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ABSTRACT

Human-Robot Collaboration is often required in unstructured, uncertain, and dynamic envi-

ronments where automation is not ideal. Human operators are needed for their ability to perform

complex tasks employing their situational awareness and decision-making capabilities. Collabora-

tion between human and robot is necessary for achieving a higher level of safety and performance

in such cases. An effective shared control system will provide humans an intuitive interface for

robot control and provide intelligent assistance to improve overall task performance.

In this work, we present a Human-Robot Collaborative Control framework for inspection and

material handling tasks by employing computer vision and a general purpose joystick for providing

human input to the robot remotely. In order to facilitate the human operator, an intuitive joystick

control interface is developed allowing the operator to command the robot in the end-effector

frame. This is combined with vision-based motion planning algorithms providing assistance to the

operator to complete the task. Human operator controls the robot until the object is detected by vi-

sion node and then automatic control takes over. Hue, Saturation and Value (HSV) based OpenCV

contour detection algorithms are used for object detection and pose estimation. ROS integrated

open-source software, MoveIt has been utilized for motion planning algorithm. For joystick inter-

face, we present a hybrid control law which allows human operators to provide orientation/torque

reference in the world-frame and translation/force reference in the robot end-effector frame and

automatic control takes care of underlying kinematics and joint level control. A physical platform

and a simulation environment consisting of a six Degrees-Of-Freedom UR5 robot, a general pur-

pose joystick, a USB camera, a vacuum gripper, force-torque sensor, and fixed speed Conveyor

Belt are employed to develop and test the approach.

ii



DEDICATION

To my mother, my father, and my grandparents.

iii



ACKNOWLEDGMENTS

Before beginning this thesis, I would like to acknowledge and extend gratitude to the many

people who have supported me through out my journey at Texas A&M.

My heartfelt thanks to my advisor Dr. Prabhakar R. Pagilla, words cannot explain my gratitude

and respect towards you. Your guidance, words of encouragement and valuable feedback towards

my work has helped me grow as a researcher. I also extend gratitude towards all the members

of my research group: Jie Hu, Daniel Jaeger, Zongyao Jin and Yalun Wen, for always lending a

helping hand.

My sincere thanks to the members of my thesis committee: Dr. Swaroop Darbha and Dr.

Dezhen Song for giving their time to review my work.

I also extend thanks to entire staff of Mechanical Engineering Department and the Office of

Graduate and Professional Studies for their assistance and guidance throughout my studies.

Finally, I thank my family and friends for their unwavering support, love and encouragement.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a committee consisting of Professor Prabhakar R. Pagilla (chair)

and Professor Swaroop Darbha of the Department of Mechanical Engineering and Professor Dezhen

Song of the Department of Computer Science and Engineering.

The work done for Human-in-Loop control (Chapter 3) was a collaborative effort. The concept

of Instantaneous Surface Normal approach for Joystick Control Interface was proposed and formu-

lated by Dr. Zongyao Jin. Experimental developments and formulation for torque based orientation

correction were done by the student. All other work conducted for the thesis was completed by the

student independently with supervision from Dr. Pagilla.

Funding Sources

Graduate study was generously supported by Mechanical Engineering Department of Texas

AM University in forms of Teaching Assistantship and Eddie Joe Mattei’53 Graduate fellowship.

Additionally, Research Assistantship opportunities were provided by Dr. Pagilla and research

project was supported by the National Science Foundation under grant number 1900704.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION AND LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Shared Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Challenges and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. SYSTEM DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Shared Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Joystick Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Vision based Automatic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. ROBOT CONTROL WITH HUMAN IN LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Joystick Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Design and Implementation of a Hybrid Control Law in the Mixed Frame . . . . . . . . . . . 15

3.2.1 Orientation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Translation Velocity with Adjustable Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Hybrid Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Normal Mismatch Correction using Force/Torque sensor . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Robot Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



4. VISION BASED AUTOMATIC CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1.1 HSV color space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1.2 RGB to HSV Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Contour Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Contour Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Pose and Orientation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Transformation from Image Frame to Cartesian Frame . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Motion Planning with MoveIt! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 MoveIt! Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.3 Waypoints Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.3.1 Pre-Grasp Manipulation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3.2 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3.3 Grasp Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3.4 Post-Grasp Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.4 Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5. EXPERIMENTAL DESIGN AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Demonstration of Human-in-Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Demonstration of Vision based Automatic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Validation of Integrated System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



LIST OF FIGURES

FIGURE Page

1.1 Possible Shared Control Applications: a) Underwater Robotics, b) Bomb Diffusal
Robots, c) Rescue Operation, d) Operation at hazardous environment . . . . . . . . . . . . . . . . . 3

1.2 Existing teleoperation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Human-Robot Collaborative Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Hybrid Shared Control with Joystick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 General Purpose Joysticks and Common Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Vision based Automatic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 ROS Gazebo - Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Joystick Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Frames and Axes Definition on UR5 [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 RGB and HSV Color Space [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Image after Binarization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 a)Image Captured by Camera; b)Image after noise removal with Gaussian Blur
Filter; c) Image after binarization; d) Contour Detected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Estimated Position and Orientation in Image Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Pinhole Camera Model [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Move Group Architecture [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Setup for Material Handling Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 ROS based Software Structure and Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 End-Effector Orientation Tracking with Joystick Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Sampled Robot Configurations during Joystick Interface Experiment . . . . . . . . . . . . . . . . . 44

viii



5.5 Robot Wire-frame Diagram during Operation (wire frame is lighter shade at the
start of the task and gradually becomes darker as the task progresses in time) . . . . . . . . 45

5.6 ROS Gazebo Environment for Vision based Automatic Control Testing. . . . . . . . . . . . . . . 46

5.7 Sampled Robot Configurations during Vision based Automatic Control. . . . . . . . . . . . . . . 47

5.8 Planned versus Actual EE Trajectory in Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.9 Experiment Setup for Collaborative System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.10 ROS based Software Structure and Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.11 Sampled Robot Configurations during Collaborative System Testing: (a) Initial
Pose of robot where object not in camere FOV; (b) Human operator bringing EE
over the object; (c) Vision based motion planning; (d) Object getting picked up; (e)
Post Grasp Transport and Orientation Correction of the object; (f) Object dropped
into the bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.12 EE Pose during the Full Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.13 Vision Module Planned versus Actual EE Trajectory on UR5. . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



LIST OF TABLES

TABLE Page

3.1 Robot Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

x



1. INTRODUCTION AND LITERATURE REVIEW

The usage of robotics systems have increased across many industries to automate production

lines for manufacturing, material handling and assembly tasks. With improvements derived in sys-

tem’s efficiency, precision and reduced labor costs, the benefits of automation are well known and

the field is extensively researched and well documented in literature. The factory environments are

structured and well defined, tasks are often repetitive, therefore automation, with its ability to per-

form tasks with high speed, high precision and repeatability, is a go to solution. However automatic

control is not ideal for unstructured, uncertain and dynamic environments in which the task could

be constantly changing and requires adaptation. Human operators, in such cases, are needed for

their ability to perform complex tasks under uncertainty by exhibiting their situational awareness

and decision making capabilities. The challenges associated with developing fully autonomous so-

lutions encouraged research in human-machine shared control in recent years [4, 5, 6, 7, 8, 9, 10].

When human presence in the robot space can be unsafe and undesirable and environment is

dynamic, remote control of the robot with shared autonomy is required. Such cases include number

of applications such as handling of hazardous material, remote repairs, operation at inaccessible

sites, underwater operation, etc. Figure 1.1 illustrates example scenarios where shared control

paradigm would be useful.

1.1 Shared Control Methods

Shared Control refers to methods where human inputs are directly or indirectly integrated with

automatic control input to perform a task [11]. Human inputs and automatic control can be com-

bined in multitude of ways depending upon complexity of applications. General classification of

shared control methods includes: collaborative control, traded control, indirect shared control, co-

ordinated control, virtual constraint control and blended shared control. In collaborative control, a

subset of control authority lies with human operator and automatic control takes care of the rest.

In traded control, the control authority is traded between human and automatic control. In indi-
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rect shared control, an additional feedback is provided to aid the human operator with sensory

information. Coordinated control is defined as the process where automatic control converts ref-

erence human inputs into low level commands. In virtual constraint control, automatic control is

programmed to override the human operator commands to overcome system constraints and safe

operation. Lastly, in blended shared control method, human operator intent is predicted and au-

tomatic control input is generated for the intended command. Human and automatic controls are

then blended to complete the task. Each of the shared control methods has its own merits and target

applications.

Deciding on what shared control method to be used and appropriate autonomy level in the

task typically depends on the application under consideration. The problem is challenging and

appropriate answers will vary for different types of tasks and various levels of complexities. An

effective shared control system can be said to be the one where humans are provided with an

intuitive interface for robot control and automatic control provides appropriate assistance based on

the system sensing capabilities to optimize task specific performance. Utilizing this viewpoint, a

collaborative control framework is developed for this thesis.

1.2 Background and Relevant Literature

Many methods have been developed to allow human operator to control the robot remotely.

The general goal is to allow human operators to specify the motion of the robot end-effector di-

rectly, via different interfaces, while having control algorithms to handle robot kinematics, dy-

namics and complex operations. Various interfaces developed in the literature are: 1) Mechanical

hand-held devices like Joysticks, Space balls, Dials, etc., 2) Computer interfaces like simulation

environments, touch screen control pendant, augmented and virtual reality devices, 3) Dexterous

manipulators which includes mechanical interfaces like exoskeletal devices, instrumental gloves,

etc and 4) Tele-presence systems including motion tracking interfaces with sensors and vision.

Methods based on joystick devices can be found in [12, 13, 14, 15, 16]. These methods allow

operator to send high level automation commands to the robot using different hand held controllers

like joysticks, space balls, etc. Many methods with control through computer interfaces are also

2



Figure 1.1: Possible Shared Control Applications: a) Underwater Robotics, b) Bomb Diffusal
Robots, c) Rescue Operation, d) Operation at hazardous environment

available in literature. In [17, 18], touch-screen interfaces are proposed which provide the human

operator a first-person-view from the end-effector camera and the user can directly specify the de-

sired pose and position of the robot by touching and dragging the part on simulated environment

on computer. Research has also been done to develop dexterous manipulation techniques where

operator commands the robot end-effector to mimic their hand gestures with a wrist tracker or

instrumental glove on their hand [19, 20, 21, 22]. Control via mimicking gestures is also done by

telepresence methods where the system can track human hand using motion trackers, Kinect depth

sensors or vision systems and reference inputs for the robot is generated by mirroring tracking mo-

tion [23, 24, 25]. The study described in [26, 27] proposed master-slave mechanism or specialized

joysticks for the control of robotic manipulator especially in space and surgery robotics.

Apart from interface to control the robot remotely, providing intelligent assistance to human

3



operator is also very important in shared control framework. Some systems are developed to offer

feedback to the operator to make adjustments and improvements. Haptic interfaces, [28, 29] are

developed to provide feedback like collision avoidance, blind spot warnings, etc. [16, 17]

Figure 1.2: Existing teleoperation systems

1.3 Challenges and Problem Formulation

The novel interfaces, like touch-screen or dexterous manipulation techniques or human motion

capture systems, allow operators to control robot end-effectors intuitively, however, fast and precise

registration of operator’s input is difficult and there is a penalty of complexity with the advantages

offered by the system. The master-slave systems allow the human operator to specify precisely the

position of the robot end-effector, some times even its configuration; however, a drawback is that

4



another master robot or a specialized joystick is required which substantially increases the cost of

the setup.

Cartesian space control with joysticks allows the operator to send commands to move the robot

in a fixed/ Cartesian frame, however for material handling tasks in constrained space defining way

points and path of the end-effector in cartesian space would not be intuitive for a operator to do

remotely. Another drawback of the joystick control is that it is difficult for the human operator to

plan around obstacles, singularities, or joint limits as they are not aware of intrinsic robot proper-

ties. Therefore, it would be beneficial to design a shared control mechanism which allows humans

to operate the robot end-effector intuitively without much training using general purpose joysticks

that are readily available and which provide further assistance to the operator to navigate around

obstacles and robot limitations.

Material handling and pick-and-place operation are typical tasks that robots handle in a manu-

facturing line. Many algorithms have been developed in a fully automatic setup. Computer vision

techniques for material handling tasks are well established [30, 31, 32, 33]. Therefore, it could be

beneficial to utilize the vision based algorithms to provide additional assistance to the operator.

Hence, the objective of this work is set to design a framework which combines computer vision

with Human Robot Collaboration (HRC) techniques for remote operation of the robot. In order to

develop such a shared control strategy, one can pose the the following questions:

• First, to develop an intuitive control interface for human operators, are there any typical op-

erating features and frames of the task that would allow for easier control for task execution

and how to utilize a general purpose joystick to send these commands to the robot?

• Second, how to design an underlying control law to realize the motion commanded by the

human operator via a joystick?

• Third, how to incorporate vision sensing in the system to improve task efficiency?

• Lastly, how can assistance be provided for completion of a task while avoiding obstacles and

other system constraints such as singularities and joint limits?
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In this study, various frameworks were developed to answer these questions.

1.4 Contributions

The two main contributions of the thesis can be summarized as follows:

1. Developed an easy and intuitive way to control the robot remotely utilizing general purpose

gaming joysticks. A hybrid control law was designed which allows human operators to

provide orientation/torque reference in the world frame and translation/force reference in

the instantaneous robot end-effector frame and automatic control takes care of underlying

kinematics and joint level control.

2. Developed a method to provide intelligent assistance to the human operator for moving

around the task space using vision. Vision based object pose and orientation estimation al-

gorithm and motion planning strategy to grasp a moving object avoiding system constraints

and obstacles in the environment are developed.

1.5 Document Outline

This document is organized as follows: Chapter 2 provides brief description of our solution

approach, system architecture and each individual components. Chapter 3 explains the Joy Stick

Interface, Hybrid Control Law and Kinematics modeling of the robot. The framework for vision

based automatic control is discussed in chapter 4. Hardware platform, experiment design and

results are presented in Chapter 5. Lastly, the study is summarized and possible future work are

presented in Chapter 6.
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2. SYSTEM DESCRIPTION

The previous chapter outlined the motivation for the study along with the background on the

methods developed in the literature. In this chapter, we present a detailed description of the system

architecture and our solution approach. The aim of the study is to perform pick and place tasks

with a general purpose joystick with assistance from computer vision.

2.1 Shared Control Architecture

A shared remote operation system with control authority divided between human operator and

automatic control for different phases of task completion has been developed as described below:

Phase I, Locating object to be picked: Human operator guides the robot through joystick com-

mands to bring the object into the field of view of the camera

Phase II, Automatic Control with Computer vision: With object in camera’s field of view, it

can be detected and tracked. Automatic control takes over here to track and grasp the object

Phase III, Dropping the object: After the object has been grasped, human operator can then

take over again to decide and maneuver the robot to a desired dropping location. Hybrid shared

control algorithm can then assist the operator for orientation correction by torque control.

Fig. 2.1 shows the overall framework of the system developed in this study. There are two

components to the system as discussed above, first is joystick control of the robot (Robot Control

with Human in Loop) and second is vision based automatic control. Based on environment aware-

ness, human operator first controls the robot by providing reference input using a general purpose

joystick in robot end-effector frame. Once the object is in the field of view of camera mounted

on the robot automatic control will take over. We now provide details of the two aforementioned

modes of operation.

2.2 Joystick Operation

A joystick-based human–robot interface was developed for direct human control of a six-axis

robot manipulator which allows the human operators to provide orientation reference in the world
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Figure 2.1: Human-Robot Collaborative Control Architecture

frame and translation reference in the instantaneous robot end-effector frame. The human operator

commands translation and orientation reference signal to the robot via joystick and automatic con-

trol takes care of underlying kinematics and joint-level control. The control schematic is shown in

Figure 2.2.

The interface was developed for commanding the robot using general purpose joysticks. Fig-

ure 2.3 shows common features on commercially available joystick. Orientation reference were

encoded with the 3-axis stick in continuous state range [−1, 1]. A 2-axis discrete navigator button,

with states {-1,0,1}, were employed to command x and y translation. Throttle slider provides a

continuous states and was employed to define magnitude of translation velocity. Discrete program-

ming buttons and a trigger were utilized command end-effector to move along Z-axis and activate

gripper.
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Figure 2.2: Hybrid Shared Control with Joystick

2.3 Vision based Automatic Control

A vision based control approach is developed to detect and track the object automatically.

This approach is divided into 2 sub-processes. The first one is work-space analysis, where the

object to be grasped is detected and its position and orientation is estimated based on RGB (Red

Green Blue) pixel information available from USB camera. The geometric description (position

and orientation) of object is obtained from the image data. The vision processing is carried by

OpenCV library which is specifically developed for real time computer vision [2].

The second step is motion planning and execution based on information from the vision sys-

tem. Figure 2.4 shows the system schematic. The target pose is available from the vision module

and the motion planning to the target is performed with MoveIt software [3]. Moveit is an open

source platform designed for development of solutions for motion planning problems and is widely
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Figure 2.3: General Purpose Joysticks and Common Features

used in the robotics community. It has been used on a range of commercial robots in many indus-

trial applications (UR, Kuka, ABB, Motoman, Fanuc, etc robots) to outerspace (Robonaut and

Robonaut2 NASA Johnson Space Center), to Humanoids (Valkyrie - NASA Johnson Space Cen-

ter, Atlas - Boston Dynamics, etc), to mobile robots (PR-2 robots). It provides a wide functionality

that covers several features of mobile manipulation, encapsulates a forward/inverse kinematics

solver, planning techniques,and collision-detection methods through a plug-in-based mechanism.

The details of this framework is presented in Chapter 4.

2.4 System Components

A physical platform consisting of a six Degrees-Of-Freedom UR5 robot, Logitech Extreme

Pro joystick, a USB camera, Robotiq E-pick vacuum gripper, ATI axia-80 force-torque sensor and

Ultimation Conveyor Belt are employed to develop and test the approach, Figure 2.5. The camera,

gripper and force-torque sensor are mounted on the robot end-effector. Objects to be picked and

mounting bracket for auxiliaries on robot were 3D printed.

The UR5 allows a user to command its joint velocities independently, and provides feedback

measurements of its joint angles and velocities in real-time. The Astra pro camera provides RGB

and point cloud data. The ATI force/torque sensor provides force and torque measurements along
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Figure 2.4: Vision based Automatic Control

its x, y, z axes. EPick Vaccum Griper features a built-in electrical vacuum pump. It connects

directly to the robot’s wrist and can handle a wide range of applications and is ideal for picking up

even and uneven workpieces made of different materials such as cardboard, glass, dry sheet metal

and plastic.

The entire system was developed in ROS on Ubuntu operating system. All the code was written

in Python. We utilized OpenCV library for object detection and pose estimation. For motion

planning Moveit platform was used. Motion planning algorithms were tested in simulation first

before implementation on a physical system. Gazebo platform was used for simulation.

2.5 Simulation Environment

In order to recreate the system in a simulation environment, ROS Gazebo software is used. A

bare-bone version of the robotic arm is created using Universal Robot Description Format (URDF)

file. A URDF file describes the description of the robot and environment to ROS. This allows to

import the model into simulation environment. The model is built in accordance with the dimen-

sions of the real robot, the exact contours are replaced by cuboids. The cuboids are slightly bigger

than the actual dimensions of the hardware, this is useful in having a higher clearance with the

11



Figure 2.5: System Components

obstacles during motion planning for the actual arm. The conveyor belt is modeled as a long flat

box (size 5 × 1 × 0.2 m) for objects to slide on it. Objects were modeled to be red in color, size

0.1 × 0.075 × 0.025 m. The object is moved by applying a constant force on it of 5 N. Bin for

collecting the objects is modelled in the environment too, size 0.4× 0.4× 0.02 m.

Additionally, the gazebo camera and vaccum gripper plugin were utilized to simulate the ex-

periment. The mounting location of the camera and gripper were replicated in the simulation. The

development of simulation environment followed the procedure from [34].
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Figure 2.6: ROS Gazebo - Simulation Environment
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3. ROBOT CONTROL WITH HUMAN IN LOOP

Chapter 2 defined two modes of operation for the system. First is Human-in-loop control,

where human operator commands the robot using a general purpose joystick. Second is vision

based automatic control. In this chapter, we would discuss the first mode of operation, i.e., robot

control with human in loop using joystick. The goal of this study is to provide human operators

intuitive interface to operate robotic manipulators. This chapter will look at development of a

human-friendly operating frame and its joystick interface. The formulation and implementation of

a hybrid control law for converting human commands to joint level controls are provided.

3.1 Joystick Interface Design

Instantaneous Surface Normal Approach (ISNA) defined in [1] is utilized for developing joy-

stick interface. It uses mixed frame method to command the robot where orientation reference

is provided in the world frame and translation reference is provided in robot end-effector frame.

This way of generating reference commands allow a human operator to observe and command a

robot end-effector from a third-person view. Human operator can intuitively control the robot end-

effector to travel along unspecified trajectory in 3D space. Human operator first orient the robot

end-effector along the normal plane of the desired trajectory with orientation commands in global

frame and trajectory can be followed with translation commands in body frame. Human operator’s

joystick commands motions are closely mapped to the motions of the robot end-effector from a

geometric perspective.

The command interface is encoded as follows for manipulator operation: We first denote worlds

frame as {s}-frame, robot end-effector frame as {b}-frame and joystick frame as {j}-frame. A

3-axis stick is employed to encode reference orientation of end-effector, {b}-frame in {s} and

roll, pitch and yaw reference are recorded. A 2-axis navigator button is employed to command

translation on the Xb-Yb plane. A trigger and top programming buttons are employed to command

end-effector to move along Zb-axis and activate/deactivate gripper as shown in Figure 3.1.
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Figure 3.1: Joystick Interface

3.2 Design and Implementation of a Hybrid Control Law in the Mixed Frame

The commands provided by the human operator with joystick are required to be translated

into joint velocities command to be sent to the robot. A hybrid control law is needed to track the

command reference input - orientation inputs in {s}-frame and translation inputs in {b}-frame.

Product of Exponential (PoE) methods [35, 36] and screw axis formulation were employed. These

methods provide easy access to space and body Jacobians, in contrast to the traditional analytical

Jacobian, which are crucial in operating the robot in end-effector frame. A PI controller was

developed to convert the human operator commands into joint velocities. In the subsequent section

we will provide controller design and define how inputs to the controller are generated.

3.2.1 Orientation Error

Desired Roll, Pitch and Yaw (ψ, θ, φ) inputs were available from 3-axis stick states. In the

neutral stick position, joystick frame {Xj, Yj, Zj} is aligned with robot world frame {Xs, Ys, Zs}
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and the orientation of {Xj, Yj, Zj} with respect to {Xs, Ys, Zs} can be represented as

Rd = RZ(ψ)︸ ︷︷ ︸
Yaw

×RY (θ)︸ ︷︷ ︸
Pitch

×RX(φ)︸ ︷︷ ︸
Roll

=


cψcθ cψsθsφ− cφsψ sψsφ+ cψcφsθ

cθsψ cψcφ+ sψsθsφ cφsψsθ − cψsφ

−sθ cθsφ cθcφ


(3.1)

where Rd ∈ SO(3) is the rotation matrix which contains the desired orientation reference. The

end-effector orientation of the R ∈ SO(3) with respect to robot world frame can be extracted from

T (q), transformation matrix of robot forward kinematics:

T (q) =

R L

0 1

 (3.2)

where q ∈ Rn is joint angles vector of an n-DOF robot, and L ∈ R3 is the position of end-effector

in the robot world frame. T (q) ∈ SE(3) is computed based on the PoE formulation as

T = Me[β1]q1···[βn]qn (3.3)

where [βi] ∈ se(3) is the matrix representation of the ith screw axis βi ∈ R6 in the body frame.

M ∈ SE(3) represents the end-effector configuration in the world frame when all qi’s are zero.

Formulations of M , [βi], βi are given in Robot Kinematics section ((3.17), (3.18), and (3.19)) for

UR5 robot used for the study.

The orientation error vector Ωe ∈ R3, then, can be calculated as

Ωe = F [log(RTRd)] (3.4)

where log(RTRd) ∈ so(3) is the matrix logarithm of the matrix representation of orientation error,

and F(·) : so(3) 7→ R3 is a mapping which takes a 3×3 skew-symmetric matrix to its vector form.
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3.2.2 Translation Velocity with Adjustable Magnitude

Translation inputs are provided by the 2-axis navigator for x and y axes and two buttons for z,

which provides three discrete signals that can be encoded into a vector v = [x, y, z] where x, y ∈

{−1, 0, 1} and z ∈ {0, 1}. The input vector v is normalized to generate a constant translation

velocity reference, Vc ∈ R3 as

Vc = α[
x

||v||
,
y

||v||
,
z

||v||
]T (3.5)

where α ∈ R+ is the scaling factor which could be utilized to set translation velocity magnitude

using slider on joystick.

3.2.3 Hybrid Control Law

With the orientation error, Ωe, and translation error, Vc, at any given time t ∈ R+, one can

construct a control input term He(t) ∈ R6 by combining those decoupled elements in the form of

He(t) =

[
Ωe Vc

]T
(3.6)

Then, the hybrid control law to find joint velocities for the control input is given by

q̇ = Jb(q)†
[
KPHe(t) +KI

∫ t

0

He(t)dt

]
(3.7)

where q̇ ∈ R6 is the final output to the robot in the form of individual joint velocities and Jb(q)† ∈

Rn×6 is the pseudo-inverse of the body Jacobian for an n-joint robot represented in the {b} frame.

The body Jacobian Jb(q) is defined as

Jb(q) =

[
Jb1 Jb2 · · · Jbn

]
(3.8)

where Jbi for i = 1, 2, · · · , n are columns of the matrix Jb(q) and are given by

Jbi = Ade−[βn]qne−[βn−1]qn−1 ···e−[βi+1]qi+1 (βi) (3.9)
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for i = n − 1, n− 2, · · · , 1 with Jbn = βn, where e(·) : se(3) 7→ SE(3) is the matrix exponential

function and Ad(·) : SE(3) 7→ R6×6 is the adjoint operator of a homogeneous transformation.

Taking T (q) in (3.2) as an operand, the result of the adjoint mapping is simply

AdT (q) =

 R 0

LR R

 (3.10)

The control gains in (3.7) are designed as follows. KP ∈ R6×6 is given by

KP = diag(pφ, pθ, pψ, 1, 1, 1) (3.11)

and KI ∈ R6×6 is given by

KI = diag(iφ, iθ, iψ, 0, 0, if ) (3.12)

where scalars pφ, pθ, pψ and iφ, iθ, iψ, if are proportional and integral gains for orientation and

translation terms, respectively.

3.2.4 Normal Mismatch Correction using Force/Torque sensor

With a robot capable of measuring the moments at contact τ along the Xb-axis, Yb-axis and

Zb-axis with force/torque sensor, orientation correction law can be defined. For peg-in-hole appli-

cations, the moments measured by sensor reflects the normal mismatch. Normal mismatch could

be corrected by providing the moment offset as control input with orientation error. We can define

the moment compensation term as

τe = 0− τ (3.13)

Note that τe ∈ R3 from (3.14). This compensation term then can be added to orientation error to

correct for mismatch:

Ω′e = Ωe +Ktτe (3.14)
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Kt ∈ R3×3 converts moment input to orientation reference and is defined as

Kt = diag(kx, ky, kz) (3.15)

where, kx, ky, kz are scalars With the new orientation error, Ω′e, control input term He(t) ∈ R6

can then be constructed as

He(t) =

[
Ω′e Vc

]T
(3.16)

Joint velocities for the control input can be calculated following the same procedure as described

in section 3.2.3.

3.3 Robot Kinematics

The approach developed in this study is for UR5 robot and can be extended to any open-chain

robots. A UR5 robot is shown in Figure 3.2 with all joints at their zero configuration. The axes

{s} denote robot world frame and axes {b} end-effector frame, s1, s2, · · · , s6 ∈ R3 to denote the

joint rotation axes and H1, H2,W1,W2 ∈ R+ denote link lengths.

The geometric information for calculating the robot kinematics is summarized in Table 3.1

where, each joint axis si and a selected point ai on the axis are provided as vectors in the robot

end-effector frame. The M matrix in (3.3) is defined as

M =



1 0 0 −(L1 + L2)

0 0 1 −(W1 +W2)

0 −1 0 H1 −H2

0 0 0 1


(3.17)

and the ith body screw axis in its matrix form is computed as

[βi] =

F−1(si) −si × ai

0 0

 (3.18)
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Figure 3.2: Frames and Axes Definition on UR5 [1]

where F−1(·) is the inverse mapping of F(·) in (3.4). The corresponding vector form of the same

screw axis as in (3.18) is then given by

βi =

 si

−si × ai

 (3.19)
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Table 3.1: Robot Geometry

Joint axis si in {Xb, Yb, Zb} Selected point ai on si in {Xb, Yb, Zb}
s1 (0,−1, 0) a1 (L1 + L2, 0,W1 +W2)
s2 (0, 0,−1) a2 (L1 + L2,−H2, 0)
s3 (0, 0,−1) a3 (L2,−H2, 0)
s4 (0, 0,−1) a4 (0,−H2, 0)
s5 (0, 1, 0) a5 (0, 0,W2)
s6 (0, 0,−1) a6 (0, 0, 0)
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4. VISION BASED AUTOMATIC CONTROL

As described in Chapter 2, the solution approach presented in this study has two modes of

operation. The control of the robot is traded between human-in-loop and automatic control. In

Chapter 3, we described the Joystick Control Interface of the robot. An interface was designed to

allow the human operator to control the robot intuitively in the end-effector frame. In this chapter

we will examine automatic mode of operation using vision. First, work-space analysis (Object

Detection and Pose Estimation) techniques are discussed, the location of the moving object was

tracked in the robot world frame. The next step is for the robot to follow the moving object,

position the end-effector gripper at the center of the object and pick it up. Motion planning and

manipulation for the aforementioned two steps are described..

4.1 Object Detection

In order to have the robot pick up the object using vision, the first step is to detect the ob-

ject from information available from the camera. The object detection process was broken down

into three critical steps. The first step is Image Segmentation (determining the regions of interest

by distinguishing object from background), the second step is Contours Recognition (identifying

shape and boundary of the object), and lastly the third step is Contour Selection (processing and

filtering noise in the data). Methodologies used for each of the steps is discussed in the subsequent

sections. We have utilized the OpenCV Library [2] to develop the vision module.

4.1.1 Image Segmentation

Determining regions of interest in the image requires picking out shapes, colors, patterns, etc.

and therefore, requires robust feature recognition methods. Many methodologies have been devel-

oped for object detection based on color, intensity or texture of pixels in the image. The work in

[37] summarises different approaches and perspectives to Image segmentation problem. Some of

the techniques are:

• Threshold based Segmentation - In this technique, the segmentation is done either by thresh-
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olding the image data in color space range or by pixel histogram of the image. The clas-

sification of object from background is done with preset limits [38, 39, 40]. The method

produces good results when the object and the background have sufficiently large variation

in intensity values.

• Region based Segmentation - In this method, an initial seed point is chosen at random and

then pixel neighbours are examined iterativly with a preset criteria to determine if they can

be added to initial cluster or not [41]. This technique is useful for partitioning the image into

regions and local/regional analysis of the image.

• Edge based Segmentation - This method first finds edges in the image (identifying and lo-

cating sharp discontinuities) and then intelligently connects the edges to form boundaries

around the object. Various methods for edge detection are developed in literature [42].

Numerous other special-theory based algorithms like fuzzy clustering based or neural network

based methods have also been developed for segmentation.

The simplest segmentation technique is color space thresholding method and we have utilized

the same in this study to develop and test our vision based motion planning framework. We utilize

the Hue/ HSV based thresholding to detect the objects and determine its relative pixel position.

And with contour detection algorithms, object size and center coordinate are determined.

The image available from the camera is an RGB (Red-Green-Blue) image and one can simply

threshold the channel based on this and get the region of interest. However, RGB values are highly

sensitive to illumination making this to be an ineffective approach. The shadow on the object can

affect the channel values. For this reason, we employ the HSV color space for the detection of

objects.

4.1.1.1 HSV color space

The HSV color space represents colors using three values which are: Hue (H), Saturation (S),

and Brightness Value (V).
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Hue: Measured by angle encodes color information. The value range is 0◦ - 360◦, starting from

red and counting in a counterclockwise direction, red is 0◦, green is 120◦, and blue is 240◦.

Saturation: This channel encodes the intensity/purity of color. The value range is 0.0 - 1.0, the

larger the value, the more saturated the color.

Value: The value ranges between 0 (black) to 255 (white) and encodes brightness of the color.

Figure 4.1 explains hsv distribution. Unlike RGB which is defined in relation to primary colors,

HSV is defined in a way that is similar to how humans perceive color and the color/tint/wavelength

is represented by just the Hue component. The

Figure 4.1: RGB and HSV Color Space [2]
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4.1.1.2 RGB to HSV Conversion

The RGB values are converted to HSV values using the formulation below: The color compo-

nents are first normalized between 0-1.

R′ =
R

255

G′ =
G

255

B′ =
B

255

(4.1)

Maximum, minimum and chroma components of color are defined for ease of writing further

definitions.

Cmax = max(R′, G′, B′)

Cmin = min(R′, G′, B′)

∆ = Cmax − Cmin

(4.2)

Hue component is calculated as:

H =



0, if ∆ = 0

60(G
′−B′
∆

), if Cmax = R′

60(B
′−R′
∆

+ 2), if Cmax = G′

60(R
′−G′
∆

+ 4), if Cmax = B′

(4.3)
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Saturation component is calculated as:

S =


0, if Cmax = 0

∆
Cmax

, if otherwise
(4.4)

And lastly, Value component is calculated as:

V = Cmax (4.5)

We employed an OpenCV library function that can directly convert RGB model to HSV model.

Now, for object detection, the HSV values are masked between minimum and maximum range for

the color. The range identified and verified experimentally for this study is H from 0 to 20, and

both S and V are between 100 and 255.

4.1.2 Contour Recognition

Next in order to recognize the contours, the masked image is converted full scale color to black

and white (Image Binarization). The results of the binarization process can be seen in Figure 4.2.

Gaussian blurring is used before the binarization in order to remove noise and enhance results

from the binarization process. After the binarization of the image, contours are found using simple

opencv contour recognition functions to find the outline of the positive areas returned from the

binarization. The OpenCV function retrieves contours from the binary image using the algorithm

[43].

4.1.3 Contour Selection

The final step of the panel recognition process is to sort through the noise left behind from

the binarization of the image. There can be many contours in the field of view. The required

contour will form a bigger contour compared to others because of the narrow color range. Areas of

the contours are calculated, and thresholded such that contours within 90% of the largest contour

found were considered to be object. Figure 4.3 illustrates all steps of the object detection process.
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Figure 4.2: Image after Binarization Process

Figure 4.3: a)Image Captured by Camera; b)Image after noise removal with Gaussian Blur Filter;
c) Image after binarization; d) Contour Detected
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4.2 Pose and Orientation Estimation

After a contour was detected and selected, the coordinates of corners in pixel coordinates and

area of the contour are available. Centroid coordinates in the plane (mid-point from corners coor-

dinates) and orientation of the shape can be calculated as shown in Figure 4.4. Z-coordinates of

the object is estimated by contour area ratio to actual object area. The scaling coefficient for Z-

estimation is determined experimentally. A moving average filter was employed on data to smooth

out short-term fluctuations and noise. This data can then be used for the robotic arm to move the

end-effector to the necessary locations after information to relate pixel count to physical locations

is available.

Figure 4.4: Estimated Position and Orientation in Image Frame

4.2.1 Transformation from Image Frame to Cartesian Frame

We have employed a pin-hole camera model, a simple mathematical model, for conversion

from pixel coordinates to world coordinates. In this model, a scene view is formed by projecting

3D points into the image plane using a perspective transformation. Figure 4.5 illustrates the model.
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x = z
(u− cx)
fx

(4.6)

y = z
(v − cy)
fy

(4.7)

where:

• (x, y, z) are the projected coordinates in the optical world frame

• (u, v) are coordinates of the projection points in pixel coordinates

• (cx, cy) is center coordinates of image frame

• fx, fy are the focal lengths of the camera

The coordinates (x, y, z) from pin-hole model are now needed to be transformed to robot world

frame (X, Y, Z), and is done as:



X

Y

Z

1


= R|t



x

y

z

1


(4.8)

R|t is a joint rotation-translation matrix which is the transform from optical world frame to

robot space/ world frame. The camera focal lengths fx and fy are estimated experimentally.

The coordinates (X, Y, Z, θ) obtained from here are now sent to the motion planning module

to plan approach and retreat strategy. We have assumed that the camera lens introduces minimal

tangential and radial distortions to the images, and thus, these effects are neglected.

4.3 Motion Planning with MoveIt!

The motion planning strategy constitutes of finding a path to the target pose while following

system constraints, like avoiding singularities, joint limits, and obstacles in the environment. The
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Figure 4.5: Pinhole Camera Model [2]

target pose is available from the vision module and the motion planning module must find smooth

robot trajectory to the object. We employed the MoveIt! platform to develop the motion planning

algorithm.

4.3.1 MoveIt! Interface

MoveIt! is a software framework widely used in the robotics community which provides wide

range of capabilities for manipulation, motion planning, control and mobile manipulation. Various

motion planning libraries are already integrated in it, including the Kinematics and Dynamics

Library (KDL), the Open Motion Planning Library (OMPL) and the Fast Collision Library (FCL).

The architecture of MoveIt! can be seen in Figure 4.6. The move_group is the central node

that connects and integrates all individual nodes for transmission of information and provides a set

30



of ROS actions, services and topics for users. The user can interface with the move_group node in

three ways to access actions or services and modify environment:

• C++ : move_group_interface package

• Python : moveit_commander package

• GUI : Rviz (ROS Visualizer) plugin

The robot description is provided via URDF file which describe a robot’s and environments

physical description to ROS. The Semantic Robot Description Format (SRDF) file complement

the URDF and specifies joint groups, default robot configurations, additional collision checking

information, and additional transforms that may be needed to completely specify the robot’s pose.

The move_group node accesses all this information and is also configured through ROS param

server.

The node interacts with robot and sensors in system via various ROS topics and command

the robot via action server protocol. The current position of each joint/ Joint State Information

is read from /joint_states topic. Transform information is monitored using ROS TF library which

provides robot’s pose information. The node sends commands to controllers on the robot using

JointTrajectoryAction interface. Planning scene monitor is where information about the robot and

environment is updated.

MoveIt! interacts with different motion planners from various libraries using a plugin interface

and default planner is configured using OMPL. OMPL computes motion plans using sampling-

based algorithms. The complete list of motion planners in OMPL is present in [44]. Planners are

configured using MoveIt! Setup Assistant and one can add kinematic constraints for planner to

work with. Collisions and constraints are checked while planning. Allowed kinematic constraints

setting include:

• Position Constraints - To restrict position of robot arm in a defined space.

• Orientation Constraints - To specify roll, pitch or yaw limits for the arm.
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• Visibility Constraints - To restrict a point on the arm to lie within visible region for some

sensor.

• Joint Constraints - To set joint limits.

• User-specified constraints - Any additional application specific constraints can be defined

with user callback.

Th Joint constraints are specified in URDF file.

Figure 4.6: Move Group Architecture [3]

In this study, we developed the planning interface with moveit_commander python package.

UR5 robot and conveyor belt description were added via URDF file as with details as described in
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Chapter 2 section 2.5. Gazebo camera and vaccum gripper plugin were added into the simulation.

A dimensional representation of camera and gripper were added to MoveIt! Planning scene for

collision avoidance during motion planning. Rapidly Exploring Random Tree (RRT) algorithm

[45] from OMPL library is the default motion planning library that MoveIt! uses and same has

been utilized for this study. A tree based planning algorithm which uses random sampling to

construct a path. It grows trees of path rooted at start configuration using random samples in the

space. A greedy heuristic is utilized to find solution to move towards the goal pose.

4.3.2 Motion Planning

The python interface of MoveIt!, moveit_commander, comes integrated with the following

APIs: MoveGroupCommander class, a PlanningSceneInterface class, and a RobotCommander

class, which were utilized in this study.

MoveGroupCommander class allows to use existing libraries to set parameters for path plan-

ning, like target goal tolerances, reference frames, trajectory constraints, acceleration and velocity

limits etc. Path start position, goal and planning time are also set/reset via MoveGroupComman-

der. Planning Scene Interface allows to add objects, constraint planes into the environment. Both

MoveGroupCommander and RobotCommader allows to read current state of the robot.

MoveGroupCommander Class allows motion planning request to planner to move the arm to

target Joint Goal Pose or the end-effector target pose. The planner generates path between target

and current location while checking for collisions and constraints in the environment. The planners

will generate kinematic paths they may not obey velocity and acceleration constraints or the arm

can be out of bound at the start of planning, etc. The path generated by planner needs to be

converted to time-parameterized trajectories. Various motion planning adaptors are set to be used

for pre-processing planning requests and post processing of the planning response:

• FixStartStateBounds - This adaptor fixes for when the start robot configuration is with joints

outside joint limits specified in MoveIt Environment. This is important if joint limits on

physical robot and for planner are different, which may be done to add safety measures. In
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our application, it is useful as transfer of control from Human-in-loop control to automatic

control happens when object is detected by camera. The robot configuration at which con-

trol is traded may have joints in out of bound joint limits for planning library leaving planner

unable to plan the trajectories. The FixStartStateBounds adapter corrects the robot configu-

ration by moving in with joint limits. However, only small corrections like this are advisable

and a parameter for the adapter specifies the fixable limits.

• FixWorkspaceBounds - This adaptor defines default planning workspace. The values preset

in the interface are a cube of size 10m X 10m X 10m, same has been considered for this

study.

• FixStartStateCollision - In case the robot links are in collision state at the start, this adapter

reconfigures the arm to a no coliision state within a preset allowable range.

• FixStartStatePathConstraints - This adapter corrects for violation of path constraints for the

start position. The current start configuration of the arm is moved to new location where path

constraints are followed.

• AddTimeParameterization - This adapter allows for generating time-parameterized trajec-

tories by applying velocity and acceleration constraints. Move_group will use maximum

velocities and accelerations to generate trajectories which will also obey the joint level lim-

its preset for the system.

The motion planner needs to specified of target position to generate trajectories. To pick-up

a stationary object one just need to estimate target pose of the object and planner takes care of

trajectory generation while taking care of all the constraints of the system. However, picking up

a moving object is a difficult problem. The planner needs to generate dynamically feasible grasp

trajectory for the object. The timing of trajectory and time of object grasp during the trajectory

are to be considered. Other problem to be addressed is smooth pickup of the moving object. The

end-effector is needed to track the object while grasping to avoid mishandling of the object. To
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address the challenges described above, we have developed four planning modules for different

phases of operation:

• Pre-grasp phase: At first when the object is detected, the end-effector is not close to the

object. The first goal of motion planning is to align the robot end-effector with the moving

object. In this phase, the end-effector is aligned with the moving axis and orientation of the

object.

• Object Tracking phase: For smooth grasping of the object, the end effector is needed to track

the object. In this phase, the speed of the object is estimated and planner tracks the object.

• Grasp Acquisition phase: Tracking the object, the end-effector moves closer to the object

and secures it’s hold.

• Post-grasp transport: Once the end-effector has achieved a stable grasp of the object, the

robot now moves to a pre-determined target drop location. In this phase object is added in

the planning scene and is considered rigidly attached to the robot.

We utilized Go To Goal Pose planner for setting start and drop location. A prior default start and

drop position of robot can be defined. The start pose is default state of the robot and drop location

can either be defined as bin location where the object is dropped or the location where control will

be transferred to human. Cartesian Path planner was utilized for rest of the path planning sequence.

This planner generates a straight line time parameterized trajectories that follow the path specified

by waypoints inputed to it. Waypoints between the object and end-effector are generated using

proportional controllers for different phases of operations. The subsequent sections will describe

each module in details. One can specify the step size after which configurations are computed

(eef_step) and the jump_threshold which specifies the maximum distance in configuration space

between consecutive points in the resulting path. The planner returns the actual Robot Trajectory

in joint space and a performance measure of how much of the path planned is similar to desired

path with respect to waypoints inputed. We have specified step size to be 0.01 meters for Pre-

Grasp Manipulation and 0.02 meters for Object Tracking. The acceptable plan was thresholded to
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be at least matching 80% the desired trajectory as specified by waypoints. The subsequent sections

will present the design strategy employed to define the waypoints for each phase of planning and

manipulation.

4.3.3 Waypoints Generation

As discussed above, the move_commander interface has been utilized for this study, and one

needs to specify waypoints to generate trajectories. Proportional controllers are employed to gen-

erate waypoints between robot and target pose and MoveIt! planning algorithms plan the path

connecting the waypoints. We will discuss the strategy employed for waypoint generation in dif-

ferent phases of motion planning below.

4.3.3.1 Pre-Grasp Manipulation Phase

To approach the detected object, at any time instant the target pose is available from vision

module (xt,yt,zt,θt) and current end-effector pose is available from Joint State measurements and

robot kinematics model (xi,yi,zi,θi). The goal, in this phase, is to align the end-effector with the

object, therefore at every moment error between ee pose and target pose is measured and next

waypoint is defined proportional to the error value. The time-parameterized trajectory in joint

space is generated with Cartesian Planner Library, which generates a straight line segment path

between the current pose and target pose. The plan is executed on the robot only when more than

80% of the trajectory planned matches with trajectory extrapolted between waypoints. The phase

ends when the object is aligned with moving axis and orientation of the object within predefined

tolerance limits as shown in Algorithm 1.
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Algorithm 1: Pre-Grasping Manipulation
Input: xt, yt, zt, θt, xi, yi, zi, θi, Kx1, Ky1

initialization;

while yt − yi > Goal Position Tolerance or θt − θi > Goal Orientation Tolerance do

Generate Pose_waypoints;

Wpose_x = xi +Kx1(xt − xi);

Wpose_y = yi +Ky1(yt − yi);

Orientation Goal;

Orientation_goal = quaternions(θt)

fraction, plan =

compute_cartesian_path((Pose_waypoints, Orientation_goal), eef_steps, jump_threshold);

if fraction > 0.8 then

execute(plan);

end

end

4.3.3.2 Object Tracking

The robot once aligned with the object needs to track the moving object to have zero relative

velocity between the end-effector and object to activate smooth grasp. The waypoints, therefore

in this phase of operation, are then computed proportional to the estimated speed of object, as

explained in Algorithm 2. We estimate speed of the object from the target pose data available

from vision module. A moving average filter was employed to smooth out noise fluctuations in

measurements. Once again the trajectories planned are executed when more than 80% of path

matches with inputs to the planner.
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Algorithm 2: Object Tracking
Input: xt, yt, zt, θt, xi, yi, zi, θi, Kx2, Ks

initialization;

EstimatedSpeed, xspeed = KsMoving_Average(xti − xt(i−1));

Generate Pose_waypoints;

Wpose_x = xi + xspeed +Kx2(xt − xi);

fraction, plan =

compute_cartesian_path(Pose_waypoints, eef_steps, jump_threshold);

if fraction > 0.8 then

execute(plan);

end

4.3.3.3 Grasp Acquisition

Once the end-effector is tracking the moving object, it is moved closer to to make contact

and activate grasp. The waypoints are computed proportional to error between zt from vision

module and zi, current end-effector position. The vision module is develped with a 2D camare and

Z-coordinates of object is being estimated with area of the contours. Therefore, additionally, force-

torque sensor mounted on the robot is utilized to establish contact with the object. The gripper is

activated while moving at a constant speed when a desired contact force has been recorded by the

sensor.

4.3.3.4 Post-Grasp Manipulation

After the object is grasped, the robot now moves to a pre-determined target drop location. Go

To Goal Pose MoveIt library is utilized for planning the motion. The object grasped is now added

to the planning scene as a rigid attachment to the robot end-effector to allow for collision free

planning.
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4.3.4 Obstacle Avoidance

MoveIt! is integrated with Fast Collision Library (FCL) library [46] to plan collision-free

trajectories. The same has been utilized in this study. This library allows to plan robot path around

different types of obstacles:

• Meshes - Mounting plane of the robot

• Primitive shapes - Defined Objects in Environment like conveyor belt and dropping bin

• Octomap - Unknown dynamic objects cab be integrated with MoveIt! using external sensor

data. Octomaps [47] allow to include world representation with an octotree map generated

with external sensors.

In this study, we specified prior known obstacles in the environment. However, integration of

dynamic obstacles using Octomap is not considered in the scope of study.
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5. EXPERIMENTAL DESIGN AND RESULTS

This chapter presents the hardware platforms, design of experiments and test results for the

methods developed in this study. The framework proposed has two modes of operation; control

with human-in-loop (Joystick Control) and automatic control using computer vision. The two

methods were first independently tested and then combined for testing of collaborative control.

Therefore, we will first illustrate testing and results of joystick control, followed by demonstration

of vision based automatic control. Lastly, integrated results on the overall strategy are presented.

5.1 Demonstration of Human-in-Loop Control

A framework is developed which allows human operator to command the robot intuitively in

the end-effector frame 1. To test the effectiveness of the developed method, an experiment was

conducted simulating pick-and-place type applications. A physical platform is employed for the

experiment which includes a 6-DOF UR5 robot, a Logitech Freedom 2.4 GHz wireless joystick,

an ATI AXIS-80 force/torque sensor, 3D printed end-effectors and operation platforms. The ATI

force/torque sensor provides force and torque measurements along its x, y, z axes.

The setup for the experiment is shown in Fig. 5.1 where a block is attached to the robot end-

effector, and there are two 3D printed structures with the corresponding cavities that will fit the

block. The experiment requires the human operator to command the robot to move the block from

one platform to another. The cavities are designed such that the block can only fit when it is

correctly oriented with respect to the opening space. There are no additional sensors except human

observation.

The system software is built in ROS [48] with different nodes (programing unit in ROS). A

detailed network structure and control flow is shown in Figure 5.2. Joy reader node registers

joystick inputs, command reference is generated in reference generator node and Hybrid Controller

converts the joystick commands to joint level inputs to the robot. The software communicate with

1As specified in Contributors and Funding Sources section, a part of section 5.1 is adapted from joint work done
by the student with Dr. Zongyao Jin [1].
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the robot via joint_state and ur_script topics and with sensor via netft_utils topic.

Figure 5.1: Setup for Material Handling Experiment
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Figure 5.2: ROS based Software Structure and Control Flow

The controller performance was recorded by recording end-effector orientation with respect

to the reference commands sent by the joystick. Fig. 5.3 shows the plots of robot performance

against roll, pitch and yaw reference inputs provided via the joystick. We observe that the end-

effector tracks the desired inputs effectively. Sequence of robot configurations during the operation

are presented in Fig. 5.4. The robot is shown to be picking up the block from the left platform

and dropping the block in the right platform. Figure 5.5 provides a wire-frame diagram of robot

configurations. In subplot (a) the robot picks up the object and subplot (b) shows the placing the

object in the right platform. The wire-frame color in each of Figure. 5.5 (a) and (b) is shaded from

light to dark to highlight passage of time as the task progresses.
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Figure 5.3: End-Effector Orientation Tracking with Joystick Input
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Figure 5.4: Sampled Robot Configurations during Joystick Interface Experiment
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Figure 5.5: Robot Wire-frame Diagram during Operation (wire frame is lighter shade at the start
of the task and gradually becomes darker as the task progresses in time)
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5.2 Demonstration of Vision based Automatic Control

A framework has been developed to provide assistance to operator where automatic control

based on vision takes over the control of the robot once the object is detected by the vision system.

The vision based motion planning algorithms were developed in MoveIt! interface. The simula-

tions were first performed in ROS Gazebo Environment and then the integrated system is validated

with Human-in-Loop module on a physical platform for testing effectiveness of collaborative sys-

tem (presented in section 5.3).

The working space in Gazebo included a UR5 Robot, Vaccum Gripper, USB Camera and

Conveyor Belt. The conveyor belt carried workpiece (a box of size 0.1 m x 0.075 m X 0.1 m)

over it with randomized initial y-location and moving with a speed of 7.5 cm/s. The boxes were

designed to be red in color and the HSV range from (0,255,255) to (20,255,255) were utilized for

detection by vision algorithms. The siulation setup is shown in Figure 5.6.

Figure 5.6: ROS Gazebo Environment for Vision based Automatic Control Testing
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The motion planning in this case included tracking and grasping the moving object while avoid-

ing collision with the conveyor belt. A preset tolerance of 0.01 m in position and 0.1 rad in ori-

entation were permitted. Figure 5.7 shows the sequence of the robot position while grasping the

object. The results of EE pose planned versus actual are presented in figure 5.8. As described in

Chapter 5, the motion planning phases; Pre-Grasp Transport, Object tracking, and Grasp Manipu-

lation can be identified. The effectiveness of the method can be observed from end-effector closely

following the planned path.

Figure 5.7: Sampled Robot Configurations during Vision based Automatic Control
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Figure 5.8: Planned versus Actual EE Trajectory in Gazebo
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5.3 Validation of Integrated System

Implementation of Human-Robot Collaborative system was again done on UR5 robot. The

platform consisted of ATI Force-Torque sensor, Astra Pro Orbec camera, Robotiq vaccum grip-

per, which are mounted on the robot end-effector. Logitech Extreme Pro joystick was utilized for

Human-in-Loop Control. The experimental setup is shown in Figure 5.9. In order to simulate

changing environment where the location of the object may not be known a-priori, the task is de-

fined in the following manner: Human operator is asked to grasp the moving object on conveyor

belt and drop it at the designated dropping location. Initial configuration of the robot is randomly

set and it may not have the camera on robot end-effector facing the conveyor belt to have ob-

ject in camera field of view for vision module to pickup. To complete the task, first, the human

operator brings the robot over conveyor belt using the joystick interface and positions the robot

to have object identified by vision module. Once the object is detected by the vision algorithm,

automatic control will take over to grasp the object. The object once grasped will be moved to

a pre-determined pose and the human then takes over to navigate the robot to place the object at

dropping bin.

The system software is again built in ROS for vision based control as well. A detailed network

structure and control flow is shown in Figure 5.10. Image reader node registers camera inputs

and vision node detects object and target pose is estimated. Waypoint Generator generates valid

intermediary goals between current pose and target pose depending on different phases of Grasp

Manipulation. The waypoints generated by this node is then sent to MoveIt! planner to generate

time-parameterized trajectories in joint space for execution. MoveIt! planner communicates the

planned trajectory to the robot using JointTrajectoryAction action server and joint state information

is read via joint_states topic. FT Sensor data is again read from netft_utils topic and camera data

is read from usb_cam/raw_image topic. Tracker and Gripper topics were created to access target

pose from vision node and to send activation commands to the gripper respectively.

Figure 5.11 shows the sequence of robot configuration during the trial. The 3D trajectory of

the complete EE movement is plotted in Figure 5.12. The segments of the plot are color coded

49



Figure 5.9: Experiment Setup for Collaborative System Testing

to indicate the different modes of operation at different stages of the experiment.The trajectories

where the human is in loop is in shown red (intialize) and black (dropping the object), automatic

grasping and post grasp transport trajectories are shown in blue and green in color respectively.

We also plotted Planned Pose versus Actual Pose for vision based automatic motion planning op-

eration. The results are shown in figure 5.13. Different phases of grasp manipulation can again

be identified. The experiment again showed effectiveness of both Joystick Control framework and

Vision based Motion Planning on a physical system. However, can note that the target path and

actual path during automatic phase of operation on physical system did not follow each other as

closely as in the simulated system. This is attributed to shortcomings of vision detection mech-

anisms under environmental conditions. HSV based detection algorithm used in this study was

observed to be affected by the lighting in the room leading to errors in pose estimation.
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Figure 5.10: ROS based Software Structure and Control Flow
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Figure 5.11: Sampled Robot Configurations during Collaborative System Testing: (a) Initial Pose
of robot where object not in camere FOV; (b) Human operator bringing EE over the object; (c) Vi-
sion based motion planning; (d) Object getting picked up; (e) Post Grasp Transport and Orientation
Correction of the object; (f) Object dropped into the bin
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Figure 5.12: EE Pose during the Full Experiment
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Figure 5.13: Vision Module Planned versus Actual EE Trajectory on UR5
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6. SUMMARY AND FUTURE WORK

In this work, a framework was presented for Human-Robot Collaborative Control for Inspec-

tion and Material Handling tasks with Computer Vision and Joystick. First, a novel method for

human operators to control a robot end-effector intuitively in mixed frame (orientation reference

in robot world frame and translation reference in instantaneous end-effector frame) with human-

machine shared control is presented. To facilitate effective and intuitive manipulator operation by

human operators using a general purpose joystick, the Instantaneous Surface Normal Approach is

utilized. Based on the operational characteristics of this approach, we have designed an appropri-

ate joystick command interface. We have also introduced the corresponding method to generate

orientation error, constant translation velocity, and torque terms based on the reference provided

by the human operator via joystick. The control terms were decoupled and simultaneously mapped

to robot joint velocities through the proposed hybrid control law.

Second, vision based motion planning method is developed. HSV based object detection and

pose estimation method is presented for localization of the object. Motion planning algorithm to

track and grasp a moving object identified by vision module were developed in MoveIt! software.

We described how the robot and environment can be integrated with MoveIt! to generate collision

free trajectories. Rapidly exploring random tree, RRT planning algorithm is utilized for generat-

ing path trajectories. Proportional controllers are developed to generate valid waypoints for path

planner between dynamically changing target pose from vision module and current pose of the

end-efffector to align, track and grasp the moving object. Fast Collision Check MoveIt! Library is

utilized for planning of collision-free paths.

Experiments are conducted to test both modes of operation and integrated collaborative system

on physical platform and simulation environment. Experimental results indicate that by utilizing

the method proposed in this study, the human operator can intuitively and effectively command the

robot to execute a pick-and-place task which is shown utilizing a peg-in-hole insertion example.

Data also corroborate that the hybrid controller is capable of tracking human operator’s reference
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input effectively. Vision based automatic control experiments validated the effectiveness of mo-

tion planning algorithms developed. Results showed the robot end-effector to be closely following

the path generated by the algorithm and successfully grasping the moving object. Finally, exper-

iments are conducted integrating both joystick and vision based automatic operation to validate

proposed Human-Robot Collaborative testing. Successful implementation on physical hardware is

presented.

The results from the simulations and experiments conducted in this thesis showed the effective-

ness of the methods developed. The tests were conducted for a moving object with speed of 7.5

cm/sec. However, it was observed with further experiments that the algorithms fails to effectively

work for objects moving at higher speeds (>10 cms/sec). A simple technique based on color filter-

ing has been employed for object detection in this study which made the module sensitive to light

and reflection from the object surface. The sensitivity to light and reflection added noise in the

data and the effects were amplified when lesser frames were captured at higher speeds leading to

failure in estimating correct target pose. Better vision algorithms like edge detection method could

be employed in the future. These methods would also help generalize the framework developed

despite the color of the object. Another limitation to the study is that we utilized a 2D camera and

Z coordinates of object were roughly estimated based on area of object detected, however a 3D

camera could be used for precise localization of the object.

Also with MoveIt!, we utilized one motion planning algorithm to generate trajectories by gen-

erating valid waypoints using a local controller. The parameters of the local controller to generate

the waypoints were tuned to get optimized performance, however, tuning the parameters of global

planner with MoveIt were not explored in this study. There are also multitude of other planning

algorithms available with MoveIt! to be explored for optimizing performance. Also, collision

avoidance library allows for integration of dynamic obstacles using octomaps in the environment

and this was not considered in the scope of this study. Further explorations with these MoveIt!

capabilities remains a topic of future research.
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