
LEARNING ARCHITECTURES AND ALGORITHMS FOR COLLISION AVOIDANCE AND

SENSOR FUSION

A Dissertation

by

MYUNG SEOK SHIM

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Peng Li
Committee Members, P. R. Kumar

Byung-Jun Yoon
Dezhen Song

Head of Department, Miroslav Begovic

December 2020

Major Subject: Computer Engineering

Copyright 2020 Myung Seok Shim

ABSTRACT

The deep learning, which is a machine learning method based on artificial neural networks,

enables cutting edge technologies such as autonomous driving, collision avoidance, activity recog-

nition, etc. While various machine learning algorithms are proposed for these applications, these

algorithms suffer from limitations in terms of multi-modal sensor fusion, feature-level importance

interpretability, feature reduction and fusion architecture modeling. In this dissertation, the afore-

mentioned problems are addressed through spiking neural networks (SNNs) and convolutional neu-

ral networks (CNNs). Spiking neural network based algorithms and convolutional neural network

based architectures are proposed to incorporate interpretable sensor fusion, and robust learning

algorithms for noise resiliency and high inference performance.

An SNN is an brain-inspired computing neural network which mimics brain activity more

closely. Although various spike-timing-dependent plasticity (STDP) based SNNs which are un-

supervised learning implementations were proposed for mobile robot collision avoidance, these

algorithms only focused on simple environments and feature-fusion in the networks was not well

considered. Along with the exploration of reinforcement learning implementation in SNN via ad-

ditive reward-modulated STDP (A-RM-STDP), we propose a new multiplicative RM-STDP rule

(M-RM-STDP) for mobile robot target tracking and collision avoidance. Furthermore, a more

biologically plausible feed-forward SNN architecture including coarser grained global rewards is

examined.

Sensor fusion technologies are getting attention due to their enormous potential for health care

and autonomous systems. CNNs empower sensor fusion architectures with improved performance

but are limited in terms of feature-importance analysis, fusion weights inconsistency, and noise

resiliency. Deep multi-model sensor fusion architectures with robustness under sensor failure cir-

cumstances are proposed. The proposed fusion weight regularized gating network exceeds the

baseline deep learning architectures with and without gating factors.

Furthermore, beyond the proposed gating architecture, we explore feature dimension reduction

ii

for rare failure detection by learning from high dimensional analog/mixed-signal (AMS) circuit

data. Convolution layers in CNNs effectively extract principal features from input data, but results

in loss of information. A reversible residual network (RevNet) is adopted in our proposed gat-

ing architecture and explored to mitigate loss of feature information in the process of dimension

reduction and to improve the performance of data-driven AMS circuit rare failure detection.

iii

DEDICATION

To my mother, my father, my brother, and my love Swanie.

iv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Professor Peng Li, who is my advisor. He

has guided, and supported me over the last 6 years. Without his help, I could not become an

independent researcher who define and resolve scientific problems. It was a great honor working

with Professor. Li for my Ph.D program.

I would love to show my sincere appreciation to my committee members: Dr. P. R. Kumar, Dr.

Byung-Jun Yoon, and Dr. Dezhen Song. They offered valuable ideas, suggestions and comments

during the prelim and final exam. Dr. Kumar and Dr. Song provided guidance for the research

problem.

I had great pleasure working with my colleagues in Computer Engineering & System Group.

Dr. Yingyezhe Jin introduced and helped me to get some ideas on the spiking neural networks.

Ph.D student Hanbin Hu gave advice on resversible neural networks and guided me to find better

feature dimension reduction algorithm. We enjoyed fruitful discussion for our research. High

Performance Research Computing (HPRC) at Texas A&M University always give me a hand for

using their computing power.

Last, I would like to thank my parents and brother. My mom, Junghee Lee, dad, Deokjin Shim,

and brother, Myungjoon Shim, always love me and encourage me. My love, Swanie Kang, love in

me. Thanks for her being with me, sharing all of my feeling.

Special thanks to my awesome friends: Hyun-Myung Woo, Woorim Hong, Stella Kang, Serena

Kang, Doowon Choi, Jaehyung Son, and Zhixing Li.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Peng Li, Professor

P. R. Kumar, Professor Byung-Jun Yoon of the Department of Electrical and Computer Engineering

and Professor Dezhen Song of the Department of Computer Science and Engineering.

All other work conducted for dissertation was completed by the student independently.

Funding Sources

This dissertation is based upon work supported by the National Science Foundation under

Grants No. 1940761 and No. 1956313, and the Semiconductor Research Corporation (SRC)

under Task 2692.001.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xii

1. INTRODUCTION. 1

2. BIO-INSPIRED LEARNING ALGORITHM FOR AUTONOMOUS VEHICLE COL-
LISION AVOIDANCE . 5

2.1 Background . 9
2.1.1 The Leaky Integrate-and-Fire Neuron Model . 9
2.1.2 Spike-Timing-Dependent Plasticity . 10
2.1.3 Additive Reward-Modulated STDP . 10

2.2 Reinforcement Learning with the Proposed Multiplicative RM-STDP 11
2.2.1 Multiplicative Reward-Modulated STDP . 11
2.2.2 Proposed Reward Functions . 12

2.2.2.1 Rewards for Collisions and Arrival . 13
2.2.2.2 Rewards for Collision Avoidance. 13
2.2.2.3 Reward in the Vicinity of the Target . 14

2.3 Proposed Feed-forward SNNs and Fine-grained Rewards . 14
2.3.1 Feed-forward SNNs . 14
2.3.2 Fine-Grained Rewards . 15

2.4 Experimental Settings . 16
2.4.1 Spiking Neural Networks . 16
2.4.2 State Space and Discretization . 17
2.4.3 Motor Control . 17
2.4.4 STDP parameter settings . 18

2.5 Experimental Results . 18
2.5.1 Scenario 1 . 19

vii

2.5.2 Scenario 2 . 20
2.5.3 Scenario 3 . 21

2.6 Summary and Discussions . 22

3. ROBUST FUSION ARCHITECTURE FOR AUTOMOBILE . 34

3.1 Overview of the ARGate Architectures . 36
3.2 The Proposed ARGate Architecture. 38

3.2.1 Basic structure of ARGate . 38
3.2.2 Fusion Weight Regularization with Auxiliary Losses: ARGate+ Architecture 39
3.2.3 Monotonic Fusion Target Learning . 41

3.3 Experimental Settings . 43
3.3.1 Datasets . 43

3.3.1.1 The Human Activity Recognition Dataset . 43
3.3.1.2 The Driver Identification Dataset . 44
3.3.1.3 KITTI Dataset . 44

3.3.2 Neural Network Configurations . 44
3.3.2.1 Configurations for the HAR and Driver Identification Datasets 44
3.3.2.2 Configurations for the KITTI Dataset . 44

3.3.3 Sensor Failures . 45
3.3.3.1 Modeling of failing sensors . 45
3.3.3.2 Corrupted examples for training/testing . 45

3.4 Evaluation . 46
3.4.1 Quality of Fusion Weight Extraction . 46
3.4.2 Results on the HAR Dataset . 47
3.4.3 Results on the Driver Identification Dataset. 49
3.4.4 Results on the KITTI Dataset . 50

3.5 Summary and Discussions . 52

4. DATA EFFICIENT LEARNING TECHNIQUES FOR RARE FAILURE DETECTION . . 56

4.1 Failure Detection Problem Formulation. 57
4.2 Overview of RevNet . 58
4.3 Overview of ARGate Architecture . 59
4.4 Proposed Rev-ARGate based Bayesian Optimization . 61

4.4.1 Restoration of the input x with zero values . 61
4.4.2 Restoration of the input x with Bayesian Neural Network . 63

4.5 Experimental Results . 63
4.5.1 Experimental Setups. 63
4.5.2 Low-dropout Regulator . 66
4.5.3 DC-DC converter . 66
4.5.4 Failure Detection Results . 66

4.6 Conclusion. 69

5. SUMMARY AND CONCLUSIONS . 73

viii

REFERENCES . 75

ix

LIST OF FIGURES

FIGURE Page

1.1 Facial recognition. Reprinted with permission from Pixabay. 1

1.2 An autonomous vehicle. Reprinted with permission from Pixabay . 2

1.3 A smart watch. Reprinted with permission from Pixabay . 3

2.1 A feed-forward spiking neural network. © 2017 IEEE . 6

2.2 A typical STDP curve. © 2017 IEEE . 23

2.3 A typical additive RM-STDP characteristics. © 2017 IEEE. 24

2.4 Four intervals for the angle between the moving direction of the robot and the
vector that points to the target from the robot. © 2017 IEEE . 24

2.5 The proposed spiking neural network with fine-grained rewards. © 2017 IEEE 25

2.6 The adopted car model. © 2017 IEEE . 26

2.7 The reference SNN with only excitatory neurons in the hidden layer. © 2017 IEEE . 26

2.8 The proposed SNN with both excitatory and inhibitory-neurons in the hidden layer.
© 2017 IEEE . 27

2.9 A simulated trial in the learning phase of S4 for Scenario 1. © 2017 IEEE 28

2.10 A simulated trial in the testing phase of S4 for Scenario 1. © 2017 IEEE 29

2.11 A simulated trial in the learning phase of S4 for Scenario 2. © 2017 IEEE 30

2.12 A simulated trial in the testing phase of S4 for Scenario 2. © 2017 IEEE 31

2.13 A simulated trial in the learning phase of S4 for Scenario 3. © 2017 IEEE 32

2.14 A simulated trial in the testing phase of S4 for Scenario 3. © 2017 IEEE 33

3.1 Two DNN sensor fusion architectures. 34

3.2 ARGate architecture with fusion weight regularization and monotonic fusion weight
target learning. The bottom box offers fusion weight regulation for training the
main model (upper portion) and is removed for inference. 37

x

3.3 The proposed ARGate+ architecture . 40

3.4 The proposed ARGate-L architecture with end-to-end monotonic learning of fusion
targets using a lattice network. 53

3.5 Learning of monotonic input-output mappings. 54

3.6 The proposed ARGate architecture with RPN model for training. 55

3.7 Fusion weight distributions of the clean or corrupted channel total_acc_y extracted
by NetGated, ARGate-WS and ARGate+ under random failing sensor assignment
with nrclean = 1. (a),(b) and (c) show the fusion weights distributions of the
NetGated, ARGate-WS and ARGate+ models, respectively, when total_acc_y is
corrupted. (d),(e) and (f) are the distributions of the NetGated, ARGate-WS and
ARGate+ models, respectively, when total_acc_y is clean. 55

4.1 The ARGate architecture overview. 60

4.2 The Rev-ARGate architecture with the restoration with 0’s. 62

4.3 The Rev-ARGate architecture with the restoration through Bayesian NN. 64

4.4 The overall Rev-ARGate with Bayesian optimization. 65

4.5 A pwm/pfm dc-dc converter. 67

4.6 A low-dropout regulator. 68

4.7 The worst case trend versus epoch of the LDO regulator with undershoot specifi-
cation. 70

4.8 The worst case trend versus epoch of the DC-DC converter with output accuracy
specification.. 71

xi

LIST OF TABLES

TABLE Page

2.1 Parameter settings of A-RM-STDP and M-RM-STDP. © 2017 IEEE 18

2.2 Simulation results on validation set. © 2017 IEEE. 19

2.3 Result of Scenario 1 © 2017 IEEE . 19

2.4 Result of Scenario 2 © 2017 IEEE . 21

2.5 Results of Scenario 3 © 2017 IEEE . 21

3.1 Prediction accuracies(in %) under clean data and random failing sensor assignment
for the HAR dataset. 46

3.2 Prediction accuracies(in %) under fixed failing sensor assignment for the HAR
dataset. 47

3.3 Prediction accuracies(in %) under failing sensor generation test for the HAR dataset. 48

3.4 Prediction accuracies(in %) under fixed failing sensor assignment for the driver
identification dataset.. 49

3.5 Accuracies(in %) under clean data and random failing sensor assignment for the
driver identification dataset. 49

3.6 Prediction accuracies(in %) under the failing sensor generation test for the driver
identification dataset.. 50

3.7 Average Precision (in %) comparison of car detection on the KITTI validation set. . . 51

3.8 Average Precision (in %) comparison of car detection on the KITTI test set. 51

4.1 Failure detection result comparison for the LDO regulator (60 dimension). 69

4.2 Failure detection result comparison for the DC-DC converter (44 dimension).. 70

xii

1. INTRODUCTION

With the advance progress of deep learning technologies, many applications are implemented

and getting improved. Now we are using facial recognition as shown in Fig. 1.1 on our phone

to unlock it or use the recognition for payment. Also, regarding autonomous driving technology

in Fig. 1.2, which is placed in level3 currently, it is widely studied with many researchers and

utilized in some automobiles. For health care products such as a smart watch in Fig. 1.3, many

sensors including GPS, accelerometer, gyroscope, even ECG and blood oxygen sensors are used

for checking our health, recognizing posture and predicting dangerous heart attack in our bodies.

And, a deep learning algorithm recommends television shows based on our history of watching

programs.

Figure 1.1: Facial recognition. Reprinted with permission from Pixabay

1

Figure 1.2: An autonomous vehicle. Reprinted with permission from Pixabay

For these cutting edge technologies, data is important and its size is expanding. For example,

BDD100k [1] driving dataset, which is provided by UC Berkeley, composed of more than 100,000

HD video data over 1,100 hour driving experience. Stereo camera, lidar, and radar data are in-

cluded in the dataset. Additionally, GPS, IMU sensor, and OBD2 from a vehicle are utilized for

autonomous driving research. As an example of biological datasets with Dorothea [2] for RNA

sequence analysis, there are 100,000 features.

In this dissertation, autonomous driving technology is focused in terms of safety. First, collision

avoidance is examined. The collision avoidance is pre-crash or forward collision warning system

with brake control. Nowadays, with machine learning algorithms, it is a system to make an agent

have learning capabilities to avoid collisions in a specific environment. Many machine learning

techniques are applied to implement collision avoidance. Since testing these algorithms on actual

cars is difficult and dangerous, a mobile robot is often used as a test bed.

The second challenge is neural network architectures for data fusion. Since the number of

sensory inputs and features is increasing, the way how to treat these inputs is important. For au-

2

Figure 1.3: A smart watch. Reprinted with permission from Pixabay

tonomous driving, many sensors are needed such as stereo camera, lidar, radar, GPS, IMU, OBD2,

etc. Furthermore, regarding feature importance, there are some essential features and redundant

features in datasets for target prediction. The inference performance may be boosted by weighting

the important features in neural networks. Therefore, the method of fusing all sensory inputs is

one of essential topic for robust autonomous driving.

The last challenge is data itself. Due to growing complexity in high dimensional data from

automotive, medical and analog and mixed-signal (AMS) area, it is important to find active input

features. If the dimension is too large, and a large neural network is needed accordingly, which

needs more computational power. In the second challenge, we will explore how to fuse the input

data with fusion weights, which can tell us important and non-important features. Now, another

point of view on the active input features on the AMS datasets are demonstrated. Since the AMS

data is high-dimensional but has low amount of samples, the neural network for these datasets can

be stuck at overfitting easily due to the curse of dimensionality.

Furthermore, very high level of reliability is required in the circuit industry such as failure rate

less than 1 DPPM (Defective parts per million). To get circuit data, it is expensive running circuit

3

simulations. Hence, with a large number of input features but only with small amount of samples,

it is challenging to find rare failure points. To solve the issue, more data collection is required, but

it is not the ideal solution. Consequently, dimensionality reduction is a key approach for resolving

the problem.

In chapter 2, a spiking neural network (SNN) based reinforcement learning for collision avoid-

ance is proposed in the mobile robot setup. The main idea of the approach is using a multiplicative

weight update scheme in SNNs to more closely mimic the human brain. Also, more biological

synaptic connections are implemented.

In the next chapter, a convolutional neural network (CNN) is utilized for sensor fusion. A

gating scheme is proposed with fusion weight regularization and its target learning on the proposed

architecture for resiliency and feature interpretability. Some sensory failure situations are covered

with various experiments are made on three datasets.

In chapter 4, a reversible gating architecture for rare failure detection problem is covered with

high-dimensional circuit data. Through the proposed reversible architecture, dimensional reduc-

tion is successfully made without the loss of information and the performance.

And we finish this dissertation in chapter 5 with concluding remarks and possible future works.

4

2. BIO-INSPIRED LEARNING ALGORITHM FOR AUTONOMOUS VEHICLE

COLLISION AVOIDANCE *

In this chapter, collision avoidance application is covered for autonomous driving technology

and a mobile robot is used as a test bed.

The collision avoidance is essential technology to autonomous systems such as mobile robots

and self-driving cars. This collision avoidance system is deeply studied and developed in the auto

industry [3]. In terms of a mobile robot, various sensors are used for an autonomous agent such

as cameras, lasers, ultrasonic sensors. The goal of the collision avoidance is to make certain forms

of learning capabilities to avoid collisions in a given environment. Towards this end, numerous

types of reinforcement learning techniques such as adaptive dynamic programming and tempo-

ral difference are studied [4, 5]. Also, collision avoidance techniques which are based on these

reinforcement learning approaches have been studied in the literature [6–11].

Among these algorithms, Q-learning [5], a popular implementation of reinforcement learning,

has been adopted for collision avoidance where an optimal state-action policy is computed based on

the Markov Decision Process (MDP). [7] employs Q-learning to train multiple robots to achieve a

certain shaped formation and move in the formation while avoiding obstacles. [6] uses an artificial

neural network to more efficiently represent the Q-values as part of Q-learning for robot collision

avoidance without a target. The considered actions are discrete and correspond to moving and

rotating in different directions. However, due to the discrete control actions, the movement of the

robot does not look natural. Also, it is shown through simulation that the Q-learning algorithm

requires longer training for for the convergence as around 500 epochs for environments with a few

obstacles in [6]. In addition, a simplistic reward function which depends only on the actions taken

and occurrences of collisions is used.

In recent years, spiking neural networks (SNNs), the third generation model of neural networks,

*©2017 IEEE. Reprinted, with permission, from Myung Seok Shim and Peng Li, "Biologically inspired reinforce-
ment learning for mobile robot collision avoidance", Proceedings of the 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, May 2017.

5

Figure 2.1: A feed-forward spiking neural network. © 2017 IEEE

6

have attracted increased attention due to their closer resemblance to neural circuits in biological

brains. As an example, Fig. 2.1 shows a feed-forward spiking neural network.

Ideas on exploring reinforcement learning under the context of SNNs, particularly the concept

of Reward-Modulated STDP (RM-STDP), have been suggested by the neuroscience community

[12–14]. Up to now, an SNN may learn an optimal policy for decision making under a properly

designed global reward signal with eligibility trace for delayed rewards. Note that RM-STDP

is modulated by the reward signal and is different from the standard Spike-Timing-Dependent

Plasticity (STDP), which is a form of unsupervised Hebbian learning in the SNN.

While SNN based reinforcement learning and similar techniques are still a relatively new ter-

ritory of research, there have been some initial attempts towards applying such techniques for

the robot collision avoidance. [15] presents a SNN-based target tracking robot controller, where

a charge coupled device(CCD) camera is used to detect the target and 16 ultrasonic sensors are

used to detect obstacles around the robot. The camera inputs are transformed into spike trains and

drive directly the output neurons which control the motors. On the other hand, ultrasonic sensor

inputs are projected to the hidden layer to learn collision avoidance, and the outputs of the hidden

layers are fed to the output layer. The overall learning approach is not based on reinforcement

learning where an unsupervised spike-based Hebbian learning mechanism is adopted to update

synaptic weights. In [11], a relatively simple conditionally reward-modulated Hebbian plastic-

ity mechanism is used for learning simple goal-directed behaviors in open environments without

any obstacle. [10] employs short-term plasticity and long-term plastiticy realized using the tempo-

ral difference (TD) rule for wall following. [16] uses standard STDP for collision avoidance and

target approaching in simple environments.

While the application of spiking neural networks has not been well studied for mobile robot

navigation, the key objective of this chapter is to investigate the potential of biologically-motivated

spiking neural networks for goal-directed collision avoidance in reasonably complex environments

under the context of reinforcement learning. Our main new contributions are:

• In addition to the existing standard additive RM-STDP scheme (A-RM-STDP), for the first

7

time, we explore a multiplicative RM-STDP scheme (M-RM-STDP) under the context of

reinforcement learning and demonstrate its potential.

• We explore a more biologically plausible feed-forward SNN architecture where in the hid-

den layer, both excitatory and inhibitory neurons are employed. We further develop a fine-

grained reward scheme for the new more biological SNN architecture.

• Finally, we demonstrate that by combining the above two techniques leading to a further

optimized solution with improved success rates and navigation trajectories.

To demonstrate the proposed ideas, we design several feed-forward SNNs with one input, one

hidden and one output layer. Our proposed approaches completely outperform Q-learning in terms

of both the success rate and the quality of trajectories to the target.

With respect to our first contribution, multiplicative reward-modulated STDP schemes have not

been explored for reinforcement learning. In this chapter, for the first time, we present a multiplica-

tive reward-modulated STDP scheme (M-RM-STDP). We demonstrate that for the application of

mobile robot navigation, our M-RM-STDP outperforms the conventional additive manner of RM-

STDP, i.e. A-RM-STDP, significantly, for example by increasing the success rate by 40% in the

testing phase of robot navigation. In addition, M-RM-STDP reduces the number of steering move-

ments taken for reaching the target by 10%, which shows the optimized path to a target location in

simulation environments.

Our second contribution is motivated by the fact that excitatory and inhibitory mechanisms

produce rich behaviors in biological brains. For this, we introduce both excitatory and inhibitory

neurons not only in the input layer but also in the hidden layer to improve learning performance.

Furthermore, we propose optimized reward functions which specify the amount of reward as a

function of the distances to nearby obstacles, the distance to the target, and the angle between

the moving direction of the robot and the vector that points to the target from the robot. Very

importantly, instead of utilizing a single global reward for all synapses as typically done in the

prior work, we take a finer-grained approach that is based on the fact that the inclusion of both

8

exictatory and inhibitory neurons in the first two layers produces feed-forward paths that have

rather different effects on each output neuron. As a result, the net effects of two synapses on

the same output neuron can be opposite of each other, with one being excitatory and the other

inhibitory, depending the nature of the signal paths which these synapses are on. Recognizing

this disparity, we conduct additional sign adjustment of the reward for different synapses in the

network, which significantly improves performance.

Based on the first two contributions, our combined approach, i.e. the third contribution, pro-

duces the best results among studied approaches. It significantly outperforms the standard RM-

STDP scheme, for example by increasing the success rate in the testing phase by up to 45% while

reducing the number of steering movements taken to get to the target.

2.1 Background

We briefly discuss the leaky integrate-and-fire (LIF) spiking neuron model, STDP, and additive

reward-modulated STDP.

2.1.1 The Leaky Integrate-and-Fire Neuron Model

A number of spiking neural models such as the (leaky) integrate-and-fire, Hodgkin-Huxley

[17], and Izhikevich [18] models have been adopted for modeling SNNs. In this work, the leaky

integrate-and-fire(LIF) model is utilized due to its simplicity:

τm
dv(t)

dt
= − (v(t)− vrest) +RI(t), (2.1)

where v(t) is the membrane potential, τm the membrane time constant, vrest the resting potential,

R the membrane resistance, and I(t) the synaptic input current. Under some injected I(t), the

membrane potential may go beyond the threshold voltage starting from which an action potential,

or a spike, would be generated [19].

9

2.1.2 Spike-Timing-Dependent Plasticity

STDP is an unsupervised Hebbian learning mechanism, which adjusts a synaptic weight based

upon the spike timing difference between the corresponding pre-synaptic and post-synaptic spikes

[20]. The weight wij is strengthened if the pre-synaptic neuron fires before the post-synaptic

neuron, otherwise it is weakened. The temporal difference between the firing times of each pair

of the pre-synaptic and post-synaptic spikes ∆t = tpost − tpre determines the amount of weight

change:

∆w+ = A+ · e
−∆t
τ+ if ∆t > 0

∆w− = A− · e
−∆t
τ− if ∆t < 0,

(2.2)

where ∆w+ and ∆w− are the weight modifications induced by long-term potentiation (LTP)and

long-term depression (LTD), respectively, A+ and A− are some positive and negative constant

parameter and determine the strength of LTP and LTD, respectively, and τ+ and τ− set the temporal

windows over which STDP is active. A typical STDP curve is shown in Fig. 2.2.

2.1.3 Additive Reward-Modulated STDP

Additive reward-modulated STDP (A-RM-STDP) is an implementation of reinforcement learn-

ing mechanism, which updates the synaptic efficacy in an additive manner. While STDP operates

based upon the correlation between the spike timings of the pre- and postsynaptic neurons, a re-

ward is introduced to modulate STDP in A-RM-STDP. If the reward is positive, the corresponding

synapse is potentiated. Otherwise, it is depressed.

For a synapse projecting from the j-th neuron to the i-th neuron, A-RM-STDP may be realized

according to [12]:

dwij(t)

dt
= γr(t)zij(t), (2.3)

where γ is the learning rate, r(t) the reward signal, and zij(t) the eligibility trace which decays the

10

amount of weight update over time. The eligibility trace can be defined as:

τz
dzij(t)

dt
= −zij(t) + ξij(t), (2.4)

where additional dynamic variables Pij
+, Pij

− and ξij are utilized to track the effect of pre-synaptic

and post-synaptic spikes [12]:

ξij(t) = Pij
+Φi(t) + Pij

−Φj(t), (2.5)

dPij
+(t)

dt
= −Pij

+(t)

τ+

+ A+Φj(t), (2.6)

dPij
−(t)

dt
= −Pij

−(t)

τ−
+ A−Φi(t), (2.7)

where Φi is the Dirac delta function which is non-zero only at times t when the neuron i fires,

and A+ and A− are certain positive and negative constant, respectively. A typical RM-STDP

characteristics is shown in Fig. 2.3.

2.2 Reinforcement Learning with the Proposed Multiplicative RM-STDP

While multiplicative reward-modulated STDP has not been studied for reinforcement learn-

ing, for the first time we present a multiplicative reward-modulated STDP scheme (M-RM-STDP)

which shows good performance for mobile robot navigation. We then present an optimized reward

function which specifies the amount of reward as a function of the distance to obstacles, the dis-

tance to the target, and the angle between the moving direction of the robot and the vector that

points to the target from the robot.

2.2.1 Multiplicative Reward-Modulated STDP

In the past, only additive reward-modulated STDP has been considered for reinforcement learn-

ing under the context of spiking neural networks. In this chapter, in contrast to (2.3), we explore a

new multiplicative scheme as follows:

11

dwij(t)

dt
= γwij(t)r(t)zij(t). (2.8)

As can been seen, in this new M-RM-STDP scheme, the synaptic weight is updated based on the

product of four components: the current weight, learning rate, reward, and eligibility trace. As a

result, the instantaneous rate of weight change is proportional to the current weight value wij(t).

Under different contexts, earlier study on multiplicative STDP demonstrates that it may behave

differently from additive STDP, for example, by producing stable unimodal distributions of synap-

tic weights, which makes synapses less sensitive to input perturbations [21]. Under the context of

SNN-based reinforcement learning for mobile robot navigation, we have experimentally observed

that in addition to possible performance boost, the maximum value of weight change resulted from

the proposed M-RM-STDP increases rather noticeably, for example, by five times in some cases

over A-RM-STDP. As a result, it is also observed that the multiplicative nature of the proposed

RM-STDP scheme leads to faster learning.

2.2.2 Proposed Reward Functions

In this work, we employ feed-forward spiking neural networks with an input layer, hidden

layer, and output layer. The output layer consists of two output neurons controlling the left and

right motors of the robot, i.e. the output neuron that fires with a higher frequency makes the robot

turn based on the corresponding motor. More details about the network setting are provided in

Section 2.4.

Reward functions play an important role for reinforcement learning as they provide critical

feedback from the environment to the agent. In conjunction with the existing A-RM-STDP and

proposed M-RM-STDP schemes, we make use of reward functions optimized for the targeted

application. Unlike the simple reward function used in [6], which only depends on actions and

occurrences of collision, the proposed reward functions takes the distance to obstacles, the distance

to the target, and the angle between the moving direction of the robot and the vector that points to

the target from the robot into consideration. In this section, we describe how rewards are computed.

12

The specific ways in which the rewards are applied to the network will be discussed in the next

section.

2.2.2.1 Rewards for Collisions and Arrival

During each training trial, when the robot collides with an obstacle, the entire network gets a

negative reward of Rcol. Otherwise, if the robot arrives at the target, the network gets a positive

reward of Rarr. In our experiments, we set: Rcol = −2.0 and Rarr = 2.0. In both cases, the

training trial ends after the application of the reward.

2.2.2.2 Rewards for Collision Avoidance

In the absence of collisions and arrival at the target, we compute the following two rewards to

promote collision avoidance when the robot gets close to obstacles, which may be detected, for

example, by ultrasonic sensors:

r1(d) = +
dsafe − d
dsafe

+ k, for d < dsafe

r2(d) = −dsafe − d
dsafe

− k, for d < dsafe

(2.9)

where d is the distance to the nearest obstacle. In our simulation environment, we set dsafe to 100

pixels: dsafe = 100, and constant k to 0.3 for A-RM-STDP and 1.3 for M-RM-STDP, respectively.

The reward values are earned experimentally for avoiding deadlock situations.

More specifically, if the nearest obstacle is within dsafe from the robot on the right, the negative

reward r2 is applied to the subset of synapses that influence the firing of the left motor (output)

neuron while the positive reward of r1 is applied to the remaining synapses of the network, which

influence the right motor (output) neuron. In this case, there is a tendency for the right motor to

rotate faster than the left motor, steering the robot to the left. We swap the roles of r1 and r2 if the

nearest obstacle is within dsafe from the robot on the left.

13

2.2.2.3 Reward in the Vicinity of the Target

After conditionally applying the rewards specified in (2.9), we further check if the robot is in

the vicinity of the target, i.e. if the distance d between the target and robot is less than a specified

threshold dtar. If so, the following additional award is computed:

r3(d) =
1

dtar
(dtar − d) + 1.0, for d < dtar, (2.10)

where dtar is set to 200 pixels in our experiments.

We further consider the angle between the moving direction of the robot and the vector that

points to the target from the robot. As shown in Fig. 2.4, we split the environment into four

regions around the robot. If the target falls into the regions "2" and "4", the reward r3 is then

applied to the synapses influencing the left and right motor neuron, respectively. No reward is

applied when the target falls in the regions "1" and "3".

2.3 Proposed Feed-forward SNNs and Fine-grained Rewards

2.3.1 Feed-forward SNNs

Cortical circuits in biological brains operate based upon both excitatory and inhibitory mech-

anisms. A proper balancing between excitation and inhibition in feed-forward networks has been

shown to be beneficial [22]. While earlier works have employed both inhibitory and excitatory

neurons only in the input layer [12, 23], we extend by doing the same for the hidden layer as well

as shown in Fig. 2.5. Here, the synapses from each excitatory (inhibitory) neuron are considered

to be excitatory (inhibitory) in nature.

While the above approach improves learning performance as demonstrated by our experimen-

tal results, such improvements can only be achieved if and only if each reward signal is properly

applied to the network. In particular, the inclusion of both excitatory and inhibitory neurons in the

network nevertheless introduces certain complications in the application of rewards. Our experi-

ments have shown that treating each reward as a "global" signal and applying it uni-formally to all

14

synapses in the network, as what is typically done in the literature, can lead to very poor learning

performance. To address this problem, we propose a fine-grained approach for applying a reward

to the network as discussed next.

2.3.2 Fine-Grained Rewards

We first recognize that there exist four types of feed-forward paths from the input layer, to the

hidden layer, and finally to the output layer in the network of Fig. 2.5: Inhibitory-Inhibitory (I-

I), Inhibitory-Excitatory (I-E), Excitatory-Inhibitory (E-I), and Excitatory-Excitatory (E-E), where

the first designation specifies the synapse type from the input to the hidden layer and the second

the synapse type from the hidden to the output layer on the path.

Recall that Section 2.2.2 describes several different types of reward. Each reward may be

applied to all synapses or just a subset of them in the network. Once obtaining the value of a

reward, we do not immediately apply the reward to the targeted synapses. Instead, additional sign

adjustment may be performed to properly deal with each of the four types of feed-forward signal

paths.

To explain our idea, let us consider the following illustrative example for which a reward value

of r is computed based on one of the reward functions described in Section 2.2.2. Let us further

assume that this reward is intended for the synapses influencing the right motor (output) neuron to

incentivize the right motor to rotate faster than the left motor to make the robot turn left. In this

case, we consider all four different type paths ending at the right motor neuron.

To achieve our goal, we potentiate or depress each synapse on a given signal path as follows

(Fig. 2.5):

• I-I: potentiate the first with a reward of r; depress the second with a reward of −r;

• I-E: depress the first with a reward of −r; potentiate the second with a reward of r;

• E-I: depress the first with a reward of −r; depress the second with a reward of −r;

• E-E: potentiate the first with a reward of r; potentiate the second with a reward of r;

15

Note that here depressing an inhibitory synapse with a negative reward means reducing the ab-

solute value of the synaptic weight. The basic idea behind the above fine-grained reward approach

is to consider the excitatory or inhibitory nature of each synapse with respect to the targeted output

neuron. For example, for the E-I type signal paths, while the first synapse is excitatory, its effect

on the right motor neuron is in fact inhibitory. As a result, we depress this synapse with a negative

reward of −r.

2.4 Experimental Settings

To demonstrate the proposed reinforcement learning approach, we consider the problem of au-

tonomous mobile robot navigation towards a fixed target in environments with stationary obstacles.

As shown in Fig. 2.6, we assume that the targeted robot has five ultrasonic sensors to measure dis-

tances to nearby obstacles. In addition, we also assume that the distance from the current location

to the target and the angle between the moving direction of the robot and the vector that points to

the target from the robot are also available to the robot through a "distance" and "angle" sensor,

respectively. Note that the robot is modeled simplistically without internal delay and motor con-

trol dynamics. The adopted simulation environment is based on Pygame 1.9.2, a game library in

Python, and Brian 1.41 [24], an SNN simulator in Python.

2.4.1 Spiking Neural Networks

We employ feed-forward spiking neural networks of three layers: an input, hidden, and output

layer. The input layer is composed of seven groups of Poisson neurons for generating spike trains

encoding the inputs from the five ultrasonic sensors, distance sensor and angle sensor. Each group

has 15 excitatory and 15 inhibitory neurons.

To demonstrate the SNN architecture proposed in Section 2.3.1, we consider two compositions

for the hidden layer: 210 excitatory neurons (Fig. 2.7) vs. 104 excitatory and 104 inhibitory

neurons (Fig. 2.8), with the former being a reference and the latter representing the proposed

architecture. In both networks, the input layer is fully connected to the hidden layer. The hidden

layer is split into two equal halves, with each projecting to one of the two output neurons with fully

16

connectivity. The two output neurons control the left and right motors of the robot and can steer

the robot to right and left, respectively.

2.4.2 State Space and Discretization

The sensory inputs from the five ultrasonic (measuring the distances to nearby obstacles), one

distance (measuring the distance to the target) and one angle sensor form the seven-dimensional

state of the robot. Each of the five ultrasonic sensors can measure up to 300 pixels. For the

reference SNN, every ultrasonic sensor input is discretized into three intervals with each encoded

using a different firing frequency: 0 to 99 pixels (0 Hz), 100 to 199 pixels (20 Hz), and 200 to

300 pixels (40 Hz). The encoding of the ultrasonic sensor inputs is done somewhat differently

for the proposed SNN: 0 to 99 pixels (0 Hz), 100 to 199 pixels (50 Hz), and 200 to 300 pixels

(100 Hz). Each frequency value is used to set the firing frequency of the Poisson neurons in the

corresponding input neuron group.

The distance sensor can measure up to 800 pixels for the distance to the target. Its input range

(0 to 800 pixels) is divided evenly into four intervals. For the reference SNN, the encoded Poisson

firing frequency is 10 Hz, 20 Hz, 30 Hz and 40 Hz, respectively for these intervals. For the

proposed SNN, the encoded frequencies are 25 Hz, 50 Hz, 75 Hz, and 100 Hz.

Finally, the input from the angle sensor is discretized into four intervals: north, south, west and

east direction, as shown in Fig. 2.4. The frequency encoding schemes used for the distance sensor

are adopted for the angle sensor.

2.4.3 Motor Control

The speed of the robot is fixed as 15 pixels/sec such that the robot always moves forward. At

each simulation time step, the instantaneous firing rates of the two output (motor) neurons are used

to determine the steering angle, that is, the steering angle θ is set to θ = freql − freqr, where

freql and freqr are the firing frequencies of the left and right motor neuron, respectively. As such,

θ is continuous-valued and the robot is steered to the left if θ is negative. Note that, in Q-learning,

ε-greedy with ε set to 0.3 is used for selecting from three actions: move forward, turn left by 30◦

17

and turn right by 30◦.

2.4.4 STDP parameter settings

The parameter settings of the A-RM-STDP and M-RM-STDP schemes are given in Table 2.1.

The initial weights of excitatory synapses are set randomly between 0 - Wmax mV while those of

inhibitory synapses are set randomly betweenWmin - 0mV . For the proposed network architecture

in Fig. 2.8, the maximum synaptic weight is set to 5mV for the half of the synapses between input

and hidden layer, and 2.5mV for the remaining half.

Table 2.1: Parameter settings of A-RM-STDP and M-RM-STDP. © 2017 IEEE

Parameter Value
A+ 1mV
A− -1mV
τ+ 20ms
τ− 20ms
Wmax 5mV
Wmin -5mV

2.5 Experimental Results

By using the setups described previously, we compare four spiking neural networks and Q-

learning as summarized in Table 2.2. Two spiking neural networks have both excitatory and in-

hibitory neurons only in the input layer while the other two have excitatory and inhibitory neurons

in both the input and hidden layers. All SNNs have the same numbers of neurons in three layers.

We examine these five approaches by the success rate, SR, defined as as the number of suc-

cessful trials, i.e. ones in which the robot gets to the target without any collision, divided by the

total number of trials. We evaluate the success rate for both the learning and testing phase. The

average number of steering movements per trial, Nmv (the smaller the better), is another indicator

of the quality of learning. We consider Nmv in the testing phase for the four SNNs, and Nmv in the

learning phase for Q-learning as it does not perform well in testing.

18

Table 2.2: Simulation results on validation set. © 2017 IEEE

Network Algorithm Network Structure
Q-learning Q-learning Look-up table
S1 A-RM-STDP E & I in Input layer; E in Hidden layer
S2 M-RM-STDP E & I in Input layer; E in Hidden layer
S3 A-RM-STDP E & I in Input and Hidden layers
S4 M-RM-STDP E & I in Input and Hidden layers

2.5.1 Scenario 1

As shown in Fig. 2.9 and Fig. 2.10, the target (red box) is located in the center of a closed

environment. The robot navigates from a randomly chosen point within one of the blue circles

on the left and right sides. The starting blue circle is also chosen at random. This setup forces

the robot to explore the unknown environment widely. 2,000 training and 100 testing trials are

used in the learning and testing phase, respectively, for Q-learning. The learning with the SNNs

converges much faster so we use only 20 training trials and 30 testing trials. The results are shown

in Table 2.3.

Table 2.3: Result of Scenario 1 © 2017 IEEE

Network SR-Learning SR-Testing Nmv

Q-learning 4.05% 10% 62

S1:A-RM-STDP 45% 70% 50

S2:M-RM-STDP 65% 95% 49

S3:A-RM-STDP (E+I in hidden) 55% 90% 45

S4:M-RM-STDP (E+I in hidden) 70% 100% 46

Despite of the large number of training trials used, Q-learning performs poorly with an ex-

tremely low success rate (SR) in both the learning and testing phase. In addition, Q-learning

also leads to a large number of steering movements in the testing phase, indicating a poor qual-

19

ity of trajectories learnt. Note again that in this chapter, for Q-learning, Nmv is reported based

on the training data. The four SNNs demonstrate a much better performance than Q-learning.

Among them, the proposed multiplicative RM-STDP scheme (M-RM-STDP) outperforms its ad-

ditive counterpart (A-RM-STDP) rather noticeably in terms of success rate for both learning and

testing.

The proposed neural network architecture of Fig. 2.8, where the hidden layer is composed of an

equal number of excitatory and inhibitory neurons, performs fairly well. In particular, the network

S4, which combines the proposed M-RM-STDP and network architecture has the highest success

rate for both learning and testing, and dramatically outperforms S1, which is the baseline SNN. S4

also produces almost the lowest number of steering movements in testing. Fig. 2.9 and Fig. 2.10

show two representative trajectories produced by S4 in the learning and testing phase.

It is interesting to note that S2 somewhat outperforms S3 in terms of success rate while S3

produces a smaller Nmv. S2 employs only the proposed M-RM-STDP while S3 only employs the

proposed neural network architecture.

2.5.2 Scenario 2

The second scenario has obstacles of varying shapes (Fig. 2.11 and Fig. 2.12). Again, the robot

starts to navigate randomly from two blue circles. The same numbers of trials are used for Q-

learning: 2,000 in the learning phase and 100 in the testing phase. For the SNNs, 20 training trials

are used, 10 of which start from the left circle and the remaining 10 start from the right circle. 20

trials are used for testing. Table 2.4 summarizes the performances of the five approaches.

For this more challenging test case, Q-learning performs even worse, and completely fails the

testing. Among the four SNNs, adopting the proposed M-RM-STDP leads to a success rate lower

than A-RM-STDP in the learning phase, but a significantly boosted success rate in the testing

phase. For example, the testing SR is 55% for S3, which is boosted to 90% by S4. The proposed

neural network architecture appears to have a negative impact on the SR in the learning phase, as

observed by comparing S3 to S1 and S4 to S2. It, however, noticeably improves the SR during

testing. S4, which combines the two proposed techniques, has the highest success rate (90%) and

20

Table 2.4: Result of Scenario 2 © 2017 IEEE

Network SR-Learning SR-Testing Nmv

Q-learning 4.05% 0% 75

S1: A-RM-STDP 75% 45% 67

S2: M-RM-STDP 50% 85% 65

S3: A-RM-STDP (E + I in hidden) 55% 55% 64

S4: M-RM-STDP (E + I in hidden) 40% 90% 62

the lowest Nmv (62) for testing, showing the best overall performance. We show two simulated

trials of S4 in Fig. 2.11 and Fig. 2.12.

2.5.3 Scenario 3

In this last test case, the robot navigates from randomly sampled points in the blue circle at

the bottom-right corner of the enclosed environment with more obstacles (Fig. 2.13 and Fig. 2.14).

2,000 trials are used for training the Q-learning based robot and 100 trials for testing. The detailed

simulation results are described in Table 2.5. Q-learning again performs poorly and is not able to

successfully reach the target at all during testing phase. In comparison, the SNNs deliver a much

better performance with the network S4 producing the highest success rate (90%) and the lowest

Nmv (54) during testing. Two simulated trajectories of S4 are shown in Fig. 2.13 and Fig. 2.14.

Table 2.5: Results of Scenario 3 © 2017 IEEE

Network SR-Learning SR-Testing Nmv

Q-learning 2.05% 0% 72

S1: A-RM-STDP 20% 75% 61

S2: M-RM-STDP 40% 90% 57

S3: A-RM-STDP (E + I in hidden) 60% 65% 56

S4: M-RM-STDP (E + I in hidden) 45% 90% 54

21

2.6 Summary and Discussions

This chapter demonstrates two techniques for spiking neural network based reinforcement

learning for mobile robot navigation: a new multiplicative RM-STDP (M-RM-STDP) scheme and

feed-forward spiking neural network architecture with fine-grained rewards. It has been shown that

the proposed techniques significantly outperform Q-learning and a baseline SNN approach. Espe-

cially, combining the two proposed techniques leads to a fairly robust solution with significantly

improved success rates and quality of navigation trajectories measured by the number of steering

movements. In our future work, the two proposed techniques will be demonstrated on a real robot.

22

Figure 2.2: A typical STDP curve. © 2017 IEEE

23

Figure 2.3: A typical additive RM-STDP characteristics. © 2017 IEEE

Figure 2.4: Four intervals for the angle between the moving direction of the robot and the vector
that points to the target from the robot. © 2017 IEEE

24

Figure 2.5: The proposed spiking neural network with fine-grained rewards. © 2017 IEEE

25

Figure 2.6: The adopted car model. © 2017 IEEE

Figure 2.7: The reference SNN with only excitatory neurons in the hidden layer. © 2017 IEEE

26

Figure 2.8: The proposed SNN with both excitatory and inhibitory-neurons in the hidden layer.
© 2017 IEEE

27

Figure 2.9: A simulated trial in the learning phase of S4 for Scenario 1. © 2017 IEEE

28

Figure 2.10: A simulated trial in the testing phase of S4 for Scenario 1. © 2017 IEEE

29

Figure 2.11: A simulated trial in the learning phase of S4 for Scenario 2. © 2017 IEEE

30

Figure 2.12: A simulated trial in the testing phase of S4 for Scenario 2. © 2017 IEEE

31

Figure 2.13: A simulated trial in the learning phase of S4 for Scenario 3. © 2017 IEEE

32

Figure 2.14: A simulated trial in the testing phase of S4 for Scenario 3. © 2017 IEEE

33

3. ROBUST FUSION ARCHITECTURE FOR AUTOMOBILE

In this chapter, a sensor fusion architecture with a fusion weight regularization and a target

learning scheme is proposed for resiliency and feature interpretability.

Sensor fusion is a key technique for autonomous driving system with multiple sensors such as

camera, lidar, radar, GPS, IMU, OBD2, etc [25–30]. Its objective is to make an accurate ground

truth with a combination of multiple sensory inputs and create an environment where the fusion is

greater than simple sum of the sensory inputs.

[27] presents a convolutional neural network (CNN) approach to sensor fusion in autonomous

driving and compares three fusion schemes: early, late, and deep fusion. However, this work

does not cover sensor failures and provides no deep insight on computational principles of sensor

fusion, rather fuse the two sensory inputs with simple element wise mean operation. The typical

late fusion DNN architecture is shown in Fig. 3.1 (a) where each modality is first processed, e.g.

by a number of convolutional/pooling/activation layers. And then all extracted feature maps are

fused together, e.g. by element-wise mean at the layer marked by “+”, and processed further to

make the final decision.

+

(a) Fusion without gating (b) Blackbox gating architecture

(Blackbox) Fusion
Weight Extraction

X

X

X

X

FW1

FW2

FW3

FW4

+

Figure 3.1: Two DNN sensor fusion architectures.

34

A key objective and challenge in the sensor fusion is securing resilience, i.e., the fusion task

shall be conducted robustly not only under clean sensory inputs but also in the presence of sensor

failures. [31], [32], and [33] display CNN based object tracking with input weighting (gating) fu-

sion scheme and auxiliary losses. By weighting more important input channel with fusion weights

(gating factors) which are processed with a sigmoid and softmax function, the weighted important

inputs have more effect on outputs, and the classification accuracy is further improved. Further-

more, through the softmax function which makes the range of the fusion weights between [0, 1],

the feature importance is easily interpreted.

We present a new gating architecture and its variants with significantly improved performance

and resilience under both clean sensory inputs and sensor failures. Our main contributions are:

1) propose a new auxiliary-model regulated gating architecture, called ARGate, to robustly learn

gating fusion weights of different modalities using auxiliary unisensory processing paths during

training; 2) As part of the ARGate architecture, propose two regularization techniques, namely,

fusion weight regularization with auxiliary losses, and monotonic fusion target learning to regu-

larize fusion weights with corresponding auxiliary losses and target for consistent fusion weights

in the training process and significantly improve the performance and robustness; and 3) shed light

on the fusion and regularization mechanisms that are responsible for the observed performance

improvements.

We perform comprehensive evaluation of the proposed ARGate architectures while comparing

with a baseline non-gating CNN architecture and the NetGated architecture [29] utilizing human

activity recognition (HAR) dataset [34], driver identification dataset [35], and KITTI dataset [36]

under various sensory input conditions. It is demonstrated that the proposed architectures consis-

tently outperform the baseline and NetGated architectures, and improve classification accuracy by

up to 8.49% and 13.39% over the baseline and NetGated architectures, respectively. For the KITTI

dataset, the proposed architecture outperforms a reference architecture [26] by up to 4.81%.

35

3.1 Overview of the ARGate Architectures

The ARGate architecture with the two most essential regularization techniques, i.e. fusion

weight regularization with auxiliary losses and monotonic fusion weight target learning, is depicted

in Fig. 3.2.

Multisensory processing has been under extensive study in neuroscience and recent research

has shed increasing light on the computational mechanisms underlying the multi-sensory process-

ing of superior colliculus (SC) neurons in the midbrain [37, 38], providing a relevant reference for

the proposed ARGate architectures. Animals must promptly select the most pertinent modalities

while suppressing spurious noise from other senses for their survival, where multisensory compe-

tition plays an essential role. This is analogous to the targeted robust sensor fusion problem under

catastrophic sensor failures. On the other hand, mature SC neurons are able to enhance their per-

formance via multisensory cooperation where congruent stimuli across modalities are integrated.

This corresponds to performance benefits in the targeted sensor fusion brought by fusing co-variant

and complementary sensory inputs.

As such, multisensory competition and cooperation may be considered as two intertwined op-

erating modes, transitions between which may be orchestrated based on sensory conditions: op-

erate in competition when inputs are non-congruent (e.g. due to strong sensory noise or catas-

trophic failures) to ensure robustness while switching to cooperation to maximize performance

with clean/covariant inputs.

Loosely speaking, the proposed architecture in Fig. 3.2 (a detailed full implementation is in

Fig. 3.4) bears high-level resemblance to mode transitions in SC neurons suggested by the electro-

physiological recording and computational studies [37]. However, it takes a rather different strat-

egy to balance between multisensory competition and cooperation in the end-to-end deep learn-

ing architecture during training. The bottom block of Fig. 3.2 outputs the fusion weight targets

(FW_T1 to FW_T4), which are used to regularize the fusion weight extraction block such that

each fusion weight FW_i is constrained to be near the corresponding target FW_Ti. This acts as a

solution to the fusion weight inconsistency problem of the typical gating architectures.

36

Unisensory
Efficacy

Unisensory
Efficacy

Unisensory
Efficacy

Unisensory
Efficacy

Monotonic
Learning of Fusion

Weight Targets

(Lattice Network)

FW_T1

FW_T2

FW_T3

FW_T4 Multisensory
Competition

Multisensory
Cooperation

High Uniformity

Low Uniformity

(Regularized) Fusion
Weight Extraction

X

X

X

X

FW1

FW2

FW3

FW4

+

Fusion Weight Regularization

Figure 3.2: ARGate architecture with fusion weight regularization and monotonic fusion weight
target learning. The bottom box offers fusion weight regulation for training the main model (upper
portion) and is removed for inference.

37

The key idea here is to transparently balance between multisensory competition and cooper-

ation by detecting the efficacy (i.e. conditioning or importance) of each unisensory input for the

same end prediction task. The efficacy is evaluated by the training loss of a “unisensory efficacy"

block, which is essentially a unisensory model for the same task with the corresponding modal-

ity being the sole input. Intuitively, a high unisensory efficacy shall be mapped to a high fusion

weight target value. To allow for a flexible end-to-end architecture, the efficacies are mapped to the

fusion weight targets (FW_T1 to FW_T4) by a trainable monotonic lattice network ensuring the

monotonic relationship between the two. Since fusion weight targets sum up to 1.0, low uniformity

among fusion weight targets immediately leads to multisensory competition where the inputs with

smaller fusion weight targets tend to be depressed. High uniformity in the fusion weight targets

would give rise to multisensory cooperation where modalities with similar fusion target values are

integrated in a balanced way. The design of the ARGate architectures is detailed as follows.

3.2 The Proposed ARGate Architecture

3.2.1 Basic structure of ARGate

As a first step, we present a primitive ARGate architecture with weight sharing (ARGate-

WS), which is enclosed in a more complete version of the ARGate architecture called ARGate+

in Fig. 3.3. The ARGate+ architecture will be built upon ARGate-WS and explained in the next

subsection.

For ease of discussion, we assume that there exist two sensory inputs as in Fig. 3.3. To assist

training of a main model, which is employed for inference, an auxiliary (aux) model is included.

The main model is architecturally similar to the NetGated architecture. When splitting outputs

of “FC-con" layer into fusion weights, we further introduce a sigmoid and a softmax function to

normalize the fusion weights between [0,1], so that importance of input features are expressed with

magnitude of the fusion weights.

In general, the aux model consists of multiple independent auxiliary paths, one for each modal-

ity without fusion. Weight parameters in convolutional layers and early FC layers are shared

38

between the corresponding modalities across the main and aux models. Total training loss is a

weighted sum of the losses of the main model and all auxiliary paths. The adopted weight sharing

(WS) is illustrated by the dashed purple box in Fig. 3.3. Weight sharing is commonly used in the

literature [27, 31]. Here, it acts as a way of regularizing the main model.

Based on this primitive ARGate-WS architecture only with the weight sharing, we explore the

more complete ARGate+ architecture with two fusion weight regularization techniques next.

3.2.2 Fusion Weight Regularization with Auxiliary Losses: ARGate+ Architecture

When one or more sensory channels are completely corrupted, weight sharing in ARGate-

WS fails to properly regularize the corresponding convolutional/FC layers for the corrupted input

channels in the main model. This is because that these auxiliary paths can no longer be trained to

deliver a good performance based on the single corrupted modality.

Our key observation is that the losses of different auxiliary paths reflect the relevance of these

modalities w.r.t. to the classification task, and hence, can be used for fusion weight regularization

(FWR), which is depicted using a purple dashed line pointing from the aux model to the main

model in Fig. 3.3. When a particular sensory modality is corrupted under an input example, a high

loss of its auxiliary path will constrain the training of the “FC-con" layer in the main model to

produce a low fusion weight for that modality.

Since the loss of each auxiliary path is included in the total training loss, the large loss of

any corrupted sensory input can be dominant, potentially lowering performance. To resolve this

problem, we use the extracted fusion weights from the main model as the corresponding weights of

the auxiliary losses in the total training loss. We call this scheme auxiliary loss weighting (ALW)

as shown by the dashed purple line pointing from the main model to the aux model in Fig. 3.3.

This leads to a more complete ARGate+ architecture with a new loss function:

39

Flatten

FC-1

Flatten

FC-2

+

X

X

FC-out

Decision
(Loss_Main)

Fusion
Weight 1

Fusion
Weight 2

Concatenate

FC-con

Loss_aux1

Loss_aux2

Modality
1

Modality
2

Main Model
Fusion Weight Regulation

Weighted
Aux Loss

Aux Loss
Weighting

Flatten

FC-out1

Flatten

FC-out2

Aux Model

Aux Path 1

Aux Path 2

FC-Aux1
FC-Aux2

Weight Sharing

Figure 3.3: The proposed ARGate+ architecture

40

Loss = Lossmain + α ·
K∑
k=1

wk
fusionLoss

k
aux

+β ·
K∑
k=1

(
wk

fusion −
̂

e−Loss
k
aux

2

)2

(3.1)

where the auxiliary path loss Losskaux is weighted by the fusion weight wk
fusion, hence the domi-

nance of any large auxiliary path loss resulted from sensor failures is diminished.

Each normalized auxiliary-path loss ̂
e−Loss

k
aux

2

is employed to regularizewk
fusion. Here, ̂

e−Loss
k
aux

2

is obtained by plugging Losskaux into the exponential function and then normalizing e−Loss
k
aux

2

us-

ing sigmoid and then softmax normalization so that ̂
e−Loss

k
aux

2

is between [0,1].

With above-mentioned explanation, the last term of the right hand side of (3.1) is directly used

as fusion weight targets for regularizing the fusion weights of the main model. The ARGate+

architecture integrates weight sharing (WS), fusion weight regularization with auxiliary losses

(FWR), and auxiliary loss weighting (ALW). Next, we discuss the other key proposed technique,

namely, monotonic fusion target learning.

3.2.3 Monotonic Fusion Target Learning

Regularizing fusion weight through auxiliary losses is a key step towards improving overall

performance. Notice that the last term in (3.1) implements fusion weight regularization in which

the exponential of each normalized auxiliary path is called the fusion weight target for the corre-

sponding fusion weight. While this specific form of fusion weight targets pushes the training of

the network towards producing a low fusion weight value for modalities with a large auxiliary path

loss, the optimal mapping from the auxiliary path loss to the corresponding fusion weight target

is not known a priori. Our key idea is to optimize this mapping end-to-end as part of the overall

network architecture based on the available training data.

Since the fusion weight target of an auxiliary path shall be a monotonically non-increasing

function of the corresponding auxiliary path loss, this motivates us to introduce a dedicated small

41

network to learn the mapping from the set of auxiliary path losses as following expression ~Lossaux =

[Loss1
aux, Loss

2
aux, · · · , LossKaux]T to each fusion weight target wk

fusion,t: w
k
fusion,t = fk(~Lossaux).

Corresponding, the loss is modified from (3.1) to:

Loss = Lossmain + α ·
K∑
k=1

wk
fusionLoss

k
aux

+β ·
K∑
k=1

(
wk

fusion − fk(~Lossaux)
)2

. (3.2)

The mappings from the auxiliary losses to the fusion weight targets may be learned with great

flexibility by a generic feed-forward multi-layer neural network. However, this approach is not

robust due to lack of regularization. We propose to embed a regularized deep lattice network

(DLN) [39] to the ARGate+ architecture for more robust learning of fusion targets. As illustrated

in Fig. 3.5, a lattice network can learn input-to-output mappings while guaranteeing the user-

specified full or partial monotonicity between the a set of the inputs and outputs.

Integrating a DLN network into ARGate+ leads to a new architecture called ARGate-L in

Fig. 3.4. In general, DLNs consist of three types of layers: calibrators, linear embeddings, and

lattices, all of which can be constrained to obey partial or full monotonicity between selected

inputs and outputs. Linear embedding layers map the inputs linearly to the outputs. Monotonicity

between a subsest of inputs/outputs can be forced by choosing non-negative coefficients between

them. A lattice is a linearly interpolated multi-dimensional look-up table; each output of the lattice

can be constrained to be monotonic in a subset of the inputs. Calibrators are 1-d lattices and

can nonlinearly transform a single input and may be used for pre-processing and normalization

between layers in the DLN.

The proposed lattice network is illustrated in Fig. 3.4 for the general case of mapping K aux-

iliary path losses to the corresponding K fusion targets. In its most general form, this can be done

by having K independent subnetworks, one for each fusion target. While a particular architecture

is chosen for each subnetwork in Fig. 3.4, in practice, it can be simplified/optimized to suit a given

42

application. The key idea in the proposed lattice network design is to ensure the partial mono-

tonicity between each pair of auxiliary loss and fusion target; there are K such constraints. In the

lattice network of Fig. 3.4, monotonic inputs/outputs are processed by a calibrator in dashed green

while non-monotonic ones are processed by a calibrator in solid gray. The output of a component

is monotonic if any of its inputs is monotonic to ensure the end-to-end monotonicity between a pair

of auxiliary loss and fusion targets. Specifically, there exist a green dashed path from each auxil-

iary loss k to its corresponding fusion target k. Imposing these monotonicity constraints acts as a

regularization mechanism, making the robust end-to-end learning of fusion weight targets possible

and leading to improved performance as we demonstrate later.

3.3 Experimental Settings

We perform comprehensive comparison of a non-gating fusion CNN baseline [27], the Net-

Gated architecture [29], and variants of the proposed ARGate architecture on the HAR [34], driver

identification [35], and KITTI [36] datasets.

Mini-batch scheme size is 16 for the HAR dataset, and 128 for the driver identification dataset.

We train these networks with 200 epochs for the HAR dataset and 100 epochs for the driver identi-

fication dataset. For the HAR and the driver identification dataset, an ADAM optimizer is utilized

with a learning rate of 0.001. Cross-entropy loss is chosen as the loss for the CNN baseline, the

NetGated architecture, and the main model and auxiliary paths of ARGates. For the KITTI dataset,

an ADAM optimizer is adopted with an initial learning rate of 0.0001, which decays every 30K

iterations with 0.8 as a decay factor. All simulations are done with Python 3.6, Pytorch 0.4.0 [40]

for the HAR and driver identification datasets, and Tensorflow 1.3.0 [41] for the KITTI dataset

using a NVIDIA Tesla K80 GPU.

3.3.1 Datasets

3.3.1.1 The Human Activity Recognition Dataset

The human activity recognition (HAR) dataset [34] includes six activities to be recognized:

walking, walking upstairs, walking downstairs, sitting, standing, and laying. From accelerome-

43

ter and gyroscope, nine sensory inputs are utilized for experiments, where each sensory input is

distributed between [−1, 1]. There are 7,352 examples for training and 2,947 examples for testing.

3.3.1.2 The Driver Identification Dataset

The driver identification dataset [35] consists of 10 drivers’ cruising data collected by a Car-

bigsP OBD-II scanner. There are 51 features in total, but 15 features are used in our experiments

which is same experimental setup from the original paper. 75,501 training and 18,879 testing

examples are used.

3.3.1.3 KITTI Dataset

In the KITTI dataset [36], there are two sensory inputs: a RGB image and a velodyne laser

scanned bird eye view (BEV) image. The provided 7481 training frames are split into a training

and a validation set. For evaluation with detecting the car class in images, we adopt easy, moderate

and hard difficulty-level settings provided by KITTI.

3.3.2 Neural Network Configurations

3.3.2.1 Configurations for the HAR and Driver Identification Datasets

In the HAR and driver identification datasets, the non-gating CNN baseline, the NetGated,

and the proposed ARGate variants are compared. The late fusion scheme is utilized in the CNN

baseline. For fair comparison, tunable parameters of all neural networks are closely matched.

3.3.2.2 Configurations for the KITTI Dataset

AVOD Baseline. We use the Aggregate View Object Detection (AVOD) approach [26] as a

baseline.

AVOD-ARGate. We embed our ARGate-L into the AVOD, specifically in a region proposal

network(RPN) as shown in Fig. 3.6. Feature maps from each input are passed into small ARGate

block to produce fusion weights which are regularized by a lattice network. Outputs from these

FC layers are added and passed onto the fusion block (a FC layer) to create the fusion weights.

These fusion weights are multiplied with the corresponding feature maps from the outputs of the

44

1x1 feature extracting layers. Furthermore, the fusion weights from the RPN is utilized again as

gating factors for each modality in the second stage fusion(AVOD) to fortify network robustness.

For target fusion weight learning, the lattice architecture (Cal-Lin-Cal-Lat) is used with the linear

embedding layers processing two input channels and one lattice. The total number of tunable

parameters of the AVOD baseline and AVOD-ARGate are closely matched for fair performance

comparisons. Moreover, since AVOD based algorithms need plane data for training and test, we

utilize plane data provided by AVOD for training set, and custom plane data for test set for fair

comparison.

3.3.3 Sensor Failures

Apart from using the clean data in the HAR and driver identification datasets, we introduce

sensor failures and set up various training/testing sets to comprehensively compare the robust-

ness/generalization of different architectures.

3.3.3.1 Modeling of failing sensors

All clean scalar inputs are normalized to be within [−1, 1]. We use two schemes: uniform, and

Gaussian, to model a failing sensor by setting its input values respectively to pure noise following

a uniform distribution between [−1, 1], and pure noise following the Gaussian distributionN (0, 1).

3.3.3.2 Corrupted examples for training/testing

For HAR and driver identification datasets, we use clean and corrupted examples in both the

training and test sets, where in each set 1
3

of the examples are randomly chosen and kept clean

while the remaining ones are corrupted by one or more failing sensors using one of the approaches

described below.

Fixed Failing Sensor Assignment. This mimics the situation in which a number of sensors

have failed permanently. We select nfclean channels out of a total of n sensors to be clean and

assume that all remaining sensors have permanent failure when setting up the corrupted examples

of for both the training and test sets in each experiment.

Random Failing Sensor Assignment. To more closely mimic random nature of sensor fail-

45

Clean Failure
Baseline NetGated

ARGate- AR AR
Channels Model WS Gate+ Gate-L
All Clean - 94.06 94.50 94.96 95.69 96.71
nrclean=8 Uniform 92.35 92.20 92.45 92.57 94.06

Gaussian 92.94 93.28 94.97 94.13 94.81
nrclean=5 Uniform 86.73 86.80 88.53 87.68 88.77

Gaussian 88.41 89.04 89.52 90.12 91.35
nrclean=1 Uniform 62.06 62.90 65.69 67.09 69.63

Gaussian 69.67 70.54 71.83 73.19 72.78

Table 3.1: Prediction accuracies(in %) under clean data and random failing sensor assignment for
the HAR dataset.

ures, for each corrupted example in the training/test set, we randomly select nrclean channels out

of all n sensors to be clean and corrupt the remaining channels. As such, sensors that have failed

may vary from one example to another. nfclean and nrclean are varied to for different severity levels

of failures.

Failing Sensor Generation Test. This tests model generation by using a test set containing

corrupted examples which have a larger or different number of failing sensors from the corrupted

examples used to train the model, i.e. the test set has examples with a severe level of sensor failure.

3.4 Evaluation

3.4.1 Quality of Fusion Weight Extraction

To shed some light on the fusion mechanisms of NetGated, ARGate-WS and the proposed

ARGate+ architectures, we examine distributions of the trained fusion weight of a sensory input

total_acc_y under the HAR dataset. If the total_acc_y is corrupted, then the fusion weight of itself

should be distributed lower than the fusion weight of clean total_acc_y. Please note that ARGate-

WS only utilizes weight sharing so that we compare our proposed ARGate+ with ARGate-WS in

terms of fusion weight regularization. The sensor failures are modeled using the random failing

sensor assignment with uniform distribution and with nrclean = 1 so that 8 out of 9 sensory inputs

are corrupted in each example. To show effects of sensor failures on the fusion weights, we split

46

the examples into two subsets: one in which total_acc_y is corrupted with 8 other inputs and the

other subset where total_acc_y in the only clean input. Fig. 7(a, b, c) displays the fusion weight

distributions of the first subset for the three architectures while Fig. 7(d, e, f) shows those of the

second subset.

One may expect that, in a properly trained model, the fusion weight value for a corrupted

sensory modality shall be much smaller than when the modality is clean. However even when

total_acc_y is corrupted, Fig. 7(a, b, c) show that the total_acc_y fusion weight distribution of

the NetGated architecture has a peak around the large value of 0.4 which is not presented in the

case of ARGate-WS. The distribution of ARGate-WS has a much reduced mass on large fusion

weight values compared to that of the NetGated. Furthermore, the fusion weight value can go

beyond 0.4 in NetGated and ARGate-WS while it is pretty much constrained between 0.06 and 0.1

in ARGate+. One also expects that the fusion weight of total_acc_y shall be large for the second

subset since total_acc_y is the only clean input. However, as seen in Fig. 7d, the distribution

of NetGated has a large population mass on low fusion weight values. The population mass on

low fusion weight values gets reduced significantly in the case of ARGate-WS Fig. 7e, which is

further reduced in ARGate+ for which most fusion weights are distributed between 0.33 and 0.45

as shown in Fig. 7f.

Clean
Baseline NetGated

AR AR
Channels Gate+ Gate-L
nfclean=6 87.68 89.28 91.01 92.97
nfclean=5 80.59 81.94 84.52 89.01

Table 3.2: Prediction accuracies(in %) under fixed failing sensor assignment for the HAR dataset.

3.4.2 Results on the HAR Dataset

[Fixed Failing Sensor Assignment] We consider two cases where the number of clean input

channels nfclean is set to 5 and 6, respectively. When nfclean = 5, body_total_acc_x body_acc_x

47

and body_gyro_x are corrupted and set to uniform-ally distributed noise while body_acc_z and

body_gyro_x are corrupted by uniform-ally distributed noise when nfclean = 6. Table 3.2 shows

that our proposed ARGate architectures outperform the CNN and NetGated significantly while

adopting the lattice network in ARGate-L further improves over ARGate+.

[Random Failing Sensor Assignment] In Table 3.1 compares the baseline CNN, NetGated,

ARGate-WS, proposed ARGate+, and ARGate-L architectures with the number of randomly cho-

sen clean sensors nrclean ∈ {1, 5, 8}. When all channels are clean, NetGated has 0.44% prediction

accuracy improvement over the baseline while ARGate+, and ARGate-L outperform the baseline

by 1.63%, and 2.65%, respectively. ARGate architectures always have better accuracy than the

baseline and NetGated, and in general ARGate+ further improves over ARGate-WS which only

employs weight sharing (WS) between the main and auxiliary model, demonstrating the effect of

fusion weight regularization with auxiliary losses (FWR). ARGate-L is the best-performing model,

which incorporates WS, FWR, and the lattice network for monotonic fusion weight target learn-

ing. With nrclean = 1 and sensor failures which are modeled using uniformly distributed noise,

ARGate-L outperforms the baseline, NetGated, ARGate-WS, and ARGate by 7.57%, 6.73%,

3.94%, and 2.54%, respectively. We expect that the performance improvements of the ARGate

architectures may be attributed to their improved quality in the fusion weight target learning.

Clean
Baseline NetGated

AR AR
Channels Gate+ Gate-L
(1,2)(3,8) 72.91 72.75 77.10 77.16
(1,3)(4,8) 70.98 70.78 75.43 76.15
(1,4)(5,8) 69.38 69.53 73.06 73.64

Table 3.3: Prediction accuracies(in %) under failing sensor generation test for the HAR dataset.

[Failing Sensor Generation Test] In Table 3.3, the first column specifies the numbers of ran-

domly chosen failing channels used in the training and test sets. For example, (1,2)(3,8) means

48

Clean
Baseline NetGated

AR AR
Channels Gate+ Gate-L
nfclean=5 79.48 81.46 82.29 87.73
nfclean=7 90.39 92.81 94.56 95.34

Table 3.4: Prediction accuracies(in %) under fixed failing sensor assignment for the driver identi-
fication dataset.

Clean Failure
Baseline NetGated

AR AR
Channels Model Gate+ Gate-L
All Clean - 95.49 95.79 96.65 96.78
nrclean=12 Uniform 93.43 92.19 93.50 93.58

Gaussian 92.19 91.40 92.31 93.16
nrclean=8 Uniform 83.50 80.61 85.08 86.86

Gaussian 80.82 79.19 82.23 85.48
nrclean=5 Uniform 65.36 62.21 68.96 73.85

Gaussian 65.84 62.69 68.20 76.08

Table 3.5: Accuracies(in %) under clean data and random failing sensor assignment for the driver
identification dataset.

that the number of failing sensors for training are randomly picked from [1,2] while the range of

the failing sensors for testing is [3,8]. Essentially, we evaluate the generalization of the models

by including corrupted examples with more failing channels in the test set than in the training

set. Failing sensors are modeled using uniformly distributed noise. NetGated can underperform

the baseline while ARGate-L always outperforms the baseline and NetGated by upto 5.17% and

5.37%, respectively.

3.4.3 Results on the Driver Identification Dataset

[Fixed Failing Sensor Assignment] In Table 3.4, the corrupted inputs are set to uniformly

distributed noise. When nfclean = 5, Long Term Fuel Trim Bank1, Maximum indicated engine

torque, Calculated LOAD value, Activation of Air compressor, and Engine coolant temperature are

corrupted. When nfclean = 7, two more input channels, Intake air pressure and Fuel consumption

49

are corrupted. ARGate-L significantly outperforms the other two models. When nfclean = 5,

ARGate-L improves over the baseline and NetGated by 8.25% and 6.27%, respectively.

[Random Failing Sensor Assignment] In Table 3.5, different models with the number of

randomly selected clean channels nrclean ∈ {5, 8, 12} are compared. When all 15 input channels

are clean, the proposed ARGate-L improves the baseline and NetGated by 1.29% and 0.99%,

respectively. In many cases, NetGated is worse than the baseline. ARGate-L always has the best

performance among all models. For example, with nrclean = 5 and the uniform noise sensor failure

model, ARGate-L significantly outperforms the baseline and NetGated by 8.49% and 13.39%,

respectively.

[Failing Sensor Generation Test] We compare the generalization of two models in Table 3.6

with the same notation of Table 3.3. ARGate-L demonstrates noticeable improvements over all

other models.

Failing
Baseline NetGated

AR AR
Channels Gate+ Gate-L
(1,2)(3,15) 60.38 60.39 59.42 64.16

Table 3.6: Prediction accuracies(in %) under the failing sensor generation test for the driver iden-
tification dataset.

3.4.4 Results on the KITTI Dataset

We compare our ARGate-L architecture to the AVOD baseline [26] on car detection in KITTI

validation and test set. Average precision (AP) in 2D image frame, oriented overlap on image, AP

in BEV, and AP in 3D metrics are used for performance comparison.

In terms of validation results in Table. 3.7, 1.17% improvement is made on 3D car detection

benchmark in moderate difficulty. Furthermore, about 0.4% of improvements are found from BEV

AP. With fusion weights utilized on both RPN and AVOD network, our ARGate-L architecture

improves the detection performance in the validation set.

50

For test results evaluated by official KITTI online server, since the AVOD plane data is not

provided for test set, we use our custom plane data for AVOD and ARGate-L for fair comparison.

Based on this setup, in the moderate difficulty, our ARGate architecture improves 4.63% in 2D car

detection benchmark. For orientation, 4.32% improvement is observed. Lastly, for 3D detection

and BEV, the proposed architecture outperforms AVOD by 4.81% and 2.22%, respectively. Fur-

thermore, similar range of improvements are shown on the hard difficulty, which shows strength

of the proposed architecture, especially on touch situation. Overall, our proposed techniques out-

perform the baseline AVOD rather noticeably.

Network Benchmark Easy Moderate Hard

AVOD
Car (3D Detection) 84.41 74.44 68.65

Car (BEV) 89.72 86.85 79.69

AVOD-ARGate
Car (3D Detection) 84.61 75.61 68.65

Car (BEV) 89.95 87.23 79.89

Table 3.7: Average Precision (in %) comparison of car detection on the KITTI validation set.

Network Benchmark Easy Moderate Hard

AVOD

Car (Detection) 90.17 79.77 74.84
Car (Orientation) 89.96 79.19 74.16

Car (3D Detection) 73.32 59.74 55.08
Car (BEV) 88.06 77.80 71.16

AVOD-ARGate

Car (Detection) 92.36 84.40 79.59
Car (Orientation) 92.06 83.51 78.63

Car (3D Detection) 76.52 64.55 60.01
Car (BEV) 87.85 80.02 75.39

Table 3.8: Average Precision (in %) comparison of car detection on the KITTI test set.

51

3.5 Summary and Discussions

In this chapter, We have proposed the ARGate architectures for resilient sensor fusion by ad-

dressing the limitations of the conventional fusion schemes including the existing gating architec-

tures. Leveraging the two proposed regularization techniques, namely, fusion weight regularization

with auxiliary losses weighting, and monotonic fusion target learning, the proposed gating archi-

tectures incorporate an auxiliary model to regularize the main model to robustly learn the fusion

weight for each modality. Our architectures have demonstrated significant performance improve-

ments over other models particularly in the presence of sensor failures.

52

Aux Loss 2

Aux Loss 2

Flatten

FC
-1

Flatten

FC
-2

+

X

X

FC
-o
u
t

Decision

(Loss_Main)

Fusion

Weight 1

Fusion

Weight 2

C
o
n
caten

ate

FC
-co

n

Loss_aux1

Loss_aux2

Modality

1

Modality

2

Main Model Fusion Weight Regulation

Aux Path

Losses

Aux Loss

Weighting

Flatten

FC
-o
u
t1

Flatten

FC
-o
u
t2

Aux Model

Aux Path 1

Aux Path 2

FC
-A
u
x1

FC
-A
u
x2

Weight Sharing

Monotonic

Lattice

Network

Learned

Fusion

Weight

Targets

LatticeLinear

Embedding

Linear

Embedding

Linear

EmbeddingLattice

Lattice

Aux Loss 1

Aux Loss 2

Aux Loss 3

…
Aux Loss K

Fusion

Target 1

LatticeLinear

Embedding

Linear

Embedding

Linear

EmbeddingLattice

Lattice

Aux Loss 1

Aux Loss 3

…

Aux Loss K

Fusion

Target 2

… …

LatticeLinear

Embedding

Linear

Embedding

Linear

EmbeddingLattice

Lattice

Aux Loss 1

…

Aux Loss K

Fusion

Target KAux Loss 3

1d Calibrator (monotonic Input/output)

1d Calibrator (non-monotonic Input/output)

Figure 3.4: The proposed ARGate-L architecture with end-to-end monotonic learning of fusion
targets using a lattice network.

53

lattice

Monotonic

Inputs

Monotonic

Outputs

Monotonic
Linear

Embedding

1d calibrator

Figure 3.5: Learning of monotonic input-output mappings.

54

Feature extractor
1x1 conv

Fusion NMSFC

X

X

Weight sharing

RGB Image Input

Lattice
Network

Fusion targets learning

RGB Fusion
weight

3D Anchor Grid

Fusion

BEV Image Input

Main RPN model
with fusion weights

Aux model

NMSFC

FC
FC

Pre
processing

Pre
processing

FC

Pre
processing

NMSFC

Input sharing

BEV Fusion
weight

Figure 3.6: The proposed ARGate architecture with RPN model for training.

total_acc_y corrupted

NetGated
total_acc_y corrupted

ARGate-WS

total_acc_y corrupted

ARGate+
total_acc_y clean

ARGate+

total_acc_y clean

NetGated

total_acc_y clean

ARGate-WS

(a) (b) (c) (d) (e) (f)

Figure 3.7: Fusion weight distributions of the clean or corrupted channel total_acc_y extracted by
NetGated, ARGate-WS and ARGate+ under random failing sensor assignment with nrclean = 1.
(a),(b) and (c) show the fusion weights distributions of the NetGated, ARGate-WS and ARGate+
models, respectively, when total_acc_y is corrupted. (d),(e) and (f) are the distributions of the
NetGated, ARGate-WS and ARGate+ models, respectively, when total_acc_y is clean.

55

4. DATA EFFICIENT LEARNING TECHNIQUES FOR RARE FAILURE DETECTION

Analog and mixed-signal (AMS) systems have complex and strict requirement from design to

tape-out. For example, in biomedical device and circuit industry, stringent reliability is required

e.g. 1 DPPM (defective parts per million) or less. This severe condition is very challenging for

circuit design, failure detection and verification of a design.

Most common practical verification method is to use Monte Carlo (MC) simulations to de-

tect rare failures. However, MC methods computationally expensive in terms of simulation time

so many sampling methods are proposed [42–47]. [42, 47] present importance sampling method

with Bayesian optimization (BO) to find the global extrema and high trustworthy estimated failure

detection with few circuit simulations. In [46], a correlated Bayesian inference (CBI) based algo-

rithm is implemented for system-level failure estimation in large-scale circuit systems. This work

show around 10x runtime reduction without the loss of accuracy. However, for the extremely rare

failure in a bounded parameter space is not considered. Furthermore, the results from these works

are based on mid-level amount of dimensionality in their experimental data.

On the other hand, in terms of the same high dimensionality problem from AMS data, through

rapid advance of the deep learning, and high performance of computing power, large neural net-

works for big data are developed and further expanding its limits. However, as the number of data

sample increases, the amount of redundant and noisy input features also increases significantly,

which affects both inference performance and robustness of neural network models. Therefore,

extracting essential and informative features from the datasets is crucial for building robust net-

works.

To resolve the aforementioned issues, a dimension reduction scheme is widely used for map-

ping high-dimensional data into a low-dimensional input space. While reversible residual network

(RevNets) are getting attention due to its reducing memory usage in back propagation and compet-

itive performance on unsupervised learning problems [45, 48, 49], we focus on the factor that loss

of information on the input can be avoided through the RevNets. [45] proposed a RevNet based

56

dimension reduction method, which is called nonlinear level-set learning (NLL) for transforming

of input space to low-dimensional structures of the target functions. The NLL can extract the non-

linear information from the level sets so complex rocket inter-stage manufacture dataset results are

demonstrated as an example of nonlinear dimension reduction problems.

In this chapter, we propose a reversible gating neural network and its variant with improved

performance for the rare failure detection problem. Our main contributions are: 1) propose a

new RevNet based auxiliary-model regulated gating architecture, called Rev-ARGate, to utilize

gating fusion weights of each pre-processed features from the RevNet in the input stage as feature

importance factor; 2) After checking with feature importance, propose two backward restoration

methods, essential input restoration with zero value and all input restoration to restore from pre-

processed feature space to the original input space through Bayesian neural network (BNN); and 3)

investigate restoration mechanisms which are responsible for the rare failure detection performance

improvements.

As an extension to our work in [50], the original ARGate is deployed as the main fusion model

and the RevNet is adopted for processing the input data. Our proposed Rev-ARGate shows the

better performance to find the worst case failure in the high-dimensional datasets.

4.1 Failure Detection Problem Formulation

Under a given D-dimensional parameter space Ω ⊆ RD, the goal of failure detection is to find

a failure point x to meet the following requirement:

y(x) < T, ∃x ∈ Ω (4.1)

where T is the threshold target for specification requirement, and the y(x) represents the per-

formance of circuit at the parameter variation vector x. When the value of y(x) is smaller than

the threshold T , the performance is considered as the failure with the specific point x. Due to the

nature of y(x) which is severely nonlinear in the high dimensional space, it is hard and costly to

get this value in terms of simulation time and computational resources.

57

Based on the problems above, we slightly modify the failure detection problem into the opti-

mization issue below.

min
x∈Ω

y(x) < T (4.2)

[43] proposes a high-dimensional Bayesian optimization (HDBO) to optimize acquisition

function by exploring random embedding to dimensionality reduction. The key idea of this so-

lution is to find the lowest number of de-dimensional effective linear subspace V in the original

D-dimensional space, which does not affect the overall performance. In [51], it is shown that

z ∈ Rd exists with a random matrix A ∈ Rd following N(0, 1) where embedding dimension d is

equal or larger than de. Therefore, the original high-dimensional input space can be ported into a

low dimensional space through random embedding with a random matrix. Furthermore, the failure

search region is defined as bounded hyper-cube [−
√
d,
√
d]d.

We adopt the HDBO with the proposed Rev-ARGate architecture to optimize the objective

function y(x). Note that the function y(x) is considered as a black-box objective function due to

the fact that the mapping from input x to y is challenging.

4.2 Overview of RevNet

Reversible residual network (RevNet) in [48, 49] is one of the variants from Residual neural

network (ResNet) [52]. Most neural networks are trained with back propagation scheme. How-

ever, activation values need to be saved in computer memory and the number of activation is

proportional to the size of neural network, causing bottleneck issue. [49] provides a solution to

this problem without saving activation to the memory. In this work, we focus on bijective non-

linear transformations in [45] by exploiting the reversibility of the RevNet for the dimensionality

reduction as follows.

z = g(x) ∈ Rd and x = g−1(z) (4.3)

where z = (z1, .., zd)
T . Although z ∈ Rd defined in Rd, the z can be partitioned into two

58

channels: z = (zact, zinact) with dim(zact) which is much smaller than d so that f◦g−1(z) is only

affected by zact.

Based on the bijective nature of the RevNet, we utilize the RevNet model from [53, 54] as

follows.

un+1 = un + hKT
n,1σ(Kn,1vn + bn,1),

vn+1 = vn − hKT
n,2σ(Kn,2un+1 + bn,2)

(4.4)

for n = 0, 1, ..., N − 1, where un and vn are state partitions, the time step scalar h, weight

matrices Kn,1, Kn,2, biases bn,1, bn,2 and the activation function σ.

To define nonlinear transformation g : x 7→ z, the input x is partitioned equally into two groups

u0, and v0 and the output of RevNet z with uN and vN as well. So, the nonlinear transformation g

is define as follows.

x =

u0

v0

 g→

←
g−1

uN
vN

 = z (4.5)

where u0 := (x1, ..., x[d/2])
T , v0 := (x[d/2]+1, ..., xd)

T and uN := (z1, ..., z[d/2])
T , vN :=

(z[d/2]+1, ..., zd)
T .

4.3 Overview of ARGate Architecture

Our ARGate architecture in [50] has the two most essential regularization techniques: fusion

weight regularization with auxiliary losses and monotonic fusion weight target learning, as dis-

played in Fig. 4.1.

In terms of network structure, the ARGate architecture is composed of two networks : a main

model and an auxiliary model. The fusion weights are generated from mild blue box in Fig. 4.1,

where fusion happens with pre-procesed features by using a fully connected (FC) layer. Then, the

fusion weights are multiplied with each FC layer for input features and blended with the multiplied

values for classification/regression.

An auxiliary (aux) model assists the main model, which is deployed for inference, during train-

59

Single
Efficacy
Single

Efficacy

Single
Efficacy

Single
Efficacy

Single
Efficacy Monotonic

Learning of
Fusion
Weight
Targets

(Lattice Network)

FW_T1

FW_T2

FW_T3

FW_T4
Multi-feature
Competition

Multi-feature
Cooperation

High Uniformity

Low Uniformity

(Regularized) Fusion
Weight Extraction

X

X

X

X

FW1

FW2

FW3

FW4

+

Fusion Weight Regularization

Figure 4.1: The ARGate architecture overview.

60

ing process. When partitioning output of the fully connected (FC) layer into the fusion weights,

a sigmoid and a softmax function is adopted to normalize the fusion weights between [0,1] for

the feature importance interpretability. So, the importance of input features are represented with

magnitude of the fusion weights. Furthermore, the fusion weights are regularized with losses of

different auxiliary paths, which reflects the relevance of inputs and can be used for fusion weight

regularization (FWR). When a particular input is corrupted under noise, the high loss of its auxil-

iary path will constrain the training of the fusion layer in the main model to produce a low fusion

weight for that input feature.

For fusion weight target learning, the lattice network is adopted in our auxiliary paths. Since

the fusion weight target of the auxiliary paths shall be a decreasing function of the corresponding

auxiliary path loss, there is a decreasing monotonicity between the fusion weight targets and the

auxiliary losses.

With these two regularization techniques above, we customize loss function for training phase

as follows:

Loss = Lossmain + α ·
K∑
k=1

wk
fusionLoss

k
aux

+β ·
K∑
k=1

(
wk

fusion − fk(~Lossaux)
)2

. (4.6)

4.4 Proposed Rev-ARGate based Bayesian Optimization

To tackle the current BO based algorithms for the failure detection, we propose a Rev-ARgate

based BO, which effectively reduce the dimension through the bijective characteristic of the RevNet.

4.4.1 Restoration of the input x with zero values

Let assume that original input x to the RevNet has D-dimensional parameter space i.e. x ∈ Rd.

After a forward computation of the RevNet, output z has the same dimension z ∈ Rd as the input.

Therefore, through the RevNet which satisfy the equation 4.3, active and non-active components

61

of z is extracted. Then, the output z from the RevNet pass through the ARGate, which is utilized

for robust fusion with the regularized fusion weights. From the fusion weights in the ARGate

architecture, active and non-active components of z can be found as (zact, zinact), which is also

considered as important and non-important features for the target. Based on the (zact, zinact), since

zinact is not important for the target, all zinact values are replace with 0’s. The overview of the

Rev-ARGate architecture with BO using the zero scheme is presented in Fig. 4.2.

Monotonic
Lattice

Network

FW_T1

FW_T2

FW_Td

Fusion Weight
Extraction

X

X

X

X
FW_1

FW_2

FW_d

+

……
…

�⃑� =

𝑥
𝑥
.
.
.
𝑥

…

…

𝑧
𝑧
.
.
.
𝑧

= 𝑧

.

.

.

𝑔

𝑔

𝑧∗ =

𝑧∗

0
0
𝑧∗

.

.
𝑧∗

Replace 𝒛𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆 with 0’s

RevNet

ARGate

Figure 4.2: The Rev-ARGate architecture with the restoration with 0’s.

62

4.4.2 Restoration of the input x with Bayesian Neural Network

While the restoration of the input x from the output z through appending zero values shows

some improvements for inference in the RevNet, we are focusing on the probability distribution

between zact and zinact. In a neural network (NN), weights in the neural network are determined

through training process and training data X . After training phase, the trained weight values are

fixed and the prediction y is deterministic, which means that the training data is highly trusted and

then the most suitable weights are chosen for inference. On the other hand, the weight distribution

of Bayesian neural network (BNN) are determined with the training process, not like the NN.

Based on the BNN, we have trained the relationship between zact and zinact to get the distribution

between these pre-processed features from the RevNet. After the training, the fixed BNN is applied

for zinact estimation and the estimated values are replaced in the z vector for the input restoration

through the backward computation of the RevNet as shown in Fig. 4.3.

4.5 Experimental Results

4.5.1 Experimental Setups

We demonstrate our proposed Rev-ARGate architecture with BO approach with two circuits : a

dc-dc converter [55] (44 dimensions) and a low-dropout regulator [56] (60 dimensions), as shown

in Fig. 4.5 and 4.6.

The proposed Rev-ARGate is implemented with Pytorch 1.2 [57]. To be specific with the train-

ing process, first, the Rev-ARGate is trained with the simulation circuit data. After the training,

fusion weight values were examined and top-N important features zact are extracted. Second, with

the important features zact, we train a simple FC-layer based network for the performance verifi-

cation i.e. if the simple FC-layer with zact inputs show the same or similar performance with the

trained Rev-ARGate, then zact shows its importance for the target. Third, with the trained RevNet

and the simple FC-layer network, we run BO so that the z∗ vector is computed with backward pro-

cess on the RevNet and x∗ is generated. The generated x∗ is used as input sample for the trained

FC-layer network and the FC network bring the output y∗ to pass this output to the BO aquisition

63

Monotonic
Lattice

Network

FW_T1

FW_T2

FW_Td

Fusion Weight
Extraction

X

X

X

X
FW_1

FW_2

FW_d

+

……
…

�⃑� =

𝑥
𝑥
.
.
.
𝑥

…

…

𝑧
𝑧
.
.
.
𝑧

= 𝑧

.

.

.

𝑔

𝑔

𝑧∗ =

𝑧∗

𝑧 ∗

𝑧 ∗

𝑧∗

.

.
𝑧∗ Estimate 𝒛𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆 with Bayesian NN

RevNet

ARGate

Figure 4.3: The Rev-ARGate architecture with the restoration through Bayesian NN.

64

function for producing z∗. This whole simulation process is working as a loop. The overall process

of Rev-ARGate with BO is shown in Fig. 4.4.

Trained RevNet

Circuit
simulation

Bayesian optimization
acquisition function

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

Backward
restoration

∗

𝑧∗

𝑧∗

𝑧∗

𝑧∗

.

.
𝑧∗

Restoration

𝒏
∗ 𝒄, c << d

∗
𝒂𝒄𝒕𝒊𝒗𝒆

∗
𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆

∗ ∗

Figure 4.4: The overall Rev-ARGate with Bayesian optimization.

For the rare failure detection performance comparison, our proposed architectures are exam-

ined with pBO in [58] and parallelizable Bayesian optimization with random embedding (HDBO)

in [43]. The BayesOpt [59] is utilized for implementing BO methods. All the simulations were

run on a workstation with a 3.70GHz AMD Ryzen 2700x CPU.

65

4.5.2 Low-dropout Regulator

Three specifications, quiescent current, undershoot and load regulation, are chosen as verifica-

tion targets of the LDO regulator. As shown in Fig. 4.6, three kinds of transistor-level variations

are considered for all 20 transistors: channel length, threshold voltage and gate oxide thickness.

Total 60 features are used as inputs for the simulation. All experiments of Bayesian optimization

use 50 samples for the first gaussian process (GP) model training and total 300 examples for the

sequential experiment. From [58], we verify the dimension reduction performance of our proposed

Rev-ARGate architecture. Since HDBO can discover the number of effective features during the

simulation, we compare the number of active features between HDBO and the proposed algorithm.

The number of active features from the proposed architecture is 22 out of 60, which is roughly one

third of the number of input features and the same as the result from HDBO. Furthermore, in the

light of circuit aspects, the Rev-ARGate identify the actual important feature from the inputs while

HDBO cannot. We observe that most important parameters are located on the output stage in the

LDO regulator, which is similar to the circuit designer’s view.

4.5.3 DC-DC converter

In Fig. 4.5, total 22 transistors are included in the DC-DC converter with two characteristics:

channel length and width, resulting in 44 input features for the simulation. Two specifications are

considered: output accuracy and overshoot. All other simulation settings are the same used in the

LDO regulator simulation. Through our proposed Rev-ARGate, the number of input dimension of

the converter into 18 from 44, which is less than half of the total number of input features.

4.5.4 Failure Detection Results

Based on the effective number of dimension discussed above, 22 is picked for the LDO regula-

tor and 18 for the DC-DC converter. With the effective parameters, similar regression performance

is achieved from the proposed Rev-ARGate architecture.

From Table 4.1 and 4.2, the parallelizable Bayesian optimization (pBO) method cannot detect

a failure case due to the challenging high-dimensional parameter space in the LDO regulator. On

66

Biasing Error Amplifier Comparator Buffer Output Stage

Figure 4.5: A pwm/pfm dc-dc converter.

67

Biasing Error Amplifier Output StageInverting
Amplifier

Figure 4.6: A low-dropout regulator.

68

Table 4.1: Failure detection result comparison for the LDO regulator (60 dimension).

Spec Target Method Worst Case 1st Failure Hit

Quiescent Current 10.5mA

pBO 9.4mA -
HDBO 10.35mA 92

Rev-ARGate with 0’s 11.0mA 298
Rev-ARGate with BNN 10.5mA 206

Undershoot 0.35V

pBO 0.31V -
HDBO 0.36V 221

Rev-ARGate with 0’s 0.36V 262
Rev-ARGate with BNN 0.37V 242

Load regulation 0.27%

pBO 26.1% -
HDBO 29.1% 287

Rev-ARGate with 0’s 27.2% 191
Rev-ARGate with BNN 30.6% 261

the other hand, our proposed failure detection approaches the Rev-ARGate based BOs successfully

find the worst case for all specifications. The Rev-ARGate with the zero restoration scheme takes

only 191 epochs for load regulation specification in the LDO regulator. In terms of the magnitude

of the failure case, the proposed architecture demonstrate much worse case than the given target,

while the baseline sampling methods are failed to find the failure.

In terms of the worst case trend demonstrated in Fig. 4.7, the Rev-ARGate architecture with

BNN begins from lower point than HDBO. While HDBO shows higher worst case in the first 50

epochs, the improvement from starting point is smaller than the Rev-ARGate. On the other hand,

in the Rev-ARGate architecture shows that the worst case of failure keeps increasing and better

performance on the rare failure detection than HDBO. As another example of this trend in Fig. 4.8,

HDBO stuck at the first worst case while our proposed algorithm keeps finding the worst case

during the simulation.

4.6 Conclusion

In this work, we present a RevNet based gating architecture with Bayesian optimization for

rare failure detection of analog mixed-signal circuits. The RevNet is adopted for the dimension-

ality reduction and we utilized Bayesian neural network for estimation of inactive parameters for

69

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

50 100 150 200 250 300

W
or

st
 c

as
e

(V
)

Epoch

HDBO

Rev-ARGate with BNN

Figure 4.7: The worst case trend versus epoch of the LDO regulator with undershoot specification.

Table 4.2: Failure detection result comparison for the DC-DC converter (44 dimension).

Spec Target Method Worst Case 1st Failure Hit

Output accuracy 38mV

pBO 34.25mV -
HDBO 35.61mV -

Rev-ARGate with 0’s 38.68mV 112
Rev-ARGate with BNN 38.99mV 112

Overshoot 11.5mV

pBO 10.31mV -
HDBO 11.11mV -

Rev-ARGate with 0’s 9.5mV -
Rev-ARGate with BNN 11.95mV 210

70

32

33

34

35

36

37

38

39

40

0 50 100 150 200 250 300 350

W
or

st
 c

as
e

(m
V)

Epoch

HDBO

Rev-ARGate with BNN

Figure 4.8: The worst case trend versus epoch of the DC-DC converter with output accuracy
specification.

71

input restoration in the original parameter space. Our experimental results show that our proposed

algorithm detects rare failure cases in high dimensional space, while Bayesian optimization with

traditional and improved acquisition function does not find anomaly during the simulation.

72

5. SUMMARY AND CONCLUSIONS

In this dissertation, machine learning based learning architectures and algorithms for collision

avoidance and sensor fusion are presented.

First, bio-inspied learning algorithm is demonstrated for autonomous vehicle collision avoid-

ance in a mobile robot as test bed. Two techniques for a spiking neural network based rein-

forcement learning for mobile robot navigation are proposed: a multiplicative RM-STDP (M-

RM-STDP) scheme and more biological feed-forward spiking neural network architecture with

fine-grained rewards. It has been shown that the proposed techniques significantly outperform

Q-learning and a baseline SNN approach. Especially, combining the two proposed techniques

leads to a fairly robust solution with significantly improved success rates and quality of navigation

trajectories measured by the number of steering movements.

Second, robust fusion architectures ARGate+ and ARGate-L for sensor fusion in a car are pro-

posed. The ARGate architectures are proving its ability for resilient sensor fusion by addressing

the limitations of the conventional fusion schemes including the existing gating architectures. The

normalized fusion weights give interpretability for feature importance. By leveraging the two regu-

larization techniques, fusion weight regularization with auxiliary losses weighting, and monotonic

fusion target learning, our proposed gating architectures incorporate an auxiliary model to regular-

ize the main model to robustly learn the fusion weight for each modality. Our architectures have

demonstrated significant performance improvements over other models particularly in the presence

of sensor failures.

Last, in terms of data efficient learning with less amount of data, reversible gating architecture

for rare failure detection problem is displayed through Bayesian optimization. The proposed Rev-

ARGate is demonstrated for its effective dimensionality reduction targeting rare failure detection

of analog mixed-signal circuits. The RevNet is deployed for the dimensionality reduction and

we utilized our proposed zero-replacement scheme or Bayesian neural network for estimation of

inactive parameters for input restoration in the original parameter space. Our experimental results

73

show that the proposed algorithm detects rare failure cases in the high dimensional space, while

Bayesian optimization techniques with traditional and improved acquisition function does not.

For future research problem, extension of the SNN with auxiliary paths for sensor fusion is

good approach. Since the SNN is not well studied for the sensor fusion application, the auxiliary

paths with various regularization scheme could be deeply explored.

Furthermore, reversible ARGate can be another interesting topic for the sensor fusion. Due

to the fact that loss of information is avoided through the RevNet, the reversible ARGate which

is composed of reversible convolutional layers can extend the prediction performance further to

its limit. Also, this reversible layer is beneficial for performance of the auxiliary paths, which

improves the main model in the ARGate and overall performance with better regularized fusion

weights.

Utilizing the BNN in the ARGate for probability distribution of the fusion weights is also good

area for future research.

74

REFERENCES

[1] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “Bdd100k:

A diverse driving dataset for heterogeneous multitask learning,” in 2020 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pp. 2633–2642, 2020.

[2] L. Garcia-Alonso, C. H. Holland, M. M. Ibrahim, D. Turei, and J. Saez-Rodriguez, “Bench-

mark and integration of resources for the estimation of human transcription factor activities,”

Genome research, vol. 29, no. 8, pp. 1363–1375, 2019.

[3] J. Gorzelany, “The safest cars and crossovers for 2016,” Forbes, 2016.

[4] T. Dierks, B. T. Thumati, and S. Jagannathan, “Optimal control of unknown affine nonlin-

ear discrete-time systems using offline-trained neural networks with proof of convergence,”

Neural Networks, vol. 22, no. 5, pp. 851–860, 2009.

[5] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,

1992.

[6] B.-Q. Huang, G.-Y. Cao, and M. Guo, “Reinforcement learning neural network to the prob-

lem of autonomous mobile robot obstacle avoidance,” in 2005 International Conference on

Machine Learning and Cybernetics, vol. 1, pp. 85–89, IEEE, 2005.

[7] O. Azouaoui, A. Cherifi, R. Bensalem, A. Farah, and K. Achour, “Reinforcement learning-

based group navigation approach for multiple autonomous robotic systems,” Advanced

Robotics, vol. 20, no. 5, pp. 519–542, 2006.

[8] J. Qiao, Z. Hou, and X. Ruan, “Application of reinforcement learning based on neural net-

work to dynamic obstacle avoidance,” in Information and Automation, 2008. ICIA 2008.

International Conference on, pp. 784–788, IEEE, 2008.

[9] K. Macek, I. PetroviC, and N. Peric, “A reinforcement learning approach to obstacle avoid-

ance of mobile robots,” in Advanced Motion Control, 2002. 7th International Workshop on,

75

pp. 462–466, IEEE, 2002.

[10] E. Nichols, L. J. McDaid, and N. Siddique, “Biologically inspired snn for robot control,”

IEEE transactions on cybernetics, vol. 43, no. 1, pp. 115–128, 2013.

[11] L. I. Helgadóttir, J. Haenicke, T. Landgraf, R. Rojas, and M. P. Nawrot, “Conditioned behav-

ior in a robot controlled by a spiking neural network,” in Neural Engineering (NER), 2013

6th International IEEE/EMBS Conference on, pp. 891–894, IEEE, 2013.

[12] R. V. Florian, “Reinforcement learning through modulation of spike-timing-dependent synap-

tic plasticity,” Neural Computation, vol. 19, no. 6, pp. 1468–1502, 2007.

[13] E. M. Izhikevich, “Solving the distal reward problem through linkage of stdp and dopamine

signaling,” Cerebral cortex, vol. 17, no. 10, pp. 2443–2452, 2007.

[14] R. Legenstein, D. Pecevski, and W. Maass, “A learning theory for reward-modulated spike-

timing-dependent plasticity with application to biofeedback,” PLoS Comput Biol, vol. 4,

no. 10, p. e1000180, 2008.

[15] Z. Cao, L. Cheng, C. Zhou, N. Gu, X. Wang, and M. Tan, “Spiking neural network-based

target tracking control for autonomous mobile robots,” Neural Computing and Applications,

vol. 26, no. 8, pp. 1839–1847, 2015.

[16] P. Arena, L. Fortuna, M. Frasca, and L. Patané, “Learning anticipation via spiking networks:

application to navigation control,” IEEE transactions on neural networks, vol. 20, no. 2,

pp. 202–216, 2009.

[17] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its

application to conduction and excitation in nerve,” The Journal of physiology, vol. 117, no. 4,

p. 500, 1952.

[18] E. M. Izhikevich et al., “Simple model of spiking neurons,” IEEE Transactions on neural

networks, vol. 14, no. 6, pp. 1569–1572, 2003.

76

[19] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From single

neurons to networks and models of cognition. Cambridge University Press, 2014.

[20] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,” Spike-timing dependent

plasticity, p. 35, 2010.

[21] M. C. Van Rossum, G. Q. Bi, and G. G. Turrigiano, “Stable hebbian learning from spike

timing-dependent plasticity,” The Journal of Neuroscience, vol. 20, no. 23, pp. 8812–8821,

2000.

[22] Y. Luz and M. Shamir, “Balancing feed-forward excitation and inhibition via hebbian in-

hibitory synaptic plasticity,” PLoS Comput Biol, vol. 8, no. 1, p. e1002334, 2012.

[23] R. Evans, “Reinforcement learning in a neurally controlled robot using dopamine modulated

stdp,” arXiv preprint arXiv:1502.06096, 2015.

[24] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in neuroscience, vol. 3, p. 26,

2009.

[25] Ramachandram et al., “Deep multimodal learning: A survey on recent advances and trends,”

IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 96–108, 2017.

[26] Ku et al., “Joint 3d proposal generation and object detection from view aggregation,” arXiv

preprint arXiv:1712.02294, 2017.

[27] Chen et al., “Multi-view 3d object detection network for autonomous driving,” in IEEE

CVPR, 2017.

[28] Wei et al., “Lidar and camera detection fusion in a real-time industrial multi-sensor collision

avoidance system,” Electronics, vol. 7, no. 6, p. 84, 2018.

[29] Patel et al., “Sensor modality fusion with cnns for ugv autonomous driving in indoor envi-

ronments,” in IROS, IEEE, 2017.

[30] Mees et al., “Choosing smartly: Adaptive multimodal fusion for object detection in changing

environments,” in IEEE IROS, pp. 151–156, IEEE, 2016.

77

[31] W. Zhang, H. Zhou, S. Sun, Z. Wang, J. Shi, and C. C. Loy, “Robust multi-modality multi-

object tracking,” in Proceedings of the IEEE International Conference on Computer Vision,

pp. 2365–2374, 2019.

[32] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for

scene geometry and semantics,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 7482–7491, 2018.

[33] P. Gao, H. You, Z. Zhang, X. Wang, and H. Li, “Multi-modality latent interaction network for

visual question answering,” in Proceedings of the IEEE International Conference on Com-

puter Vision, pp. 5825–5835, 2019.

[34] Anguita et al., “A public domain dataset for human activity recognition using smartphones.,”

in ESANN, 2013.

[35] Kwak et al., “Know your master: Driver profiling-based anti-theft method,” in 2016 14th

Annual Conference on Privacy, Security and Trust (PST), pp. 211–218, IEEE, 2016.

[36] A. Geiger et al., “Are we ready for autonomous driving? the kitti vision benchmark suite,” in

IEEE CVPR, 2012.

[37] L. Yu, C. Cuppini, J. Xu, B. A. Rowland, and B. E. Stein, “Cross-modal competition: The

default computation for multisensory processing,” Journal of Neuroscience, vol. 39, no. 8,

pp. 1374–1385, 2019.

[38] B. E. Stein et al., “Development of multisensory integration from the perspective of the indi-

vidual neuron,” Nature reviews. Neuroscience, vol. 15, no. 8, pp. 520–535, 2014.

[39] S. You et al., “Deep lattice networks and partial monotonic functions,” in NIPS, 2017.

[40] Paszke et al., “Automatic differentiation in pytorch,” in NIPS-W, 2017.

[41] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,”

2015. Software available from tensorflow.org.

78

[42] D. D. Weller, M. Hefenbrock, M. S. Golanbari, M. Beigl, and M. B. Tahoori, “Bayesian

optimized importance sampling for high sigma failure rate estimation,” in 2019 Design, Au-

tomation Test in Europe Conference Exhibition (DATE), pp. 1667–1672, 2019.

[43] H. Hu, P. Li, and J. Z. Huang, “Enabling high-dimensional bayesian optimization for effi-

cient failure detection of analog and mixed-signal circuits,” in 2019 56th ACM/IEEE Design

Automation Conference (DAC), pp. 1–6, 2019.

[44] X. Shi, H. Yan, J. Wang, X. Xu, F. Liu, L. Shi, and L. He, “Adaptive clustering and sampling

for high-dimensional and multi-failure-region sram yield analysis,” in Proceedings of the

2019 International Symposium on Physical Design, pp. 139–146, 2019.

[45] G. Zhang, J. Zhang, and J. Hinkle, “Learning nonlinear level sets for dimensionality re-

duction in function approximation,” in Advances in Neural Information Processing Systems,

pp. 13220–13229, 2019.

[46] Z. Gao, J. Tao, Y. Su, D. Zhou, X. Zeng, and X. Li, “Efficient rare failure analysis over

multiple corners via correlated bayesian inference,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2029–2041, 2020.

[47] M. Hefenbrock, D. D. Weller, M. Beigl, and M. B. Tahoori, “Fast and accurate high-sigma

failure rate estimation through extended bayesian optimized importance sampling,” in 2020

Design, Automation Test in Europe Conference Exhibition (DATE), pp. 103–108, 2020.

[48] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-revnet: Deep invertible networks,” arXiv

preprint arXiv:1802.07088, 2018.

[49] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible residual network:

Backpropagation without storing activations,” in Advances in neural information processing

systems, pp. 2214–2224, 2017.

[50] M. S. Shim, C. Zhao, Y. Li, X. Zhang, and P. Li, “Robust deep multi-modal sensor fusion

using fusion weight regularization and target learning,” CoRR, vol. abs/1901.10610, 2019.

79

[51] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. De Freitas, et al., “Bayesian optimization in

high dimensions via random embeddings.,” in IJCAI, pp. 1778–1784, 2013.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[53] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham, “Reversible architec-

tures for arbitrarily deep residual neural networks,” arXiv preprint arXiv:1709.03698, 2017.

[54] E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse Problems,

vol. 34, no. 1, p. 014004, 2017.

[55] Y. Wang, P. Li, and S. Lai, “A unifying and robust method for efficient envelope-following

simulation of pwm/pfm dc-dc converters,” in 2014 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 618–625, IEEE, 2014.

[56] S. Lai and P. Li, “A fully on-chip area-efficient cmos low-dropout regulator with fast load

regulation,” Analog Integrated Circuits and Signal Processing, vol. 72, no. 2, pp. 433–450,

2012.

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,

high-performance deep learning library,” in Advances in Neural Information Processing Sys-

tems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[58] H. Hu, P. Li, and J. Z. Huang, “Parallelizable bayesian optimization for analog and mixed-

signal rare failure detection with high coverage,” in Proceedings of the International Confer-

ence on Computer-Aided Design, pp. 1–8, 2018.

80

[59] R. Martinez-Cantin, “Bayesopt: A bayesian optimization library for nonlinear optimization,

experimental design and bandits,” The Journal of Machine Learning Research, vol. 15, no. 1,

pp. 3735–3739, 2014.

81

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	BIO-INSPIRED LEARNING ALGORITHM FOR AUTONOMOUS VEHICLE COLLISION AVOIDANCE
	Background
	The Leaky Integrate-and-Fire Neuron Model
	Spike-Timing-Dependent Plasticity
	Additive Reward-Modulated STDP

	Reinforcement Learning with the Proposed Multiplicative RM-STDP
	Multiplicative Reward-Modulated STDP
	Proposed Reward Functions
	Rewards for Collisions and Arrival
	Rewards for Collision Avoidance
	Reward in the Vicinity of the Target

	Proposed Feed-forward SNNs and Fine-grained Rewards
	Feed-forward SNNs
	Fine-Grained Rewards

	Experimental Settings
	Spiking Neural Networks
	State Space and Discretization
	Motor Control
	STDP parameter settings

	Experimental Results
	Scenario 1
	Scenario 2
	Scenario 3

	Summary and Discussions

	ROBUST FUSION ARCHITECTURE FOR AUTOMOBILE
	Overview of the ARGate Architectures
	The Proposed ARGate Architecture
	Basic structure of ARGate
	Fusion Weight Regularization with Auxiliary Losses: ARGate+ Architecture
	Monotonic Fusion Target Learning

	Experimental Settings
	Datasets
	The Human Activity Recognition Dataset
	The Driver Identification Dataset
	KITTI Dataset

	Neural Network Configurations
	Configurations for the HAR and Driver Identification Datasets
	Configurations for the KITTI Dataset

	Sensor Failures
	Modeling of failing sensors
	Corrupted examples for training/testing

	Evaluation
	Quality of Fusion Weight Extraction
	Results on the HAR Dataset
	Results on the Driver Identification Dataset
	Results on the KITTI Dataset

	Summary and Discussions

	DATA EFFICIENT LEARNING TECHNIQUES FOR RARE FAILURE DETECTION
	Failure Detection Problem Formulation
	Overview of RevNet
	Overview of ARGate Architecture
	Proposed Rev-ARGate based Bayesian Optimization
	Restoration of the input x with zero values
	Restoration of the input x with Bayesian Neural Network

	Experimental Results
	Experimental Setups
	Low-dropout Regulator
	DC-DC converter
	Failure Detection Results

	Conclusion

	SUMMARY AND CONCLUSIONS
	REFERENCES

