL) is an important 

commercial and sport fish occurring in coastal waters of the Gulf of Mexico and along 

the eastern seaboard of the USA, up to the Carolinas (Wenner and Archambault 2005).  

The life cycle of SFL exposes this euryhaline species to varying conditions of salinity, 

temperature, and oxygen (O2).  Movements between brackish estuaries and the open 

ocean challenge physiological homeostasis and impose metabolic loads, thus reducing 

metabolic scope for productive activities such as locomotion, growth and reproduction.  

Recently, SFL numbers have been in decline, owing perhaps to increased fishing 

pressure and to climate change (Munroe 2015, VanderKooy 2015) 

Ecophysiological research and conceptualizations of fish metabolism and growth 

by Fry (1947, 1971) and by many other scientists have provided a logical foundation for 

modeling the respiratory and bioenergetic processes of  SFL to better understand its 

growth and ecology. 

Fry (1947, 1971) categorized the environment’s components impacting fish 

physiology and consequently its growth.  Fry drew particular attention to important 

interactions, such as that of the controlling factor temperature with the limiting factor 

oxygen, leading metabolic scope for growth. 

The concepts of Fry (1947, 1971) and complementary bioenergetics modeling 

(e.g., Burke and Rice (2002) and predecessors) led to Ecophys.Fish (Neill et al. 2004), 
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which provided one foundation of the present work.  E.F integrates bioenergetic and 

metabolic responses, and it accounts for the effects of multiple environmental factors 

and their interactions over time.  Developed with isee systems’ Stella® dynamic systems 

modeling software, E.F has proven utility as an adaptable model for simulating 

bioenergetics and  growth of several fish species (Neill et al. 2004, Fonseca et al. 2010) 

and the Pacific White Shrimp Litopenaeus vannamei (Walker 2009).   

 Because of the Southern Flounder's fishery importance and concern about its 

declining stocks, the present study was undertaken, to develop and evaluate an E.F-based 

dynamic growth model for the Southern Flounder.  The special ecophysiology of SFL–it 

being a flatfish and living mostly on or near the substrate–dictated that E.F be equipped 

with a more mechanistic representation of its respiratory physiology. 

  Thus, the responsibility of modeling O2 flow, V̇O2, from the environment to the 

tissue in the SFL was also assumed, with the aim of providing the SFL-variant E.F 

model with this additional capability.  This resulted in the development of what came to 

be called the Respiratory Model, Dynamic (RMD). 

Computer modeling of fish respiration dates back to at least Taylor et al. (1968) 

and must account for multiple physical and physiological factors.  For RMD, the 

approach was to model V̇O2 within the biological system based on the three components 

that control the flow of O2 as it moves from the environment to the tissues; these three 

components are ventilation, gill diffusion, and blood transport. 

The success of RMD as a fish respiratory model hinged upon establishing the 

range and response for each of the three model components, each configured on the basis 
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of current knowledge.  RMD draws on multiple scientific disciplines; including, but no 

limited to, anatomy, physiology, and biochemistry.  Such synergy of disciplines offered 

the prospect of finding emergent, even unanticipated results.  Such was the case with the 

addition of cutaneous respiration as a contributor to RMD V̇O2 output. 

Respiratory Model, Dynamic 

Like all models, RMD started small but grew and became more complex as it 

evolved to meet practical simulation needs.  Some choices made for inclusion in RMD 

were serendipitous, as the decision to include cutaneous respiration (discussed in detail 

below).  Other components arose by obvious necessity, and while perhaps not as 

significant as cutaneous respiration, merit attention as potential contributors to our 

overall knowledge of SFL. 

Allometric Cutaneous Respiration in SFL 

Respirometry data (Figure 10) showed that fry and juvenile SFL have a higher 

per-gram ṀO2 rate than adult SFL.  This decline in per-gram metabolic rate may be 

imposed by the metabolic power law (Kleiber 1932, Kleiber 1975, Schmidt-Nielsen 

1984).  RMD estimates of ṀO2 that incorporated cutaneous-sourced ṀO2 followed a 

similar negative-exponential trend-line that declined towards an apparent asymptote as 

the fish grew.  This suggests that cutaneous-sourced ṀO2 may have evolved to meet the 

greater per-gram metabolic energy requirements of fry and juvenile SFL (Lotka 1922). 

When configured optimally, RMD output suggested that within flounder, 

supplemental cutaneous respiration is an important contributor to ṀO2 in fry, juvenile, 

and young adult flatfish, becoming less so as the fish grows towards adulthood, due to 
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the increase in the mass-to-surface area ratio and skin thickness.  Figure 102 shows 

estimated RMD ṀO2 (mg O2/g·h) output for SFL weights between 1 and 1000 g with 

cutaneous diffusion set to 100% (maximum), 50%, 25%, and 0% efficiency using the 

RMD skin efficiency fraction, “Skin eff f,” converter with DO = 7 mg O2/L water, PO2 = 

129 mmHg, Ta = 15°C, and salinity = 30 ppt. 

 

 

Figure 102.  RMD Stella® plot – ṀO2 by weight, variable cutaneous efficiency. 
Cutaneous efficiency: 100% (blue), 50% (red), 25% (magenta), and 0% (green).  DO = 7 mg O2/L water, 

PO2 = 129 mmHg, Ta = 15°C, salinity = 30 ppt. 
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With the cutaneous fraction set to zero, per-gram ṀO2 remains flat (green line), 

and is the ṀO2 from RMD gill respiration only.  Values vary with DO, Ta, salinity, and 

the amount of skin exposed to the water (i.e., how deep the SFL is buried in the 

substrate), but for any given environmental regime, it is the asymptotic minimum ṀO2 

output.  As the fish grows, RMD invokes increasing skin thickness with increasing body 

mass.  The increase in skin thickness reduces O2 diffusion which, when considered in the 

context of increasing body mass, results in a steady decline in the contribution of 

cutaneous O2 to overall ṀO2. 

RMD results suggest that cutaneous respiration in flounder depends on the mass 

of the fish, which may explain the variability observed in the literature on the relative 

contribution of cutaneous respiration in flatfish and other species.  Rather than being a 

set percentage, the contribution of supplemental cutaneous respiration to overall ṀO2 

changes with environmental conditions and over the life cycle of fish.  When the 

conditions that produced the outputs shown in Figure 102 are graphed as percent 

cutaneous contribution, the results in Figure 103 show the relationship of mass-

dependence of the cutaneous respiration contribution to the overall ṀO2. 
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Figure 103.  RMD Stella® plot – Percent cutaneous respiratory contribution. 
Cutaneous efficiency: 100% (blue), 50% (red), 25% (magenta), and 0% (green).  DO = 7 mg O2/L water, 

PO2 = 129 mmHg, Ta = 15°C, salinity = 30 ppt. 

 

RMD uses fixed, linear slope values for calculating upper and lower epidermal 

thickness by weight.  However, when compared to MDC Cool – Warm respirometry 

trend-line results, RMD underestimated the cutaneous ṀO2 contribution for SFL below 

12 g.  This is suggestive, but by no means conclusive, that SFL skin thickness growth 

may be non-linear, perhaps similar but opposite to the “triphasic allometry” observed in 



 

282 

 

Common Carp gill surface area, with slower epidermal tissue growth compared to the 

faster gill growth reported by Oikawa and Itazawa (1985). 

Meeh Coefficient and Flatfish Surface Area 

Using SFL growth data from the Texas Parks and Wildlife Department’s Marine 

Development Center, the "Surface Law” coefficient k, also called the Meeh coefficient 

(see equation 25), for SFL was determined to be approximately 10.  This value is in line 

with the value reported for typical fish (Schmidt-Nielsen 1984), indicating that, despite 

their morphology, flatfish surface area scales proportionately with those of “round” fish. 

Although likely having utility to only a few researchers, a means of calculating 

surface area for ellipsoid-shaped fish based solely on total length (TL) was developed 

and presented in equation (33). 

Flatfish Allometric Ventricular Volume 

Starting with an allometric estimation for calculation of heart mass, see equation 

(34), and available literature data on ventricular mass compared to total heart mass, an 

allometric estimation of stroke volume for flounder was developed, see equation (45). 

The E.F-RMD Growth Model 

 When properly configured, E.F-RMD appears to be an effective model for 

simulating SFL growth.  The model can be fit to data in most circumstances by 

adjustment of only three shaping variables: “GEFeed,” “Winberg,” and “fR con,” which 

respectively quantify gross energy of feed (cal/g), the ratio of routine metabolic rate to 

standard metabolic rate, and the ventilation-frequency constant by which ventilation 
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frequency is modified by adjusting the slope and magnitude of the temperature-

dependent ventilatory rate response curve shown in Figure 34. 

When considering modeled results relative to data, a model’s sensitivity to 

changes in initial conditions is of concern (Grant et al. 1997).  With complex and 

dynamic models such as E.F-RMD, some components are likely to have more 

substantial effects on the outcome.  Within E.F-RMD, the processes with the greatest 

effects on growth outcome are “Winberg” and “fR con” as these impact output of 

“MSgrowth” and “Mact max,” respectively.  However, once E.F-RMD was shaped to fit 

a specific observational regime (i.e., MDC laboratory experiment, SCT pond trial, 

growth trials by Luckenbach et al. (2007)), it was able to adequately adjust for variation 

in initial fish weight, temperature and [O2] to provide growth outcomes comparable to 

those observed, as quantified via Consilience analysis of weight and percent weight 

change per day with respect to time.   

Where the model does appear to falter is with respect to changes in salinity.  E.F-

RMD’s inability to closely match growth observed in the second experiment by 

Luckenbach et al. (2007) indicates that E.F-RMD, like all models, is deficient.  Only 

through further exploration of E.F-RMD via experimentation with a variety of 

environmental conditions, model assumptions and configurations can this and other 

limitations be addressed.  It is also a reminder that models are never complete, but like 

the living organisms they attempt to simulate, constantly evolve. 

Despite the admitted limitations of E.F-RMD, it represents an effective merger of 

a new and more mechanistic component for simulation of respiratory physiology of fish, 
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with an existing ecophysiological model of fish bioenergetics and growth.  Moreover, 

RMD explicitly accommodates the contribution of cutaneous respiration to fish 

metabolism so important in flatfishes, especially smaller individuals.  Finally, both 

components of E.F-RMD were successfully parameterized specifically for Southern 

Flounder. 

 
 

  



 

285 

 

REFERENCES 

Anderson, J. D., W. J. Karel, and A. C. Mione. 2012. Population structure and 
evolutionary history of Southern Flounder in the Gulf of Mexico and western 

Atlantic Ocean. Transactions of the American Fisheries Society 141:46-55. 

Androjna, C., J. E. Gatica, J. M. Belovich, and K. Derwin. 2008. Oxygen diffusion 

through natural extracellular matrices: implications for estimating “critical 
thickness” values in tendon tissue engineering. Tissue Engineering Part A 

14:559-569. 

Aquamaps. Accessed March 25, 2016. Computer generated distribution maps for 

Paralichthys lethostigma (Southern flounder). www.aquamaps.org. 

Barcroft, J. 1913. The combinations of haemoglobin with oxygen and with carbon 

monoxide. II. Biochemical Journal 7:481. 

Barreto, R. E., and G. L. Volpato. 2006. Ventilatory frequency of Nile Tilapia subjected 

to different stressors. Journal of Experimental Animal Science 43:189-196. 

Battino, R., F. D. Evans, and W. Danforth. 1968. The solubilities of seven gases in olive 

oil with references to theories of transport through the cell membrane. Journal of 
the American Oil Chemists' Society 45:830-833. 

Bayha, K. M., N. Ortell, C. N. Ryan, K. J. Griffitt, M. Krasnec, J. Sena, T. Ramaraj, R. 
Takeshita, G. D. Mayer, and F. Schilkey. 2017. Crude oil impairs immune 

function and increases susceptibility to pathogenic bacteria in southern flounder. 
PLoS One 12:e0176559. 

Benson, B. B., and D. Krause. 1984. The concentration and isotopic fractionation of 
oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. 

Limnology and Oceanography 29:620-632. 

Berschick, P., C. Bridges, and M. Grieshaber. 1987. The influence of hyperoxia, hypoxia 

and temperature on the respiratory physiology of the intertidal rockpool fish 
Gobius cobitis Pallas. Journal of Experimental Biology 130:368-387. 

Blanchet, H. 2010. Assessment of Southern Flounder in Louisiana waters. Louisiana 
Department of Wildlife and Fisheries, Office of Marine Fisheries, Baton Rouge, 

LA, 70895. 

Boddington, M. 1978. An absolute metabolic scope for activity. Journal of theoretical 

Biology 75:443-449. 



 

286 

 

Bohr, C., K. Hasselbalch, and A. Krogh. 1904. Concerning a biologically important 
relationship–the influence of the carbon dioxide content of blood on its oxygen 

binding. Skandinavisches Archiv für Physiologie 16:402-412. 

Bolker, B. M. 2008. Ecological models and data in R. Princeton University Press, 

Princeton, NJ. 

Boltzmann, L. 1886. The second law of thermodynamics. Pages 13-32 in B. 

McGuinness, editor. Theoretical physics and philosophical problems: Selected 
writings. Springer Netherlands, Dordrecht. 

Box, G. E. P. 1979. Robustness in the strategy of scientific model building. Pages 201-
236 in R. L. Launer and G. N. Wilkinson, editors. Robustness in statistics. 

Academic Press, New York. 

Brady, D. C., and T. E. Targett. 2010. Characterizing the escape response of juvenile 

summer flounder Paralichthys dentatus to diel-cycling hypoxia. Journal of Fish 
Biology 77:137-152. 

Brett, J., and T. Groves. 1979. Physiological energetics. Fish physiology 8:280-352. 

Brown-Peterson, N. J., M. Krasnec, R. Takeshita, C. N. Ryan, K. J. Griffitt, C. Lay, G. 

D. Mayer, K. M. Bayha, W. E. Hawkins, and I. Lipton. 2015. A multiple 
endpoint analysis of the effects of chronic exposure to sediment contaminated 

with Deepwater Horizon oil on juvenile Southern flounder and their associated 
microbiomes. Aquatic Toxicology 165:197-209. 

Burggren, W. W. 1988. Role of the central circulation in regulation of cutaneous gas 
exchange. American Zoologist 28:985-998. 

Burke, B. J., and J. A. Rice. 2002. A linked foraging and bioenergetics model for 
southern flounder. Transactions of the American Fisheries Society 131:120-131. 

Burton, D., and M. Burton. 1989. Individual variability in the epidermis of prespawning 
inshore winter flounder, Pseudopleuronectes americanus. Journal of Fish 

Biology 35:845-853. 

Burton, D., M. Burton, and D. Idler. 1984. Epidermal condition in post‐spawned winter 

flounder, Pseudopleuronectes americanus (Walbaum), maintained in the 
laboratory and after exposure to crude petroleum. Journal of Fish Biology 

25:593-606. 

Calder, W. A. 1984. Size, function, and life history. Harvard University Press, 

Cambridge, MA. 



 

287 

 

Cameron, J. N. 1989. The respiratory physiology of animals. Oxford University Press, 
New York, NY. 

Capossela, K. M., R. W. Brill, M. C. Fabrizio, and P. G. Bushnell. 2012. Metabolic and 
cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia 

at two temperatures. Journal of Fish Biology 81:1043-1058. 

Cason, P. personal communication, October 21, 2020. Flounder fingerlings reared at 

SCT ponds. 

Casterlin, M. E., and W. W. Reynolds. 1982. Thermoregulatory behavior and diel 

activity of yearling winter flounder, Pseudopleuronectes americanus (Walbaum). 
Environmental Biology of Fishes 7:177-180. 

Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation. 
Sinauer Associates, Sunderland, MA. 

Cech, J. J., D. M. Rowell, and J. S. Glasgow. 1977. Cardiovascular responses of the 
winter flounder Pseudopleuronectes americanus to hypoxia. Comparative 

Biochemistry and Physiology Part A: Physiology 57:123-125. 

Chabot, D., J. F. Steffensen, and A. P. Farrell. 2016. The determination of standard 

metabolic rate in fishes. Journal of Fish Biology 88:81-121. 

Chipps, S. R., and D. H. Wahl. 2008. Bioenergetics modeling in the 21st century: 

reviewing new insights and revisiting old constraints. Transactions of the 
American Fisheries Society 137:298-313. 

Claireaux, G., and D. Chabot. 2016. Responses by fishes to environmental hypoxia: 
integration through Fry's concept of aerobic metabolic scope. Journal of Fish 

Biology 88:232-251. 

Claireaux, G., and C. Lefrancois. 2007. Linking environmental variability and fish 

performance: integration through the concept of scope for activity. Philosophical 
Transactions of the Royal Society B: Biological Sciences 362:2031-2041. 

Clarke, A., and N. M. Johnston. 1999. Scaling of metabolic rate with body mass and 
temperature in teleost fish. Journal of Animal Ecology 68:893-905. 

Corey, M. M., R. T. Leaf, N. J. Brown-Peterson, M. S. Peterson, S. D. Clardy, and D. A. 
Dippold. 2017. Growth and spawning dynamics of Southern Flounder in the 

north-central Gulf of Mexico. Marine and Coastal Fisheries 9:231-243. 

D'Aoust, B. G. 1969. Hyperbaric oxygen: toxicity to fish at pressures present in their 

swimbladders. Science 163:576-578. 



 

288 

 

Dalla Via, J., G. Van den Thillart, O. Cattani, and P. Cortesi. 1997. Environmental 
versus functional hypoxia/anoxia in sole Solea solea: the lactate paradox 

revisited. MARINE ECOLOGY PROGRESS SERIES 154:79-90. 

Daniels, H., D. Berlinsky, R. Hodson, and C. Sullivan. 1996. Effects of stocking density, 

salinity, and light intensity on growth and survival of southern flounder 
Paralichthys lethostigma larvae. Journal of the World aquaculture society 

27:153-159. 

Davidson, M. I., T. E. Targett, and P. A. Grecay. 2016. Evaluating the effects of diel-

cycling hypoxia and pH on growth and survival of juvenile summer flounder 
Paralichthys dentatus. MARINE ECOLOGY PROGRESS SERIES 556:223-

235. 

Dejours, P. 1979. Oxygen demand and gas exchange. Pages 1-44 in S. Wood and C. 

Lenfant, editors. Evolution of respiratory processes. Marcel Dekker, New York, 
NY. 

Dejours, P. 1981. Principles of comparative respiratory physiology. 2nd edition. 
Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands. 

Dejours, P., A. Toulmond, and J. Truchot. 1977. The effect of hyperoxia on the 
breathing of marine fishes. Comparative Biochemistry and Physiology Part A: 

Physiology 58:409-411. 

Del Toro-Silva, F. M. 2008. Evaluation of nursery habitat: an ecophysiological approach  

[Unpublished doctoral dissertation]. PhD Thesis. North Carolina State 
University, Raleigh, North Carolina. 

Del Toro-Silva, F. M., J. M. Miller, J. C. Taylor, and T. A. Ellis. 2008. Influence of 
oxygen and temperature on growth and metabolic performance of Paralichthys 

lethostigma (Pleuronectiformes: Paralichthyidae). Journal of Experimental 
Marine Biology and Ecology 358:113-123. 

Deslauriers, D., S. R. Chipps, J. E. Breck, J. A. Rice, and C. P. Madenjian. 2017. Fish 
bioenergetics 4.0: an R-based modeling application. Fisheries 42:586-596. 

Deubler, E. E., and G. S. Posner. 1963. Response of postlarval flounders, Paralicthys 
lethostigma, to water of low oxygen concentrations. Copeia:312-317. 

Duthie, G. G. 1982. The respiratory metabolism of temperature-adapted flatfish at rest 
and during swimming activity and the use of anaerobic metabolism at moderate 

swimming speeds. Journal of Experimental Biology 97:359-373. 



 

289 

 

Eddy, F. B., and R. D. Handy. 2012. Ecological and environmental physiology of fishes. 
Oxford University Press, Oxford, UK. 

Enberg, K., E. Dunlop, and C. Jørgensen. 2008. Fish growth. Pages 1564–1572 in M. 
Goldstein, editor. Encyclopedia of ecology. Academic Press, Oxford, UK. 

Evans, D. H., P. M. Piermarini, and K. P. Choe. 2005. The multifunctional fish gill: 
dominant site of gas exchange, osmoregulation, acid-base regulation, and 

excretion of nitrogenous waste. Physiology Review 85:97-177. 

Farrell, A. P. 2016. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus 

and apportioning. Journal of Fish Biology 88:322-343. 

Feder, M., and W. Burggren. 1985 Feb. Cutaneous gas exchange in vertebrates: designs, 

patterns, control and implications. Biological Reviews 60:1-45. 

Feder, M., and W. Burggren. 1985 Nov 1. Skin breathing in vertebrates. Scientific 

American 253:126-143. 

Fick, A. 1995. On liquid diffusion. Journal of Membrane Science 100:33-38. 

Fischer, A. J., and B. A. Thompson. 2004. The age and growth of southern flounder, 
Paralichthys lethostigma, from Louisiana estuarine and offshore waters. Bulletin 

of Marine Science 75:63-77. 

Fischkoff, S., and J. Vanderkooi. 1975. Oxygen diffusion in biological and artificial 

membranes determined by the fluorochrome pyrene. The Journal of general 
physiology 65:663-676. 

Flowers, A., S. Allen, A. Markwith, and L. Lee. 2019. Stock assessment of Southern 
Flounder (Paralichthys lethostigma) in the South Atlantic, 1989–2017. NCDMF 

SAP-SAR-2019-01, Joint report of the North Carolina Division of Marine 
Fisheries, South Carolina Department of Natural Resources, Georgia Coastal 

Resources Division, Florida Fish and Wildlife Research Institute, University of 
North Carolina at Wilmington, and Louisiana State University. 

Fonseca, V. F., W. H. Neill, J. M. Miller, and H. N. Cabral. 2010. Ecophys.Fish 
perspectives on growth of juvenile soles, Solea solea and Solea senegalensis, in 

the Tagus estuary, Portugal. Journal of Sea Research 64:118-124. 

Ford, F. A. 1999. Modeling the environment: an introduction to system dynamics 

models of environmental systems. Island Press, Washington, DC. 

Friedman, M. 2008. The evolutionary origin of flatfish asymmetry. Nature 454:209-212. 



 

290 

 

Froeschke, B. F., B. Sterba-Boatwright, and G. W. Stunz. 2011. Assessing southern 
flounder (Paralichthys lethostigma) long-term population trends in the northern 

Gulf of Mexico using time series analyses. Fisheries Research 108:291-298. 

Froese, R., and D. Pauly. 2016. Fishbase, accessed June 6, 2016. 

Fry, F. 1947. Effects of the environment on animal activity. University of Toronto Press, 
Toronto, Ontario. 

Fry, F. 1958. Temperature compensation. Annual Review of Physiology 20:207-224. 

Fry, F. 1971. The effect of environmental factors on the physiology of fish. Pages 1-98 

in W. S. Hoar and D. J. Randall, editors. Fish physiology. Academic Press, New 
York. 

Futuyma, D. J. 1998. Evolutionary biology. 3rd edition. Sinauer Associates, Sunderland, 
MA. 

Galileo, G. 1638. Discorsi e dimostrazioni matematiche intorno à due nuove scienze 
attenenti alla mecanica & i movimenti locali. Elzevier, Leiden. 

Glover, C. N., C. Bucking, and C. M. Wood. 2013. The skin of fish as a transport 
epithelium: a review. Journal of Comparative Physiology B 183:877-891. 

Graham, J. B., T. A. Baird, and W. Stöckmann. 1987. The transition to air breathing in 
fishes: IV. Impact of branchial specializations for air breathing on the aquatic 

respiratory mechanisms and ventilatory costs of the Swamp Eel Synbranchus 
marmoratus. Journal of Experimental Biology 129:83-106. 

Grant, W. E., E. K. Pedersen, and S. L. Marín. 1997. Ecology and natural resource 
management: systems analysis and simulation. John Wiley & Sons. 

Gray, I. E. 1954. Comparative study of the gill area of marine fishes. The Biological 
Bulletin 107:219-225. 

Green, J., and D. Carritt. 1967. New tables for oxygen saturation in seawater. Journal of 
Marine Research 24:140-147. 

Grimes, B. H., M. T. Huish, J. H. Kerby, and D. Moran. 1989. Species profiles: life 
histories and environmental requirements of coastal fishes and invertebrates 

(mid-Atlantic): summer and winter flounder. Fish and Wildlife Service, U.S. 
Department of the Interior. 

Hannon, B., and M. Ruth. 1997. Modeling dynamic biological systems. Springer-Verlag, 
New York. 



 

291 

 

Hanson, P. C., T. B. Johnson, D. E. Schindler, and J. F. Kitchell. 1997. Fish 
bioenergetics model 3. University of Wisconsin, Sea Grant Institute, Madison. 

WI. 

Harrington, R. A., G. C. Matlock, and J. E. Weaver. 1979. Standard-total length, total 

length-whole weight and dressed-whole weight relationships for selected species 
from Texas bays. Texas Parks and Wildlife Department, Coastal Fisheries 

Branch, Austin, Texas. 

Hartman, K. J., and J. F. Kitchell. 2008. Bioenergetics modeling: progress since the 1992 

symposium. Transactions of the American Fisheries Society 137:216-223. 

Haynie, D. T. 2001. Biological thermodynamics. Cambridge University Press, 

Cambridge, UK. 

Hill, A. V. 1910. The possible effects of the aggregation of the molecules of 

haemoglobin on its dissociation curves. Proceedings of the Physiological Society 
40:4-7. 

Hill, A. V. 1913. The combinations of haemoglobin with oxygen and with carbon 
monoxide. I. Biochemical Journal 7:471. 

Hochachka, P. 1985. Exercise limitations at high altitude: the metabolic problem and 
search for its solution. Pages 240-249 in R. Gilles, editor. Circulation, 

respiration, and metabolism. Springer-Verlag, Berlin, Germany. 

Hughes, G. M. 1963. Comparative physiology of vertebrate respiration. Harvard 

University Press, Cambridge, MA. 

Hughes, G. M. 1972. Morphometrics of fish gills. Respiration physiology 14:1-25. 

Hughes, G. M., and M. Morgan. 1973. The structure of fish gills in relation to their 
respiratory function. Biological Reviews 48:419-475. 

Ishibashi, Y., T. Kotaki, Y. Yamada, and H. Ohta. 2007. Ontogenic changes in tolerance 
to hypoxia and energy metabolism of larval and juvenile Japanese flounder 

Paralichthys olivaceus. Journal of Experimental Marine Biology and Ecology 
352:42-49. 

Iwata, N., K. Kikuchi, H. Honda, M. Kiyono, and H. Kurokura. 1994. Effects of 
temperature on the growth of Japanese flounder. Fisheries science 60:527-531. 

Jensen, F. B., M. Nikinmaa, and R. E. Weber. 1993. Environmental perturbations of 
oxygen transport in teleost fishes: causes, consequences and compensations. 



 

292 

 

Pages 161-179 in J. C. Rankin and F. B. Jensen, editors. Fish ecophysiology. 
Chapman & Hall, London. 

Joaquim, N., G. N. Wagner, and A. K. Gamperl. 2004. Cardiac function and critical 
swimming speed of the winter flounder (Pleuronectes americanus) at two 

temperatures. Comparative Biochemistry and Physiology Part A: Molecular & 
Integrative Physiology 138:277-285. 

Jobling, M. 1994. Fish bioenergetics. Chapman & Hall, London, UK. 

Johnson, J. T., and T. L. Hopkins. 1978. Biochemical components of the mysid shrimp 

Taphromysis bowmani Bacescu. Journal of Experimental Marine Biology and 
Ecology 31:1-9. 

Jones, D., D. Randall, and G. Jarman. 1970. A graphical analysis of oxygen transfer in 
fish. Respiration physiology 10:285-298. 

Jorgensen, C. 1983. Ecological physiology: background and perspectives. Comparative 
Biochemistry and Physiology, A 75:5-7. 

Kamiya, A., and K. Yamamoto. 2019. A biomechanically derived minimum work model 
of the fish gill lamellar system exhibits its exquisite morphological arrangement 

and perfusate regulation for oxygen uptake from water. Journal of biomechanics 
88:155-163. 

Kerkhoff, A. 2012. Modeling metazoan growth and ontogeny.in R. M. Sibly, J. H. 
Brown, and A. Kodric-Brown, editors. Metabolic Ecology: A Scaling Approach. 

Wiley-Blackwell, West Sussex, UK. 

Kerr, S. R. 1990. The Fry paradigm: its significance for contemporary ecology. 

Transactions of the American Fisheries Society 119:779-785. 

Kerstens, A., J. Lomholt, and K. Johansen. 1979. The ventilation, extraction and uptake 

of oxygen in undisturbed flounders, Platichthys flesus: responses to hypoxia 
acclimation. The Journal of Experimental Biology 83:169-179. 

Kirsch, R., and G. Nonnotte. 1977. Cutaneous respiration in three freshwater teleosts. 
Respiration physiology 29:339-354. 

Kleiber, M. 1932. Body size and metabolism. Hilgardia 6:315-353. 

Kleiber, M. 1975. Metabolic turnover rate: a physiological meaning of the metabolic rate 

per unit body weight. Journal of theoretical Biology 53:199-204. 



 

293 

 

Klyszejko, B., R. Dziaman, and G. Hajek. 2003. Effects of temperature and body weight 
on ventilation volume of common carp [Cyprinus carpio L.]. Acta Ichthyologica 

et Piscatoria 33. 

Kooijman, S. A. L. M. 2010. Dynamic energy budget theory for metabolic organisation. 

3rd edition. Cambridge University Press, Cambridge, UK. 

Krogh, A. 1904. Some experiments on the cutaneous respiration of vertebrate animals. 

Skandinavisches Archiv für Physiologie 16:348-357. 

Krogh, A. 1941. The comparative physiology of respiratory mechanisms. University of 

Pennsylvania Press, Philadelphia, PA. 

Kwon, Y. 2007. Handbook of essential pharmacokinetics, pharmacodynamics and drug 

metabolism for industrial scientists. Springer US. 

Latour, R. J., M. J. Brush, and C. F. Bonzek. 2003. Toward ecosystem-based fisheries 

management. Fisheries 28:10-22. 

Lide, D. R. 2003. Handbook of chemistry and physics. 84th edition. CRC press, Boca 

Raton, FL. 

Lotka, A. J. 1922. Contribution to the energetics of evolution. Proceedings of the 

National Academy of Sciences 8:147-151. 

Luckenbach, J. A. 2005. Breeding biotechnology, sex determination, and growth in 

Southern Flounder, Paralichthys lethostigma  [Unpublished doctoral 
dissertation]. North Carolina State University at Raleigh, Raleigh, NC. 

Luckenbach, J. A., R. Murashige, H. V. Daniels, J. Godwin, and R. J. Borski. 2007. 
Temperature affects insulin-like growth factor I and growth of juvenile southern 

flounder, Paralichthys lethostigma. Comparative Biochemistry and Physiology 
Part A: Molecular & Integrative Physiology 146:95-104. 

Luo, Y., Q. Li, X. Zhu, J. Zhou, C. Shen, D. Xia, P. K. Djiba, H. Xie, X. Lv, and J. Jia. 
2020. Ventilation frequency reveals the roles of exchange surface areas in 

metabolic scaling. Physiological and Biochemical Zoology 93:13-22. 

MacDougall, J., and M. McCabe. 1967. Diffusion coefficient of oxygen through tissues. 

Nature 215:1173. 

Malloy, K. D., and T. E. Targett. 1991. Feeding, growth and survival of juvenile summer 

flounder Paralichthys dentatus: experimental analysis of the effects of 
temperature and salinity. MARINE ECOLOGY PROGRESS SERIES 72:213-

223. 



 

294 

 

Malte, H. 1992. Effect of pulsatile flow on gas exchange in the fish gill: Theory and 
experimental data. Respiration physiology 88:51-62. 

Malte, H., and R. E. Weber. 1985. A mathematical model for gas exchange in the fish 
gill based on non-linear blood gas equilibrium curves. Respiration physiology 

62:359-374. 

Mandic, M., A. E. Todgham, and J. G. Richards. 2009. Mechanisms and evolution of 

hypoxia tolerance in fish. Proceedings of the Royal Society of London B: 
Biological Sciences 276:735-744. 

Mangourova, V., J. Ringwood, and B. Van Vliet. 2011. Graphical simulation 
environments for modelling and simulation of integrative physiology. computer 

methods and programs in biomedicine 102:295-304. 

Martine, F. 2008. Status of the Southern Flounder population in Texas. Flounder 

Scoping Meeting. Texas Parks & Wildlife Deptment, Coastal Fisheries Division, 
Marine Development Center. 

Maxime, V., K. Pichavant, G. Boeuf, and G. Nonnotte. 2000. Effects of hypoxia on 
respiratory physiology of turbot, Scophthalmus maximus. Fish Physiology and 

Biochemistry 22:51-59. 

McCracken, F. D. 1963. Seasonal movements of the Winter Flounder, 

Pseudopleuronectes americanus (Walbaum), on the Atlantic Coast. Journal of 
the Fisheries Research Board of Canada 20:551-586. 

McDonald, D. L., T. H. Bonner, P. D. Cason, B. W. Bumguardner, and S. Bonnot. 2016. 
Effects of three cold weather event simulations on early life stages of Southern 

Flounder (Paralichthys lethostigma). Journal of Applied Aquaculture 28:26-34. 

McLellan, S. A., and T. S. Walsh. 2004. Oxygen delivery and haemoglobin. Continuing 

Education in Anaesthesia, Critical Care & Pain 4:123-126. 

McNab, B. K. 2002. The physiological ecology of vertebrates: a view from energetics. 

Cornell University Press, Ithaca, NY. 

McNab, B. K. 2012. Extreme measures: the ecological energetics of birds and mammals. 

University of Chicago Press, Chicago, IL. 

Meeh, K. v. 1879. Ober flahenmessungen des mensch-lichen kopers. Zeitschrift fur 

biologie 15:S. 425-S. 458. 

Menasveta, P. 1981. Lethal temperature of marine fishes of the Gulf of Thailand. Journal 

of Fish Biology 18:603-607. 



 

295 

 

Mendonca, P. C., and A. K. Gamperl. 2010. The effects of acute changes in temperature 
and oxygen availability on cardiac performance in winter flounder 

(Pseudopleuronectes americanus). Comparative Biochemistry and Physiology 
Part A: Molecular & Integrative Physiology 155:245-252. 

Mendonca, P. C., A. G. Genge, E. J. Deitch, and A. K. Gamperl. 2007. Mechanisms 
responsible for the enhanced pumping capacity of the in situ winter flounder 

heart (Pseudopleuronectes americanus). American Journal of Physiology - 
Regulatory, Integrative and Comparative Physiology 293:R2112-2119. 

Meredith, A. S., P. S. Davie, and M. E. Forster. 1982. Oxygen uptake by the skin of the 
Canterbury mudfish, Neochanna burrowsius. New Zealand Journal of Zoology 

9:387-390. 

Miller, D., S. Poucher, and L. Coiro. 2002. Determination of lethal dissolved oxygen 

levels for selected marine and estuarine fishes, crustaceans, and a bivalve. 
Marine Biology 140:287-296. 

Miller, D. S. 1987. Aquatic models for the study of renal transport function and pollutant 
toxicity. Environmental Health Perspectives 71:59-68. 

Milligan, C. L., and C. M. Wood. 1987. Regulation of blood oxygen transport and red 
cell pHi after exhaustive activity in rainbow trout (Salmo gairdneri) and starry 

flounder (Platichthys stellatus). Journal of Experimental Biology 133:263-282. 

Monod, J., J. Wyman, and J.-P. Changeux. 1965. On the nature of allosteric transitions: 

A plausible model. Journal of Molecular Biology 12:88-118. 

Moore, R. H. 1976. Observations on fishes killed by cold at Port Aransas, Texas, 11-12 

January 1973. The Southwestern Naturalist 20:461-466. 

Munroe, T. 2015. Paralichthys lethostigma. The IUCN Red List of Threatened Species. 

Version 2020-2. https://dx.doi.org/10.2305/IUCN.UK.2015-
4.RLTS.T202632A46958684.en. Downloaded on 19 October 2020. 

Music, J. L., and J. M. Pafford. 1984. Population dynamics and life history aspects of 
major marine sportfishes in Georgia's coastal waters. Georgia Department of 

Natural Resources, Coastal Resources Division. 

Nall, L. E. 1979. Age and growth of the southern flounder, Paralichthys lethostigma, in 

the northern Gulf of Mexico with notes on Paralichthys albigutta. Florida State 
University. 

Neill, W. H., T. S. Brandes, B. J. Burke, S. R. Craig, L. V. Dimichele, K. Duchon, R. E. 
Edwards, L. P. Fontaine, D. M. Gatlin III, C. Hutchins, J. M. Miller, B. J. 



 

296 

 

Ponwith, C. J. Stahl, J. R. Tomasso, and R. R. Vega. 2004. Ecophys.Fish: a 
simulation model of fish growth in time-varying environmental regimes. 

Reviews in Fisheries Science 12:233-288. 

Neill, W. H., and J. D. Bryan. 1991. Responses of fish to temperature and oxygen, and 

response integration through metabolic scope. Aquaculture and water quality 
3:30-57. 

Neill, W. H., R. H. Kamps, S. J. Walker, H.-i. Wu, T. S. Brandes, D. M. Gatlin III, T. L. 
Hopper, and R. R. Vega. 2018. Consilience: a holistic measure of goodness-of-

fit. arXiv preprint arXiv:1710.08054. 

Neill, W. H., J. M. Miller, H. W. Van Der Veer, and K. O. Winemiller. 1994. 

Ecophysiology of marine fish recruitment: a conceptual framework for 
understanding interannual variability. Netherlands Journal of Sea Research 

32:135-152. 

Ney, J. J. 1993. Bioenergetics modeling today: growing pains on the cutting edge. 

Transactions of the American Fisheries Society 122:736-748. 

Nilsson, G. E. 2010. Respiratory physiology of vertebrates: life with and without 

oxygen. Cambridge University Press, Cambridge, UK. 

NOAA. 2020. Water temperature table of the Western Gulf of Mexico. National Centers 

for Environmental Information.  Accessed Aug 30, 2020. 
https://www.ncei.noaa.gov/access/data/coastal-water-temperature-

guide/wgof.html. 

Nonnotte, G., and R. Kirsch. 1978. Cutaneous respiration in seven sea-water teleosts. 

Respiration physiology 35:111-118. 

Ohlberger, J., G. Staaks, P. L. van Dijk, and F. Holker. 2005. Modelling energetic costs 

of fish swimming. Journal of Experimental Zoology Part A Comparative 
Experimental Biology 303:657-664. 

Oikawa, S., and Y. Itazawa. 1985. Gill and body surface areas of the carp in relation to 
body mass, with special reference to the metabolism-size relationship. Journal of 

Experimental Biology 117:1-14. 

Ospina-Alvarez, N., and F. Piferrer. 2008. Temperature-dependent sex determination in 

fish revisited: prevalence, a single sex ratio response pattern, and possible effects 
of climate change. PLoS One 3:e2837. 

Ostadal, B. 2014. Hypoxia and the heart of poikilotherms. Current Research: Cardiology 
1:28-32. 



 

297 

 

Park, I. S., J. W. Hur, and J. W. Choi. 2012. Hematological responses, survival, and 
respiratory exchange in the Olive Flounder, Paralichthys olivaceus, during 

starvation. Asian-Australasian Journal of Animal Sciences 25:1276-1284. 

Park, J., H. V. Daniels, and S. H. Cho. 2013. Nitrite toxicity and methemoglobin 

changes in southern flounder, Paralichthys lethostigma, in brackish water. 
Journal of the World aquaculture society 44:726-734. 

Perry, S. 1986. Carbon dioxide excretion in fishes. Canadian Journal of Zoology 64:565-
572. 

Perry, S., and K. Gilmour. 2010. Oxygen uptake and transport in water breathers. Pages 
49-94 in G. E. Nilsson, editor. Respiratory physiology of vertebrates: Life with 

and without oxygen. Cambridge University Press, New York. 

Piiper, J. 1982. Respiratory gas exchange at lungs, gills and tissues: mechanisms and 

adjustments. Journal of Experimental Biology 100:5-22. 

Poupa, O. 1991. The artist. Physiological Adaptations in Vertebrates: Respiration: 

Circulation, and Metabolism 56:1. 

Prentice, J. A. 1989. Low-temperature tolerance of southern flounder in Texas. 

Transactions of the American Fisheries Society 118:30-35. 

Putter, A. 1920. Studies on the physiological similarity. VI. Similarities in growth. 

Pflugers Archiv für die Gesamte Physiologie des Menschen und der Tiere 
180:280. 

Quinn, G. P., and M. J. Keough. 2002. Experimental design and data analysis for 
biologists. Cambridge University Press, Cambridge, UK. 

R Core Team. 2017. R: a language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

Randall, D. 1970. Gas exchange in fish. Pages 253-292 in W. S. Hoar and D. J. Randall, 
editors. Fish physiology. Academic Press, New York,NY. 

Reagan, R. E., and W. M. Wingo. 1985. Species profiles: life histories and 
environmental requirements of coastal fishes and invertebrates (Gulf of Mexico)-

southern flounder [Paralichtys lethostigma]. Mississippi State Univ., Mississippi 
State (USA). Dept. of Wildlife and Fisheries. 

Riggs, D. S. 1963. The mathematical approach to physiological problems: a critical 
primer. Williams & Wilkins, Baltimore, MD. 



 

298 

 

Roff, D., E. Heibo, and L. Vøllestad. 2006. The importance of growth and mortality 
costs in the evolution of the optimal life history. Journal of evolutionary biology 

19:1920-1930. 

Roff, D. A. 1983. An allocation model of growth and reproduction in fish. Canadian 

Journal of Fisheries and Aquatic Sciences 40:1395-1404. 

Rombough, P., and B. Moroz. 1997. The scaling and potential importance of cutaneous 

and branchial surfaces in respiratory gas exchange in larval and juvenile walleye. 
Journal of Experimental Biology 200:2459-2468. 

Rombough, P. J. 1998. Partitioning of oxygen uptake between the gills and skin in fish 
larvae: a novel method for estimating cutaneous oxygen uptake. Journal of 

Experimental Biology 201:1763-1769. 

Root, R. 1931. The respiratory function of the blood of marine fishes. The Biological 

Bulletin 61:427-456. 

Santer, R., M. G. Walker, L. Emerson, and P. Witthames. 1983. On the morphology of 

the heart ventricle in marine teleost fish (Teleostei). Comparative Biochemistry 
Physiology Part A: Physiology 76:453-457. 

Satchell, G. H. 1991. Physiology and form of fish circulation. Cambridge University 
Press, Cambridge, UK. 

Scheid, P., and J. Piiper. 1971. Theoretical analysis of respiratory gas equilibration in 
water passing through fish gills. Respiration physiology 13:305-318. 

Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge 
University Press, Cambridge, UK. 

Schmidt-Nielsen, K. 1997. Animal physiology: adaptation and environment. 5th edition. 
Cambridge University Press, New York, NY. 

Scott, J. 1982. Depth, temperature and salinity preferences of common fishes of the 
Scotian Shelf. Journal of Northwest Atlantic Fishery Science 3:29-39. 

Seikai, T., T. Takeuchi, and G. S. Park. 1997. Comparison of growth, feed efficiency, 
and chemical composition of juvenile flounder fed live mysids and formula feed 

under laboratory conditions. Fisheries science 63:520-526. 

Shelton, G. 1992. Model applications in respiratory physiology. Pages 1-44 in S. 

Egginton and H. F. Ross, editors. Oxygen transport in biological systems: 
Modelling of pathways from environment to cell. Cambridge University Press, 

Cambridge, UK. 



 

299 

 

Sherwood, J., F. Stagnitti, M. Kokkinn, and W. Williams. 1991. Dissolved oxygen 
concentrations in hypersaline waters. Limnology and Oceanography 36:235-250. 

Sidell, B. D. 1998. Intracellular oxygen diffusion: the roles of myoglobin and lipid at 
cold body temperature. Journal of Experimental Biology 201:1119-1128. 

Soengas, J. L., S. Sangiao-Alvarellos, R. Laiz-Carrión, and J. M. Mancera. 2007. Energy 
metabolism and osmotic acclimation in teleost fish. Fish osmoregulation:277-

307. 

Soldatov, A. 2003. Effects of temperature, pH, and organic phosphates on fish 

hemoglobins. Journal of Evolutionary Biochemistry and Physiology 39:159-168. 

Springer, T. A., and W. H. Neill. 1988. Automated determination of critical oxygen 

concentration for routinely active fish. Environmental Biology of Fishes 23:233-
240. 

Steffensen, J., and J. Lomholt. 1985. Cutaneous oxygen uptake and its relation to skin 
blood perfusion and ambient salinity in the plaice, Pleuronectes platessa. 

Comparative Biochemistry and Physiology--Part A: Physiology 81:373-375. 

Steffensen, J. F., J. P. Lomholt, and K. Johansen. 1981. The relative importance of skin 

oxygen uptake in the naturally buried plaice, Pleuronectes platessa, exposed to 
graded hypoxia. Respiration physiology 44:269-275. 

Steffensen, J. F., J. P. Lomholt, and K. Johansen. 1982. Gill ventilation and O2 
extraction during graded hypoxia in two ecologically distinct species of flatfish, 

the flounder (Platichthys flesus) and the plaice (Pleuronectes platessa). 
Environmental Biology of Fishes 7:157-163. 

Stevens, M., J. Maes, and F. Ollevier. 2006. A bioenergetics model for juvenile flounder 
Platichthys flesus. Journal of applied ichthyology 22:79-84. 

Stierhoff, K. L., T. E. Targett, and K. Miller. 2006. Ecophysiological responses of 
juvenile summer and winter flounder to hypoxia: experimental and modeling 

analyses of effects on estuarine nursery quality. MARINE ECOLOGY 
PROGRESS SERIES 325:255-266. 

Stryer, L. 1981. Biochemistry. 2d edition. W. H. Freeman, San Francisco, CA. 

Stunz, G. W., T. L. Linton, and R. L. Colura. 2000. Age and growth of southern flounder 

in Texas waters, with emphasis on Matagorda Bay. Transactions of the American 
Fisheries Society 129:119-125. 



 

300 

 

Subczynski, W. K., L. E. Hopwood, and J. S. Hyde. 1992. Is the mammalian cell plasma 
membrane a barrier to oxygen transport? The Journal of general physiology 

100:69-87. 

Subczynski, W. K., J. S. Hyde, and A. Kusumi. 1989. Oxygen permeability of 

phosphatidylcholine--cholesterol membranes. Proceedings of the National 
Academy of Sciences 86:4474-4478. 

Subczynski, W. K., and A. Wisniewska. 2000. Physical properties of lipid bilayer 
membranes: relevance to membrane biological functions. ACTA Biochimica 

Polonica-English Edition 47:613-626. 

Tallqvist, M., E. Sandberg-Kilpi, and E. Bonsdorff. 1999. Juvenile flounder, Platichthys 

flesus (L.), under hypoxia: effects on tolerance, ventilation rate and predation 
efficiency. Journal of Experimental Marine Biology and Ecology 242:75-93. 

Tansey, M. R., and T. D. Brock. 1972. The upper temperature limit for eukaryotic 
organisms. Proceedings of the National Academy of Sciences 69:2426-2428. 

Taylor, J. C., and J. M. Miller. 2001. Physiological performance of juvenile southern 
flounder, Paralichthys lethostigma (Jordan and Gilbert, 1884), in chronic and 

episodic hypoxia. Journal of Experimental Marine Biology and Ecology 
258:195-214. 

Taylor, W., A. Houston, and J. Horgan. 1968. Development of a computer model 
simulating some aspects of the cardiovascular-respiratory dynamics of the 

salmonid fish. Journal of Experimental Biology 49:477-493. 

Thompson, D. A. W. 1942. On growth and form. Dover Publications, Mineola, NY. 

Tipsmark, C. K., J. A. Luckenbach, S. S. Madsen, P. Kiilerich, and R. J. Borski. 2008. 
Osmoregulation and expression of ion transport proteins and putative claudins in 

the gill of southern flounder (Paralichthys lethostigma). Comparative 
Biochemistry and Physiology Part A: Molecular & Integrative Physiology 

150:265-273. 

Tous, P., A. Sidibe, E. Mbye, L. de Morais, Y. H. Camara, T. A. Adeofe, T. Monroe, K. 

Camara, K. Cissoko, R. Djiman, A. Sagna, and M. Sylla. 2015. Solea solea. The 
IUCN Red List of Threatened Species 2015: e.T198739A15595369.   

http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T198739A15595369.en. 

Tseng, Y.-C., and P.-P. Hwang. 2008. Some insights into energy metabolism for 

osmoregulation in fish. Comparative Biochemistry and Physiology Part C: 
Toxicology & Pharmacology 148:419-429. 



 

301 

 

Van den Berg, H. 2011. Mathematical models of biological systems. Oxford University 
Press, Oxford, UK. 

van der Veer, H. W., S. A. Kooijman, and J. van der Meer. 2001. Intra-and interspecies 
comparison of energy flow in North Atlantic flatfish species by means of 

dynamic energy budgets. Journal of Sea Research 45:303-320. 

van Maaren, C. C., J. Kita, and H. V. Daniels. 2000. Temperature tolerance and oxygen 

consumption rates for juvenile Southern Flounder Paralichthys lethostigma 
acclimated for five different temperature. UJNR Technical Report 28:135-140. 

Van Rooij, J., and J. Videler. 1996. Estimating oxygen uptake rate from ventilation 
frequency in the reef fish Sparisoma viride. MARINE ECOLOGY PROGRESS 

SERIES 132:31-41. 

VanderKooy, S. J. 2015. Management Profile for the Gulf and Southern Flounder 

Fishery in the Gulf of Mexico. Pub No. 247, Gulf States Marine Fisheries 
Commission. 

von Bertalanffy, L. 1934. Untersuchungen über die Gesetzlichkeit des Wachstums. 
Development Genes and Evolution 131:613-652. 

von Bertalanffy, L. 1938. A quantitative theory of organic growth (inquiries on growth 
laws. II). Human biology 10:181-213. 

von Bertalanffy, L. 1950. The theory of open systems in physics and biology. Science 
111:23-29. 

von Bertalanffy, L. 1957. Quantitative laws in metabolism and growth. The quarterly 
review of biology 32:217-231. 

Vornanen, M., J. A. Stecyk, and G. E. Nilsson. 2009. The anoxia-tolerant crucian carp 
(Carassius carassius L.). Fish physiology 27:397-441. 

Walker, S. J. 2009. Ecophysiology of growth in the Pacific white shrimp (Litopenaeus 
vannamei)  [Unpublished doctoral dissertation]. Texas A&M University. 

Walker, S. J., W. H. Neill, A. L. Lawrence, and D. M. Gatlin III. 2011. Effects of 
temperature and starvation on ecophysiological performance of the Pacific white 

shrimp (Litopenaeus vannamei). Aquaculture 319:439-445. 

Watters, K., and L. Smith. 1973. Respiratory dynamics of the Starry Flounder 

Platichthys stellatus in response to low oxygen and high temperature. Marine 
Biology 19:133-148. 



 

302 

 

Weber, R. E. 2000. Adaptations for oxygen transport: lessons from fish hemoglobins. 
Pages 23-37 in G. Di Prisco, B. Giardina, and R. E. Weber, editors. Hemoglobin 

function in vertebrates. Springer. 

Weber, R. E., and J. A. de Wilde. 1975. Oxygenation properties of haemoglobins from 

the flatfish plaice (Pleuronectes platessa) and flounder (Platichthys flesus). 
Journal of Comparative Physiology B: Biochemical, Systemic, and 

Environmental Physiology 101:99-110. 

Weber, R. E., and J. A. de Wilde. 1976. Multiple haemoglobins in plaice and flounder 

and their functional properties. Comparative Biochemistry and Physiology Part 
B: Comparative Biochemistry 54:433-437. 

Weibel, E. R. 1984. The pathway for oxygen: structure and function in the mammalian 
respiratory system. Harvard University Press, Cambridge, MA. 

Weiss, J. N. 1997. The Hill equation revisited: uses and misuses. The FASEB Journal 
11:835-841. 

Welch, B. 1985. The biosphere. Pages 63-71 in R. DeHart, editor. Fundamentals of 
aerospace medicine. Lea & Febiger, Philadelphia, PA. 

Wenner, C., and J. Archambault. 2005. Southern Flounder: natural history and fishing 
techniques in South Carolina. Marine Resources Research Institute, South 

Carolina Department of Natural Resources. 

Wenner, C., W. Roumillat, J. Moran Jr, M. Maddox, L. Daniel III, and J. Smith. 1990. 

Investigations on the life history and population dynamics of marine recreational 
fishes in South Carolina: part 1. Report to Fish Restoration Act under Project F-

37. South Carolina Department of Natural Resources, Marine Resources 
Division, Charleston, South Carolina. 

West, G. B., and J. H. Brown. 2005. The origin of allometric scaling laws in biology 
from genomes to ecosystems: towards a quantitative unifying theory of 

biological structure and organization. Journal of Experimental Biology 208:1575-
1592. 

West, G. B., J. H. Brown, and B. J. Enquist. 2000. The origin of universal scaling laws 
in biology. Pages 87-112 in J. H. Brown and G. B. West, editors. Scaling in 

biology. Oxford University Press, New York, NY. 

Willmer, P., G. Stone, and I. Johnston. 2005. Environmental physiology of animals. 2nd 

edition. Blackwell Publishing, Malden, MA. 



 

303 

 

Winberg, G. 1960. Rate of metabolism and food requirement of fishes. Fisheries 
Research Board of Canada, Translation Series 194. 

Windrem, D. A., and W. Z. Plachy. 1980. The diffusion-solubility of oxygen in lipid 
bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes 600:655-665. 

Wood, C. M., B. McMahon, and D. McDonald. 1979a. Respiratory gas exchange in the 
resting Starry Flounder, Platichthys stellatus: a comparison with other teleosts. 

Journal of Experimental Biology 78:167-179. 

Wood, C. M., B. McMahon, and D. McDonald. 1979b. Respiratory, ventilatory, and 

cardiovascular responses to experimental anaemia in the Starry Flounder, 
Platichthys stellatus. Journal of Experimental Biology 82:139-162. 

Wood, C. M., B. R. McMahon, and D. G. McDonald. 1977. An analysis of changes in 
blood pH following exhausting activity in the Starry Flounder, Platichthys 

stellatus. The Journal of Experimental Biology 69:173-185. 

Wood, S., K. Johansen, and R. Weber. 1975. Effects of ambient PO2 on hemoglobin-

oxygen affinity and red cell ATP concentrations in a benthic fish, Pleuronectes 
platessa. Respiration physiology 25:259. 

Yamamoto, K.-I. 1991. Relationship of respiration to body weight in the carp Cyprinus 
carpio under resting and normoxic condition. Comparative Biochemistry and 

Physiology Part A: Physiology 100:113-116. 

Yamamoto, K.-I. 1992. Relationship of respiration to body weight in the tilapia 

Oreochromis niloticus under resting and normoxic conditions. Comparative 
Biochemistry and Physiology Part A: Physiology 103:81-83. 

Yamashita, Y., Y. Kurita, H. Yamada, J. M. Miller, and T. Tomiyama. 2017. A 
simulation model for estimating optimum stocking density of cultured juvenile 

flounder Paralichthys olivaceus in relation to prey productivity. Fisheries 
Research 186:572-578. 

Yamashita, Y., M. Tanaka, and J. M. Miller. 2001. Ecophysiology of juvenile flatfish in 
nursery grounds. Journal of Sea Research 45:205-218. 

Yazdani, G., and R. M. Alexander. 1967. Respiratory currents of flatfish. Nature 213:96. 

Zhu, J., X. Zhang, and T. Gao. 2005. Histological study on the skin of Japanese Flounder 

Paralichthys olivaceus. Journal of Ocean University of China 4:145-151. 

 

 



 

304 

 

APPENDIX A  

TEMPERATURE AND OXYGEN LIMITS FOR PLUERONECTIFORMES 

 

Table A - 1.  Temperature and Oxygen Limits for Plueronectiformes 

Source Authors Species 

Common 

Name Notes 

Ta 

acclimated 

(°C) 

Ta 

optimal 

(°C) 

Ta 

Upper 

(°C) 

Ta 

Lower 

(°C) 

DO Limit 

(mg O2/L 

water) 

McCracken 
(1963) 

Pseudopleuronectes americanus 
Winter 

Flounder 
      26     

Malloy and 

Targett (1991) 
Paralichthys dentatus 

Summer 

Flounder 
Juvenile       3   

Stierhoff et al. 

(2006) 

Paralichthys dentatus 
Summer 

Flounder 
LC50 25 22 30   1.1 

Paralichthys dentatus 
Summer 

Flounder 
LC50 25 22 30   1.6 

Pseudopleuronectes americanus 
Winter 

Flounder 
LC50 25 18 27   1.4 

Miller et al. 
(2002) 

Paralichthys dentatus 
Summer 

Flounder 
Juvenile           

Pseudopleuronectes americanus 
Winter 

Flounder 
Juvenile, LC50 20       1.4 

Pseudopleuronectes americanus 
Winter 

Flounder 
Juvenile, LC90 20       1.1 

Scophthalmus aquosus 
Windowpane 

Flounder 
Juvenile, LC50 24       1.6 

Scophthalmus aquosus 
Windowpane 

Flounder 
Juvenile, LC90 24       1.8 

Scophthalmus aquosus 
Windowpane 

Flounder 
Juvenile, LC50 20       1.1 

Scophthalmus aquosus 
Windowpane 

Flounder 
Juvenile, LC90 20       1.3 
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Table A – 1 Continued 

Menasveta 

(1981) 

Pseudorhombus elevatus 
Deep 

Flounder 

Mean critical 

thermal max 
27.3   37.2     

Solea ovata Ovate Sole 
Mean critical 
thermal max 

27.3   37.9     

van Maaren et al. 

(2000) 

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
13   32.88     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
13   33.14     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
13   34.08     

Paralichthys lethostigma 
Southern 
Flounder 

Juvenile, mean 
lethal temp. 

17   34.98     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
17   35.84     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
17   36.1     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
21   36.8     

Paralichthys lethostigma 
Southern 
Flounder 

Juvenile, mean 
lethal temp. 

21   37.16     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
21   37.22     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
25   37.98     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
25   38.12     

Paralichthys lethostigma 
Southern 
Flounder 

Juvenile, mean 
lethal temp. 

25   38.18     

Paralichthys lethostigma 
Southern 

Flounder 

Juvenile, mean 

lethal temp. 
29   38.7     
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Table A – 1 Continued 

van Maaren et al. 

(2000) 

Paralichthys lethostigma 
Southern 
Flounder 

Juvenile, mean 
lethal temp. 

29   38.94     

Paralichthys lethostigma 
Southern 
Flounder 

Juvenile, mean 
lethal temp. 

29   38.96     

Prentice (1989) 

Paralichthys lethostigma 
Southern 
Flounder 

Juvenile 20     9.3   

Paralichthys lethostigma 
Southern 
Flounder 

Juvenile 20     4.1   

Paralichthys lethostigma 
Southern 
Flounder 

Adult 20     8.7   

Paralichthys lethostigma 
Southern 
Flounder 

Adult 20     6.6   

Tallqvist et al. 

(1999) 

Platichthys flesus 
European 

Flounder 

Juvenile, LC50 at 

2000 min (33 h) 
        2 

Platichthys flesus 
European 

Flounder 

Juvenile, LC50 at 

250 min (4.2 h) 
        1 

Platichthys flesus 
European 

Flounder 

Juvenile, LC50 at 

~100 min (1.7 h) 
        0.6 
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Table A – 1 Continued 

Deubler and 
Posner (1963) 

Paralichthys lethostigma 
Southern 

Flounder 

Post larval, 

100% self-

withdrawal 

from hypoxic 
water after 23 

min 

6.1       1.09 

Paralichthys lethostigma 
Southern 
Flounder 

Post larval, 

100% self-

withdrawal 
(kinesis) from 

hypoxic water 

after 13 min 

14.4       0.68 

Paralichthys lethostigma 
Southern 

Flounder 

Post larval, 

100% self-
withdrawal 

(kinesis) from 

hypoxic water 

after 7 min 

25.3       1.03 

Daniels et al. 

(1996) 
Paralichthys lethostigma 

Southern 

Flounder 

Larvae, salinity 
survival sig. 

decline < 20 

ppt 
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Table A – 1 Continued 

Grimes et al. 

(1989) 

Pseudopleuronectes americanus 
Winter 

Flounder 

Larvae, 100% 

mortality in 4 

minutes 

5 18.5 30     

Pseudopleuronectes americanus 
Winter 

Flounder 

10 cm, 

incipient lethal 

temp. 

22   29     

Pseudopleuronectes americanus 
Winter 

Flounder 

10 cm, 

incipient lethal 
temp. 

4   19     

Pseudopleuronectes americanus 
Winter 

Flounder 

10 cm, 

incipient lethal 

temp. 

20   26.5     

Pseudopleuronectes americanus 
Winter 

Flounder 

10 cm, 

incipient lethal 
temp. 

28     5.4   

Pseudopleuronectes americanus 
Winter 

Flounder 

10 cm, 

incipient lethal 

temp. 

21     1   
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APPENDIX B  

RESPIRATORY MODEL, DYNAMIC PROCESSES 

 
Blood O2 Capacity 

 
CaO2 = Max_Hb__O2_Sat+CplaO2 

CplaO2 = DOa*0.0007 
CvO2 = (Hb_g_per_ml*Hbs*SvO2) 

Hbs = 1.12 
Hb_g_per_ml = 0.15 

Max_Hb__O2_Sat = Hb_g_per_ml*Hbs*Y 
 

Cardiac Output 
 

HR = HR_PO2_f*HR_Ta 
HR_PO2_f = MIN(1, (0.0054 * PO2 + 0.68)) 

HR_Ta = MAX(0, ((-0.2*Ta^2+9*Ta-31) * 60)) 
Q = HR*SV 

SV = (Vvol*Wfish/1000)*SV_Ta_f*SV_PO2_f 
SV_PO2_f = MAX(1, (1+(0.4-0.4*(PO2/60)))) 

SV_Ta_f = MIN((EXP(0.0135*Ta)),1.4) 
Vvol = (0.506*(Wfish/1000)^1.026)/(Wfish/1000) 

 
Environmental Oxygen 

 
DOa = (EXP((-7.424+(4417/(Ta+273.16))+(-

2.927*LOGN(Ta+273.16))+(0.04238*(Ta+273.16)))-((Sal-0.03)/1.805)*((-
0.1288+(53.44/(273.16+Ta))+(-

0.0444*LOGN(273.16+Ta))+(0.00071*(273.16+Ta)))))/22.414*32/760*PO2)  
FO2 = 0.209 

PO2 = 760*FO2 
 

Environmental Parameters 
 

Sal = 5 
Ta = 30 

 
Gill Ventilation 

 
Ext_Eff = (PO2-PvO2)/PO2 
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fR = (((-0.08*Ta^2+6*Ta)*fR_con)* 160/PO2) * MIN(1, PO2/30) * MIN(1, PO2/20) 
fR_con = 25 

Topt = 25 
VsR = MAX(0.008 *Ta/Topt, MIN(0.008*20/PO2,0.014)) 

Vw = fR*VsR 
 

Hb Saturation 
 

n = (-0.264*pH_blood+3.7)  
P50 = MAX( 0.1, -16.786*pH_blood+140) 

pH_blood = IF pH_Switch = 1 THEN (T_Slope*Ta+pH_Ta_zero) ELSE pH_Set 
pH_Set = 7.8 

pH_Switch = 1 
pH_Ta_zero = 8 

T_Slope = -0.019 
Y = PO2^n/(P50^n+PO2^n) 

 
Oxygen Supply 

 
cal_g = mg_O2_g*oxycal 

cal_kg = mg_O2_kg*oxycal 
mg_O2_g = ml_O2_g*1.4286 

mg_O2_kg = mg_O2_g*1000 
ml_O2_g = VO2/Wfish 

ml_O2_kg = ml_O2_g*1000 
oxycal = 3.4 

Percent_Skin = IF Q = 0 THEN 0 ELSE ((Skin_mg_O2/mg_O2_g)*100) 
Skin_mg_O2 = (VO2_Skin/Wfish)*1.4286 

 
PvO2 Derivation 

 
PvO2 = ((SvO2*P50^n)/(1-SvO2))^(1/n) 

SvO2 = Y * (n/(4-n)) 
 

VO2 Derivation 
 

VO2_gill = Krogh*(Gill_SA/dX)*(PO2-PvO2) 
VO2_Q = Q*(CaO2/PO2)*(PO2-PvO2) 

VO2_Skin = ((Krogh*((Skin_SA/2)/upper_Skin_dX)*(PO2-PvO2)) + 
(Krogh*((Skin_SA/2)/lower_Skin_dX)*(PO2-PvO2)))*Skin_eff_f 

VO2 = VO2_Q+VO2_Skin 
VO2_w = (Vw*Wfish)*(BwO2/1000)*(PO2-PvO2)  

VO2_gill = Krogh*(Gill_SA/dX)*(PO2-PvO2) 
BwO2 = (DOa*0.7)/PO2 
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dX = 0.0005 
Gill_SA = 2.42 *Wfish 

Krogh = O2_Diff*(BwO2/1000) 
lower_Skin_dX = (0.04886*Wfish+45)/10000 

O2_Diff = (0.0064*EXP(0.04*Ta)) 
Skin_eff_f = IF Q = 0 THEN 0 ELSE 1 

Skin_SA = 10*Wfish^0.7 
upper_Skin_dX = (0.0198*Wfish+36)/10000 

 
Weight 

 
Wfish = 1 

 
 

 




