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ABSTRACT 

 

This study proposes a highway driving strategy for autonomous vehicles.  

First, a model predictive control (MPC)-based trajectory planner is built based 

on a kinematic model. A series of candidate strategies are created and form a strategy 

space. With the model and prediction of surrounding vehicles’ movements, the MPC-

based planner, according to the candidate strategies, generates feasible trajectories. 

Next, a decision-making payoff function is applied to select the best trajectory. The 

payoff function consists of four terms, including lane-changing incentive, cost of 

controls, cost of risk, and cost of a late lane-changing decision. This decision-making 

payoff function will select the best trajectory, but this trajectory only provides 

longitudinal acceleration information. 

To maneuver a vehicle, the controller should involve lateral movement. We 

proposed a yaw rate profile approach as a strategy space for lateral controls. Given 

longitudinal acceleration, each yaw rate profile will lead the vehicles to a different 

lateral position, and the one that drives the vehicle to the center of the target lane is the 

best yaw rate profile. While the vehicle is changing to the target lane, the best yaw rate 

profile keeps updating. However, because the method to update does not consider the 

initial error so it fails in some cases. To cope with this issue, an MPC-based path 

tracking controller is introduced to minimize the error while making the vehicle 

operating within certain constraints. 
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Two simulations are created. The first simulation is to test the decision-making 

payoff function; with a larger weight designed for lane-changing incentive, the 

autonomous vehicle is more aggressive and more willing to take risks to achieve the 

lane with higher average speed. The second simulation is designed to show that with 

the MPC-based path tracking controller, the autonomous vehicle is able to overcome 

the problems caused by the errors and successfully changes to the target lane. 
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NOMENCLATURE 

 

Acronyms 

ACC Adaptive cruise control 

AV Autonomous vehicle 

IDM Intelligent driver model 

MPC Model predictive control 

PV Preceding vehicle 

SV Subject vehicle 

SRV Surrounding vehicle 

TTC Time-to-collision 

TV Target vehicle 

TPV Target vehicle’s preceding vehicle 

V2V Vehicle-to-vehicle 

 

Symbols 

𝐶  Constant distance SV wants to maintain between itself and  

surrounding vehicles 

𝐶𝛼𝑓  Front tire’s cornering stiffness 

𝐶𝛼𝑟  Rear tire’s cornering stiffness 

ℎ  Slack variable 

ℎ𝑟  Minimal TTC during the time when SV changes lane 
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ℎ𝑡ℎ𝑟𝑒𝑠  Soft threshold of minimal TTC during the time when SV  

changes lane 

𝐻𝑟  Minimal time headway during the time when SV changes lane 

𝐻𝑡ℎ𝑟𝑒𝑠  Soft threshold of minimal time headway during the time when  

SV changes lane 

𝐼𝑍  Moment of inertia of the vehicle 

𝐽  Cost function for MPC-based path tracking controller 

𝐽0  Cost function for the MPC-based trajectory planner 

𝑘  MPC step index 

𝑙𝑓  Longitudinal distance from center of mass to the front tire 

𝑙𝑟  Longitudinal distance from center of mass to the rear tire 

𝐿  Lane width 

𝑚  Mass of the vehicle 

𝑁  MPC prediction horizon 

𝑁′  The step that SV crosses the lane marking and changes to the  

 target lane 

𝑝𝑖 Vehicle i’s longitudinal position 

𝑃  Peak values of yaw rate profiles 

𝑄 Weight of deviation from reference outputs 

𝑄𝑣  Weight of the SV’s desired speed 

𝑅  Weight of increment of steering angle 

𝑅ℎ  Weight of the slack variable 
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𝑅𝑢  Weight of SV’s longitudinal acceleration 

𝑇𝑑𝑒𝑠  Desired time headway in IDM 

𝑇𝐿𝐶  Time that lane changing takes 

𝑇𝑆  Sampling time 

𝑇𝑈  Time SV previews in the future to evaluate the lane-changing  

 incentive 

𝑢𝑎  SV’s longitudinal acceleration 

𝑢𝐼𝐷𝑀  Acceleration command of IDM 

𝑢𝑠  SV’s steering angle 

𝑈𝑐  Cost of controls 

𝑈𝑆𝑉  SV’s total payoff 

𝑈𝑙  Cost of a late lane-changing decision 

𝑈𝑟  Cost of risks 

𝑈𝑣  Lane-changing incentive 

𝑣𝑑𝑒𝑠  SV’s desired speed 

𝑣𝑖  Vehicle i’s velocity 

𝑉𝑑𝑒𝑠  Desired velocity in IDM 

�̇�  Longitudinal velocity in the body frame 

𝑋  Global 𝑋 axis coordinate, direction along the road 

�̇� Lateral velocity in the body frame 

𝑌 Global 𝑌 axis coordinate, direction vertical to the road 

z Outputs 
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𝜙 Heading angle 

�̇� Yaw rate 

Φ  Strategy space of yaw rate profiles 

𝜉  States 

 

Note: The subscript, 𝑖, in 𝑝𝑖 and 𝑣𝑖 indicates the belonging of this variable. For 

example, if 𝑖 = 𝑆𝑉, 𝑝𝑆𝑉 is SV’s longitudinal position.   
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1. INTRODUCTION 

 

1.1. Background and Motivation 

Autonomous vehicles (AV) are believed to assist humans, make roads safer, and 

improve traffic in the future. Currently, some related technologies are well developed 

and implemented on modern cars. These technologies are also known as advanced 

driver assistance systems (ADAS), including lane keeping, adaptive cruise control 

(ACC) [1], blind-spot monitor, and automatic emergency braking. The ultimate goal of 

autonomous vehicles is to drive without human intervention. Furthermore, through 

vehicle-to-vehicle (V2V) communications, AVs will be able to share traffic information 

and, in turn, to avoid collisions. However, before V2V is widely used, AVs should 

interact with human drivers. Interactions with human drivers involve intention 

estimation and decision making, which usually require prior experiences. Therefore, 

AVs need to be as intelligent as experienced drivers, proficient at making a correct 

decision and driving safely. 

One of the common maneuvers is to change lane. To ensure safety, AVs have 

to act like human drivers, including making decisions and driving predictably. Three 

main tasks are involved during lane changing, which are prediction, evaluation, 

execution. Prediction is to predict the motion of surrounding vehicles. After prediction, 

drivers evaluate the feasibility of their strategies. Finally, a driver executes if it is 

feasible or abandons the intention if it is not. Those are what a human driver usually 

needs to consider while driving on the highway. Those tasks seem simple for humans, 
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but if we want to implement on computers used for AVs, we need well-organized logic 

in programming for AVs to mimic human behaviors.  

1.2. Terminology 

Some terms are defined in this article for convenience. First, the AV we want to 

design and control is called subject vehicle (SV). Target vehicle (TV) refers to the 

vehicle that SV is interacting with or SV may interact with. It is possible to have 

multiple TVs simultaneously. Other vehicles nearby but not necessarily strongly 

affecting SV are called surrounding vehicles (SRV). TV is one particular case of 

surrounding vehicles (SRV). The difference between TV and SRV is that TV and SV 

are strongly interacting with each other. For example, TV is trying or probably will try 

to enter the gap in front of SV or vice versa. The vehicle in front of SV is called PV 

(preceding vehicle), and the vehicle in front of TV is called TPV (target vehicle’s 

preceding vehicle) as shown in Figure 1.1. 

 

Figure 1.1 Vehicle naming 

Two risk indicators are often used to evaluate how risky the situation is between 

two vehicles [2]. The first one is time headway. Time headway is the time between two 
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successive vehicles passing the same point or is represented as the distance between 

two vehicles divided by the rear vehicle’s velocity. The second indicator is time-to-

collision (TTC). TTC is the time that would take a rear vehicle to collide with a leading 

one if both vehicles’ speeds are maintained. It equals relative distance divided by 

relative speed while the following vehicle is faster than the leading vehicle so that the 

value of TTC should always be positive. 

1.3. Literature Review 

This literature review includes trajectory planning, decision making, and control 

of the vehicle system. 

1.3.1. Trajectory Planning 

There are different kinds of trajectory planning approaches for autonomous 

vehicles, and they are categorized into different types.  

Dijkstra’s algorithm is a search-based approach to find a path [3]. To build the 

path, this algorithm first determines two nodes and then finds the shortest path between 

the two points by connecting a series of other nodes. This approach is useful in an 

unstructured environment, but it needs to evaluate all the nodes because it sees all the 

nodes as equal. If the environment is vast, it takes even more time. Therefore, [4] 

constructs an augmented graph for nodes to bounded the solving time.  

A* is another search-based approach, and it introduces heuristic to the searching 

algorithm, which helps reduce the amounts of nodes needed to be evaluated [5]. 

However, it is hard to determine a heuristic rule suitable for different scenarios. That 

the resulting path is not continuous and that this algorithm takes much time to calculate 
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are two disadvantages of the search-based approach for autonomous vehicles. Although 

they can be designed to avoid obstacles, in a dynamic environment, that procedure is 

time-consuming.  

 A sampling-based approach, Rapid-Exploring Random Tree (RRT) [6, 7], 

evolutes nodes by randomly searching in its search space, so it is adaptable in an 

unknown environment. Besides, this approach is capable of operating the vehicle within 

kinematic constraints. However, because it randomly searches the nodes, the resulting 

path is often too jerky for vehicles to track. 

[8] uses discrete strategy space combined with a cost function to plan the 

trajectory. The authors first generate many speed profiles within a range of acceleration 

and then discretize the strategy space. A prediction engine will simulate all the scenarios 

and use a predefined cost function to calculate the cost of each trajectory. The cost 

function includes factors like progress cost (deviation of desired headway), comfort 

cost, safety cost, and fuel consumption cost. 

Another technique to generate trajectories is curve-based algorithms. One 

application of curve-based trajectories is to combine segments of curves via a search-

based approach to produce a smooth trajectory. In [9], the authors first find endpoints 

for future trajectories, connect them with polynomial functions, and finally, use 

boundary conditions on the points to derive the parameter in the polynomial function. 

The curve-based algorithm’s advantage is that the speed and curvature are smooth since 

they are polynomial function. The other type is to generate a piecewise curve for 

executing lane changing. [10] applies polynomial functions, and [11] applies Bezier 
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curve. The advantage of piecewise curves is their continuity and simplicity. On the 

contrary, they require a predefined speed to track the curve. However, during highway 

driving, drivers need to adjust their speed sometimes even during lane changing to 

maintain the gap between the front and rear vehicles, especially when the front vehicle’s 

speed is not constant. 

Model predictive control (MPC) is also applied to motion planning for 

autonomous vehicles. [12] and [13] use MPC to generate multiple feasible trajectories 

and design payoff functions to evaluate the payoff of each candidate trajectory. Finally, 

the trajectories with the maximal payoff are used. The advantage of MPC is that it 

involves the vehicle model, allowing MPC to consider actuator constraints when 

designing the path. The main drawback of this approach is that MPC relies on the 

precision of the predefined model but when increasing the model fidelity, it requires 

high computing ability.  

1.3.2. Decision Making 

Some trajectory planning algorithms generate a series of feasible trajectories 

and then find the best trajectory among all. Some trajectories result in keeping driving 

on the current lane, and the others lead to change lanes. On the other hand, some 

trajectory planning approaches decide whether to change to the adjacent lane before 

planning the trajectory. The first type embeds lane selecting in the pathfinding 

algorithm itself, and the second type chooses a lane followed by pathfinding.  
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The first type of decision-making approach usually relies on a payoff function 

to select the best trajectory. Some essential factors in the payoff function are safety 

payoff, speed, smoothness, control effort (acceleration) and comfort (jerk) [14, 15]. 

The second type of decision-making approach determines to change lane based 

on the current situation. [16] develops a driving model to make decision whether to 

change lane. They build the driving model by using probability and support machine 

vector (SVM) [17] and then train the model with the Next Generation Simulation 

(NGSIM) data [18]. Knowing the distances between surrounding vehicles and TV as 

well as TV’s movement, the model can show the probability of each maneuver (turn 

left, turn right, or keep straight) TV is going to perform in the next step. [19] proposes 

feasibility criteria for lane changing and merging situations. The feasibility depends on 

relative position, relative speed, and distance to the merging point (for merging case). 

1.3.3. Control of the Vehicle System 

To track the reference trajectory, controllers are designed for AVs to drive 

vehicles. Most of the controllers are built upon the bicycle model, a simplified vehicle 

dynamics model [20]. The inputs of this system are acceleration and steering angle. In 

[21], the acceleration is determined by feedforward desired velocity and velocity 

feedback. As for the steering angle, the author manage to minimize the lateral offset 

between the lookahead point and the trajectory by adopting backstepping control to 

ensure control robustness. 

[22] constructs paths through points and smooth curves and select the final path 

through a reward function. It decouples the longitudinal and lateral control and forms a 
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simple high-level planner and a complex low-level controller. Higher level is used to 

send a steering angle command based on lookahead point and curvature of the reference 

path while low-level controller adopts artificial potential field to send an acceleration 

command. However, the longitudinal control does not consider the rear vehicle in the 

target lane. 

On top of the bicycle model, a higher fidelity model is adopted by considering 

the details of the tire model. [23] builds a more complex model to derive more reliable 

input-output relations. The authors assume the vehicle travel at a constant speed, so 

there is no acceleration input. As for the steering angle, they use nonlinear MPC to send 

commands to the controller to track the desired heading angle and lateral position. 

[24] compares several tracking methods and finds out that MPC has outstanding 

performance regarding lateral errors and angular errors since it can handle constraints 

and collision avoidance. 

1.3.4. Model Predictive Control (MPC)  

Model predictive control is widely used for control problems. For example, 

automotive, aerospace, and chemical plants apply MPC to control the systems. Given 

current states, MPC finds an optimal sequence of control inputs for a finite time horizon 

(also called receding horizon predictive control). The first input of the sequence is then 

sent to the model and calculating the optimal input series again for the next horizon. 

Therefore, although MPC does not apply feedback control, the correction is already 

built-in because it computes optimal inputs periodically and set the initial condition at 

each sampling time.  
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To determine optimal inputs, MPC requires two essential elements, a prediction 

model and a cost function [25]. Furthermore, due to several advantages of MPC, 

including constraints handling, preview capability, and the fact that it is able to apply 

to multi-input multi-output systems, it is used in studies of autonomous driving such as 

[12, 13, 23, 26]. 

1.4. Organization of the Thesis and Objectives  

Because of the dynamic environment on highways, AVs are required to perform 

efficient algorithms and be able to adjust their own velocity to react to the surrounding 

vehicle’s movements. Thus, this work proposes a two-stage model predictive controls. 

The first-stage MPC plans the path for AV’s kinematic model. The second-stage MPC 

addresses longitudinal and lateral control to track the path. At this stage, the lateral 

vehicle dynamics model is linearized at each time step according to the longitudinal 

velocity, simplifying the model and reducing model mismatch due to varying velocity.  

This thesis is organized as follows and a schematic diagram of the framework 

is shown in Figure 1.2. 

presents the basic knowledge about autonomous vehicles and related research 

in the past. 

Chapter 2 is about motion planning. After observing and estimating surrounding 

vehicles, MPC-based trajectory planner will generate a series of feasible trajectories. 

The trajectories generated are evaluated by the decision payoff function, and the one 

offering the best payoff is used as a reference trajectory. However, this trajectory only 

includes information about the longitudinal movement.  
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Chapter 3 is about path tracking. In the beginning, the vehicle dynamics model 

is introduced. Next, this study proposes a yaw rate profile approach. Combining the 

yaw rate approach and the reference trajectory generated in Chapter 2, the MPC-based 

path tracking controller controls the lateral movement and tracks the trajectory. 

Chapter 4 shows the simulation results of the designs and validates if the 

proposed method is applicable. 

Chapter 5 concludes this work and discusses future work. 

 

Figure 1.2 Schematic diagram of the frame work 
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2. MOTION PLANNING 

 

In this section, a motion planning model will be developed. First, an MPC-based 

trajectory planner will give out several feasible trajectories considering the constraints. 

Next, a decision-making payoff function selects the best trajectory regarding some 

important factors. 

2.1. Trajectory Planning 

In section 2.1, the vehicle kinematic model and the strategy space of SV are first 

defined. Next, SV’s trajectory candidates will be generated through model predictive 

control (MPC) for each strategy.  An MPC-based trajectory generating method has been 

proposed in previous work [12]. Here, we reformulate it to match this work and solve 

it for the sake of completeness.  

2.1.1. Vehicle Kinematic Model 

The vehicle kinematic model is used for trajectory generation. To control the 

vehicle, we still need a vehicle dynamics model, which will be presented in chapter 3. 

The kinematic model (2.1) is the longitudinal kinematic of SV. 

 
[
𝑝𝑆𝑉̇ (𝑡)

𝑣𝑆𝑉̇ (𝑡)
] = [

1 0

0 1
] [

𝑝𝑆𝑉(𝑡)

𝑣𝑆𝑉(𝑡)
] + [

0

1
] 𝑢𝑎(𝑡) (2.1) 

where 𝑝𝑆𝑉 𝑣𝑆𝑉, and 𝑢𝑎 are the longitudinal position, velocity, and acceleration of SV 

respectively. The model in the form of discrete time is as (2.2), 
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[
𝑝𝑆𝑉(𝑘 + 1)

𝑣𝑆𝑉(𝑘 + 1)
] = [

1 𝑇𝑠

0 1
] [

𝑝𝑆𝑉(𝑘)

𝑣𝑆𝑉(𝑘)
] + [

0

𝑇𝑠

] 𝑢𝑎(𝑘) (2.2) 

where k is the discrete time index and 𝑇𝑆 is sampling time. 

As for SV’s lateral movement, at the stage of trajectory planning, SV is assumed 

to drive at a constant speed to the target lane. The separation of longitudinal and lateral 

movement will temporally yield a non-smooth path. This will be addressed in chapter 

3, where the control of vehicle dynamics is designed. 

2.1.2. Strategy Space 

The strategy space of SV involves two factors, to select a target vehicle (TV) 

from surrounding vehicles and to choose the best timing to change lane. 

Before selecting a TV from SRVs, SV has to define the scope of the option. 

Although it is better to consider as more SRVs so that SV will not miss any chance to 

find the best gap to enter, we need to confine the strategy space to make the algorithm 

efficient. Therefore, a feasible region is defined, and SRVs located in that region will 

be seen as TV candidates. As shown in Figure 2.1, the upper limit of the feasible region 

is 𝐿𝑓 meters ahead of SV, and there is no lower limit. Three closest vehicles within this 

range in the adjacent lane are the TV candidates. 
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Figure 2.1 Feasible region 

The other strategy space is the timing to change lane. After knowing the TV 

candidates, SV needs to decide the best timing to enter the gap for each of the TV. In 

section 2.1.3, the MPC-based trajectory planner will determine a trajectory for each 

timing option. There is also an upper limit timing to change lane, and that timing is the 

last moment in the prediction horizon of MPC. The prediction horizon is denoted as 𝑇𝐻, 

so the timing strategy space ranges from the current time to 𝑇𝐻. Furthermore, to make 

the duration of decision making small, we discretize the strategy space as shown in 

Figure 2.2. 

 

Figure 2.2 Lane change timing 
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2.1.3. MPC-based Trajectory Generator 

The function of MPC is to generate the optimal trajectory based on each strategy. 

The way it defines optimal is to find a trajectory that minimizes a predefined cost 

function. In this work, the cost function is taken as 

 𝑚𝑖𝑛
𝑢𝑎

 J0(𝑣𝑠, 𝑢𝑎, ℎ) = ∑ 𝑄𝑣|𝑣𝑠(𝑘) − 𝑣𝑑𝑒𝑠|
2 + 𝑅𝑢|𝑢𝑎(𝑘)|2 + 𝑅ℎ|ℎ(𝑘)|2

𝑁

𝑘=1

 
(2.3) 

subject to  

 𝑣𝑠(𝑘) ≥ 0 (2.4) 

 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑎(𝑘) ≤ 𝑢𝑚𝑎𝑥  (2.5) 

 ∆𝑢𝑚𝑖𝑛 ≤ 𝑢𝑎(𝑘) − 𝑢𝑎(𝑘 − 1) ≤ ∆𝑢𝑚𝑎𝑥 (2.6) 

for 1 ≤ 𝑘 ≤ 𝑁′ 

 𝑝𝑠(𝑘) ≤ 𝑝𝑃𝑉(𝑘) + ℎ(𝑘) − 𝐶 (2.7) 

for 𝑁′ + 1 ≤ 𝑘 ≤ 𝑁 

 𝑝𝑠(𝑘) ≤ 𝑝𝑇𝑃𝑉(𝑘) + ℎ(𝑘) − 𝐶 (2.8) 

 𝑝𝑠(𝑘) ≥ 𝑝𝑇𝑉(𝑘) − ℎ(𝑘) + 𝐶 (2.9) 
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where 𝑁 is the prediction horizon, and 𝑁′ is the step that SV crosses the lane marking 

and changes to the target lane. 𝑢𝑎(𝑘) is SV’s longitudinal acceleration, i.e., a control 

input. ℎ(𝑘)  is the slack variables in constraints. 𝑣𝑠  is SV’s velocity. 𝑣𝑑𝑒𝑠  is SV’s 

desired velocity. 𝑄𝑣 is the weight of the SV’s desired speed. 𝑅𝑢 and 𝑅ℎ are the weights 

of 𝑢𝑎 and ℎ. 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are lower and upper bounds of the control input 𝑢𝑎. ∆𝑢𝑚𝑖𝑛 

and ∆𝑢𝑚𝑎𝑥 are the bounds of 𝑢𝑎(𝑘) − 𝑢𝑎(𝑘 − 1). 𝑝𝑠 is the SV’s position. 𝑝𝑃𝑉, 𝑝𝑇𝑃𝑉, 

and 𝑝𝑇𝑉 are the position of the preceding vehicle of SV in the current lane, the position 

of TV’s preceding vehicle, and the position of TV in the target lane respectively. 𝐶 is a 

constant distance SV desires to maintain between itself and 𝑝𝑃𝑉 , 𝑝𝑇𝑃𝑉 , and 𝑝𝑇𝑉 , as 

shown in Figure 2.3. In (2.7), (2.8), and (2.9), 𝑝𝑃𝑉(𝑘), 𝑝𝑇𝑃𝑉(𝑘), and 𝑝𝑇𝑉(𝑘) are not 

available since there is no V2V communication among those vehicles, so in this work, 

the prediction of surrounding vehicles’ future position is made by assuming they are 

moving at a constant speed. Although the actual speed is not constant, it is reasonable 

to make this assumption because while human drivers interact with others, they made a 

simple prediction of surrounding vehicles and maintain a gap to ensure safety.  

 

Figure 2.3 Traffic scene 
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2.2. Decision Making 

After the MPC-based trajectory planner generates a series of trajectories for 

strategies in the strategy space, we have to evaluate each trajectory’s payoff and select 

the one which has the maximal payoff. In section 2.2, a payoff function is defined, and 

it consists of four terms, lane-changing incentive (𝑈𝑣), cost of controls (𝑈𝑐), cost of 

risks (𝑈𝑟1, 𝑈𝑟2, 𝑈𝑟3), cost of a late lane-change decision (𝑈𝑙), as shown in (2.10).  

 
𝑈𝑆𝑉 = 𝑤𝑣𝑈𝑣 + 𝑤𝑐𝑈𝑐 + 𝑤𝑟(𝑈𝑟1 + 𝑈𝑟3 + 𝑈𝑟3) + 𝑤𝑙𝑈𝑙 (2.10) 

SV’s total payoff ( 𝑈𝑠𝑣 ) has one positive term and three negative terms. 

Weighting these terms through weights (𝑤𝑣, 𝑤𝑐, 𝑤𝑟 , 𝑤𝑙) and summing them result in the 

payoff.  

The first term is the lane-changing incentive, and it differentiates the payoff of 

each lane by evaluating the average speed it can derive from the chosen lane. As shown 

in Figure 2.4, if SV decides to keep driving on the current lane, it has to follow PV, 

while if it changes to the left lane, SV follows TPV, allowing SV to have a larger 

average velocity in 𝑇𝑈 seconds because TPV (20 𝑚/𝑠) drives faster than PV (15 𝑚/𝑠). 

The statement above is valid only when SV’s desired speed is greater than 15 𝑚/𝑠. 

Therefore, this lane-changing incentive payoff calculates the average speed SV can 

derive by knowing its desire speed and the PV’s and TPV’s speed and position.  
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Figure 2.4 Velocity incentive payoff 

This lane-changing incentive payoff is taken as the average speed (𝑉𝑎𝑣𝑔) minus 

the SV’s desired speed (𝑣𝑑𝑒𝑠) and then divided by the desired speed, as shown in (2.11) 

and (2.12). The nominator represents the deviation from the desired speed. 

 
𝑉𝑎𝑣𝑔 =

(𝑝𝑆𝑉(𝑡 + 𝑇𝑈) − 𝑝𝑆𝑉(𝑡))

𝑇𝑈
 (2.11) 

 
𝑈𝑣 =

𝑉𝑎𝑣𝑔 − 𝑣𝑑es

𝑣𝑑es
 (2.12) 

The second term in the payoff function is cost of controls. It is related to SV’s 

acceleration and deceleration, meaning how much control effort is required to follow 

the trajectory. The cost of control is taken as the summation of control input (𝑢𝑎, 𝑘) 

within the prediction horizon from step 𝑘 = 1 to 𝑘 = 𝑁, as (2.13). 

 
𝑈𝐶 = ∑ −|𝑢𝑎,𝑘|

𝑁

𝑘=1

 (2.13) 
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The third term is cost of risks. This term is related to a gap between two vehicles 

during lane changing. Cost of risks consists of three parts because we have to consider 

distances between SV and three vehicles, PV, TV, and TPV, as shown in Figure 2.5. 

 

Figure 2.5 Distances considered for risk cost 

In Figure 2.5, SV wants to change from the right lane to the left lane. First, the 

risk between SV and PV is evaluated. This evaluation is associated with the first-half 

trajectory. SV should always maintain a safe gap between itself and PV during the first 

half of lane changing. If SV ensures safety gaps, the path is seen as feasible, and the 

value of risk is defined next. Then the minimal value of the time headway during this 

first-half trajectory, which can be seen as the riskiest moment during lane changing, is 

used (4.2) and the value of risk cost is, in turn, defined as (4.2).  

 
𝐻𝑟1 = min

𝑡∈𝑡𝑝𝑟

𝑑𝑟1(𝑡)

𝑣𝑆𝑉(𝑡)
 (2.14) 

 
𝑈𝑟1 = −𝐶1

(𝐻𝑟1−𝐻𝑡ℎ𝑟𝑒𝑠) (2.15) 
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where 𝑡 ∈ 𝑡𝑝𝑟 means the first half of the lane changing process. 𝐻𝑟1 is the minimal time 

headway during this process. 𝑑𝑟1 is the distance between SV and PV over time. 𝐶1 and 

𝐻𝑡ℎ𝑟𝑒𝑠 are two constants. The relation between the minimal time headway and the value 

of risk cost is shown in Figure 2.6. With the time headway decreasing, the value of risk 

cost exponentially increases.  

  

Figure 2.6 Risk cost vs. Time headway for SV and PV 

The next step is to evaluate the risk in the rest of lane-changing process. The 

same safety criterium is applied here; only when the safety gap is ensured, will the 

trajectory be practical. However, the way to define the value of risk cost is slightly 

different here. Instead of the time headway, time-to-collision (TTC) at the moment 

when SV crossing the lane marking is used. Because once SV crosses the lane, TV 

behind it should adjust its velocity to create a safe distance between SV and TV. TTC 

at the moment of crossing can represent how much time SV and TV have for adjusting 
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their velocity and enlarge the gap in front of them. TTC and risk cost are shown in 

(2.16) to (2.19). 

 
ℎ𝑟2 =

𝑑𝑟2

𝑣𝑆𝑉 − 𝑣𝑇𝑃𝑉
,  ∀ 𝑣𝑆𝑉 > 𝑣𝑇𝑃𝑉 (2.16) 

 
ℎ𝑟3 =

𝑑𝑟3

𝑣𝑇𝑉 − 𝑣𝑆𝑉
,   ∀ 𝑣𝑇𝑉 > 𝑣𝑆𝑉 (2.17) 

 
𝑈𝑅2 = {  

−𝑐2
(ℎ𝑟2−ℎ𝑡ℎ𝑟𝑒𝑠) ,  𝑣𝑆𝑉 > 𝑣𝑇𝑃𝑉

0 ,  𝑣𝑆𝑉 ≤ 𝑣𝑇𝑃𝑉

 (2.18) 

 
𝑈𝑅3 = {

−𝑐2
(ℎ𝑟3−ℎ𝑡ℎ𝑟𝑒𝑠) ,  𝑣𝑇𝑉 > 𝑣𝑆𝑉

0 ,  𝑣𝑇𝑉 ≤ 𝑣𝑆𝑉

 (2.19) 

where 𝑐2 and ℎ𝑡ℎ𝑟𝑒𝑠 are two constants. 𝑑𝑟2 is the distance between SV and TPV, and 

ℎ𝑟2 is the corresponding TTC. 𝑑𝑟3 is the distance between TV and SV, and  ℎ𝑟3 is the 

corresponding TTC. The relation between TTC and the risk is shown in Figure 2.7. 

With the TTC decreasing, the threat is huger, so the value of risk cost exponentially 

increases.  
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Figure 2.7 Risk cost vs. Time-to-collision 

The final term in the payoff function is cost of a late lane-changing decision. 

Because the prediction of other vehicles’ later states is more uncertain, this term  

encourages sooner lane changes over later ones. In (2.17) 𝑁′ means that SV will change 

lane at the 𝑁′th step in the prediction horizon. 

 
𝑈𝐿 = −𝑁′ (2.20) 

2.3. Summary 

This chapter presents the trajectory planning method. First, different lane 

change timings and different target vehicles in the strategy space combined with the 

MPC-based trajectory planner create multiple trajectory candidates. Next, we define a 

decision-making payoff function, and it includes four terms, lane-changing incentive, 

cost of controls, cost of risks, and cost of a late lane-changing decision. The trajectory 

which gives the maximal payoff value is chosen to be the reference in the next chapter. 
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3. PATH TRACKING 

 

This section introduces approaches to control the vehicle and to track the 

reference trajectory. The reference trajectory generated in the previous chapter only 

provides the longitudinal movement in the global frame at each step and the best timing 

to change lane. However, we need more information to control the vehicle such as 

reference heading angle and reference yaw rate, so that a controller can decide how 

much acceleration or steering angle it should put into the system to track the path.  

In this chapter, a vehicle model for lateral dynamics is discussed. On top of that, 

we propose a yaw rate profile approach as a strategy space for lateral control. The best 

yaw rate profile is then adopted and refines the reference trajectory by specifying the 

heading angle at each step in the prediction horizon. To track the new reference 

trajectory within the system constraints, another MPC is used in this chapter to control 

the steering angle. 

3.1. Vehicle Model for Lateral Dynamics 

In this study, acceleration and steering angle are two inputs for controlling the 

vehicle system. A vehicle model for lateral control proposed in [20] is used for this 

control problem. As shown in Figure 3.1, �̇� is longitudinal velocity in the body frame 

and �̇� is lateral velocity in the body frame. 𝜙 and �̇� are heading angle and yaw rate of 

the vehicle. 𝐶𝛼𝑓 and 𝐶𝛼𝑟 are cornering stiffness of front and rear tires respectively. 𝑙𝑓 is 

the longitudinal distance from center of mass (C.O.M) to front tires and 𝑙𝑟  is the 

longitudinal distance from center of mass to rear tires. 𝑚 is the mass of the vehicle. 𝐼𝑍 
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is yaw moment of inertia of the vehicle. 𝑢𝑠 is the steering angle. 𝑋 is the direction along 

the road in the global frame and 𝑌 is the direction vertical to the road in the global frame. 

 

Figure 3.1 Diagram of vehicle model for lateral dynamics 

The state space model of this vehicle model is as (3.1). The input of this model 

is steering angle, and the states are lateral velocity, heading angle, and yaw rate. Note 

that the states propagation depends on longitudinal velocity �̇�, and that lateral velocity 

�̇� and yaw rate �̇� are highly affecting each other. That means when controlling to track 

one of the variables, the others are being affecting. Hence, the reference trajectory 

should be designed in a way that the three variables are associated. 

 𝑑

𝑑𝑡
[

�̇�
𝜙

�̇�

] =

[
 
 
 
 0 −

2𝐶𝛼𝑓 + 2𝐶𝛼𝑟

𝑚�̇�
0 −�̇� −

2𝐶𝛼𝑓𝑙𝑓 − 2𝐶𝛼𝑟𝑙𝑟

𝑚�̇�
0 0 0 1

0 −
2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝐼𝑧�̇�
0 −

2𝑙𝑓
2𝐶𝛼𝑓 + 2𝑙𝑟

2𝐶𝛼𝑟

𝐼𝑧�̇� ]
 
 
 
 

[

�̇�
𝜙

�̇�

] +

[
 
 
 
 

2𝐶𝛼𝑓

𝑚
0

2𝑙𝑓𝐶𝛼𝑓

𝐼𝑧 ]
 
 
 
 

𝑢𝑠 (3.1) 
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3.2. Yaw Rate Profile Approach 

The coordinate of the trajectory derived from the previous chapter is in global 

frame. That only provides the desired position and velocity in 𝑋 position at each step in 

the prediction horizon.  However, to control a vehicle, we need to convert it to the body 

frame because the acceleration applied to vehicle aligns with its longitudinal direction. 

The relation between global frame and body frame is shown in the Figure 3.2 and 

equation (3.2). 

 

�̇� = �̇�𝑐𝑜𝑠𝜙 − �̇�𝑠𝑖𝑛𝜙 

�̇� = �̇�𝑠𝑖𝑛𝜙 + �̇�𝑐𝑜𝑠𝜙 (3.2) 

 

Figure 3.2 Coordinate transformation 

In ordinary lane changing cases, heading angle 𝜙  and lateral velocity �̇�  are 

relatively small so the first equation in (3.2) is simplified to (3.3). 

 
�̇� = �̇�𝑐𝑜𝑠𝜙 (3.3) 
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By applying (3.3), longitudinal velocity �̇�  within the prediction horizon is 

known once the 𝜙(𝑡) is determined, so the next step is to find an appropriate heading 

angle, 𝜙(𝑡) and yaw rate, �̇�(𝑡).  

To make the trajectory smooth during lane changing, a vehicle’s yaw rate over 

time should be continuous and thus results in a continuous heading angle. Several 

continuous yaw rate profiles with different peaks are created in advanced through the 

function (3.4) and they are in the profile strategy space,  Φ.  

 
�̇�(𝑡) = 𝑃𝑠𝑖𝑛 (

2𝜋𝑡

𝑇𝐿𝐶
) (3.4) 

where 𝑃 is the peak value, 𝑇𝑃 is the time period that lane changing takes.  

For example, in Figure 3.3 two profiles from the profile strategy space, Φ, are 

shown. The higher peak yaw rate profile (Strategy 1) leads to the higher peak heading 

angle profile, and so as the lower peak (Strategy 2) ones. We assumed lane changing 

takes 𝑇𝐿𝐶  seconds. During first 0.5𝑇𝐿𝐶  seconds a vehicle’s heading angle keeps 

increasing and the rest of time it keeps decreasing. Moreover, the higher peak profile 

leads to greater displacement in 𝑌 direction, which is shown in Figure 3.4. 
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Figure 3.3 Yaw rate profiles and heading angle profiles example 

 

Figure 3.4 Example of trajectories with different yaw rate profiles 

Applying (3.3), We derive corresponding longitudinal velocity, �̇�. Furthermore, 

the vehicle model (3.5) provides the relation among input 𝑢𝑠, lateral velocity �̇�, and 

yaw rate �̇� . For each yaw rate and heading angle profile, we can calculate the 

corresponding �̇� and 𝑢𝑠. 
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 𝑑

𝑑𝑡
[

�̇�
𝜙

�̇�

] =

[
 
 
 
 0 −

2𝐶𝛼𝑓 + 2𝐶𝛼𝑟

𝑚�̇�
0 −�̇� −

2𝐶𝛼𝑓𝑙𝑓 − 2𝐶𝛼𝑟𝑙𝑟

𝑚�̇�
0 0 0 1

0 −
2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝐼𝑧�̇�
0 −

2𝑙𝑓
2𝐶𝛼𝑓 + 2𝑙𝑟

2𝐶𝛼𝑟

𝐼𝑧�̇� ]
 
 
 
 

[

�̇�
𝜙

�̇�

] +

[
 
 
 
 

2𝐶𝛼𝑓

𝑚
0

2𝑙𝑓𝐶𝛼𝑓

𝐼𝑧 ]
 
 
 
 

𝑢𝑠 (3.5) 

Next, obtain �̇�  by using the coordinate transformation equation, and then 

integrate this variable from current time 𝑡 = 𝑇  to the time when lane changing is 

finished 𝑡 = 𝑇𝐿𝐶 as shown in (3.6). The displacement in 𝑌direction is known for each 

yaw rate profile.     

 ∆𝑌 = ∫ �̇�𝑑𝑡
𝑡=𝑇𝐿𝐶

𝑡=𝑇

 
(3.6) 

In Figure 3.4, since the desired endpoint is at the center of the target lane, the 

trajectory generated by strategy 2 surpasses the trajectory generated by strategy 1. That 

means the lower peak yaw rate profile is the best option �̇�𝑜𝑝𝑡(𝑡) in the profile strategy 

space, Φ. The above description can be written in an equation (3.7) and 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 is the 𝑌 

position of the center of the target lane. 

 �̇�𝑜𝑝𝑡(𝑡) = min
𝜙∈Φ

|∫ �̇� (�̇�(𝑡)) 𝑑𝑡
𝑡=𝑇+𝑇𝐿𝐶

𝑡=𝑇

− 𝑌𝑡𝑎𝑟𝑔𝑒𝑡| 

 

(3.7) 

After the optimal yaw rate �̇�𝑜𝑝𝑡(𝑡) is determined, the corresponding reference 

steering angle 𝑢𝑠(𝑡) is also derived, which is the reference input to the vehicle system 

for lateral control. 

During lane changing, the best yaw rate profile should also update all the time. 

The update method used in this work is based on the SV’s 𝑌 position. This work first 

assumes that the relation between the position 𝑌  and required time to finish lane 
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changing follows the curve in Figure 3.5 generated by a function (3.8). In Figure 3.5, 

∆𝑌 means the displacement the vehicle has made, 𝐿 is the lane width, and 𝑇𝐿𝐶 is total 

lane changing time. For example, if the vehicle has pass 0.3065𝐿 [𝑚] then it still needs 

0.6𝑇𝐿𝐶  [𝑠𝑒𝑐] to finish the rest. Therefore, the updated yaw rate profile is to extract the 

yaw rate profiles in strategy space from 0.6𝑇𝐿𝐶 to the end of the profiles, and among all 

the profile strategies, the best yaw rate profile is determined by using the same way 

described before. 

 ∆𝑌

𝐿
= −𝑃𝑠𝑖𝑛 (

2𝜋𝑡

𝑇𝐿𝐶
) ×

𝑇𝐿𝐶

2𝜋
+ 𝑃𝑡 (3.8) 

 

Figure 3.5 Y displacement vs. Required time to finish lane changing 

However, this updating method introduces a problem. When updating the 

profiles, it calculates the final 𝑌 position by assume that the vehicle follows the heading 

angle profile, which is usually not the case. Therefore, the error of true heading angle 

accumulates and sometimes lead to failed lane changing.  Hence, the MPC-based path 

tracking controller is designed to solve this problem. 
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3.3. MPC-based Path Tracking Controller 

Although the reference trajectory and reference inputs are determined from 

section 0, the way does not consider the state errors. Therefore, model predictive control 

is applied to avoid errors accumulate while planning the new trajectory. Furthermore, 

MPC handles constraints, enabling variables to operate within the system constraints.  

In section 3.3, an MPC-based path tracking controller is proposed to solve the 

control problem. First, state variables of the control problem are defined, and the 

equations of motion are linearized and discretized for MPC. Finally, MPC will yield the 

optimized inputs. 

3.3.1. Defining the Linear State Space Model 

The variables needed to be constrained are used as outputs for the state space 

model of the MPC. Those constraints include heading angle, yaw rate, and 𝑌 position, 

and the related dynamics equations of motion are written as (3.9) to (3.11). 

 𝑑

𝑑𝑡
�̇� = −

2𝐶𝛼𝑓 + 2𝐶𝛼𝑟

𝑚�̇�
× �̇� − (�̇� +

2𝐶𝛼𝑓𝑙𝑓 − 2𝐶𝛼𝑟𝑙𝑟

𝑚�̇�
) × �̇� +

2𝐶𝛼𝑓

𝑚
× 𝑢𝑠 (3.9) 

 𝑑

𝑑𝑡
�̇� = −

2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝐼𝑧�̇�
× �̇� −

2𝑙𝑓
2𝐶𝛼𝑓 + 2𝑙𝑟

2𝐶𝛼𝑟

𝐼𝑧�̇�
× �̇� +

2𝑙𝑓𝐶𝛼𝑓

𝐼𝑧
× 𝑢𝑠 (3.10) 

 𝑑

𝑑𝑡
𝑌 = �̇�𝑠𝑖𝑛𝜙 + �̇� cos𝜙 (3.11) 

(3.9) and (3.10) are two equations from the vehicle model for lateral motion. 

The equation (3.11) is the coordinate transformation function and is nonlinear. Thus, 
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we need to linearize this model for the MPC problem. A compact form of equations 

(3.9) to (3.11) is written as (3.12). 

 
�̇� = 𝑓(𝜉, 𝑢𝑠) (3.12) 

where 𝜉 = [�̇� 𝜙 �̇� 𝑌]𝑇, and �̇� is function of 𝜉 and 𝑢𝑠. 

By applying Taylor’s series expansion for linearization, (3.12) becomes 

 �̇� − 𝜉̇̂ =
𝜕𝑓(𝜉, 𝑢𝑠)

𝜕𝜉
|
�̂�,𝑢𝑠

(𝜉 − 𝜉) +
𝜕𝑓(𝜉, 𝑢𝑠)

𝜕𝑢𝑠
|
�̂�,�̂�𝑠

(𝑢𝑠 − �̂�𝑠). (3.13) 

𝜉 = [�̇�  𝜙  �̇�  𝑌 ]
𝑇

 and �̂�𝑠  are the operating points which are also the values used in 

reference trajectory derived from the best yaw rate profiles approach. Rewrite (3.13) in 

the matrix form will derive 

 
𝛿�̇�(𝑡) = 𝐴𝑐(𝑡) 𝛿𝜉(𝑡) + 𝐵𝑐 𝛿𝑢𝑠(𝑡)  (3.14) 

where the state matrix is 

 
𝐴𝑐(𝑡) =

[
 
 
 
 
 
 
 −

2𝐶𝛼𝑓 + 2𝐶𝛼𝑟

𝑚�̇�(𝑡)
0 −�̇�(𝑘) −

2𝐶𝛼𝑓𝑙𝑓 − 2𝐶𝛼𝑟𝑙𝑟

𝑚�̇�(𝑡)
0

0 0 1 0

−
2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝐼𝑧�̇�(𝑡)
0 −

2𝑙𝑓
2𝐶𝛼𝑓 + 2𝑙𝑟

2𝐶𝛼𝑟

𝐼𝑧�̇�(𝑡)
0

𝑐𝑜𝑠�̂�(𝑡) �̇�(𝑡)𝑐𝑜𝑠�̂�(𝑡) − �̇�𝑠𝑖𝑛�̂�(𝑡) 0 0]
 
 
 
 
 
 
 

 

 

(3.15) 

 
𝐵𝑐 = [

2𝐶𝛼𝑓

𝑚
0

2𝑙𝑓𝐶𝛼𝑓

𝐼𝑧
0]

𝑇

. (3.16) 
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In (3.14) those “𝛿” terms represent the amount of deviation from the operating 

point. For example, 𝛿𝜉 = 𝜉 − 𝜉, 𝛿�̇� = �̇� − �̇̂�, and 𝛿𝑢𝑠 = 𝑢𝑠 − �̇�𝑠. Note that the matrix 

𝐴𝑐 is time-varying, since it includes time-varying parameters, �̇� and �̂�. 

Next, by applying Euler’s method, the model is discretized with sampling time 

𝑇𝑠 and becomes 

 
𝛿𝜉(𝑘 + 1) = 𝐴(𝑘) 𝛿𝜉(𝑘) + 𝐵 𝛿𝑢𝑠(𝑘) (3.17) 

where 𝐴 = 𝐼 + 𝐴𝑐  𝑇𝑆 and 𝐵 = 𝐵𝑐 𝑇𝑆. 

A discretized and linear state space model is derived, so the MPC-based path 

tracking controller can be formulated. The variables used in MPC are not the states of 

the vehicle; instead, they are those “𝛿” terms, which are the amount of deviation from 

the reference trajectory and reference input defined earlier. Besides, the output of the 

system is taken as  

 
𝛿𝑧𝑘 = 𝐶𝛿𝜉𝑘 = [

0 1 0 0
0 0 1 0
0 0 0 1

]

[
 
 
 
𝛿𝑦𝑘

𝛿𝜙𝑘

𝛿𝜙𝑘
̇

𝛿𝑌𝑘 ]
 
 
 

 (3.18) 

where the output matrix 𝐶 is used to extract variables from the 𝛿𝜉.  

3.3.2. Solving the Control Problem 

To optimize the reference input, this work defines a cost function (3.19) for the 

MPC based on state space model defined previously. The target of this optimization 

problem is to minimize the sum of weighted amount of deviation from the reference 
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output and weighted increment of control input (steering angle) while satisfying the 

constraints (3.20) to (3.24) within the prediction horizon from current state to step 𝑁.  

 
𝐽 = ∑‖𝑧𝑘 − �̂�𝑘‖𝑄 + ‖∆𝑢𝑠,𝑘‖𝑅

𝑁

𝑘=1

 (3.19) 

subject to 

 
𝑢𝑠, 𝑚𝑖𝑛 < 𝑢𝑠,𝑘 < 𝑢𝑠, 𝑚𝑎𝑥 (3.20) 

 
∆𝑢𝑠, 𝑚𝑖𝑛 < 𝑢𝑠,𝑘 − 𝑢𝑠,𝑘−1 < ∆𝑢𝑠, 𝑚𝑎𝑥 (3.21) 

 
𝜙𝑚𝑖𝑛 < 𝜙𝑘 < 𝜙𝑚𝑎𝑥 (3.22) 

 
�̇�𝑚𝑖𝑛 < �̇�𝑘 < �̇�𝑚𝑎𝑥 (3.23) 

 
𝑌𝑚𝑖𝑛 < 𝑌𝑘 < 𝑌𝑚𝑎𝑥 (3.24) 

Because the variables used in the linear state space model is the amount of 

deviation from the reference trajectory, we need to substitute the cost function and 

constraints with those variables. Therefore, the optimization problem becomes (3.25) 

to (3.30).  

 
𝐽 = ∑‖𝛿𝑧𝑘‖𝑄 + ‖(�̂�𝑠,𝑘 + 𝛿𝑢𝑠,𝑘) − (�̂�𝑠,𝑘−1 + 𝛿𝑢𝑠,𝑘−1)‖𝑅

𝑁

𝑘=1

 (3.25) 

Subject to 



 

32 

 

  
𝑢𝑠, 𝑚𝑖𝑛 < �̂�𝑠, 𝑘 + 𝛿𝑢𝑠, 𝑘 < 𝑢𝑠, 𝑚𝑎𝑥 (3.26) 

 
∆𝑢𝑠, 𝑚𝑖𝑛 < (�̂�𝑠,𝑘 + 𝛿𝑢𝑠,𝑘) − (�̂�𝑠,𝑘−1 + 𝛿𝑢𝑠,𝑘−1) < ∆𝑢𝑠, 𝑚𝑎𝑥 (3.27) 

 
𝜙𝑚𝑖𝑛 < �̂�𝑘 + 𝛿𝜙𝑘 < 𝜙𝑚𝑎𝑥 (3.28) 

 
�̇�𝑚𝑖𝑛 < �̂̇�𝑘 + 𝛿�̇�𝑘 < �̇�𝑚𝑎𝑥 (3.29) 

 
𝑌𝑚𝑖𝑛 < �̂�𝑘 + 𝛿𝑌𝑘 < 𝑌𝑚𝑎𝑥 (3.30) 

 

To solve the problem, it is necessary to know the relation between 𝛿𝑧𝑘 and 𝛿𝑢𝑠,𝑘. 

First, express all the 𝛿𝑧𝑘 with initial condition, 𝛿𝜉0, and the control inputs, 𝛿𝑢𝑠,𝑘, and 

derive (3.31). 

 

𝛿𝑧1 = 𝐶 𝛿𝜉1 = 𝐶 𝐴0 𝛿𝜉0 + 𝐶 𝐵 𝛿𝑢𝑠,1 

𝛿𝑧2 = 𝐶 𝛿𝜉2 = 𝐶 𝐴1 𝐴0 𝛿𝜉0 + 𝐶 𝐴1 𝐵 𝛿𝑢𝑠,1 +  𝐶 𝐵 𝛿𝑢𝑠,2 

𝛿𝑧3 = 𝐶 𝛿𝜉3 = 𝐶 𝐴2 𝐴1 𝐴0 𝛿𝜉0 + 𝐶 𝐴2 𝐴1 𝐵 𝛿𝑢𝑠,1 +  𝐶 𝐴2 𝐵 𝛿𝑢𝑠,2 + 𝐶 𝐵 𝛿𝑢𝑠,3 

⋮ 

𝛿𝑧𝑁 = 𝐶 𝛿𝜉𝑁 = 𝐶 Π𝑖=0
𝑁−1 𝐴𝑖 𝛿𝜉0 + 𝐶 Π𝑖=0

𝑁−1 𝐴𝑖 𝐵 𝛿𝑢𝑠,1 + ⋯+ 𝐶 𝐵 𝛿𝑢𝑠,𝑁. 
 

(3.31) 

Write the (3.31) in the form of matrix and it becomes:  

 
𝛿𝒵 =  𝛹∆𝜉0 + 𝛩𝛿𝒰𝑠 (3.32) 

where 
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𝛿𝒵 = [𝛿𝑧1,  𝛿𝑧2,   … ,  𝛿𝑧𝑁]𝑇 (3.33) 

 
𝛹 = [𝐶 𝐴0,  𝐶 𝐴1 𝐴0,   … ,  𝐶 Π𝑖=0

𝑁−1 𝐴𝑖 ]
𝑇 (3.34) 

 
𝛩 = [

𝐶 𝐵 0 ⋯ 0
𝐶 𝐴1 𝐵 𝐶 𝐵 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝐶 Π𝑖=0

𝑁−1 𝐴𝑖 𝐶 Π𝑖=0
𝑁−1 𝐴𝑖 𝐵 ⋯ 𝐶 𝐵

] (3.35) 

 𝛿𝒰𝑠 = [𝛿𝑢𝑠,1,  𝛿𝑢𝑠,2,   … ,  𝛿𝑢𝑠,𝑁]
𝑇

 
 

(3.36) 

Next, the second term of cost function is expressed with 𝛿𝒰𝑠 which becomes: 

  
𝑀1�̂�𝑠  +   𝑀2𝛿𝒰𝑠 (3.37) 

where 𝑀1 is the following (𝑁 + 1) × 𝑁 matrix 

 
𝑀1 =

[
 
 
 
 
−1 1 0 ⋯ 0 0
0 −1 1 ⋯ 0 0
0 0 −1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −1 1]

 
 
 
 

 (3.38) 

 
�̂�𝑠 = [𝑢𝑠,0 �̂�𝑠,1 �̂�𝑠,2 … �̂�𝑠,𝑁]𝑇 (3.39) 

and 𝑀2 is the following 𝑁 × 𝑁 matrix  

 
𝑀2 =

[
 
 
 
 

1 0 ⋯ 0 0
−1 1 ⋯ 0 0
0 −1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ −1 1]

 
 
 
 

. (3.40) 
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Therefore, the cost function can be substitute with 𝛿𝑢𝑠,𝑘 and the cost function is 

rewritten as  

 𝐽 = (𝛹𝛿𝜉0 + 𝛩𝛿𝒰𝑠)
𝑇 𝑸 (𝛹𝛿𝜉0 + 𝛩𝛿𝒰𝑠) + (𝑀1�̂�𝑠 + 𝑀2𝛿𝒰𝑠)

𝑇
 𝑹 (𝑀1�̂�𝑠 + 𝑀2𝛿𝒰𝑠). (3.41) 

Finally, the cost function is formulated into a quadratic program problem, as 

shown from (3.42) to (3.44). 

 
𝐽 = 𝛿𝒰𝑠

𝑇 𝐻 𝛿𝒰𝑠 + 2 𝛿𝒰𝑠
𝑇 𝑓 + 𝐶𝑜𝑛𝑠𝑡. (3.42) 

where  

 𝐻 = 𝛩𝑇  𝑸 𝛩 + 𝑀2
𝑻 𝑹 𝑀2 

(3.43) 

 𝑓 = 𝛩𝑇 𝑸 𝜓 𝛿𝜉0 + 𝑀2
𝑇   𝑹 𝑀1 �̂�𝑠 

(3.44) 

The 𝛿𝒰𝑠 that minimizes the cost function while satisfying the constraints is the 

optimal input 𝛿𝒰𝑠,𝑜𝑝𝑡 for the current prediction horizon as shown in (3.45). 

 𝛿𝒰𝑠, 𝑜𝑝𝑡 = min
𝛿𝒰𝑠 

𝐽  (3.45) 

Note that 𝛿𝒰𝑠,𝑜𝑝𝑡 is the deviation from reference inputs and the actual inputs to send to 

the system is 𝒰𝑠 = �̂�𝑠 + 𝛿𝒰𝑠, 𝑜𝑝𝑡.  

The MPC-based path tracking controller includes errors of initial states in the 

cost function and panelizes the errors, so accumulation of state errors is minimized.    
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3.4. Summary 

In this chapter, a path tracking strategy is proposed. The longitudinal 

acceleration is derived from chapter 2 As for the lateral control, this work proposes a 

yaw rate profile approach. Several profiles are predefined in the strategy space. The 

best yaw rate profile �̇�𝑜𝑝𝑡(𝑡)  leads the autonomous vehicle to desired 𝑌  position. 

Furthermore, the updating method for yaw rate profiles is introduced. However, 

because the model has uncertainty, and the updating method does not consider state 

errors, which leads to the accumulation of error and sometimes finally fails to change 

lane. An MPC-based path tracking controller is then introduced to solve this problem. 

Because MPC considers the vehicle states and can penalize the deviation from the 

desired trajectory, that avoids errors heading angle to increase. This MPC is linearized 

at each step to handle the varying longitudinal speed, reducing the model mismatch. 

This MPC-based path tracking controller finds optimized control inputs for the lateral 

motion and sends the steering angle command, 𝑢𝑠 , to the autonomous vehicle for 

tracking the desired trajectory. 
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4. SIMULATIONS 

 

In this chapter, simulations are constructed to show the results of the proposed 

strategy. The simulations in the section 4.1 present how the weight in the payoff 

function affects the decision. The simulations in the sections 4.2 and 4.3 are made to 

compare two control methods. One is to control the steering angle with only the yaw 

rate profile approach, and the other is to control the steering angle with the yaw rate 

profile plus the MPC-based path tracking controller. 

 In the simulation screenshot photos, SV is represented by an empty rectangle, 

while SRVs are the filled rectangles. SRVs all follow the same intelligent driver model 

(IDM) [27]. The driving style of IDM is affected by two parameters, desired velocity 

and desired time headway. The equation of IDM is: 

 
𝑢𝐼𝐷𝑀(𝑣, ∆𝑣, 𝑠∗) = 𝑎 [1 − (

𝑣

𝑉  𝑑𝑒𝑠
)
𝜇

− (
𝑠∗(𝑣, 𝑇𝑑𝑒𝑠)

𝑠𝛼
)

2

] (4.1) 

 
𝑠∗(𝑣, 𝑇𝑑𝑒𝑠) = 𝑠0 + 𝑣𝑇𝑑𝑒𝑠 +

𝑣∆𝑣

2√𝑎𝑏
 (4.2) 

where 𝑢𝐼𝐷𝑀  is the control input (acceleration), 𝑣 is current speed, ∆𝑣 is the relative 

speed between the vehicle and its preceding vehicle, 𝑠𝛼  is the distance between the 

vehicle and its preceding vehicle, 𝑎 and 𝑏 are maximum acceleration and comfortable 

deceleration respectively, 𝜇  characterizes how acceleration decreases with velocity, 

𝑉𝑑𝑒𝑠 and 𝑇𝑑𝑒𝑠 are the vehicle’s desired velocity and desired time headway.  
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4.1. Decision Making Simulation 

A simulation scenario is designed to test the effect of changing the weight of 

lane-changing incentive, 𝑤𝑣 in (2.10). Two simulations are made; one is with a higher 

weight for lane-changing incentive and the other is with a lower weight. There are three 

lanes in the simulation scenario, and SV is driving behind a very slow vehicle in the 

middle lane. SV may want to change to either the left or the right lane. The average 

speed on the left lane is higher than that on the right lane. SV’s desired speed is 

20 [𝑚/𝑠]. The initial condition of this simulation is shown in the Figure 4.1.  

 

Figure 4.1 Initial condition 

The result indicates that a higher lane-changing incentive drives the autonomous 

vehicle to the left lane, as Figure 4.2. Moving to the left lane allows SV to have higher 

speed, but this option is riskier and takes more effort. 

Since the vehicles on the left lane are faster than SV in the beginning, SV needs 

to speed up to catch up on the gap between car No.6 and car No.7. SV’s longitudinal 

velocity over time is shown in Figure 4.3. SV keeps accelerating until it enters the gap 

in front of car No.6, and then it gradually slows down to its desired velocity.  
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SV’s time headway before changing lane is shown in Figure 4.4 ,and TV’s time 

headway after SV’s changing lane is shown in Figure 4.5. Because SV keeps moving 

forward and accelerating, time headway decreases continuously. SV’s headway is 

0.8856 [𝑠] and TV’s (No.6’s) time headway is 0.4986 [𝑠] at the moment it crosses the 

lane markings.  

 

 

 

Figure 4.2 High lane-changing incentive case 
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Figure 4.3 SV's longitudinal velocity, high lane-changing incentive 

 

Figure 4.4 SV's time headway, high lane-changing incentive 

 

Figure 4.5 TV's time headway, high lane-changing incentive 
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The other simulation is created with the same situation but a lower lane-

changing incentive, as shown in Figure 4.6. With a smaller weight of lane-changing 

incentive, SV will be less eager to drive fast, so it chooses to change to the right lane 

where SV can avoid being stuck by No. 5 while having a safer lane-changing process 

than the left lane.  

 

 

 

Figure 4.6 Low lane-changing incentive case 

Figure 4.7 shows SV’s velocity during lane changing. Compared to Figure 4.3, 

in Figure 4.7, SV has to decrease its current speed to enter the gap in front of car No.1. 



 

41 

 

On top of that, the minimal value in Figure 4.8 is larger than Figure 4.4, and the minimal 

value in Figure 4.9 is larger than Figure 4.5, meaning it is less risky for SV to choose 

the right lane, as shown in Table 1. 

 

Figure 4.7 SV's longitudinal velocity, low lane-changing incentive 

 

Figure 4.8 SV's time headway, low lane-changing incentive 
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Figure 4.9 TV's time headway, low lane-changing incentive 

Table 1 Comparison of high and low lane-changing incentives 

 SV’s minimal time headway TV’s minimal time headway 

High 0.886 0.499 

Low 1.692 1.22 

 

4.2.  Steering Control Simulation 

Two scenarios are designed to test the performance of the MPC-based path 

tracking controller. For each scenario, we will use two different ways to control the SV, 

one is with the MPC-based path tracking controller, and the other is merely sending 

input command based on the best yaw rate profile. 

4.2.1. Double-Lane Changing  

In the first scenario, SV is on the right lane and driving behind a slow vehicle 

whose velocity is 20 [𝑚/𝑠]. SV’s desired speed is 31 [𝑚/𝑠], so it may want to change 

to the adjacent lane to maintains its desired speed. The average speed on the left lane is 
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higher than that on the middle lane, as shown in the Figure 4.10, and each vehicle’s 

desired speed is shown in Table 2.  

Table 2 Desired speed of the vehicles 

 
SV NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 

Desired 

speed [m/s] 

31 20 31 28 28 28 28 35 30 

 

 

Figure 4.10 Initial condition of the double lane changing scenario 

Two control approaches are implemented, controlling the steering angle with 

only the best yaw rate profile and controlling the steering angle with the best yaw rate 

profile modified by the MPC-based path tracking controller. The result of controlling 

with only the best yaw rate profile is shown in Figure 4.11. SV speeds up and moves 

into the gap between Noo.3 and No.4 successfully. However, it fails when it tries to 

change to the third lane. Because its heading angle is not zero when starting the second 

lane changing (the yaw rate profile approach assumes the initial heading angle is zero), 

it fails to achieve the target lane’s center before the steering angle starts to decrease.  
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Figure 4.11 Double-lane changing without implementing the MPC-based path tracking 

controller 
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In Figure 4.12, SV fails to change to the left lane and turns back to the middle 

lane. Because the updating approach for the best yaw rate profile is based on SV’s 𝑌 

position (Figure 3.5), the approach starts to make the steering angle decrease upon SV 

crosses the lane marking, as shown in Figure 4.13.  

 

Figure 4.12 SV's trajectory, double-lane changing, no MPC-based path tracking 

controller 

 

Figure 4.13 SV's steering angle, double-lane changing, no MPC-based path tracking 

controller 
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Decreasing steering angle causes that SV’s yaw rate decreases, making the 

heading angle keep decreasing (Figure 4.14) and deviates from the center of the target 

lane (left lane). 

 

Figure 4.14 SV's heading angle, double-lane changing, no MPC-based path tracking 

controller 

In a tracking problem, the desired heading angle is the state to be tracked. The 

best yaw rate profile generates the trajectory and corresponding inputs. This approach 

tracks that corresponding inputs but not the heading angle. Due to this characteristic, 

the best yaw rate profile cannot handle the cases where the heading angle is not as 

expected initially. Without considering the discrepancy, the error of heading angle 

accumulates, causing the failure of lane changing.Therefore, the MPC-based path 

tracking controller is implemented to cope with this problem because it is able to 

minimize the state errors and modify the inputs determined by the best yaw rate profile. 

The simulation result of applying the MPC-based path tracking controller is shown in 

Figure 4.15, and the trajectory is presented in Figure 4.16.  
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Figure 4.15 Double-lane changing with implementing the MPC-based path tracking 

controller 
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With the MPC-based path tracking controller, SV can consider the error of the 

heading angle so that SV does not merely follow the inputs yield by the best yaw rate 

profile. The controller adjusts the steering angle to reduce the heading angle error during 

lane changing, making it track the desired heading angle, as shown in Figure 4.17 and 

Figure 4.18.   

 

Figure 4.16 SV's trajectory, double-lane changing, with the MPC-based path tracking 

controller 

 

Figure 4.17 SV's steering angle, double-lane changing, with the MPC-based path 

tracking controller 
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Figure 4.18 SV's heading angle, double-lane changing, with the MPC-based path 

tracking controller 

4.3. Low Speed 

The other simulation is constructed. In this scenario, the average speed of the 

whole traffic is low. The initial condition is shown in Figure 4.19. In this simulation, 

SV is driving behind an extremely slow vehicle whose speed is 8 [𝑚/𝑠] while other 

vehicles’ speeds are 12 − 15 [𝑚/𝑠] on the adjacent lane. Therefore, SV will move to 

the adjacent lane to maintain its desired speed, 15 [𝑚/𝑠]. 

 

Figure 4.19 Initial condition of the low speed scenario 

Because the updating method follows Figure 3.5, which is not the exact relation 

between 𝑌 position and the time left before reaching the center of the adjacent lane, it 
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fails, especially in low-speed cases. The simulation where SV drives without the MPC-

based path tracking controller is shown in Figure 4.20 (trajectory) and Figure 4.21.  

 

Figure 4.20 SV's trajectory, low speed, no MPC-based path tracking controller 

 

 

 

Figure 4.21 Low speed, without implementing the MPC-based path tracking controller 
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SV fails to achieve the target lane’s center before its steering angle starts to 

decrease, making the heading angle decreases, as shown in Figure 4.22 and Figure 4.23. 

  

Figure 4.22 SV's steering angle, low speed, no MPC-based path tracking controller 

 

Figure 4.23 SV's heading angle, low speed, no MPC-based path tracking controller 

Like the previous case, by implementing the MPC-based path tracking 

controller, SV overcomes the issue caused by the imperfect updating approach. The 

simulation result is shown as Figure 4.24, Figure 4.25, Figure 4.26, and Figure 4.27. 
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Figure 4.24 Low speed, with the MPC-based path tracking controller 

 

Figure 4.25 SV's trajectory, low speed, with the MPC-based path tracking controller 
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Figure 4.26 SV's steering angle, low speed, with the MPC-based path tracking controller 

 

Figure 4.27  SV's heading angle, low speed, with the MPC-based path tracking controller 

The proposed MPC-based path tracking controller modifies the input to fit the 

desired heading angle at each step. The simulations validate the feasibility of the 

proposed MPC-based path tracking controller. Furthermore, it is able to handle varying 

longitudinal velocity during lane changing, which is important since this prove the AV’s 

adaptability when facing a situation where it needs to accelerate or decelerate during 

lane changing. 
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4.4. Summary 

In this chapter, one simulation is made to test the decision-making payoff 

function, and the other two simulations are constructed to test the performance of the 

proposed MPC-based path tracking controller. 

The first simulation suggests that the proposed payoff function can cooperate 

with the trajectory generated by the MPC-base trajectory planner and make reasonable 

decisions for the simple scenario designed in this work. Moreover, by adjusting the 

weight of the lane-changing incentive, it makes different decisions. Similar to human 

drivers, some of them are willing to take risks or put more control effort to derive higher 

speed, but some tend to drive conservatively. 

The second and the third simulations both indicate that the yaw rate profile 

approach and its updating method are not perfect for autonomous vehicles since it 

assumes the initial heading angle is zero and does not consider the state errors, and  

Figure 3.5 is not the actual relation between 𝑌 position and required time to finish lane 

changing.  By applying the MPC-based path tracking controller, the inputs are modified. 

It makes SV track the heading angle and 𝑌 position instead of the inputs determined by 

the best yaw rate profile to minimize the errors.  
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5. CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions 

This study proposed a two-stage MPC to plan and track the trajectory. At the 

first stage, MPC generates trajectories for the vehicle kinematic model, and the 

predefined payoff function is applied to decide the best trajectory.  The MPC-based 

trajectory planner allows SV to accelerate and decelerate during lane changing, which 

is able to handle the dynamic environment, meaning that SV can adjust its speed based 

on observing other vehicle’s movement. However, this trajectory includes only 

information about longitudinal movements in the global frame. To control a vehicle, we 

need to transform that information into the body frame, and the vehicle lateral dynamic 

model is used to control the steering angle.  

Here, this study proposes a yaw rate profile approach. Each strategy leads to 

different lateral displacement results, and the one that brings the autonomous vehicle to 

the center of the target lane is the best yaw rate profile. Although the yaw rate profile 

combined with the vehicle model can yield the reference steering angle, this approach 

does not consider the state errors and may lead to failure.  

Therefore, the second-stage MPC controller is used to control the steering angle. 

Because MPC can take states into consideration and penalize state errors, it prevents 

errors from growing. In other words, the best yaw rate profile yields reference inputs 

and reference states. What we want to track is the reference states instead of the 

reference inputs. Hence, the reference inputs are modified according to the initial state 
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error and the reference inputs through implementing the MPC-based path tracking 

controller.  

The way to build the MPC-based path tracking controller includes determining 

a vehicle model, linearizing the model, deciding a cost function, and solving that 

minimization problem. The model is built upon the vehicle lateral dynamics model and 

coordinate transformation function and then linearized at each step around the reference 

states. Since the lateral dynamic depends on longitudinal velocity, which varies at each 

step, the state space models at each step are different. The cost function consists of two 

terms: minimizing the state errors and minimizing the steering angle increment. Finally, 

this minimization problem is converted into a quadratic programming problem and 

solved to give the final steering angle command. 

The simulation result shows that the proposed strategy for lane changing is 

feasible and can handle varying velocity during lane changing. 

5.2. Future Work 

Model predictive control strongly relies on the precision of the model. 

Therefore, if the model used in the controller is far from the ground truth, then the 

controller is not robust and can fail. Future works should handle model uncertainty and 

disturbances by applying stochastic MPC or robust MPC to address this issue. 

The decision-making payoff function involves weights that can be tuned to 

match average human behavior. Further investigation is needed to adjust the weights of 

the payoff function. 
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