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ABSTRACT 

 

This dissertation develops optimal cloud ice particle optical property models used 

for remotely sensed data from multi-angular satellite sensors. The optimal degree of 

surface roughness is inferred from Multi-angle Imaging SpectroRadiometer (MISR) 

measurements. The results show a latitudinal dependency in the optimal degree of ice 

particle roughness on a global scale. The optimal model for thick homogeneous clouds 

corresponds to more roughened ice particles in the tropics than in the extra-tropics. 

Furthermore, the inferred optimal ice particle roughness model is applied to the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and MISR data to retrieve the optical 

thickness and effective radius of the ice cloud. The retrievals indicate a larger median 

optical thickness by 10.1% and a smaller median effective radius by 6.5% on the pixel-

level, compared to the operational MODIS Collection 6 products. 

In addition to these results, two algorithms are developed to infer the optimal ice 

particle model. The first algorithm is designed to work with a multi-angular sensor with 

polarimetric measurements and has been tested using data from a prototype aircraft-

mounted sensor. The other algorithm uses multispectral measurements, specifically a 

combination of shortwave bands and thermal infrared (IR) bands, for performing retrievals 

of the optimal ice particle shape. This analysis includes a comparison of retrievals between 

multispectral and multi-angular techniques. 
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1. INTRODUCTION  

 

Covering about 20% of the world, ice clouds exert a significant influence on the 

global energy budget and climate system feedbacks (Liou, 1986; Stephens et al., 1990; 

Yang et al., 2018). The two primary methods for performing a quantitative analysis of ice 

cloud properties are remote sensing and climate/weather numerical simulations or called 

general circulation model (GCM). Most contemporary GCM and remote sensing 

techniques compute radiative properties of ice clouds based on ice particle assumptions. 

A GCM normally simulates cloud ice particles by parameterization, often by 

describing ice particle characteristics in a volume using 3 scattering parameters (Hioki, 

2018). These 3 parameters are single scattering albedo, extinction cross section, and 

asymmetry factor (also called asymmetry parameter). Compared to GCM, remote sensing 

applications to interpret satellite images replace the asymmetry factor with the phase 

function. The phase function describes the angular distribution of scattered radiation 

energy in terms of the scattering angle (such as the angle by which incident sunlight 

reflects from the cloud to the satellite sensor). The phase function integrated over all 

scattering angles is the asymmetry factor. So, the phase function includes scattering 

information for all viewing directions, but the asymmetry factor just indicates the ratio of 

forward-scattered to backward-scattered light (van de Hulst, 1957). A GCM can use the 

asymmetry factor instead of the phase function because a GCM normally focuses on a 

directional flux calculation. However, the remote sensing approach cannot consider only 

one direction because as the satellite orbits, the viewing scattering geometry constantly 
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changes and all the scattering geometries of sensors need to be computed. So the phase 

function is needed. 

Compared to a GCM, remote sensing measurements have higher spatial resolution 

and include information from more scattering geometries, which potentially leads to less 

uncertainty in cloud retrievals. Thus, the remote sensing technique is very popular for 

studying actual ice cloud properties. 

Early ice particle model applications in remote sensing retrievals assumed that an 

ice particle has a spherical shape (Houghton and Hunt, 1971), which can be calculated by 

Mie theory scattering calculations. However, field and lab measurement studies 

(Heymsfield et al., 2013; Bailey and Hallett 2009) show that ice cloud particle shapes are 

rarely spherical but have complex shapes. With the development of scattering calculations 

and modern high-performance computing techniques, the cloud ice particle model 

becomes more complex to better mimic the shapes found in experimental sampling in 

recent years. 

In current satellite operational products, various cloud ice particle models are used. 

An inhomogeneous hexagonal ice particle model (IHM) is used to process data from the 

POLDER (POLarization and Directionality of the Earth’s Reflectance) sensor onboard the 

PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled 

with Observations from a Lidar) satellite. The IHM model is a hexagonal column with air 

bubbles inside. The MODIS (Moderate Resolution Imaging Spectroradiometer) 

Collection 6 products use a hexagonal column aggregate model, which is an aggregate 

composed of eight hexagonal columns with a specified degree of surface roughness 



 

3 

 

(Platnick et al., 2015). The Clouds and the Earth’s Radiant Energy System (CERES) 

Edition 5 selects a two-habit model, a mixture of two ice particle shapes with proportions 

of each shape varying with atmospheric conditions (Loeb et al., 2018). 

These current mainstream ice particle models used in satellite operational products 

all assume a plane-parallel homogeneous cloud with no variation in the ice particle shape. 

However, ice cloud particle shapes are more complex in a cloud and are affected by 

temperature and supersaturation variations (Heymsfield et al., 2013; Bailey and Hallett 

2009), which indicates that the representation of these clouds in satellite retrieval 

algorithms is primitive so far. This inconsistency between the ice particle model in a 

simulation and actual ice particle shapes causes large uncertainties of ice cloud properties 

in remote sensing retrievals and their effects on weather and climate studies and GCM 

simulations. Therefore, understanding the uncertainties and developing an optimal ice 

particle model are necessary for studies of ice clouds in remote sensing and weather and 

climate numerical simulations. 

Moreover, the selection of an appropriate ice particle model is critical for 

retrieving cloud optical thickness (τ) and cloud particle effective radius (Reff). These two 

important ice cloud radiative and microphysical properties primarily determine the 

shortwave ice cloud radiative properties and therefore exert a significant role in 

modulating the Earth’s radiation budget (Liou, 1986; Stephens et al., 1990; Yang et al., 

2018). The precise estimation of these two cloud properties is fundamental in the study of 

parameterizing and constraining cloud radiative effects in GCMs and is important for 

understanding physical mechanisms of cloud radiative variability and the hydrological 
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cycle. Therefore, the selection of an appropriate ice particle model and subsequent 

generation of the corresponding bulk single-scattering properties are very important to the 

implementation of ice cloud property retrievals and, subsequently, to the assessment of 

the ice cloud radiative forcing effect (Mishchenko et al., 1996; Baran et al., 2009; Yang et 

al., 2015; Loeb et al., 2018). 

The most straightforward method to develop a realistic ice particle model shape 

and size distribution is to use in situ aircraft measurements to sample ice particles in the 

clouds. However, it is already known that lab generated and in situ aircraft measured ice 

particle shapes strongly depend on local environmental variations, such as wind speed and 

relative humidity. Also, the instrument may shatter or otherwise damage the particles so 

the shape and size distributions are inaccurate (Heymsfield et al., 2013; Bailey and Hallett 

2009). Furthermore, in situ aircraft measurements have been taken predominantly in mid-

latitudes. Because many ice cloud environments have never been adequately sampled, 

using satellite observations to investigate ice particle shapes globally is necessary. 

A satellite retrieval infers ice cloud properties from a set of remote sensing 

measurements, generally multiple images (in different spectral bands; each band is usually 

referred to as a channel) of a swath or other area as a satellite passes overhead. This study 

uses spectral bands in the visible, infrared, and microwave (radio) ranges. An “image” is 

composed of pixels (scan spots) whose sizes depend on the instrument resolution. Each 

pixel records the amount of energy received from each scan spot in a specific spectral 

band, which is transmitted in digital form. Extracting the information from these pixels in 

the satellite images is called satellite retrieval. 
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Typically, an inversion program is applied to remote sensing data by performing a 

radiative transfer calculation. Most radiative transfer formulas are stated in the “forward” 

form, where from a set of physical assumptions about a viewed location (such as 

atmospheric profile, particle sizes, particle shapes, particle types [ice, water, dust, etc.], 

sun angle, and satellite viewing angle), the amounts of energy (generally radiances) are 

computed in the instrument spectral bands.  However, a satellite view obtains the radiances 

(a single instrument may make millions of radiance measurements per hour), and it is 

desired to obtain the physical conditions that produced the observed radiances. Therefore, 

an “inverse” radiative transfer calculation, also called a retrieval, is performed to infer that 

physical condition. 

One method to retrieve ice particle shapes on the pixel scale is to obtain 

information using multi-angle satellite measurements. Unlike a common cross-track 

scanning sensor such as MODIS, a multi-angle imaging satellite sensor detects 

reflectivities from the same target cloud at different satellite viewing angles. The different 

geometries provide measurements for a given location over a wide scattering-angle range, 

which captures more ice cloud scattering information about clouds. Therefore, this 

scattering information from a multi-angle sensor provides a great opportunity to 

distinguish various ice particle shapes. 

Doutriaus-Boucher et al. (2000) developed the spherical albedo differences (SAD) 

method by using multi-directional observations from the POLDER sensor, which contains 

a single camera viewing the same region from different angles below the satellite orbit. 

The study found that the inhomogeneous hexagonal monocrystal (IHM) ice particle model 
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is more appropriate than a fractal polycrystal to analyze observations of ice clouds over 

oceans. Briefly, the SAD method compares the scattering properties computed with 

different ice particle shape models to the scattering signals from all of the cameras to 

evaluate which ice particle shape model provides the best consistency to the multi-angle 

measurements. This algorithm was well tested by studies aimed at testing cloud particle 

models and their scattering properties using the POLDER sensor (Doutriaus-Boucher et 

al., 2000). 

POLDER operated from December 2004 until it was decommissioned in 

December 2013, but another multi-angle sensor, MISR (Multi-angle Imaging 

SpectroRadiometer, is still observing. MISR, onboard NASA’s Terra satellite platform, 

has 9 cameras each having a different viewing zenith angle (Diner et al., 1998). One of 

the advantages of MISR data is a long dataset. Another advantage of MISR compared to 

POLDER is that both MODIS and MISR are aboard the Terra satellite. With both 

instruments, other cloud optical properties including cloud optical thickness and effective 

radius are also retrieved, and evaluating MODIS products from multi-angular 

measurement is available. Specifically, fusing MISR and MODIS measurements could 

first identify the best ice particle shape using multi-angle imaging measurements from 

MISR, and then retrieve the other cloud properties using visible and near infrared 

measurements from MODIS to be consistent with the identified best ice particle shape. 

Therefore, investigating ice cloud properties by applying the SAD method to MISR 

measurements is helpful and necessary. 
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Another method used in the evaluation of the ice particle model is based on 

multiple spectral channel measurements. For retrieving ice cloud properties, shortwave 

bands and thermal infrared (IR) bands have been extensively used. It is essential for an ice 

crystal model to provide consistent cloud property retrievals based on these shortwave 

bands and thermal IR bands. Because ice crystal shape has a smaller impact on retrievals 

in the thermal IR spectral regime than in the shortwave regime, the differences of cloud 

property retrievals based on different ice crystal models in the IR bands are smaller than 

in the counterparts’ shortwave bands. An optimal ice model must lead to consistency in 

cloud retrievals between both shortwave bands and thermal IR bands. By checking this 

consistency between these two bands, the ice particle shape model is also able to be tested 

in satellite retrievals. 

This doctoral project is aimed at validating existing ice particle models using these 

two methods from satellite-based remote sensing measurements and understanding the 

uncertainties in satellite products of ice cloud properties by assuming different ice particle 

models in retrievals. In addition, the effect of cloud inhomogeneity or the 3-D effect in 

satellite retrievals is discussed. This difficult-to-quantify variation in appearance of a 

cloud viewed from the side may introduce bias in the cloud property retrievals. Finally, an 

improved satellite retrieval technique involving a polarization approach is attempted. 

This dissertation is structured as follows. Section 2 applies multi-angle image 

techniques to MISR measurements to validate ice particle models and analyze the 

geospatial distribution of optimal ice particle models. Section 3 further investigates the 

uncertainties of retrieved ice cloud properties introduced when different ice particle 
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models are assumed. Section 4 introduces a remote sensing retrieval prototype by using 

polarization to validate ice particle models. Section 5 presents the optimal ice particle 

model inferred by multi-channel techniques and compares the results with multi-angle 

techniques. A brief summary is given in Section 6. 
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2. INFERENCE OF AN OPTIMAL ICE PARTICLE MODEL THROUGH 

LATITUDINAL ANALYSIS OF MISR AND MODIS DATA* 

 

The inference of ice cloud properties from remote sensing data depends on the 

assumed forward ice particle model, as they are used in the radiative transfer simulations 

that are part of the retrieval process. The Moderate Resolution Imaging Spectroradiometer 

(MODIS) Collection 6 (MC6) ice cloud property retrievals are produced in conjunction 

with a single-habit ice particle model with a fixed degree of ice particle surface roughness 

(the MC6 model). In this study, we examine the MC6 model and five other ice models 

with either smoother or rougher surface textures to determine an optimal model to 

reproduce the angular variation of the radiation field sampled by the Multi-angle Imaging 

Spectroradiometer (MISR) as a function of latitude. The spherical albedo difference 

(SAD) method is used to infer an optimal ice particle model. The method is applied to 

collocated MISR and MODIS data over ocean for clouds with temperatures ≤233 K during 

December solstice from 2012–2015. The range of solar zenith angles covered by the MISR 

cameras is broader at the solstices than at other times of the year, with fewer scattering 

angles associated with sun glint during the December solstice than the June solstice. The 

results suggest a clear latitudinal dependence in an optimal ice particle model, and an 

additional dependence on the solar zenith angle (SZA) at the time of the observations. The 

 

* Edited and reprinted with permission from "Inference of an optimal ice particle model through latitudinal 
analysis of MISR and MODIS data" by Yi Wang, Souichiro Hioki, Ping Yang, Michael D. King, Larry Di 
Girolamo, Dongwei Fu, and Bryan A. Baum, 2018. Remote Sensing 10, no. 12 (2018): 1981. Copyright 
[2018] by MDPI AG 
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MC6 model is one of the most optimal models on the global scale. In further analysis, the 

results are filtered by a cloud heterogeneity index to investigate cloudy scenarios that are 

less susceptible to potential 3D effects. Compared to results for global data, the 

consistency between measurements and a given model can be distinguished in both the 

tropics and extra-tropics. The SAD analysis suggests that the optimal model for thick 

homogeneous clouds corresponds to more roughened ice particles in the tropics than in 

the extra-tropics. While the MC6 model is one of the models most consistent with the 

global data, it may not be the optimal model for the tropics. 

2.1. Introduction 

The inference of ice cloud optical thickness τ and effective particle size reff from 

passive spaceborne radiometric measurements requires an assumed forward ice particle 

model that provides the bulk scattering and absorption properties. Based on the ice particle 

model, look-up tables (LUTs) for cloud property retrieval are generated by using radiative 

transfer simulations. The LUTs provide the transmission, scattering, and emission 

characteristics as functions of, for example, optical thickness and the sun-satellite 

geometric configuration (e.g., solar zenith angle, viewing zenith angle, and relative 

azimuth angle). In practice, the LUTs are applied to global satellite measurements so the 

assumed ice particle model should be applicable to a large spatial domain. 

There are numerous constraints on choosing an ice particle model for global data 

processing. For operational retrievals, the Clouds and the Earth’s Radiant Energy System 

(CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) adopted single-

habit models. Specifically, CERES Edition 4 adopted a severely roughened hexagonal 
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column model, whereas MODIS Collection 6 (MC6) adopted a model with aggregates 

consisting of severely roughened columns (Holz et al., 2016; Platnick et al., 2017). In 

addition, a Voronoi particle model was suggested for use with geostationary satellite data 

(Letu et al., 2016) and the inhomogeneous hexagon model (IHM) was defined for the 

Polarization and Directionality of the Earth’s Reflectances (POLDER) on the Polarization 

and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations 

from a Lidar (PARASOL) satellite ice cloud property retrievals. Multiple models are not 

generally adopted by an individual team to avoid potential discontinuities in retrievals 

resulting from the transition between models. 

Recent research suggests that the ice particle models should have a substantial 

degree of surface roughness (Cole et al., 2014; Hioki et al., 2016), or at least some amount 

of inhomogeneity. The IHM model employs a different approach than surface roughening 

to increase photon dispersion by including air bubbles. Generally speaking, the surface 

roughness or inhomogeneity of ice crystals particles tends to smooth the phase function 

and results in a relatively low asymmetry factor at solar wavelengths. Because the phase 

function is fundamental to the remote sensing of global cloud properties, a better 

understanding of the appropriate degree of ice particle surface roughness for a given ice 

particle habit is important for improving the consistency of the retrievals based on 

observations by different sensors. 

The overarching goal of this study is to identify an appropriate degree of surface 

roughness adopted for ice particle models through the use of collocated Multi-angle 

Imaging Spectro Radiometer (MISR) and MODIS data. Compared to a satellite sensor 
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with only a nadir-viewing camera, multi-angle cameras measure the reflectance of a cloud 

over a wide range of scattering angles as the satellite passes over a location. Because 

different physical ice particle habits lead to significantly different angular distributions of 

reflectance simulated at the top of the atmosphere (TOA), comparing theoretical radiative 

transfer simulations with multi-angle camera measurements provides valuable constraints 

on the particle morphology. Several previous studies (Doutriaux-Boucher et al., 2000; 

McFarlane et al., 2005; Sun et al., 2006; Xie et al., 2014) attempted to infer the 

predominant atmospheric ice particle habits based on multi-angle satellite measurements. 

In particular, the spherical albedo difference (SAD) method (Doutriaux-Boucher et al., 

2000) was developed to quantify the comparison between spherical albedo values 

computed with an assumed ice particle model and their counterparts derived from multi-

angle satellite measurements. Furthermore, this algorithm was used to validate cloud 

particle models and their single-scattering properties (Baran et al., 2001; Baran and 

Labonnote 2006; Baran and Labonnote 2007). 

This study assesses the latitudinal dependence of six ice cloud models based on 

the application of the SAD method to the fused MISR and MODIS 0.86-µm channel data. 

Chapter 2.2 describes the satellite measurements and the SAD method. Chapter 2.3 

presents the results, including the latitudinal consistency of ice particle models with MISR 

observations via the SAD method, including analyses under different cloud heterogeneity 

conditions. Chapter 2.4 discusses potential uncertainties of the results. A summary and 

conclusions are given in Chapter 2.5. 
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2.2. Data and Methods 

In the SAD method, the spherical albedo difference value (𝐴!"##) is computed for 

every pixel in the spatial domain of interest by comparing theoretical radiances and the 

measured counterparts. To compute 𝐴!"##  values for ice clouds based on MISR 

observations, we apply a look-up table approach in this study. 

2.2.1. Satellite Data 

In this study, we use collocated datasets obtained by the MISR and MODIS 

instruments onboard the Terra satellite during December solstices from 2012–2015. The 

details of collocation are described by Liang et al. (Liang et al., 2009) and Liang and Di 

Girolamo (2013). The MODIS product at 1-km resolution and all MISR camera views are 

co-registered to the MISR nadir camera (AN) pixel positions to generate a 1.1-km 

resolution fused dataset. Measured radiances used in this study are from the MISR 

observations, and the MC6 products are used to classify cloud pixels. 

MISR uses nine cameras to measure radiance along the satellite track (Diner et 

al.,1998; Diner et al., 2002). In addition to one nadir-viewing camera (AN), four cameras 

(AF, BF, CF, DF) point forward and four cameras (AA, BA, CA, DA) point aft along the 

orbital track. The viewing zenith angles (VZAs) for the AA/AF, BA/BF, CA/CF, DA/DF 

cameras are 26.1°, 45.6°, 60.0°, and 75.0°, respectively. The three near-nadir-viewing 

cameras (AA, AN, AF) are used to avoid potential 3D effects due to large VZAs. Each 

camera measures radiances in four narrow spectral bands. The band centered at 0.86 μm 

is selected because this channel is less affected by ozone and ice absorption. The measured 

radiances are converted to reflectances (R#) as follows: 
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𝑅%(𝑃, 𝜇$, 𝜇, 𝜙$, 𝜙) =
𝜋 ∙ 𝑑%

𝜇$ ∙ 𝐸$
𝐼2(𝑃, 𝜇$, 𝜇, 𝜙$, 𝜙) 

(

2.1) 

where 𝐼2 is the measured radiance, P is the phase function, 𝜇$ is the cosine of solar 

zenith angle (SZA), 𝜇 is the cosine of VZA, 𝜙$ is solar azimuthal angle, 𝜙 is viewing 

azimuthal angle, 𝑑 is Sun-Earth distance in astronomical units (AU), and 𝐸$ is the solar 

irradiance at 1 AU. 

To avoid cloud pixels containing liquid phase particles, pixels are selected by 

applying two criteria based on the MODIS products: (1) cloud phase identified with 

infrared channels as ice; and (2) cloud top temperature lower than 233 K. To avoid 

potential effects of land reflectance and associated complexity for radiative transfer 

computations, observations are limited to an ocean surface. All MISR camera 

measurements are removed that have sun glint angles smaller than 35°, or specifically 

satellite-viewing directions within a 35° cone around the sunlight direction. Avoiding sun 

glint reduces the number of selected camera views (𝑛&) for some pixels. Moreover, pixel 

locations are restricted to 60° N–60° S to avoid the effects of sea ice since an ice-free 

ocean surface is assumed. 

The cloud optical thickness (𝜏) and cloud heterogeneity index (𝐻') from MODIS 

products are used to stratify clouds for statistical analysis. The MODIS cloud optical 

thickness product is not used elsewhere in this study, such as in Sections 2.3 and 2.4. 𝐻' 

estimates the degree of cloud horizontal heterogeneity, which is computed with the 4 × 4 

sub-pixel array composing a MODIS 1-km pixel (MODIS has two channels at 0.25-km 
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resolution). The 𝐻' is defined as the standard deviation divided by the mean measured 

reflectance for such a pixel (Platnick et al., 2018). 

SZA generally increases with increasing latitude. To reduce differences in the 

SZAs at the same latitude, data are collected and analyzed on nearly the same date for four 

years. Due to the solar–earth–satellite viewing geometry, the range of SZA values covered 

by the MISR cameras is broader at the solstices than at other times of the year, and fewer 

scattering angles are associated with sun glint on the December solstice in comparison to 

the June solstice. In other words, using data on the December solstice provides information 

over the broadest scattering angle range with fewer sun glint issues. For these reasons, this 

study uses data during December solstices from 2012–2015, except 2013. In 2013, we 

selected 25 December 2013, not the solstice, to avoid complexities caused by a cyclonic 

storm over the Indian Ocean. The specific dates chosen for detailed analyses are December 

21, 2012, December 25, 2013, December 21, 2014, and December 22, 2015. 

2.2.2. Ice Particle Model 

Before applying the SAD method to the MISR datasets, LUTs are prepared by 

assuming specific ice particle models. Six ice particle models are employed in this study 

to examine the consistency between the theoretical radiances and the MISR observations 

at various latitudes. 

The MC6 roughened hexagonal ice aggregate model is used in the MODIS 

Collection 6 operational products (Platnick et al., 2015), which assume ice cloud particles 

to be an ensemble of randomly oriented aggregates. Each aggregate is composed of eight 

hexagonal columns with a fixed degree of surface roughness σ2 = 0.5. The roughness 
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parameter σ2 in the light scattering calculations is defined as the standard deviation of a 

two-dimensional Gaussian distribution for the tilting of a particle facet (Yang  and Liou, 

1998). The standard deviation of this roughness parameter σ is approximately equivalent 

in value to the roughness parameter δ defined by Macke et al. (1996) (Neshyba et al., 

2013; Geogdzhayev et al., 2016). A higher degree of roughness means a higher probability 

density of strongly distorted surfaces. Detailed descriptions of the ice particle habit and 

associated degree of surface roughness are discussed by Yang and Liou (1998) and Yang 

et al. (2013). In general, the ice particle phase function at scattering angles between 50° 

and 175° becomes more featureless with an increasing degree of surface roughness (Figure 

2.1) for six models assuming a range of surface roughness of σ2 = 0.001, 0.03, 0.14, 0.5, 

1.0, and 3.5 (hereafter, R0001, R003, R014, R05, R10, and R35, respectively). Note that 

the MC6 model corresponds to the R05 model. Both the ice particle habit and ice particle 

surface roughness can modify the single-scattering properties (Yang et al., 2018), although 

other factors are also important, such as particle impurities, internal fractures, and air 

bubbles. The asymmetry factor (g) for each model is also included in Figure 1. Among 

these selected models, the asymmetry factor decreases with an increasing degree of 

roughness until σ2 = 0.14, beyond which the asymmetry factor increases in even rougher 

models. Perhaps some of this behavior in the most severely roughened models could be a 

modeling artifact associated with the ray-tracing technique when it is applied to a very 

rough particle surface. Although the MC6 ice particle habit model has a better match to 

global satellite measurements than other ice particle habits (Holz et al., 2016; Cole et al., 

2014; McFarlane and Marchand 2008), the “optimal” degree of ice particle surface 
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roughness for the MC6 ice model has not been studied rigorously yet. To test the degree 

of roughness used in MC6, we developed five other ice particle models using the MC6 ice 

particle habit, but with different degrees of ice particle surface roughness. The additional 

five degrees of roughness have different phase functions over the MISR observational 

range of scattering angles in comparison with the case of σ2 = 0.5. 
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Figure 2.1 The phase functions of an aggregate of eight randomly attached 
hexagonal particles with an effective radius of 30 µm for six different degrees of 
surface roughness (σ2): 0.001 (R0001), 0.03 (R003), 0.14 (R014), 0.5 (R05), 1.0 
(R10), and 3.5 (R35). The asymmetry factor (g) of each ice model is listed in the 
legend. The Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 
6 ice particle model (MC6 model) is the same as the R05 model here. The phase 
functions are at the wavelength of 0.86 µm. 
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2.2.3. Look-Up Table Approach 

LUTs are developed separately for each ice particle model, i.e., R0001, R003, 

R014, R05, R10, and R35. For each ice cloud particle model, the LUTs are calculated 

using an adding–doubling radiative transfer model (Huang et al, 2015). The LUTs include 

model reflectances as a function of solar geometry, viewing geometry, and τ; the model 

reflectance 𝑅 is equivalent to the reflectance 𝑅%  from MISR measurements in Equation 

(2.1). The bulk scattering properties for each ice particle model are the ensemble-mean 

single-scattering properties integrated over a Gamma distribution with an effective 

variance of 0.1 and an effective radius of 30 μm. The reflectance at wavelength 0.86 μm 

is insensitive to the particle effective size due to weak ice absorption. Atmospheric 

molecular scattering is considered in the model, but aerosols are neglected. The ocean 

surface reflection is based on the Cox-Munk model (Cox and Munk 1954) with a wind 

speed of 10 m s-1. The reflectance for each MISR camera is calculated by assuming a 

homogeneous cloud layer with a cloud-top pressure of 200 hPa. A sensitivity study shows 

that the effect of cloud-top pressure on retrievals is not substantial. 

The 𝑅 values can be integrated over 𝜇 and 𝜙 (viewing directions) to obtain the 

planetary albedo (𝐴(): 

 

𝐴)(𝑃, 𝜇$, 𝜙$, 𝜏) =
1
𝜋8 8𝑅(𝑃, 𝜇$, 𝜙$, 𝜏) ∙ 𝜇 ∙ 𝑑𝜇 ∙ 𝑑𝜙

*

$

%+

$

 

(

2.2) 

The cloud spherical albedo, 𝐴,, is the integration of 𝐴) over all incident directions 

(𝜇$, 𝜙$): 
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𝐴-(𝑃, 𝜏) =
1
𝜋8 8𝐴)(𝑃, 𝜇$, 𝜙$, 𝜏) ∙ 𝜇$ ∙ 𝑑𝜇$ ∙ 𝑑𝜙$

*

$

%+

$

 

(

2.3) 

By carrying out the integrals in Equations (2.2) and (2.3), 𝑅 is converted to 𝐴, for 

a given 𝜏 in conjunction with a specific ice particle model. LUTs are developed for each 

ice particle model and contain both 𝑅 and the corresponding 𝐴, as functions of 𝜏. 

2.2.4. The SAD Method 

The SAD method for examining angular variations of ice particle phase functions 

is described by Doutriaux-Boucher et al. (2000) and C.-Labonnote et al. (2000), who 

applied this method to POLDER data. These studies found that 𝐴,  has a one-to-one 

relationship with 𝜏  for a given ice particle model (Doutriaux-Boucher et al., 2000), 

implying that there is a one-to-one theoretical relationship between 𝐴, and 𝑅%. Because 𝑅 

and 𝐴, are provided in the LUTs, an 𝑅% value from each MISR camera measurement is 

used to search for the corresponding value of 𝑅 in the LUTs. The associated 𝐴, in the 

LUTs is identified as the retrieved cloud spherical albedo (𝐴,9) for this camera. This 

procedure is iteratively performed for every camera measurement to compute 𝐴,9. Because 

only three near-nadir cameras are selected from a set of MISR measurements, one cloudy 

pixel may correspond to 3 𝐴,9 values. 

Each MISR camera retrieves 𝑅%  for a pixel at a different scattering angle (Θ). If an 

assumed ice particle model matches observations accurately over the range of three 

observed Θ values, the model 𝑅 values would be equal to the observed 𝑅% values for every 

Θ. When 𝜏 is identical for all cameras, the same 𝐴,9 could be obtained. Given that idealized 
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ice models may not fit a real cloud perfectly for every available Θ , there may be 

differences in the computed 𝐴,9 values. 𝐴!"## is defined as the difference between the 𝐴,9 

of a selected camera and the mean of 𝐴,9 averaged for the selected cameras for a given 

pixel: 

 

[𝐴!"##(𝑃)]" = [𝐴2-(𝑃)]" −
1
𝑛&
>[𝐴2-(𝑃)]"

.!

"/*

 

(

2.4) 

where 𝑖 is the camera index in the pixel and 𝑛&  is the total number of selected 

cameras in the given pixel. Because of the sun glint screening process, 𝑛&  is not 

necessarily 3. As defined in Equations (2.2) and (2.3), 𝐴, does not depend on either solar 

or viewing geometries but solely on P for a given 𝜏. Therefore, smaller absolute values of 

𝐴!"## indicate better consistency between simulations and observations. 

To identify an optimal ice particle model, the same procedure is applied to each 

pixel using all LUTs. The smallest 𝐴0122 value from the six LUTs is chosen as the optimal 

model for that pixel. Finally, to quantify the consistency between ice particle models with 

observations, the standard deviation of 𝐴0122 (χ%) for each ice particle model in a given 

latitude bin is defined as follows: 

 

𝜒%3" = B
1

(∑ 𝑛4
.#
5/* )

>>[(𝐴!"##)6,5]%
.$

6/*

.#

5/*

 

(

2.5) 
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where 𝑛4 is the total number of selected reflectances in a latitude-scattering angle 

bin and 𝑛8  is the total number of selected latitude-scattering angle bins in a particular 

latitude band. 

2.3. Results 

2.3.1. Sampling Scattering Geometry Characteristics 

Figure 2.2a,b show the MISR camera names that are used and the normalized 

frequency of occurrences of Θ and latitude based on the four chosen December solstice 

days during 2012–2015 from the MISR-MODIS fused dataset over oceans. Due to the 

varying SZA with latitude and different VZAs of each MISR camera, the cameras provide 

reflectances at different Θ  for a given pixel, and the Θ  changes with latitude. The 

minimum available Θ is 76° and the maximum available Θ is 172° in these selected pixels. 

Because the daytime orbit of the Terra satellite is from north to south with an equator 

crossing time at 10:30 am, the forward camera measures at smaller Θ than the aft camera 

in the northern high latitudes. The three cameras primarily take measurements in the side 

and backward scattering directions. Note that the presence of arc-shaped strips in Figure 

2.2a is a result of filtering out the pixels with sun glint. For the same reason, some bins in 

Figure 2.2b have no observations. 
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Figure 2.2 Multi-angle Imaging SpectroRadiometer (MISR) camera (a) names and 
(b) normalized frequency of occurrences as a function of scattering angle and 
latitude on the four December solstice days (2012–2015) from the MISR-MODIS 
fused datasets over ocean. (c) The median value of the solar zenith angle (SZA) as a 
function of latitude on the same dates. 
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The detected range of Θ changes with latitude, in large part due to changes in SZA, 

as shown in Figure 2.2c. The camera geometry discussed above causes the detected range 

of Θ variation with SZA. The narrowest range of scattering angle measurements occurs at 

the lowest SZA (~20° S), where no reflectances are measured at Θ < 140°. However, all 

reflectances are measured at Θ < 140° at the highest SZA (~50°–60° N). The latitudes 

where measurements are made at the largest 	Θ are different for each camera, but roughly 

speaking, all three cameras measure in side scattering to backscattering directions with 

increasing SZA. The frequencies of Θ observations also reveal latitudinal variations. 

When the SZA is low, the same scattering angles can be recorded by two cameras viewing 

the same pixel. 

2.3.2. Latitudinal Variations in Consistency between Ice Models and Observations 

2.3.2.1. Consistency of Models and to Measurements with Latitude 

The quantity χ% in Equation (2.5) as a function of latitude for each particle model 

is shown in Figure 3a, and quantitative comparisons between the R05 and other models 

based on Equation (2.5) are displayed in Figure 2.3b. The χ% values for all models in the 

Northern Hemisphere are larger than in the Southern Hemisphere and decrease with 

latitude from north to south. The six χ% values are more similar in value to each other in 

the low latitudes than in the high latitudes of both hemispheres. Figure 2.3 shows that the 

R05 and R014 models have similar χ% values over the latitude range, and both models 

have lower χ% values than the other models in all latitudes. Note that these two models 

have lower g than the other models (Figure 2.1). However, the relationships between χ% 

and g are not simple. The R35 model has the highest g but has a lower χ% value than the 
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R0001 model in most latitudes. Also, the R0001 and R10 models have similar g values, 

but the consistency of 𝐴0122 results for the R0001 model is much less than in the case of 

the R10 model. 
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Figure 2.3 (a) The residual sum of squares of mean 𝑨𝐝𝐢𝐟𝐟 value (𝝌𝟐; see Equation 
(2.5)) using the R0001, R003, R014, R05, R10, and R35 ice particle models on 
December solstices from 2012 to 2015. The dotted curve (and top scale) is the 
median SZA as a function of latitude. (b) The residual sum of squares of mean 𝑨𝐝𝐢𝐟𝐟 
value using each corresponding model minus the residual sum of squares of mean 
𝑨𝐝𝐢𝐟𝐟 value using the R05 ice particle model as a function of latitude. 
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To better understand the contributions of 𝐴0122 to χ%, Figure 2.4 shows the median 

value of 𝐴0122 (hereafter, 𝐴0122 indicates the median value in 5° × 5° latitude-Θ bins) on 

December solstices during 2012–2015. The variations of 𝐴0122 values more closely follow 

the changes in SZA. The axis of symmetry of 𝐴0122 is located at about 20° S, where there 

is a minimum in the Θ range. For SZA < 30°, the 𝐴0122 values computed with all six models 

display nearly the same pattern. The 𝐴0122 values are close to zero for most Θ, but slightly 

negative at the highest Θ (Θ~170°). As SZA increases, 𝐴0122 values are still close to zero 

when 30° < SZA < 50°. However, 𝐴0122 values become positive for the largest measurable 

Θ with an increasing degree of roughness and become negative for the smallest measurable 

Θ with a decreasing degree of roughness. At high latitudes (SZA > 50°), the 𝐴0122 values 

broadly become highly positive or negative as shown in Figure 2.4a,b,e,f (especially in 

Figure 2.4a,f), but not in Figure 2.4c,d. The absence of large extreme values at high 

latitudes in Figure 2.4c,d indicate that the R014 and R05 models have lower χ% values 

than the other models in high latitudes in Figure 2.3. Some of the latitudinal 𝐴0122 value 

differences could be a result of the change of measurable Θ as shown in Figure 2.2a. 

Another issue that might influence the results is incomplete filtering of sun glint regions. 

Note that Figure 2.4a has significantly negative 𝐴0122 values in most latitudes at Θ~150° 

where the phase function of the R0001 model has an obvious peak in Figure 2.1. In 

general, the consistency of 𝐴!"## results for the R05 and R014 models is better than for 

the other models in high latitudes, and similar in the tropics. 
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Figure 2.4 The median value of all spherical albedo differences (𝑨𝒅𝒊𝒇𝒇) in latitude-
scattering angle bins on December solstices from 2012 to 2015 using (a) R0001, (b) 
R003, (c) R014, (d) R05, (e) R10, and (f) R35 ice particle models. The dashed and 
solid lines correspond to solar zenith angle (SZA) 50° and 30°, respectively. 
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2.3.2.2. Sensitivity Test with Synthetic Dataset	

To investigate which ice particle model produced 𝐴0122 values at high SZAs such 

as the case shown in Figure 2.4, a sensitivity study is performed with simulated data 

(Figure 2.5). The simulated radiances are generated using the same December solstice 

observations and the same pixel filtering process as in Section 2.2.1, the viewing geometry 

from each MISR camera observation, and the τ from MODIS with the R05, R10, and R35 

models. In other words, the simulated radiances are constructed using the same satellite 

geometry as the MISR data but the reflectances are generated with the R05, R10, and R35 

model LUTs using the 𝜏 from the collocated MODIS MC6 product. Subsequently, 𝐴0122 

values are computed using the LUTs from the other two ice particle models.	
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Figure 2.5 The variations of median 𝑨𝐝𝐢𝐟𝐟 values with latitude and scattering angle 
computed from a synthetic dataset generated with the R05 model (a, b), the R10 
model (c, d), and the R35 model (e, f), and then retrieved using the LUTs with the 
other two models. 

	



 

31 

 

Compared to the simulated dataset produced by the R10 model (Figure 2.5c,d) and 

the R35 model (Figure 2.5e,f), 𝐴0122 values computed from the simulated dataset produced 

by the R05 model (Figure 2.5a,b) have better consistency with 𝐴0122 values computed with 

real data (Figure 2.4) at high SZAs. Specifically, Figures 2.5a and 2.4e illustrate 𝐴0122 

values based on the same R10 LUTs. The simulated 𝐴0122 pattern in Figure 2.5a reproduces 

the negative–positive patterns of 𝐴0122  values (i.e., positive values of 𝐴0122  become 

negative with increasing Θ in a latitude) at high latitudes in Figure 2.4e. Similar negative–

positive patterns in high latitudes are seen in both Figures 2.4f and 2.5b, which use the 

same R35 LUTs. However, neither Figure 2.5d nor Figure 2.5f are similar to Figure 2.4f 

even using the same R35 LUTs. The similarity of using the same LUTs between Figures 

2.4 and 2.5 indicate that the R05 model is closer to the actual ice particle in the measurable 

range of scattering angles at high latitudes. With use of the same approach to compare 

Figures 2.4 and 2.5 under SZA < 30°, it is found that both the R05 and R10 models do not 

match the actual ice cloud particle as well as the R35 model when SZA < 30°, but the 

difference with the R35 results are rather small. To summarize, the similarity between 

Figures 2.4 and 2.5 implies that the R05 model fits observations better than the R10 and 

R35 models for SZA > 30°. However, it is not straightforward to select the most optimal 

model when SZA < 30°. 

2.3.2.3. Classification by Heterogeneity of Clouds	

To better understand the effect of cloud heterogeneity on variations of 𝐴0122 values 

in latitude, we further classify the 𝐴0122  values by 𝐻'  and 𝜏 . Figure 2.6 shows 𝐴0122 

computed with the R05 model in a 4 × 4 matrix with four 𝜏 bins: 0–3, 3–8, 8–16, and 16–
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64, and four 𝐻' bins: <0.4, 0.4–1.6, 1.6–3.2, and 3.2–15. A previous study (Zhang et al., 

2012) selected 0.3 as the threshold for a homogenous cloud, but very few selected pixels 

in this study meet this threshold. Therefore, a higher threshold (i.e., 𝐻' = 0.4) was used 

here to select homogeneous clouds (i.e., the first row in Figure 2.6). The same pixel 

filtering process as in Section 2.2.1 was applied here. 
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Figure 2.6 The median 𝑨𝐝𝐢𝐟𝐟 values for ranges of cloud optical thickness as a 
function of cloud heterogeneity index (𝑯𝛔) on December solstices from 2012 to 2015 
stratified by (from left to right) cloud optical thickness bins of 0–3, 3–8, 8–16, and 
16–64; and (from top to bottom) 𝑯𝛔 bins of 0–0.4, 0.4–1.6, 1.6–3.2, and 3.2–15. 
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The 𝐴0122  values become more negative or more positive with increasing 𝜏  in 

Figure 2.6. The larger absolute value of 𝐴0122 for larger 𝜏 show the R05 results are more 

consistent with measurements for optically thin clouds than in optically thick clouds. 

Unlike the impact of increasing τ, the sign of 𝐴0122 changes with increasing 𝐻'. In a broad 

sense, 𝐴0122 decreases with increasing Θ in low 𝐻' bins but increases with increasing Θ in 

high 𝐻' bins. Compared with all 𝐻' bins, 1.6 < 𝐻' < 3.2 bins have a trend of 𝐴0122 with 

increasing Θ that is similar to the trend in Figure 2.4a. When 𝐻' increases, the decreasing 

trend of 𝐴0122 values with increasing Θ reverses to an increasing trend, indicating that the 

scattering angular distribution of reflectance depends on cloud homogeneity. 

2.3.2.4. Latitudinal Variations of Consistency to in Measurements for of Thick 

Homogeneous Clouds	

Since low 𝐻' clouds are less likely to be influenced by 3D effects, the results are 

recomputed for thick homogeneous clouds (𝐻' < 0.4 and τ > 16). Figures 2.7 and 2.8 are 

the same as Figures 2.3 and 2.4, but only for thick homogeneous clouds. Compared to the 

results for global clouds (Figure 2.3), the results for thick homogeneous clouds show that: 

(1) the χ% of all selected models are significantly lower in thick homogeneous clouds; (2) 

the absolute differences of χ% among models are much larger in both the tropics and extra-

tropics; and (3) the χ% of each model in the Northern Hemisphere is not significantly larger 

than χ% in the Southern Hemisphere. While the R05 model generally has the lowest χ% in 

all latitudes in Figure 2.3, the χA*$%  and χABC%  results are smaller than the χA$C%  counterparts 

at latitudes between 20° S and 30° N in Figure 2.7. In latitudes between 20° S–60° S and 

between 30° N–60° N, the R05 model and the less roughened ice models produce better 
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fits among the six. In other words, the optimal model suggests the need for rougher ice 

particles in the tropics than in the extra-tropics. Furthermore, Figure 2.7 does not show a 

simple relationship between χ% and g. For instance, at latitudes between 20° S and 30° N, 

χ% of the R14 model, which has the lowest g, is within the range of the other models, and 

χ%  of the R0001 and R35 models are not similar even though these two models have 

similar g values. 
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Figure 2.7 The same as Figure 2.3 but computed for thick homogeneous clouds 
only. (a) The 𝝌𝟐 using the R0001, R003, R014, R05, R10, and R35 ice particle 
models on December solstices from 2012 to 2015. The dotted curve (and top scale) is 
the median SZA as a function of latitude. (b) The 𝝌𝟐 value using each 
corresponding model minus the 𝝌𝟐 value using the R05 ice particle model as a 
function of latitude. 
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Figure 2.8 is the same as Figure 2.4 but computed for thick homogeneous clouds 

(𝐻' < 0.4 and 𝜏 > 16). For SZA < 30°, the 𝐴0122 values computed with all six models 

display nearly the same pattern as shown in Figure 2.4, and values are close to zero at 

most measurable scattering angles. Every model in Figure 2.8 shows positive 𝐴0122 values 

for the lowest measurable Θ in each latitude when 30° < SZA < 50°, particularly with less 

roughened models. At high latitudes (SZA > 50°), the 𝐴0122 values show a relationship 

with g. Specifically, the 𝐴0122 values at the smallest measurable Θ turn negative with a 

higher g model and at the largest measurable Θ turn positive. 
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Figure 2.8 The same as Figure 2.4 but computed for thick homogeneous clouds 
only. The 𝑨𝒅𝒊𝒇𝒇 value in latitude-scattering angle bins on December solstices from 
2012 to 2015 using (a) R0001, (b) R003, (c) R014, (d) R05, (e) R10, and (f) R35 ice 
particle models. The dashed and solid lines correspond to SZA 50° and 30°, 
respectively. 
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2.4. Discussion 

To examine the latitudinal variations of six ice particle models with a range of 

surface roughness, we compute spherical albedo difference (𝐴0122) values using different 

LUTs for each model. We then compute the χ% (the residual sum of squares of mean 𝐴0122) 

in latitude. The 𝐴0122 is defined as the difference between the cloud spherical albedo (𝐴,9) 

of a selected MISR camera and the mean of 𝐴,9 averaged across all available cameras for 

a given pixel. The χ%  values in the extra-tropics are significantly larger than the 

counterparts in the tropics. Hexagonal column ice particles occur more frequently at low 

latitudes than high latitudes (Chepfer et al., 2001), and this may be a possible reason that 

the aggregated hexagonal column habit better explains the ice particle in the tropics than 

in the extra-tropics. The differences of χ% values among ice models in the global data are 

not significant in the tropics, and MISR data are unable to discriminate between the 

models. However, in the thick homogeneous cloud regime, the differences of χ% values 

among models were significantly heightened in both the tropics and extra-tropics. The 

optimal particles are more roughened in the tropics than in the extra-tropics in thick 

homogeneous clouds, which is in agreement with previous results (Cole et al., 2014). The 

high frequency of strong convection in the tropics likely has an influence on the MISR 

observations, leading to an indication of heightened surface roughening. 

In addition to the χ% variation with latitude, the variation of 𝐴0122 as a function of 

increasing scattering angle Θ also varies with latitude but more precisely changes with 

SZA when using any of the LUTs. These differences of 𝐴0122 also appear in the clouds 

stratified by cloud homogeneity index 𝐻'  and optical thickness 𝜏 . If a given camera-
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retrieved 𝜏 is higher than the counterparts associated with the other cameras, a higher 𝐴, 

value would be computed for this one camera than for the other cameras, and this higher 

𝐴,  value leads to a positive 𝐴0122  value. Therefore, the magnitudes of 𝐴0122  values at 

different Θ imply differences between the retrieved 𝜏 and the mean 𝜏 of all cameras in 

each Θ . A positive (negative) 𝐴0122  value broadly means that the retrieved 𝜏  is larger 

(smaller) than mean 𝜏  of all cameras. Furthermore, the inference of 𝜏  is determined 

primarily by phase function, and the impact of ice particle phase function on reflectance 

is important (C-Labonnote et al, 2001; Zhang et al., 2009), particularly for optically thin 

clouds. Thus, the sign of the 𝐴0122 value is related to the variation of the phase function 

with a scattering angle. Note that the 𝐴0122 method is not sensitive to the absolute value of 

the phase function, but only to the relative variation of the phase function with scattering 

angle. This approach, also described in C.-Labonnote et al. (2001), is able to explain why 

the 𝐴0122  value at Θ~150° in Figure 2.4a is negative at almost every latitude, but this 

difference does not appear in other panels in Figure 2.4 because the phase function of the 

R0001 model has a significant peak at Θ~150°. Similarly, this is the reason that the R05 

model fits the measurements better than the other models at most latitudes. The phase 

function of the R05 model fits the measurements better than the other selected models 

over the MISR available Θ range. 

High latitudes tend to have a high SZA, and the 3D radiative effect is one potential 

explanation for how the 𝐴0122 appears to change with SZA. Previous studies (Liang and Di 

Girolamo 2013; Loeb and Davies 1997; Varnai and Marshak 2007) investigate the impact 

of solar geometry on the 3D effect, particularly variations of the retrieved τ with SZA. 
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Since 𝜏 can easily be converted to 𝐴,, there may be a similar potential impact of the 3D 

effect on the results. In general, low 𝐻'  clouds have uniform cloud tops, which 

approximately satisfy the plane-parallel approximation. Thus, the impact of the 3D effect 

on reflectance of this type of cloud is not as strong as on a high 𝐻' cloud. Therefore, low 

𝐻' clouds are usually less susceptible to the 3D effect than high 𝐻' clouds. The stratified 

clouds in Figure 2.6 have better agreement with this theory. The trend of 𝐴0122 values with 

increasing Θ as a function of SZA is significantly larger for high 𝐻' clouds than for low 

𝐻'  clouds. Note that we consider only one definition of cloud heterogeneity, and a 

different definition may lead to different results (Grosvenor and Wood 2014). 

The microphysical ice particle habit distribution changes with latitude, dynamical 

environment, and temperature (McFarquhar and Heymsfield 1996; Bailey and Hallett 

2004; Baran 2009) could impact the trend of 𝐴0122 values with increasing Θ at different 

latitudes as well. In the thick homogeneous cloud regime (Figure 2.8), not all models show 

different trends of 𝐴0122  values with Θ in different latitudes compared to global clouds 

(Figure 2.4). In addition, high latitudes frequently have ice clouds with a lower cloud top 

height (Sassen et al., 2008). If we remove clouds with cloud-top temperatures >233K in 

the data filtering process, some ice clouds at high latitudes are probably removed because 

the tropopause is lower there. It is interesting to note that for the thick homogeneous cloud 

regime, the larger differences of χ% values between the models enable some discrimination 

between values of surface roughness. The best-fit particles are more roughened in the 

tropics than extra-tropics in thick homogeneous clouds. 
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The limited and variable range of available Θ measurements might be one source 

of uncertainty for computing the 𝐴0122 value. Only limited Θ ranges can be sampled by the 

MISR sensor, but the whole Θ range must be used in retrievals to compute reflectance. It 

means that there is insufficient data to know how the phase function in the undetectable Θ 

range changes in each latitude, and to evaluate how large the influence of the phase 

function in the undetectable Θ are to our results. The range of available Θ values from 

MISR varies systematically with SZA (Figure 2.2). McFarlane and Marchand (2008) also 

suggested that the retrieved ice particle habit depends on the minimum observed Θ. Not 

only the Θ  range but also the pixel frequencies in each Θ -latitude bin changes with 

latitude. Because of varying sun-earth-satellite viewing geometry, it is not straightforward 

to evaluate these factors on the computed 𝐴0122 value. 

The consistency of six ice models (R0001, R003, R014, R05, R10, and R35 model) 

is compared to MISR measurements at different latitudes. Our results, based on the fused 

MODIS-MISR dataset, can be used to estimate the latitudinal (or SZA) bias in retrievals 

of MC6 operational products because the MC6 operational ice cloud property retrievals 

assume that the same R05 model applies globally. Our analysis shows that the R05 model 

works very consistently with global MISR measurements but there may need to be more 

roughened particles in the tropics. 

In the bi-spectral shortwave technique (Nakajima and King 1990), a large 

asymmetry factor ice particle model causes a higher retrieved 𝜏 and lower reff (King 

1987). The asymmetry factors of the R05 and R014 models are the lowest of the six 

models, and the R35 model has the largest asymmetry factor. As noted earlier, the extreme 
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randomly distorted particle surface facets of the R35 model may increase the amount of 

forward scattering as an artifact of the numerical modeling. Since the best-fit model is 

hard to define in the tropics because of the rather small differences in χ% values, the ice 

cloud 𝜏 and effective radius could have large uncertainties by assuming the best-fit model 

from MISR measurements in the retrieval. 

2.5. Summary and Conclusion 

This study examines the latitudinal dependence of ice particle models, based on 

the MISR-MODIS fused dataset on December solstices from 2012 to 2015. To evaluate 

the latitudinal consistency of ice particle models with MISR measurements, we apply the 

SAD method to the fused dataset by using the ice particle habit of the MODIS Collection 

6 (MC6) ice model (R05 model) with six different assumptions of ice particle surface 

roughness: σ2 = 0.001, 0.03, 0.14, 0.5, 1.0, and 3.5 (referred to as R0001, R003, R014, 

R05, R10, and R35 models, respectively). 

Of the six models used in this study, the R05 model is one of the most consistent 

in comparison with the MISR measurements globally but has a similar consistency with 

other models at lower latitudes. The results of computing the residual sum of squares of 

mean 𝐴0122 (χ%) show that all six χ% are much higher at >30°N than all other latitudes. For 

thick homogeneous clouds, the consistency among models is significantly greater in both 

the tropics and extra-tropics, and the larger differences of χ% values between the models 

enable some discrimination between values of surface roughness. The optimal particle 

model should have rougher ice particles in the tropics than in the extra-tropics. 

Specifically, the MC6 model and less roughened models fit thick homogeneous clouds 



 

44 

 

better than more roughened models in the zonal means for latitudes between 20°S–60°S 

and 30°N–60°N; for latitudes between 20°S and 30°N, more roughened models produce 

better fits among the six. 

Comparisons of computed 𝐴!"## values in latitude bands show that the trend of 

𝐴!"##  values with increasing Θ  for each ice model changes with latitude, or more 

precisely, these variations are primarily a function of SZA. This result demonstrates the 

latitudinal variation of the best-fit model because of the relationship between SZA and 

latitude (e.g., the SZA in high latitudes is large). The variation of 𝐴!"## values with Θ also 

appears to change with SZA. However, homogenous clouds (low 𝐻'	 values) do not show 

the change of 𝐴!"## trend with SZA. In addition, for the classified results, the sign of 𝐴!"## 

changes with increasing 𝐻', but not with increasing 𝜏, as only the magnitudes of the 𝐴!"## 

values increase with increasing 𝜏. 

Because MISR provides reflectances over a wider Θ  range than MODIS, the 

collocated MODIS and MISR data/products provide an unprecedented opportunity to 

identify the optimal ice particle model for retrievals. The variations of the χ% value with 

latitude found in this study suggest that the invariant ice particle shape assumption for 

retrieving ice particle properties needs to be reconsidered.
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3. ICE CLOUD OPTICAL THICKNESS, EFFECTIVE RADIUS, AND ICE WATER 

PATH INFERRED FROM FUSED MISR AND MODIS MEASUREMENTS BASED 

ON A PIXEL-LEVEL OPTIMAL ICE PARTICLE ROUGHNESS MODEL* 

 

The Multi-angle Imaging SpectroRadiometer (MISR) provides measurements over 

a wider scattering-angle range for a given location than a cross-track scanning sensor such 

as the MODerate resolution Imaging Spectroradiometer (MODIS). Based on a full year 

(2013) of fused MISR-MODIS datasets, we develop a variable surface roughness model 

for ice particles with the goal of identifying the optimal degree of roughness in the ice 

model for a given pixel containing single-layer ice clouds. For the MISR-MODIS 

observations over oceans, severe roughness values are often selected for a pixel when 

optical thickness (τ) and particle effective radius (Reff) are large in conjunction with larger 

cloud heterogeneity index (Hσ) or a warmer cloud top temperature. 

Furthermore, τ, Reff, and ice water path (IWP) are retrieved with the optimal model 

and compared to operational MODIS Collection 6 (MC6) products that assume a constant 

roughness. In general, the retrievals based on the present optimal model lead to greater 

consistency with MISR measurements, and results in larger median τ by 10.1% and 

smaller median Reff by 6.5% but almost identical IWP in comparison with the MC6 

counterparts. The higher average τ value is caused by a slightly larger number of large τ 

 

* Edited and reprinted with permission from "Ice cloud optical thickness, effective radius, and ice water 
path inferred from fused MISR and MODIS measurements based on a pixel‐level optimal ice particle 
roughness model" by Yi Wang, Ping Yang, Souichiro Hioki, Michael D. King, Bryan A. Baum, Larry Di 
Girolamo, and Dongwei Fu, 2019. Journal of Geophysical Research: Atmospheres 124, no. 22 (2019): 
12126-12140. Copyright [2019] American Geophysical Union. 
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cases, but the smaller average Reff value is due to the shifting of the retrieved Reff value 

toward smaller values by approximately 2-4 μm in comparison to the MC6 distribution 

over all seasons. Both τ retrievals have similar regional and monthly variations, but a 

larger annual cycle of Reff is associated with the optimal model.  

3.1. Introduction 

Accurate estimation of ice cloud optical thickness (τ) and cloud particle effective 

radius (Reff) is fundamental for parameterizing and constraining cloud radiative effects in 

global climate models (GCMs) (Liou and Yang, 2016; Platnick and Oreopoulos, 2008; 

Baran, 2009; Loeb et al, 2018) and for understanding the Earth’s radiation budget (Liou, 

1986; Stephens et al., 1990; Chen et al., 2000; Yang et al., 2015). In particular, the product 

of optical thickness and the effective particle size is proportional to the ice water path 

(IWP) (Hansen and Travis, 1974; Yang et al. 2018). To infer these parameters from 

satellite sensor data, an ice particle model is necessary for the forward light scattering 

calculations involved in generating the look-up tables (LUTs) in implementing a retrieval 

algorithm. Recent studies indicate that the adoption of a forward ice cloud optical property 

model has a significant impact on cloud property retrievals (Mishchenko et al., 1996; 

Baum et al., 2005; Baran, 2009; Zhang et al. 2009; Platnick et al. 2017; Loeb et al., 2018; 

Yang et al., 2018). 

Because of the sensitivity of satellite retrievals to an assumed ice cloud particle 

habit model in the forward light scattering computations, defining an optimal ice particle 

model for global operational retrievals could have a significant impact on the use of the 

products in various problems in atmospheric research. At present, most satellite-based 
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retrievals assume ice particle habits without considering spatial and temporal variations 

(Baum et al., 2005; Letu et al., 2016; Platnick et al., 2017; Loeb et al., 2018). However, 

both field campaign experiments and laboratory measurements have confirmed that the 

ice particle habits and sizes vary with supersaturation, temperature, and the ambient 

dynamics, implying that an optimal ice particle habit model may have geospatial 

dependence (Heymsfield et al., 2010, 2013; Bailey and Hallett 2004, 2009). Thus, it is 

important to understand the geospatial distribution of an optimal ice habit model for its 

application to satellite-based cloud property retrievals, and to the assessment of the 

potential biases caused by the invariant ice habit model assumption. 

A recent study examined the agreement between Multi-angle Imaging 

SpectroRadiometer (MISR) sensor measurements and radiative transfer simulations based 

on an ice habit model in conjunction with a varying degree of surface roughness. The 

surface roughness was found to be an important parameter in inferring ice cloud properties 

due to a latitudinal dependence that varied seasonally with the thermal equator annual 

cycle (Wang et al., 2018). The MISR cameras view a wide range of scattering angles for 

a given pixel containing an ice cloud and provide valuable data for determining a variable 

ice habit model that specifies an optimal value of the degree of ice particle surface 

roughness in fitting measurements at the pixel level. 

This study addresses two questions that are important for global retrievals of ice 

cloud properties from satellite data: 1. what are the optimal values of ice particle surface 

roughness in different cloud regimes for MISR measurements, and 2. what are the 

resulting differences in the cloud properties inferred with the optimal roughness values 
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compared to those obtained based using a constant degree of surface roughness? To 

address these questions, we test a varying ice particle surface roughness model using a 

fused MISR and Moderate Resolution Imaging Spectroradiometer (MISR-MODIS) 

dataset for 2013. Furthermore, we compare present τ, Reff and ice water path (IWP) 

retrievals against the MODIS Collection 6 (MC6) counterparts in multiple cloud regimes 

towards a better understanding of the seasonal variations of the differences between the 

two retrievals. 

3.2. Data and Methods 

In this study, one full year (2013) of MISR and MODIS data is fused based on 

cloud-top properties detailed in Liang et al. (2009) and Liang and Di Girolamo (2013), 

with updates in Wang et al. (2018). There was no strong signal from El Nino nor La Nina 

in 2013, based on the ENSO index. The MISR and MODIS datasets are fused by 

registering the MODIS radiances and MOD06 cloud products reported at 1km resolution 

onto the MISR 1.1km Space-Oblique Mercator (SOM) grid. Both satellite sensors are 

onboard NASA’s Terra satellite platform that is sun-synchronous with a daytime equator-

crossing at 10:30am local time. As originally discussed in Liang et al. (2009), the fusion 

process begins by registering small groups of MISR pixels (3 × 3 pixels identified as 

cloudy) using the feature matcher M2 (Muller et al., 2002) to track clouds across MISR’s 

9 cameras, and pairing radiance viewed by each of non-nadir cameras with the radiance 

viewed by the nadir camera for the chosen cloud element. MODIS radiances and cloud 

retrievals are registered to the MISR nadir-camera grid. In all, the MISR-MODIS co-

registered dataset includes collocated MISR camera bidirectional reflectance factors 
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(BRF) at 0.86 μm, MODIS band 2 and 7 reflectances (0.86 and 2.13 µm, respectively), 

MOD06 cloud products (which includes τ, Reff, cloud heterogeneity index (Hσ), cloud top 

height, cloud thermodynamic phase, cloud top pressure, and cloud top temperature), MISR 

sun-view geometry, and the MISR stereo-cloud top height retrievals. All these parameters 

are at 1.1km spatial resolution in the fused dataset. 

Index Hσ from MC6 dataset is defined as the standard deviation of the 16 subpixel 

reflectances with 250 m resolution in the 1-km pixels divided by reflectance (Liang et al., 

2009; Platnick et al., 2015, 2018). The occurrence of large subpixel standard deviations in 

cloud optical thickness result in high Hσ values, and this index is widely used to study 

three dimensional (3D) cloud effects (Di Girolamo et al., 2010; Zhang and Platnick, 2011; 

Liang and Di Girolamo, 2013). 

The reflectances from fused MISR 0.86 and MODIS dataset are filtered using a set 

of criteria summarized as follows. The MISR sensor provides reflectances for a cloud 

target at up to 9 different scattering angles (Diner et al., 1998; Diner et al., 2002). To 

minimize the potential influence of 3D radiative effects on the viewing angle dependence 

of the retrievals (Liang and Di Girolamo 2013), only the three close-to-nadir viewing 

MISR cameras (AA: near-aft camera, AN: nadir camera, and AF: near forward camera) 

are used in this study. If the glint angle from any camera is < 35°, the reflectance is 

assumed to be impacted by sunglint. Only pixels with at least 2 views that are unaffected 

by sunglint are selected for further analysis. Furthermore, the analysis is limited to 

overcast MODIS pixels over ocean within the MISR swath, for which cloud 

thermodynamic phase is determined to be ice based on the MC6 infrared (IR) cloud phase 
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flag (Platnick et al., 2018). The pixel locations are restricted to 60°N-60°S to avoid the 

effects of snow and sea ice on the measured reflectance. Compared to Wang et al. (2018), 

we add an additional quality-control step to remove potential multilayer clouds 

(McFarlane and Marchand, 2008; Naud et al., 2002). Specifically, we identify the potential 

presence of multilayer clouds as occurring when the MISR stereo height values and 

MODIS cloud top height values differ by more than 2000 m (Mueller et al., 2017). 

For the fused MISR-MODIS dataset that has been filtered as described above, a 

variable ice particle surface roughness model is developed as follows. The model adopts 

the MC6 roughened hexagonal ice aggregate habit in conjunction with 12 values of the 

degree of ice particle surface roughness (σ%) for a given pixel. The surface roughness 

parameter (σ%) is used to compute the single-scattering properties of ice particles, and is 

defined as the standard deviation of a two-dimensional Gaussian distribution of the tilting 

of ice particle surface facets (Yang and Liou, 1998). In particular, σ%= 0 denotes that ice 

particles have smooth surfaces. A higher value of σ%  denotes rougher surfaces that 

generally result in a smoother phase function. Light scattering by smooth ice particles 

produces strong peaks in the phase functions that correspond to halos that do not appear 

frequently in reality (Mishchenko et al., 1999). By considering ice particle surface 

roughness, the halo peaks in the phase function are smoothed. The MC6 model considers 

a constant roughness value (σ%=0.5), while this study uses 12 values ranging from σ%= 0 

to 3.5. The phase functions corresponding to the selected values of the degree of roughness 

are shown in Fig. 3.1 and the corresponding asymmetry factor values are listed as well. 

More detailed descriptions of the ice crystal habits and associated degrees of surface 
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roughness can be found in the literature (e.g., Mishchenko et al. (1996), Yang and Liou 

(1998), Yang et al. (2013), Liou and Yang (2016)). Related studies on retrievals of ice 

cloud parameters by ice crystal models with different shapes and surface roughness can 

be found in the literature (Platnick et al., 2003; Xie et al., 2012; Hioki et al., 2016; Platnick 

et al., 2017; Letu et al., 2019). 
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Figure 3.1 The phase functions of the MODIS Collection 6 (MC6) ice cloud model 
consisting of aggregate columns having an effective radius of 30 μm for 12 different 
degrees of surface roughness (σ2) at 0.86 μm. The asymmetry factor (g) of each 
roughness value is also listed in the inset panel. 
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The scattering angle range of MISR measurements is primarily at side- and back-

scattering angles, due to the solar-satellite camera viewing configuration. Figure 3.2 shows 

the normalized frequencies at every scattering angle sampled by three MISR cameras (i.e., 

AA, AN, and AF) for the entire measurements in 2013 between 60°N and 60°S. As seen 

in Fig. 3.2, the range with scattering angles smaller than 70° is not sampled. 
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Figure 3.2 The normalized frequency of scattering angle sampled by three MISR 
cameras (i.e., AA, AN, and AF) for the entire measurements in 2013 between 60°N 
and 60°S. 	
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The filtered pixel radiances are analyzed using the spherical albedo difference 

(SAD) method developed by Doutriaux-Boucher et al. (2000), which was applied to a 

MISR dataset in our previous study (Wang et al., 2018). To use the SAD methodology, an 

adding-doubling radiative transfer model (Huang et al., 2015) is used to compute the 

spherical albedos in conjunction with the use of the 12 roughness values. The spherical 

albedo is a variable that is independent on satellite viewing geometry and is a nonlinear 

function of τ. τ is not fixed in the computation of spherical albedo; more details are in 

Wang et al. (2018). The SAD values for a roughness model are computed from the 

differences of the computed spherical albedo values and the average spherical albedo of 

all applicable angles (i.e., the scattering angle measured among AA, AN, and AF). If the 

assumed model perfectly captures the roughness characteristics of the measurements, the 

SAD values would be zero at all scattering angles. 

To identify an optimal ice particle surface roughness value for a pixel, we define 

χ2 as the standard deviation of the SAD values for all cameras in conjunction with the 12 

roughness values. An optimal value of particle surface roughness is selected in accordance 

with the smallest χ2 value. A lower χ2 value means that the reflectances generated with 

assumed ice particle model are closer to measurements than those with a higher χ2 value. 

Based on the SAD method, the optimal value for the degree of ice particle surface 

roughness is the value that leads to the best agreement between the simulated radiances 

and the multi-angle measurements in the fused data set. 

In our previous study (Wang et al., 2018), MISR measurements were applied to 

identify the optimal degree of ice particle roughness. In this study, we further analyze the 
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differences in the cloud properties (i.e., τ, Reff, and IWP) that are obtained from use of the 

optimal ice particle model. Based on the identified optimal degree of ice particle 

roughness, τ and Reff are retrieved using a bi-spectral shortwave technique (Nakajima and 

King, 1990) implemented with two MODIS bands centered at 0.86 and 2.13 μm. Figure 

3.3 shows the schematic data flowchart in this study. Comparisons are made between our 

computed τ and Reff values with those in the MC6 data products and are shown in Chapter 

3.3.2 and 3.3.3.	 	
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Figure 3.3 The schematic data flowchart in the retrieval system.   
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To better understand the performance of the present method in this study, Fig. 3.4 

shows a sensitivity study of the response of the present retrievals to radiance values 

containing prescribed random noise. With viewing geometries extracted from MISR 

normalized radiances and optical thickness values extracted from MODIS Collection 6 

products, we generate synthetic radiances at the pixel level for 20 March 2013. The noise 

is generated by assuming a Gaussian distribution and added to the radiances. The synthetic 

radiances are generated for each of the 12 surface roughness values and are shown in Fig. 

3.4. The ordinate denotes the retrieved degree of roughness. The value for a given bin 

shows the normalized frequency of the retrieved roughness value based on the synthetic 

data. The agreement between the retrieved and assumed roughness increases significantly 

by reducing the noise level from 0.5%  (Fig. 3.4a) to 0.1% (Fig. 3.4b). 
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Figure 3.4 The response of the retrieval system based on analysis of synthetic data 
for each degree of roughness (abscissa) with (a) 0.5% noise, and (b) 0.1% noise, as 
shown in a distribution of the roughness parameter (ordinate). The values in each 
bin are the fractions for each degree of roughness; the values in each column sum 
to 1.   
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3.3. Results and Discussions 

3.3.1. Global statistics of the optimal ice model for different cloud regimes  

In this section, the relationships between the optimal ice particle model and several 

cloud properties (i.e., τ, Reff, Hσ, and the cloud top temperature) are investigated. To show 

how often different parameters occur, the normalized probability density distributions of 

these four cloud properties from the 1-year combined MISR and MODIS datasets over the 

ocean are displayed in Fig. 3.5. The results in Fig. 3.5 are come from MODIS products 

directly, not using the optimal ice particle model. 

We first examine the proportion of an optimal surface roughness value (i.e., a value 

corresponds to the lowest SAD value from the 12 surface roughness values in Fig. 3.1) for 

several key cloud parameters inferred from the filtered MISR-MODIS dataset over ocean 

(Fig. 3.6), including τ (Fig. 3.6a), Reff (Fig. 3.6b), the cloud heterogeneity index (Hσ, 

Figure 3.6c) and cloud top temperature (Fig. 3.6d). For each of these four parameters, Fig. 

3.6 shows the color contours describing the cumulative proportion of the optimal 

roughness value obtained over a range of the parameter values labeled on the abscissa. 

The ordinate is the cumulative fraction of an optimal roughness value ranges from σ2 =0 

(dark blue) to σ2 =3.5 (brown) for all analyzed pixels in every bin of the stated variable 

value along the abscissa. The magenta curve shows the normalized probability of number 

of pixel in every bin. 
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Figure 3.5 The normalized probability density distributions of four ice cloud 
property variables over the ocean: (a) ice cloud optical thickness (τ), (b) cloud 
particle effective radius (Reff), (c) cloud heterogeneity index (Hσ), and (d) cloud top 
temperature.   
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In Figs. 3.6a and 3.6b, the distribution of the optimal roughness values is shown 

as a function of τ and Reff values. The σ2=0.14 case dominates as an optimal roughness 

value in more than 30% of the pixels over the range of optical thickness and effective 

radius values. Note that the model with a roughness of σ2 =0.14 has the lowest asymmetry 

factor of all the models (see Fig. 3.1). As τ increases, the percentage of severely roughened 

ice particles (σ2 > 1.0) increases, while the percent of essentially smooth ice particles (σ2 

< 0.01) decreases. Specifically, a rapid increase in the percent of severely roughened 

particles is noticed for optically thin clouds (τ < 3), while it remains relatively constant 

when τ > 3. Pristine ice particles tend to form in environment of low updraft velocities, 

such as in synoptic cirrus. Clouds with a larger optical thickness tend to occur in a more 

dynamic environment with stronger updraft velocities and water vapor transport. These 

results demonstrate the difficulty in finding a single ice model that can capture the 

complexities of ice clouds globally. 
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Figure 3.6 The percentages of retrieved best-fit ice particle roughness models are 
shown for ranges of four ice cloud property variables over the ocean: (a) ice cloud 
optical thickness (τ), (b) cloud particle effective radius (Reff), (c) cloud heterogeneity 
index (Hσ), and (d) cloud top temperature. The magenta curve shows the 
normalized probability of the number of pixels in every bin.   
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Similar to the case in Fig. 3.6a, the inferred optimal surface roughness value also 

varies with the effective particle radius in Fig. 6b. Severe roughening (σ2 >1.0) dominates 

when the Reff  > 10 μm. Since ice particles become less pristine as they grow (Pfalzgraff 

et al., 2010), the degree of particle surface roughness as Reff increases may be related to 

the ice particle growth process. It is interesting to note that the percentage of relatively 

smooth ice particles significantly increases as Reff decreases below 20 μm, which occurs 

generally when cloud particles grow from their initial small sizes in an environment of 

low water vapor and with small updraft velocities. 

The MODIS products provide cloud top pressure and cloud top height, and these 

two variables show similar proportions of the particle roughness distribution. Only cloud 

top temperature is considered here. Figures 6c and 6d show the proportion of the optimal 

roughness values based on the MODIS values of Hσ and cloud top temperature. The σ2 

=0.14 case is chosen for most pixels as Figs. 3.6c and 3.6d. In Fig. 3.6c, the proportions 

of every particle roughness cases are almost constant when Hσ < 1, but when Hσ > 1, the 

proportions of particles with the highest and lowest values of roughening increase with 

Hσ. In Fig. 3.6d, the proportion of smoother particles increases as cloud top temperature 

decreases. A higher cloud top is generally colder, and more pixels are identified as 

containing smooth particles. There are more pixels identified as corresponding to smooth 

particles at high altitudes than low altitude ice clouds. It should be pointed out that the 

radiometric signals for the retrievals in all these cases are largely from the top of the cloud. 

Lower portions of optically thick ice clouds are expected to have different properties than 

the cloud tops. 



 

65 

 

Figure 3.7 shows that the use of the optimal ice model in retrievals improves the 

consistency between model reflectance and measured reflectance in every bin. The blue 

vertical bars denote the 25 to 75 percent range of computed χ2 for the pixels within each 

bin for each parameter discussed in Fig. 3.6. The blue dots denote the median χ2 value 

computed with the MC6 model. The red bars and dots denote the 25 to 75 percent range 

of computed χ2 for the pixels within each bin computed using the optimal model. The 

magnitudes of χ2 vary with every variable, but all χ2 values based on the optimal model 

are smaller than the MC6 results. This means that the model reflectances generated based 

on optimal model have better consistency with measurements. 
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Figure 3.7 The standard deviations (in quadrature) between measured reflectance 
and model reflectance (χ2) obtained using the optimal model and MC6 model for (a) 
ice cloud optical thickness (τ), (b) effective radius (Reff), (c) cloud heterogeneity 
index (Hσ), and (d) cloud top temperature.   
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In Fig. 3.7a, χ2 generally increases with increasing τ up to a peak value at τ ~8, 

after which it decreases. For Reff (Fig. 3.7b), χ2 generally decreases with increasing Reff. 

In comparing the results of Fig. 3.7b with Fig 3.6b, the Reff bin with the maximum χ2 

values occurs in the same range where the optimal ice particle model becomes slightly 

roughened. The high χ2 values of both the MC6 and optimal models for Reff < 20 μm 

indicate that neither model leads to consistency with measurements. Because the χ2 values 

decrease when Reff > 20 μm, it may be a rational hypothesis that the hexagonal aggregate 

ice particle habit better reproduces the observed reflectivities in regions of larger Reff 

values. 

Figure 3.7c shows that χ2 increases as Hσ increases. It was noted earlier that the 

proportions of both the most and least roughened particles increase with increasing Hσ, 

(Fig. 3.6c). High values of Hσ suggest that 3D effects could be important.  

In Fig. 3.7d, χ2 values increase slightly with increasing ice cloud top temperatures 

when the MC6 model is used, but is invariant for the case of the optimal model. Note that 

the results in Fig. 3.6d show that the percent of roughened particles slightly increases with 

increasing cloud top temperature, with the largest percentage of smooth particles occurring 

at the coldest temperatures. Our results suggest that colder clouds tend to have fewer 

roughened particles. A rougher ice particle surface results in a smoother phase function 

over the scattering angle range covered by the MISR cameras as mentioned in Chapter 

3.2. In addition to ice particle surface roughness, other factors (such as air bubbles) can 

also smooth the phase function (Tang et al., 2017). Therefore, more ice particles are 

smooth in colder ice clouds may not be the only reason to explain these features. Ice 
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crystals containing air bubbles in colder clouds may be able to show similar characteristics 

as Figs. 3.6d and 3.7d. 

To summarize the results of Fig. 3.7, the χ2 values based on the optimal model are 

always lower than those based on the MC6 model. Clouds with high heterogeneity bear 

further investigation as the χ2 values increase. Furthermore, the high χ2 values at low 

values of Reff suggest that further improvements in the model may be necessary. In 

addition, the camera selection also has an effect on retrievals (Liang and Di Girolamo, 

2013; Miller et al., 2018). With the different viewing zenith angle of each camera, the 

selected range of scattering angle in retrieval changes with different camera selection, but 

not measurements at every scattering angle are able to effectively distinguish the different 

ice models. Therefore, the percent of retrieved roughened ice particles could be affected 

by the camera selection. 

3.3.2. Retrievals with the optimal ice model  

This section focuses on cloud property retrievals using the optimal roughness 

model, and specifically with looking at the variability of τ, Reff, and IWP as a function of 

Hσ and cloud top temperature. For each pixel, the degree of roughness that is most 

consistent with MISR measurements is employed to retrieve ice cloud optical thickness 

(best-fit τ) and effective radius (best-fit Reff) using the Nakajima-King bispectral retrieval 

algorithm. The ice water path (IWP) is computed from the retrieved τ and Reff. Here, the 

IWP is defined in Equation (3.1) (Horváth and Davies, 2007): 

𝐼𝑊𝑃 = DEF4%&&
BG%

                                                                3.1)  
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where ρ is the density of ice, and Qe is the average extinction efficiency for ice. 

Here, we have assumed ρ of 0.93 g cm-3 and Qe is set to 2. For the same samples analyzed 

from the fused MISR-MODIS data product, the corresponding MC6 τ and Reff retrievals 

are examined as a reference.  

We first examine the relation between Hσ and cloud top temperature (Fig. 3.8). 

Figure 3.8a shows that the highest percentage of pixels occurs with the warmest cloud top 

temperatures. The vertical profile of Hσ in Fig. 3.8b shows that Hσ is fairly constant but 

decreases when the cloud top temperature < 190 K, which could be a factor related to low 

sampling. The median Hσ is around 3 except at extremely low cloud top temperatures < 

190K, which suggests that Hσ is not dependent on latitude. 
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Figure 3.8 (a) The proportion of ice cloud pixels, and (b) the median cloud 
heterogeneity index (Hσ) value (solid is median and dashes are upper and lower 
quartiles) as a function of cloud top temperature.   
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Figure 3.9 shows the retrievals (i.e., τ, Reff, and IWP) based on the optimal and 

MC6 models for multiple Hσ regimes (left column) and cloud top temperature (right 

column). Clouds with high Hσ values are likely to have lower τ and low IWP, although 

we note that the Reff is largely invariant with Hσ. The retrievals do not show significant 

variations in cloud top temperatures except extremely cold clouds. For all bins in both 

regimes, the optical thickness retrieved by the optimal model is higher than retrieved by 

the MC6 model, and their absolute differences increase with higher optical thickness and 

lower Hσ regimes. The median value of τ of all pixels using the optimal model is higher 

than with the MC6 model by 10.1%. The median value of Reff using the optimal model is 

2 μm lower than with the MC6 model for almost all cases. The median value of Reff of all 

pixels using optimal model is smaller by 6.5%. The impact on IWP is fairly small, which 

is reasonable considering it is a product of τ and Reff.  
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Figure 3.9 The median retrieved ice cloud optical thickness (τ), cloud particle 
effective radius (Reff), and ice water path using the optimal model and MC6 model 
over the range of values for the cloud heterogeneity index (Hσ) and cloud top 
temperature.   
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Fig. 3.9a shows that the retrieved τ decreases with increasing Hσ. This indicates 

that the thin clouds are likely to have high Hσ values. In other words, the different Hσ 

regimes are similar to the optical thickness regimes. As shown in Fig. 3.8b, clouds with 

different cloud top temperatures have similar Hσ distributions, suggesting that the high 

Hσ clouds mainly come from optically thin clouds with large reflectance variations. This 

also explains why Fig. 3.6c has a roughly inverse roughness distribution in comparison 

with the case in Fig. 3.6a. 

3.3.3. Seasonal Cycles of Retrievals and its Potential Implications  

Recent studies of seasonal differences show inconsistent annual cycles using 

different ice particle models for the retrievals (Zhang et al., 2009; Zeng et al., 2012). As 

mentioned in Section 2, χ2 value quantifies the difference between the simulations and the 

multi-angle imaging measurements for an ice particle model. In this section, we 

investigate the seasonal cycle of retrievals using the optimal model.  

The seasonal cycles (monthly averages in 2013) over the ocean of τ, Reff, and IWP 

are shown in Fig. 3.10, separately for the tropics (0°-30° latitude) and the mid-latitudes 

(30°-60° latitude) in each hemisphere. The seasonal cycles are calculated using both the 

optimal model (red) and the MC6 model (blue). The optical thickness retrievals from the 

two models have similar regional and monthly variations, but τ from the optimal model is 

slightly higher than MC6 in all months (Figs. 3.10a and 3.10b). The τ values from the 

optimal model are both higher in local summer than other seasons in most cases, and lower 

in the tropics than in the mid-latitudes for each hemisphere. However, the seasonal 

characteristics in the Southern and Northern Hemispheres are not completely symmetrical. 
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Note that τ is higher in the mid-latitudes of the Northern than the Southern Hemisphere in 

most months, but is similar across the tropical region of both hemispheres. 
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Figure 3.10 The annual cycles (monthly averages in 2013) of retrieved ice cloud 
optical thickness (τ), cloud particle effective radius (Reff) and ice water path using 
the optimal model and MC6 model averaged over the tropics (0-30° latitude) and 
the mid-latitudes (30°-60° latitude) for both hemispheres.   
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Figures 3.10c and 3.10d show retrievals of Reff in the same form as in Figs. 10a 

and 10b. The optimal model retrievals have a smaller Reff than the MC6 retrievals in most 

cases. The Reff from both models tend to be higher in the spring and summer than in winter 

for each hemisphere in most regions, but the best-fit Reff have larger seasonal variations 

than the MC6 model. For IWP (Figs. 3.10e and 3.10f), the differences between these two 

ice model retrievals are insignificant. Both retrievals have a higher IWP in local summer 

as expected due to increased convection, and have a higher IWP values in mid-latitudes 

than the tropics. 

Figure 3.11 shows the normalized frequency distributions of the retrieved τ and 

Reff associated with the MC6 model and the optimal roughness model for the four 

meteorological seasons over the ocean, Mar-May (MAM), Jun-Aug (JJA), Sep-Nov 

(SON), and Dec-Feb (DJF). The averaged distributions of τ and Reff indicate that there are 

minimal differences in each season. However, the maximum frequency distributions 

produced with the MC6 model and the optimal model have some systematic differences. 

The distribution of τ does not shift, but the maximum of the distribution for the best-fit τ 

peak has a lower frequency by approximately 10% in comparison with the MC6 results 

for all seasons, compensated for by a slightly higher tail in the large τ direction for the 

best-fit τ. This feature may be explained by a slightly larger number of cases with large τ. 

The histogram distributions of the best-fit Reff are systematically smaller (2-4 μm) than for 

the MC6 counterpart in all seasons. 
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Figure 3.11 The seasonal normalized frequencies of retrieved ice cloud optical 
thickness (τ) and cloud particle effective radius (Reff) obtained from the optimal 
model and MC6 model. The results are averaged globally for each season (MAM: 
Mar-May, JJA: Jun-Aug, SON: Sep-Nov, and DJF: Dec-Feb).   
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The bi-spectral shortwave technique for retrieving τ and Reff is sensitive to the 

asymmetry factor (King, 1987) and the details of the scattering phase function (Doutriaux-

Boucher et al., 2000; Zhang et al., 2009). Therefore, the retrieved τ and Reff are dependent 

on the assumed ice particle model, and the selection of an optimal ice particle model is 

critical to robust cloud property retrievals using a visible band and a shortwave infrared 

band. As stated above, most cloud products assume a single ice model in retrieval, but 

cause inconsistency with measurements if using an invariant ice particle model. In this 

study, optimal model retrievals using a pixel-level variable ice model show more 

consistency with the multi-angle direction measurements than retrievals using the 

invariant (σ2 = 0.5) MODIS MC6 model. Because of the better consistency, retrievals 

based on the variable roughness model in conjunction with multi-angle measurements 

leads to a better fit to cloud properties at the pixel level. Therefore, the differences between 

optimal model retrievals and the operational MODIS satellite retrieval products provide a 

possible approach to the retrieval biases. 

As seen in Fig. 3.10 and Fig. 3.11, different seasonal variations and normalized 

frequencies exist in the comparison of τ and Reff retrieved using the variable roughness 

model and the invariant roughness MODIS MC6 model. Since τ and Reff play a significant 

role in cloud albedo and transmittance (Platnick and Oreopoulos, 2008), the inconsistency 

of τ and Reff among different remote sensing retrievals will impact assessing the cloud 

radiative forcing, and is also an important quantity in climate study. 
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3.4. Summary 

This study investigated the retrieved ice cloud optical thickness (τ), effective 

radius (Reff) and ice water path (IWP) over ocean under different τ, Reff, cloud 

heterogeneity index (Hσ) and cloud top temperature regimes, and computes their annual 

cycles in different latitude bands using a full year (2013) of fused MISR-MODIS data with 

a varying ice particle roughness model. A varying roughness model is used to choose the 

optimal roughness value for a given pixel, leading to a better delineation of the variations 

of optical and microphysical properties over the wide range of scattering angles measured 

by MISR. In particular, the retrievals in this study provide a better understanding of 

retrieved ice cloud τ and Reff in MC6 products, computed by assuming an invariant ice 

particle model in the retrieval algorithm. 

Measurements are better explained by assuming severely roughened ice particles 

for many pixels when τ and Reff are large, a larger cloud heterogeneity index (Hσ), and 

warmer ice cloud-top temperatures. The proportion of severely roughened particles 

increases rapidly with increasing τ in thin cloud regimes, but not for thick clouds. The 

proportion of smooth particles significantly decreases when Reff > 20 μm. Compared to 

the MODIS C6 operational retrievals, the retrievals in this study with the varying 

roughness model improve the consistency between model reflectances and measurements, 

and have a larger value of τ and a smaller value of Reff in most cloud regimes. The median 

value of τ of all pixels is larger by 10.1% than the MC6 counterparts and median value of 

Reff is smaller by 6.5%. However, IWP does not show significant differences between 

these two retrievals. 
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The zonal median values of the retrieved τ and Reff using the variable roughness 

model in this study are different from the MC6 constant roughness model, and the 

differences vary with the season. The retrievals of τ from the two models have similar 

regional and monthly variations. However, a larger annual cycle appears in Reff in the 

optimal model retrievals than in the MC6 retrievals. The normalized frequency 

distributions of τ by these two retrievals show that the peak location of best-fit τ is close 

to that of MC6 τ, but the peak frequency of best-fit τ is lower by approximately 10% in all 

seasons. The normalized frequency distribution of the best-fit Reff is systematically shifted 

toward a smaller value of Reff by 2-4 μm in comparison with the results for the MC6 Reff 

in all seasons. 
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4. REMOTE SENSING ICE PARTICLE MODEL FOR CIRRUS CLOUDS: 

METHODOLOGY AND VIEWING ANGLE DEPENDENCE IN RETRIEVALS 

USING AIRBORNE MULTI-ANGLE POLARIZATION MEASUREMENTS 

 

We present an improved remote sensing technique to infer an optimal habit/shape 

model for ice particles in cirrus clouds using multi-angle polarimetric measurements made 

by the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI) instrument. The 

common method of ice model inference is not appropriate for inferring thin ice models 

(i.e., cirrus clouds) using polarization measurements. This improved method is able to 

infer an ice model in clouds with optical thicknesses smaller than 5. The improvement is 

made by assuming the optical thickness retrieved using total reflectivity and then 

computing polarized reflectivity and generating look-up tables of simulated polarized 

reflectances computed for cirrus clouds in conjunction with eight ice particle models. The 

ice particle model that leads to the closet fit to measurements is regarded as the optimal 

ice particle model. Meanwhile, an alternative method without considering polarized 

reflectivity is also applied. Both methods are applied to a case of measurements of cirrus 

clouds to retrieve an optimal ice particle model. The hexagonal column aggregate model 

works for most pixels both with and without considering polarized reflectivities. The 

number of camera pairs selected has a smaller effect on ice particle habit retrievals than 

the effect of selecting forward or aft cameras. Specifically, when camera pairs with large 

zenith angles are excluded, the inconsistency between observations and simulated total or 
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polarized reflectivity significantly decreases and the inferred ice particle model does not 

change in this study case. 

4.1. Introduction 

The selection of an appropriate ice particle habit model and subsequent generation 

of the corresponding bulk single-scattering properties are critical to the implementation of 

cirrus cloud property retrievals and, subsequently, to the assessment of the cirrus radiative 

forcing effect (Mishchenko et al., 1996; Baran et al., 2009; Yang et al., 2015; Loeb et al., 

2018). To infer appropriate ice particle model(s) in ice cloud property retrievals, satellite 

or airborne multi-angle imaging sensors including the POLarization and Directionality of 

the Earth's Reflectances (POLDER) and Multi-angle Imaging SpectroRadiometer (MISR) 

instruments as well as similar airborne instruments are commonly applied. These sensors 

use fixed cameras to view a given pixel at multiple angles along the satellite or airplane 

path. This sampling configuration provides the unprecedented opportunity to evaluate the 

reconcilability between ice particle model and measurement over a range of scattering 

angles. 

Based on these unique directional viewing characteristics from multi-angular 

observations, retrieval techniques using total reflectivity from multi-angular observations 

have been implemented to validate ice habit models and surface morphology such as 

roughening (Doutriaux-Boucher et al., 2000; McFarlane et al. 2005; Xie et al. 2012; Wang 

et al., 2018). Meanwhile, polarimeter measurements from multi-angular observations have 

been applied to infer ice particle habits (Chepfer et al., 2001; Sun et al., 2006; Baran and 

C.-Labonnote, 2007; van Diedenhoven et al., 2012; Cole et al., 2014; Hioki et al., 2016). 
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The polarimetric reflectivities are able to predict all elements of the scattering matrix 

instead of P11 element only for cloud properties. In employing this method, assuming a 

constant optical thickness of 5 or larger is necessary to generate look-up tables (LUTs) in 

doing retrievals. The reason for this is that polarimetric reflectivities saturate at an optical 

thickness of approximately 5 (Masuda and Takashima, 1992; also see Section 2.2), beyond 

which multiple scattering swamps the signal. This treatment clearly distinguishes ice 

particle habit signals for optically thick ice clouds, but does not work well for ice clouds 

with optical thicknesses less than the polarization saturation threshold. Since the typical 

optical thickness of cirrus is less than 3, it is necessary to improve the conventional 

retrieval method that only considers thick ice clouds. 

The primary goal of this paper is to demonstrate an algorithm to determine ice 

particle models for optically thin ice clouds using multi-angular polarimetric reflectivity 

data, which overcomes the constraints on the optical thickness. In doing so, this study also 

assesses camera selection in a multi-angular retrieval technique. Commonly, satellite 

products are retrieved based on all available cameras, since more cameras carry more 

information, and the viewing geometries (i.e., viewing zenith angle and viewing azimuth 

angle ranges) of each camera are not the same with different multi-angular imaging 

satellites. Several studies indicate that viewing geometries may influence cloud retrievals 

due to various factors, such as varying influences of the cloud 3D effect on each camera 

and variable sensitivity of the ice model to viewing geometries (McFarlane and Marchand 

2008; Liang and Di Girolamo, 2013; Zhang et al., 2009; Wang et al., 2018). Therefore, it 

is necessary to understand the impact of selecting cameras on retrievals. 
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4.2. Methodology 

4.2.1. Ice Habit Models  

Four ice particle habits are chosen in this study, including a bullet rosette, an 

aggregate of 10 plates, a solid hexagonal column, and an aggregate of 8 hexagonal 

columns. Details of ice particle habits are defined in Yang et al. (2013). For each ice 

particle habit, two ice particle models with different single scattering properties are 

computed, one assuming a smooth particle (σ2=0) and the other for a roughened particle 

(σ2=0.5). Roughness is the random tilting of ice particle faces with a Gaussian distribution 

and is denoted by σ (see Yang and Liou (1998) for the detailed explanation of the physical 

meaning of this parameter). The addition of roughness to the ice particle surface results in 

a featureless phase function, thereby leading to a reduction of the halo peaks. Several 

studies (Baran 2009; Wang et al., 2018) demonstrate that rough ice cloud models are able 

to achieve spectral consistency in the retrieved ice cloud optical thickness. Note that a 

roughness factor of σ2=0.5 is used for operational MODIS (Moderate Resolution Imaging 

Spectroradiometer) Collection 6 (MC6) products, and the roughened 8 hexagonal column 

aggregate ice habit in this study is the same as that used for the MC6 ice model. The 

effective variance is 0.1 and an effective radius is 30 μm in computing bulk scattering 

properties with integrating single-scattering properties over a Gamma distribution for all 

8 ice particle models. In addition, three liquid water models are used in this study to 

distinguish the cloud phase. The three water models are computed with the Lorenz-Mie 

theory with respect to three different effective radii (Reff = 4 μm, 8 μm, and 16 μm). The 
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nonzero scattering phase matrix elements (P11 and P12/P11) of the 11 cloud particle 

models (8 ice models and 3 water models) in this study are shown in Figure 4.1. 
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Figure 4.1 The a) phase function and b) P12/P11 phase matrix elements as 
functions of scattering angle for 8 ice particle models and 3 liquid water models 
with different effective radii (Reff = 4 μm, 8 μm, and 16 μm) used in this study. The 
8 ice particle models are 4 ice particle habits, which are bullet rosette (rosett in the 
figure), 10 plates aggregate (plate), solid hexagonal column (column), and 8 
hexagonal columns aggregate (hexagr) with smooth surface (m) and roughened 
surface (r) particles computed separately for each habit. 
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4.2.2. Algorithm 

The reflectivity (R; also named total reflectivity) is defined as: 

 𝑅(𝜇, 𝜇$, 𝜑, 𝜑$) =
+∙!"∙I(K,K',L,L')

K'∙N'
    4.1) 

where 𝐼(𝜇, 𝜇$, 𝜑, 𝜑$) is the radiance, E0 is the solar irradiance at 1 astronomical 

unit (AU), and d is the Earth-Sun distance relative to 1AU. 𝜑  and 𝜑$  are viewing 

azimuthal angle and solar azimuthal angle. The factors 𝜇 and 𝜇$ are the cosines of the 

viewing zenith angle and solar zenith angle, respectively. 

In a similar manner, the polarized reflectivity (L) is defined as: 

 𝐿(𝜇, 𝜇$, 𝜑, 𝜑$) =
+∙!"∙OG(K,K',L,L')"PQ(K,K',L,L')"

K'∙N'
   4.2)  

where Q and U are the second and third Stokes parameters, respectively. 

In radiative transfer theory, total reflectivity has a one-to-one relationship with 

optical thickness. However, the polarized reflectivity no longer changes with optical 

thickness when τ > 5, i.e., the signal reaches saturation (Masuda and Takashima, 1992). 

Figure 4.2 shows the total reflectivity and polarized reflectivity as a function of optical 

thickness, corresponding to the typical scattering geometry of the AirMSPI nadir camera 

(000N; see Chapter 4.3.1) applied here. The total reflectivity increases with τ in Figure 

4.2a, but in Fig 4.2b, the polarized reflectivity increases with optical thickness (τ) until 

τ=2, and then decreases. This feature indicates not all scattering geometry polarized 

reflectivities have a monotonically increasing relationship with cloud optical thickness. 

After τ > 5, the polarized reflectivity has no obvious variations. The polarized reflectivity 

shows significant differences among ice models when τ > 5, and many studies use this 
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feature to investigate ice particle habit (Sun et al., 2006; van Diedenhoven et al., 2012; 

Cole et al., 2014; Hioki et al., 2016). Because the polarized reflectivity changes with τ 

when τ < 5, it is not appropriate to assume a constant optical thickness in the study of 

cirrus clouds. Therefore, in this study, the computed optical thickness for both τ < 5 and τ 

≥ 5 is updated with the optical thickness inferred from the total reflectivity. A similar 

treatment is implemented by van Diedenhoven et al. (2012) to infer the aspect ratio and 

the degree of the surface roughness of ice particles for τ < 5. 
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Figure 4.2 The a) total reflectivity and b) polarized reflectivity as functions of cloud 
optical thickness for ice particle models used in this study. The geometry angles 
(solar zenith angle of 51.5°, viewing zenith angle of 0°, and relative azimuthal angle 
of 130°) of the AirMSPI nadir camera (000N) in the chosen case study are assumed 
here. 
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Figure 4.3 shows the flow chart for inferring an optimal ice particle model in this 

study using both two retrieval methods. Look-up tables (LUTs) are computed for each 

cloud model by using an adding-doubling radiative transfer model with polarization 

capability (Huang et al., 2015). This retrieval system assumes a single homogenous cloud 

layer, considers atmospheric molecular scattering, but neglecting aerosols. The ocean 

surface reflection is computed based on a rough ocean surface model (Cox and Munk, 

1954). Given the scattering geometry (i.e., solar zenith angle, viewing zenith angle, and 

relative azimuth angle) for each camera, total reflectivity and polarized reflectivity as a 

function of optical thickness are calculated and stored in each LUT. Due to the one-to-one 

relationship between optical thickness and total reflectivity, the optical thickness in every 

LUT is retrieved using the measured total reflectivity from each camera. By assuming the 

retrieved optical thickness, the polarized reflectivity is computed for each camera using 

the LUTs. 
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Figure 4.3 The flow chart for inferring optimal ice particle models of cirrus clouds 
in this study  
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Furthermore, the optimal ice particle shape is inferred using both total reflectivity 

and polarized reflectivity measurements. The core idea of evaluating ice model is that the 

retrieved optical thickness when assuming appropriate ice model should be the same or 

nearly invariant versus scattering angle. Therefore, the optimal model inferred using total 

reflectivity is defined as the model that provides the minimum value of the standard 

deviation of optical thickness retrieved from all selected cameras (s2total). 

𝑠RSRTU,"% = S*
V
∑ (𝜏" − 𝜏̅")%V
6/*                                                      4.3) 

where i is the selected ice particle model, j is the number of cameras, and N is the 

number of selected cameras in each pixel. The averaged value of optical thickness (𝜏) in 

each pixel is 𝜏̅. A similar method is developed by Doutriaux‐Boucher et al. (2000) using 

the spherical albedo difference method. The spherical albedo difference is the spherical 

albedo value minus the averaged spherical albedo value of all selected cameras. Here, we 

apply the optical thickness difference instead of the spherical albedo difference value to 

see more clearly the optical thickness distributions over the range of scattering angles, 

since our goal is to develop a methodology that works from optically thin to optically thick 

ice clouds. Similarly, for polarized reflectivity, the optimal ice particle model is the model 

with the lowest relative root-mean-squared difference (s2pol). 

𝑠)SU,"% = S*
V
∑ (𝐿-," − 𝐿W)%V
6/*                                                     4.4) 

The subscript s indicates the simulation, and the subscript m indicates the 

measurement. 
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Because the cloud thermodynamic phase information is not available in the dataset 

involved in this study, we infer cloud phase and remove water cloud pixels. Specifically, 

each pixel is retrieved by both ice and water models. If the best-fit model of the pixel is 

water model, that pixel is identified as water clouds and is removed. To avoid potential 

complications due to ocean surface reflections, a pixel is removed if its optical thickness 

based on the nadir camera is less than 0.1. 

4.3. Case Study 

4.3.1. Observations  

The data we used in this study are from Airborne Multi-angle SpectroPolarimeter 

Imager (AirMSPI) Level 1B2 products. The AirMSPI instrument is fully described in 

Diner et al. (2013), but briefly, it is a pushbroom camera deployed on NASA’s ER-2 high-

altitude research aircraft. The camera provides radiometric and polarimetric observations 

in the ultraviolet, visible, and near-infrared channels. The instrument uses two measuring 

modes to acquire data: step-and-stare and Sweep. In this study, we only use the data from 

the step-and-stare mode, which provides measurements with 10 m spatial sampling 

resolution at 9 viewing angles for each pixel. In the Step-and-stare mode, the camera is 

pointed at the same target at multiple viewing angles step by step. The 9 directional images 

are 661F, 589F, 478F, 290F, 000N (camera at nadir), 291A, 478A, 589A, and 661A. The 

naming convention provides the viewing angle, e.g., 661F means that the camera points 

in the forward direction with viewing angle of about 66.1° and 661A means that the 

camera points in the aft direction with a viewing angle of 66.1°. 
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In the present analyses, the total reflectivity from the 661A camera is much higher 

than from other cameras, which leads to an extremely high optical thickness in the retrieval 

process. To avoid potential biases, the 661A camera is not considered in the computation 

process. Because the 865 nm channel is less affected by a varying ice particle effective 

radius and corresponds to weak ice absorption, this channel is selected for detailed 

analysis. Pixels corresponding to viewing angle and sunlight direction within 15° cone are 

removed to avoid potential sunglint contamination. 

Since most studies in the AirMSPI project focus on liquid water clouds, there are 

few cirrus cases in the AirMSPI dataset. The cirrus case we found in this study occurred 

at 21:20 UTC January 28, 2013 off the coast of Southern California. For the case presented 

in this paper, the cirrus is located at latitudes between 31.62°N - 31.68°N and at longitudes 

between 122.59°W-122.68°W over the ocean. 

Figure 4.4 shows the zenith angle and azimuth angle range of the sun and each 

AirMSPI camera for all pixels in the selected case in this study. The azimuth angle is 

plotted in degrees clockwise from north. The vectors of both the solar azimuth angle and 

viewing azimuth angle in AirMSPI are defined as pointing in the direction of photon 

travel. To better depict the relation between sun location and viewing geometry, the 

plotted angle is the solar azimuth angle plus 180°. This treatment is for solar azimuth angle 

only, not for the viewing azimuth angle. The radial distances reflect the zenith angle (solar 

zenith angle or viewing zenith angle). The color map plots the scattering angle for each 

pixel. The scattering angle is the propagation direction of the incident light after being 

scattered by ice particles to the AirMSPI camera. The aft cameras have larger scattering 
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angles closer to backscattering than the forward cameras because the aircraft flew toward 

the WNW in this data sample. The scattering angle is smaller for a forward camera with a 

high viewing zenith angle. However, the ranges of scattering angles overlap for each aft 

camera, and most aft camera scattering angles are between 130° and 150°. 
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Figure 4.4 The geometry angle range of the sun and AirMSPI camera views in the 
selected case in this study. The azimuth angle range (solar azimuth angle plus 180° 
or viewing azimuth angle) and zenith angle (solar zenith angle or viewing zenith 
angle) are plotted clockwise from north (0°) and radial distance (angle from 
vertical), respectively. The color bar shows the solar scattering angle for each pixel.  
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4.3.2. Inference of ice particle shape  

We now apply the method proposed in Chapter 4.2.2 to infer the optimal ice habit 

model. The optimal inferred ice particle shape produced by each camera selection case is 

shown in Figure 4.5. The ice particle habits in Figure 4.5a and Figure 4.5b are retrieved 

using total reflectivity and polarized reflectivity in this study case, respectively. 

As noted earlier, the viewing geometry angles (i.e., viewing zenith angle, viewing 

azimuth angle, and scattering angle) are not the same for each camera. The selection of 

cameras is critical because each camera produces a different satellite retrieval (Liang and 

Di Girolamo, 2013). To investigate the effect of camera selection on retrievals, the results 

in Figure 4.5 are retrieved using 10 different camera selection cases. The camera selection 

of 10 camera cases is listed in Table 4.1. The first four cases include all cameras, but 

progressively remove the forward and aft pairs with the largest viewing angles. Since each 

pair of cameras has a different viewing zenith angle, these first four cases demonstrate the 

viewing zenith angle influence. The first case includes all cameras (except 661A), and the 

fourth case excludes all cameras with viewing angles > 30°. The other 6 cases focus on 

the influence of forward and aft camera selections. Cases 5, 6, and 7 use 4, 3, or 2 cameras 

up to 589F, and cases 8, 9, and 10 use 4, 3, or 2 cameras up to 589A. Case 5 includes the 

nadir camera and the forward cameras up to 589F, and case 8 uses the nadir camera and 

the aft cameras up to 589A. 
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Table 4.1 The camera selection in each group. Cameras with a plus sign are 
included in a group, and with a minus sign are not included. 

Case 
index 

Camera selection 
661F 589F 478F 290F 000N 291A 478A 589A 661A 

1 + + + + + + + + - 
2 - + + + + + + + - 
3 - - + + + + + - - 
4 - - - + + + - - - 
5 - + + + + - - - - 
6 - + + + - - - - - 
7 - + + - - - - - - 
8 - - - - + + + + - 
9 - - - - - + + + - 

10 - - - - - - + + - 
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Figure 4.5 The proportion of inferred ice particle shapes in different camera 
selection cases using a) total reflectivity and b) polarized reflectivity.  
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When retrievals use total reflectivity (Figure 4.5a), the hexagonal column 

aggregate habit (either smooth or roughened particles) is chosen for the most pixels in all 

camera selection groups. The proportions of smooth particles in cases 3 and 4 are larger 

than in cases 1 and 2. These higher proportions mean that more pixels are being selected 

that have roughening when only smaller viewing zenith angles are selected. Comparison 

of the retrievals between forward camera cases (cases 5-7) and aft camera cases (cases 8-

10) indicates that the optimal ice particle shapes are more diverse in forward camera cases 

(especially 6 and 7). From Case 5 to Case 7, as the nadir and 290F cameras are removed, 

the range of observed scattering angles also decreases, and the proportion of hexagonal 

aggregate habits decreases as well. Unlike the forward camera cases, the proportions of 

each ice model are quite stable among the three aft camera cases. While the number of 

cameras is different in each aft camera case, the range of scattering angles is similar in 

each case. 

With the polarized reflectivity results in this case study shown in Figure 4.5b, the 

hexagonal aggregate habit is chosen more often for most camera selections  (except the 

aft camera groups, 8 to 10). Unlike the retrievals using total reflectivity, in the first 4 

groups more ice pixels are explained by the roughened hexagonal shape when the number 

of camera pairs is reduced. For forward camera cases (5, 6, and 7), the proportions of 

pixels explained by various ice models are almost identical in each group. The majority of 

pixel habit retrievals result in the roughened hexagonal shape in selection groups 3-7. The 

proportions of the optimal ice particle shape in aft camera cases (8 to 10) are significantly 

different than in the other 7 cases. In the aft camera cases, most pixels are identified as the 
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roughened plate, but the variation of the optimal ice particle habit is high in every case. 

This is because the measured polarized reflectivity is significantly smaller than the 

simulated polarized reflectivity when using forward cameras than when using the aft 

cameras or the nadir camera. Among those cameras, five models (smooth column, 

roughened column, smooth hexagonal, roughened hexagonal, and roughened bullet rosette 

shapes) provide similar low polarized reflectivities. For aft cameras, the simulated 

polarized reflectivities with smooth and roughened plate models are both close to 

measured polarized reflectivities. This feature causes the plate habit to explain most pixels 

in aft camera selection cases but not in other selection groups in this study case. 

The hexagonal aggregate column habit explains most pixels in both total 

reflectivity and polarized reflectivity retrievals in this study case, as shown in Figure 4.5. 

This is consistent with a previous study (Cole et al., 2014) that was applied to ice clouds 

with optical thickness larger than 5. Note that the roughened hexagonal aggregate model 

is also the ice model used in MODIS Collection 6. That implies the polarization properties 

of the MODIS Collection 6 model are consistent with the case in AirMSPI measurements. 

The inconsistency (s2) between the simulated and measured reflectivity in each 

camera selection case is shown in Figure 4.6. The inconsistency in Figure 6a is defined as 

the standard deviation of retrieved optical thickness among selected cameras. The 

inconsistency is computed by Equations (4.3) and (4.4) for total reflectivity and polarized 

reflectivity, respectively. In Figure 4.6a, the inconsistency is smaller with fewer pairs of 

cameras (compare cases 2 to 4), and aft camera cases (8 to 10) have larger inconsistency 

than forward camera cases (5 to 7). The retrieved optical thickness values among forward 
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cameras are low, but much higher using aft cameras. Thus, the large inconsistency in 

Figure 4.6a is likely caused by retrieved high optical thickness values in aft cameras. The 

inconsistency in Figure 4.6b using polarized reflectivity is also sensitive to the camera 

selection as Figure 4.6a using total reflectivity. However, the differences in the polarized 

reflectivity have larger inconsistencies when forward cameras are involved. 
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Figure 4.6 The inconsistency between model reflectivity with inferred ice particle 
models and measurement from a) total reflectivity and b) polarized reflectivity, for 
each different camera selection case.  
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The inconsistency in both total reflectivity and polarized reflectivity is reduced 

with fewer camera pairs with smaller viewing zenith angles (nearer to nadir). This means 

that the larger zenith angle camera measurements introduce larger inconsistency. A 

comparison of the forward and aft camera cases indicates that the inconsistency of forward 

camera cases is significantly lower than for aft camera cases in polarized reflectivity, but 

inconsistency is higher in total reflectivity. Note that the diversity of the optimal ice 

models is higher with forward camera cases in Figure 4.6a, but higher with aft camera 

cases in Figure 4.6b. This indicates that the variation of the optimal ice models increases 

when there is an inconsistency between simulations and measurements. 

4.4. Summary and Conclusions 

In this study, we developed a remote sensing technique to infer the optimal ice 

particle models using polarimetric observations of cirrus clouds. Briefly, during ice 

particle model inference, the optical thickness retrieved from total reflectivity is assumed 

in computing polarized reflectivity. This improvement in retrieval system provides better 

consistency to measurement of cirrus clouds, since typical optical thickness of cirrus 

clouds is less than 5. In doing so, we avoid the common treatment that the ice cloud optical 

thickness is assumed to be larger than 5 in inferring ice particle shape model for cirrus 

clouds. We applied this method to Airborne Multi-angle SpectroPolarimeter Imager 

(AirMSPI) measurements to infer optimal ice particle models for cirrus clouds. In 

addition, the influence of different camera selections on the resulting optimal ice particle 

model from total reflectivity and polarized reflectivity is assessed. 
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The hexagonal aggregate column habit (with either smooth or roughened particles) 

explains most pixels in both total reflectivity and polarized reflectivity retrievals in this 

study case. The optimal ice model in different camera selection groups shows that zenith 

angle dependence (cameras viewing closer to or farther from nadir) has less effect on ice 

particle shape retrievals than selecting forward or aft viewing cameras. The inferred ice 

particle habit does not change much as the number of selected cameras increases, but a 

smooth particle model works for more pixels in total reflectivity retrievals and a 

roughened particle model works better for polarized reflectivity retrievals. However, when 

reducing the number of selected camera pairs, or with fewer camera pairs, the 

inconsistency is significantly decreased. The smallest inconsistency exists using forward 

cameras in the total reflectivity retrievals or using aft cameras in the polarized reflectivity 

retrievals. Furthermore, the cases having the smallest inconsistencies also have the largest 

diversity of the optimal inferred ice model. These findings point to the fact that a large 

inconsistency of polarization properties exists between simulated and measured ice cloud 

reflectivities. 

As an airborne instrument, AirMSPI provides higher resolution data than satellite 

sensors for the multi-angle imaging measurements. It is still useful to infer optimal ice 

particle models for cirrus clouds using such fine resolution polarized measurements. 

However, since the AirMSPI project is not mainly focused on ice clouds, the observations 

that contain cirrus clouds are really rare. Therefore, future research should apply this 

technique to large volume datasets, like POLDER, to further evaluate the effect of camera 

selection on retrievals. 
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5. THE RETRIEVALS OF ICE CLOUD OPTICAL THICKNESS USING MULTI-

ANGULAR AND MULTI-SPECTRAL TECHNIQUES 

 

5.1. Introduction 

Measurements from multiple channels are often used to infer the ice particle shape 

in remote sensing. This chapter focuses on using shortwave and thermal infrared (IR) 

bands to retrieve ice cloud properties. The shortwave bands have been extensively used as 

we mentioned in previous chapters. However, the differences of cloud property retrievals 

based on different ice crystal models are smaller in the IR bands than in shortwave bands, 

because ice crystal shape has a smaller impact on retrievals in the thermal IR spectral 

regime than in the shortwave regime. However, an optimal ice model should produce 

consistent shortwave and thermal IR cloud retrievals. Therefore, both shortwave and 

thermal IR bands should be used to test ice particle shape models to determine an optimal 

ice crystal model assumed for satellite retrievals. 

In this chapter, data from MODIS (Moderate Resolution Imaging 

Spectroradiometer) is applied to retrieve optical thickness using both shortwave and 

thermal infrared bands. By comparing the difference between two retrieval methods 

(shortwave and thermal infrared bands), the optimal ice particle shape among selected 

models is determined. Two ice particle models are applied in this chapter to each retrieval 

method. One is the operational MODIS Collection 6 model, and the other is the Two Habit 

Model. In order to compare the results of the optimal ice particle shape used in previous 

chapters, the multi-angular retrieval algorithm is also applied to the same granule data but 
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using MISR (Multi-angle imaging spectroradiometer) measurements. Both MISR and 

MODIS are on board NASA’s Terra spacecraft, which provides a good opportunity to 

investigate the retrieved ice cloud properties from an additional perspective. 

5.2. Data and Methods 

The multi-spectral retrievals in this study are based on both shortwave and thermal 

infrared bands. The core idea is to retrieve optical thickness from these two bands with 

different retrieval algorithms, and then evaluate the performance of ice particle models by 

checking the consistency of these two retrieved optical thicknesses from different 

algorithms. 

5.2.1. Thermal infrared retrievals 

This study performs thermal infrared retrievals by the split-window method, which 

retrieves optical thickness using brightness temperature measurements in thermal infrared 

channels at 11 and 12 μm (MODIS bands 31 and 32) are used here. The correlated-K 

method is applied in the forward model to account for gas absorption, and the DISORT 

model is applied to simulate radiance. The atmospheric profile and ocean surface 

temperature data are provided by the ERA-interim reanalysis dataset. 

5.2.2. Multi-angle retrievals 

The multi-angle retrievals are based on MISR-MODIS fused data (Liang and 

Girolamo, 2013; Liang et al., 2009). The MODIS and MISR satellite sensors are onboard 

NASA’s Terra platform, with a local equator-crossing-time around 10:30 am. The MISR 

observed reflectance at 0.86 μm is selected here because this channel is least affected by 

ozone and ice absorption. The MISR sensor provides up to 9 reflectances for each pixel 
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with different viewing directions, each corresponding to a different scattering angle. MISR 

has 9 cameras at fixed angles, including one nadir camera (AN), four cameras (AF, BF, 

CF, DF) pointing forward along the orbital track, and four cameras (AA, BA, CA, DA) 

pointing aft. The Viewing Zenith Angles (VZAs) for the AA/AF, BA/BF, CA/CF, DA/DF 

cameras are 26.1°, 45.6°, 60.0°, and 75.0°, respectively, and the AN camera views at nadir 

(VZA = 0°). Because of these 9 cameras, the scattering angles of MISR data have a wider 

range than most satellite sensors with a nadir camera only.  

The purpose of the multi-angle retrieval algorithm used in this study is to check 

the consistency of retrieved optical thickness from multi-angle measurements. A perfect 

ice particle model should produce the same value of optical thickness at all scattering 

angles. Considering computational stability, we replace the optical thickness by spherical 

albedo. The spherical albedo represents an integral value of the reflection function over 

all viewing and solar zenith and azimuth angles, and it has a non-linear one-to-one relation 

to optical thickness. This algorithm is fully detailed by Wang et al. In brief, following an 

algorithm by Doutriaux-Boucher et al. (2000), an adding doubling radiative transfer model 

(Huang et al., 2015) with several different ice particle models computes the spherical 

albedo corresponding to each MISR camera observed reflectance at 0.86 μm. The 

spherical albedo difference value is the spherical albedo at any angle minus the average 

spherical albedo in all available angles (a pixel may have fewer than nine suitable camera 

views). If the assumed model is correct, SAD values should be zero at all scattering angles. 

Therefore, the ice particle model generating the smallest total SAD departures over all 

cameras is the best-fit for that pixel. 
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5.2.3. Shortwave retrievals 

The data used in the shortwave retrievals are from MODIS measurements onboard 

the Terra satellite. Two bands at 0.86 and 2.13 μm are selected to retrieve optical thickness 

and effective radius. 

The retrievals of τ in shortwave bands are based on a bi-spectral shortwave 

technique (Nakajima and King, 1990) in conjunction with two MODIS bands centered at 

0.86 and 2.13 μm. The theoretical foundation of this technique is that a conservative 

scattering channel (e.g., visible bands and the channel centered at 0.86 μm) contains 

information that is primarily dependent on optical thickness. However, the reflectivity in 

a weakly absorbing band (e.g., 2.13 μm) depends on both optical thickness and effective 

radius, especially with a small optical thickness. As optical thickness increases, the 

reflectivity is mostly a function of effective radius. 

The look-up table strategy is applied in this study to retrieve both optical thickness 

and effective radius. Briefly, for each wavelength band, the reflection functions are first 

calculated using a rigorous radiative transfer model, for a large range of values of optical 

thickness and effective radius. Then, the reflection functions for each wavelength band are 

stored in a look-up table at closely spaced intervals of three geometrical angles (solar 

zenith angle, view zenith angle, and relative azimuthal angle). The determinations of 

optical thickness and effective radius are obtained from MODIS measurements of 

reflectance at 0.86 and 2.13 μm by entering the measured reflectances into the look-up 

table with the corresponding three geometrical angles, and searching for the best-fitting 

combination of optical thickness and effective radius. 
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5.2.4. Data selection 

We use the MODIS cloud products to filter and stratify ice cloud pixels in this 

study. To avoid cloud pixels containing liquid particles, pixels are selected by applying 

the following criteria: (1) MODIS infrared cloud phase is ice; (2) cloud top pressure is less 

than 900 hPa; and (3) cloud top temperature is less than 233K. To avoid any effect of 

variable land reflectance, and to reduce the complexity of radiative transfer computations, 

only observations over ocean are used. Effects of sunglint are avoided by removing each 

MISR camera measurement with sunglint angle less than 35°. Suspected multilayer clouds 

are removed by identifying pixels with MISR stereo height values and MODIS cloud top 

height values differing by more than 2000m. The theory and algorithm details can be found 

in McFarlane and Marchand (2008) and Naud et al. (2002). All pixels in this study are 

overcast. 

This study performs a case study of the different retrievals using collocated MISR-

MODIS fused data over tropical oceans at September 02, 2013. The atmospheric profiles 

are downloaded from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) Interim Re-Analysis (ERA-Interim) (Dee et al. 2011) with a spatial resolution 

of 0.5 degree times 0.5 degree and time resolution is 6 hours. 

5.2.5. Ice model 

Two widely-used ice particle models were selected in this study. One is the ice 

particle model in the MODIS Collection 6 operational products. The MODIS Collection 

6 ice particle model (MC6) uses a roughened hexagonal ice aggregate habit with ice 

particle surface roughness of 0.5. The surface roughness in this study, briefly, is a 
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parameter used to adjust single scattering properties of ice particles in the light scattering 

calculation, and is defined as the standard deviation of a random 2-D Gaussian surface 

tilting distribution of small “facets” on the surface of ice particles (Yang and Liou, 1998). 

The other ice particle model is called the Two-Habit Model (THM) from the Cloud 

and the Earth’s Radiant Energy System (CERES) Edition 5 (Loeb et al., 2018). The THM 

is a mixture of 2 different habits, with the proportions of the habits depending on the cloud 

top temperature and the average particle size. One habit is an ensemble average of 20 

distorted hexagonal column aggregates and the other habit is the roughened hexagonal 

column. 

Both of these ice particle models are applied in all retrieval algorithms (shortwave 

retrievals, infrared band retrievals, and multi-angle retrievals) to compare the ice particle 

models in both multispectral and multi-angular approaches. 

5.3. Results and discussions 

Figure 5.1 compares the retrieved optical thicknesses using shortwave and thermal 

IR methods in conjunction with MC6 and THM models. From the comparison, the 

retrieved optical thickness from two different methods in conjunction with these two ice 

particle models are generally spectrally consistent, in agreement with Yang et al. (2018). 

The optical thicknesses retrieved with the split window technique in the thermal IR band 

are systematically higher than the solar band counterparts for both ice particle models, 

especially when the optical thickness is larger, likely because the thermal infrared channel 

is not sensitive to the lower portion of thick clouds (Saito et al., 2017; Yang et al., 2018). 
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This slight difference leads the MC6 to display a slightly worse spectral consistency than 

THM.  
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Figure 5.1 Comparison of the retrieved optical thickness from applying the split 
window method in shortwave and thermal IR bands, assuming each ice particle 
model, (a) MC6 model, (b) Two Habit Model. 
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To better understand the effect of different scattering geometries on retrieved 

optical thickness, Fig 5.2 shows the deviation of spherical albedo values (spherical albedo 

difference) with assuming MC6 and THM, based on the same cases used in Fig 5.1.  Each 

spherical albedo value is computed from a single satellite camera under a specific 

scattering angle, and each spherical albedo difference is the difference from the average 

spherical albedo based on up to 9 cameras viewing that pixel. Due to the satellite orbit, all 

accepted camera views in this example have scattering angles (in 5° bins) from 65 to 170°. 

The spherical albedo differences in both of these figures have negative values in the 

backward scattering directions (i.e., scattering angle larger than 150°), meaning that the 

values of computed phase functions for these ice particle models are probably too small 

for scattering angles larger than 150°. Under forward scattering directions, the values of 

spherical albedo difference are positive for both ice particle models, but positive values 

for MC6 are lower than for THM. The relatively lower positive values for MC6 indicate 

that assuming the MC6 ice particle model instead of THM is likely to produce spherical 

albedo retrievals having better consistency with MISR multi-angular measurements. 
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Figure 5.2 The deviation of spherical albedo values from the average over all 
scattering angles (spherical albedo difference) with assuming ice particle model (a) 
MC6 and (b) THM. 
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Figure 5.3 shows the proportions of pixels where the MC6 and THM ice particle 

models produce the “best” fit in these multi-spectral and multi-angular optical thickness 

retrievals. Whether the multi-spectral or multi-angular retrieval method is used, MC6 

produces the best-fitting optical thickness retrievals for about 70% of the pixels, which is 

consistent with the results in Fig 5.1 and Fig 5.2. 
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Figure 5.3 The proportions of pixels where the MC6 and THM ice particle models 
produce the best fitting optical thickness retrievals with both multi-spectral and 
multi-angular retrieval methods. 
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Figure 5.4 shows histograms of the best-fit ice particle model (MC6 or THM) for 

each pixel in two different cloud regimes when either the multi-spectral or multi-angular 

retrieval methods is used. In Fig 5.4a, with a multi-spectral retrieval, THM is most likely 

to produce the best optical thickness retrieval with a thin ice cloud and MC6 is likely to 

be the best with a thicker cloud. In Fig 5.4b, with a multi-angular retrieval, THM produces 

the best retrievals with optical thickness ~1 to 2, but MC6 is slightly favored with lower 

or higher optical thickness. In Fig 5.4c-d, with either retrieval method, there is no clear 

advantage for which ice particle model produces the best fit as the ice cloud top height 

varies.  
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Figure 5.4 The histogram of cloud optical thickness for different cloud regimes (top 
row: optical thickness from 0 to 5, and bottom row: cloud top from 5000 to 10000 
m) from (left panels) multi-spectral and (right panels) multi-angular retrieval 
methods. 
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The study case in this chapter provides a good opportunity to better understand the 

cloud properties using multi-angular and multi-channel retrieval methods. It is noted that 

cloud property varies depending on time and location. The results are limited in this study 

case area. 

Current satellite measurements emphasize the phase function for scattering angles 

larger than 50 degrees, a limitation caused by the current satellite instrument 

characteristics. With the rapid development of drone techniques, more precisely the 

Unmanned aerial systems (UAS), a scattering angle of less than 50 degrees might be 

observed by remote sensing techniques in the future by mounting the sensor on the top of 

the UAS and sampling under the ice cloud layers. Furthermore, advanced computer vision 

techniques also can provide a new capability to detect cloud characteristics, such as the 

shape of the cloud layer, which may be useful in the computation of the 3D effect. 
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6. CONCLUSIONS 

 

Remote sensing is widely used for investigating ice cloud properties and 

downstream applications such as climate effects and hydrology resource estimations. Most 

retrieval algorithms for remote sensing of ice clouds are based on the radiative properties 

of ice clouds and therefore the algorithm is commonly highly dependent on the assumed 

ice particle model. Since applying a different ice particle model will lead to different 

retrievals, selecting the appropriate ice particle model is of vital importance in remote 

sensing of ice clouds. 

With light scattering calculation improvements in recent years, ice particle models 

with complex shapes and fine textures, such as degree of roughness, are available. 

Therefore, the different ice particle models need to be validated to investigate which model 

of these ice particle models best represents reality. 

Chapter 2 investigated the optimal degree of ice particle roughness and its 

latitudinal variations. Compared to previous studies using cross-track scanning sensor 

data, this section improved an algorithm to process multi-angular satellite sensor 

measurements. The optimal degree of roughness shows a latitudinal dependence related 

to the solar zenith angle. In cloudy scenarios indexed by cloud heterogeneity, the optimal 

model for thick homogeneous clouds corresponds to more roughened ice particles in the 

tropics than in the extra-tropics. These results demonstrate that the consistency between 

multi-angular sensor measurements and an assumed single ice particle model varies on a 
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global scale. This inconsistency potentially leads to ice particle retrievals which could 

differ from geospatial distributions of particle shapes in reality. 

Chapter 3 assessed the differences in retrievals of different ice particle models by 

building and applying a dynamic ice particle model on the pixel level. This dynamic model 

always selects the optimal degree of roughness that best fits the multi-angular sensor 

measurements. The retrievals based on a full year of global satellite observations indicate 

that the dynamic ice particle model produces a larger median optical thickness by 10.1% 

and smaller median effective radius by 6.5% compared to the operational MODIS 

Collection 6 product. Both the larger optical thickness and smaller effective radius 

increase the brightness in albedo retrievals. The brighter albedo is likely caused by the 

cloud 3D effect. Specifically, the multi-angular sensor measurements could better capture 

the horizontal scattering of radiation from cloud sides with a nearly vertical sun than the 

cross-track scanning sensor. 

Chapter 4 developed a retrieval algorithm to validate the optimal ice particle model 

using a prototype multi-angular sensor with polarimetric measurement, the NASA next 

generation satellite Multi-Angle Imager for Aerosols (MAIA). This algorithm is tested 

using data from a prototype sensor installed on a research aircraft. The results show the 

camera selections for retrievals need to be paid attention to when the multi-angular camera 

measurements include polarized radiances. Chapter 5 compares the optimal ice particle 

model identified by using both multi-angular techniques and multi-channel techniques. 

This doctoral research project contributes to better understanding of ice particle 

models used in the remote sensing of ice clouds, and develops an improved ice particle 
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model, compared to the current operational satellite products that use a single ice particle 

model. 
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