
SERVICE EXTRUSION IN GENERAL PURPOSE KERNEL

A Thesis

by

YIFAN LIU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Riccardo Bettati
Co-Chair of Committee, Dilma Da Silva
Committee Members, Paul V. Gratz
Head of Department, Scott Schaefer

December 2020

Major Subject: Computer Science

Copyright 2020 Yifan Liu

ABSTRACT

General-purpose kernels sometimes fail to provide specialized services that may be required by

applications, for example real-time capabilities, low-latency communication, or specialized device

access capabilities. Addressing this with the use of specialized kernels loses the generality that

one has come to expect from general purpose kernel. This thesis proposes a solution that combines

general-purpose and specialized kernels to enable services from both sides while providing perfor-

mance isolation, in a fashion that is transparent to both programmer and user. The application is

provided direct hardware access, and at the same time still has access to Linux system calls without

crossing the privilege layer.

ii

DEDICATION

To my parents, Rongjun Liu and Xinwei Zhu, who raised me and taught me to speak.

To all my families, who gave me encouragement and support.

And my deepest gratitude to my advisor, Prof. Riccardo Bettati.

These two years are one of the best two years I’ve ever had.

iii

ACKNOWLEDGMENTS

I would like to thank Prof. Riccardo Bettati for his advise and review, and my committee

members, Prof Dilma Da Silva and Prof Paul V. Gratz, for their comments and feedback.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis (or) dissertation committee consisting of Professor Ric-

cardo Bettati and Professor Dilma Da Silva of the Department of Computer Science and Engineer-

ing and Professor Paul V. Gratz of the Department of Electrical Computer Engineering.

All work conducted for the thesis (or) dissertation was completed by the student independently.

Funding Sources

No outside funding was received for the research and writing of this document.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES. ix

1. INTRODUCTION . 1

2. BACKGROUND . 4

2.1 Hardware-Assisted Virtualization . 4
2.1.1 x86 CPU Virtualization . 4
2.1.2 x86 MMU Virtualization . 4
2.1.3 x86 I/O Virtualization . 5

2.2 Inter-VM Shared Memory . 6
2.3 Xen. 6

2.3.1 Grant Table Shared Memory Mechanism . 6
2.3.2 Xen Event Channel . 7
2.3.3 XenStore . 7

3. RELATED WORK . 9

3.1 Virtual Interface Architecture (VIA) . 9
3.2 TCP Offload . 9
3.3 RT Linux and RTAI . 9
3.4 DPDK. 10
3.5 Arrakis . 10
3.6 IX . 10
3.7 Cross Call. 11

4. SERVICE EXTRUSION . 12

vi

4.1 Service Extrusion Overview . 12
4.2 Design Considerations . 12

4.2.1 The Hardware . 13
4.2.2 The Hardware Abstraction Layer . 13
4.2.3 The Extruded Service and The Unified API. 14
4.2.4 The Application . 15

5. REMOTE SYSTEM CALL FRAMEWORK . 16

5.1 Overview . 16
5.2 System Architecture. 16

5.2.1 OSv modification . 18
5.2.2 Remote System Call API and Library . 18
5.2.3 Remote System Call Split Driver . 19
5.2.4 Notification Channel . 19

5.3 Example: Read/Write a File From Linux . 20
5.3.1 User Application. 20
5.3.2 Remote System Call Setup: Config Negotiation . 21
5.3.3 Remote System Call: Redirection . 21
5.3.4 Remote System Call: Invocation and Return. 21

5.4 Challenges and Issues . 22
5.4.1 Page Fault Handling . 22
5.4.2 Address Space Collision . 23
5.4.3 Unsupported System Calls . 24

6. EXPERIMENTATION AND EVALUATION . 25

6.1 Experiment Settings . 25
6.2 Redis NoSQL Store . 25

6.2.1 Redis Benchmark . 26
6.3 OS Jitter . 29

6.3.1 Settings and Results . 29
6.4 Remote System Call Performance . 31

6.4.1 NULL System Call Performance . 31
6.4.2 Read/Write System Call Performance . 32

7. CONCLUSION AND FUTURE WORK . 35

REFERENCES . 36

vii

LIST OF FIGURES

FIGURE Page

4.1 Service Extrusion Architecture . 13

5.1 Remote System Call Architecture . 17

6.1 Redis performance, 600 concurrent clients, no pipelining . 28

6.2 Redis PING_INLINE performance . 28

6.3 OS Jitter . 31

6.4 Read system call latency . 33

6.5 Write system call latency . 34

viii

LIST OF TABLES

TABLE Page

6.1 Redis Benchmark Operations. 27

6.2 Samples Summary of 2/4 and 4/4 benchmark . 30

6.3 OS Jitter Samples Summary . 30

6.4 NULL System Call Performance . 32

ix

1. INTRODUCTION

With the development of fast I/O devices, the role of general-purpose operating systems in

many scenarios has been gradually reduced. Linux, being the most popular general-purpose kernel,

sometimes fails to provide predictable, high performance, or customizable services to specialized

applications. For example, the authors of [1] analyzed the cost for processing a single network

packet, and found that nearly 70% of the time was spent in the kernel network stack.

The cost of general-purpose kernels leads to many attempts to bypass the kernel, such as In-

tel’s Data Plane Development Kit (DPDK) [2] for high performance networking. Many of these

attempts give user space applications direct access to unmediated hardware resources, and thus

bypass the kernel, in exchange for better performance. Most of these attempts focus on network

devices only.

On the other hand, specialized kernels, such as unikernels [3], where an application is linked

with a library OS and deployed directly on a virtualized or physical machine, have also gained

interest, especially in cloud computing scenarios. Recent unikernels implement single-process

applications and single address spaces. This eliminates overheads, such as context switching, and

enables whole-system optimization. Unikernels have demonstrated significant advantages over

general-purpose kernels (e.g. Linux), including boot time [4], I/O performance [3] and security

[5].

Despite these advantages, the unikernel’s single-application architecture has a number of short-

comings: First, debugging and management of the unikernel are complicated because of a lack of

the ability to run concurrent processes. Many of the tools that are available on a general-purpose

kernel, such as shell, debugger, or profiler will not be available on a unikernel. Porting supporting

software, such as device drivers, onto a unikernel can be a daunting task, because unikernels usu-

ally have different scheduling strategies, memory protection models, or even filesystem APIs from

a general-purpose kernel. Next, even performance or latency sensitive applications occasionally

need access to a rich set of general-purpose services, such as logging, visualization, etc. Finally,

1

programmers appreciate to be able to develop and run applications in a familiar environment such

as POSIX.

So the question is: Can we have access both to high-performance specialized services, and

to general-purpose services and mediated device access such as provided by general-purpose op-

erating systems? More specifically, can we derive a solution that satisfies the following design

goals?

• Hybrid services: The solution is able to provide access to both a specialized kernel, such

as high performance networking, and a general-purpose kernel such as multiple filesystem

support, device drivers and IPC with other processes on the same kernel.

• Performance isolation: Accessing the general-purpose services should not affect the per-

formance of specialized services. Similarly, accessing the general-purpose services from the

specialized kernel should also not affect the applications already running on the general-

purpose kernel.

• Zero privilege boundary crossing: One straightforward method to access general-purpose

services from a specialized kernel is to issue remote invocations of system calls to a general-

purpose kernel across kernel boundaries, typically using a network protocol. The cost of

such remote invocations is significant because they cross multiple privilege boundaries (e.g.,

user to kernel, VM to a hypervisor). Rather than sending requests through a network stack,

access to either kind of services should be done in the form of function/system calls to reduce

call overhead. The calls could be executed locally or, when necessary, offloaded for remote

execution, but the offloading process of such calls should not cross privilege boundaries.

• Transparency: Any solution should provide the user and application running on specialized

kernel with a familiar system call interface. In addition, porting existing (POSIX) applica-

tions to the specialized kernel should require no or only minimal code changes.

This thesis will propose and evaluate an architecture to achieve these goals. It will describe one

2

implementation, which makes use of the Xen hypervisor’s Grant Table shared memory mechanism

[6]. Our experiments show that our architecture meets all the criteria described above.

3

2. BACKGROUND

In this section we present background knowledge related to the topic.

2.1 Hardware-Assisted Virtualization

Hardware-Assisted Virtualization is an efficient virtualization technique that uses help from un-

derlying hardware capability. Generally, a hypervisor (or Virtual Machine Monitor) has to provide

virtualization for the following components: CPU, MMU and I/O devices. On the x86 architecture,

the presence of hardware virtualization extension (VT-x) eliminates the need for binary translation

and at the same time maintains high performance. In the following sections we summarize the

virtualization approach for the three parts we have mentioned above.

2.1.1 x86 CPU Virtualization

On x86 processors with VT-x support, the processor is able to run in two different modes:

VMX root mode and VMX non-root mode. These two modes are orthogonal to privilege rings (i.e.,

each mode has its own separate privilege rings). The hypervisor software runs in the VMX root

mode and retains control of the physical machine. The VMX non-root mode is privilege-reduced

to enable the hosting of a guest OS. The transition from root to non-root mode can be achieved

via new VMX-related instructions, such as VMENTER, VMEXIT. Typically, the CPU runs in non-

root mode until an external event (e.g., timer, I/O interrupt) happens, at which point it traps to

the hypervisor in root mode. After the handling of an event by the hypervisor, the CPU resumes

execution in non-root mode.

2.1.2 x86 MMU Virtualization

Before the advent of architectural support for MMU virtualization, hypervisor software em-

ployed a technique called shadow paging to keep the mapping of virtual address to host-physical

address. This technique is extremely expensive and complex since it relies on memory tracing to

keep track of the changes of page table in memory.

4

With the introduction of hardware-assisted virtualization, such as the EPT (Extended Page Ta-

ble) mechanism, the virtualization of MMU has become much simpler. The EPT is similar struc-

ture to a normal page table, except that it translates directly from guest physical address (GPA)

to host physical address (HPA). When in VMX non-root mode, all accesses to the guest physi-

cal memory will be treated as “guest access”, and will be further translated through the EPT by

hardware. In this way every guest can have its own VM-level address space, and shared memory

between VMs becomes easier to maintain.

2.1.3 x86 I/O Virtualization

I/O virtualization has been one of the most complex parts of a hypervisor. It is usually ad-

dressed using one of the two approaches:

The first is I/O emulation, where hypervisors provide software emulations of the hardware to

the guest OS. This approach is still employed by many modern hypervisors, such as Xen or KVM

[7], to virtualize components such as BIOS, VGA adapters, or USB controllers.

The second approach is I/O para-virtualization. This is typically used to virtualize devices that

have high performance requirements, such as disk or network I/O driver. Such para-virtualized

drivers are usually separated into two parts, namely frontend and backend. The frontend serves as

an interface to the virtual machine, while the backend is the actual implementation, usually running

in the hosting OS (or privileged VM in bare-metal, or Type-I, hypervisor).

In addition, if a device is DMA-capable, the DMA requests would have to be emulated or para-

virtualized because by using DMA, the device is able to access any part of the physical memory,

if unrestricted. With the introduction of hardware support, the isolation of devices can be achieved

more efficiently by using hardware assisted remapping [8], where hypervisor can create multiple

DMA protection domains, and each of the protection domain contains only a subset of the physical

memory. This protection model also enables a third way for VMs to interact with devices: direct

device assignment. The hypervisor is able to exclusively assign certain devices to specific VM, in

a secure and scalable way, for maximum performance and availability.

5

2.2 Inter-VM Shared Memory

Modern hypervisors will usually provide inter-VM shared memory mechanism, such as Grant

Table mechanism [6] on Xen, or inter-VM shared device on QEMU/KVM. In most cases, such

mechanism will be employed in one of the following cases:

1. Communication channel for split drivers;

2. Bulk data transfer;

3. Memory footprint optimization. Some hypervisors may merge read-only pages with exact

same content (e.g., different VMs may have same kernel code page) to reduce overall mem-

ory footprint.

In this thesis, we also employed shared memory but to a different use case scenario: Inter-VM

page fault. We will present more details in Section 5.4.1. For that purpose, we decided to use Xen

Grant Table mechanism, where the hypervisor provides low-level operations for shared memory

manipulation through hypercalls.

2.3 Xen

Xen [9] is an open-source Type-I (or bare-metal) hypervisor originally developed by University

of Cambridge and now maintained by Linux foundation. To achieve better VM isolation and

security, Xen hypervisor itself does not contain drivers for I/O devices. Instead, a privileged VM

(Domain 0) is responsible for providing I/O services, such as network and disk I/O services, to all

other VMs. As described in Section 2.1.3, such para-virtualized drivers usually contains a frontend

running in guest OS and a backend running in privileged VM. The communication of the front and

backend is achieved through Grant Table shared memory and an inter-VM event channel.

2.3.1 Grant Table Shared Memory Mechanism

Xen provides Grant Table mechanism [6] to enable memory sharing and transferring across

VMs. Grant Table is a data structure shared between guest OS and hypervisor to keep track of

6

shared memory. For memory sharing, a VM is able to grant access of certain memory frames to

other VM while retaining ownership. A typical process of memory sharing includes:

1. VM1 creates a grant access reference, and transmits the grant ID to VM2.

2. VM2 uses the grant ID to map the granted frame.

3. VM2 accesses the frame.

4. VM2 unmaps the frame.

5. VM1 removes its grant from its grant table.

In addition to sharing, Grant Table also allows a VM to transfer the ownership of certain frames

in similar process. The sharing mechanism is widely used in the front-backend split drivers, while

the transferring is typically used for bulk data transfer.

2.3.2 Xen Event Channel

Xen Event Channel [10] is the basic primitive for event notification. An event is equivalent to

an interrupt. Currently there are four types of event supported by Xen:

1. Inter-domain notifications. This include the events from para-virtualized devices.

2. VIRQs

3. Inter-Processor Interrupts

4. PIRQs (Hardware interrupts)

The notification between split drivers is built on top of this mechanism.

2.3.3 XenStore

XenStore [11] is an information storage maintained by Domain 0 and shared across all VMs.

Structurally, it is similar to a procfs, where VMs are able to read/write data under its own

namespace. XenStore is built on top of very low-level primitives (virtual interrupts and shared

7

memories) to provide higher-level operations such as read/write a key, enumerate directory or

notify upon value change.

It is typically used for configuration and small-sized information exchange for split drivers. It

is not meant to be used as persistent datastore or message queue.

In this thesis, we make use of the above features of Xen to develop a solution that satisfy the

design goal described in Section 1.

8

3. RELATED WORK

Over the years, a number of kernel bypass techniques have been proposed, some with the intent

to primarily reduce device access latencies, others to increase timing predictability. In this section

we present a survey a number of kernel bypass techniques that have been proposed over the years.

3.1 Virtual Interface Architecture (VIA)

Virtual Interface Architecture [12] is a model for user-space zero-copy network. The idea was

inspired by Virtual Memory model, where each user process is provided an illusion of private

memory with the assistance of hardware such as the MMU. In VIA, each consumer process, called

a VI Consumer, is provided direct access to an interface to the network hardware, called Virtual

Interface. In this case, the consumer process will have an illusion that it was provided a "private

network", and therefore is able to manage the transmission buffer of its own, while the Virtual

Interface provides protection.

3.2 TCP Offload

TCP offload is a technique implemented in the network interface card (NIC) to offload the

entire TCP/IP stack from the host CPU for faster packet processing. However, this idea didn’t last

long[13] because of a lack of scalability and maintainability. Hardwiring the network stack makes

it impossible to fix bugs in network stack itself, and the scalability is limited by the capability of

the NIC (e.g., memory limit and IP routing tables).

3.3 RT Linux and RTAI

RT Linux [14] is an attempt to make Linux real-time capable. In the RT Linux implementation,

Linux runs as a lowest-priority thread, in an emulation layer, on top of a small RTOS. The real-

time tasks run alongside Linux in RTOS. The RT-Linux architecture is able to provide low-latency

interrupt services, customizable scheduling, high timer precision, and at the same time retain access

to a range of general-purpose OS services from Linux.

9

Similarly, RTAI [15] (Real Time Application Interface) also runs patched Linux as a lowest-

priority task on top of a hardware abstraction layer, where Linux is not able to block interrupts or

prevent itself from being preempted.

However, one of the disadvantages of these approaches is that in order for application to run

on the RT-Linux platform, they must explicitly separate the hard real-time part and non real-time

part.

3.4 DPDK

The Intel Data Plane Development Kit (DPDK) [2] is a typical example of kernel-bypass net-

working. The kernel network stack is completely bypassed, and NICs need to be unbound from

the kernel driver before they can be used directly from user space. DPDK implements a run-

to-completion model for fast data plane operations, and the devices are accessed via polling to

eliminate the overhead of interrupt handling.

3.5 Arrakis

Arrakis [1] is a network server OS that acts as a control plane. Applications are provided direct

access to virtualized I/O devices. Data plane operations therefore do not require kernel mediation.

Arrakis relies on SR-IOV (Single Root, Input/Output Virtualization) for multiplexing. A single

SR-IOV capable NIC can present itself as multiple virtualized PCIe devices. Arrakis can achieve

two to five times faster R/W latency and close to 9 times write throughput compared to a well-tuned

Linux.

3.6 IX

IX [16] is a data plane OS that provides high performance user-level networking. IX and Ar-

rakis share a number of similarities: Both separate control and data plane for better performance;

both utilize hardware virtualization technology to provide unmediated hardware access to user ap-

plication; both provide a POSIX compatible API; and both achieve a significant performance gain

compared to Linux. The major differences between the two are: IX relies on run-to-completion

adaptive batching, while Arrakis does not; IX does not support SR-IOV and IOMMU as Arrakis

10

does; and Arrakis is a fork of BarrelFish [17], while IX is based on Dune [18]/Linux. The system

calls in the IX data plane are replaced by VMCALL, which requires hypervisor intervention and

rerouting.

3.7 Cross Call

Cross Over [19] is a solution for zero ring-crossing cross-VM system calls (i.e., the system call

is issued by user application in VM1, and served by the kernel in VM2, without trapping into the

hypervisor). The idea is to switch Extended Page Table mapping of the caller machine to directly

execute in the VM address space of the callee machine. On the Intel platform, the switching

operation can be achieved via the VMFUNC instruction without trapping into the hypervisor. To

achieve a system call, a universally mapped code page and shared memory is utilized to pass the

arguments and return value. This is an appealing idea to our solution, but there is still one fatal

problem: The cross call switches the entire Guest Physical Address to Host Physical Address

mapping to that of the other machine. This will freeze any other application on the caller machine

for the entire duration of the cross call. While the crossing is happening, the CPU cores of both

the caller and callee may be executing same piece of code (in particular Linux system call code),

and that code may not be lock-protected when Linux detects there should have been only one

"available" core.

11

4. SERVICE EXTRUSION

From the discussion in Section 1 and Section 3, it is evident that the various approaches for

control-data plane separation do not satisfy the goals laid out for our work. General purpose

services are not limited to control plane services, e.g. access control and rate limiting for network

transmission. Rather, they can be any services, usually unrelated and not in critical path. This

section provides the architecture of service extrusion and one possible implementation of such

architecture.

4.1 Service Extrusion Overview

As an alternative to layering services (typically middleware services) on top of a general-

purpose kernel, we propose a compartmentalized deployment of services over a minimal mediating

hardware abstraction layer (HAL): Critical services are deployed directly on top of the mediating

layer, alongside the general-purpose kernel. Services that are offered beyond the critical part can

still be provided by the general-purpose kernel. Figure 4.1 shows an overview of the service extru-

sion architecture.

The objective of this architecture is to run performance- or safety-critical services separately

from the general-purpose kernel and run them directly on the mediating layer, in a fashion that is

transparent to the user and the kernel.

4.2 Design Considerations

Since we provide unified API to user applications without crossing the privilege boundary,

there will be many choices and challenges in designing a possible implementation, for nearly

every component shown in Figure 4.1. The subsequent sections detail the challenges and choices

we face.

12

Hardware Abstraction Layer

Linux Extruded Services

Application

Hardware

Figure 4.1: Service Extrusion Architecture

4.2.1 The Hardware

The Service Extrusion architecture, by design, should work on any use case scenario including

embedded devices, mobile phones, desktop computers or data-center servers. However, one crucial

capability we require is the presence of hardware assisted virtualization. As described in section 2,

most modern processors, such as x86 or ARM processors, were equipped with hardware assisted

virtualization capability [20] [21].

For network interface card, we do not rely on SR-IOV for packet multiplexing.

4.2.2 The Hardware Abstraction Layer

By design, the HAL has to be as lightweight as possible to ensure reasonable performance

of the extruded services, and at the same time has the ability to host out-of-the-box Linux system.

13

Currently there are two approaches to host Linux: hosting Linux based on virtualization technology

(either hardware virtualization or para-virtualization), and the HAL runs as hypervisor; or hosting

Linux by adding emulation layer without the use of hardware virtualization. The first approach was

employed by most of the Type-I hypervisors (or software that contains Virtual Machine Monitor

module), such as Xen, ACRN [22], L4Linux [23] or SeL4 [24]. The second approach was adopted

primarily by RT-Linux [14] and RTAI [15]. In our case, we have picked Xen for its excellent

performance [25], ease of use and built-in support for inter-VM shared memory.

4.2.3 The Extruded Service and The Unified API

As described by design goal, the service extrusion does not affect the performance of Linux.

That is, although "extruded", the service can still be accessed by applications running on Linux.

The extruded service should be self-contained, high performance and compatible with most Linux

applications without modification. In general, unikernel is a good candidate for this task.

However there are many types of unikernels, and not all of them fit in the role because of dif-

ferent designs. Many unikernels, such as MirageOS [3] or HaLVM [26], requires the application

itself to be written in certain programming languages (OCaml in MirageOS, Haskell in HaLVM)

and compiled with specific toolchain. Some other unikernels, such as Drawbridge [27], are de-

signed to achieve benefits of a virtual machine without having to run on a hypervisor or bare metal.

In addition, in order to provide unified API with minimum modification to the application,

the extruded services should support POSIX. To our knowledge, only two unikernels, Rumprun

[28] and OSv, satisfy all the criteria. We picked OSv as it is more stable, and supports running

unmodified binary directly without recompilation. Note that although OSv claims to be binary

compatible [29] with Linux, only a subset (less than 100) of the full Linux system calls were

implemented. And due to lack of drivers, running OSv directly on top of bare metal will not be

able to fully replace the Linux environment.

14

4.2.4 The Application

As depicted in Figure 4.1, the application was provided unified API to access the services

of both kernels. Essentially, this means we ask the application to have two sets of system call

interfaces.

Many challenges arises in designing such an architecture. First, where do we run the applica-

tion? In general we have two choices: running on Linux or running on unikernel. Since we need

to provide maximum performance out of unikernel, we chose to run the application on unikernel,

and access Linux services from unikernel.

Second, does application need to be divided into multiple parts? For example, is it possible to

separate the application into critical and non-critical part, where each part runs on a different type

of kernel while maintaining transparency? This approach seems working in some scenarios, but it

has the following disadvantages:

1. The code segment compiled and linked for Linux environment may not properly work (e.g.,

different library version or different system call semantics) under a different execution con-

text;

2. It may disrupt the execution flow of the original program, where the critical "thread" and

non-critical "thread" were originally in the same thread. In this case, the handling of external

events such as interrupts becomes complex.

3. The critical and non-critical parts may not be static. Non-critical code path can become crit-

ical in some cases, while critical code path may become less critical after, e.g., configuration

change. Dynamically adjusting such separation will be very hard under this circumstance.

In the following sections, we detail a possible implementation of the architecture, Remote

System Call Framework, to address the design goals laid out earlier.

15

5. REMOTE SYSTEM CALL FRAMEWORK

5.1 Overview

In this section, we present an implementation of the Service Extrusion, namely Remote Sys-

tem Call framework. We make use of hardware virtualization to provide user-level access to the

hardware resources. The system is built on top of the Xen [9] hypervisor and its Grant Table

shared-memory mechanism on x86_64 platform. Grant Table mechanism allows a domain to ex-

plicitly share or transfer its memory pages to other domain. The Extruded Services component is

implemented based on our fork of the OSv unikernel [29]. OSv is a POSIX-compatible, single-

address-space, single-application unikernel written in C++. A user application is compiled and

linked against the OSv, and most of the specialized services (e.g., high-performance I/O) are pro-

vided by the OSv kernel. In order to support Remote System Call, we have partially ported the

Xen shared memory driver (gntalloc) onto the OSv to enable the use of Xen shared memory.

Figure 2 shows an overview of the implementation.

5.2 System Architecture

In addition to the cost of privilege layer crossing, the problem of mediated or re-routed system

calls is that any pointer arguments (buffers) of system calls cannot be interpreted as they are since

they are of no use outside of the address space of the caller. Either a marshalling/unmarshalling

process is required as in RPC, or multiple copying needs to be done. This may result in a compli-

cation of various security checks such as a boundary check. More complications can arise when

calling memory-related calls such as mmap. To address this problem, we have developed the Re-

mote System Call Framework to support zero-copy cross-VM system calls. More specifically, our

approach does NOT require the user space application to:

1. Allocate memory in specific region. The memory can be in any place, as long as it is within

the limitation of Linux user space upper limit (i.e., 128TB).

2. Use a patched libc. Users can use the standard libc without worrying about incompati-

16

Xen

Linux (Dom0) OSv (DomU)

Hardware

Application

Fr
on

te
nd

Ba
ck

en
d

SHM

Syscall

SHM

Shadow Process

librmsys

Ba
ck

en
d

M
on

ito
r

Syscall

Figure 5.1: Remote System Call Architecture
Remote system calls will be forwarded from frontend to backend via shared memory as-is. Any missing
pages will be populated using Xen grant-table shared-memory mechanism after the first EFAULT failure.

Notice that the unikernel has no notion of kernel space vs user space since it has a single address space, and
all code runs in privileged mode (Ring-0 as in x86_64 architecture).

17

bility issues.

3. Manage two sets of libc calls (i.e., remote vs. local). We don’t provide additional set of

calls that are explicitly remote.

As shown in the Figure 5.1, the framework contains numerous components on each side of the

call. We will explain these components in the following sections, and present an example of doing

remote system call.

5.2.1 OSv modification

The OSv is modified to support our Remote System Call architecture. To fully enable Xen

shared memory and notification, we have partially ported the gntalloc1 and evtchn2 driver

onto the OSv. We have also modified the VFS of OSv to enable the support for custom driver.

To implement system call redirection, we have added checkpoints before system calls, and we’ve

modified several system call/library implementation to avoid address space collision. We will

detail the decision of such modification in the subsequent sections.

5.2.2 Remote System Call API and Library

From the perspective of the application, the API allows it to issue two sets of system calls. A

wrapper library librmsys is developed to provide APIs to user space. Many of the system calls

can be issued locally or remotely, depending on current per-thread state. The state can be switched

(on or off), by issuing corresponding special system calls we’ve added. An example of the use of

the API is provided in section 5.3. The issuing of normal system calls are not affected by the use

of this library.

Notice that this approach does not distinguish the resources from different kernels. For exam-

ple, the file descriptor returned from a remote open call could be a valid file descriptor at local

scale (if there is a filesystem on the unikernel). It is the user (or library)’s responsibility to manage

the resources separately. However this does not contradict the transparency objective. The correct

1Xen inter-vm shared memory allocation
2Xen event channel notification

18

use of such resources usually only involves calling on/off call pair at correct places.

5.2.3 Remote System Call Split Driver

To avoid privilege layer crossings and to support system calls as-is, we developed a split driver

to serve the Linux system calls. Similar to a traditional Xen split driver such as blk or if[30], the

remote system call split driver contains three parts, namely frontend, backend and a backend mon-

itor. The frontend is built into the OSv kernel as a device driver. Upon initialization, the frontend

negotiates general configurations with backend monitor, and the backend monitor generates one

backend process, for every unikernel requesting services to Linux, according to negotiated config-

uration. The backend process, or a shadow process, serves as a (almost perfect) clone of the OSv

user address space, as well as an execution context, to support system calls and arguments as-is.

The system call requests are sent through a shared memory channel established between OSv and

shadow process, and the backend will execute the call on behalf of the user. Return value will be

put to the same channel when the call returns.

5.2.4 Notification Channel

We implement two different version of notification channels between frontend and backend:

interrupt-based and polling-based.

In the interrupt-based implementation, a secure bi-directional Xen event channel was created

between the domains at initialization, and notifications were sent in the form of interrupts. Upon

the creation of the channel, a tuple of target domain and a port (channel) number were specified

by the creating domain for authentication purpose. Only notifications from correct domain and

correct port (channel) number were allowed to go through. The interrupt-based implementation is

also the standard way of sending notifications between frontend and backend of split drivers such

as blk or if.

In the polling-based implementation, the backend polls the shared communication buffer for

incoming new requests. The frontend also polls the shared communication buffer for return value

of the system call. This approach sacrifices the CPU time and memory bandwidth for low latency:

19

It can be up to 15x faster than the interrupt-based approach. We will present more detailed analysis

in Section 6.

5.3 Example: Read/Write a File From Linux

We will now present a step-by-step breakdown of the process of reading/writing a file from

Linux.

5.3.1 User Application

First, the user application was slightly modified by adding appropriate on/off and enable-

disable call pairs at correct places. One possible implementation looks like the following:

char buffer[BUFFER_SIZE];

/* error handling ignored */

handle = rmsyscall_enable();

rmsyscall_on(handle);

fp = fopen(file_path, "r");

fread(buffer, size, count, fp);

fclose(fp);

rmsyscall_off(handle);

/* do something with data */

rmsyscall_on(handle);

fprintf(stderr, "this message prints to Linux");

rmsyscall_off(handle);

rmsyscall_disable(handle);

In the above code segment, the file_path is a relative path with regard to the directory where

20

the shadow process is running. There is no restriction for pointer arguments such as buffer. It can

be either global or local. The expectation is that the fileno(fp) (i.e., the file descriptor) is a

valid file descriptor on Linux. 3

5.3.2 Remote System Call Setup: Config Negotiation

In the rmsyscall_enable call above, the frontend tries to bootstrap its connection with

the backend when there was no shared memory established between them. This can be achieved

via XenStore, an information store shared across all VMs. Callbacks and watches can be set on

specific keys to enable the backend monitor, running in Domain 0, to be notified of the incoming

frontend. XenStore is typically used to store configuration or small-sized information. It is not

designed to be a datastore or cache.

The frontend and backend monitor exchange configurations such as application address space

layout, notification channel port number, etc., and the backend monitor spawns a shadow process

that conforms to the address space layout of the application. The backend running in shadow

process then connects to the frontend and establish shared memory channel between them. All

communication afterwards are going through the shared memory channel.

5.3.3 Remote System Call: Redirection

To achieve call redirection, we have modified the OSv system call implementation to add

checkpoints before system calls4. Calling rmsyscall_on will change the per-thread state to

allow the checkpoint to redirect the call to frontend, which subsequently forwards the call to back-

end. We present more detailed analysis of the redirection overhead in section 6.

5.3.4 Remote System Call: Invocation and Return

The backend will be notified via the notification channel of the incoming system call request.

In above example, the first one will be open.

3Note that on OSv, if SYSCALL instruction is used to explicitly invoke system calls without calling through libc,
the call would incur an additional context switch cost.

4The system call dispatcher in OSv is used to serve SYSCALL instruction. All libc calls go through a custom
libc implementation to eliminate the context switch overhead of system calls.

21

The first attempt of executing open from backend will result in EFAULT because file_path

points to a non-mapped region in shadow process. On receiving this error, the frontend will initiate

a page sharing request to backend, where the page containing file_path string will be shared

across VM and mapped at the exact same virtual address with same permission in shadow process.

If the above process is successful, open will be retried one more time, and a file descriptor

will be returned to the user.

The process for read is similar, except that we adopt pre-fault strategy (populate pages before

the first attempt) for read because it may not return EFAULT when only part of the buffer was

mapped.

If EFAULT persists in the second attempt, or some other errors are returned in the first attempt

(e.g., ENOENT, No such file or directory), we return the error directly without retrying.

When the user application exits, the shadow process will receive a state change of XenStore

entries, and therefore is able to properly finalize and exit.

5.4 Challenges and Issues

There are many challenges in serving remote system calls, especially the ones containing point-

ers.

5.4.1 Page Fault Handling

The pages in shadow process are populated in a hybrid strategy. Unlike a page fault in user

space, system calls do not fault and no signals are generated. We could only identify a fault by

examining the return value of the system call.

Most system calls will return EFAULT (i.e., Bad address) error when the supplied user space

address was inaccessible (i.e., not mapped, or permission denied). When a system call returns with

EFAULT, a page sharing routine is initiated by frontend to populate the missing pages from OSv

to the exact same virtual address in shadow process. The system call will be retried one more time

after all missing pages were populated.

In order to identify the missing page address, we perform a static annotation of system calls.

22

More specifically, we keep a metadata of each system call that includes:

• Which arguments contain pointers, and the R/W property (const vs. non-const) of the pointed

memory area;

• Which arguments contain sizes of what buffers;

• If a pointer points to a structwith nested pointers (e.g., struct iovec in readv/writev),

recursively record the above two points.

Some of the system calls however (e.g., read/write), will half-finish instead of returning

EFAULT. For example, if read is called to fill a page-aligned buffer of 8KB with only the first

half mapped, the readwill return with the number of bytes successfully written (i.e., 4096) instead

of an EFAULT. In this case we adopt the pre-fault strategy where we examine the arguments of the

system calls to actively populate the buffer before the invocation of the call.

The page mappings will be updated upon memory changes on user application, e.g., after a

munmap call.

The page sharing is also achieved through Xen grant-table mechanism. The page fault handler

could be placed in either frontend or backend, and we choose to place it in frontend to reduce the

code size of the backend.

5.4.2 Address Space Collision

There may be address space collision between shadow process and user application. More

specifically, two types of address space collision may happen in the process of page sharing. The

first type is the collision between shared pages and pages private to shadow process (i.e., the

backend code and data page, process stack, etc.) To reduce such potential collision, as described in

section 5.3.2, the shadow process was built without shared libraries, and code and data pages was

placed appropriately according to the address space layout. During the initialization of shadow

process, process stack is also moved to a vacant region. To fully eliminate such collisions, user

may reserve enough space (typically several 4K pages) at application-linking stage to explicitly

accommodate pages private to shadow process.

23

The second type is that the unikernel and shadow process address space may not be one-

to-one mapped. unikernel owns the entire virtual address space as supported by MMU (typi-

cally 64-bit on modern machines), while Linux user process has an virtual address upper limit

of 0x7fffffffffff (i.e., 128TB). Currently we do not support populating pages beyond user

space limit, and we’ve modified OSv to make sure that mapped address ranges of a typical user

application, including stack, mmap’ed and malloc’ed pages are within the 128TB limit.

5.4.3 Unsupported System Calls

Some system calls are not remote executable, in the sense that it may break the cooperation of

frontend and backend. Currently we do not support the forwarding of the following system calls:

1. exit, exit_group, fork, vfork or execve; The fork and execve are not sup-

ported by OSv.

2. Memory related, such as mmap, mremap and munmap. The role of shadow process is to

automatically clone the address space of OSv. Manipulating the memory mapping of shadow

process is not supported.

3. Shared memory related, such as shmget, shmat, shmctl. Currently we do not support

the cross-VM sharing of shm object.

However, we plan to add support for mmap in our future work to enable mapping of files (and

especially, drivers) from Linux VM.

24

6. EXPERIMENTATION AND EVALUATION

In order to demonstrate the effectiveness of our approach, we plan to evaluate the following

characteristics:

1. Hybrid services: Is application able to access services from both kernels? What is the

performance (e.g., network latency/throughput, OS jitter) of such services?

2. Performance isolation: Do remote system calls affect the performance of extruded services

(i.e., OSv)? Do remote system calls affect the rest of the Linux?

3. Zero privilege boundary crossing: Do remote system calls cross privilege boundaries?

What is the latency of the forwarding process?

4. Transparency: How many lines of code change is required for an application to access

remote system calls?

As a proof of concept, we ported a real-world data-center application, Redis [31], onto our

platform. The performance of the application, as well as the performance of remote system calls

and OS jitters, will be measured to answer above questions.

6.1 Experiment Settings

All of the following experiments were conducted on a Dell Latitude E5270 Laptop with Intel

Core i5-6300U at 2.4GHz, 8GB memory and Gigabit Ethernet Controller. We use Xen version

4.9.2 with Ubuntu Linux 18.04 as Domain 0.

6.2 Redis NoSQL Store

Redis is a single-threaded, in-memory key-value datastore. To achieve the goal of hybrid ser-

vices, we have slightly modified Redis on OSv (in about 10 lines of code) to enable the reading of

configuration file from Linux. Redis implements its own event library to achieve efficient I/O mul-

tiplexing. To serve a read request, epoll_wait is called to wait for incoming request, followed

25

by a read system call to read the request. The response is then generated after some processing,

and sent to the client using a write system call. For write requests, Redis will additionally log

every write operation into an append-only log, and the log will be persisted to disk at a frequency

defined by the fsync policy (i.e., perform fsync every second, for every request, or not at all).

In our test scenario we have disabled the persistence (i.e., never fsync) because this task is usu-

ally delegated to a forked child, and therefore not feasible in Unikernel scenario, as OSv does not

support fork.

We run Redis server in three different settings:

1. Redis server runs in OSv with system call access to Linux, as illustrated in Fig 5.1. The OSv

was given 2 VCPUs and 1GB memory.

2. Redis server runs in a Ubuntu Linux 18.04 VM (User Domain) with 2 VCPUs and 1GB

memory.

3. Redis server runs on bare-metal Linux, and was limited to use only 2 cores and 1GB memory

using Linux control group (cgroup).

6.2.1 Redis Benchmark

We use the redis-benchmark program in the Redis source tree for performance bench-

marking. The benchmark client runs on a MacBook Pro early 2016 version. The laptop running

the server was connected to a router via a cable, and the MacBook Pro was connected to the same

router via wireless network.

The Redis benchmark conducts different operations as listed in Table 6.1.

Redis server supports pipelining, where multiple requests are sent at once. On server side

only one read system call is needed to read all batched requests, and one write call to write

all the responses, thus significantly improve the throughput of the server. By default the pipeline

batch size of the benchmarking program is set to 1 (i.e., no pipeline, at most 1 request pending per

connection).

26

Operation Description

PING_INLINE Ping-Pong echo.
SET Set key to hold string value.
GET Get value stored at key.

RPUSH Insert value(s) to the tail of the list stored at key.
LPOP Removes and returns the first element of a list stored at key.
SADD Add the specified members to the set stored at key.
HSET Set field stored at key to value.
SPOP Removes one or more random elements from set stored at key.

LRANGE_n Get first n elements of the list stored at key.
MSET Same as SET, operates on multiple keys.

Table 6.1: Redis Benchmark Operations

Note that Redis frequently invokes gettimeofday to generate timestamps for logging. Usu-

ally on bare metal Linux, the call to gettimeofdaywill be accelerated by C library using Virtual

Dynamic Shared Object (vDSO), to minimize the latency of the call to obtain more precise timing.

In this case, calling gettimeofday no longer requires a context switch into the kernel, and the

latency of such call is usually comparable to a normal function call.

Linux VM on Xen sets the clock source to xen by default. This will prevent gettimeofday

from utilizing vDSO, and therefore incurring the cost of a full system call. This can significantly

degrade Redis performance under high pipeline work load. To work around this problem, we set

the clock source to tsc. Our experiment showed that under pipeline mode with batch size 16,

PING_INLINE test has gained 48% performance increase simply by changing clock source from

xen to tsc.

It is worth noting that setting the clock source to tsc may itself incur additional cost because

by default [32], tsc was emulated to ensure the correctness (e.g., time never shifts backwards) of

the time keeping.

To fully stress the kernel, we run redis-benchmark with 600 concurrent clients and no

pipelining (pipeline value 1). Figure 6.1 shows the performance of Redis in requests/sec.

27

PING_INLINE SET GET
RPUSH

LPOP
SADD

HSET
SPOP

LRANGE_100 (fir
st 1

00 elements)

MSET (10 keys)
0

10000

20000

30000

40000

50000

60000

Re
qu

es
ts

/s
ec

Redis benchmark
OSv
Linux Baremetal
Linux Xen (clock source tsc)
Linux Xen (clock source xen)

Figure 6.1: Redis performance, 600 concurrent clients, no pipelining

200 400 600 800 1000
of clients

20000

30000

40000

50000

60000

Re
qu

es
ts

/s
ec

Redis benchmark
OSv
Linux Baremetal
Linux Xen (clock source tsc)

Figure 6.2: Redis PING_INLINE performance

28

Figure 6.2 shows the performance of PING_INLINE with variable concurrent clients size. As

shown in the figure, OSv is able to sustain more concurrent clients because of the low overhead

incurred by the system call, i.e., no context switches are needed to perform system calls. We

present more detailed system call analysis in section 6.4.

However, because of the limitation of using wireless network, measuring the latencies of Redis

requests becomes less helpful. Instead, we perform a OS jitter analysis to better understand the

behavior of applications on different platforms in section 6.3.

6.3 OS Jitter

OS jitter refers to the interference experienced by the user application due to scheduling of

background daemon processes or handling of interrupts.

In our experiment, we use Sysjitter v1.4 [33] to measure the OS jitter on both OSv and Linux. It

does so by running a thread on each assigned core, in which the Time Stamp Counter was polled in

a tight loop. The time difference between consecutive reads, if larger than a predefined threshold,

is recorded as one instance of interruption. All polling threads start and end at the same time to

make sure there were no CPU power throttling during the test.

6.3.1 Settings and Results

The test program runs in three different settings: OSv, Linux on Xen, Linux on bare metal.

It runs for 60 seconds on each platform, and ignoring any interruption that takes less than 200

nanoseconds. On both Linux platforms, the test program runs with highest priority (nice value of

−20) and there were no other competing tasks running. To ensure fairness, we run benchmark

on same number of cores across platforms. However, on one hand, since there are 2 cores and

4 threads on bare metal (4 cores from the perspective of Linux Bare metal), giving OSv VM 4

VCPUS would be unfair against the OSv because Dom0 has to run on enough cores (4 cores

as recommended by Xen documentation [34]) to support other running VMs, thus resulting in

frequent VM scheduling (and higher jitter) between Dom0 and OSv VM.

On the other hand, running benchmarks on all available cores usually results in higher jitter

29

compared to running benchmarks on only a subset of the cores. Table 6.2 illustrate the performance

of running benchmark on 2 out of 4 cores, and 4 out of 4 cores on Linux bare metal, with all other

conditions identical.

Platform and cores N Samples Mean Median Sum STD Deviation
Linux Baremetal (2/4) core 0 18316 2389 2364 43759255 4639.40
Linux Baremetal (2/4) core 1 17436 4331 2015 75518879 16610.20

Linux Baremetal (4/4) core 0 19549 5125 2746 100193188 84691.97
Linux Baremetal (4/4) core 1 21033 12159 2621 255736168 278826.02
Linux Baremetal (4/4) core 2 27088 3531 2164 95636065 96686.58
Linux Baremetal (4/4) core 3 18958 4327 2645 82037344 13254.61

Table 6.2: Samples Summary of 2/4 and 4/4 benchmark

In this case, currently the best choice we have is to give all VMs two cores only and run

benchmark on core 0 and 1 on Linux bare metal, which may give slight advantage over Linux

Baremetal.

Figure 6.3 shows a distribution of the samples collected. Table 6.3 shows a summary of col-

lected samples. The X-axis denotes the Sample ID, and the Y-axis denotes the interrupt duration

in log scale.

Platform and cores N Samples Mean Median Sum STD Deviation
OSv core 0 13022 2247 1359 29265417 12440.02
OSv core 1 12258 2002 1369 24540510 8163.58
Linux Baremetal core 0 18316 2389 2364 43759255 4639.40
Linux Baremetal core 1 17436 4331 2015 75518879 16610.20
Linux Xen core 0 28333 6455 6419 182896448 152263.61
Linux Xen core 1 29636 5420 6652 160640749 80364.89

Table 6.3: OS Jitter Samples Summary

30

0 2000 4000 6000 8000 10000 12000

103

104

105

106

107

In
t D

ur
at

io
n

(n
s)

osv core 0

0 2500 5000 7500 10000 12500 15000 17500

103

104

105

106

107

In
t D

ur
at

io
n

(n
s)

linux-baremetal core 0

0 5000 10000 15000 20000 25000

103

104

105

106

107

In
t D

ur
at

io
n

(n
s)

linux-xen core 0

0 2000 4000 6000 8000 10000 12000

103

104

105

106

107

In
t D

ur
at

io
n

(n
s)

osv core 1

0 2500 5000 7500 10000 12500 15000 17500

103

104

105

106

107

In
t D

ur
at

io
n

(n
s)

linux-baremetal core 1

0 5000 10000 15000 20000 25000 30000

103

104

105

106

107

In
t D

ur
at

io
n

(n
s)

linux-xen core 1

Figure 6.3: OS Jitter

From the figures and table we can see that although the variation is slightly higher, the number

of jitters in OSv is about 40% less than that in Linux bare metal, with lower mean and median

interrupt time than Linux bare metal.

In general, OSv is able to achieve a good jitter performance compared to Linux bare metal.

6.4 Remote System Call Performance

As shown in Fig 5.1, access to Linux system calls are forwarded through a shared buffer. In

this section we measure the latency of such calls.

6.4.1 NULL System Call Performance

NULL system call refers to a system call attempt with an invalid system call number. On

x86/x86_64 Linux, this would cause the Linux system call dispatcher to return immediately with

an error of ENOSYS (i.e., no such system call). In this test, we invoke the NULL system call using

SYSCALL instruction. Table 6.4 shows the NULL system call performance. OSv Poll refers to

the polling-based notification implementation, while the OSv Int refers to the standard interrupt-

31

based notification implementation. Linux Xen refers to the Domain 0 on Xen. All the following

experimentation are results averaged from 64 runs, with 10000 calls for each run.

Platform Time (µs)
OSv Poll 2.26
OSv Int 17 ∼ 30

Linux Xen 1.92
Linux Bare Metal 0.54

Table 6.4: NULL System Call Performance

Note that the performance of OSv Int was largely affected by the virtual interrupt delivery

on x86. According to Intel Software Developer Manual [35] Chapter 33.3.3.4, the delivery of a

virtual interrupt event can be affected by the priority of the virtual interrupt event, or the interrupt-

ibility of a guest VM (i.e., RFLAGS.IF being 0 indicates a non-interruptable state). If the guest

is non-interruptible, the hypervisor may queue the virtual interrupt until it becomes interruptible.

In addition, if the guest VM is not scheduled at the time of generation of the virtual interrupt

event, the delivery of the virtual interrupt may happen at next VMENTRY, i.e., the transition of a

logical processor from host mode (VMX root mode) to guest mode (VMX non-root mode). The

scheduling within the Linux kernel may also affect the performance of the interrupt delivery.

In general, the interrupt-based implementation can achieve relatively low overhead while hav-

ing good scalability, and poll-based implementation can achieve latency comparable to native sys-

tem call at the cost of CPU cycles and memory bandwidth.

6.4.2 Read/Write System Call Performance

Shadow processes rely on Xen shared memory to gain access to the memory pages of the

Unikernel. The shared memory is made available to shadow process by mmaping the shared mem-

ory driver (i.e., gntdev). On Linux, the driver allocates empty shared memory from ballon mem-

ory driver, and Xen modifies the Extended Page Table to map the source and target memory pages

to the same physical page frame.

32

In this case, one would naturally question how the use of shared memory would affect the

performance of the remote system calls. To answer this question, we conduct read/write system

calls on shared memory.

We read from / write to an in-memory file with random content of size 1 to 32768, to/from

a buffer of 32768 bytes. The file was randomly modified and re-opened between calls. The results

were averaged from 64 runs for each read/write size. Figure 6.4 and 6.5 shows the read and write

system call latency. All calls in OSv cases, except for OSv local, were forwarded to Linux. OSv

local refers to a call at local Unikernel (i.e., the call was served inside Unikernel).

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768
Read size (Bytes)

0

5000

10000

15000

20000

25000

La
te

nc
y

(n
s)

Read system call latency

Linux Baremetal
Linux Xen
OSv Local
OSv Remote Interrupt
OSv Remote Polling

Figure 6.4: Read system call latency

As shown in the figures, the performance of OSv Remote Polling was very close to that of the

Linux Xen, where the former consisted of a forwarding routine and a call to shared memory from

Linux. From the figures we can conclude that the use of shared memory, in non-NUMA machines,

will not incur additional performance penalties.

33

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768
Write size (Bytes)

0

5000

10000

15000

20000

25000

La
te

nc
y

(n
s)

Write system call latency

Linux Baremetal
Linux Xen
OSv Local
OSv Remote Interrupt
OSv Remote Polling

Figure 6.5: Write system call latency

34

7. CONCLUSION AND FUTURE WORK

This thesis presents Service Extrusion architecture, where services can be "extruded" from

general-purpose kernel and run alongside the kernel. The application will be given access to both

the general-purpose services and the extruded services. The performance of two types of services

were isolated, and porting an application onto the extruded services requires no to minimal amount

of code change. We also present a possible implementation of such architecture, namely Remote

System Call Framework, that is able to access Linux system calls without privilege layer crossing.

Remote System Call Framework satisfy all the design goals we have laid out for Service Extrusion.

The potential of our architecture is yet to be fully explored. Vertically, we can achieve even

higher single-Unikernel networking performance by implementing a driver that supports NIC

passthrough (i.e., granting Unikernel exclusive access to the NIC hardware). Horizontally, we

can implement SR-IOV to offload the packet multiplexing task to the NIC itself, to reduce the cost

of doing multiplexing in hypervisor software.

Access to general-purpose services from multiple extruded services can be further isolated by

utilizing container technologies, where each shadow process resides in a different container, and

therefore different and isolated service context. Memory inspection to the Unikernel is also partly

achievable by instrumenting the shadow process.

We plan to add support for remote memory map in the future, where the application is able

to memory map a file on Linux, in particular a driver file, into the memory. This would enable

seamless access to Linux drivers without porting them to the Unikernel. A supporting library that

was Remote System Call-aware can also be developed to fully utilize the shadow process. Some

example usages includes creating a thread on, or fork to a remote machine.

Performance of our architecture on large NUMA machines still remains to be studied, and it

is likely that additional shared memory or cache coherence optimizations are needed to maintain

good performance.

35

REFERENCES

[1] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. Anderson, and T. Roscoe,

“Arrakis: The operating system is the control plane,” ACM Transactions on Computer Sys-

tems (TOCS), vol. 33, no. 4, pp. 1–30, 2015.

[2] D. Intel, “Data plane development kit,” 2014.

[3] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,

S. Hand, and J. Crowcroft, “Unikernels: Library operating systems for the cloud,” ACM

SIGARCH Computer Architecture News, vol. 41, no. 1, pp. 461–472, 2013.

[4] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets, D. Scott, R. Mortier,

A. Chaudhry, B. Singh, J. Ludlam, et al., “Jitsu: Just-in-time summoning of unikernels,”

in 12th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}

15), pp. 559–573, 2015.

[5] D. Williams, R. Koller, M. Lucina, and N. Prakash, “Unikernels as processes,” in Proceedings

of the ACM Symposium on Cloud Computing, pp. 199–211, 2018.

[6] C. Clark, “Xen grant table documentation.”

[7] I. Habib, “Virtualization with kvm,” Linux Journal, vol. 2008, no. 166, p. 8, 2008.

[8] “IntelÂő virtualization technology for directed i/o (vt-d): Enhancing intel platforms for effi-

cient virtualization of i/o devices.”

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS operating systems review,

vol. 37, no. 5, pp. 164–177, 2003.

[10] “Xen event channel documentation.”

[11] “Xenstore.”

36

[12] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merritt,

E. Gronke, and C. Dodd, “The virtual interface architecture,” IEEE micro, vol. 18, no. 2,

pp. 66–76, 1998.

[13] J. C. Mogul, “Tcp offload is a dumb idea whose time has come.,” in HotOS, pp. 25–30, 2003.

[14] V. Yodaiken and M. Barabanov, “Real-time linux applications and design,” Slides from Usenix

presentation, vol. 14, pp. 16–17, 1997.

[15] P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes, and D. Beal, “Rtai:

Real-time application interface,” 2000.

[16] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion, “{IX}: A pro-

tected dataplane operating system for high throughput and low latency,” in 11th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 49–65, 2014.

[17] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and R. Isaacs, “Em-

bracing diversity in the barrelfish manycore operating system,” in Proceedings of the Work-

shop on Managed Many-Core Systems, vol. 27, 2008.

[18] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis, “Dune: Safe

user-level access to privileged {CPU} features,” in Presented as part of the 10th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 12), pp. 335–348,

2012.

[19] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan, “Reducing world switches in virtualized

environment with flexible cross-world calls,” ACM SIGARCH Computer Architecture News,

vol. 43, no. 3S, pp. 375–387, 2015.

[20] “Intel virtualization technology list.”

[21] “Arm product list.”

37

[22] H. Li, X. Xu, J. Ren, and Y. Dong, “Acrn: a big little hypervisor for iot development,” in Pro-

ceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, pp. 31–44, 2019.

[23] A. Lackorzynski et al., “L4linux porting optimizations,” Master’s thesis, TU Dresden, 2004.

[24] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-

gelhardt, R. Kolanski, M. Norrish, et al., “sel4: Formal verification of an os kernel,” in Pro-

ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, pp. 207–

220, 2009.

[25] J. Che, C. Shi, Y. Yu, and W. Lin, “A synthetical performance evaluation of openvz, xen and

kvm,” in 2010 IEEE Asia-Pacific Services Computing Conference, pp. 587–594, IEEE, 2010.

[26] A. Wick, “The halvm: A simple platform for simple platforms,” Xen Summit, 2012.

[27] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt, “Rethinking the

library os from the top down,” in Proceedings of the sixteenth international conference on

Architectural support for programming languages and operating systems, pp. 291–304, 2011.

[28] A. Kantee, “Rumprun,” 2016.

[29] A. Kivity, D. Laor, G. Costa, P. Enberg, N. HarâĂŹEl, D. Marti, and V. Zolotarov, “Os-

vâĂŤoptimizing the operating system for virtual machines,” in 2014 {USENIX} Annual Tech-

nical Conference ({USENIX}{ATC} 14), pp. 61–72, 2014.

[30] D. Chisnall, The definitive guide to the xen hypervisor. Pearson Education, 2008.

[31] S. Sanfilippo and P. Noordhuis, “Redis,” 2009.

[32] D. Magenheimer, “Xen tsc_mode documentation.”

[33] D. Riddoch, “Sysjitter,” 2017.

[34] “Tuning xen for performance.”

[35] I. Intel, “Intel-64 and ia-32 architectures software developerâĂŹs manual,” Volume 3C: Sys-

tem Programming Guide, Part, vol. 3, no. 64, 2020.

38

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION [color=gray!40]Minor
	BACKGROUND [color=red!40]NEW
	Hardware-Assisted Virtualization
	x86 CPU Virtualization
	x86 MMU Virtualization
	x86 I/O Virtualization

	Inter-VM Shared Memory [color=red!40]New
	Xen
	Grant Table Shared Memory Mechanism
	Xen Event Channel
	XenStore

	RELATED WORK [color=red!40]Some modification
	Virtual Interface Architecture (VIA) [color=red!40]New
	TCP Offload
	RT Linux and RTAI [color=red!40]new
	DPDK
	Arrakis
	IX
	Cross Call

	SERVICE EXTRUSION [color=red!40]Rewrite
	Service Extrusion Overview
	Design Considerations
	The Hardware
	The Hardware Abstraction Layer
	The Extruded Service and The Unified API
	The Application

	REMOTE SYSTEM CALL FRAMEWORK [color=red!40]New
	Overview
	System Architecture
	OSv modification
	Remote System Call API and Library
	Remote System Call Split Driver
	Notification Channel

	Example: Read/Write a File From Linux
	User Application
	Remote System Call Setup: Config Negotiation
	Remote System Call: Redirection
	Remote System Call: Invocation and Return

	Challenges and Issues
	Page Fault Handling
	Address Space Collision
	Unsupported System Calls

	EXPERIMENTATION AND EVALUATION [color=red!40]New
	Experiment Settings
	Redis NoSQL Store
	Redis Benchmark

	OS Jitter
	Settings and Results

	Remote System Call Performance
	NULL System Call Performance
	Read/Write System Call Performance

	 Conclusion and Future work [color=red!40]New
	REFERENCES

