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ABSTRACT 

 

 Placental compromise or malnutrition during pregnancy are known risk factors for 

fetal growth restriction (FGR), causing developmental changes in offspring that can have 

lifelong health implications in many species.  The ewe is a valuable model for human 

gestational research regarding FGR, as well as an agricultural resource that is also afflicted 

by FGR.  This one-health mission necessarily prioritizes the needs of animal and medical 

researchers alike.  Medical journals have called for a focus on placental pathophysiology, 

reflecting that 60% of FGR cases in humans are idiopathic, and inconsistently overlapping 

pathophysiology and varied severity appear to be at play in those with known causes.  

Focusing on individual etiopathologies has made a significant impact on the field but may 

represent a missed opportunity to identify underlying commonalities, particularly the 

progression of placental insufficiency.  To address these concerns, we developed a novel 

surgical procedure to allow placental sampling in early pregnancy without halting 

gestation, providing evidence of early placental compromise to be compared with 

subsequent fetal or offspring health.  Sham, control, and test ewes fared well through 

surgery and recovery, and the removal of a singular and central placentome was 

determined to be achievable in this model.  We also studied uterine and fetal tissue blood 

flow in a nutrient restriction model of FGR.  Maternal hemodynamics were not affected.  

Fetal weights were variable, while fetal organ weights followed “brain sparing” growth 

patterns.  Renal and pancreatic tissue blood flow was lower in undernourished ewes.  

Cerebral and cardiac blood flow correlated positively with fetal weight.  Finally, we 

assessed serum concentrations of anti-Müllerian hormone in ewes through estrous and 
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controlled ovarian stimulation to establish baselines and comparisons for FGR research 

and improved industry sheep production.  Anti-Müllerian hormone concentrations at 

various time points were correlated with ovarian response to stimulation.  However, 

variability was too high to rely on singular samples, and ewe baselines need to be better 

established before measurements of anti-Müllerian hormone can be a valuable resource for 

sheep.  These results will offer new tools and knowledge of the pathophysiologic changes 

behind FGR, as well as the hormonal events relevant to our top one-health model.   
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NOMENCLATURE 

 

AE All ewes 

AFC Antral follicle count 

AGA Appropriate for gestational age 

AI Artificial insemination 

AMH Anti-Müllerian hormone 

ANOVA Analysis of variance 

BAT  Brown adipose tissue 

BF Blood flow 

BP Blood pressure 

C Control group  

CIDR Controlled internal drug release 

CL Corpus luteum 

COS Controlled ovarian stimulation 

CQ  Control variables when compared to quartiles 

CV Coefficient of variation 

d1 Serum sample prior to 1st day of COS injections 

d3 Serum sample prior to 3rd day of COS injections 

dAI Serum sample prior to AI 

dET Serum sample prior to ET  

DOHaD Developmental origins of health and disease 

EL Ewe lamb group 
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ELH  Ewe lambs above 1.1 ng/ml cutoff 

ELISA Enzyme-linked immunosorbent assay 

ELL Ewe lambs below 1.1 ng/ml cutoff 

ET Embryo transfer 

FGR Fetal growth restriction 

fMAP Fetal mean arterial pressure 

FSH Follicle-stimulating hormone 

GD Gestational day 

GWG Gestational weight gain 

HR Heart rate 

IM Intramuscular 

IUGR Intrauterine growth restriction 

IV  Intravenous 

LD Longissimus dorsi muscle 

LQ  Lower quartile of fetal weights 

ME Mature ewe group 

MEH Mature ewes above 0.4 ng/ml cutoff 

MEL Mature ewes below 0.4 ng/ml cutoff 

mHR Maternal heart rate 

mMAP Maternal mean arterial pressure 

mPP Maternal pulse pressure 

mS/D Maternal systolic to diastolic ratio 

NR Nutrient restricted 
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NRC National Research Council 

NT  Neural tube 

OR  Ovarian response 

PGF2α Prostaglandin F2α 

PI Ponderal index 

Quart Quartile comparison - ANOVA 

ROC Receiver-operating characteristic 

SD Standard deviation 

SEM Standard error of the mean 

SGA Small for gestational age 

SH Sham 

Trt Treatment comparison – using Student’s t-test 

UABF Uterine artery blood flow 

UQ Upper quartile of fetal weights 

WHO World Health Organization 
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1. INTRODUCTION  

 

1.1. Overview 

 Links between fetal undernutrition, small fetuses, and lifelong risks of 

cardiovascular disease and diabetes in humans were first described by Barker et al. [1] in a 

series of retrospective studies from periods of famine experienced in the Netherlands and 

England. Their observations, based primarily on fetal size and maturity at birth, revealed 

that small for gestational age (SGA; in the lowest 10th percentile for gestational age) 

fetuses were at greater risk for neonatal morbidity and mortality as well as lifetime health 

implications [2].  A further study of these principles led to the discovery of fetal growth 

restriction (FGR), which refers to pathological influences on a fetus that restrict it from 

reaching its genetic growth potential [3, 4].  The generally smaller size of FGR offspring 

led to the tendency to presume all SGA fetuses are growth restricted [5, 6].  Many [3, 4, 7, 

8] human studies caution against failing to distinguish SGA from FGR, as treatments to 

reduce the impacts of FGR might be harmful to healthy fetuses that are constitutionally 

small [9, 10].   

 Malnutrition, multiple fetuses, high altitude, chronic disease and substance abuse 

such as smoking are some of the factors known to cause FGR.  Experimental conditions 

including carunculectomy, hypoxia, heat stress, and uterine blood flow restriction can 

produce FGR through placental compromise in animal models.  It is believed that placental 

responses are not only similar despite the differences in environmental factors, but 

physiologically more relevant to the fetal impact [11].  Treatment of FGR should therefore 

focus on the underlying pathology, as focusing on etiologies ignores intricate 
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commonalities and maternal contributions [4, 12].  Research using sheep as an animal 

model of pregnancy has made progress in finding explanations, but the distinction between 

FGR and SGA remains essential for every species.  Three experiments were intended to 

recategorize sheep model research outcomes to increase their informative value regarding 

pregnancy and fetal growth. 

1.2. Fetal growth restriction 

1.2.1. Nomenclature 

 In the early stages of developmental origins of health and disease (DOHaD) 

research, low birthweight (< 2500 g) was the primary factor of concern.  Most studies 

concurred with correlations between low birthweight and a higher risk of cardiovascular, 

endocrine, and metabolic diseases in adult life [13].  Other risk factors, included maternal 

weight and body condition at conception [14], maternal and paternal stature, maternal 

history of prior small offspring, and low birthweight of the mother herself [13, 15].  

Mounting evidence led to the realization that low birthweight was overly general since it 

erroneously grouped premature offspring with offspring that developed to term but were 

born small and restricted fetuses [16].  Authors began using the term SGA to clarify the 

distinctions, and the work continues to create tailored fetal growth charts to appropriately 

categorize SGA based on gender, nationality, and hereditary potential [10].  With the 

concept of fetal or intrauterine growth restriction (IUGR) introduced as the link between 

lifelong disease risks and low fetal weight, the terms became synonymous with SGA for a 

time [17].  Some literature even defined IUGR as referring to the lower 10th percentile of 

fetal weights [18, 19].  The oversight was exposed when scientists noted that 50–70% [8] 

of SGA infants were constitutionally small because their stature was a genetic expectation 
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rather than the outcome or expression of a significant pathology (Figure 1-1) [12].  

Additionally, the SGA categorization excludes instances of FGR that did not impact 

overall weight or occurred in constitutionally large fetuses (while remaining appropriate 

for gestational age; AGA) [20].  Despite continuous cautions about the inaccuracy of using 

birthweight to define FGR [12, 16, 21], the literature is still impacted by casual use and 

misclassification of FGR, which also means that many studies use low fetal weights as 

primary endpoints [5, 22], despite intending to evaluate evidence for FGR.  

1.2.2. Pathophysiology  

 In early gestation, maternal efforts are focused on placental development to provide 

optimal nutrient exchange.  Distal uterine and spiral arteries undergo drastic remodeling 

through trophoblastic invasion, which leads to exponential increases in uteroplacental 

circulation [23].  This acts in concert with an exponential increase in uterine artery blood 

flow.  Traditionally, capillary development within the larger spiral arteries and caruncles 

allows for greater capillary flow rates, which decrease vascular resistance, and allow for 

higher rates of flow proximally, within the uterine artery [23, 24].  Compromise to this 

process will result in reduced maternal blood flow, and subsequent reductions in placental 

growth and transfer of nutrients to the fetus.  

 Chassen and Jansson theorize that compromised blood flow cannot explain the 

reduction in nutrient transfer in all situations, and that the placenta is communicating with 

the fetus and dam and functioning to partition available nutrients accordingly.  In a variety 

of in vitro and in vivo studies, activity and expression of amino acid transporters including 

system A, system β, and system, have been decreased in FGR [11].  Subsequently, reduced 

fetal levels of amino acids have been seen with NR [25], protein restriction [26] and in  
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Figure 1-1: Flow chart of fetal growth terminology with human statistical occurrence.  Birth weights can be high (not discussed in this paper), normal, or low (<2500g) in humans.  Low birthweight infants may have been born prematurely and be an appropriate 

weight for their gestational age (AGA), or small for their gestational age (SGA), whether born prematurely or not.  Approximately 40% of SGA infants are constitutionally small, indicating that their genetic growth potential was met, and they are most likely 

symmetrically small (dashed line).  The remaining 60% of SGA infants may have been fetal growth restricted (FGR) through idiopathic, nutrient restricted (NR), or other causes.  Idiopathic and other main causes are believed to act primarily through a 

placental insufficiency, whereas nutrient restriction may impact the fetus due to a simple lack of maternal supply or regulatory efforts of the placenta to alter nutrient transporters, or it may cause a placental insufficiency.  Appropriate for gestational age infants 

may still be FGR (usually asymmetrical growth, represented by the dot/dash line), either by not affecting global infant size or through a size restriction that was not severe enough to meet the lower 10th percentile.         
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human FGR [27].  Oxygen is the likely exception to this, and fetal delivery is expected to 

be entirely dependent on blood flow and tissue thickness [11], although the placenta may 

participate by lowering its oxidative metabolism and direct uptake of oxygen [28].  

Glucose does rely on placental transporters, although the gradient between dam and fetus is 

consistently maintained, making it unlikely that the transporters are limiting delivery [28, 

29].  The fetus may lower its demand, increase catabolic activities, and/or drastically 

increase gluconeogenesis efforts to offset the reduced supply though.  Increased liver size, 

which was not seen in our model, is occasionally contributed to larger abdominal 

circumferences, and believed to be linked to gluconeogenesis which the fetus normally 

does not participate in on a notable scale [28].   

 An FGR fetus is presumed to have responded physiologically and protectively to 

reduced nutrient and oxygen availability [12].  The initiating cause of FGR may be acute or 

chronic, and the timing and duration of the restriction will variably alter the fetal response 

based on organogenesis and stage of fetal growth.  For example, maternal malnutrition in 

the first trimester is linked with greater risks of fetal cardiovascular disease, while in the 

third trimester, malnutrition is more likely to affect fetal weight and adiposity [21].  Most 

FGR is the result of a placental insufficiency compromising the transport of nutrients and 

oxygen to the fetus.  The fetus responds to hypoxemia and hypoglycemia in a “brain 

sparing” pattern, whereby the blood supply is preferentially shunted toward the brain, 

adrenals, heart, and placenta, subsequently compromising the  development of organs such 

as the pancreas, skeletal muscle, and kidneys [10, 12].  This combination has also been 

referred to as the “thrifty phenotype” hypothesis [17, 30].  While some facets are becoming 
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better understood, much of the pathophysiology behind the “thrifty phenotype” hypothesis 

remains elusive [12].  

 Curiously, the “protected” organs might not fare much better than neglected organs.  

Hypertrophic and elasticity changes have been observed in the heart and blood vessels as 

they respond to increased afterload and pumping rate caused by redistribution of flow [31].  

With a drastic enough insult, cardiac function resulting from this diversion can become 

irreversibly and terminally compromised [32].  Evidence of cognitive dysfunction has also 

been linked to signs of FGR [12].  Lower systemic flow can reduce liver size, as well as 

muscle and fat mass, resulting in a thinner fetus with a comparatively large head [10, 33].  

This growth pattern has been referred to as “asymmetrical SGA” [4, 10].  Symmetrical 

SGA, the counterpart, is indicative of a constitutionally small fetus [12], although some 

researchers theorize that symmetrical SGA may also occur when FGR is extreme or early 

and the fetus fails to adapt [4], which further emphasizes the need for credible distinctions 

between SGA and FGR.  

1.2.3. Diagnostic guidelines for FGR 

 Doctors report difficulty with the lack of diagnostic criteria and intervention 

options for patients and their FGR babies [12].  A panel of 56 expert scientists in the field 

was gathered to debate on fetal measures of interest and determine a standardized method 

for categorizing FGR [34].  In clinical research, while fetal weight is still occasionally used 

as a proxy for evidence of FGR [35], most scientists are testing new measurement 

standards [36] or using more stringent weight percentiles [37].   

 As discussed, the lowest 10th percentile of fetal weights has a poor positive 

predictive value for FGR, however, studies have indicated that the lower the weight 
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percentile used, the greater the likelihood of FGR [8].  Many groups have chosen a cutoff 

of at least 2 standard deviations (SD)s below the control mean to more accurately identify 

FGR, but it should be noted that this practice risks missing more large FGR cases [16].  

Fetuses in the lower 3rd percentile based on fetal weight (equivalent to below 2 SD) [38], 

experience exponential increases in morbidity and mortality regardless of pathology [10].  

Milovanovic et al. demonstrated that even fetuses in the < 2 SD population exhibit a 

difference in morbidities that can differentiate FGR from constitutionally small babies 

[37].   

 Asymmetrical fetal growth is a primary indicator of FGR, and commonly used as a 

diagnostic tool [12].  Measurement of abdominal and cerebral circumference and the ratio 

between the two through ultrasound can be early indications of asymmetry in humans [7]. 

Practitioners recommend monitoring the rate of changes in these and other size parameters 

through specific stages of gestation with regular ultrasound testing.  Any slowing of 

growth between time points compared with normative growth curves can indicate a period 

of FGR [21].  Mild or relative forms of FGR may not be associated with asymmetrical 

growth, and can be more challenging to diagnose [39].   

 Due to the shunting of blood, coronary blood flow can increase enough to be 

detectable via Doppler earlier in gestation in FGR fetuses than in healthy fetuses [40, 41], 

and reversed end-diastolic blood flow may occur in the umbilical artery [42].  Doppler 

assessment of coronary and umbilical blood flow has potentially high positive predictive 

value when timed correctly, but similar to the weight cutoffs, this procedure may miss 

many larger FGR fetuses [12, 41].   
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Figure 1-2: Timeline of fetal organogenesis based on percent of gestation in the human, sheep, and mouse.  Developmentally critical windows represent times when organs are most susceptible to insult, albeit they can be compromised outside of these 

windows.  The sheep (red) timeline is a closer approximation for the human (gray) timeline than that for mice (blue) that are born precocially and have experienced 40% of the gestation when the neural tube (NT) forms.  Hearts in the figure represent 

detectable presence of a heartbeat. (Reprinted with permission, from Sandoval et al., 2020) [46] 
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 Combinations of these measures are in use and being tested in an effort to diagnose 

and study FGR more accurately.  A fetal weight or an abdominal circumference in the 

lower 3rd percentile are the top criteria in the group-developed categorization system, with 

supplementary evidence being unnecessary if either is present [34].  Fetal ultrasound 

staging is common, with increased frequency assigned when circumferential ratios or 

blood flow shifts cause concern.  Clinically, it is important to diagnose early, increase 

monitoring as appropriate, and possibly intervene to improve fetal development.  It is 

common to begin by assessing risk factors; however, FGR may be idiopathic in over 60% 

of the cases [43], at which point, monitoring for effects of FGR might be the best option.  

1.3. The ewe as a model for gestational research 

 Fetal growth restriction can be studied using animal models where factors 

associated with impairment are applied in early- to mid-pregnancy.  Because human 

studies of a similar nature would be unethical, animal models have proven invaluable, 

revealing many molecular and physiological pathways to FGR.  The ewe has been an 

excellent resource for this research, partly due to a larger fetal size, which is similar to that 

for humans at parturition, and the ability to instrument the fetus during gestation [44, 45].  

In comparison with rodent models, which are desirable due to a shared placental type, the 

length of gestation and the phases of organogenesis are better approximated by sheep 

(Figure 1-2) [46, 47].  Sheep are also easier and less expensive to house and maintain than 

cattle or non-human primates.  For FGR, there are sheep models of vascular occlusion, 

high-altitude stress, heat stress, carunculectomy, and over- and undernutrition [48].  

Researchers theorize there are shared trajectories for the maternal response to these insults, 

and creation of FGR conditions, and the seemingly uniform fetal response to FGR [11, 49, 
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50].  The comparative value of the nutritional models is the ability to encourage FGR 

without a costly and invasive surgical intervention. 

1.4. Nutrient restriction in a sheep model of FGR 

1.4.1. High variability in nutrient restriction research 

 The nutrient restricted (NR) ewe model is one of the most applicable to human 

health concerns.  Considering poor-quality Western diets, morning sickness, adolescent 

pregnancy, poverty, and famine, experimentally limiting nutrients fed to a pregnant ewe 

has undeniable real-world application potential [16].  However, NR ewes produce an 

astonishingly wide array of fetal phenotypes [51], and due to the high percentage of 

relative and/or symmetric fetal responses, some texts do not include NR as a potential 

cause of FGR [12, 52].  Unsurprisingly, discrepancies may result from the pervasive 

classification challenges, with some studies that report simple averages not drawing the 

same conclusions as others looking at the phenotypic range in the offspring following 

treatments [53–55].  Researchers have reported that adolescent ewes respond more 

drastically to NR than mature ewes [16], thin ewes respond worse than obese ewes [56], 

and dietary shifts are more disruptive than consistency in diets [57].  The severity and 

timing of NR also have an impact on how the fetus and placenta respond.  Rumball et al. 

compared NR in a group of lab-adapted ewes to a flock of ewes that spent generations on 

poor pasture [57].  The authors demonstrated that maternal familiarity with nutrient 

scarcity prevented fetal compromise through placental adaptations.  Wallace acknowledged 

the importance of age, condition, parity, and weight-matched study subjects, in part due to 

the impact of these factors [58].   
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 In addition to the more mild study results, work with severely undernourished adult 

sheep (diets were 30–40% that of control diets) showed a 17% reduction in uterine blood 

flow if the dietary insult occurred during mid-gestation, or a 20–33% reduction in uterine 

blood flow if the nutritional insult occurred in late gestation [28, 59, 60].  Similarly, a 40% 

reduction in dietary intake beginning in early gestation results in a reduction in umbilical 

blood flow and increased arterial indices of resistance [26, 61].  With the possible range in 

fetal responses from healthy to severe compromise, the earlier belief that there is a 

common pathophysiology for FGR seems inaccurate. 

1.4.2. How is the placenta involved in maternal malnutrition? 

 Unlike overnutrition models, nutrient deficiency models are not perceived to act 

through primary compromise of the placenta, and it has been claimed that they limit the 

fetus through nutrient deficiency alone [58, 62].  It is more likely that nutrient deprivation 

has a multifactorial impact on fetal growth.  Studies have shown compromised placental 

weights, uterine and placental blood flows, and capillary development in response to NR 

[11, 63, 64], which deserves notice. 

 Nutrient intake in the first third of pregnancy impacts the placenta the most [58].  

When severe or early maternal malnutrition causes a placental insufficiency beyond the 

extensive functional reserve capacity, it can have a compound impact on the fetus, beyond 

the low maternal nutrient supply (Figure 1-1).  Results from NR studies may contain 

graded instances of relative FGR, as well as both idiopathic and malnutrition-associated 

absolute FGR, in addition to the omnipresent variations resulting from differences in 

potential fetal size, all of which may or may not be impacted by individual maternal 

factors.  If the desired outcome from these studies is to detect common pathologies that 
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may be mitigated in human healthcare (and agricultural) settings, categorizing NR 

outcomes by the placental and nutrient transfer deficiencies would offer a greater benefit to 

science than limiting research to find a commonality among them. 

 In ewes, placental growth and development are exponential prior to gestational day 

50, and maternal conditioning and nutrition at conception and within the first trimester are 

critical to placental and subsequent fetal health [57, 65].  Placental effects resulting from 

NR can be less severe than in other animal models and can respond to realimentation [58, 

64, 66], while fetal effects can also be minor compared to absolute FGR and not linked 

with placental mass to the same degree.  In some instances, however, greater degrees of 

placental and fetal compromise are involved [62].  Carr et al. reported that 52% of the 

offspring in their obese adolescent ewe model consistently fell < 2 SD below the control 

mean [36].  Nevertheless, restriction to that degree in the undernutrition model is variable 

from 3–70% of study subjects (preliminary studies) [58, 67].  Researchers have noted that 

this is part of the spectral or graded response in most NR challenges.  Burrage et al. have 

shown that this graded response is negatively correlated with the risk of cardiovascular 

changes [68], similar to the increasing risk of heart disease with decreasing fetal size in 

humans [69].  The cardiac and other phenotypes seen with this trend are similar to those of 

absolute FGR, but severity decreases as fetal weight increases.  If a scaled relationship 

does exist in the test subjects, it is important to focus on that effect in the interpretation of 

results.  When investigating a graded response, interest arises regarding the differences 

between the ewe that fails to support fetal growth potential and the more robust or adapted 

ewe that partitions nutrients for complete fetal or superior placental growth [13, 51].  

Studies have demonstrated that thin, adolescent, and poorly adapted ewes have a more 
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drastic response to NR [57, 70].  This response is likely a combination of dam genetics and 

severe environmental conditions resulting in placental insufficiency in a NR model.  

 While the medical field is anxious to define absolute FGR, and to identify and 

mitigate the causes [9, 10, 55], the risk of human cardiac and metabolic disease also 

increases with decreasing birthweight [68], making the graded responses of the NR model 

valuable even if most malnourished infants are unlikely to meet the criteria for absolute 

FGR.   

 A primary difference between FGR caused by placental insufficiency and relative 

FGR is the provision of oxygen to the fetus.  In instances of placental compromise, both 

oxygen and nutrient delivery are limited.  A high-altitude sheep model might experience 

fetal hypoxemia, and a NR model might cause a fetal nutrient deficiency alone [54, 71].  

Camm et al. demonstrated that hypoxemia impacted rat fetuses differently than 

malnutrition [71], in contrast to some researchers who showed that hypoglycemia activated 

the same fetal aortic chemoreceptors, integral to the brain sparing response, as hypoxemia 

[68].  The potentially divergent pathophysiologies would again be valuable to recognize 

independently. 

1.4.3. Severity of FGR  

 It may seem counterintuitive to imply that the key to using the sheep model to 

explain FGR is to accurately identify FGR in the model.  Sibley et al. discussed the 

importance of placental phenotypes to the trajectory of FGR [72], and this association has 

been confirmed in sheep [51, 73].  Although aspects of FGR cannot ethically be tested in 

humans, they can be tested using sheep as the animal model.  For instance, it is possible to 

remove a single placentome from a ewe in mid-gestation while allowing the pregnancy to 
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continue to term.  Studying the histoarchitecture of the placentome at mid-gestation can 

provide insight into the density of capillaries, efficiency of nutrient transfer, and early 

response to insult, as well as to establish a maternal baseline before applying a challenge.  

It is also possible to instrument the uterine artery with a flow probe at the same time to 

obtain correlative data about uterine blood flow to placentomes that increases 

exponentially as gestation continues.  Current research is examining AMH as a possible 

biomarker to predict FGR [74–76].  In animal models for FGR research, sampling fetal 

tissue is possible and may provide insight into FGR [77].  Considering that the brain 

sparing response to fetal stress is linked to a redistribution of blood flow, a differential in 

blood flow is likely among fetal tissues that is greater in cases of absolute FGR versus 

lesser degrees of AGA relative to FGR [78].  Results from NR studies include graded 

instances of relative FGR, as well as both idiopathic and malnutrition-associated absolute 

FGR. There is a need to investigate unique patterns of fetal blood flow in fetuses to 

determine if maternal hemodynamics and placental changes are caused by malnutrition and 

provide insight to specific interventions to mitigate FGR [55, 65].   

1.5. Tools for categorizing FGR 

1.5.1. General objective 

 The objective of these studies is to identify mechanisms through which placental 

and fetal pathologies can be better classified in ovine models in which gestation is 

compromised.  

1.5.2. Placentomectomy 

 Placental insufficiency is a primary determinant for FGR [16, 31].  Idiopathic FGR 

occurs in dams that are constitutionally predisposed to poor placental development.  Most 
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environmentally induced FGR has direct effects on placental development that 

consequently limit oxygen and nutrient supply to the fetus [31].  Malnutrition may impact 

placental growth, especially in severe and early instances of restriction.  If it were possible 

to preview placental health at early or mid-gestation, such a tool could provide definitive 

insight into the fetal health trajectory.  While samples of placentomes have been 

investigated at nearly every stage of gestation, such study required terminating the 

pregnancies [79].  Assessing placental health without termination of the pregnancy would 

be ideal, relating placental findings to future phenotypical changes in the fetus.  Through a 

novel surgical procedure in a sheep model, a placentome was removed in mid-gestation, 

which was then compare to fetal outcomes at later gestational time points. 

1.5.3. Uterine artery and fetal organ blood flow 

 Reduced maternal uteroplacental blood delivery is a primary factor in FGR, but in 

NR, a reduced concentration of nutrients in the blood may be responsible.  While Luther et 

al. used a NR ewe model to identify reduced capillary area density within the maternal 

caruncle, indirectly implying that blood flow through the caruncle was reduced [64], not all 

research has shown a reduction in uterine blood flow following NR [80].  Measuring 

uterine artery blood flow in a NR model will better define the compromised placental 

delivery of nutrients to the pregnant uterus and delineate how it translates into fetal 

development.  Blood flow was also measured within fetal organs to determine the origin of 

organ dysfunction.  Evaluating these changes in a ewe model allowed comparisons of 

overall changes in relation to treatment and differences within the NR group that may 

indicate “rescue” of the fetus or evidence of compromise despite the apparently appropriate 

size of the fetus.  As recent studies have called for [2, 64, 81], this study investigated the 



 

16 

 

hemodynamic changes that might be responsible for compromises in placental and fetal 

metabolism, fetal hemodynamics, and complex interactions of diet on resilience and 

placental adaptation affecting fetal health.  It was hypothesized that maternal NR will 

result in reduced uterine artery blood flow, cotyledonary tissue blood flow, and 

angiogenesis and blood flow within fetal organs, correlated to fetal size.  Awareness of 

graded changes from relative FGR on additional measurable aspects of fetal and maternal 

health can be used to identify FGR in future studies.  There is a described need to 

investigate unique patterns of fetal blood flow in fetuses to determine if maternal 

hemodynamics and placental changes are caused by malnutrition and provide insight to 

specific interventions to mitigate FGR [55, 65].   

1.5.4. Anti-Müllerian hormone 

 Anti-Müllerian hormone (AMH) is of interest to human and animal fertility 

specialists as it is predictive of ovarian follicular reserve and response to controlled ovarian 

stimulation protocols [82, 83].  Due to a link between FGR offspring and reduced ovarian 

follicular reserve, AMH has become a recent focus in FGR research [74].  Mothers who 

were born SGA are more likely to have SGA babies [8]; therefore, scientists have begun 

studying whether AMH concentrations can identify dams at risk of having SGA offspring 

or if it can be used as a diagnostic measure of FGR postpartum.  For example, restricted rat 

pups had lower follicle counts in a hypoxic model [84] and a uterine artery ligation model.  

Concentrations of AMH were tested in the latter and showed a tendency toward lower 

values in FGR pups [75].  Similarly, AMH was lower in NR heifers, which also showed 

lower ovarian reserve, elevated blood pressures, and enlarged aortas, despite no change in 

birthweight [76].  However, in a human study of short girls born SGA [85] and adolescent 
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girls exposed to smoking mothers or FGR, AMH concentrations were unaffected [74].  

Prior to investigating this connection in sheep models, establishing baseline values for 

AMH in ewes would be necessary. 

 Variations in circulating concentrations of AMH exist among individual ewes and 

breeds of ewes, as well as with nutritional status, age, and disease states.  Intense and 

persistent disagreements are prevalent in AMH research studies.  Concentrations of AMH 

are considered infallible, with minimal fluctuations through estrous cycles or times of the 

year, and therefore can be sampled a single time for assessments of reproductive potential 

[86, 87].  Testing has been complicated for AMH, with a ELISA kits from an assortment of 

manufacturers, with bias between both the methods and the centers where testing is 

performed [88].  While many research groups have published dramatic and clinically 

relevant shifts in AMH [89–91], and incongruencies between test kits [92], the narrative 

continues to project high value and low variation [93], which is assuredly misleading to 

clinicians.  Prior to any efforts to identify a link between AMH and FGR, baseline values 

and changes associated with the estrous cycle and pregnancy must be determined for 

sheep.  By sampling ewes at multiple time points in a year, including during anestrus and 

throughout an entire estrous cycle, intended to determine how collection timing may 

impact AMH results. 
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2. DEVELOPMENT OF A SURGICAL PROCEDURE FOR REMOVAL OF A 

PLACENTOME FROM A PREGNANT EWE DURING GESTATION 

 

2.1. Overview 

 Background: In recent decades, there has been a growing interest in the impact of 

insults during pregnancy on postnatal health and disease.  It is known that changes in 

placental development can impact fetal growth and subsequent susceptibility to adult onset 

diseases; however, a method to collect sufficient placental tissues for both histological and 

gene expression analyses during gestation without compromising the pregnancy has not 

been described. The ewe is an established biomedical model for the study of fetal 

development. Due to its cotyledonary placental type, the sheep has potential for surgical 

removal of materno-fetal exchange tissues, i.e., placentomes.  A novel surgical procedure 

was developed in well-fed control ewes to excise a single placentome at mid-gestation.  

 Results: A follow-up study was performed in a cohort of nutrient restricted ewes to 

investigate rapid placental changes in response to undernutrition.  The surgery averaged 19 

min, and there were no viability differences between control and sham ewes.  Nutrient 

restricted (NR) fetuses were smaller than controls (C; 4.7 ± 0.1 vs 5.6 ± 0.2 kg; p < 0.05), 

with greater dam weight loss (-32.4 ± 1.3 vs 14.2 ± 2.2 kg; p < 0.01), and smaller  

 Conclusions: With this technique, gestational studies in the sheep model will 

provide insight into the onset and complexity of changes in gene expression in 

 
 Reprinted with permission from Development of a surgical procedure for removal of a placentome from a 

pregnant ewe during gestation. By Lambo, C.A., Edwards, A.K., Bazer, F.W., Dunlap, K.A., Satterfield, 

M.C., 2020. J Animal Sci Biotechnol; 11, Copyright [2020] by Colleen Lambo et al.  License is available at: 

https://creativecommons.org/licenses/by/4.0. Modifications were made to article formatting. 
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placentomes resulting from undernutrition (as described in our study), overnutrition, 

alcohol or substance abuse, and environmental or disease factors of relevance and concern 

regarding the reproductive health and developmental origins of health and disease in 

humans and in animals. 

2.2. Introduction 

For the past half century, researchers have performed terminal procedures on 

ruminants to investigate placentome development and its impacts on fetal growth and 

health [1].  More recent studies have delved into gene expression in placentomes in early 

stages of gestation with similar goals [2, 3].  Acquisition of information from early and 

pivotal stages of placental development will advance our understanding of factors that are 

required for or are detrimental to optimal fetal growth and maturation.  The draw-back for 

any terminal procedures, however, is an inability to correlate placentome growth in early- 

to mid-gestation with fetal development at term, or, optimally, to morbidity, mortality, and 

efficiency of growth and development of the resulting offspring.  Non-terminal 

investigations have sought to evaluate parameters of placental and placentome growth and 

development using Doppler blood flow methods [4, 5], but placentome sampling during 

gestation without compromising fetal-placental development has not been reported.  For 

the purposes of this communication, placentome will refer to entire discrete regions of 

interdigitating fetal (cotyledon) and maternal (caruncle) tissues [6].    

The ewe has been hailed as a valuable research model for studies relevant to human 

pregnancy [7, 8]; therefore, knowledge of placental/fetal interactions and how treatments 

or diseases impact them is critical for understanding, diagnosing, and preventing, causes 

and effects of deleterious events in placental development which occurs during early- to 
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mid-gestation.  Medical concerns regarding intrauterine growth restriction (IUGR), fetal 

alcohol syndrome, environmental toxins and pollutants, and other conditions associated 

with compromised pregnancy are lifelong medical issues that need to be assessed and 

understood from the earliest stages of gestational programming.  Many of the described 

experimental insults produce spectral phenotypes, which can perhaps best be understood 

by retrospectively comparing the phenotype to the conditions that existed during early 

stages of fetal-placental development and before the phenotype of the live offspring is 

established.  A non-terminal surgical technique that allows for sampling of placentomes 

from a pregnant ewe would provide critical knowledge related to gene-environmental 

interactions affecting fetal-placental development during gestation and how those 

interactions impact lifelong health of that offspring.  

One area in which research with ewes has proven to be of benefit for human 

healthcare concerns is that of IUGR, or low birth-weight infants. Our laboratory has 

developed a nutrient restricted (NR) sheep model for studying IUGR risks in humans [9, 

10].  As a proof of concept, initial trials with this novel surgical procedure were performed 

with ewes in which either a placentome was removed (placentomectomy) or a sham-

surgery was performed. A second study tested the efficacy of the surgical approach in our 

established NR ewe model.     

2.3. Materials & methods 

2.3.1. Animals and experimental protocols 

 All experimental and surgical procedures were compliant with and approved by the 

Institutional Animal Care and Use Committee of Texas A&M University (IACUC #2016-

0078).   
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Embryos were generated from superovulated Hampshire ewes (n = 37), of similar 

body weight and frame size, utilizing semen from four half-sibling rams [11].  Single 

grade-1 embryos were transferred into 100 synchronized Hampshire ewes, of similar body 

size and body condition, to generate singleton pregnancies with minimal fetal and maternal 

phenotypic variation.  Pregnant ewes were identified using abdominal ultrasound on 

gestational day (GD) 28.  Ewes were weighed, isolated into individual concrete pens, and 

fed 100% of their nutritional requirement in a fully pelleted ration, based on body weight, 

for a one-week acclimation period.  Ewes were then randomly divided into treatment 

groups, with 40 ewes fed a restricted diet (50% National Research Council; NRC; 

beginning on GD 35; NR), and 13 fed 100% NRC.  The NR ewes and 9 of the 100% ewes 

(C) were subject to a full placentomectomy surgeries.  The remaining 4 ewes underwent a 

sham surgical procedure (SH).  All ewes were weighed weekly, and diets adjusted 

according to body weight and requirements based on stage of gestation according to NRC 

guidelines.  

2.3.2. Surgical protocol 

Ewes were fasted for 24 h prior to surgery.  On GD 70, subjects were anesthetized 

using mask-delivered isoflurane until a surgical plane of anesthesia was achieved.  

Abdomens were clipped, shaved, and prepped using betadine and a 70% alcohol solution.  

Ioban drapes (3M Inc., Maplewood, MN, USA) were applied over the abdomen.  A 10–

15cm ventral mid-line incision was made into the abdomen.  Uterine horns were palpated, 

and the distal end of the gravid uterine horn was exteriorized (Figure 2-1a) for aspiration of 

allantoic fluid.  Fluid was collected using a 20G needle and a 5cc syringe.  Next, a 

placentome on the antimesometrial portion of the uterus was selected, near the conceptus, 
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but distal to the edge of the amniotic sac.  Identification of placentome type was not 

attempted prior to removal, but an effort was made to select one of representative size.  An 

incision was made into the uterine wall at the proximal end of the placentome using a #10 

scalpel blade.   

In placentomectomy subjects, the remaining interplacentomal endometrial tissue 

was manually separated and the placentome was exteriorized (Figure 2-1b).  Curved 

mosquito hemostats were gently manipulated to pass beneath the chorioallantois (Figure 2-

1c), containing the vasculature to the selected placentome.  A length of 2-0 vicryl was 

placed into the hemostats and pulled through to ligate around the blood vessels in the 

Figure 2-1: Surgical entry into uterus and separation of fetal tissues from placentome. (a) The gravid uterine 

horn was exteriorized, and a placentome was identified just distal to the amniotic sac, and then (b) gently 

exteriorized through a scalpel incision. (c) The chorioallantois was isolated using hemostats and following 

ligation (d) the isolated membranes were transected. 
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chorioallantois.  Curved blunt-blunts were used to transect the tissue between the 

placentome and the ligature (Figure 2-1d).  A 2 cm tapered needle, threaded with one 

folded strand of 2-0 vicryl, was then passed through the placentome stalk (Figure 2-2a).  

The threaded end of the suture was cut, resulting in 2 strands of suture passing through the 

stalk.  Strands were used to ligate both sides of the stalk (Figure 2-2b).  The stalk was then 

transected between the ligatures and the placentome, and the preparation observed to 

ensure that there was no bleeding (Figure 2-2c). 

Four sham-operated ewes were subjected to an identical surgical protocol which 

concluded with the initial incision through the uterine wall.  The placentomes were not 

exteriorized or removed, and the uterine incisions were closed as described.   

Figure 2-2: Surgical separation of the maternal tissues from the placentome.  (a) A modified transfixational 

suture was placed on the placentome stalk by passing a doubled length of suture through the stalk (b) and 

tying a ligature on both sides of the stalk. (c) The stalk of the placentome was transected and the stump was 

observed for bleeding. (d) Excised gestational day 70 placentome. 
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In all ewes (placentomectomy and sham animals), the uterine incision was closed 

with 2-0 vicryl in a simple continuous pattern incorporating the submucosa, myometrium, 

and perimetrium (Figure 2-3a).  Warm 5% glycerol-saline was used to cleanse the uterine 

surface before the uterus was replaced into the abdominal cavity.  The linea alba was 

closed using catgut in a Ford-Interlocking suture pattern.  Subcutaneous fat was closed 

with catgut in a simple continuous pattern, and wound clips were used to close the skin 

incision.  Ewes were held in a recovery area for 24 h before being returned to their original 

pens.  Approximate average surgical time was 19 minutes from first incision to body wall 

closure.  Anesthesia recordings were made every 5 minutes during the procedure, with an 

approximate cut and close time marked, and this data was extrapolated for an average.  

Excised placentomes (Figure 2-2d) were weighed and processed according to desired study 

protocols.   

2.3.3. Necropsy 

Ewes were necropsied on GD 135.  Surgical incisions (Figure 2-3b) were evaluated 

at the time of necropsy, and additional fetal and maternal tissue samples were collected.  

Figure 2-3: Post-operative uterine incision healing.  (a) The uterine wall was closed with a simple continuous 

pattern. (b) Healing of uterine wall incision at the time of necropsy.  Forceps are pointing at the incision site, 

which is also circled and the blunt-blunts indicate the distal edge of the amniotic sac. 
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Removed placentomes were counted and collectively weighed.  Select central A-type 

placentomes were processed as desired for study purposes.   

2.3.4. Statistical analysis 

 Fetal and placentome weights and counts were compared between SH, C, and NR 

groups by analysis of variance using SPSS Statistics 26 software (IBM, Armonk, NY, 

USA).  All results are represented as mean ± standard error of the mean. A p-value of  

0.05 was considered significant.  

2.4. Results  

2.4.1. Wellness and measured outcomes were not different between control and sham 

ewes 

 There was no difference (p = 0.31) in fetal weights between C ewes and SH ewes 

(Figure 2-4).  No complications from the procedure were observed in well-fed ewes.  One 

C ewe produced a fetus with skeletal deformities and was removed from the study.  From 

the time that pregnancies were confirmed on GD 28, all ewes in the C and SH groups 

maintained their pregnancies until the time of necropsy. Placentome numbers, weights, 

amniotic and allantoic fluid volumes, and maternal weight gain did not differ between C 

and SH ewes (p > 0.24; Table 2-1).  While surgical incisions were made just beyond the 

edge of the amnion, at the time of necropsy the amnion had grown beyond the incision site 

in all subjects.  Surgical time from incision to closure averaged 19 minutes.  Evaluation of 

all surgical incisions showed complete healing.  Regional placentomes were similar in 

appearance, size, and shape to those located distal to the incision.  
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2.4.2. Nutrient restriction predictably impacted the treatment population 

One NR ewe aborted 3 days post-operatively.  It was noted at the time of surgery 

that she had little amniotic fluid, minimal vasculature, a small fetus, and was likely losing 

her pregnancy.  Respiratory issues were noted in one ewe and she was treated with 

antibiotics but expired 4 days post-operatively.  Nine additional NR ewes died or were 

euthanized in late gestation for reasons unrelated to the surgery.  Fetal weights and crown-

rump lengths for NR ewes were lower than those for fetuses from C ewes (4.7 ± 0.1 vs 5.6 

± 0.2 kg; 60.3 ± 0.6 vs 64.1 ± 0.9 cm; p < 0.05; Figure 2-4), but ponderal indexes were not 

(PI = [fetal weight (g) x 100] / [fetal length (cm)]3; 2.1 ± 0.0 vs 2.1 ± 0.0).  Weights of 

single placentomes were not different for ewes in the C (12.0 ± 1.2 g) and NR (10.6 ± 0.6 g) 

Figure 2-4: GD 135 fetal weights by treatment group. Fetal weights were not different between control and 

sham ewes (p > 0.05).  Fetal weights for nutrient restricted ewes were lower than for control (p < 0.05). 
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groups (p > 0.3).  Total placentome weight determined at necropsy was lower in NR ewes 

(546.2 ± 43.3 C vs 440.4 ± 21.9 g NR; p < 0.05; Table 2-1).  Placentome numbers did not 

vary between treatment groups (80.9 ± 6.1 C vs 78.1 ± 3.0 NR; p > 0.30), and were within 

the described range of 20–150 placentomes per ewe [6].  Nutrient restricted ewes lost a 

significant amount of weight compared to C ewes (14.3 ± 2.2 C; -32.4 ± 1.3 kg NR; p < 

0.01).  At necropsy, amniotic and allantoic fluid volumes and colors were within the 

expected range from prior experiments, and did not differ between C, SH, or NR ewes (p > 

0.16).    

 

 

Table 2-1: Control and nutrient restricted ewe comparative values 

Category* C SH NR 

Ewes pregnant (GD 28)  n = 9 n = 4    n = 41 

Ewes necropsied (GD 135)  n = 8 n = 4    n = 29 

Fetal weight, kg 5.6 ± 0.3a 6.0 ± 0.3a 4.7 ± 0.1b 

CRL, cm 64.1 ± 0.9a 65.0 ± 1.2a 60.3 ± 0.6b 

Ponderal index 2.1 ± 0.1 2.2 ± 0.0 2.1 ± 0.0 

Ewe weight change, kg 14.3 ± 2.2a 11.3 ± 2.7a -32.4 ± 1.3b 

Single placentome wt (GD 70), g 12.0 ± 1.2 n/a 10.6 ± 0.6 

Placentome wt (GD 135), g 546.2 ± 43.3a 635.0 ± 50.3a 440.4 ± 21.9b 

Placentome number 80.9 ± 6.1 87.0 ± 5.4 78.1 ± 3.0 

Amniotic fluid volume, ml 651.9 ± 69.7 640.5 ± 39.8 778.5 ± 84.2 

Allantoic fluid volume, ml 545.0 ± 115.1 702.0 ± 222.3 882.6 ± 123.3  

C is control fed ewes, SH is sham ewes, NR is nutrient restricted ewes, GD is gestational day, CRL is crown 

rump length.  

Values are reported as mean ± SEM. 
a,b Means with different letters are statistically different (p < 0.05). 

 

 

 

2.5. Discussion 

 Collection of sufficient placental tissues for comprehensive analyses of both 

histological and gene expression changes in the early stages of maternal insult without 

compromising pregnancy has not been described.  The development of such a novel 
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technique is a critical step in developing the necessary tools to effectively investigate 

developmental origins of health and disease. Nutrient restricted ewe fetuses displayed the 

expected spectral variations in fetal development, where some ewes produced small for 

gestational age fetuses, and some produced fetuses closer to the weights observed for C 

and SH ewes [9].  The phenomenon of spectral variation in fetal growth rates in response 

to maternal nutrient restriction has also been observed in cattle [12].  The surgical 

procedure allowed collection of placentomes to demonstrate differences in gene expression 

associated with size of the fetus, which is now being investigated.  As removal of an entire 

placentome was possible, it is reasonable to believe that any research method previously 

validated for placentome analysis could be applied to excised placentomes as readily as a 

placentome collected during a GD 70 necropsy [13]. 

The use of a modified transfixational ligature for stalk removal ensured hemostasis 

at the site of removal of the placentome.  The selection of a central and presumably highly 

functional placentome for removal was confirmed by their weight in comparison to the 

weight of placentomes at necropsy, as well as their location relative to the border of the 

amnion at the time of necropsy.  We did not attempt to identify placentome type prior to 

removal as most placentomes should be concave or A-type on GD 70.  Morphology is 

known to change later in gestation, but is primarily type A for the first two-thirds [6, 14].  

The placentomectomy had no identifiable negative impact on fetal development in 

pregnant ewes when performed on GD 70.  The procedure may have hastened progression 

of the disease in the NR ewe which died 4 days post-operatively, as well as the abortion in 

the ewe which lost her pregnancy 3 days post-operatively.  However, the placentomectomy 

itself is unlikely to have caused either event.   
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Placentome formation in the ewe occurs within the first two-thirds of pregnancy, 

with growth of the placenta plateauing near GD 90.  By GD 70, the placenta has essentially 

achieved its full weight and completed its rapid growth phase.  At this time, vascular 

development in the caruncular and cotyledonary tissues are also entering an exponential 

growth phase that continues throughout the last half of pregnancy [15].  Our selection of an 

essential time point for placentome sampling focused on the juncture of these significant 

growth stages.  Concerns regarding stress and uterine manipulation were also factored into 

the choice of gestational stage for performing the placentomectomies.  Placental 

production of progesterone is sufficient for maintenance of pregnancy by GD 60 and 

compliments production of progesterone by the corpora lutea [16].  Prior to GD 60, 

concentrations of progesterone are protective against uterine production of luteolytic 

prostaglandin F2alpha (PGF2α), but manual manipulation of the uterus may cause 

sufficient release of PGF2α to trigger luteolysis and subsequent abortion.  Minimal 

handling of the uterus during the placentomectomy procedure is recommended at any 

gestational age, especially when attempting a placentomectomy prior to GD 60.   

There are potential concerns when performing this procedure.  The above-

mentioned risks of abortion due to uterine handling or maternal stress would compromise 

the potential of the longitudinal research technique to provide useful data on gene 

expression critical to subsequent fetal development.  Failure to maintain hemostasis at the 

placentomectomy site, infection, anesthesia risks, and compromise to the amniotic and 

allantoic sacs are all considered risks of uterine surgery during gestation.  Historically, 

carunclectomies have been performed prior to mating in the ewe model to produce IUGR 

fetuses.  In those studies, a large percentage of caruncles were removed, which proved to 
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be growth-restrictive in half of the ewes [1, 17, 18].  Sheep are considered 

polycotyledonary, having 20–150 smaller placentomes which occupying most, but not all 

available uterine caruncle sites [6].  As shown by the results of the present study, the 

removal of one placentome during gestation did not impact fetal size, uterine manipulation 

did not trigger abortion at GD 70, and hemostasis at the surgical site was sufficient to 

maintain a healthy pregnancy.   

 An alternative approach to further mitigate some of the mentioned risks would be a 

placentome biopsy instead of a placentomectomy.  Due to the interdigitating and complex 

nature of placentomes, a concern would then be raised regarding the representative tissue 

in potential biopsy sections.  Hemostasis at the biopsy site would also need to be 

considered.  In species where the uterus is not accessed as readily as in ewes, a placentome 

biopsy may be an alternative but suboptimal research approach at least regarding the 

quantity and quality of tissue collected.   

 The ewe is a valuable established gestational research model [2, 7, 8].  While some 

aspects of placentation and gestation are different from those in women, the low cost and 

ease of research with the ovine model have increased its appeal.  Research areas span from 

fetoscopy studies to placentation and fetal programming studies, as evidenced in our NR 

treatment group.  While the rodent or lagomorph models offer a seemingly more direct 

comparison to the hemochorial placenta of the human, the extended gestation period (21 

days in the mouse, 31 days in the rabbit, 147 days in the ewe) in the ovine model provides 

for a better understanding of long-term developmental impacts on gestation.  Similarly, the 

organogenesis timeline is a closer approximation for human development in the ewe than 

rodent or lagomorph models [19].  Placentomes have the added value of interdigitating 
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maternal and fetal tissue sections that allows for growth and gene expression in these areas 

to be evaluated separately [20], although laser capture dissection or other approaches to 

single cell transcriptomics may be necessary to isolate tissue types due to the microscopic 

interdigitation and fusion, especially if performed later in gestation [21].  Comparisons of 

separate tissue types would not be possible in the more invasive tissues of the human or 

rodent placental disk.  The availability of a procedure to sample placentomes while 

maintaining pregnancy, adds greatly to the worth of the sheep model in human and 

agricultural studies. 

2.6. Conclusion 

The value of this technique can be most greatly realized when studying diseases 

that give a spectral phenotype. Placental changes can be used to predict and/or understand 

developmental challenges and ill-thrift in agricultural and human health research settings.  

Ruminant animals are the only ones that lend themselves to sampling of this nature.  Given 

the low cost and effort involved in housing and feeding sheep, and their shorter gestation, 

ewes were the ideal animal in which to explore the technique for and value of 

placentomectomies.  With a protocol and efficacy now established, the pregnant ewe 

stands to serve as an invaluable research model truly linking the histological and molecular 

signature of the placenta with subsequent penetrance of health or disease in adulthood of 

the same individual.  Following comparisons of the tissues acquired through this pilot 

study, proof of the benefits of this sampling method to research will be irrefutable.   
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3. REDUCED BLOOD FLOW IN CARDIAC, PANCREATIC, RENAL, AND 

CEREBRAL TISSUES FOLLOWING MATERNAL NUTRIENT RESTRICTION IN 

THE FETAL LAMB. 

 

3.1. Introduction       

 Severe malnutrition during pregnancy is a known risk factor for fetal growth 

restriction (FGR).  Women can be at risk of malnutrition due to lack of access to nutrients, 

poor dietary options or choices, prioritization of resources to personal growth in 

adolescents during pregnancy, or severe nausea and low food intake due to hyperemesis 

gravidarum.  Livestock can suffer similarly due to food scarcity in harsh environments 

resulting in nutrient restriction (NR) during critical periods of fetal development and 

growth, that have consequences on an individual’s short- and long-term health, including 

metabolic syndrome and cardiovascular disease risks [1–3]. Therefore, research into the 

nature of how malnutrition impacts fetal growth and development is expected to reveal 

opportunities for intervention to mitigate FGR.   

 Decreased placental transfer of oxygen causing acute hypoxemia in late gestation 

triggers a ‘brain sparing’ response in the fetus, through which blood is preferentially 

shunted toward the brain and adrenal glands at the expense of peripheral organs such as the 

pancreas and kidneys [4].  Workload on the heart is increased, which can cause cardiac 

hypertrophy [2, 5, 6].  This response ensures immediate survival, but lifelong health 

implications result from physical or genetic adaptations to deficiencies in transport of 

oxygen and nutrients to the fetus.  The modified phenotypes are often more detrimental 

than beneficial, especially in severe cases and with mismatches between the pre- and post-
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natal environments [1].  There is evidence that hypoglycemia activates the same brain 

sparing chemoreceptors, which may be related to how this protective mechanism occurs in 

cases of malnutrition in which hypoxemia is not a factor [5–8].   

 The human, agricultural, and financial costs of FGR are high [9, 10], and research 

has been intensely focused on early identification and mitigation of the many known and 

theorized causes; such as dietary supplementation with amino acids or melatonin.  Since 

FGR pathophysiology can lead to a range of outcomes, focusing on the specific etiology of 

FGR and differentiating FGR from small for gestational age (SGA) is essential to 

understanding mechanisms and identifying optimal treatments [4, 11–14].  Scheaffer et al. 

proposed that feto-placental hypoxia may occur due to maternal hypoxia, placental 

insufficiency, or fetal hypoxia [15].  The categories can be correlated to cause and timing 

of insult but may not account for FGR occurring without a primary hypoxia, or the 

possibility of more than one insult occurring synchronously.  For instance, down-

regulation of nutrient transporters in NR models led to a theory that rather than a 

compromise to placental blood flow (BF), maternal malnutrition or fetal demands act 

directly on the placental cells that control nutrient transfer and availability [13, 16].  Part of 

the variation in results from malnutrition studies is likely due to severe or early maternal 

malnutrition causing placental insufficiency that has a compound impact on the fetus [4]. 

Results from NR studies include graded instances of relative FGR, as well as both 

idiopathic and malnutrition-associated absolute FGR. There is a need to investigate unique 

patterns of fetal BF in fetuses to determine if maternal hemodynamics and placental 

changes are caused by malnutrition and provide insight to specific interventions to mitigate 

FGR [17, 18].  Our lab has focused on a model of relative FGR resulting from a spectrum 
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of fetal weights produced in NR pregnant ewes that allows for comparisons of the 

responses of fetuses in the lowest (LQ) and highest (UQ) quartiles within the NR cohort to 

control (CQ) fetuses [19, 20]. 

 The aims of this study were (1) to evaluate maternal hemodynamic parameters in 

relation to NR and resulting fetal growth and development (2), and to examine the changes 

in BF to organs of fetuses in the highest and lowest quartiles, based on fetal weights, from 

NR ewes.  We hypothesized that uterine arterial BF (UABF) is reduced in NR ewes 

resulting in reductions in BF to systemic organs, while increasing BF to the brain and heart 

of fetuses developing in NR ewes. 

3.2. Materials & methods 

3.2.1. Animals and experimental protocols 

 All experimental and surgical procedures were compliant with and approved by the 

Institutional Animal Care and Use Committee of Texas A&M University (AUP #2015-

0204). 

3.2.2. Experimental design 

 Embryos were generated from superovulated Hampshire ewes, of similar age, body 

weight and frame size, bred to four half-sibling rams.  Single grade-1 embryos were 

transferred into 92 synchronized Hampshire ewes, of similar age (3–6 years), and body 

size, to generate singleton pregnancies to reduce fetal and maternal phenotypic variation 

[20].  Pregnant ewes (n = 54) were identified using abdominal ultrasound on gestational 

day (GD) 28.  Ewes were weighed, isolated into individual concrete pens within sight of 

their flock mates, and fed 100% of their nutritional requirements in a pelleted ration, 

according to the National Research Council (NRC) recommendations [21] for a one-week 
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acclimation period.  Ewes were randomly divided into two experimental groups on GD 35 

and fed: 1) 100% NRC requirements (C; n = 11) or 2) 50% of NRC requirements (NR; n = 

43). All ewes were weighed weekly, diets adjusted according to body weight, and feed 

consumption was monitored daily. Of the 54 pregnant ewes, 2 aborted, 5 were euthanized 

due to poor health, and 47 underwent the surgical procedure.  Postoperatively, 6 ewes died 

or aborted during the 4-day recovery period.  Thus, samples were collected from 41 ewes.  

Two fetuses died during collection period, and one did not have a patent fetal arterial 

catheter for microsphere infusion.  Of the 38 ewes providing a complete data set, 5 were 

controls and 33 were NR.   

3.2.3. Surgical protocol 

 Ewes were fasted for 24 h prior to surgery but had access to water.  On GD 117, an 

18 gauge, 3 inch jugular catheter was installed in each ewe and anesthesia was induced 

with an intravenous (IV) injection of ketamine (6.0 mg/kg body weight; Ketaset, Zoetis 

Animal Health, Parsippany, NJ, USA) and diazepam (0.3 mg/kg body weight; Hospira 

Inc., Lake Forest, IL, USA).  Ewes were intubated with a cuffed endotracheal tube.  

Surgical anesthesia was maintained with 2–3% isoflurane (Fluriso, VetOne, Boise, Idaho) 

in oxygen delivered by a ventilation system (Matrx™ Model 3000, Midmark, Orchard Park, 

NY, USA).  Heart rate, ventilation rate, oxygen saturation, and expired carbon dioxide 

were monitored throughout the period using a Datascope Passport® 2 monitor (Mindray, 

Mahwah, NJ, USA). Ewes were placed in dorsal recumbency, wool from the surgical site 

was removed by clipping and shaving, and skin was disinfected using betadine and a 70% 

alcohol solution.  Procedures for surgery and instrumentation were performed as described 

previously [22, 23].  Briefly, a ventral midline laparotomy was performed, the uterus was 
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externalized and incised, and a fetal limb was exteriorized. Catheters (0.030 inch inner 

diameter, 0.050 inch outer diameter polyvinyl chloride tubing) were threaded into the right 

and left cranial tibial arteries and saphenous veins, and advanced to the level of the 

abdominal aorta and inferior vena cava, respectively.  Catheters were secured by suturing 

to the skin over the tarsus of one hind limb and the amnion and uterus were closed.  A 6 

mm transient-time ultrasonic perivascular flow probe (Transonic Systems Inc., Ithaca, NY, 

USA) was then secured around the uterine artery of the gravid uterine horn.  Catheters 

(0.050 inch inner diameter, 0.090 inch outer diameter polyvinyl chloride) were advanced 

from the maternal femoral artery and vein to the level of the diaphragm in the abdominal 

aorta and vena cava, respectively.  Catheters were filled with heparinized saline, and the 

amniotic catheter was filled with saline. All catheters and the flow probe were passed 

through the abdominal wall in the high lumbar region of the ewe, where they were stored 

in a cloth pouch attached to the skin. Upon completion of surgery and post-operative 

recovery, ewes were housed within sight of flock mates in elevated indoor pens with 

rubber mat flooring.  Post-operatively, Banamine (0.5 mg/kg intramuscularly; Merck 

Animal Health, North Whales, PA, USA) and enrofloxacin (2.5 mg/kg intramuscularly; 

Bayer, Leverkusen, Germany) were given twice daily, and diets were maintained. 

3.2.4. Blood flow sample phase 

 Four days postoperatively, each ewe was led into a small holding pen, and the 

catheters and flow probe were removed from the cloth pouch.  Catheters were cleaned with 

betadine and alcohol, the heparinized saline was removed, patency was tested, and then 

catheters were connected to a blood flow system to record maternal and fetal heart rates 

(HR), and maternal and fetal blood pressures (PowerLab 8/30, model ML870). If any of 
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the catheters were not patent when tested, further attempts were made throughout the 

sampling process, as the fetus changed position.  Uterine artery BF was recorded using a 

Transonic TS420 Perivascular Flowmeter coupled to a PowerLab® data acquisition system 

(PowerLab 8/30, model ML870) and analyzed using LabChart® software (ADInstruments 

Inc., Colorado Springs, CO, USA).  Maternal and fetal HR and BP were measured using a 

transducer probe connected to arterial catheters and the PowerLab system.  A syringe 

pump was connected to a fetal arterial catheter to perform a constant rate blood sample 

collection at 4 ml/min.  Gold microspheres (0.05 ml/kg; BioPAL, Worcester, MA, USA) 

were injected as a bolus into a fetal venous catheter, and sampling was continued for 2 

min.  Immediately after microsphere sampling, ewes were euthanized with Beuthanasia D 

(Merck Animal Health, Madison, NJ, USA) administered IV, and the uterus was removed 

for collection of the fetus and fetal organs.  Absolute tissue BF measured by stable labeled 

microspheres was calculated using the formula; 

            4.0 (ml/min) X [Microspheres in tissue] 

Blood flow (ml/min/g) =  _______________________________________________________________________ 

     Tissue weight (g) X [Microspheres in reference blood] 

where 4.0 ml/min is the reference blood withdrawal rate, [Microspheres in reference blood] 

is DPM in reference blood, tissue weight was in grams, and [Microspheres in tissue] is 

DPM in the tissue sample.  

3.2.5. Tissue collection 

 The intact uterus was weighed, and the placenta and fetus were removed.  Fetal 

organs were removed, weighed, and finely minced for uniform sampling for microsphere 

evaluation. The uterus was reweighed when empty of fluids, fetus, and placentomes.  
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Whole blood from the constant rate collection, and tissue sections from the cerebral cortex, 

thymus, heart, lungs, liver, stomach, spleen, small intestine, kidney, brown adipose tissue 

and longissimus dorsi muscle were precisely weighed on an analytical balance, placed into 

specialized tubes and dehydrated in an oven at 94°C before submission to the Bio Physics 

Assay Laboratory (BioPAL Inc., Worchester, MA).  Placentomes were dissected free of 

the placental membranes, weighed, counted, and then manually separated into cotyledons 

and caruncles, which were weighed.  Fetal ponderal index was calculated as [fetal weight 

(g) x 100] / [fetal length (cm)]3 [24].  Relative organ weights were calculated by dividing 

the organ weight (g) by fetal weight (kg).    

3.2.6. Statistical analyses 

 Statistical analyses were performed using SPSS Statistics 26 software (IBM, 

Armonk, NY, USA) and Graph Pad Prism 6.05 (GraphPad Software Inc., La Jolla, CA, 

USA).  Comparisons were assessed using Analysis of Variance when comparing CQ, UQ, 

and LQ or Student’s t-test when comparing C and NR.  Values are represented as mean ± 

standard error of the mean. Pearson’s correlation tests were performed only within the NR 

treatment group.  A p-value of  0.05 was considered significant, and < 0.10 was 

considered as a trend toward significance.  Fetal sex was not associated with fetal weight 

(3.2 ± 0.1 kg in 20 females, 3.4 ± 0.1 kg in 18 males, p > 0.100) on GD 121.  Data from 

both sexes were, therefore, combined.  Data from two NR fetuses were determined to be 

outliers, based on extremes of maternal or fetal weight and their data were not included in 

the analyses.  
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3.3. Results 

 Restricted feed intake from GD 35 to GD 121 reduced maternal weight compared 

to an increase maternal weight for ewes fed the control diet (p = 0.008; Figure 3-1), with 

maternal weight trajectories diverging by GD 105.  Data for measures of maternal, 

placental, and hemodynamics for C, NR, LQ, and UQ are summarized in Table 3-1. Final 

maternal weights were less for LQ than CQ ewes (p = 0.006).  Gestational weight gain 

(GWG) as a percentage of initial body weight was reduced (p < 0.001) in NR compared to 

C.  There was no difference (p > 0.05) in GWG between ewes having lambs in the UQ  

Figure 3-1: Maternal weight over time for nutrient restricted (n = 31; solid circle) and control (n = 5; open 

square) ewes. All ewes were weighed on GD 28, and fed a control diet for one week (n = 36; grey triangle). 

Nutrient restricted ewes lost weight during gestation, while the control ewes gained weight, as is expected. 

Weights were considered significantly different by gestational day 105. Values are reported as mean ± SEM.  

Means that are significantly different (p < 0.05) between groups are marked with an *, and those that tend 

toward a difference (p < 0.1) are marked with a †. 
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Table 3-1: Comparisons of maternal measures and hemodynamics between treatment groups (Trt) and quartiles (Quart). 
 C/CQ (n = 5) NR (n = 31) LQ (n = 8) UQ (n = 8) p-values 

Maternal measures     Trt Quart 

GD 35, body weight kg 89.2 ± 5.1 90.4 ± 1.4 85.4 ± 3.6 93.1 ± 2.0 0.770 0.261 

GD 117, body weight kg 96.2 ± 4.4b 84.5 ± 1.5 78.5 ± 3.6a 88.0 ± 2.0ab 0.008* 0.007* 

Gestational weight gain % 8.2 ± 1.6a -6.6 ± 0.5 -8.2 ± 0.8b -5.6 ± 0.5b <0.001* <0.001* 

Uterus, kg (empty) 1.6 ± 0.0ab 1.8 ± 0.1 1.5 ± 0.1a 1.8 ± 0.1b 0.198 0.019* 

Placental Measures       

Placentomes, g 444.7 ± 53.0 501.9 ± 19.6 412.8 ± 30.1 507.1 ± 36.1 0.290 0.190 

Placentome number 71.4 ± 6.2 74.1 ± 2.6 80.6 ± 4.0 74.6 ± 4.7 0.706 0.420 

Caruncles, g 118.2 ± 19.0 113.1 ± 7.2 100.7 ± 6.1 100.1 ± 6.5 0.795 0.411 

Caruncle:dam ratio 1.3 ± 0.2 1.4 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 0.663 0.608 

Cotyledons, g 326.5 ± 36.5 388.8 ± 16.2 312.1 ± 29.7 407.0 ± 32.2 0.156 0.095ϯ 

Cotyledon:dam ratio 3.7 ± 0.5 5.0 ± 0.2 4.3 ± 0.4 5.0 ± 0.3 0.017* 0.096ϯ 

Cotyledonary BF 2.2 ± 0.3 1.7 ± 0.1 1.6 ± 0.2 1.9 ± 0.3 0.113 0.234 

Placenta:fetus ratio 13.3 ± 1.1 15.4 ± 0.5 14.8 ± 0.7 13.9 ± 1.0 0.137 0.522 

Caruncle:fetus ratio 3.5 ± 0.5ab 3.5 ± 0.2 3.7 ± 0.2a 2.7 ± 0.2b 0.985 0.041* 

Cotyledon:fetus ratio 9.8 ± 0.8 11.9 ± 0.4 11.2 ± 0.8 11.2 ± 0.9 0.066ϯ 0.508 

Maternal hemodynamics 
 

  
  

 

Uterine artery BF, ml/min 467.0 ± 61.5 468.9 ± 44.2 ṁ 410.3 ± 57.0 ṁ 474.4 ± 98.2 0.986 0.841 

Maternal MAP, mmHg 119.0 ± 8.6ṅ 104.5 ± 1.8 102.4 ± 3.6 106.9 ± 3.4 0.018* 0.092ϯ 

Maternal S/D         1.38 ± 0.02ab ṅ           1.43 ± 0.04           1.46 ± 0.03a           1.35 ± 0.03b 0.673 0.033* 

Maternal HR. bpm 97.3 ± 4.2 110.2 ± 3.2 109.0 ± 6.9 119.0 ± 5.3 0.126 0.081ϯ 

 Values are reported as mean ± SEM.  C/CQ is the control-fed group, NR is the entire nutrient restricted group, LQ is the lower quartile of NR, UQ is the 

upper quartile of NR, GD is gestational day, MAP is mean arterial pressure, S/D is systolic over diastolic ratio, HR is heart rate. 
ṅ Data available from one fewer animal. 
ṁ Data available from two fewer animals.   
a,b,c Means with different letters are statistically different across quartiles (CQ, LQ, UQ).   
* p < 0.05. 
ϯ  p < 0.10. 
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Table 3-2: Comparisons of fetal organ mass and relative mass between treatment groups (Trt) and quartiles (Quart).  

 C/CQ (n = 5) NR (n = 31) LQ (n = 8) UQ (n = 8) p-values 

Fetus     Trt Quart 

Sternal circumference, cm 30.3 ± 0.5a 30.4 ± 0.3 ṅ 28.8 ± 0.4b 31.8 ± 0.3a 0.920 <0.001* 

Ponderal index 2.0 ± 0.1 2.0 ± 0.0 1.9 ± 0.0 2.1 ± 0.1 0.345 0.241 

CRL, cm 55.2 ± 0.6a 54.3 ± 0.4 52.3 ± 0.5b 56.2 ± 0.6a 0.359 <0.001* 

Tibial length, cm 8.9 ± 0.2 9.0 ± 0.1 8.7 ± 0.1 9.2 ± 0.1 0.452 0.091ϯ 

Fetal hemodynamics       

Fetal MAP 61.9 ± 0.6 59.3 ± 1.7 62.4 ± 1.9 60.0 ± 1.7 0.550 0.807 

Fetal S/D 1.2 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 0.630 0.764 

Fetal HR 176.8 ± 4.5 175.0 ± 4.0 179.2 ± 4.8 174.0 ± 9.4 0.859 0.864 

Brain       

Mass, g 40.9 ± 0.9 43.2 ± 0.6 42.0 ± 1.4 44.1 ± 0.9 0.142 0.159 

Relative wt 12.5 ± 0.7b 13.4 ± 0.3 15.3 ± 0.6a 12.1 ± 0.25b 0.289 0.001* 

Heart       

Mass, g 18.3 ± 1.3a 20.5 ± 0.4 18.3 ± 0.8a 22.6 ± 0.7b 0.073ϯ 0.002* 

Relative wt 5.5 ± 0.3a 6.3 ± 0.1 6.6 ± 0.2b 6.2 ± 0.2ab 0.003* 0.007* 

Pancreas       

Mass, g 2.7 ± 0.2ab 2.8 ± 0.1 ṅ 2.4 ± 0.1a 3.0 ± 0.2b 0.655 0.036* 

Relative wt 0.8 ± 0.1 0.8 ± 0.0 0.9 ± 0.0 0.8 ± 0.0 0.883 0.490 

Kidneys       

Mass, g 18.2 ± 0.9ab 19.0 ± 0.5 16.3 ± 1.0a 20.6 ± 0.7b 0.545 0.007* 

Relative wt 5.5 ± 0.2 5.8 ± 0.2 6.0 ± 0.5 5.7 ± 0.2 0.402 0.668 

Adrenals       

Mass, g 7.6 ± 1.2 6.0 ± 0.5 6.2 ± 1.0 6.5 ± 1.0 0.215 0.691 

Relative wt    0.10 ± 0.01b   0.11 ± 0.01    0.14 ± 0.01a    0.11 ± 0.01a 0.217 0.026* 

Liver       

Mass, g 113.2 ± 6.7ab 117.0 ± 3.1 98.0 ± 5.6a 119.9 ± 3.0b 0.649 0.013* 

Relative wt 34.2 ± 1.1 35.9 ± 0.8 35.4 ± 1.3 32.9 ± 0.8 0.404 0.267 

Lungs       

Mass, g 120.8 ± 1.3ab 119.0 ± 3.2 108.4 ± 5.7a 133.1 ± 6.9b 0.252 0.020* 

Relative wt 36.9 ± 1.7 36.6 ± 0.8 39.1 ± 0.9 36.5 ± 2.0 0.896 0.455 

Spleen       

Mass, g 6.8 ± 1.5 5.5 ± 0.3 4.4 ± 0.5 5.9 ± 0.4 0.163 0.090ϯ 

Relative wt 2.1 ± 0.4 1.7 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 0.132 0.271 

Thymus       

Mass, g 4.0 ± 0.4ab 3.8 ± 0.2 2.9 ± 0.4a 4.7 ± 0.5b 0.730 0.025* 

Relative wt 1.2 ± 0.1 1.2 ± 0.1 1.0 ± 0.1 1.3 ± 0.1 0.712 0.275 

BAT       

Mass, g 12.7 ± 0.4 11.5 ± 0.4 10.9 ± 0.8 12.8 ± 0.6 0.229 0.083ϯ 

Relative wt 3.9 ± 0.2 3.5 ± 0.1 3.9 ± 0.2 3.5 ± 0.2 0.208 0.220 

L.Dorsi       

Mass, g 27.0 ± 2.6ab 26.8 ± 0.8 22.7 ± 1.2a 29.1 ± 1.9b 0.939 0.049* 

Relative wt 8.1 ± 0.4 8.2 ± 0.2 8.2 ± 0.2 7.8 ± 0.5 0.842 0.928 

Values are reported as mean ± SEM.  C/CQ is the control-fed group, NR is the entire nutrient restricted group, LQ is the lower quartile of NR, UQ is the upper quartile of NR, CRL is crown-rump 

length, MAP is mean arterial pressure, S/D is systolic over diastolic ratio, HR is heart rate. 
ṅ Data available from one fewer animal. 
a,b,c Means with different letters are statistically different across quartiles (CQ, LQ, UQ).   
* p < 0.05. 
ϯ  p < 0.10.  
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Table 3-3: Pearson’s correlation values for fetal tissue measures with fetal weight, fetal heart rate, maternal starting weight (GD 35), gestational weight gain (GWG %), cotyledon and caruncle 

weight, maternal mean arterial pressure (mMAP), and uterine artery blood flow (UABF).  

 Fetal weight, kg Fetal HR, bpm GD 35 weight, kg GWG % Cotyledon weight, g Caruncle weight, g mMAP, mmHgṅ UABF, ml/minṅ 

Brain         
Mass, g 0.27 -0.23 0.13 0.15 0.18 0.08 0.16 -0.10 

Relative wt -0.81* -0.02 -0.34ϯ -0.23 -0.46* -0.06 0.06 -0.14 

Heart         

Mass, g 0.80* -0.18 0.20 0.22 0.60* 0.10 -0.11 -0.07 

Relative wt -0.30 -0.11 -0.37* -0.18 0.07 0.002 -0.29 -0.25 

Pancreas         

Mass, g 0.42* 0.14 0.23 0.37* 0.18 0.37* -0.19 0.15 

Relative wt -0.14 -0.18 -0.12 0.14 -0.27 0.11 -0.27 0.12 

Kidneys         

Mass, g 0.52* -0.12 0.46* 0.43* 0.39* 0.33ϯ 0.00 0.10 

Relative wt -0.29 -0.02 0.18 0.18 -0.08 0.23 -0.03 0.03 

Adrenals         

Mass, g 0.00 0.18 -0.15 -0.19 -0.27 0.11 0.19 0.23 

Relative wt -0.51* 0.22 -0.33ϯ -0.35ϯ -0.49* 0.04 0.13 0.13 

Liver         

Mass, g 0.62* -0.11 0.54* 0.30 0.75* 0.32ϯ -0.16 0.19 

Relative wt -0.12 -0.03 0.34ϯ 0.07 0.45* 0.31ϯ -0.31ϯ 0.16 

Lungs         

Mass, g 0.52* -0.30ϯ 0.37* 0.30 0.21 -0.06 -0.14 0.05 

Relative wt -0.29 -0.21 0.04 0.03 -0.25 -0.16 -0.23 -0.02 

Spleen         

Mass, g 0.51* 0.04 0.33ϯ 0.12 0.43* 0.09 -0.09 0.01 

Relative wt 0.18 0.07 0.23 0.00 0.29 0.05 -0.14 -0.03 

Thymus         

Mass, g 0.62* -0.21 0.43* 0.20 0.41* 0.18 0.14 -0.07 

Relative wt 0.39* -0.20 0.38* 0.12 0.32ϯ 0.20 0.09 -0.10 

BAT         

Mass, g 0.50* -0.06 0.23 -0.06 0.20 -0.08 0.14 -0.10 

Relative wt -0.16 0.03 -0.01 -0.33ϯ -0.18 -0.16 0.07 -0.15 

L.Dorsi         

Mass, g 0.69* -0.38* 0.40* 0.25 0.55* 0.20 0.23 0.06 

Relative wt 0.09 -0.44* 0.18 0.05 0.28 0.19 0.24 0.02 

 

 

 

ṅ Data available from one fewer animal. 

* p < 0.05. 
ϯ  p < 0.10.  
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compared to the LQ.  Uterine weights were less for LQ than UQ ewes (p = 0.019), but 

there was no effect of treatment (p = 0.198).  Placentome number, placentome weights, and 

caruncle and cotyledonary weights were not different between treatments or quartiles (p ≥ 

0.190).  Caruncle:dam ratio was not different between treatment groups or quartiles (p ≥ 

0.608); however, the caruncle:fetus ratio was greater for LQ than UQ fetuses (p = 0.042).  

Cotyledon:dam ratio was greater for NR than C ewes (p = 0.017), while the 

cotyledon:fetus ratio was not different within groups.  There were no differences in 

placentome:fetus ratio or cotyledonary BF due to treatment or quartile (p ≥ 0.113).  

 Uterine arterial BF was not different between treatment groups or within quartiles 

(p = 0.841). Maternal mean arterial pressure (mMAP) was lower in NR ewes (p = 0.018), 

but not different among quartiles (p = 0.092). Maternal systolic to diastolic ratio (mS/D) 

was greater in LQ than UQ ewes (p = 0.033), but not affected by treatment (p = 0.673).  

Maternal HR was not affected by treatment or quartile (p ≥ 0.081).  Resistance index (BF 

change/max flow) was negatively correlated with average flow (r(29) = -0.60, p = 0.001; 

data not shown). 

 Dietary restriction did not affect fetal weight (p = 0.824; Figure 3-2), ponderal 

index, crown rump length, sternal circumference, tibial length, fetal mean arterial pressure 

(fMAP), systolic/diastolic ratio, or HR (p > 0.345; Table 3-2).  Of those, fetal weight, 

crown rump length, and sternal circumference were less in LQ than UQ or CQ groups (p < 

0.046).  The distribution of male fetuses was uneven as there was only one male born to a 

control-fed ewe. 

 All fetal measurements and organ weights are summarized in Table 3-2.  Relative 

fetal heart mass was greater in NR than C fetuses (p = 0.003), but absolute heart mass and 
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absolute and relative mass of other organs was not affected by diet.  Absolute weights of 

fetal organs were greater for UQ than LQ for the pancreas, kidneys, liver, lungs, thymus, 

and longissimus dorsi muscle (LD; p < 0.042).  Absolute heart weights were lighter in LQ 

and CQ than UQ fetuses (p < 0.011).  For the remaining organs (brain, adrenals, spleen, 

and brown adipose tissue; BAT) absolute mass was not different among the quartiles (p ≥ 

0.090).  Relative brain mass was greater for LQ than C and UQ fetuses (p < 0.007), and 

relative adrenal mass was greater for fetuses from LQ than C ewes (p = 0.030), while no 

other differences were detected among quartiles (p ≥ 0.220).   

 All fetal organ size correlation values are provided in Table 3-3. The weights of 

heart, pancreas, kidneys, liver, lungs, spleen, thymus, BAT and LD mass in fetuses were 

Figure 3-2: Fetal weight spectrum for all fetuses.  Nutrient restricted (NR) fetuses were divided into 

upper (UQ) and lower (LQ) quartiles.  Control (C/CQ) fetuses are shown in black squares, LQ fetuses 

in red circles, middle 2 quartiles in purple, and UQ fetuses in blue.  LQ fetuses were significantly smaller 

than UQ and CQ fetuses. Control fetuses tended to be smaller than UQ fetuses.  Values are reported as 

mean ± SEM. a,b,c Means with different letters are statistically significant across quartiles (CQ, LQ, UQ).   
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correlated with total fetal mass (p < 0.021).  But, weights of the fetal brain and adrenal 

mass were not correlated with total fetal mass, (p ≥ 0.141).  In NR fetuses, the initial 

weight of ewes was positively correlated with kidney, liver, lung, thymus, and LD mass in 

fetuses (p < 0.039). Gestational weight gain, as a percentage of initial weight (GWG %) of 

ewes, was positively correlated with pancreatic and kidney mass in their fetuses (p < 

0.045).  Cotyledonary mass was positively correlated with heart, kidney, liver, spleen, 

thymus, and LD mass, while caruncular mass was positively correlated with pancreatic 

mass (p = 0.046).  No organ mass was correlated with mMAP or UABF, but LD mass was 

negatively correlated with fetal HR (p = 0.023).   

 Relative brain and adrenal mass were greater in smaller fetuses (p < 0.004).  

Relative thymic mass, however, was greater in larger fetuses (p = 0.032).  Cotyledonary 

mass was negatively associated with relative brain and adrenal mass (p < 0.010), but 

positively correlated with relative liver mass (p = 0.012). Initial body weights of ewes were 

negatively correlated with relative fetal heart mass (p = 0.040), but positively correlated 

with relative thymus mass (p = 0.036).  Relative LD weight was negatively correlated with 

fetal HR (p = 0.007).  Relative organ weights were not associated with GWG %, caruncle 

mass, mMAP, or UABF (p ≥ 0.050).  Relative heart weight was lower in NR female than 

male fetuses (6.1 ± 0.2 NR vs 6.3 ± 0.1 C, p = 0.010).   

 BF comparisons for fetal tissues are summarized in Table 3-4. Pancreatic and renal 

tissue BF were greater in fetuses from C than NR ewes (p < 0.037).  Blood flow was not 

different due to treatment for other organs.  Cerebral tissue from UQ fetuses had higher BF 

than that for LQ fetuses (p = 0.003).  Pancreatic and cardiac tissue from CQ fetuses had 

higher BF than LQ (p = 0.029).  All fetal tissue BF correlation values are summarized in  
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Table 3-4: Comparisons of fetal tissue blood flow (BF) between treatment groups (Trt) and quartile groups (Quart). 

Fetal tissues C/CQ (n = 5) NR (n = 31) LQ (n = 8) UQ (n = 8) p-value 

     Trt Quart 

Brain BF 1.6 ± 0.3ab 1.6 ± 0.2 1.1 ± 0.1a 2.5 ± 0.4b 0.885 0.004* 

Heart BF 4.0 ± 0.9a 2.8 ± 0.2 ṅ 2.1 ± 0.2b 3.4 ± 0.4ab 0.053ϯ 0.029* 

Pancreas BF 1.2 ± 0.1a 0.8 ± 0.1 0.7 ± 0.1b 0.8 ± 0.1ab 0.020* 0.023* 

Kidneys BF 2.1 ± 0.3 1.6 ± 0.1 1.5 ± 0.1 1.7 ± 0.2 0.037* 0.096ϯ 

Adrenals BF 0.3 ± 0.0 0.4 ± 0.0 ṅ 0.4 ± 0.0 0.4 ± 0.0 0.168 0.100 

Liver BF 0.2 ± 0.1 0.2 ± 0.0 ṅ 0.2 ± 0.0 0.3 ± 0.0 0.534 0.351 

Lungs BF 1.2 ± 0.3 0.8 ± 0.1 ṁ 0.8 ± 0.2 0.9 ± 0.4 0.828 0.761 

Spleen BF 5.2 ± 0.7 3.5 ± 0.4 4.5 ± 0.6 4.0 ± 1.0 0.086ϯ 0.579 

Thymus BF 1.5 ± 0.4 1.2 ± 0.1 1.2 ± 0.1 1.5 ± 0.2 0.221 0.426 

BAT BF 1.1 ± 0.1 1.1 ± 0.1 0.9 ± 0.1 1.1 ± 0.2 0.983 0.587 

L.Dorsi BF 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.1 0.551 0.902 

Values are reported as mean ± SEM.  C/CQ is the control-fed group, NR is the entire nutrient restricted group, LQ is the lower quartile of NR, UQ is the 

upper quartile of NR, BAT is brown adipose tissue, L.Dorsi is latissimus dorsi muscle. 

Tissue blood flow is measured in ml/min/g. 
ṅ Data available from one fewer animal. 
ṁ Data available from two fewer animals.   
a,b,c Means with different letters are statistically different across quartiles (CQ, LQ, UQ).    
* p < 0.05. 
ϯ  p < 0.10. 
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Table 3-5: Pearson’s correlation values for fetal tissue blood flow (BF) with fetal weight, fetal heart rate (HR), maternal starting weight (GD 35), gestational weight gain (GWG %), 

cotyledon and caruncle weight, maternal mean arterial pressure (mMAP), and uterine artery blood flow (UABF).   

 Fetal weight, kg Fetal HR, bpm GD 35, kg GWG % Cotyledon weight, g Caruncle weight, g mMAP, mmHgṅ UABF, ml/minṅ 

Brain BF 0.48* -0.34* 0.42* 0.36* 0.18 -0.18 0.11 0.07 

Heart BF 0.50* 0.13 0.17 0.10 0.21 -0.11 0.39* -0.01 

Pancreas BF 0.27 0.13 0.19 0.09 0.29 0.02 0.06 -0.24 

Kidneys BF 0.22 0.14 0.43* 0.10 0.24 0.15 -0.03 0.30 

Adrenals BF -0.13 0.16 0.07 0.02 -0.14 -0.48* 0.32ϯ -0.11 

Liver BF 0.32ϯ 0.28 0.22 0.23 0.25 -0.07 0.01 -0.10 

Lungs BF 0.11 -0.33ϯ 0.01 0.18 0.29 -0.02 -0.01 0.29 

Spleen BF -0.24 -0.22 0.02 -0.04 0.04 -0.32ϯ -0.07 0.01 

Thymus BF 0.27 0.11 0.22 0.01 -0.08 -0.13 0.17 -0.08 

BAT BF 0.08 0.42* 0.21 0.16 0.03 0.20 0.06 -0.02 

L.Dorsi BF 0.10 0.35* 0.09 -0.18 0.15 -0.16 0.07 -0.29 

BAT is brown adipose tissue, L.Dorsi is latissimus dorsi muscle. 

Tissue blood flow is measured in ml/min/g.   

n = 31 
ṅ Data available from one fewer animal. 
ṁ Data available from two fewer animals.   

* p < 0.05. 
ϯ  p < 0.10. 
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Table 3-6: Pearson’s correlation values for hemodynamic and placental variables with fetal weight, maternal starting weight (GD 

35), gestational weight gain (GWG %), maternal mean arterial pressure (mMAP), maternal pulse pressure (mPP), maternal heart 

rate (mHR), and uterine artery blood flow (UABF).   

 Fetal weight, kg GD 35, kg GWG % mMAP, mmHgṅ mPP, mmHgṅ mHR, bpm UABF, ml/minṅ 

Fetal values        

Fetal weight, kg  0.40* 0.34ϯ 0.09 -0.34ϯ 0.24 0.07 

Ponderal index 0.38* 0.04ϯ 0.03 0.02 0.15 0.13 -0.01 

Tibia lengthṁ, mm 0.52* 0.38* 0.30 0.27 -0.38* 0.31ϯ -0.09 

Fetal hemodynamics       

Fetal MAP, mmHg -0.08 -0.31ϯ -0.05 0.37* -0.36* -0.38* 0.27 

Fetal PP, mmHg -0.17 -0.16 0.09 0.44* 0.14 -0.26 0.29 

Fetal heart rate, bpm -0.13 -0.05 -0.34ϯ -0.08 -0.01 0.16 -0.39* 

Uterine & placental values       

Empty uterus, kg 0.32ϯ 0.39* 0.20 0.05 -0.33ϯ 0.39* 0.13 

Cotyledon, g 0.55* 0.42* 0.22 -0.20 -0.48* 0.33ϯ 0.12 

Caruncle, g 0.10 0.26 0.08 -0.25 -0.06 0.33ϯ 0.41* 

Cotyledon BF 0.29 0.22 0.41* 0.17 <0.00 0.15 0.08 

Placentome number -0.08 -0.03 -0.21 -0.06 -0.12 0.24 0.09 

Placentome type -0.32ϯ -0.04 0.09 -0.25 0.23 -0.16 0.15 

Placental:fetal ratio 0.07 0.22 -0.17 -0.42ϯ -0.32ϯ 0.33* 0.16 

Cotyledon:dam ratio 0.40* -0.03 -0.06 -0.13 -0.49* 0.21 0.05 

Caruncle:dam ratio -0.02 -0.02 -0.08 -0.21 -0.06 0.27 0.38* 

Cotyledon:fetus ratio 0.14 0.25 -0.22 -0.35 -0.39* 0.30 0.04 

Caruncle:fetus ratio -0.12 0.04 0.02 -0.34* 0.00 0.21 0.31ϯ 

Tissue blood flow is measured in ml/min/g. 

n = 31 
ṅ Data available from one fewer animal. 
ṁ Data available from two fewer animals.   

* p < 0.05. 
ϯ  p < 0.10. 
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Table 3-5. Brain BF was positively correlated with fetal weight, initial maternal weight, 

and GWG %, but negatively correlated with fetal HR (p < 0.048).  Renal BF was positively 

correlated with initial maternal weight (p = 0.017), while cardiac BF was positively 

correlated with fetal weight and mMAP (p < 0.031).  Fetal HR was positively correlated 

with BAT and LD BF (p < 0.035).   

 Fetal weight was positively correlated with GD 35 maternal weights (p < 0.041 and 

GD 117 maternal weights (r(29) = 0.44, p < 0.030).  All correlation values for 

hemodynamic and placental variables are presented in Table 3-6.  Fetal weights were 

positively correlated with ponderal indices, tibial length, cotyledon weight, and 

cotyledon:dam ratio (p < 0.035).  Uterine and cotyledon weights were greater for ewes 

with greater initial body weights (p < 0.029), and change in maternal body weight, as a 

percentage was positively correlated with cotyledon tissue BF (p = 0.024).  Length of the 

fetal tibia was negatively correlated with maternal pulse pressure (mPP; p = 0.04) and 

positively correlated with GD 35 maternal weight (p = 0.041).  Fetal mean arterial pressure 

was positively correlated with mMAP and negatively correlated with maternal HR and 

maternal PP (p < 0.048).  Fetal pulse pressure was also positively associated with mMAP 

(p = 0.013).  Fetal HR was negatively associated with UABF (p = 0.039).   

 Cotyledon mass, cotyledon:dam ratio, and cotyledon:fetus ratio were negatively 

correlated with mPP (p < 0.024; Table 3-6).  Maternal HR was positively correlated with 

uterine weight and placental:fetal ratio (p < 0.048).  Caruncular weight and caruncle:dam 

ratio were positively correlated with UABF (p < 0.042).  Caruncle:fetus ratio was 

negatively correlated with mMAP (p = 0.046).  
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3.4. Discussion 

 In this study, the range of fetal weights was greater within NR than control fed 

ewes, as seen previously [19, 20, 25], however few fetuses weighing less than 2 SD below 

the control mean were observed and there was overlap between fetuses in the LQ and CQ 

groups.  Despite the lack of extremely small fetuses, the differentials in organ size and BF 

were consistent with asymmetrical FGR growth patterns.  The quartile model developed by 

our team is ideal for this cohort, providing insight into the changes and possible 

pathophysiology behind relative FGR [19, 20].  For the brain and adrenals, relative weights 

increased while BF declined with lower fetal weights in NR ewes.  Pancreatic and kidney 

BF were reduced by dietary restriction. 

 The identified changes are consistent with asymmetrical fetal growth, which is a 

primary indicator of and diagnostic tool for FGR [26].  Depending on the timing and 

severity of insult, NR results in a range of fetal responses [27].  In our study, overall fetal 

size was not affected significantly, which highlights the importance of looking beyond 

fetal weight to identify indices of FGR [17, 27, 28].  Symmetrical growth restriction has 

been linked to constitutionally small fetuses or global insults such as genetic errors and 

infectious or toxic conditions and is considered less severe than asymmetrical fetal growth 

[26].  Asymmetrical fetal growth is associated with a protective response from the fetus, 

intended to save the most vital organs, such as the brain and adrenal glands. 

 The brain sparing mechanism occurs after activation of the carotid chemoreceptor, 

which initiates vagal reductions in fetal HR, and sympathetic vasoconstriction of 

peripheral vessels to redirect BF to the brain [29, 30].  Researchers have demonstrated that 

fetal hypoxemia, secondary to placental insufficiency and/or maternal hypoxia, activates 
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this chemoreceptor [31].  While this may be beneficial in cases of acute hypoxia, chronic 

hypoxia is likely to result in asymmetrical FGR [5].  As with our model, asymmetrical 

FGR has been seen in a variety of NR studies [6, 32], and with demonstrably similar 

physiological outcomes [18, 33]. The carotid receptor is known to be involved in NR fetal 

growth [6], and it can respond to hypoglycemia in addition to hypoxemia [5, 8].  Many 

models of mid- and late-gestational NR of ewes have resulted in various degrees of 

hypoglycemia in the fetus and dam and/or reduced uptake of glucose by the placenta [15, 

34–38]. It is likely that hypoglycemia from NR stimulates the carotid body receptor to 

induce a similar, but possibly slower cardiovascular response [6, 33].  Available evidence 

suggests that NR can elicit a redistribution of BF, causing asymmetrical fetal growth, 

through hypoglycemia, hypoxemia, or a combination of those two factors [4, 30].  

Additionally, Chassen and Jansson theorize that the placenta can partition available 

nutrients by altering expression of transporters, although these global changes have not 

been associated with asymmetrical growth [13]. 

 Our results add to those in which placental weights and UABF are unaffected by 

dietary restriction [28, 38, 39].  Conflicting results are associated with compromised 

placental weights, uterine and placental BF, and capillary development in response to NR 

in mid- to late-gestation [27, 40, 41] while others have showed a compensatory gain in 

placental weight [42].  Placental weight is a marker of nutrient exchange surface area [43], 

particularly since placental and fetal weights are typically positively correlated [39, 44].  

The fetal:placental weight ratio is considered an index of placental efficiency or of FGR 

[43, 45, 46]. When this relationship is not maintained, and a small fetus is associated with 

a large placenta, human offspring have been at higher risk of adult hypertension [47].  In 
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some studies small placental size was more impacted by initial maternal condition than NR 

[45, 48, 49].  While overall placental size, and placentome portions were not impacted by 

diet, there were greater cotyledon:dam weight ratios in NR ewes, and cotyledonary weights 

were directly associated with fetal weights.  Studies in which there has been reductions in 

caruncle [50, 51] or cotyledonary growth in NR ewes [52], or a shift to more C and D 

placentomes than A and B [40], imply the placenta is trying to compensate for NR.   

 In sheep, placentome growth is considered complete by mid-gestation, and late 

gestational changes are primarily increases in capillary area density [27, 53].  In the present 

study, cotyledonary BF was not different between treatments.  Luther et al. identified 

reduced capillary area density within the maternal caruncle, which implied reduced 

caruncular BF in their NR model [54].  Our model did not result in a difference in UABF 

between C and NR dams, but UABF was correlated with the caruncular mass.  Healthy BF 

and a developed vasculature are considered essential to placental nutrient transport, as 

there is a direct relationship between transport efficiency and UABF [32, 55, 56].  The 

effect of NR on UABF can be surprisingly modest and varies widely among studies, likely 

due to differences in severity and duration of NR [35, 57].  A decrease in BF is typically 

associated with an increased vascular resistance [27], which was not detected in the present 

study, but the anticipated negative correlation between resistance index and UABF was 

detected.  It has been theorized that an increase in mS/D ratio may be a compensatory 

mechanism for low placental mass in NR ewes [58].  While we didn’t observe a difference 

in placental weights [59], dams with LQ fetuses did have higher mS/D ratios than UQ 

fetuses.   
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 Our results showed the anticipated fetal response in an FGR sheep model. Fetal 

weights within the NR group were variable, and the fetal growth pattern was asymmetrical, 

supporting a brain sparing pathophysiology.  This indicates that a proportion of fetuses 

responded to reduced nutrients and/or oxygen supply by diverting BF to the brain as the 

top priority for growth/survival.  This theoretically protective response comes at a high 

cost.  Increased systemic vascular resistance directs a higher volume of blood toward the 

lower resistance in the cerebral vasculature.  The developing systemic tissues compromised 

by low levels of oxygen and nutrients then receive even lower quantities of blood.  Lighter 

organ weights from lighter fetuses are not representative of this phenomenon, but the 

specificity of only adrenal and brain weights not declining linearly with fetal weights, and 

relative weights increasing with decreasing fetal weight is highly indicative of this brain 

sparing mechanism.   

 Interestingly, with relatively large brains, yet the lowest measured cerebral tissue 

BF, there is an indication that the brain sparing efforts in the LQ were insufficient to 

protect cerebral tissue development and angiogenesis.  This may indicate that the 

compromise was too severe, or that the theory of brain sparing is based on acute insults, 

not a chronic state of NR.  If BF is low as a result of the brain sparing efforts, cerebral 

tissue angiogenesis could be a potential biomarker for relative FGR severity in terminal 

studies.  The UQ fetuses tended to have greater BF to tissues than controls, which indicates 

that the efforts to increase flow to the brain were successful.  Similarly, cerebral capillary 

density can be reduced during acute hypoxemia [29]. The redistribution hierarchy was 

summarized by Cohen et al. noting that cognitive function will be prioritized initially, by 

an increase in BF to the frontal lobes, whereas in extreme instances it will retreat further 
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and hyperperfuse the brainstem and basal ganglia [2]. In addition to the redistribution of 

flow, hypoxia decreases angiogenic protein expression, and capillary area density in the 

fetal brain [29], which corresponds with the reduced BF we demonstrated. In humans and 

other mammals there are links between low birthweight and lower mental acuity [6].  

 Nutrient restriction in our study caused an increase in relative heart weights. Blood 

flow, however, was highest in cerebral tissue of C fetuses, and lowest in LQ fetuses.  

Circulation to the brain is enhanced by a shift toward higher left ventricular output and 

lower carotid resistance, and increased flow within the ductus venosus [18], while 

simultaneous mechanisms reduce systemic vascular resistance and subsequently right 

ventricular output [9, 60].  Shuttling this pooling blood supply preferentially toward the 

cerebral vessels puts an extra strain on the heart.  The high relative weight of LQ hearts, 

and the low perfusion rate may indicate that while the heart worked strenuously, it was not 

able to sufficiently perfuse itself, despite its hypertrophy.  The relative FGR changes 

resulting from NR, however, can be variable, and may present differently than those linked 

to absolute FGR or hypoxemia [18].  

 The pancreas is a notable victim of the brain-sparing response, as a decrease in B-

cell mass has been described for multiple FGR models [61–63], and diabetes is one of the 

primary concerning DOHaD sequelae [64].  Extensive remodeling of B-cells occurs during 

late gestation [64], so it may be assumed that susceptibility is higher with late insults.  In 

an early NR model, where fetal blood glucose and oxygen were unchanged, pancreatic BF 

was not different between treatments, but variation in sample values was high [18].  

Pancreatic BF was not impacted by heat stress in late gestation [65], but it was greater in 

FGR fetuses following carunculectomy [66].  Results from a study of mid-gestation heat 
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stressed ewes revealed a reduction in pancreatic islet vascularity that was more severe than 

the reduction in fetal weights.  A corresponding reduction in hepatocyte growth factor 

production from pancreatic endothelial cells, and VEGFA from pancreatic β-cells likely 

explained the compromise, and the resulting risk of type-2 diabetes in adults that 

experienced FGR [67].  These results are similar to our findings, with reduced pancreatic 

BFs in NR fetuses.  Even in the UQ, BF to the pancreas tended to be less than that for C 

fetuses.   

 The sentinel variable for FGR might be reduced BF within the renal artery.  

Kidneys have an autoregulatory system in adults that maintains consistent blood pressures 

for appropriate functions.  It is theorized that this system activates in hypoxic situations, 

prior to the brain sparing redistribution of blood [68, 69], although, denervation at the 

carotid sinus prevented the decrease in renal BF [70].  The consequences appear to depend 

on the degree of hypoxemia, as demonstrated in ewes exposed to hypoxic episodes during 

late gestation [71].  Additionally, studies have shown increased flow in the fetal renal 

artery using doppler on NR ewes, that showed no other obvious signs of FGR, including 

stable renal mass [69].  In the present study, renal tissue BF decreased ~35% in NR fetuses 

compared to C fetuses without a reduction in mass or relative mass.  With the exception of 

BF, the mass of the kidneys was positively correlated with fetal weight, maternal weight, 

GWG, and cotyledonary mass.  Given the reduction in BF to the kidneys, it would be 

expected that the fetal kidneys would have fewer, but larger glomeruli, resulting in adult 

kidneys with fewer functioning nephrons, hypertension, and renal disease [69]. 
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3.5. Conclusion 

 Despite the known graded response to NR, with lower fetal weights being 

correlated with greater severity of cardiovascular disease [26, 72], most reports in the 

literature recognize that fetal weight alone is a poor determinant of FGR [43].  While using 

lower fetal weight percentiles can increase the positive predictive value of severe FGR 

cases, a greater proportion of compromised AGA fetuses will not be identified using those 

cutoffs.  The quartiles used by our group provide insight into variations of compromise 

caused globally in NR offspring, versus compromises that may be more severe at lower 

fetal weights.  The correlation of fetal weight with fetal organ weights, with the exception 

of brain and adrenal weights, revealed that relative weights were negatively correlated with 

fetal weights, but not absolute weights of the organs.  It was also interesting that weights of 

cotyledons and cotyledon:dam ratios were correlated with fetal weight, while caruncular 

weights were not.  This same study design has consistently resulted in varied phenotypes.  

When performing necropsies on GD 125 and GD 135, there were higher percentages 

(25%) of NR fetuses below the 2SD cutoff than in the current study (<10%), and 

placentome weights were less for NR than C ewes [20, 25].  Dietary insults may impact the 

dam to a different degree depending on her age, body condition, health, prior acclimation, 

resilience, and duration of restriction.  The level of malnutrition may then impact placental 

growth and angiogenesis depending on the timing and duration of the insult, and placental 

phenotype.  Finally, the fetus may respond to hypoglycemia and nutrient deficiency and/or 

hypoxemia if thresholds are reached.  When making so many comparisons, it is more 

important to identify variations in the response, which we have shown here with the 

quartile model.  
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4. A STUDY OF ANTIMULLERIAN HORMONE (AMH) IN EWES REGARDING 

VARIATIONS IN RESULTS FROM ASSAYS AND VARIATIONS DUE TO DAY OF 

THE ESTROUS CYCLE WITHIN INDIVIDUAL EWES 

 

4.1. Introduction 

 Anti-Müllerian hormone (AMH), a member of the transforming growth factor-β 

superfamily, is produced by granulosa cells of developing follicles in females [1].  

Concentrations of AMH are highest from pre-antral and antral ovarian follicles, and 

correlate with antral follicle counts (AFC) [2], ovarian reserve [3, 4], response to 

controlled ovarian stimulation (COS) [5, 6], and reproductive lifespan [7, 8] in several 

species.  Concentrations of AMH may also correlate with fertility for humans and cattle 

[9–11].  The perceived production value of AMH as a fertility marker, in comparison to 

less consistent and predictive hormones such as follicle stimulating hormone and inhibin, 

led to a rapid entry of AMH to the clinical market.  However, the predictive value of AMH 

is poor within the restrictions of the current testing methods and knowledge. 

4.1.1. Physiology of AMH 

 Concentrations of AMH from growing follicles suppresses FSH-responsiveness 

and aromatase activity for producing estradiol to regulate follicular recruitment and 

selection [9].  After a follicle has been selected for dominance, AMH production ceases, 

allowing aromatase activity to increase.  Remaining antral follicles stop producing AMH 

as they undergo atresia [10].  Concentrations of AMH increase during maturation, reaching 

their zenith during peak reproductive age (5 ng/ml1), and subsequently declining as ovarian 

reserves are depleted.  A lesser peak (1.5 ng/ml1) of AMH concentration occurs perinatally 
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[12], the physiology of which is unclear [13].  Reduced AMH concentrations are common 

with use of hormonal contraceptives (1.9 vs 3.9 ng/ml1) [14] and during late pregnancy 

(0.5 vs 1.69 ng/ml1) [15], and undetectable concentrations are considered diagnostic for 

ovariectomy in women [7], dogs, and cats [16, 17].  Extremely high concentrations of 

AMH (1.9 – 26.1 vs 1.4 – 7.0 ng/ml1) are associated with polycystic ovarian disease [18] 

based on a dysregulation of AMH expression in pathologic follicles, and concentrations 

remain elevated as follicles grow [19].  A heritable aspect (0.28 estimate in Nellore cattle) 

[20] of AMH concentrations may also occur, although environmental factors could impact 

selection potential, including fetal growth restriction which can compromise ovarian 

development and may decrease AMH concentrations [21].   

4.1.2.  Inconsistent testing results 

 Although  AMH concentrations appear relatively stable throughout menstrual and 

estrous cycles [22, 23], cyclical fluctuations could vary enough to misclassify an individual 

depending on timing of the sample collection [9, 24, 25].  Breed differences may be 

responsible for some of the variations with Bos indicus cattle having the highest 

concentrations of AMH, followed by other beef and then dairy breeds [9].  A lack of 

standard testing, and agreed unit of measurement has added to inconsistent results and 

interpretation of AMH values [26].  Other factors which contribute to these discrepancies 

include, test recalls and redesigns, sample instability, inter-laboratory variations, and 

assays which can differ in a non-linear manner [27].  The  clinical value of  AMH 

concentrations in women may be premature based on a lack of industry standards and 

sample consistency [28, 29].  Some testing concerns have been recently addressed [30] 
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with the development of automated kits [31] and an international standard for testing 

uniformity of AMH in women [32].          

4.1.3. Intentions for AMH use 

 Assisted reproductive technologies are key to rapid advancement of desirable herd 

genetics, however, high drug and technical costs can make program development a high 

financial risk for a producer [10, 33].  Having a validated diagnostic marker for fertility 

could mitigate this risk.  Although AMH concentrations and ova production correlate [6, 

34, 35], published values for AMH concentrations in dairy cattle herds vary widely from 

0.01–400 pg/ml [3, 36] to 10–3198 pg/ml [37].  This lack of consistency across studies 

makes diagnostic use of findings challenging, beyond creating cutoff comparisons within 

contemporary groups [6, 9, 33].  Regardless of testing variation, using AMH 

concentrations to tailor COS protocols for women [38–40] has reduced the risks of 

hyperstimulation, increased pregnancy rates (17.9 vs 27.7% live birth rate1) and reduced 

COS costs (averaged 29% costs reduction or $5001,2) [41].  Preliminary studies indicate the 

use of AMH concentrations to tailor COS protocols may also be successful in cattle [6, 9, 

10].   

4.1.4. What changes have been observed for AMH in sheep? 

While much effort has been spent studying AMH in cattle, sheep have received less 

attention despite their high production value worldwide [1, 10]. 

4.1.4.1. Concentrations of AMH in ewes 

 Providing a fertility marker for prepubertal lambs would be a major industry boon, 

to select ewes early based on fertility or response to COS.  Lambs sampled at 3 and 5 

weeks were positively correlated with AFC and in vitro embryo production  at the 5-week 
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time point[35].  Further, samples from ewe lambs at 3.6 months could be used to select for 

fertility at first mating [42].  In a longitudinal study, ewes sampled at multiple prepubertal 

time points had great inconsistency in concentrations of AMH, with peaks occurring in 

different months within the sample group.  Ultimately, these studies determined that 

precocious sampling was not likely to be productive [34] due to the variation in ovarian 

maturation rates, inability to plan for sample timing, and differences between 

contemporary groups.   

4.1.4.2. Variations in AMH during the estrous cycle in ewes 

 At post-pubertal time points, research has debatably linked AMH concentrations 

with AFC, response to COS, and fertility in ewes [1, 33, 34].  Consistent AMH 

concentrations throughout an estrous cycle, and between cycles would allow for repeatable 

results with single time point sample collection.  Studies have shown this can occur [22], 

although proving that there can be high variation is the stronger argument [9, 25].  Waheeb 

et al. demonstrated that follicular phase changes in AMH concentrations may vary enough 

to affect  repeatability of testing among individual cycling ewes [25].  They used hormonal 

stimulation to set up precise testing intervals pre-and post-ovulation.  The lowest AMH 

concentrations (0.9 ng/ml) occurred two days after induction of luteolysis, which 

corresponded with low follicle numbers (4.0 vs 9.7) seen on ultrasound.  The lowest point 

was dramatically different from the high mean of 11.8 ng/ml [25].  Despite these data and 

the contested confidence in other species, many studies with ewes cited the trusted single 

measure repeatability in humans and cattle, to support single time point sampling in sheep 

[1, 43].  To date, no study has assessed individual changes in AMH during a natural 
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estrous cycle in ewes, which may be important in assessing the diagnostic utility of AMH 

concentrations in sheep.  

4.1.5. Study design 

 The predictive value of AMH concentrations for ewe productivity could have a 

major impact for livestock producers in the meat and dairy industries worldwide, 

promoting the selection of top producing ewes for natural and assisted reproduction 

success.  Conversely, further evidence of testing concerns and result inconsistencies could 

suggest a lack of applicability for AMH concentrations in the assessment of fertility.  

Therefore this study aimed  to 1) determine intra-individual variation in AMH 

concentrations in serum to determine the value of  single time point sampling and 2) 

examine inter-individual differences in AMH concentrations and determine whether the 

differences are predictive of response to COS.  Concentrations of AMH were hypothesized 

to have appreciable variability across an estrous cycle, in addition to points of correlation 

between AMH concentrations and COS response.  This study contributes to efforts 

determining whether AMH can be used to select ovine breeding stock and when samples 

for AMH concentration should be collected.   

4.2. Materials & methods 

 Animal use approval was not needed because archival serum samples from a 

previous Texas A&M University IACUC approved study were used (IACUC #2016-0078), 

in addition to serum from privately owned animals. 

4.2.1. Animal data 

 Data were collected and evaluated from two groups of ewes.  Serum was evaluated 

from Hampshire ewe lambs (EL; n = 21) raised on a private show stock farm (MacLennan 
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Club Lambs) in Byers, CO.  Ewes had similar birthdates (± 1 day) and pedigree and were 

intended embryo donors for an embryo transfer program to improve genetic merit of the 

flock.  The second study group included Hampshire cross mature ewes (ME; n = 37) with 

unknown reproductive history and ages, assessed to be older than 12 mo of age, selected 

from a sale barn as embryo donors for an approved research project and maintained in 

College Station, TX.  All ewes (AE) were maintained on pasture, supplemented with 

pelleted diets and had ad libitum access to water and mineral blocks.   

4.2.2. Adolescent and estrous collections 

 The EL were sampled at 4, 5, and 6 months of age (Figure 4-1).  Beginning in 

September, teaser rams were introduced daily to check for heat.  Each EL came into heat 

naturally and completed at least one estrous cycle and was then synchronized to estrus by 

inserting a controlled internal drug release (CIDR; progesterone; Zoetis, Parsippany, NJ, 

USA) intra-vaginally for 12 days.  Ewe lambs displayed standing estrus 2–3 days after 

device removal, and blood collection began 17 days later when they again demonstrated 

standing estrus with a teaser ram.  Blood samples were collected every evening for 18 days 

to ensure that data for a full estrous cycle was obtained.  

4.2.3.  Controlled ovarian stimulation  

 Baseline values for AMH concentration were determined in samples drawn from 

EL and ME prior to initiating COS using standard 4-day FSH protocols [44, 45].  Briefly, 

10 days following insertion of a CIDR in AE, ovulatory stimulation was performed using 

sequentially decreasing doses of follicle-stimulating hormone (FSH), given 

intramuscularly (IM) twice daily for 8 injections (Folltropin; Vetoquinol, Fort Worth, TX, 

USA; 2.5 ml, 1.9 ml, 1.5 ml, and 1.0 ml in ME; 2.2 ml, 1.7 ml, 1.3 ml, and 0.7 ml in EL).  
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After the 6th injection, CIDRs were removed, and ewes were given 4 mL of Lutalyse IM 

(Prostaglandin; Zoetis, Parsippany, NJ, USA).  The day after the final injection, AE were 

artificially inseminated (AI) using standard laparoscopic protocols [44].  New CIDRs were 

placed 3 days later to support the embryos until embryo transfer (ET; standard protocol) 

[44], 6 days following AI.  At the time of collection, ovaries were examined 

laparoscopically, and all corpora lutea (CL) and follicles ≥ 2 mm diameter were recorded.  

Recovered embryos were counted, staged, and graded for each ewe [46].  Serum samples 

were collected from AE prior to COS (baseline), before the 1st and 5th FSH injections (d1, 

d3), prior to AI (dAI), and prior to ET (dET).  

4.2.4. Sample handling 

 Blood samples were collected from jugular venipuncture into 5 ml BD Vacutainer 

SS Plus Blood Collection Tubes (Beckton Dickson, Franklin Lakes, NJ, USA), and were 

allowed to clot for 20 min at room temperature, then centrifuged for 10 min at 2,500 rpm.  

Serum was transferred into new tubes and stored at -20°C for 1–2 years.  Stored serum was 

thawed and analyzed using the Ovine AMH enzyme-linked immunosorbent assay (ELISA) 

kit (AL-155; Ansh Labs, Webster, TX, USA).  Samples were randomized across 20 plates 

and run in duplicate according to manufacturer instructions [1, 47].  The monoclonal 

antibodies used were 7/4A as capture and 37/7 as detection.  Serially diluted standards 

were run in duplicate on each plate, as well as high and low controls.   

4.2.5. Statistics 

 Statistical questions were addressed using SPSS Statistics 26 software (IBM, 

Armonk, NY, USA) and Graph Pad Prism 6.05 (GraphPad Software Inc., La Jolla, CA, 

USA).  Pearson’s correlation coefficients were calculated between AMH concentrations
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Figure 4-1: Study timeline for controlled ovarian stimulation (COS) protocol, and anti-Müllerian hormone (AMH) sample collection in ewes.  Ewe lambs 

were sampled at 4, 5, and 6 months of age, allowed to cycle naturally in the fall, and then synchronized using a CIDR.  Estrous phase sampling began 1 

cycle after CIDR inserts were removed and continued from day O through day 17.  Synchronization with a CIDR was repeated for controlled ovarian 

stimulation.  Six days after CIDR insertion, lambs were given decreasing doses of FSH, injected IM twice daily for 4 days.  The CIDR was then pulled 

and they were given an IM injection of PGF2α to induce ovulation.  The morning following their final FSH injection, they were artificially inseminated, 

and 6 days later they were surgically flushed to collect embryos. 
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and ovarian response values.  Comparisons between experimental groups were evaluated 

using a Student’s t-test.  One-way ANOVA with trend analysis was used to determine the 

effect of COS on AMH concentrations, and a Tukey post-hoc test identified significant 

differences based on sample day.  Cut-off values for AMH were calculated using receiver-

operating characteristic (ROC) analysis, with a target of at least 7 ovarian structures 

following COS, within each experiment group [33].  Results are reported as mean ± 

standard error.  A p-value of ≤ 0.05 was considered significant, and < 0.10 was considered 

as a trend toward significance [48], based on wide variation of sample AMH 

concentrations.   

4.3. Results 

4.3.1. Sample counts 

 A single outlier EL was removed from calculations for AMH concentrations.  From 

20 EL, there were 497 samples, and from 37 ME, there were 154 samples which were 

assayed for AMH concentrations.  Baseline samples were obtained for all ME ewes, but 3 

to 14 samples were missing for the COS collection times from these ewes.   

4.3.2. Assay performance 

 The inter-assay coefficient of variation (CV) was 47.7%.  Intra-assay precision was 

moderate, with CVs 8.1% to 23.8% and a median of 11.7%.  The r2 values for the standard 

curves were 0.98–1.00.  The lowest detectable AMH concentration was 0.14 ng/ml. 

4.3.3. Comparison of averages between groups 

 Ovarian response (OR; total of ovarian corpora lutea and follicle count), collected 

embryos, and transferrable embryo numbers were similar between ME and EL (p ≥ 0.651;  
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Table 4-1: Comparison of ovarian responsiveness between study groups and cutoff divisions 

 Ewe lambs  Mature ewes p-value 

Ovarian response 8.6 ± 0.8  8.1 ± 0.7 0.651 

Corpora lutea 7.8 ± 0.9  7.4 ± 0.7 0.766 

Follicles 0.9 ± 0.2  0.7 ± 0.2 0.641 

Embryos 5.9 ± 0.8  5.5 ± 0.8 0.786 

Transferable embryos 4.5 ± 0.6  4.2 ± 0.7 0.805 

       

 EL-Low EL-High p-value ME-Low ME-High p-value 

Ovarian response 5.3 ± 0.5 10.0 ± 0.9 0.004* 3.9 ± 0.5 10.4 ± 0.6 0.000* 

Corpora lutea 4.8 ± 0.7 9.0 ± 1.0 0.019* 3.1 ± 0.4 9.8 ± 0.7 0.001* 

Follicles 0.5 ± 0.3 1.0 ± 0.3 0.284 0.8 ± 0.3 0.7 ± 0.3 0.811 

Embryos 3.7 ± 0.8 6.8 ± 1.0 0.083ϯ 1.9 ± 0.3 7.5 ± 1.0 <0.001* 

Transferable embryos 3.0 ± 1.0 5.1 ± 0.7 0.103 1.2 ± 0.3 5.9 ± 0.9 0.001* 

Ewe lambs (EL) divided based on ROC baseline AMH cutoff value (1.1 ng/ml) for which ovarian response was ≥ 7 (EL-High), or < 7 (EL-Low) 

Mature ewes (ME) divided based on ROC baseline AMH cutoff value (0.4ng/ml) for which ovarian response was ≥ 7 (ME-High), or < 7 (ME-Low) 

Values are reported as mean ± SEM. 

* p < 0.05. 
ϯ  p < 0.10. 
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Table 4-1).  Baseline AMH values did not differ between ME and EL (p = 0.775; Figure 4-

2).  Concentrations of AMH in serum during COS were higher in EL than ME (p ≤ 0.054;).  

Coefficients of variation during COS were 43.9 ± 4.5% for EL and 62.9 ± 4.8% for ME.  

For EL, baseline values were positively correlated with OR and embryo counts (p < 0.020; 

Figure 4-3) and tended to be correlated positively with transferable embryos (p = 0.097).  

For ME, d1 samples were positively correlated with OR and CL counts (p = 0.043).  

4.3.4. Cutoff values 

 Analysis via ROC identified optimum AMH concentrations to predict ewes with at 

least 7 ovarian structures in response to COS compared with those with fewer than 7 [33].  

Figure 4-2: Anti-Müllerian hormone concentrations of mature ewes (ME) and ewe lambs (EL) during 

controlled ovarian stimulation (COS).  Samples are baseline (before CIDR), at the start of COS (Day 1), 

midway through FSH injections (Day 3), the day of AI , and the day of ET .  Significantly different (p < 

0.05) group means are denoted *. 
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Optimum cutoff values were 1.1 ng/ml AMH for EL and 0.4 ng/ml AMH for ME.  These 

cutoff values gave sensitivities of 89% and 95% with specificities of 55% and 57%, 

respectively.   

4.3.5. Cutoff division comparisons 

 Concentrations of AMH from ewe lambs below their cutoff (ELL) had a lower 

baseline than those above the cutoff (ELH; p < 0.001; Figure 4-4).  Serum AMH 

concentrations during COS did not differ between ELL and ELH (p > 0.123).  The average 

ovarian responses were greater for ELH than ELL (p = 0.028; Table 4-1).  However, ELL 

and ELH had comparable embryo and transferable embryo counts (p > 0.084).  

Figure 4-3: Baseline anti-Müllerian hormone (AMH) concentration correlations with ovarian response in 

ewe lambs and mature ewes.  Cutoff values determined by ROC analysis shown with dotted lines.  

Significant linear correlation (p < 0.05) is denoted *.  
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 Mature ewes with baseline AMH concentrations below 0.4 ng/ml (MEL) had a 

lower average AMH concentration than the division above the cutoff (MEH; 0.2 ± 0.0 vs 

1.7 ± 0.2 ng/ml; p < 0.001).  Concentrations of AMH throughout COS were higher or 

tended to be higher in MEH compared to MEL (Figure 4-4; p < 0.063).  Ovarian response 

for MEH was higher than for MEL (p < 0.001; Table 4-1).  Embryo count tended to be 

higher in MEH than MEL (p = 0.076).  Follicle numbers and transferable embryo counts 

were comparable between MEH and MEL (p > 0.210).   

Figure 4-4: Average anti-Müllerian hormone (AMH) concentrations during controlled ovarian 

stimulation (COS) of mature ewes (ME) and ewe lambs (EL).  Cutoff values of AMH were 0.4 ng/ml for 

mature ewes and 1.1 ng/ml for ewe lambs.  Low values that are significantly different (p < 0.05) from the 

high value in the same cohort are marked with an *, and those that tend toward a difference (p < 0.1) are 

marked with a ^. 
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4.3.6. Values for AMH during the estrous cycle of ewes 

 Figure 4-5 shows all individual AMH concentrations from EL during an estrous 

cycle.  High intraindividual variation occurred with an average CV of 41.0%.  The 

variation was great enough that at least one sample measured above the baseline cutoff 

value in 90% (18/20) of EL, or would have changed that ewes assigned category, for at 

least one day during the cycle.  Two ewes had low to undetectable concentrations 

throughout their cycle and would not have changed categories.  Interestingly, 

concentrations of AMH for those two ewe lambs had the highest and lowest CVs (1.5% 

Figure 4-5: Variation of ewe lamb anti-Müllerian hormone during one estrous cycle.  Each circle 

represents a sample.  The dashed lines demarcate the phases of the estrous cycle. 
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and 76.0%) for their estrous cycles, and CVs were not correlated with the percentage of 

samples consistently above the baseline (p = 0.562).  Average AMH concentrations were 

higher for ELH than ELL at multiple time points during the estrous cycle (Figure 4-6).  

The percentage of samples collected for the 18 days which were above the cutoff was 66.7 

± 5.6% in ELH, which was higher than 34.9 ± 14.5% in ELL (p = 0.022).   

4.3.7. Analysis of blood samples from adolescent ewes 

 At 5 months of age, AMH concentrations of EL positively correlated with OR 

(r(18) = 0.54; p = 0.030) and tended to positively correlate with embryo count (r(18) = 

0.39; p = 0.093).  Concentrations of EL AMH at 6 months tended toward a positive 

Figure 4-6: Anti-Müllerian hormone concentrations in ewe lambs at 4, 5, and 6 months of age, and during one 

estrous cycle.  Day of standing estrus is marked 0E, and samples were collected for 18 days.  Samples are 

divided by the cutoff value of 1.1 ng/ml.  Points where means are significantly different (p < 0.05) between EL-

High and EL-Low are marked with an *, and those that tend toward a difference (p < 0.1) are marked with a ^. 
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correlation with OR (r(18) = 0.39; p = 0.092).  Concentrations of EL AMH from 4 months 

of age were not correlated with ovarian response or embryo counts (p ≥ 0.707).  

Concentrations of AMH were undetectable in 35% of EL at 4 months of age, 15% at 5 

months of age, and 5% at 6 months of age.  Trends for AMH concentrations were 

inconsistent, with 25% of ewes having their highest values at 4 months, 10% at 5 months, 

and 65% at 6 months of age.  

4.4. Discussion 

 Concentrations of AMH had enough predictive utility as a marker of fertility to 

occasionally show correlations with COS response, even though intraindividual and testing 

error variation is high.  However, these correlations cannot compensate for the lack of 

overall baseline information determined.  In EL, peaks in AMH concentrations occurred at 

different ages before puberty.  High CVs across estrous cycles with most fluctuations 

severe enough to change cutoff classification for at least one day of the cycle could also 

limit diagnostic utility of this analyte.  Further, baseline AMH concentrations for ME did 

not correlate with OR or embryo production, while they did for EL.  Although cutoff 

values could be selected for baseline sample predictability of strong COS response, these 

AMH concentration ranges may lack sufficient robustness to translate to other test groups 

or to producer programs.  This conclusion is supported by the incongruency of other AMH 

cutoff values published thus far for sheep [1, 9, 25, 49].  Based on current results and 

possible analysis imprecision, a deficiency in knowledge and dependable equipment to use 

AMH effectively for flock management remains.  



 

89 

 

4.4.1. Prepubertal variations in AMH peaks 

 Producers would gain the most benefit if they could assess the reproductive 

potential in their flock at the earliest possible age to prioritize investment in top 

performers.  In humans and cattle, AMH concentrations increase during the prenatal 

period, peak around 3 months of age and then return to low baseline levels until the 

subjects mature [9].  In sheep, peak AMH concentrations occur at different ages [34], with 

a possible link to peak and low AFC [35], and rates of ovarian maturation[50].  This 

study’s results confirm unpredictable AMH concentration peaks and high intra- and 

interindividual variations in AMH concentrations in EL at 4, 5, and 6 months of age.  

However, concentrations of AMH in serum of EL at 5 mo of age did correlate with OR. 

Although technically possible (though statistically not a good fit) to create cutoffs for 

AMH concentrations from EL at 5- and 6-mo of age to  produce significant differences in 

OR and transferrable embryos, the findings would lack translation to other lamb 

populations.  If EL peak in production of AMH at different rates, a single-point measure of 

AMH in prepubertal EL is unlikely to provide vigorous insight into future reproductive 

potential [34].  However, there may be a diagnostic opportunity for multiple samples over 

the 3–6 mo period for fertility selection from a flock.   

4.4.2. Cyclical variations in AMH concentrations 

 Following puberty, AMH concentrations had continuing high intraindividual 

variations.  Cyclical changes and fluctuations in AMH in blood of humans and cattle 

during menstrual and estrous cycles [23, 25, 51–59] create concern AMH variation could 

cross cut-off lines and impact clinical application of the hormone  resulting in 

recategorizing an individual depending on when samples were collected [57–59].  With 
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90% of EL in this study being miscategorized depending on the sample day, chances of 

crossing cutoffs should be a calculated comparison in future studies to provide more 

insight into clinically relevant fluctuations than CVs.  While using averages for results of 

assays to detect trends and commonalities remains valuable, individual EL AMH 

concentrations obtained during their estrous cycles highlight that generalized curves may 

fail to depict these true clinical values (Figures 4-6).  Additionally, AMH concentration of 

EL in this study failed to follow patterns considered cyclical or responsive to the growth of 

follicular pools or antagonism from estradiol.  Instead, AMH concentration ranges appears 

to be random noise for each individual.  There may be no “best” day to collect samples, as 

the natural changes are inconsistent and seem unrelated to expected AMH fluctuations 

based on follicular growth and other studies [23, 25].  Hypothetically, improvements in 

assays and automation may yield cleaner results, implying that current concentrations are 

different from the true intraindividual or intracycle variation, as has been demonstrated 

with the automated human kits to assay AMH [30]. 

4.4.3. AMH response to controlled ovarian stimulation hormones 

 Expected declines in AMH concentrations during COS are attributed to small antral 

follicles being stimulated to grow into larger, less productive follicles [60, 61].  Most 

studies, across species and protocols, have reported a gradual decline of AMH after the 

initiation of COS and until the induction of ovulation [61–64].  Response to COS was 

examined in both cohorts of ewes, with surprisingly incongruent results.  Average AMH 

concentrations were higher for EL than ME, with the exception of baseline samples.  There 

was a gradual decline of AMH concentrations in ME until ovulation induction, as 

expected.  Values for EL, on the other hand, increased after CIDR insertion and initial FSH 
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injections, with declines toward AI and ET.  This pattern resembles the “hyperresponsive” 

profile of a polycystic ovary syndrome response in humans [65], which could exemplify 

the greater variation sometimes seen in samples from younger women [51–56], Or could 

be a normal physiologic process in sheep which have been selected for centuries to 

produce more than one lamb. 

4.4.4. Testing method and quality may alter results 

 In the current study, intra- and inter-assay variability indicated some individual 

variations could have a technical origin.  Testing challenges are common for measurement 

of AMH concentrations in humans.  Ovine testing varies from studies using human kits 

validated for use in sheep [13, 34, 35, 42, 66], to the use of ovine-specific assays [1, 25], or 

modification of those ovine assays to increase sensitivity [33].  Discrepancies in published 

average and range values, and even units of measurement across these studies, reflects the 

lack of an international standard for ovine AMH measurement.  Despite decades of 

research and extensive development and external reviews of AMH test kits, the human 

reproductive health industry continues to report high method and site testing biases [67, 

68], which should be regarded as a cause for concern for the less-investigated sheep 

methods [27, 39, 69–71].  The World Health Organization (WHO) recently developed a 

universal standard for human AMH in order to improve agreement of kit assays and 

diagnostic laboratories [26, 32].  During the WHO validation process, assay results for the 

standard ranged from 282 ng/amp to 1157 ng/amp across 16 methods after 5 methods were 

excluded for lack of linearity [26, 32].   

 Although high inter-assay CVs is not directly related to the discussed method bias, 

the lack of standardization and agreement of assays may limit troubleshooting and efforts 
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to improve detection of AMH.  Direct factors that could impact testing should also be 

considered.  While sample handling may have caused inconsistencies in AMH 

concentrations in the past [72], newer kit designs have greater consistency regardless of 

refrigeration intervals or freeze-thaw cycles [68, 73, 74].  This enhancement may be due to 

newer assays use of multiple antibodies to bind epitopes of different isoforms of 

circulating AMH [71, 75, 76], consequently recognizing cleavage-products and active 

variants similarly.  Inter- and intra-assay CV values for Ansh Labs’ kits have been 

acceptable in other studies  (< 8.3%) [1, 33, 77].  However, samples have not been assayed 

for AMH in duplicate in all sheep studies [33, 47], others have not reported CVs [47], or 

did not use the Ansh Labs kit [13, 35].  Based on low CVs of duplicate standards and high 

r2 of the standard curves, plating and reagent errors could have contributed but are less 

likely to be responsible for the variation in this study than interfering sample components.  

Continued improvements in AMH assays may yield more reliable results to detect true 

variations in concentrations of AMH for an intraindividual or intracycle basis as 

demonstrated by the automated human kits for AMH assay [30].  

4.5. Conclusion 

 Values for AMH concentrations were identified in each experimental group that 

would provide a reasonable selection tool for improved ovarian responsiveness in ewes.  

However, based on variations in test results, testing errors, maturation rates, and natural 

intraindividual fluctuations during the estrous cycle, serum AMH concentrations reported 

here are unlikely to translate to future studies or real-world use.  Prepubertal lambs and ME 

from sale barns are the most critical populations to assess for reproductive potential, as 

these are decision points for flock management, and testing did not show promise within 
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either group.  Applying new universal human standards to assays for ovine AMH may 

standardize results across labs and testing methods to improve understanding of AMH and 

its utility in assessing reproductive performance.  Regarding the applicability of using 

AMH as a screening test in prepubertal or even mature ewes, the need remains to 

understand the relationship between AMH values and ewe reproductive performance 

before the results are of real value to producers.   

4.6. Endnotes 

1 Representative values were selected from studies in women related to a published range 

[12] to provide context for the discussed changes in AMH concentrations in ewes.  Due to 

the variation in AMH concentrations across studies, and species of interest, values chosen 

were not comprehensive. 

2Calculated based on inflation rate since 2011 and currency conversion from British 

Pounds to US Dollars. 
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5. CONCLUSION 

5.1. Broad perspectives 

 These experiments highlighted the importance of broad perspectives and avoiding 

myopia in valuable research.  The assessment of anti-Müllerian hormone (AMH), for 

instance, holds so much promise for livestock producers and human fertility experts, that 

successful projects which confirm the desired goals overshadow those which advise 

caution.  For both fetal growth restriction (FGR) and AMH, there are broad ranges of 

research results so contradictory that none should be viewed in isolation.  Real world 

examples of this might be: rejecting a client for a fertility procedure due to low AMH, 

without knowing to inquire if she was on hormonal contraceptives, or interpreting FGR 

study results for an obese subject in a similar manner to a slighter framed female, because 

the experimental treatments were the same.  In these instances, there is little benefit to 

limiting physiological complexities to singular cause and effect outcomes.   

 The AMH literature is saturated with arguments for and against intracycle variation 

significance, including impassioned letters to the editor [1] and challenges to manuscript 

authors [2–4].  Additionally, review articles and assay critiques [5–8] pick apart the current 

state of AMH research.  Meanwhile, singular studies on 50 cows report affirmative 

outcomes with little mention of a controversy [9], or repeat the claim that AMH is highly 

repeatable despite other evidence [10, 11].  It is likely that the high degree of 

interindividual difference in AMH concentrations has a strong relationship with ovarian 

yields and fertility, although clear and consistent results may not be realized until newer 

assays are validated for use in sheep.  However, clinical interpretations of AMH should 

always be based on an understanding of factors that might impact a clients’ test results.  
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Uterine or ovarian pathology, pregnancy, heredity, hormonal contraception, and even 

phases of an estrous cycle can impact AMH and cause concentrations to be inconsistent 

with the clinically intended assessment of fertility or COS response. 

 For FGR, it was important to look beyond the results from a portion of agreeable 

studies.  Rather than determining that NR doesn’t cause placental pathology, researchers 

conceptualized how extreme within-model fetal variation could relate back to the diet.  

Reductions in blood flow, placental mass, oxygen, or glucose may not occur to an 

appreciable level in every study but noticing when their appropriate or deficient levels 

relate back to the study outcome may provide new insights.  In other words, recognizing 

when results aren’t repeatable, or publications differ, is when the simple concepts of input 

and output erode, and the understanding of intricate pathophysiology begins.   

 The introduced placentomectomy technique is an ideal tool to deepen 

understanding of FGR beyond endpoints.  Results have already identified decreased 

placentome volume and feto-maternal exchange area, as well as altered expression of 

amino acid transporters in a nutrient restriction model [12], and would be expected to 

provide evidence of reduced angiogenesis if treatment conditions created an insufficiency.  

In theory, consistent measurement of fetal glucose and oxygen levels, and 

placentomectomy samples could help define many of the physiological changes that cause 

FGR, and specifically what level of deprivation that creates for the fetus.  Unfortunately, 

they are all slightly invasive interventions since post-partum fetal oxygen levels could be 

impacted by parturition.  Standardization for fetal weight categories, and other fetal 

measures to assess could also enhance the learning objectives of the diverse groups 

involved in the field. 
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 Enthusiasm and eagerness to find answers with new tools may inadvertently bypass 

the learning necessary to interpret them.  Sharp et al. also cautioned against the maternal 

bias that appears ubiquitous in the field, with a resultant self-actualizing array of dam-

specific studies [13].  This is a sound critique of the FGR literature, as results are typically 

assessed from the perspective of the intended input variables, and better efforts should be 

made to assess for contributions from lesser factors as well.    
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