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ABSTRACT 

 

The wave-current (or wave-forward speed) interaction study is an effort to incorporate 

essential coupling effects between the unsteady waves problem and the steady flow problem into 

the floating structure’s dynamic. The linear solution that only considers the coupling effect with 

the uniform flow is still considered the most practical way of incorporating the interaction effect. 

This so-called Uniform Flow (UF) approximation model is valid for a slender body under 

relatively low current speed. By considering the UF approximation, the interaction effect can be 

reduced to the solution of a wave-only problem (i.e., zero speed solution) and its correction factors. 

This approximation is implemented into the existing in-house 3-D BEM code in the frequency 

domain. Noting the UF approximation model’s versatility and simplicity, we extend the existing 

model to cover a broader range of applications.  

First, a practical approach to incorporate forward speed and hydro-elasticity effect in the 

frequency domain was developed. By utilizing the discrete-module-beam (DMB) method, flexible 

structures are partitioned into multiple rigid bodies connected by beam elements. The forward 

speed effect is taken into consideration in the multi-body hydrodynamics through the UF-based 

simplified method. The present numerical results compare well with published experimental and 

FEM-BEM coupling method. Several parametric studies were also conducted to quantify the 

forward speed effect on the structure’s elastic behavior. 

Then, a formulation for the second-order difference-frequency wave load in the presence of a 

steady uniform current is presented. The free-surface integral is not included in evaluating the 

difference-frequency force quadratic transfer function (QTF) considering its relatively negligible 
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contribution compared to other terms, significantly reducing the computational cost. The 

importance of properly incorporating the uniform flow effects into both the boundary value 

problem and the force formulation was underscored even for the small uniform flow speed.  

Finally, all of the results except for the hydro elasticity study were compared against the 

completely nonlinear CFD method. The CFD results show several phenomena not captured by the 

BEM, such as the Kelvin ship’s wave, nonlinear body motion, and breaking waves. However, due 

to its lower computation requirements, BEM is still preferred in the majority of cases.
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1.  INTRODUCTION 

 

1.1.    Summary 

Hydrodynamic problems have long been an important design factor for offshore structures. 

Wave, current, along with wind forcing are the main forces that are acting on these structures. 

These forces can be differentiated into two main categories: the Bernoulli pressure-driven forces 

and the viscous drag forces. For structures with large displacements such as tanker ships, semi-

submersibles, and FPSOs, the time-varying inviscid Bernoulli pressure forces exerted by the wave 

field and the structures' motion typically dominates the dynamics. On the other hand, the steady 

shear and drag forces from the viscous effect are typically dominated by the ocean current or the 

relative velocity between a seafaring vessel and its surrounding environments. Common practices 

in the industry suggested that these two problems to be treated separately. The inviscid forces can 

be solved in the time or frequency domain using the less expensive potential theory simulation 

tools, and the viscous forces resolved by utilizing CFD simulation tools or experiments. However, 

various aspects are not taken into account using these approaches; one of them is the coupled 

interaction effect between steady uniform flow with the wave field. To address this problem, we 

developed a potential theory-based Boundary Element Method simulation tool that is able to 

account for the wave-uniform flow interaction effect at low to moderate speed. We then proposed 

extensions of the method to improve its applicability to encompass a broader array of problems.  

To solve the wave-uniform flow interaction problem, potential theory for inviscid, 

incompressible, irrotational flow is used as the framework, and the Laplace equation is used as the 

governing equation. In the steady, Kelvin ship wave problem, Brard [1] consider a linearized free 
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surface condition where the steady perturbation can be considered small, and therefore its 

multiplication can be neglected by considering small uniform flow or slender body 

(∂/𝜕𝜕𝜕𝜕 ≪ ∂/𝜕𝜕𝜕𝜕 or ∂/𝜕𝜕𝑧𝑧) Using the same assumptions, Salvesen et. al., [2] then proposed a 

uniform flow – wave interaction solution where the multiplication between the steady perturbation 

and the unsteady potential can be neglected for the rest of the boundary conditions (e.g., body 

boundary). By considering the linearized boundary value problem, the complexity of the problem 

is significantly reduced. This so called Neumann-Kelvin problem is referred to as the uniform flow 

(UF) approximation in this study, due to the lack of the steady perturbation in the final formulation. 

The linearized boundary value problem is then solved using the boundary element method 

(BEM), specifically the free surface green’s function BEM. The free surface BEM method uses a 

Green’s function that satisfies all the boundary conditions of the problem, except on the body 

boundary, which  is problem specific. Thus, the free surface Green function significantly reduced 

computation requirement since the domain discretization is only needed on the body boundary. 

With additional assumptions, the uniform flow effect can be readily calculated from the zero speed 

results. Therefore, the UF method can be implemented as a post-processing tool to any fluid-

structure interaction simulation code, including the aforementioned frequency domain free surface 

BEM method. The Uniform flow approximation method's versatility opens up many new 

possibilities for it to be applied to other linear problems. However, for non-linear problems, the 

UF approximation needed additional efforts to be implemented since all the non-linear 

hydrodynamic coefficients do not solely comprise the output from zero uniform flow simulation 

results. Due to these reasons, the extension of the present UF method to increase its applicability 

to a broader range of problems poses a challenging and interesting research topic.  
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This study comprises four different chapters, all of which aim to answer all of the issues posed 

above. In the second chapter, we will detail the derivation of the linear UF model, highlighting the 

model's differences with the standard wave diffraction problem and its application to several test 

cases to validate the results obtained from the in-house simulation tool.  

In the third chapter, we explore the possibility of applying the UF model to the linear 

hydroelasticity problem. This problem is particularly interesting since large seafaring vessels such 

as Super Tankers typically undergo a noticeable elastic deformation when traveling across the sea. 

For this problem, the vessel forward speed is hypothesized to affect the elastic deformation and 

the internal forces of the body. A method was proposed so that the forward speed effect on the 

hydro elasticity problem can be straightforwardly applied using any standard potential theory 

simulation tools without any drastic changes. For this reason, the discrete body method was 

adopted and applied alongside the newly formulated UF model for multibody. 

In the fourth chapter, we increase the UF model's application range to solve the second order 

problem in wave slope while keeping the first-order accuracy in wave-uniform flow interaction. 

By expanding the Uniform flow approximation up to the second-order and solving the problem in 

the frequency domain, we can save computational time while expanding the scheme's accuracy. 

Although several studies have expanded the UF model to include the second-order forces, the 

second-order QTF formulation, including second-order diffraction in the frequency domain, is still 

rare. Through this investigation, we can assess the performance of the Uniform flow approximation 

in various sea conditions. 

In the fifth and final chapter, we investigate the wave-current interaction problem using a fully 

non-linear CFD method. The commercial RANS based CFD code STAR-CCM+ is used. Like in 

the potential theory, the CFD method can readily calculate the inviscid linear wave-current 
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interaction problem. On top of that, the CFD can also capture the highly non-linear phenomena 

such as breaking waves, large motion, and shear forces, all of which are not considered in the UF 

approximation method. To highlight the non-linearity of the problem, a case of wave exciting force 

at the pitch resonance frequency is selected. The CFD results are also validated against the 

corresponding in-house BEM code and experiment data.  

To summarize, this study is aimed to extend the application range of the linear wave-uniform 

flow interaction model while still maintaining its core advantages. This core advantages include 

its compatibility with the frequency domain – potential theory based – free surface BEM that is 

relatively straight forward to be applied and computationally less expensive compared to other 

methods. 

1.2.    General Description of the Wave-Uniform Flow Interaction Problem with Linearized 

Interaction Effect  

In this study, three different coordinate systems are used. The first is the earth fixed-inertial 

coordinate system 𝑿𝑿 = (X, Y, Z), the second is the body fixed-non-inertial coordinate system 𝒙𝒙 =

(x, y, z), and the last is the inertial coordinate system that is fixed to the mean body position or the 

body position at rest 𝒙𝒙� = (x�, y�, z�), as illustrated in Fig. 1.1. The Z, z, and z� are pointing upwards, 

with  Z0 defined as the vertical position of the origin of 𝒙𝒙�. 
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Fig. 1.1. Description of the coordinate systems 

Assuming that the fluid is incompressible, irrotational, and inviscid, the fluid’s flow can be 

described with velocity potential function Φ(𝒙𝒙, t). The relation between the velocity potential and 

fluid’s velocity flow field are: 

𝜵𝜵Φ(𝑿𝑿, t) = 𝑽𝑽(𝑿𝑿, t) = ∂Φ
𝜕𝜕Z
�̂�𝒊 + ∂Φ

𝜕𝜕Y
𝒋𝒋̂ + ∂Φ

𝜕𝜕Z
𝒌𝒌�  (1.1) 

The velocity potential should satisfy the mass conservation, which can be represented as the 

Laplace equation as below:  

𝜵𝜵𝟐𝟐Φ = 0  (1.2) 

The pressure is calculated from the velocity potential, following the unsteady form of 

Bernoulli’s equation: 

P(𝑿𝑿, t) = −𝜌𝜌 �∂Φ
𝜕𝜕t

+ 1
2
∇Φ ∙ ∇Φ + g𝑿𝑿.𝒌𝒌��  (1.3) 
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where 𝜌𝜌 is the fluid density, g is the gravitational acceleration, and 𝒙𝒙� is the position vector in the 

inertial frame of reference. The exact free surface elevation 𝜁𝜁 can be derived by considering gauge 

pressure  P(z = ζ, t) = 0 as below: 

ζ(X, Y) = −1
g
�∂Φ
𝜕𝜕t

+ 1
2
∇Φ ∙ ∇Φ�

𝑧𝑧=𝜁𝜁
   (1.4) 

Considering wave and steady flow interaction problem, we decompose the total velocity 

potential into unsteady wave potential ϕw(𝒙𝒙, t) and steady potential ϕst(𝒙𝒙). The present uniform-

flow-based method considers steady potential perturbation caused by the body to be insignificant 

compared to the uniform flow, such that: 

Φ(𝑿𝑿, t) = ϕw(𝑿𝑿, t) + ϕst(𝑿𝑿)  (1.5) 

ϕst(𝑿𝑿) = ϕsB(𝑿𝑿) + ϕU(𝑿𝑿) = ϕsB(𝑿𝑿) − U𝑿𝑿   (1.6) 

where U, ϕU, and ϕsB, are the uniform flow magnitude uniform flow potential, and the perturbed 

steady flow potential due to interaction between the uniform flow with the body, respectively.  The 

uniform flow can also be considered as current speed or negative ship speed, as can be seen on 

Fig. 1.2. 

 

Fig. 1.2. Illustration of wave-forward speed problem and wave-current interaction problem 

interchangeability  

The steady velocity potential satisfies all the appropriate boundary conditions and the Laplace 

equation. The boundary conditions are then linearized following [1] and [2] by considering slender 

body (∂/𝜕𝜕𝜕𝜕 ≪ ∂/𝜕𝜕𝜕𝜕 or ∂/𝜕𝜕𝑧𝑧) or small uniform flow. The linearized boundary condition 
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assumes the steady perturbation to be small, and thus the multiplication between the steady 

perturbation and the unsteady perturbation (e.g., ϕsB and ϕw) are neglected. This approximation 

significantly reduces the complexity of the problem at the expense of losing some coupling 

information between the steady and unsteady solutions. However, in many practical engineering 

applications, this approximation can still provide meaningful first-cut results, such as in [2-7]. 

These approximations are referred to as the uniform flow (UF) approximation for the remainder 

of the study. 

For the wave diffraction-radiation problem, the only source of the unsteady potential terms is 

from the gravity waves and its interaction with the floating body. The total wave potential in 

eq.(1.5) can further be separated as: 

ϕ𝑤𝑤(𝒙𝒙�, t) = ϕI(𝒙𝒙�) + ϕS(𝒙𝒙�) +  ϕR(𝒙𝒙�)  (1.7) 

ϕR(𝒙𝒙�, t) = 𝜼𝜼 ∙ 𝝓𝝓𝒓𝒓 = ∑ ηiϕri(𝒙𝒙�, t)𝟔𝟔
𝐢𝐢=𝟏𝟏   (1.8) 

𝜼𝜼 = (η1, η2, … , η6) = (𝝃𝝃,𝜶𝜶) = �ξ𝑥𝑥, ξ𝑦𝑦, ξ𝑧𝑧 ,α𝑥𝑥 ,α𝑦𝑦,α𝑧𝑧�  (1.9) 

where ϕI, ϕS, ϕR, 𝜼𝜼, 𝝃𝝃,𝜶𝜶  are the incident wave potential, scattered wave potential, radiated wave 

potential, the generalized body motion vector, body’s translation vector, and body’s rotation 

vector, respectively. The scattered wave potential is for deformed waves by the fixed body. The 

radiation potential is for wave generated by the body motion.  

Assuming small non linearity, the velocity potential at each order with respect to the incident 

wave’s slope 𝜖𝜖 can be obtained by employing the perturbation theory: 

Φ = Φ(0) + 𝜖𝜖Φ(1) + 𝜖𝜖2Φ(2)  (1.10) 
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The 0th order potential Φ(0) is associated with the steady potential by the uniform flow. 

Utilizing separation of variables and assuming harmonic motions, the first and second-order 

velocity potentials can be expressed by the sum of its harmonic component as follow: 

Φ(0)(𝒙𝒙�, t) =  ϕst(𝒙𝒙�)      = ϕsB(𝑿𝑿) − U𝑿𝑿    (1.11) 

Φ(1)(𝒙𝒙�, 𝑡𝑡) = ϕw
(1)(𝒙𝒙�, 𝑡𝑡) = Re∑ ϕ𝑖𝑖(𝒙𝒙�)𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑖𝑖𝑡𝑡𝑁𝑁

𝑖𝑖=1   (1.12) 

Φ(2)(𝒙𝒙�, 𝑡𝑡) = ϕw
(2)(𝒙𝒙�, 𝑡𝑡) = Re∑ ∑ �ϕ𝑖𝑖𝑖𝑖

−(𝒙𝒙�)𝑒𝑒𝑖𝑖�𝜔𝜔𝑒𝑒𝑖𝑖 −𝜔𝜔𝑒𝑒𝑒𝑒 �𝑡𝑡 + ϕ𝑖𝑖𝑖𝑖
+ (𝒙𝒙�)𝑒𝑒𝑖𝑖�𝜔𝜔𝑒𝑒𝑖𝑖 +𝜔𝜔𝑒𝑒𝑒𝑒 �𝑡𝑡�𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1     (1.13) 

where ϕ𝑖𝑖(𝜕𝜕) is the first order velocity potential, obtained from the 1st order boundary value 

problem in the presence of the incident wave with a frequency ωei. ϕ𝑖𝑖𝑖𝑖
−  represents the second-

order difference frequency potential and ϕ𝑖𝑖𝑖𝑖
+  represents the second-order sum-frequency potential, 

both are obtained from the 2nd order boundary value problem in the presence of the bichromatic 

incident wave with a frequency pair of 𝜔𝜔e𝑖𝑖 and 𝜔𝜔e𝑖𝑖 . 𝜔𝜔𝑒𝑒 is the encounter frequency, defined as 

follow: 

ωe = ω0 + kU cos βcw  (1.14) 

where 𝜔𝜔0, U, k, and 𝛽𝛽𝑐𝑐𝑤𝑤 is the wave frequency without the presence of the uniform flow, the 

wavenumber, and the angle between the uniform flow and wave heading, respectively. As an 

example, if the wave and uniform flow are from the opposite direction, similar to the vessel with 

a forward speed in following seas (𝛽𝛽𝑐𝑐𝑤𝑤 = 1800),  𝜔𝜔𝑒𝑒 will be lower than 𝜔𝜔0. The directional 

spreading of the incident wave is not considered in this study, and a uni-directional wave is 

considered for the second-order problem (𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖). The exact boundary conditions are described 

as follow: 
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• Free surface boundary condition: 

∂Φ
𝜕𝜕𝒏𝒏

= ∂Φ
𝜕𝜕z

= 𝜵𝜵ℎΦ.𝜵𝜵ℎ𝜁𝜁 + 𝜕𝜕𝜁𝜁
𝜕𝜕𝑡𝑡

  on 𝑆𝑆𝐹𝐹(𝑧𝑧 = 𝜁𝜁) (1.15) 

• Bottom boundary condition: 

∂Φ
𝜕𝜕𝒏𝒏

= 𝜕𝜕Φ
𝜕𝜕𝑧𝑧

= 0  on 𝑆𝑆ℎ(𝑧𝑧 = −ℎ) (1.16) 

• Body boundary condition: 

𝜕𝜕Φ
𝜕𝜕𝒏𝒏

= 𝜕𝜕𝒙𝒙
∂𝑡𝑡
∙ 𝒏𝒏   on 𝑆𝑆𝐵𝐵 (1.17) 

• Far-field boundary condition: 

𝑙𝑙𝑙𝑙𝑙𝑙
|𝒙𝒙|→∞

�|𝒙𝒙| � 𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑙𝑙𝑖𝑖� (ϕ𝑅𝑅 + ϕ𝑆𝑆)  on 𝑆𝑆|𝒙𝒙|→∞ (1.18) 

where 𝒏𝒏 is the unit normal direction of the boundary surface, 𝜕𝜕Φ/𝜕𝜕𝒏𝒏 = 𝜵𝜵Φ.𝒏𝒏 is the fluid velocity 

in the 𝒏𝒏 direction, and  𝜵𝜵ℎ = 𝜕𝜕/𝜕𝜕x �̂�𝒊 + 𝜕𝜕/𝜕𝜕y 𝒋𝒋 ̂ is the horizontal gradient vector. Note that even 

though the far field condition is written as (1.18), it is not exact in the presence of uniform flow. 

We define P(𝒙𝒙�)SB as the pressure on the exact body surface SB with respect to the inertial 

frame of reference 𝒙𝒙�, such that 𝒙𝒙� ∈ SB. P(𝒙𝒙�)SB can be related to the pressure on the body’s mean 

position P(𝒙𝒙)SB0 by employing the multivariate Taylor expansion as follow: 

P(𝒙𝒙�)SB = P(𝒙𝒙)SB0 + (𝒙𝒙� − 𝒙𝒙) ∙ 𝜵𝜵P(𝒙𝒙)SB0  (1.19) 

Applying the same Taylor expansion on the free surface and the body boundary condition, we 

can describe the exact free surface with respect to the still water level z = 0, and the body boundary 

with respect to the body’s mean position SB = SB0 as follow: 

𝜕𝜕Φ
𝜕𝜕𝒏𝒏

|𝑆𝑆𝐵𝐵 = 𝜕𝜕Φ
𝜕𝜕𝒏𝒏

|𝑆𝑆𝐵𝐵0 + (𝒙𝒙� − 𝒙𝒙) ∙ 𝜵𝜵 𝜕𝜕Φ
𝜕𝜕𝒏𝒏

|𝑆𝑆𝐵𝐵0 (1.20) 
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𝜁𝜁(x, y) = −1
g
�∂Φ
𝜕𝜕t

+ 1
2
∇Φ ∙ ∇Φ�

𝑧𝑧=𝜁𝜁
   

              = −1
g
�∂Φ
𝜕𝜕t

+ 1
2
∇Φ ∙ ∇Φ�

𝑧𝑧=0
+ 1

g2
�∂Φ
𝜕𝜕t

+ 1
2
∇Φ ∙ ∇Φ�

𝑧𝑧=0

𝜕𝜕
𝜕𝜕z
�∂Φ
𝜕𝜕t

+ 1
2
∇Φ ∙

∇Φ�
𝑧𝑧=0

   

(1.21) 

Forces and moment are calculated by integrating the pressure on the exact body surface up to 

the exact free surface as follow: 

𝑭𝑭 = −∬ P 𝒏𝒏� dS 
 𝑆𝑆𝐵𝐵

  

≅ �∬ dS 
𝑆𝑆𝐵𝐵0

� �P(0) + 𝜖𝜖P(1) + 𝜖𝜖2P(2)��𝒏𝒏�(0) + 𝜖𝜖𝒏𝒏�(1) + 𝜖𝜖2𝒏𝒏�(2)� +  

�∫ dl ∫ dz 
𝜖𝜖𝜁𝜁𝑟𝑟

(1)+𝜖𝜖2𝜁𝜁𝑟𝑟
(2)

 
𝑤𝑤𝑤𝑤 � �P(0) + 𝜖𝜖P(1) + 𝜖𝜖2P(2)��𝑵𝑵� (0) + 𝜖𝜖𝑵𝑵� (1) + 𝜖𝜖2𝑵𝑵� (2)�  

(1.22) 

𝑴𝑴 = −∬ P (𝒙𝒙� × 𝒏𝒏�) dS 
 𝑆𝑆𝐵𝐵

  

≅ �∬ dS 
𝑆𝑆𝐵𝐵0

� �P(0) + 𝜖𝜖P(1) + 𝜖𝜖2P(2)��(𝒙𝒙� × 𝒏𝒏�)(0) + 𝜖𝜖(𝒙𝒙� × 𝒏𝒏�)(1) + 𝜖𝜖2(𝒙𝒙� ×

𝒏𝒏�)(2)� + �∫ dl∫ dz 
𝜖𝜖𝜁𝜁𝑟𝑟

(1)+𝜖𝜖2𝜁𝜁𝑟𝑟
(2)

 
𝑤𝑤𝑤𝑤 � �P(0) + 𝜖𝜖P(1) + 𝜖𝜖2P(2)��(𝒙𝒙� × 𝑵𝑵�)(0) + 𝜖𝜖(𝒙𝒙� ×

𝑵𝑵�)(1) + 𝜖𝜖2(𝒙𝒙� × 𝑵𝑵�)(2)�  

(1.23) 

where 𝜁𝜁𝑟𝑟 = 𝜁𝜁 − z� is the relative wave elevation, 𝒏𝒏� is the body’s unit-normal vector in the inertial 

frame of reference 𝒙𝒙�, 𝒏𝒏 is the body’s unit-normal vector in the body-fixed frame of reference 𝒙𝒙, 

and 𝑵𝑵� = 𝒏𝒏�/�1 − n�z. Note that for the body-fixed frame of reference, 𝒏𝒏(0) = 𝒏𝒏(1) = 𝒏𝒏(2) = 𝒏𝒏. 

The waterline integral is included to account for the instantaneous wave elevation with respect to 

the undisturbed sea level and instantaneous body position. For shorthand writing purposes, we also 

introduce the generalized force vector 𝑭𝑭′  and unit-normal vector 𝒏𝒏′ that is defined as: 

𝑭𝑭′ = (F1′ , F2′ , … , F6′ ) = (𝑭𝑭,𝑴𝑴)  (1.24) 
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𝒏𝒏′ = (n1′ , n2′ , … , n6′ ) = (𝒏𝒏,𝒏𝒏 × 𝒙𝒙) = �n𝑥𝑥, n𝑦𝑦, n𝑧𝑧 , �nyz − nzy�, {nzx − nxz}, �nxy −

nyx��   

(1.25) 

To solve the exact-non-linear boundary value problem in the frequency domain, we decompose 

the problem into each order of non-linearity with respect to 𝜖𝜖 and successively solve it from the 

lowest to the highest order. The linear solution (1st order in wave slope and in wave-uniform flow 

interaction) and its extension to the hydroelasticity problem is explained in the 2nd and 3rd section. 

While the weak second order solution (2nd order in wave slope and 1st order in wave-uniform flow 

interaction) is explained in the 4th section.   
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2.  THE FIRST ORDER WAVE-UNIFORM FLOW INTERACTION 

PROBLEM 

 

2.1.    Background and Literature Review 

The wave-current interaction (or wave-forward speed interaction) study is an effort to 

incorporate important features of the coupling effect between the wave diffraction and uniform 

flow problem into floating structure’s dynamic analysis. Hirdaris et. al. [1] shows in his study that 

out of 175 papers that are used as references, roughly 20% of them are related to the wave-forward 

speed or wave-current interaction problem, signifying its importance in both the industry and in 

academia. Wave uniform flow interaction can become an important design factor through several 

ways, including: the change of magnitude of exciting forces, hydrodynamic damping, added mass, 

RAO, and added resistance. 

The wave-uniform flow problems can be resolved through numerical hydrodynamic simulation 

considering different level of fidelities. Several attempts were done to try to take into account both 

the linear and non-linear wave-uniform flow coupling terms on both the free surface boundary 

condition and the body boundary condition. New free surface green function were developed to 

take into account the uniform flow effect to the free surface boundary condition either in the 

frequency domain [2-5], or the time domain [6, 7]. These green function will preserve the 

advantages of having the free surface green function where discretization is only needed on the 

body surface. However, due to the high oscillation tendency on the free surface green function, the 

complexity of integrating the value, and non-reliable result when there is a ship wave propagating 
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upstream from the ship, several additional numerical technique and additional precautions are 

needed when applying these green functions.  

Several studies resort to the application of the rankine panel method (RPM) to resolve the 

coupled wave-uniform flow boundary value problem, where the green function is conditioned to 

satisfy all the boundary condition except on the free surface and the body surface boundary [8-10]. 

This method is highly compatible with the time domain method, and non-linearity effect such as 

steady Kelvin ship wave effect on the unsteady diffraction problem can be simulated [8, 10]. 

Variation of this method can be found on ref. [11, 12], where rankine source function is placed on 

the offset from the boundary surfaces to avoid singularity from the rankine source. By using the 

RPM method in the time domain, accurate results for non-slender structure such as floating 

offshore platform can be achieved [13-15]. Despite the aforementioned benefits of using time 

domain or rankine panel method, the drawbacks of higher computational time due to time stepping 

and additional free surface panels persist. 

Timman & Newman [16] and Ogilvie & Tuck [17] shows that the  wave-uniform flow coupling 

effect on the body boundary condition can be formulated into the well-known “m” terms. In 

addition, Ogilvie & Tuck [17] shows the equation for the wave-forward speed interaction where 

the steady perturbation to the uniform flow is described as the double body potential and linearized 

by considering small uniform flow magnitude. On the other hand, Brard et. al. [18], introduced an 

approximate method where the boundary condition in the steady wave (e.g., Kelvin’s ship waves) 

and uniform flow interaction problems are linearized by considering negligible interaction with 

the steady perturbation. This so called Neumann-Kelvin problem can be satisfied when body is 

either thin or slender, subjected to small uniform flow, or combinations of the two [19-24]. 

Salvesen [19], then applied the same Neumann-Kelvin approximation to the unsteady waves 



14 
 

problem using the 2D strip theory. In this study, the same linearized wave-uniform flow coupling 

problem as in the Brard et. al. [18] and Salvesen [19] is called as the Uniform Flow (UF) 

approximation, due to only uniform flow coupling effect with the wave’s perturbation is 

considered.  

The resulting hydrodynamics coefficient in the UF approximation is found to be only depends 

on the zero speed solution and correction factors that also only depends on zero speed solutions 

[19]. From here, the advantages of using UF approximation is clear, that is, it can account for the 

linear wave-uniform flow interaction effect by using the zero-speed hydrodynamic computation 

tools. Even though UF approximation is simpler compared to the double body linearization, Kim 

& Kim [22] shows in his study that UF approximation generally have comparable performance to 

its double body approximation counterpart. 

Loken [21], Papanikolaou [16] and Guha [23, 25] further increase the robustness of the 

Salvesen [19] UF approximation method, by applying it in the potential flow based 3D boundary 

element method (BEM) in the frequency domain [26]. The study take advantage of the free surface 

green function where the green function is conditioned to satisfy all the governing and boundary 

equation except the body boundary condition. By doing this, the computation cost reduced greatly 

because no time integration is needed, and discretization is only needed on the body surface. On 

this method, the coupling terms between the wave and uniform flow is ignored by considering thin 

slender body condition, so that the free surface green function for zero uniform flow case can still 

be used. The linear frequency domain BEM can also be coupled with either RANS or time domain 

BEM simulation tools to take into account weak nonlinearity that come from the incident wave 

and hydrostatic forces [27, 28]. 
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Considering the versatility and practicality of the UF approximation method, this study will 

focus on the possibilities of extending the frequency domain UF 3D free surface BEM to wider 

range of cases where unsteady waves and steady uniform flow interaction are important, while 

also maintaining its advantages as mentioned in the earlier paragraphs. 

2.2.    Methodology 

2.2.1.   The First Order Boundary Value Problem  

By considering eq.(1.3) – (1.10), and considering the Taylor expansion in eq.(1.19) – eq.(1.21), 

the 0th and 1st order variables can be found in Table 2.1 below.  

Table 2.1. The 0th and 1st order variables 

Var. 𝑶𝑶(𝛜𝛜𝟎𝟎)  𝑶𝑶(𝛜𝛜𝟏𝟏)  

𝒏𝒏� 𝒏𝒏�(0) = 𝒏𝒏 = �nx, ny, nz�  𝒏𝒏�(1) = 𝜶𝜶(1) × 𝒏𝒏  

𝒙𝒙� 𝒙𝒙�(0) = 𝒙𝒙 = (x, y, z)  𝒙𝒙�(1) = 𝝃𝝃(1) + 𝜶𝜶(1) × 𝒙𝒙  

𝒙𝒙� × 𝒏𝒏� (𝒙𝒙� × 𝒏𝒏�)(0) = (𝒙𝒙 × 𝒏𝒏)  (𝒙𝒙� × 𝒏𝒏�)(1) = 𝝃𝝃(1) × 𝒏𝒏 + 𝜶𝜶(1) × (𝒙𝒙 × 𝒏𝒏)  

P(𝒙𝒙�)𝑆𝑆𝐵𝐵 P(𝒙𝒙�)𝑆𝑆𝐵𝐵
(0) = −ρ�U

2

2
+ g{z + 𝑍𝑍𝑜𝑜}�

 𝑆𝑆𝐵𝐵0
  P(𝒙𝒙�)𝑆𝑆𝐵𝐵

(1) = −ρ�∂ϕw
(1)

∂t
− U ∂ϕw

(1)

∂x
+ g𝒙𝒙�(1).𝒌𝒌��

𝑆𝑆𝐵𝐵0
  

  𝜁𝜁(x�, y�) 𝜁𝜁(x�, y�)(0) =0  𝜁𝜁(x�, y�)(1) = −1
g
�∂ϕw

(1)

∂t
− U ∂ϕw

(1)

∂x
�
z=0

  

By substituting the variables from eq.(1.6)- eq.(1.9), and Table 2.1 into the boundary 

conditions in eq.(1.15)-eq.(1.18), the 1st-order boundary conditions can be obtained by keeping all 

the 𝑂𝑂(𝜖𝜖1) terms and neglecting the ϕsB terms as follows: 
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• Free surface boundary condition: 

 �g 𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝜕𝜕
�
2
�ϕw

(1) = LF = 0    on 𝑆𝑆𝐹𝐹(𝑧𝑧 = 0) (2.1) 

• Bottom boundary condition: 

 𝜕𝜕ϕw
(1)

𝜕𝜕𝜕𝜕
= 0        on 𝑆𝑆ℎ(𝑧𝑧 = −ℎ)  (2.2) 

• Body boundary condition of the scattering potential: 

 𝜕𝜕ϕS
(1)

𝜕𝜕𝒏𝒏
= −𝜕𝜕ϕI

(1)

𝜕𝜕𝒏𝒏
   on 𝑆𝑆𝐵𝐵 = 𝑆𝑆𝐵𝐵0 (2.3) 

• Body boundary condition of the radiation potential: 

 ηk
(1) 𝜕𝜕ϕ𝑟𝑟k

(1)

𝜕𝜕𝒏𝒏 = ∂ηk
(1)

∂t
nk′ + Uηk

(1)mk     ,k=1,2,…,6 on 𝑆𝑆𝐵𝐵 = 𝑆𝑆𝐵𝐵0 (2.4) 

where the m terms come from the interaction between the zeroth-order potential with the 1st 

order normal direction (see Table 2.1 for definitions and [16] or [17] for details), and is defined 

as: 

 (m1, m2, m3) = ( 𝒏𝒏 ∙ 𝜵𝜵)𝜵𝜵ϕ𝑠𝑠𝑠𝑠   
(2.5) 

 (m4, m5, m6) = ( 𝒏𝒏 ∙ 𝜵𝜵) × (𝒙𝒙 × 𝜵𝜵ϕ𝑠𝑠𝑠𝑠)   (2.6) 

As shown by Salvesen et. al., [19], for the UF interaction model, the m terms are reduced to: 
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 mj = (0, 0, 0, 0, n3,−n2)  (2.7) 

For the case without uniform flow, the body boundary condition of the radiation potential is 

reduced to: 

 ηk
(1) 𝜕𝜕ϕ𝑟𝑟k

0(1)

𝜕𝜕𝒏𝒏 = ∂ηk
(1)

∂t
nk′          ,k=1,2,…,6 on 𝑆𝑆𝐵𝐵 = 𝑆𝑆𝐵𝐵0 (2.8) 

• Far-field boundary condition: 

 𝑙𝑙𝑙𝑙𝑙𝑙
|𝒙𝒙|→∞

�|𝒙𝒙| � 𝜕𝜕
𝜕𝜕𝑠𝑠
− 𝑙𝑙𝑘𝑘𝑒𝑒� �ϕR

(1) + ϕS
(1)�  on 𝑆𝑆|𝒙𝒙|→∞ (2.9) 

By using eq.(2.8) (definition of ϕ𝑟𝑟𝑟𝑟
0(1)) and by substituting the m terms definition in eq.(2.7) to 

the radiation body boundary conditions in eq.(2.4), the relation between the radiation potential 

with uniform flow ϕ𝑟𝑟𝑟𝑟
(1) and the radiation potential with zero forward speed ϕ𝑟𝑟k

0(1) can be written 

as follows: 

 ϕ𝑟𝑟k
(1) = �

ϕ𝑟𝑟k
0(1)                           𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘 < 5

ϕ𝑟𝑟k
0(1) + Uϕ𝑟𝑟k

0(1)     𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘 = 5

ϕ𝑟𝑟k
0(1) − Uϕ𝑟𝑟k

0(1)     𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘 = 6

     (2.10) 

The linear free surface boundary condition can be reduced back to the same form as the case 

without uniform flow, if 𝜔𝜔𝑒𝑒 ≫  U(𝜕𝜕/𝜕𝜕x): 

 �g 𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝜕𝜕
�
2
�ϕw

(1) ≅ �g 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2

𝜕𝜕t2
� ϕw

(1) = LF0 = 0   (2.11) 

The 𝜔𝜔𝑒𝑒 ≫  U(𝜕𝜕/𝜕𝜕x) condition above can be fulfilled if one or the combination of the following 

conditions is fulfilled: (1) high encounter frequency ωe, (2) low uniform flow magnitude U, (3) 
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slender body. In other words the longitudinal derivatives (𝜕𝜕/𝜕𝜕x) have to be small compared to the 

transversal derivatives (𝜕𝜕/𝜕𝜕y  &  𝜕𝜕/𝜕𝜕z ). Furthermore, even though the far-field boundary 

condition is written as eq.(2.9), it is not exact in the presence of forward speed. For the results 

presented in this study, a pragmatic approach was taken in that both eq.(2.9) and the 0-speed free-

surface condition are assumed to be satisfied to develop the numerically simpler approach. The 

same approach was also applied in [20, 21, 23, 25]. Several important implications due to these 

assumptions and approximations are: 

1. Zero-speed free surface green function can be used. 

2. Only body boundary conditions need to be fulfilled by the radiation and scattering 

potentials; therefore, no free surface discretization is needed. 

3. No additional steps compared to the zero-speed case are needed to solve the steady wave 

potentials. 

4. The change in wave’s diffraction forces, added mass, and hydrodynamic damping due to 

the wave-current interactions can be treated as correction terms to the 0-speed values. 

Therefore, ϕSi
(1) and ϕ𝑟𝑟𝑟𝑟𝑖𝑖

(1)  can be obtained by solving the same body boundary condition as the 

one for the zero-speed case but evaluated at 𝜔𝜔𝑒𝑒𝑖𝑖. From eq.(2.11), the first order incident wave at a 

given frequency 𝜔𝜔0 follows the Airy’s linear wave theory as follow: 

 ϕIi
 = 𝑖𝑖gAi

ω0𝑖𝑖

𝑐𝑐𝑜𝑜𝑠𝑠ℎ�ki(z+h)�
𝑐𝑐𝑜𝑜𝑠𝑠ℎ(kih) 𝑒𝑒−i𝒌𝒌i∙𝒙𝒙  (2.12) 

where A denotes the incident wave’s amplitude, h denotes the water depth, 𝒌𝒌i =

ki(cos𝛽𝛽𝑖𝑖 �̂�𝒊 + sin𝛽𝛽𝑖𝑖 𝒋𝒋̂) denotes the wave number where ω0i
2 = gki tanh(kih), and 𝛽𝛽𝑖𝑖 denotes the 

wave heading angle of incidence to the positive x-axis. 
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2.2.2.   1st Order Hydrodynamic Loading and Equation of Motion 

After solving the first order potentials ϕIi
 ,ϕSi

 , and ϕrki
0 , the 1st order forces and moments are 

obtained by collecting the 𝑂𝑂(𝜖𝜖1)  terms in eq.(1. 22)- eq.(1. 23): 

 

𝑭𝑭(1) = F1−3
′(1) = ∬ P(1)𝒏𝒏�(0) dS 

 𝑆𝑆𝐵𝐵0
+ ∬ P(0)𝒏𝒏�(1) dS 

 𝑆𝑆𝐵𝐵0
  

= −ρ∬ �∂ϕw
(1)

∂t
− U ∂ϕw

(1)

∂x
� 𝒏𝒏 dS 

 𝑆𝑆𝐵𝐵0
  

−ρg∬ �𝝃𝝃(1) + 𝜶𝜶(1) × 𝒙𝒙� ∙ 𝒌𝒌� 𝒏𝒏dS 
 𝑆𝑆𝐵𝐵0

  

−ρg∬ (z + 𝑍𝑍𝑜𝑜)�𝜶𝜶(1) × 𝒏𝒏� dS 
 𝑆𝑆𝐵𝐵0

  

+ρ∬ U2

2
�𝜶𝜶(1) × 𝒏𝒏� dS 

 𝑆𝑆𝐵𝐵0
   

(2.13) 

 𝑴𝑴(1) = F4−6
′(1) = ∬ (𝒙𝒙� × 𝒏𝒏�)(0)P(1) dS 

 𝑆𝑆𝐵𝐵0
+ ∬ (𝒙𝒙� × 𝒏𝒏�)(1)P(0) dS 

 𝑆𝑆𝐵𝐵0
  

= −ρ∬ (𝒙𝒙 × 𝒏𝒏) �∂ϕw
(1)

∂t
− U ∂ϕw

(1)

∂x
�  dS 

 𝑆𝑆𝐵𝐵0
  

−ρg∬ (𝒙𝒙 × 𝒏𝒏)�𝝃𝝃(1) + 𝜶𝜶(1) × 𝒙𝒙� ∙ 𝒌𝒌� dS 
 𝑆𝑆𝐵𝐵0

  

−ρg∬ �𝝃𝝃(1) × 𝒏𝒏�(z + 𝑍𝑍𝑜𝑜) dS 
 𝑆𝑆𝐵𝐵0

− ρg∬ �𝜶𝜶(1) × (𝒙𝒙 × 𝒏𝒏)�(z + 𝑍𝑍𝑜𝑜) dS 
 𝑆𝑆𝐵𝐵0

  

+ρ∬ �𝝃𝝃(1) × 𝒏𝒏� U
2

2
 dS 

 𝑆𝑆𝐵𝐵0
+ ρ∬ �𝜶𝜶(1) × (𝒙𝒙 × 𝒏𝒏)� U

2

2
�𝜶𝜶(1) × 𝒏𝒏� dS 

 𝑆𝑆𝐵𝐵0
   

(2.14) 

where 𝑭𝑭′ = (F1′ , F2′ , … , F6′ ) is the generalized force vector, as defined in eq.(24). Similar to the 

eq.(12), the total time-varying forces and moments are defined as 𝑭𝑭T
′(1)(𝑡𝑡) = Re∑ 𝑭𝑭i′𝑒𝑒

𝑖𝑖ωei𝑠𝑠𝑁𝑁
i=1 . 
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The first term in both 1st order force and moment formula is the 1st order hydrodynamic forces. 

The hydrodynamic forces can be further decomposed into the Froude-Krylov wave exciting force 

𝑭𝑭𝐈𝐈
′(1) consisting of ϕI

(1), the scattered wave exciting force 𝑭𝑭𝐒𝐒
′(1) consisting of ϕ𝑆𝑆

(1), and the added 

mass [𝑨𝑨] and hydrodynamic damping [𝑩𝑩] consisting of ϕrk
(1). Meanwhile, the rest of the terms are 

the hydrostatic terms that contribute to the 1st order hydrostatic stiffness [𝑲𝑲𝒉𝒉]. Considering 

eq.(2.5)-(2.10), the 1st order hydrodynamic load components can be simplified into (see [19] for 

detailed derivations): 

• Incident wave exciting force: 

 

FIk
′(1) = 𝜌𝜌∬ �∂ϕI

(1)

𝜕𝜕t
− U ∂ϕI

(1)

𝜕𝜕x
�nk′ dS 

𝑆𝑆𝐵𝐵0
  

= 𝜌𝜌𝑙𝑙∬ �ωe − U𝑘𝑘 cos𝛽𝛽𝑤𝑤𝑜𝑜�ϕI
(1)nk′ dS 

𝑆𝑆𝐵𝐵0
  

= 𝑙𝑙ω0𝜌𝜌∬ ϕI
(1)nk′ dS 

𝑆𝑆𝐵𝐵0
    

(2.15) 

• Scattered wave exciting force, with uniform flow correction: 

 FSk
′(1) =  𝜌𝜌∬ �∂ϕS

(1)

𝜕𝜕t
− U ∂ϕS

(1)

𝜕𝜕x
�nk′ dS 

𝑆𝑆𝐵𝐵0
  (2.16) 

The spatial derivative in the convective term in the scattered wave’s loading can be avoided 

by utilizing Stoke’s theorem, as shown in ref.[17, 19]: 

 FSk
′(1) =  𝑙𝑙ωe𝜌𝜌∬ ϕS

(1)nk′ dS 
𝑆𝑆𝐵𝐵0

− 𝜌𝜌∬ Umk
 ϕS

(1)dS 
𝑆𝑆𝐵𝐵0

     (2.17) 

Or, by using the Haskind’s relation, it can also be written as: 
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FSj
(k) =  −𝜌𝜌∬

∂ϕI
(1)

𝜕𝜕n
ϕrk
0(1)dS 

𝑆𝑆𝐵𝐵0
                                                            for  k = 1, 2, 3, 4    

         = −𝜌𝜌 �∬
∂ϕI

(1)

𝜕𝜕n
ϕrk
0(1)dS 

𝑆𝑆𝐵𝐵0
 + 𝜌𝜌U

𝑖𝑖𝜔𝜔𝑒𝑒
∬

∂ϕI
(1)

𝜕𝜕n
ϕr3
0(1)dS 

𝑆𝑆𝐵𝐵0
�             for k = 5   

         = −𝜌𝜌 �∬
∂ϕI

(1)

𝜕𝜕n
ϕrk
0(1)dS 

𝑆𝑆𝐵𝐵0
− 𝜌𝜌U

𝑖𝑖𝜔𝜔𝑒𝑒
∬

∂ϕI
(1)

𝜕𝜕n
ϕr2
0(1)dS 

𝑆𝑆𝐵𝐵0
�             for k = 6  

(2.18) 

• Hydrodynamic damping and added mass, with uniform flow correction: 

 Frk
′(1) = ∑ �Akm

 − 𝑖𝑖
ωe

Bkm
 � ηm

(1)6
m=1    (2.19) 

where, 

 �Akm
 − 𝑖𝑖

ωe
Bkm

 � =  𝑙𝑙ωe𝜌𝜌∬ ϕrm
(1)nk′ dS 

𝑆𝑆𝐵𝐵0
− 𝜌𝜌∬ Umk

 ϕrm
(1)dS 

𝑆𝑆𝐵𝐵0
        (2.20) 

where the 6 × 6 added mass matrix [𝑨𝑨] = Akm
  and hydrodynamic damping [𝑩𝑩] = Bkm

  can be 

rewritten in terms of its relationship with the added mass and hydrodynamic damping without 

the uniform flow as follow: 

 �Akm
0 − 𝑖𝑖

ωe
Bkm
0 � =  𝑙𝑙ωe𝜌𝜌∬ ϕrm

0(1)nk′ dS 
𝑆𝑆𝐵𝐵0

  (2.21) 

A15 = A150 − U
ωe
2 B130   A26 = A26

0 + U
ωe
2 B220   B15 = B150 + UA130   B26 = B260 − UA22

0      

A51 = A51
0 + U

ωe
2 B310   A62 = A62

0 − U
ωe
2 B220   B51 = B510 − UA31

0   B62 = B620 + UA22
0    

A35 = A35
0 − U

ωe
2 B330   A46 = A46

0 + U
ωe
2 B240   B35 = B350 + UA33

0   B46 = B460 − UA24
0    
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A53 = A53
0 + U2

ωe
2 B330   A64 = A64

0 − U
ωe
2 B420   B53 = B530 − UA33

0   B64 = B640 + UA42
0    

A55 = A55
0 + U2

ωe
2 A33

0   A66 = A66
0 + U2

ωe
2 A22

0   B55 = B550 + U2

ωe
2 B330   B66 = B660 + U2

ωe
2 B220    (2.22) 

The 1st order motions are needed to calculate the 2nd order force and moment. The 1st order 

motion can be obtained by solving the following equation of motion: 

 [𝑴𝑴 + 𝑨𝑨(ωe)]�̈�𝜼(𝟏𝟏) + [𝑩𝑩(ωe)]�̇�𝜼(𝟏𝟏) + [𝑲𝑲𝒉𝒉]𝜼𝜼(1) = 𝑭𝑭𝑰𝑰
′(𝟏𝟏) + 𝑭𝑭𝑺𝑺

′(𝟏𝟏)  (2.23) 

where [𝑴𝑴] and [𝑲𝑲𝒉𝒉] are the 6 × 6 mass and hydrostatic stiffness matrix, respectively. The equation 

solves for 6 × 1 motion vector 𝜼𝜼(1) at each frequency component ωei, where the total motion is 

defined as 𝜼𝜼T
(1)(𝑡𝑡) = Re∑ 𝜼𝜼(1)𝑒𝑒𝑖𝑖ωei𝑠𝑠𝑁𝑁

i=1 . We can see that the hydrodynamic forces due to radiation 

potential and the hydrostatic forces can be moved to the left-hand side due to its dependency on 

the body’s motion.  

2.2.3.   Numerical Implementation 

To solve the first order disturbance potentials ϕSi
  and ϕrki

0 , the boundary element method is 

used. Boundary Element Method can be derived using two different ways, by the velocity potential 

or Green’s formulation and the source distribution formulation. An in-house program that was 

originally developed for linear zero speed wave diffraction-radiation problem was used as a base 

code. In the linear wave diffraction-radiation problems without uniform flow, the Green’s 

formulation BEM is used. For the problems involving uniform flow interaction and second order 

wave’s problem, however, the source distribution method is more proper to be used due to reasons 

explained in this sub-section. 
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The Green’s formulation can be derived by applying the Divergence theorem to 𝚿𝚿, where 𝚿𝚿 

is a continuously differentiable vector field, as follow: 

 ∭ (∇.𝚿𝚿)𝑑𝑑𝑑𝑑 
𝑉𝑉∀

= ∯ (𝑭𝑭.𝒏𝒏)𝑑𝑑𝑑𝑑 
𝑆𝑆∀

  (2.24) 

where the left hand side is a volume integral over the enclosed volume 𝑑𝑑∀, the right hand side is 

the surface integral over the boundary of the volume 𝑑𝑑∀, and 𝒏𝒏 is a normal directional vector of 

the boundary of the volume 𝑑𝑑∀ with (+) value pointing outward. In our problem, 𝑑𝑑∀ encompasses 

all the fluid domain, while 𝑆𝑆∀ consist of far field, sea bottom, free surface, and body surface 

boundaries. 

Letting 𝚿𝚿 = 𝜙𝜙∇G −  𝐺𝐺∇ϕ where both ϕ and 𝐺𝐺 are both a scalar function which derivative 

denotes the flow’s velocity field, and with both satisfies Laplace equation, we obtain, 

 

∭ ∇. (𝜙𝜙∇G −  𝐺𝐺∇ϕ) 𝑑𝑑𝑑𝑑 
𝑉𝑉∀

= ∯ (𝜙𝜙∇G−  𝐺𝐺∇ϕ).𝒏𝒏 𝑑𝑑𝑑𝑑 
𝑆𝑆∀

  

∭ (𝜙𝜙∇2G −  𝐺𝐺∇2ϕ + ∇𝜙𝜙∇G − ∇𝜙𝜙∇G) 𝑑𝑑𝑑𝑑 
𝑉𝑉∀

= ∯ (𝜙𝜙∇G−  𝐺𝐺∇ϕ).𝒏𝒏 𝑑𝑑𝑑𝑑 
𝑆𝑆∀

  
(2.25) 

∇2ϕ = ∇2G = 0 from Laplace equation and ∇G.𝐧𝐧 = ∂G
𝜕𝜕𝜕𝜕

= velocity projected into the normal 

direction of the body. ∂G
𝜕𝜕𝜕𝜕

 contains singularity terms that need to be excluded from the integral 

solution and solved by using residual analysis. ∂ϕ
𝜕𝜕𝜕𝜕

 can be obtained from the normal velocity of the 

fluid on the body’s surface  𝑑𝑑𝜕𝜕. the above equation can be rewritten into: 

 2𝜋𝜋𝜙𝜙 + ∯ 𝜙𝜙∂G
𝜕𝜕𝜕𝜕

 𝑑𝑑𝑑𝑑 
𝑆𝑆∀

= ∯ 𝐺𝐺 𝑑𝑑𝜕𝜕 𝑑𝑑𝑑𝑑 
𝑆𝑆∀

  (2.26) 

In panel method, the continuous surface of a body is represented as the summation of 

quadrilateral or triangular panels. Further assumption is made by considering that the magnitude 
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of the velocity potential 𝜙𝜙 is constant on each panel. With these considerations, the discretization 

of the integral equation can be written as: 

 2𝜋𝜋𝜙𝜙(𝒙𝒙𝑖𝑖) + ∑ 𝜙𝜙(𝒙𝒙𝑗𝑗) ∂G
�𝒙𝒙𝑗𝑗,𝒙𝒙𝑖𝑖�
𝜕𝜕𝜕𝜕𝑗𝑗

 𝑑𝑑𝑗𝑗
𝑁𝑁𝑁𝑁
𝑗𝑗=1 = ∑ 𝐺𝐺(𝒙𝒙𝑗𝑗,𝒙𝒙𝑖𝑖) 𝑑𝑑𝜕𝜕𝑗𝑗 𝑑𝑑𝑗𝑗

𝑁𝑁𝑁𝑁
𝑗𝑗=1   (2.27) 

where 𝑁𝑁𝑁𝑁, 𝑗𝑗, 𝑙𝑙,𝑑𝑑, 𝑛𝑛 are the total number of the boundary panel, index of the position vector of the 

source panel, index of the position vector of the calculated panel / field points, area of the panel, 

and normal direction of the panel with positive pointing into the fluid domain respectively.  

𝐺𝐺(𝒙𝒙𝑗𝑗 ,𝒙𝒙𝑖𝑖) is a function that can be obtained by solving the partial differential equation in the 

Boundary Value Problem in the previous section while also fulfilling the Laplace condition.  

Considering the linearity of the potential velocity formulation of the flow field, the total 

potential velocity at a field point can be defined as a summation of the potential velocity imposed 

by the source points originated from the boundaries. This methodology in formulating the 

boundary element method also called the source distribution method. This formulation is written 

as: 

 𝜙𝜙(𝒙𝒙𝑖𝑖) =  ∯ 𝜎𝜎�𝒙𝒙𝑗𝑗�𝐺𝐺�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� 𝑑𝑑𝑑𝑑 
𝐴𝐴𝐵𝐵

  (2.28) 

where 𝜎𝜎�𝒙𝒙𝑗𝑗� is the source strength of the potential velocity. By taking the normal derivative with 

respect to the collocation point i, we have,  

  𝑑𝑑𝜕𝜕𝑖𝑖 = ∂𝜙𝜙(𝒙𝒙𝑖𝑖)
𝜕𝜕𝜕𝜕𝑖𝑖

=  ∯
∂�𝜎𝜎�𝒙𝒙𝑗𝑗�𝐺𝐺�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗��

𝜕𝜕𝜕𝜕𝑖𝑖
 𝑑𝑑𝑑𝑑 

𝐴𝐴𝐵𝐵
  (2.29) 
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Using the same discretization method as the Green’s method and assuming that the magnitude 

of the source strength 𝜎𝜎 is constant on each panel, the discretization of the integral equation of the 

eq.(2.29) above can be written as: 

 2𝜋𝜋𝜎𝜎(𝒙𝒙𝑖𝑖) + ∑ 𝜎𝜎(𝒙𝒙𝑗𝑗) ∂G
�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗�
𝜕𝜕𝜕𝜕𝑖𝑖

 𝑑𝑑𝑗𝑗
𝑁𝑁𝑁𝑁
𝑗𝑗=1 = 𝑑𝑑𝜕𝜕𝑖𝑖  (2.30) 

The equation above will solve for 𝜎𝜎(𝒙𝒙𝑖𝑖). One can then obtain the potential velocity from the 

source strength by using the definition of the potential velocity of: 

 𝜙𝜙(𝒙𝒙𝑖𝑖) =  ∑ 𝜎𝜎�𝒙𝒙𝑗𝑗�𝐺𝐺�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� 𝑑𝑑𝑗𝑗
𝑁𝑁𝑁𝑁
𝑗𝑗=1   (2.31) 

The differences between the Green’s and source distribution formulation can be summarized 

into Table 2.2 below: 

Table 2.2. Differences between potential formulations Vs. source distribution formulation 
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Note that the source distribution formulation require additional step to solve for the velocity 

potential. However, since the flow’s velocity calculated from the Green’s method require a second 

order derivative of the Green’s function, it will be more prone to discontinuity. For these reasons, 

in this study, all 1st order wave’s potentials will be calculated using the Green’s formulation, while 

the 1st order wave’s potential spatial derivatives will be calculated using the source distribution 

formulation. For both boundary element’s formulation, the green function 𝐺𝐺�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� remain the 

same, which are:  

 𝐺𝐺�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = 𝐺𝐺𝑠𝑠𝑜𝑜�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� + 𝐺𝐺𝑠𝑠𝑜𝑜2�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� + 𝐺𝐺𝑓𝑓𝑠𝑠�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗�  (2.32) 

 𝐺𝐺𝑠𝑠𝑜𝑜�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = 1

��𝜕𝜕𝑖𝑖−𝜕𝜕𝑗𝑗�
2
+�𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗�

2
+�𝜕𝜕𝑖𝑖−𝜕𝜕𝑗𝑗�

2
  (2.33) 

 𝐺𝐺𝑠𝑠𝑜𝑜2�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = 1

��𝜕𝜕𝑖𝑖−𝜕𝜕𝑗𝑗�
2
+�𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗�

2
+�𝜕𝜕𝑖𝑖+𝜕𝜕𝑗𝑗�

2
  (2.34) 

 
𝐺𝐺𝑓𝑓𝑠𝑠�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = 2𝜈𝜈

𝜋𝜋 ∫
𝑒𝑒𝑘𝑘�𝑧𝑧𝑖𝑖+𝑧𝑧𝑗𝑗�

𝑟𝑟−𝜈𝜈
𝐽𝐽0(𝑘𝑘𝑘𝑘)𝑑𝑑𝑘𝑘∞

0 + 𝑙𝑙2𝜋𝜋𝜋𝜋𝐽𝐽0(𝜋𝜋𝑘𝑘)  
(2.35) 

𝐺𝐺𝑠𝑠𝑜𝑜 is the rankine / source Green’s function that satisfies the Laplace equation. 𝐺𝐺𝑠𝑠𝑜𝑜2 is the 

image rankine green function with respect with the x-y plane so that the fluid particle that’s on the 

free surface z = 𝜁𝜁 will stay on the free surface. 𝐺𝐺𝑓𝑓𝑠𝑠 is the free surface Green function that satisfy 

all the previous conditions mentioned before, along with the free surface boundary condition and 

the far field radiation condition. Among many others, the derivation of the green function can be 

found in [29, 30].  

By only using the 𝐺𝐺𝑠𝑠𝑜𝑜 and 𝐺𝐺𝑠𝑠𝑜𝑜2 alone, we can solve the boundary value problem by utilizing 

eq.(2.29)-(2.31) and apply it to all boundary surfaces, which include the free surface and the body 
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surface. This approach is called the rankine panel BEM. Since the change in the boundary 

condition does not change the green function’s formulation, this approach can handle different 

boundary condition with relative ease if done properly. However, this method also have 

disadvantages when it comes to computation time, number of computation points, and also 

required additional treatments to fulfill the bottom boundary and far field radiation condition. 

The approach that is used in the present study is called the Free Surface Green’s function panel 

BEM, or Green’s panel BEM for short. This approach take into account 𝐺𝐺𝑓𝑓𝑠𝑠 so that all boundary 

conditions except the body boundary condition are satisfied. Note that the 𝐺𝐺𝑓𝑓𝑠𝑠 in the eq.(2.35) was 

derived by only considering the FSBC without any uniform flow effect (see eq.(2.11)). 

2.3.    Case Study 

2.3.1.   Case Definition 

Case study was done to see how the Uniform flow approximation performed against other 

method and against experimental results. These test studies can be summarized in Table 2.3 above. 

CASE 1 and CASE 2 is compared against the same Uniform flow approximation numerical 

simulation that was done by another independent study on ref. [23, 25], and experimental results 

for both the exciting force and the motion [31]. For force calculation, additional CASE 3 are used 

to inspect the robustness of the Uniform flown approximation against higher order methods. CASE 

3 is compared against a UF approximation in time domain quadratic boundary element method 

(ref. [14]). 
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Table 2.3. Validation and preliminary result cases 

NAME HULL TYPE BEM PANEL CASE DETAIL 

CASE 1 Slender Wigley 

 

• 𝐿𝐿 = 2 𝑙𝑙 

• 𝐵𝐵 = 0.3 𝑙𝑙 

• 𝐷𝐷 = 0.125 𝑙𝑙 

• 𝐹𝐹𝜕𝜕 = 0.2 

•  𝛽𝛽𝑤𝑤0 = 00 

• 𝛽𝛽𝑤𝑤𝑐𝑐 = 1800 

CASE 2 Blunt Wigley 

 

• 𝐿𝐿 = 2.5 𝑙𝑙 

• 𝐵𝐵 = 0.5 𝑙𝑙 

• 𝐷𝐷 = 0.175 𝑙𝑙 

• 𝐹𝐹𝜕𝜕 = 0.2 

• 𝛽𝛽𝑤𝑤0 = 00 

• 𝛽𝛽𝑤𝑤𝑐𝑐 = 1800 

CASE 3 Cylinder 

 

• 𝐷𝐷 = 27.4 𝑙𝑙 

• 𝑘𝑘 = 10.8 𝑙𝑙 

• 𝐹𝐹𝜕𝜕 = 0.137 

• 𝛽𝛽𝑤𝑤0 = 00 

• 𝛽𝛽𝑤𝑤𝑐𝑐 = 1800 
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2.3.2.   Results and Discussions  

2.3.2.1.  CASE 1 Results and Discussion 

 
Fig. 2.1. Force amplitude (top) and phase (bottom) validation of the present study against similar 

approach from ref.[23,25]  and experiment data from ref.[31] for slender Wigley hull with  𝐹𝐹𝜕𝜕 =

0.2 
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Fig. 2.2. RAO amplitude (top) and phase (bottom) validation of the present study against similar 

approach from ref.[23,25]  and experiment data from ref.[31] for slender Wigley hull with  𝐹𝐹𝜕𝜕 =

0.2 

For the slender Wiglley Hull with 𝐹𝐹𝜕𝜕 = 0.2 case(Fig. 2.1-Fig. 2.2), good agreements for both 

forces and RAOs with another UF approximation study (ref. [23, 25]) were achieved. The UF 

approximation method also agrees well with the experiment results, especially the exciting forces, 

and heave RAO. Exception can be found on the heave and pitch resonance RAO and the overall 

surge RAO. It is well known that for slender body, the linear potential theory typically under 

predict the surge damping. Furthermore, as mentioned in [31], the motion is highly non-linear and 

that the viscous effect is more pronounce at the heave and pitch resonance frequency. 
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2.3.2.2.  CASE 2 Results and Discussion 

 
Fig. 2.3. Force amplitude (top) and phase (bottom) validation of the present study against similar 

approach from ref.[23,25]  and experiment data from ref.[31] for blunt Wigley hull with  𝐹𝐹𝜕𝜕 =

0.2 
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Fig. 2.4. RAO amplitude (top) and phase (bottom) validation of the present study against similar 

approach from ref.[23,25]  and experiment data from ref.[31] for slender Wigley hull with  𝐹𝐹𝜕𝜕 =

0.2 

For the blunt wiglley Hull with 𝐹𝐹𝜕𝜕 = 0.2 (Fig. 2.3-Fig. 2.4), we also obtained a good agreement 

with another UF approximation study (ref. [23, 25]),  for both forces and RAOs. The UF 

approximation method also agrees well with the experiment results for both exciting forces and 

RAOs. Exception can be found on the heave motion which are overpredicted, which might caused 

by viscous or non linear effect that are present on the experiment.  

2.3.2.3.  CASE 3 Results and Discussion 

From Fig. 2.5, we can see that the UF approximation agrees well with body nonlinear – free 

surface nonlinear time domain rankine panel BEM on ref. [14] for the cylinder case. The same 

reversal for surge and pitch where on lower period the forces becomes larger than the  𝑈𝑈 = 0 in 

contrast with the peak amplitude are observed on both method.  
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Fig. 2.5. Comparison between the UF approximations with weakly nonlinear time domain 

rankine panel UF BEM from ref.[14] 

2.4.    Summary 

An in-house linear wave-current interaction simulation tool is developed by considering UF 

approximation in the frequency domain - 3D BEM framework. An in-house program that was 

originally developed for linear zero speed wave diffraction-radiation problem was used as a base. 

The program is then extended to include the source formulation to calculate velocity more 

accurately and also extended to include the linear wave-current interaction effect. 

In overall, the UF wave-uniform flow interaction model are proven to be robust enough to 

solve typical fluid structure interaction problem, especially when the structure is considered to be 

slender. More comparative studies and validations can be found in ref. [9, 20, 22, 23, 25]. The UF 

approximation also proven to be straightly applicable to any BEM simulation tools, since all 

interaction terms reduced to correction terms that can be obtained from zero uniform speed 

simulation. Due to the ease of implementation in the linear problem, there are still rooms for this 

method to be applied to other linear theory such as linear hydro elasticity problems. For non-linear 

problem however, the UF approximation needed additional efforts to be implemented since all the 

non-linear hydrodynamic coefficients will not solely comprise of the output from 𝑈𝑈 = 0 
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simulation results. Due to these reasons, we aim to present the extension to the UF approximation 

method so that its applicability is extended to cover wider range of problems in the following 

sections. 
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3.  PRACTICAL APPROACH OF LINEAR HYDRO-ELASTICITY 

EFFECT ON VESSEL WITH FORWARD SPEED IN THE 

FREQUENCY DOMAIN 

 

3.1.    Background and Literature Review 

Different from classical fluid-structure interaction where the structure is considered as one 

rigid body, hydroelasticity treats the structure as a deformable solid continuum with its own 

governing equation that is different from the surrounding fluid continuum. The elastic deformation 

of the body will change the body’s total local displacement which in turn will displace the 

surrounding fluid differently compared to if we treated the structure as a non-deformable rigid 

body. Consequently, the resulting reaction force and the fluid’s exciting force acting on the body 

will be effectively changed due to the deformation of the body as well. This coupling effect 

between the fluid and deformable body’s interaction is the main focus of many hydroelasticity 

studies.  

Unlike the traditional fluid-structure interaction that treats structures as a single rigid body, 

hydro-elasticity studies consider the structure as a deformable solid continuum that interacts with 

fluid motions. The elastic deformation of the structure can cause an appreciable change in local 

displacements, which in turn results in different behavior of surrounding fluid and the 

corresponding forces compared to the case of rigid body. Based on this theoretical background, 

many hydro-elasticity studies have been performed in the past several decades to explain the 

coupling effect between fluid motion and structural deformation [1].  
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The hydro-elasticity effect is largely dependent on structural deformability [2, 3]. In general, 

the larger the structure, the more difficult to be rigid. In recent years, Very Large Floating 

Structures (VLFSs) have attracted great attention due to increased interest in ocean-space 

utilization. Such structures include not only ship-shaped structures (e.g., Ultra Large Crude Carrier 

(ULCC) supertankers) but also other types of floating structures (e.g., floating bridges, floating 

airports, islands, storages, and floating solar power plants) [4]. These structures can be up to 

several kilometers in length and relatively low in stiffness compared to traditional offshore 

structures. Consequently, VLFSs require more elaborate hydro-elastic analysis to estimate their 

local displacements and structural behaviors during the design process. In addition, hydro-

elasticity was also considered in several Wave Energy Converters (WECs) to accurately estimate 

their local load distribution and energy extraction [5, 6]. 

There are two popular numerical methods for hydro-elastic analysis: the modal superposition 

and direct methods. First, the modal superposition method calculates the generalized body 

coordinates and local normal directions of the structures by using rigid and elastic modes, and then 

the fluid dynamics solver utilizes these parameters to calculate wave and other fluid loads in each 

mode. Hydro-elastic deformation is then obtained by superposing the elastic responses obtained in 

each mode [2]. This method can further be categorized into dry and wet mode methods, depending 

on the method to acquire the elastic modes. For example, Newman [2], Senjanović et al. [7], and 

Fu et al. [8] selected the dry mode method in frequency-domain hydro-elastic analysis while the 

wet mode method [9-11], which additionally considers added mass and hydrostatic stiffness in 

modal analysis, was also incorporated in the frequency-domain hydro-elastic analysis. In some 

cases, the Finite Element Method (FEM) is required to obtain the structural mode shapes and 

natural frequencies of a complex structure with non-typical boundary conditions [8, 11, 12]. In 
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addition, the modal superposition method can be combined with the 3-dimensional (3D) 

hydrodynamic simulation program to estimate the interacting fluid loads in both frequency [2, 3, 

13, 14] and time domains [13, 15-17]. In the time domain, this method was also utilized for load 

mapping of a deformable structure in random waves [18]. Second, the direct method couples the 

3D FEM method with the 3D hydrodynamic simulation at each time step, which is numerically 

expensive but can be more robust [19-21]. This method has several advantages: no structural mode 

shape is required, non-linearity can be taken into consideration in the time domain, complex 

structural geometry can straightforwardly be incorporated, and local stresses can directly be 

estimated. In some cases, Computational Fluid Dynamics (CFD) and FEM are coupled for the 

hydro-elastic simulation, which is numerically very intensive [22]. A hybrid method, which 

combines these two methods, was also investigated by Jagite et al. [23]. Various hydro-elastic 

methods were reviewed in more detail in ref. [24-27]. 

Recently, a discrete-module-beam (DMB) method has been proposed for hydro-elastic 

analysis [1, 4, 28], which is different from the conventional modal-superposition and direct 

methods. In this approach, a deformable structure is discretized into multiple floating rigid 

modules while a stiffness matrix based on beam theory, such as the Euler-Bernoulli beam, 

equivalently representing the structure’s stiffness, is employed to connect neighboring modules. 

No structure’s modal characteristics are required with enough number of rigid modules, which can 

also save computational time and effort compared with the modal superposition method where 

iteration is needed to get wet modes. Hydro-elastic problems can then be solved in both frequency 

[1] and time [4, 28, 29] domains. In addition, Zhang and Lu [30] extended its application to a 

complex structural shape with the rigorous FEM simulation, in which the complex structural 
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stiffness is converted into equivalent beam stiffness. In the present hydro-elastic analysis, the DMB 

approach with multi-floater-module hydrodynamics is used. 

The presence of uniform flow or forward speed of vessels poses additional difficulties. Ref. 

[19, 21, 31, 32] shows that the presence of uniform flow changes both the direction and magnitude 

of local loads on structures, which means that structural design and fatigue analysis need to take it 

into consideration. Numerical studies such as ref. [19, 21] took account of the uniform flow by 

means of full FEM-BEM coupling in the time domain, or time-domain BEM coupled with modal 

superposition method. Those methods are highly time-consuming and computationally very 

extensive. In order to make a more practical approach to consider the uniform flow effect on the 

linear hydro-elasticity problems, the present uniform-flow approximation [33-35] along with the 

DMB method is therefore proposed. Both uniform-flow approximation and DMB method can be 

applied as a post-processing after the multi-body diffraction/radiation problem in the frequency 

domain. Therefore, any multi-body wave diffraction/radiation simulation tools, such as the 

commercially available like WAMIT [36], can straightforwardly be used to solve the forward-

speed hydro-elastic problem as presented in this paper despite that WAMIT was developed as 

zero-forward-speed code. Although multi-body wave-structure interaction is used both in the 

industry and academia, the same case with forward speed (or uniform current) is hard to find in 

the open literature. Using the developed computer program, the effects of forward speed or partial 

structural damage on the modal characteristic of elastic structures are also investigated. This might 

also be useful for future researches if the wave-current interaction model is to be paired with the 

modal superposition method. To summarize, the principal differences between the proposed 

method with the more rigorous FEM-BEM direct coupling methods as in ref. [19, 21, 31, 32] can 
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be found in Table 3.1. Various hydro-elastic analyses in the presence of forward speed using 

various different approaches can also be found in more detail in ref. [33, 37, 38]. 

Table 3.1. Summary of differences between the reference [19] and present methods 

Physics Das & Cheung  [19] Present Study 

Structural 
Dynamics 3D shell finite element  

Discrete 3D multi rigid bodies 
connected by equivalent beam 
elements 

Wave 
Diffraction-
Radiation 

Boundary element method: 

• Rankine green function 

• Free surface and far-field 
discretization in box 
spatial domain 

Boundary element method: 

• Free surface Green Function 

• Body discretization only 

 

Hydro-elastic 
Coupling 

Direct FEM-BEM coupling 
in the frequency domain 

External stiffness matrix on 
multi-body diffraction-radiation 
dynamics in the frequency 
domain 

Wave-Current 
Interaction 

• Steady double-body flow 
is considered in the 
boundary conditions and 
forces 

• Modification of free-
surface waves by current 
is considered 

• Only the uniform-flow 
coupling effect is considered 
in the boundary conditions 
and forces 

• 0-speed free surface boundary 
condition approximation 

 

3.2.    Structural Dynamics and Hydro-elastic Coupling 

3.2.1.   Discrete Body Hydroelasticity Method (DBM) 

The structural analysis part of the hydroelasticity problem is done using the equivalent beam 

theory based element. Just like on typical experimental set up (Fig.3.2), the VLFS is modeled as 
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interconnected M rigid body that are connected by beam elements that act as the “spine” of the 

whole structures. As its numerical representation, the stiffness of the whole structure will be 

represented as equivalent Euler-Bernoulli beam and Saint Venant’s torsional end node stiffness. 

A total of M-1 beam elements are needed to connect all the rigid bodies together, and individual 

beam is considered to be connected by a fixed end connection to a lumped mass that represents 

each rigid body. The end node stiffness obtained from the beam theory is then applied as external 

stiffness in our hydrodynamic model, thus completing the hydrodynamic and structural elasticity 

coupling.  

The DMB method was first developed by Lu et al. [39] to simulate the linear hydro-elasticity 

problem by adopting a multi-rigid body approach. The concept of this approach is similar to the 

standard hydro-elasticity experiment’s set-up, where the floating body is partitioned into M 

number of sections that are connected to one another by beam elements to simulate its elastic 

behaviors as can be seen in Fig. 3.1. The blue lines illustrate the beam elements that are connected 

to two adjacent module’s center of gravities. A total of M-1 beam elements are needed to connect 

all the modules. 

As can be seen in Fig. 3.1 Each module is treated as an independent rigid body with six degrees 

of freedom, expressed in their local coordinate system (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛). The interaction between one 

body and the others comes through the hydrodynamics interactions and the end node’s stiffness 

loading from the beam elements. 
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Fig. 3.1. Illustration of Discrete Module Beam (DMB) method  

 As its numerical representation, each module’s distributed mass is modeled as a lumped mass 

located at its center of gravity, and the beam is modeled as the Euler-Bernoulli beam theory and 

Saint-Venant torsion model. This beam model is valid when the structure’s plane sections remain 

plane (no shear deformation), and that deformed beam angles are small (linear). These assumptions 

are typically valid for slender structures with 𝐸𝐸𝐸𝐸/𝜅𝜅𝐿𝐿𝑒𝑒2𝐴𝐴𝐴𝐴 ≪ 1 that undergoes small deformations. 

Where E, I, 𝜅𝜅, 𝐿𝐿𝑒𝑒 ,𝐴𝐴 and G are elastic modulus, second moment of area, shear coefficient, length 

of the beam, cross-section area of the beam, and the shear modulus respectively. The 12 × 12 

equivalent end node axial, bending, and torsional stiffness of two interconnected structures in the 

local coordinate system can be formulated as follow [15]: 
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𝐾𝐾𝑒𝑒′ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸𝐸𝐸
𝐿𝐿𝑒𝑒

           

0 12𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒3

          

0 0 12𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒3

     𝑆𝑆𝑦𝑦𝑆𝑆.    

0 0 0 𝐺𝐺𝐼𝐼𝑝𝑝
𝐿𝐿𝑒𝑒

        

0 0 −6𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒2

0 4𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒

       

0 6𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒2

0 0 0 4𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒

      
−𝐸𝐸𝐸𝐸
𝐿𝐿𝑒𝑒

0 0 0 0 0 𝐸𝐸𝐸𝐸
𝐿𝐿𝑒𝑒

     

0 −12𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒3

0 0 0 −6𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒2

0 12𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒3

    

0 0 −12𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒3

0 6𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒2

0 0 0 12𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒3

   

0 0 0 −𝐺𝐺𝐼𝐼𝑥𝑥
𝐿𝐿𝑒𝑒

0 0 0 0 0 𝐺𝐺𝐼𝐼𝑝𝑝
𝐿𝐿𝑒𝑒

  

0 0 −6𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒2

0 2𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒

0 0 0 6𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒2

0 4𝐸𝐸𝐼𝐼𝑦𝑦
𝐿𝐿𝑒𝑒

 

0 6𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒2

0 0 0 2𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒

0 −6𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒2

0 0 0 4𝐸𝐸𝐼𝐼𝑧𝑧
𝐿𝐿𝑒𝑒 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   
(3.1) 

 𝐾𝐾𝑒𝑒′ = �
𝐾𝐾𝑒𝑒
′(𝑖𝑖𝑖𝑖) 𝐾𝐾𝑒𝑒

′(𝑖𝑖𝑖𝑖)

𝐾𝐾𝑒𝑒
′(𝑖𝑖𝑖𝑖) 𝐾𝐾𝑒𝑒

′(𝑖𝑖𝑖𝑖)�  (3.2) 

where  𝐾𝐾𝑒𝑒
′(𝑖𝑖𝑖𝑖), 𝐾𝐾𝑒𝑒

′(𝑖𝑖𝑖𝑖), 𝐾𝐾𝑒𝑒
′(𝑖𝑖𝑖𝑖), and 𝐾𝐾𝑒𝑒

′(𝑖𝑖𝑖𝑖) are the 6 × 6 sub-block matrix of the 12 × 12 external 

stiffness matrix in the local coordinate system, while subscript 𝑒𝑒 is the beam-element number, and 

the superscript (𝑖𝑖𝑖𝑖) denotes the ith and jth modules that are connected by the beam.  

This DMB approach has several advantages compared to other linear hydro-elasticity 

approaches such as does not depend on the pre-determined mode shapes, compatible with any 

multi-body hydrodynamic computation tools, and therefore it can be easily incorporated into 

engineering design practices. For non-slender beam or complex-shaped structures, the stiffness 

matrices need to be calculated by utilizing FEM as can be found in Zhang & Lu [30]. However, a 
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simplified approach to calculate the equivalent beam stiffness for ship-shaped structures based on 

the matching of fundamental modes is adopted in the present study. 

3.2.2.   Equation of Motions 

The multi-body equation of motion in the frequency domain is used in this study and is 

formulated as follows: 

 [𝑀𝑀 + 𝐴𝐴(ωe)]�̈�𝜂 + [𝐵𝐵(ωe)]�̇�𝜂 + [𝐾𝐾ℎ + 𝐾𝐾𝐸𝐸]𝜂𝜂 = 𝐹𝐹𝑑𝑑    (3.3) 

 (−𝜔𝜔𝑒𝑒2[𝑀𝑀 + 𝐴𝐴(ωe)] + 𝑖𝑖𝜔𝜔𝑒𝑒[𝐵𝐵(ωe)] + [𝐾𝐾ℎ + 𝐾𝐾𝐸𝐸])𝜂𝜂 = 𝐹𝐹𝑑𝑑    (3.4) 

where 𝜔𝜔𝑒𝑒 is the wave’s encounter frequency, 𝑀𝑀, 𝐴𝐴(ωe), 𝐵𝐵(ωe), 𝐾𝐾ℎ, and 𝐾𝐾𝐸𝐸 are the 6M × 6M 

sectional mass, added mass, hydrodynamic damping, hydrostatic stiffness, and external stiffness 

matrices (with the number of modules, M), while 𝜂𝜂 and 𝐹𝐹𝑑𝑑  are the 6M × 1 motion and diffraction-

force vectors, respectively. The total external stiffness matrix in global coordinate system 𝐾𝐾𝐸𝐸 can 

be derived from the element’s external stiffness matrix as follow: 

 𝐾𝐾𝐸𝐸 =

⎣
⎢
⎢
⎢
⎢
⎡𝐾𝐾1

(11)  𝐾𝐾1
(12) 0 ⋯ 0

𝐾𝐾1
(21) 𝐾𝐾1

(22) + 𝐾𝐾2
(22)  𝐾𝐾2

(23) ⋯ 0
0 𝐾𝐾2

(32) 𝐾𝐾2
(33) + 𝐾𝐾3

(33) ⋯ 0
⋮ ⋮ ⋮ ⋱  ⋮
0 0 0 ⋯ 𝐾𝐾𝑀𝑀−1

(𝑀𝑀𝑀𝑀)⎦
⎥
⎥
⎥
⎥
⎤

   (3.5) 

Note that all the local element stiffness matrices are converted into the global coordinate by 

utilizing directional cosine transformation matrices, i.e. 𝐾𝐾𝑒𝑒
(𝑖𝑖𝑖𝑖) = 𝑇𝑇𝑒𝑒𝑇𝑇𝐾𝐾𝑒𝑒

′(𝑖𝑖𝑖𝑖)𝑇𝑇𝑒𝑒  (with transformation 

matrix, 𝑇𝑇𝑒𝑒 ), as can be found in Wei et al. [1].  
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After solving the equation of motion, the vertical bending moment can be subsequently 

calculated by considering the internal force balance as follow: 

 𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖 = 𝐾𝐾𝐸𝐸  𝜂𝜂 = 𝐹𝐹𝑑𝑑 − (−𝜔𝜔𝑒𝑒2[𝑀𝑀 + 𝐴𝐴(ωe)] + 𝑖𝑖𝜔𝜔𝑒𝑒𝐵𝐵(ωe) + 𝐾𝐾ℎ) 𝜂𝜂  (3.6) 

 
My(x) = ∑ �Fint

(𝑘𝑘)
5 + Fint

(𝑘𝑘)
3 ∙ �x − x𝑔𝑔

(𝑘𝑘)��
K (x𝑔𝑔

(𝐾𝐾)≤  x)
k=1     

(3.7) 

where 𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖  is the 6M × 1 structural loading vector, Fint
(𝑘𝑘)

5 is the internal y-moment of the kth body, 

Fint
(𝑘𝑘)

3 is the internal z-force of the kth body,  x is the collocation point of the vertical bending 

moment, and x𝑔𝑔
(𝑘𝑘) is the location of the kth body’s center of gravity. All of which are illustrated in 

Fig. 3.2. Illustration of bending moment on DMB method. Since the diffraction force, motion, 

added mass, radiation damping, and encounter frequency are affected by the uniform flow; the 

bending moment is expected to be changed as well. 

 

Fig. 3.2. Illustration of bending moment on DMB method 

3.2.3.   Modal Analysis 

Modal analysis is done to see the effect of the uniform flow to the mode shape and natural 

frequency. Because DBM does not require the solving of modal analysis before any calculation 

can be done, the modal analysis can be done separately from the rest of calculation. The writer is 
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interested in investigating the change of modal characteristics due to uniform flow, because for the 

more popular modal superposition method, the mode shape is one of the determining factor. In 

addition, the modal characteristics can gives an overview on which part of the structure is expected 

to change the most due to the presence of the uniform flow. 

DMB does not require solving mode shapes before hydro-elastic computation. The elastic 

behavior is considered by the multi-body dynamics that are coupled through the equivalent beam 

stiffness (see sub-section 2.1). The modal analysis, however, can be done separately for heuristic 

comparison. We primarily investigate the change of modal characteristics due to uniform flow (or 

forward speed) so that the users of the modal superposition method can have the relevant insight. 

In addition, the modal characteristics can give an idea on which part of the structure is changed 

the most due to the presence of the uniform flow. The natural frequencies are calculated as follows: 

 det|−ωn
2[𝑀𝑀 + 𝐴𝐴(ωn)] + [𝐾𝐾ℎ + 𝐾𝐾𝐸𝐸]| = 0  (3.8) 

Mode shapes are calculated as follows: 

 �−ωn
2
𝑖𝑖�𝑀𝑀 + 𝐴𝐴�ωn𝑖𝑖�� + [𝐾𝐾ℎ + 𝐾𝐾𝐸𝐸]� 𝜓𝜓𝑖𝑖 = 0  (3.9) 

where ωn
 
𝑖𝑖 is the natural frequency of ith mode and 𝜓𝜓𝑖𝑖 is the mode-shape vectors of the ith mode. 

Since the added mass  𝐴𝐴(ωe) is affected by the uniform flow, the mode shapes and natural 

frequencies are expected to be changed as well. This kind of modal analysis, which considers the 

water-contact effect [𝐴𝐴(ω𝑛𝑛)] and [𝐾𝐾ℎ], is called the wet-mode method. From eq.(3.9) above, we 

can see that in order to solve for ωn, we need to know the added mass at ωn, which is not known 

a priori. Thus to solve this problem, automated iteration method as can be seen on Fig.3.3. is 

employed. 
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Fig. 3.3. Automated iteration method to solve the “wet” modal characteristics 

3.3.    Wave and Uniform Current Hydrodynamics 

3.3.1.   Boundary Value Problem for Multi Body Wave Interaction with Uniform Flow 

In the DMB method, the structural elastic behavior is treated as relative motions among 

multiple floating sub-bodies; thus, the multi-body hydrodynamic model needs to be employed. 

Although multi-body wave-structure interaction is used both in the industry and academia, the 

same case with forward speed (or uniform current) like the present case is hard to find in the open 

literature.  To shorten the notation, all first order wave potentials ϕw
(1) will be written only as  ϕw, 

and the superscript will be used for the indexing of the discrete body instead. By separating the 
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problem into scattering and radiation problems, also by considering the uniform flow 

approximation, the 1st-order multi-body boundary conditions can be written as follows: 

• Free surface boundary condition: 

 �g 𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝜕𝜕
�
2
�ϕ𝑤𝑤

 = 0  on 𝑆𝑆𝐹𝐹(𝑧𝑧 = 0) (3.10) 

• Bottom boundary condition: 

 𝜕𝜕ϕ𝑤𝑤
𝜕𝜕𝜕𝜕

= 0   on 𝑆𝑆ℎ(𝑧𝑧 = −ℎ) (3.11) 

• Body boundary condition of the scattering potential: 

 𝜕𝜕ϕ𝑠𝑠
𝜕𝜕𝑛𝑛

= −𝜕𝜕ϕ𝐼𝐼
𝜕𝜕𝑛𝑛

                                                            on 𝑆𝑆𝐵𝐵
(𝑙𝑙) (3.12) 

• Body boundary condition of the radiation potential: 

 
𝜕𝜕ϕ𝑟𝑟𝑟𝑟

(𝑘𝑘)

𝜕𝜕𝑛𝑛(𝑙𝑙) = �
𝑛𝑛𝑖𝑖

(𝑘𝑘) + 𝑈𝑈
𝑖𝑖𝜔𝜔𝑒𝑒

𝑆𝑆𝑖𝑖
(𝑘𝑘)        𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘 = 𝑙𝑙

0                                  𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 ≠ 𝑙𝑙
    on 𝑆𝑆𝐵𝐵

(𝑙𝑙)  (3.13) 

where,   

 
�𝑆𝑆1

(𝑘𝑘),𝑆𝑆2
(𝑘𝑘),𝑆𝑆3

(𝑘𝑘)� = � 𝑛𝑛(𝑘𝑘) ∙ 𝛻𝛻�𝛻𝛻ϕ𝑠𝑠𝑖𝑖  

�𝑆𝑆4
(𝑘𝑘),𝑆𝑆5

(𝑘𝑘),𝑆𝑆6
(𝑘𝑘)� = � 𝑛𝑛(𝑘𝑘) ∙ 𝛻𝛻� × (𝑥𝑥 × 𝛻𝛻ϕ𝑠𝑠𝑖𝑖)    

(3.14) 

For wave-uniform-flow interaction model, the m terms are reduced to: 

 m𝑖𝑖
(𝑘𝑘) = �0, 0, 0, 0, n3

(𝑘𝑘),−n2
(𝑘𝑘)�    (3.15) 

For vessels without forward speed, the body boundary condition of the radiation potential 

is reduced to: 

 
𝜕𝜕ϕ𝑟𝑟𝑟𝑟

0(𝑘𝑘)

𝜕𝜕𝑛𝑛(𝑙𝑙) = �n𝑖𝑖
(𝑘𝑘)                       𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘 = 𝑙𝑙

0                            𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 ≠ 𝑙𝑙
                      on 𝑆𝑆𝐵𝐵

(𝑙𝑙)  (3.16) 
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• Far field boundary condition: 

 𝑙𝑙𝑖𝑖𝑆𝑆
|𝜕𝜕|→∞

�|𝑥𝑥| � 𝜕𝜕
𝜕𝜕𝑖𝑖
− 𝑖𝑖𝑘𝑘�ϕ𝑤𝑤  on 𝑆𝑆|𝜕𝜕|→∞  (3.17) 

All superscripts indicate the sub-body or module indices. By using eq.(3.16) (definition of 

ϕ𝑟𝑟𝑖𝑖
0(𝑘𝑘)) and by substituting the m terms definition (eq.(3.15)) to the radiation body boundary 

conditions in eq.(3.13), the relation between the radiation potential with forward speed ϕ𝑟𝑟𝑖𝑖
(𝑘𝑘) and 

the radiation potential with zero forward speed ϕ𝑟𝑟𝑖𝑖
0(𝑘𝑘) can be written as follows: 

 ϕ𝑟𝑟𝑖𝑖
(𝑘𝑘) = 

⎩
⎪
⎨

⎪
⎧ϕ𝑟𝑟𝑖𝑖

0(𝑘𝑘)                           𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 < 5

ϕ𝑟𝑟𝑖𝑖
0(𝑘𝑘) + U

𝑖𝑖𝜔𝜔𝑒𝑒
ϕ𝑟𝑟3
0(𝑘𝑘)     𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 5

ϕ𝑟𝑟𝑖𝑖
0(𝑘𝑘) − U

𝑖𝑖𝜔𝜔𝑒𝑒
ϕ𝑟𝑟2
0(𝑘𝑘)     𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 6

    (3.18) 

In the single-hull configuration, it is known that there is a coupling effect between the damping 

and the added mass term in the presence of forward speed [35]. The proposed multi-body 

formulation above ensures that this coupling effect is still considered when we treat the single-hull 

as a multi-body hull connected with the beam elements. 

Just like on the previous section, the linear free surface boundary condition (eq.(3.10)) can be 

reduced back to the same form as the case without uniform flow, if 𝜔𝜔𝑒𝑒 ≫  U(𝜕𝜕/𝜕𝜕x). This condition 

can be fulfilled if one or the combination of the following conditions is fulfilled: (1) high encounter 

frequency 𝜔𝜔𝑒𝑒, (2) low uniform flow magnitude U, (3) slender body (or in other words (𝜕𝜕/𝜕𝜕x) is 

small compared to the transversal derivatives). Considering all linearization and approximations 

above, notable advantages of using the Uniform Flow approximation are: 

1. Zero-speed free surface green function can be used. 
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2. Only body boundary conditions need to be fulfilled by the radiation and scattering 

potentials. Therefore no free surface discretization is needed. 

3. No additional steps compared to the 0-speed case are needed to solve the steady wave 

potentials. 

4. The change in wave’s diffraction forces, added mass, and hydrodynamic damping due to 

the wave-current interactions can be treated as correction terms to the 0-speed values. 

The detailed derivation of the boundary conditions and m terms for a single rigid body can be 

found in [34, 35]. Therefore, ϕs can be obtained by solving the same body boundary condition as 

the one for the 0-speed case but evaluated at 𝜔𝜔𝑒𝑒, and ϕ𝐼𝐼 can be obtained as below: 

 2πϕs
 (𝑥𝑥𝑖𝑖) + ∑ ϕs

 (xj)
∂G0�ke,𝜕𝜕𝑟𝑟,𝜕𝜕𝑖𝑖�

∂𝑛𝑛𝑟𝑟
 Aj

Np
j=1 = −∑ ∂ϕI

 

∂n
G0�ke, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖� Aj

Np
j=1   (3.19) 

 ϕI
 = igA

ω0

𝑐𝑐𝑐𝑐𝑠𝑠ℎ�k(z+h)�
𝑐𝑐𝑐𝑐𝑠𝑠ℎ(kh) 𝑒𝑒−ik(x cos𝛽𝛽 + ycos𝛽𝛽)      (3.20) 

where G0 denotes the 0-speed free-surface green function, subscript 𝑖𝑖 and 𝑖𝑖 denotes the panel 

number, ke denotes the wave number that corresponds to encounter frequency ωe, Np denotes the 

total number of panels over the whole un-partitioned structures, A denotes the incident wave’s 

amplitude, h denotes the water depth, k denotes the wave number that corresponds to the incident 

wave’s frequency ω0, and 𝛽𝛽 denotes the wave heading angle of incidence to the positive x-axis. 

The radiation wave potentials can be solved using eq.(3.19), but changing the right-hand side to 

the radiated wave’s body boundary condition as in eq.(3.13). 

All of the above means that any multi-body wave’s diffraction-radiation simulation tools 

developed for rigid body and zero forward speed can be extended to the forward-speed case after 
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reasonably minor modifications. Then, it can be combined with the DMB method to solve the 

hydro-elasticity problem with forward speed.  

3.3.2.   Hydrodynamic Forces and Coefficients 

Consider the 1st order hydrodynamic forces in eq.(2.13), and then decompose it into several 

components in the generalized multi-body degree of freedoms as follow: 

 𝐹𝐹(𝑘𝑘) = 𝐹𝐹𝐼𝐼
(𝑘𝑘) + 𝐹𝐹𝑆𝑆

(𝑘𝑘) + 𝐹𝐹ℎ
(𝑘𝑘) + �𝐴𝐴(𝑘𝑘,𝑙𝑙) − 𝑖𝑖

𝜔𝜔𝑒𝑒
𝐵𝐵(𝑘𝑘,𝑙𝑙) � �̈�𝜂(𝑙𝑙)   (3.21) 

 𝐹𝐹𝑑𝑑
(𝑘𝑘) = 𝐹𝐹𝐼𝐼

(𝑘𝑘) + 𝐹𝐹𝑆𝑆
(𝑘𝑘)   

(3.22) 

where 𝐹𝐹𝐼𝐼  is the Froude-Krylov force (contribution from ϕI
 ), 𝐹𝐹𝑆𝑆  is the scattering force from ϕS

  

terms, �𝐴𝐴(𝑘𝑘,𝑙𝑙) − 𝑖𝑖𝐵𝐵(𝑘𝑘,𝑙𝑙)/ωe� are the added mass and hydrodynamic damping related to 𝜙𝜙𝑟𝑟  terms 

and  𝐹𝐹ℎ  is the hydrostatic forces that consist of steady / lower-order terms. The mathematical 

definition of each of these terms can be found as follows: 

• Incident wave exciting force: 

 

𝐹𝐹𝐼𝐼
(𝑘𝑘) = 𝜌𝜌∬ �∂ϕI

 

𝜕𝜕t
− U ∂ϕI

 

𝜕𝜕x
� 𝑛𝑛(𝑘𝑘)dS 

𝑆𝑆𝐵𝐵
(𝑘𝑘)    

        = 𝜌𝜌∬ (𝑖𝑖ωe − 𝑖𝑖U𝑘𝑘 cos𝛽𝛽)ϕI
 𝑛𝑛(𝑘𝑘)dS 

𝑆𝑆𝐵𝐵
(𝑘𝑘)    

        = 𝑖𝑖ω0𝜌𝜌∬ ϕwI
 𝑛𝑛(𝑘𝑘)dS 

𝑆𝑆𝐵𝐵
(𝑘𝑘)   

(3.23) 

• Scattered wave exciting force, with uniform flow correction: 

 𝐹𝐹𝑆𝑆
(𝑘𝑘) = 𝜌𝜌∬ �∂ϕs

 

𝜕𝜕t
− U ∂ϕs 

𝜕𝜕x
� 𝑛𝑛(𝑘𝑘)dS 

𝑆𝑆𝐵𝐵
(𝑘𝑘)   (3.24) 
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The spatial derivative in the convective term can be avoided by utilizing Stoke’s theorem, as 

shown in ref.[35, 40]  

 𝐹𝐹𝑆𝑆
(𝑘𝑘) =  𝜌𝜌∬ �𝑖𝑖𝜔𝜔𝑒𝑒𝑛𝑛(𝑘𝑘) − U𝑆𝑆(𝑘𝑘)�ϕS

 dS 
𝑆𝑆𝐵𝐵

(𝑘𝑘)        (3.25) 

Or using the Haskind’s relation, it can also be written as, 

 

FSj
(k) =  −𝜌𝜌∑ ∬ 𝜕𝜕ϕI

 

𝜕𝜕𝑛𝑛(𝑙𝑙) ϕ𝑟𝑟𝑟𝑟
0(k)dS 

𝑆𝑆𝐵𝐵
(𝑙𝑙)

𝑀𝑀
𝑙𝑙=1                                                          for  j = 1, 2, 3, 4    

= −𝜌𝜌∑ �∬ 𝜕𝜕ϕI
 

𝜕𝜕𝑛𝑛(𝑙𝑙) ϕ𝑟𝑟𝑟𝑟
0(k)dS 

𝑆𝑆𝐵𝐵
(𝑙𝑙)  + 𝜌𝜌U

𝑖𝑖𝜔𝜔𝑒𝑒
∬ 𝜕𝜕ϕI

 

𝜕𝜕𝑛𝑛(𝑙𝑙) ϕ𝑟𝑟3
0(k)dS 

𝑆𝑆𝐵𝐵
(𝑙𝑙) �𝑀𝑀

𝑙𝑙=1         for j = 5  

= −𝜌𝜌∑ �∬ 𝜕𝜕ϕI
 

𝜕𝜕𝑛𝑛(𝑙𝑙) ϕ𝑟𝑟𝑟𝑟
0(k)dS 

𝑆𝑆𝐵𝐵
(𝑙𝑙) − 𝜌𝜌U

𝑖𝑖𝜔𝜔𝑒𝑒
∬ 𝜕𝜕ϕI

 

𝜕𝜕𝑛𝑛(𝑙𝑙) ϕ𝑟𝑟2
0(k)dS 

𝑆𝑆𝐵𝐵
(𝑙𝑙) �𝑀𝑀

𝑙𝑙=1          for j = 6   

(3.26) 

• Added mass and hydrodynamic damping with uniform flow correction: 

 𝐹𝐹𝑅𝑅
(𝑘𝑘) = FRj

(k) = ∑ �A𝑖𝑖𝑖𝑖
(𝑘𝑘,𝑙𝑙) − 𝑖𝑖

ωe
B𝑖𝑖𝑖𝑖

(𝑘𝑘,𝑙𝑙)� ξ̈𝑖𝑖
(𝑙𝑙)6

j=1   (3.27) 

By rewriting the force definition in eq.(2.13) into the generalized multi-body degree of 

freedoms, and then utilizing Stoke’s theorem as shown in ref.[35, 40] 

 �A𝑖𝑖𝑖𝑖
(𝑘𝑘,𝑙𝑙) − 𝑖𝑖

ωe
B𝑖𝑖𝑖𝑖

(𝑘𝑘,𝑙𝑙)� =  𝜌𝜌∬ �𝑖𝑖𝜔𝜔𝑒𝑒n𝑖𝑖
(𝑘𝑘) − Um𝑖𝑖

(𝑘𝑘)�ϕ𝑟𝑟𝑖𝑖
(𝑙𝑙)dS 

𝑆𝑆𝐵𝐵
(𝑘𝑘)   (3.28) 

The equation above can be written in terms of its relationship with the added mass and 

hydrodynamic damping without uniform flow as below: 

 �Aij
0(𝑘𝑘,𝑙𝑙) − 𝑖𝑖

ωe
Bij
0(𝑘𝑘,𝑙𝑙)� =  𝜌𝜌∬ �𝑖𝑖𝜔𝜔𝑒𝑒n𝑖𝑖

(𝑘𝑘)�ϕwrj
0(𝑙𝑙)dS 

𝑆𝑆𝐵𝐵
(𝑘𝑘)   (3.29) 

 o For 𝑖𝑖 ≤ 4 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖 = 5  

Ai5
(𝑘𝑘,𝑙𝑙) = Ai5

0(𝑘𝑘,𝑙𝑙) − U
ωe
2 Bi3

0(𝑘𝑘,𝑙𝑙)  
(3.30) 

o For 𝑖𝑖 = 5 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖 ≤ 4 

A5j
(𝑘𝑘,𝑙𝑙) = A5j

0(𝑘𝑘,𝑙𝑙) + U
ωe
2 B3j

0(𝑘𝑘,𝑙𝑙)  
(3.31) 



54 
 

Bi5
(𝑘𝑘,𝑙𝑙) = Bi5

0(𝑘𝑘,𝑙𝑙) + UAi3
0(𝑘𝑘,𝑙𝑙)  B5j

(𝑘𝑘,𝑙𝑙) = B5j
0(𝑘𝑘,𝑙𝑙) − UA3j

0(𝑘𝑘,𝑙𝑙)  

 o For 𝑖𝑖 ≤ 4 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖 = 6 

Ai6
(𝑘𝑘,𝑙𝑙) = Ai6

0(𝑘𝑘,𝑙𝑙) + U
ωe
2 Bi2

0(𝑘𝑘,𝑙𝑙)  

Bi6
(𝑘𝑘,𝑙𝑙) = Bi6

0(𝑘𝑘,𝑙𝑙) − UAi2
0(𝑘𝑘,𝑙𝑙)  

(3.32) 

o For 𝑖𝑖 = 6 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖 ≤ 4 

A6j
(𝑘𝑘,𝑙𝑙) = A6j

0(𝑘𝑘,𝑙𝑙) − U
ωe
2 B2j

0(𝑘𝑘,𝑙𝑙)  

B6j
(𝑘𝑘,𝑙𝑙) = B6j

0(𝑘𝑘,𝑙𝑙) + UA2j
0(𝑘𝑘,𝑙𝑙)  

(3.33) 

 

o For 𝑖𝑖 = 5 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖 = 5 

A55
(𝑘𝑘,𝑙𝑙) = A55

0(𝑘𝑘,𝑙𝑙) − U
ωe
2 B53

0(𝑘𝑘,𝑙𝑙) + U
ωe
2 B35

0(𝑘𝑘,𝑙𝑙) + U2

ωe
2 A33

0(𝑘𝑘,𝑙𝑙)  

B55
(𝑘𝑘,𝑙𝑙) = B55

0(𝑘𝑘,𝑙𝑙) + UA53
0(𝑘𝑘,𝑙𝑙) − UA35

0(𝑘𝑘,𝑙𝑙) + U2

ωe
2 B33

0(𝑘𝑘,𝑙𝑙)  

(3.34) 

 

o 𝑖𝑖 = 6 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖 = 6 

A66
(𝑘𝑘,𝑙𝑙) = A66

0(𝑘𝑘,𝑙𝑙) + U
ωe
2 B62

0(𝑘𝑘,𝑙𝑙) − U
ωe
2 B26

0(𝑘𝑘,𝑙𝑙) + U2

ωe
2 A22

0(𝑘𝑘,𝑙𝑙)  

B66
(𝑘𝑘,𝑙𝑙) = B66

0(𝑘𝑘,𝑙𝑙) − UA62
0(𝑘𝑘,𝑙𝑙) + UA26

0(𝑘𝑘,𝑙𝑙) + U2

ωe
2 B22

0(𝑘𝑘,𝑙𝑙)  

(3.35) 

On the single-body model, B𝑖𝑖𝑖𝑖
0 − B𝑖𝑖𝑖𝑖0  and A𝑖𝑖𝑖𝑖

0 − A𝑖𝑖𝑖𝑖0  typically cancel each other. However, since  

B𝑖𝑖𝑖𝑖
0(𝑘𝑘,𝑙𝑙) − B𝑖𝑖𝑖𝑖

0(𝑘𝑘,𝑙𝑙)  and A𝑖𝑖𝑖𝑖
0(𝑘𝑘,𝑙𝑙) − A𝑖𝑖𝑖𝑖

0 (𝑘𝑘,𝑙𝑙) consist of 2 different body’s interaction, it will give non-zero 

results and need to be taken into consideration. 

3.4.    Validations 

3.4.1. Case Definition 

Shallow draft elastic barge, as defined in Yago & Endo [41], is used to validate the DMB 

method against their experiment data in the case of zero forward speed. The hull shape and 

particulars can be seen in Table 3.2 and Fig. 3.4 below. This particular case is used due to the 

availability of the experiment data.  
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Table 3.2. Main particulars of the shallow-draft barge case 

Item Notation Value Unit 
Length L 300.0 m 
Breadth  B 60.0 m 
Depth hbm  2.0 m 
Draft D 0.5 m 

Water depth h 58.5 m 
Mass 𝑀𝑀𝑖𝑖𝑐𝑐𝑖𝑖 9.225 × 106  kg 

Vertical bending stiffness 𝐸𝐸𝐸𝐸𝑦𝑦 4.77 × 1011  N·m2 
Poisson Ratio  𝜈𝜈 0.3 - 

NBODY M 8 - 
Minimum wave length 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛. 120 m 

Wave Heading 𝛽𝛽 0 deg 
 

 

Fig. 3.4. Shallow-draft barge shape as defined in Yago & Endo [41] 

Analytical Wigley Hull, as defined in Riggs et al. [42] and Das & Cheung [19], is also used as 

another comparative study against their linear hydro-elasticity models. This case study is chosen 

because of several reasons, such as: 

1. Both references used different approaches compared to the present study; Riggs et al. 

[42] used modal superposition and generalized coordinate body boundary conditions, 

while Das & Cheung [19] used shell element FEM and Rankine panel BEM directly 

coupled, which is computationally very intensive.  
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2. Das & Cheung’s [19] method is to be more accurate than the present method, thus can 

serve as a good benchmark. However, the present methodology is way more practical 

than their method to be incorporated into early design processes.  

3. The hull is designed specifically to accentuate the effect of linear hydro-elasticity so that 

the hydro-elastic behavior can clearly be seen in the global analysis.  

As an illustration for points 1 and 2, the free-surface and far-field panels used in Das & Cheung 

[18] significantly increase the size of linear equations compared to the present method. Also, their 

FEM computations with shell elements take much more time than the present DMB method.  

 

Fig. 3.5. Wigley hull shape as defined in Riggs et. al. [42] 

Table 3.3. Main particulars of Wigley hull case 

Item Notation Value Unit 
Length L 100 m 
Breadth B 10 m 

Total Depth hbm 4.5 m 
Draft d 2.25 m 

Water depth h Inf m 
Displaced Volume ∇ 1000 m3 

Deck’s mass density 𝜌𝜌𝑠𝑠 76,857 kg/m3 
Deck’s thickness – mass 𝑡𝑡𝑚𝑚 0.02 m 

Deck’s thickness – stiffness 𝑡𝑡𝑘𝑘−𝑑𝑑𝑒𝑒𝑐𝑐𝑘𝑘 0.25 m 
Hull’s thickness – stiffness 𝑡𝑡𝑘𝑘−ℎ𝑢𝑢𝑙𝑙𝑙𝑙 0.15 m 

Elastic Modulus E 7.5 GPa 
Poisson Ratio 𝜈𝜈 0.3 -- 

NBODY M 21 - 
Minimum wave length 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 6.5 m 

Wave Heading 𝛽𝛽 180 deg 
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The Wigley-hull shape can be seen in Fig. 3.5, the main particulars of its FEM models Das & 

Cheung [19] can be seen in Table 3.3, and the wetted area of the hull is described in eq.(3.36). The 

hull is extended vertically above the water plane to reach the total height. 

 𝑦𝑦 = 1
2
𝐵𝐵 �1 − �2𝜕𝜕

𝐿𝐿
�
2
� �1 − �𝜕𝜕

𝑑𝑑
�
2
�  (3.36) 

For the shallow draft barge case, the structure is considered to have a uniform beam stiffness 

and mass distribution, as defined in Table 3.2. Because of these considerations, the geometric 

properties 𝐸𝐸𝑦𝑦 , 𝐸𝐸𝜕𝜕 , 𝐸𝐸𝑝𝑝  of the barge can be simply calculated, i.e. 𝐸𝐸𝑦𝑦 = 𝐵𝐵ℎ𝑏𝑏𝑚𝑚3  /12 and so forth.  

For Wigley Hull case in both Riggs [42] and Das & Cheung [19], the hull’s stiffness is modeled 

as equivalent hull and deck stiffness so that internal stiffeners and bulkheads are still taken into 

account, even without modeling them directly with FEM. For the DMB method, however, we only 

need to calculate equivalent beam geometric properties  𝐸𝐸𝑦𝑦∗ , 𝐸𝐸𝜕𝜕∗, 𝐸𝐸𝑝𝑝∗ so that they can best represent the 

FEM structure as close as possible. The most robust approach to find these equivalent properties 

for complex structures can be found in Zhang & Lu [30], where they modeled the structures using 

FEM and then used the end-node forces to back-calculate the end node stiffness, which has the 

same form as eq.(3.5).  

To simplify the approach, we consider the equivalent beam geometric properties as the 

geometric properties of the cross-section of the hull on each section multiplied by a factor  𝛼𝛼, such 

that 𝐸𝐸𝑦𝑦∗ = 𝛼𝛼 ∙ 𝐸𝐸𝑦𝑦 (see Fig. 3.6). To find 𝛼𝛼, we match the first two natural periods of the vertical 

bending modes of the beam with the values calculated using FEM, and keep the error below 10%. 

To reduce the complexity of the problem in determining equivalent stiffness of DMB, the first two 
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modes are matched. However, as can be seen from the results, this consideration already gave good 

agreement with the more rigorous FEM results.  

 

Fig. 3.6. Cross sections of the structures, and geometric properties definitions 

From the matching of the first two vertical bending modes, 𝛼𝛼 = 12.3 is used, and the resulting 

 𝐸𝐸𝑦𝑦∗ , 𝐸𝐸𝜕𝜕∗, 𝐸𝐸𝑝𝑝∗ and the dry natural periods of the vertical bending modes for NBODY = 21 case can be 

seen in Table 3.4 and Table 3.5. The convergence with increasing NBODY was tested with 7, 14, 

and 21 sub-bodies, and satisfactory convergence was achieved beyond 14 sub-bodies. Thus 21 

sub-bodies were used.  

Table 3.4. Equivalent geometry for equivalent beam model 

Beam # 𝐸𝐸𝑦𝑦∗  𝐸𝐸𝜕𝜕∗ 𝐸𝐸𝑝𝑝∗ 𝐿𝐿𝑏𝑏𝑒𝑒𝑏𝑏𝑚𝑚 
1 0.3881 0.08408 297.4125 4.2262 
2 0.5925 0.3095 308.9748 4.6545 
3 0.7875 0.6947 293.4534 4.7152 
4 0.9622 1.2110 256.4946 4.7353 
5 1.1135 1.8118 206.2381 4.7443 
6 1.2404 2.4399 150.8212 4.7490 
7 1.3423 3.0345 97.4637 4.7517 
8 1.4190 3.5386 52.1230 4.7533 
9 1.4702 3.9045 19.3430 4.7542 
10 1.4961 4.0979 2.1816 4.7547 

 



59 
 

Table 3.5. Dry natural period comparisons between FEM model and equivalent beam model 

Vertical Bending 
Mode # 

𝑇𝑇𝑛𝑛 𝐹𝐹𝐸𝐸𝑀𝑀 (sec) 
Riggs et. al. [42] 

𝑇𝑇𝑛𝑛 𝐷𝐷𝐵𝐵𝑀𝑀 (𝑠𝑠𝑒𝑒𝑠𝑠) 
Present Study 𝐸𝐸𝑓𝑓𝑓𝑓 (%) 

1 2.15 2.17 0.93% 

2 1.00 0.91 -9.00% 

Only the first 10 equivalent beam geometric properties are shown in Table 3.4 because of the 

symmetry of the ship with respect to the y-axis. 

3.4.2. Validation of DMB Hydro-elasticity Model for Zero Forward Speed Case 

 

Fig. 3.7. Vertical displacement and bending moment validation for shallow barge case 

From Fig. 3.7, we can see that the DMB method matches very well with the experimental data 

of Yago & Endo [41] for the barge case. It is clear from the figure that hydro-elasticity changes 

the vertical displacements non-uniformly from bow to stern compared to those of rigid body. The 

elasticity also causes the bending moment to be smaller than that of rigid body. Higher structural 

stiffness increases the bending moments and decreases the vertical displacements. Sensitivity 
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analysis on the number of modules can be found in Jin et al. [29], in which to catch all essential 

dynamics, each module length needs to be at least 𝐿𝐿𝑚𝑚 < 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛. 

For the Wigley hull case, the present DMB model is compared with the modal-superposition 

method and direct FEM-BEM coupling method. Using the present DMB model, the first two wet 

natural periods without forward speed are found to be 7.13 sec (i.e., coupling between roll and 

horizontal bending mode) and 3.85 sec (i.e., coupling between heave and vertical bending mode) 

respectively, which is a good match with the FEM results from Riggs et al. [42]. 

The rigid body case is simulated by the same hydro-elasticity model, with a very high elastic 

modulus 𝐸𝐸𝑟𝑟𝑖𝑖𝑔𝑔𝑖𝑖𝑑𝑑 = 100 GPa. For the DMB, the vertical stern and bow displacements are obtained 

by combining the pitch and heave modes as follows: 

 𝑍𝑍𝑆𝑆𝑖𝑖𝑒𝑒𝑟𝑟𝑛𝑛 = 𝜉𝜉31 + sin(𝛼𝛼21) 𝐿𝐿1
2

  (3.37) 

 𝑍𝑍𝐵𝐵𝑐𝑐𝑤𝑤 = 𝜉𝜉3 
𝑁𝑁𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁 − sin(𝛼𝛼2𝑁𝑁𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁) 𝐿𝐿𝑁𝑁𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁

2
   (3.38) 

where  𝜉𝜉3𝑘𝑘,𝛼𝛼2𝑘𝑘, and 𝐿𝐿𝑖𝑖 are the heave RAO, pitch RAO, and length of body section of the 𝑘𝑘𝑖𝑖ℎ body. 

Fig. 3.8 shows the comparisons of vertical displacements at three locations between the present 

hydro-elastic method with other hydro-elastic approaches when forward speed is zero. We first 

see that the present rigid case agrees well with the rigid FEM case of [19, 42]. The present elastic 

case also agrees very well with the more rigorous approach of direct FEM-BEM coupling in Das 

& Cheung [19]. 

At the bow and stern locations, when compared with more rigorous FEM-BEM direct coupling 

[19], the present DMB hydro-elastic method (black) provides better results than the conventional 

hydro-elastic analysis based on the modal-superposition method (yellow) [42]. Das & Cheung [19] 
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stated that these discrepancies might be caused by the fact that the modal superposition method 

has to use discrete elastic modes (21 in total for this reference). However, the present DMB hydro-

elasticity method with the same 21 units produced as good results as Das & Cheung [19], which 

implies that the difference was not caused by discrete elastic modes. We suggest that the use of 

less accurate wet modes in [42] may be the reason for the discrepancy. The hydro-elasticity effect 

generally decreases the vertical displacements on the bow and stern locations and increases the 

vertical displacement at the midship location.  

 

 

Fig. 3.8. Wigley hull hydro-elastic model comparisons for zero forward speed case. The FEM 

results are from ref. [19], while the modal superpositon results are from ref. [42] 

3.4.3. Validation of DMB Hydro-Elasticity Model with Forward Speed Case 

For the same reason as explained in section 4.2, the Wigley hull case from Riggs et al. [48] 

and Das & Cheung [19] is used as the test case of the present linear hydro-elasticity with forward 
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speed. The slender ship shape is also well suited for the present uniform-flow approximation 

model. The present hydro-elastic results are compared against more rigorous FEM-BEM direct-

coupling method of Das & Cheung [19]. To highlight the differences of hydro-elastic effects 

between the two methods, the hydro-elastic effects are plotted with respect to the same base case 

of rigid body [19]. 

Fig. 3.9 shows the comparison for head wave with the forward speed of 𝐹𝐹𝑛𝑛 = 0.3 (𝑈𝑈 =

9.4 𝑆𝑆/𝑠𝑠) and Wigley hull shape is considered. The differences in methodology between the 

reference method (blue line) and the present method (red line) are highlighted in Table 3.1. 

From Fig. 3.9, it can be seen that both present and reference results show very similar elastic 

effects even when forward speed is considered, except near the bow. The discrepancies near the 

bow can be attributed to the stronger influence of steady flow and the resulting difference in 

relative wave elevation there, which is originated from the approximations in the free surface 

boundary condition in the present study. However, the overall marginal differences between the 

reference and the present study suggest that we achieved the intended result with considerably less 

effort and computational burden.  

In general, both methods show that the hydro-elasticity effect causes larger vertical 

displacement compared to the rigid body case except  𝜆𝜆/𝐿𝐿 > 0.7 at bow. The encounter frequency, 

convective pressure, and m-terms contribute to their changes. Interestingly, there is a distinct high 

peak on 𝜆𝜆/𝐿𝐿 ≈ 0.35 − 0.4 region due to structural elasticity. These peaks do not occur in the case 

of rigid body with forward speed or elastic body without forward speed (Fig. 3.8). The peak at 

𝜆𝜆/𝐿𝐿 ≈ 0.35 − 0.4 represents resonance i.e. the wave encounter frequency coincides with the 

natural frequency of first pure bending mode. Therefore, we can conclude that for elastic 
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structures, it is important to consider both forward speed and hydro-elasticity effects to be able to 

capture all important structural dynamics correctly. 

 
Fig. 3.9. Elasticity effect with forward speed with respect to the rigid-body base of [19] 

3.5.    Parametric Study on the Forward Speed Effect on the Ship Hydro-elastic Behavior 

3.5.1. Forward Speed Effect on the Modal Characteristics 

From Table 3.6, we can see the effects of forward speed and water contact on the natural 

frequencies of elastic modes. The hydrostatic stiffness and added mass cause the natural periods 

of the 2nd and 3rd elastic modes to be slightly higher when compared to the dry modes. On the other 

hand, the forward-speed effect only causes a very small change to the natural period of the 1st 

bending mode, while its effects on the higher bending modes are negligible. This is because the 
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added-mass correction with forward speed diminishes as the period becomes smaller, i.e., added 

mass at very high-frequency region is almost constant (high-frequency limit). 

From Fig. 3.10, we can see how all the mode shapes (1st, 2nd, 3rd bending) are affected by the 

water-contact effect, marking the importance of the inclusion of hydrostatic force and added mass 

when the modal superposition method is used. On the other hand, the change by forward speed is 

negligible except for the 1st bending mode. The 1st vertical bending mode is warped towards 

downstream direction when forward speed effect is considered. The modal-superposition method 

has to figure out this kind of modal change in a priori, which is not necessary for the present DMB-

based hydro-elasticity analysis. That can be considered as an advantage compared to the traditional 

modal-superposition-based hydro-elastic analysis.  

Table 3.6. The forward-speed and water-contact effects on the natural periods of Wigley hull 

Mode # Dry Mode Wet Mode 
𝐹𝐹𝑛𝑛 = 0.0 

Wet Mode 
𝐹𝐹𝑛𝑛 = 0.3 

1st Vertical Bending 2.17 sec 2.19 sec 2.27 sec 
2nd Vertical Bending 0.90 sec 1.21 sec 1.22 sec 
3rd  Vertical Bending 0.51 sec 0.70 sec 0.71 sec 

 

 

Fig. 3.10. The forward-speed and water-contact effects on the mode shapes of Wigley hull 
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The warping of the first bending mode shape with forward speed occurs because of the change 

of the added mass by the forward speed, as can be seen in Fig. 3.11. From eq.(3.28)-(3.35), it is 

clear that the forward speed affected the added mass through the encounter frequency, the body 

boundary condition (e.g., the m terms), and the convective term in the Bernoulli’s pressure. 

 

 

Fig. 3.11. The forward speed effect on the Wigley hull added mass (subscript index=mode, 

superscript index=section; superscript 1,2 means hydrodynamic interaction between section 1 

and 2; subscript 5,3 means pitch-heave mode coupling) 

From Fig. 3.11, we can see how the pitch or pitch-heave added mass is affected by the forward 

speed for sub-body 1 and 21 or by hydrodynamic multi-body coupling between sub-body 1-2 and 

20-21. Their differences are large at larger wave periods with increasing forward speed but become 

small at small wave periods less than 2s regardless of forward speed. This explains why there are 

no mode shape warps on the higher bending modes. 
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From the modal analysis, we conclude that the changes of the lowest elastic natural frequencies 

and natural modes are mainly due to the change of added-mass coefficients depending on forward 

speed if Tn > 2s. This conclusion is especially important when one is trying to solve the hydro-

elastic problem with forward speed by the modal superposition method. Note that in the DMB 

method, no prior knowledge of natural modes is necessary when directly solving for the elastic 

dynamic responses and stresses. 

3.5.2. Forward Speed Effect on the Vertical Bending Moment 

The results for vertical bending moments of the Wigley hull can be seen in Fig. 3.12 and Fig. 

3.13. For 𝐹𝐹𝑛𝑛 = 0.0 − 0.2, the maximum vertical bending over the whole ship’s length can be found 

when 𝜆𝜆 ≅ 0.72𝐿𝐿 while for 𝐹𝐹𝑛𝑛 = 0.3, the maximum vertical bending occurs when 𝜆𝜆 ≅ 0.36𝐿𝐿 

because the bending moment by the higher-frequency elastic mode (i.e. first vertical bending 

mode) takes over that by the pitch-resonance motion (see rigid vs. elastic mode in Fig. 3.9). All 

the vertical bending moment peaks are located at the mid-ship section. However, there are 

possibilities of the emergence of primary and secondary peaks not located at the mid ship section 

(e.g. ,  𝜆𝜆 ≅ 0.47𝐿𝐿;  𝜆𝜆 ≅ 0.36𝐿𝐿 & U<6.3m/s etc.), as shown in Fig. 3.13. For  𝜆𝜆 ≅ 0.36𝐿𝐿 𝑎𝑎𝑛𝑛𝑎𝑎 𝜆𝜆 ≅

0.72𝐿𝐿, the bending moments monotonically increase with increasing forward speed but in other 

𝜆𝜆𝑠𝑠, it is not necessarily so. 
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Fig. 3.12. Vertical bending moments of Wigley hull depending on the wave length, location of 

the ship’s section, and forward speed  
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Fig. 3.13. Vertical bending moments along the length of Wigley hull for various wave lengths 

and forward speeds 
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The encounter wave period plays an important role, especially for short waves of 𝜆𝜆 < 0.5𝐿𝐿. 

For example, the maximum bending moment for 𝐹𝐹𝑛𝑛 = 0.3 occurred when  𝜆𝜆 = 0.36𝐿𝐿 or 𝑇𝑇𝑒𝑒 =

2.2 𝑠𝑠𝑒𝑒𝑠𝑠, which coincides with the 1st bending mode. Another example is when 𝜆𝜆 = 0.29𝐿𝐿, for 

which the bending moment for  𝐹𝐹𝑛𝑛 = 0.2 was found to be larger than that for 𝐹𝐹𝑛𝑛 = 0.3. The reason 

is that 𝜆𝜆 = 0.29𝐿𝐿 corresponds to the encounter period of 𝑇𝑇𝑒𝑒 = 2.2 𝑠𝑠𝑒𝑒𝑠𝑠 for 𝐹𝐹𝑛𝑛 = 0.2, thus causing 

resonant responses of 1st bending mode. With 𝐹𝐹𝑛𝑛 = 0.3, 𝑇𝑇𝑒𝑒 = 1.8 𝑠𝑠𝑒𝑒𝑠𝑠 , which is away from any 

elastic natural periods. When 𝜆𝜆 ≫ 2𝐿𝐿 the body can be considered as a heaving-only rigid body, 

thus the elastic effects and bending moments will be small and the effect of forward speed can no 

longer be seen, as can be observed in the last figure.  

3.5.3. Forward Speed Effect on Hydro-elastic Response in Random Waves 

 
Fig. 3.14. Two wave spectra used in random wave simulation 

Two different JONSWAP random-wave spectra as defined in Fig. 3.14 are used. The case of 

𝑇𝑇𝑝𝑝 = 12 sec,𝐻𝐻𝑠𝑠 = 1.5𝑆𝑆, and  𝛾𝛾 = 7 represents swell condition, while that of 𝑇𝑇𝑝𝑝 = 5 sec,𝐻𝐻𝑠𝑠 =

1.5𝑆𝑆, and  𝛾𝛾 = 2 represents an ordinary operational condition (Sea State 3). Both cases are for 

head-sea condition. The resulting statistical values of Wigley-hull case can be seen in Table 3.7. 
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Table 3.7. Statistical values from the random wave simulation results 

𝐹𝐹𝑛𝑛 CASE 𝑇𝑇𝑝𝑝𝑒𝑒   
(sec) 

𝑀𝑀𝑦𝑦 - max  
(kN-m) 

𝜎𝜎 𝑀𝑀𝑦𝑦  
 (kN-m) 

Max heave 𝜉𝜉3  
(m) 

𝜎𝜎 𝜉𝜉3  
(m) 

0.0 
𝑇𝑇𝑝𝑝 = 5 sec 
𝛾𝛾 = 2 

5.00 0.57 x 107 0.95 x 106 0.076 0.019 
0.1 3.57 0.74 x 107 1.18 x 106 0.075 0.023 
0.2 2.77 1.10 x 107 1.60 x 106 0.113 0.030 
0.3 2.27 1.61 x 107 2.67 x 106 0.159 0.052 
0.0 

𝑇𝑇𝑝𝑝 = 12 sec 
𝛾𝛾 = 7 

12.00 0.75 x 107 1.39 x 106 0.785 0.271 
0.1 10.28 0.80 x 107 1.49 x 106 0.798 0.277 
0.2 8.99 0.89 x 107 1.62 x 106 0.808 0.287 
0.3 7.99 1.03 x 107 1.93 x 106 0.855 0.300 

From the table, we can see that both the maximum and standard deviation (σ in Table 8) of the 

bending moment 𝑀𝑀𝑦𝑦 always increase with forward speed. The bending moment becomes the 

largest in short waves at the highest speed (see Fig. 3.15 and Fig. 3.18) i.e. this is the most serious 

case for mid-ship fatigue damage in view of larger stresses at higher frequencies (see Fig. 3.16). 

The heave motion changes very little with forward speed when the encounter period (𝑇𝑇𝑝𝑝𝑒𝑒)  is larger 

than 3.5s but changes considerably when the encounter period is small and the forward speed is 

high. The heave motion does not necessarily translate into elastic motion, and vice versa. The 

maximum bending moments and vertical displacements, as can be seen in three consecutive time 

series snapshots, are given along the length of the hull in Fig. 3.15 for various forward speeds and 

two wave spectra.  
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Fig. 3.15. Three consecutive time series snapshots of the Wigley hull’s maximum 𝑀𝑀𝑦𝑦 and 

vertical displacements for various forward speeds and two different wave spectra 
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Fig. 3.16. Time series of bending moments at mid-ship with (right) and without (left) forward 

speed in swell sea 

Looking at the results for the two different wave spectra, we can see that for low forward speed, 

the swell case causes the ship to have larger 𝑀𝑀𝑦𝑦, while for high forward speed the operational-sea 

case causes the ship to have larger 𝑀𝑀𝑦𝑦. This occurs because on the operational sea with high 

forward speed, the corresponding encounter period becomes closer to the resonance period of the 

lowest elastic mode. This enlarged elastic responses (see also Fig. 3.18) can directly be seen in the 

corresponding snapshots (second row of Fig. 3.15; purple color) of vertical displacements. The 

increase of bending moments with forward speed can be seen more directly in Fig. 3.16 (swell sea) 

and Fig. 3.18 (operational sea). Again, the significant increase with forward speed in the 

operational sea is noticeable. The time series were generated with random phases from the 

response and bending-moment spectra by using the respective RAOs (response amplitude 

operators) calculated from the present DMB method. 
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3.5.4. Additional Demonstration of the Present Method’s Practicality: Damaged Hull 

Simulation 

As can be found in ref. [1, 29], the DMB method provides a simple way to change the local 

structure characteristics (e.g., stiffness) to simulate various types of conditions or damages on the 

hull. Therefore, to further demonstrate the practicality of the present DMB method, a damaged 

hull case is simulated for the Wigley hull ( Fig. 3.5 and Table 3.3 ) i.e. the mid-ship section of the 

hull is considered to be partially damaged. The damaged hull is modeled by lowering the beam 

stiffness connected to body no.11 by 30% (0.7EI). The resulting modal characteristic of the 

damaged hull case with and without forward speed can be seen in Fig. 3.17 and Table 3.8. 

 

Fig. 3.17. The damaged hull effect on the wet modes of Wigley hull 

Table 3.8. The damaged hull effect on the wet natural periods of Wigley hull 

Mode # 
𝐹𝐹𝑛𝑛 = 0.0 𝐹𝐹𝑛𝑛 = 0.3 

No Damage Damaged 
(0.7E) No Damage Damaged 

(0.7E) 
1st Vertical Bending 2.1893 sec 2.2202 sec 2.2683 sec 2.3015 sec 
2nd Vertical Bending 1.2106 sec 1.213 sec 1.2224 sec 1.2248 sec 
3rd  Vertical Bending 0.7036 sec 0.714 sec 0.7076 sec 0.7189 sec 
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From Fig. 3.17 and Table 3.8, the local damage does not appear to affect the mode shapes 

regardless of forward speed. The forward speed only alters the lowest wet bending mode through 

the change of added mass, as was observed in the previous section. Since the global mode shapes 

are not affected by the local damage, the case is hard to be detected/analyzed by the conventional 

modal-superposition approach in solving hydro-elasticity. The natural periods are slightly shifted 

to higher values when the damage is imposed due to the loss of local stiffness. The anti-symmetric 

mode is more affected by the damage since there is no curvature on the damaged location for the 

symmetric mode. The largest change to the natural period occurred on the 3rd bending mode with 

forward speed, where the natural period is shifted by 1.6%. The forward-speed effect shifted the 

natural period up to 3.6% when compared to the stationary case. It means that the shift in natural 

frequency on seafaring vessel, does not necessarily translate into damage occurrence. 

 Note that the damaged hull implementation on the DMB method is straight-forward since it 

only needs to convert the corresponding local stiffness. Fig. 3.18 and Fig. 3.19 shows the 

comparisons of bending moments (or bending stresses) near the damage location between the 

intact and locally-damaged hull. Appreciable differences can be observed for the high-frequency 

oscillation in the forward speed case. This kind of change in stress-sensor signals may be used for 

the structural health monitoring [43]. 

 



75 
 

 

Fig. 3.18. Time series of bending moments at mid-ship with (right) and without (left) forward 

speed and with (red) and without (blue) damage in operational sea 

 

Fig. 3.19. Frequency domain analysis of bending moments at mid-ship with (right) and without 

(left) forward speed and with (red) and without (blue) damage in operational sea 

3.6.    Conclusions 

A multi-body uniform-flow-based wave-current interaction hydrodynamic model was 

developed. Coupled with the DMB (Discrete-Module-Beam)-based hydro-elasticity method, the 

aforementioned model can be used as a practical and efficient numerical tool for the hydro-elastic 

analyses with forward-speed effect. The present hydro-elasticity model produced very accurate 

results when compared with the direct but much more time-consuming BEM-FEM coupling 
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method in the case of 𝐹𝐹𝑛𝑛 = 0. Also, the present uniform-flow-based wave-current interaction 

model compared well with published experimental and computational results in the case of rigid 

Wigley hull with and without forward speed. The developed model successfully captured the 

increase of elastic responses and bending moments by forward speed especially due to the 

resonance at the first bending mode. Also, with forward speed 𝐹𝐹𝑛𝑛 = 0.3, the dynamic vertical 

displacements at mid-ship and stern increased for the whole wave frequency range but those at 

bow decreased when 𝜆𝜆 > 0.7𝐿𝐿  as a result of hull elasticity when compared with the rigid-hull 

case. 

From the modal characteristic analysis of the Wigley hull, there exist appreciable differences 

between the dry and wet natural modes and the corresponding natural frequencies up to high 

bending modes. The same conclusion was also presented by various studies that used different 

approaches, namely in [44, 45]. The forward speed effect (up to 𝐹𝐹𝑛𝑛 = 0.3)  on the natural period 

and the mode shape was nontrivial at the first bending mode but negligible at higher bending 

modes. Due to forward speed, the lowest mode shape is warped towards the downstream direction, 

making the application of the conventional modal superposition method not straightforward. When 

the hydro-elasticity is solved by the modal superposition method, all the modal shapes should be 

obtained a priori. On the other hand, the present DMB method solves the hydro-elastic problem 

more directly without that kind of pre-process. 

The maximum dynamic bending moment occurred at the mid-ship section when 𝜆𝜆 ≫ 0.5𝐿𝐿. 

However, when 𝜆𝜆 < 0.5𝐿𝐿, higher elastic modes can be excited to change the location of the 

maximum bending moment. The bending moment (or stress) magnitudes tended to increase with 

forward speed although exceptions existed. The same tendencies were also observed in the case of 

two random waves considered. The increase of bending moments with forward speed in the 
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operational sea was more pronounced than the swell sea because of the encounter frequencies 

getting close to the first bending resonance. This kind of phenomenon is important in view of 

fatigue damage since both stress level and number of cycles are increased.  

The 30% local damage at the mid-ship did not change the mode shapes while a bit altering the 

elastic-mode natural frequencies. The damaged hull implementation on the DMB method is 

straightforward since it only needs to convert the corresponding local stiffness. More noticeable 

differences in bending stresses near the damage location can be observed especially with forward 

speed. This kind of change in stress signals may be used for the structural health monitoring with 

the help of the big data produced by the present hydro-elastic simulation program.  

In conclusion, the presently developed multi-body uniform-flow-based hydrodynamic model 

coupled with the DMB method showed promise to be a highly efficient, practical tool to solve 

rather complicated hydro-elasticity problem with forward speed. Nonetheless, due to several 

pragmatic approximations, care should be exercised when applying the proposed method 

especially when the steady free surface effect is large (e.g., close to the bow), hull shape is not 

slender, and uniform flow speed is large. More studies and comparisons are needed to investigate 

the validity of the proposed method, especially in the random sea case and the structural damage 

assessment case.  
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4.  SECOND-ORDER DIFFERENCE-FREQUENCY WAVE LOADS ON A 

FLOATING BODY IN UNIFORM CURRENT 

 

4.1.    Background and Literature Review 

The effect of steady flow (e.g., current or forward speed) on the wave’s diffraction-radiation 

problem has been widely studied [1-3]. One of the earliest studies to account for the wave-current 

interaction can be found in [2], where the body was divided into 2D strip sections, and the uniform 

flow approximation was applied to each section. The advances in computational power in the last 

two decades have made the boundary element method (BEM) more attractive in solving the wave 

diffraction-radiation problem. Among many publications, [4], for example,  presented a numerical 

method to solve the boundary integral equations using the Rankine source. To satisfy the free-

surface boundary condition automatically, several studies, including [5-8], proposed an oscillating 

Green function. By utilizing the oscillating (also called free-surface) Green function, the numerical 

evaluation on the free surface can be avoided, thus reducing the computational burden.  

The inclusion of the wave-current interaction effect into the 2D and 3D BEM framework was 

investigated in [9-13]. In those studies, the wave diffraction-radiation problem was solved up to 

the first-order in wave slope and first-order in forward speed. There are two popular linear wave-

steady flow linearization schemes: the Neumann-Kelvin linearization [14, 15] and the double-body 

linearization. In the Neumann-Kelvin linearization scheme, the free surface was linearized with 

respect to the steady flow by considering low forward speed and slender body. Since the body 

disturbance in the steady potential was omitted, the Neumann-Kelvin linearization method only 



83 
 

used the results from the waves to solve the wave-current interaction problems [2, 10, 13]. Recent 

developments have been made to account for the higher-current and non-linear free-surface effects. 

For example, [16, 17] utilized the ship wave Green’s function to solve the steady free surface 

disturbance, and [12, 18-20] solved the weakly non-linear problem, including the exact Froude-

Krylov force or the exact free surface evaluation. However, most of the non-linear schemes with 

instantaneous free-surface and body-surface conditions significantly increased the computational 

cost (e.g. [21]).  

In the case without steady flow, [22-24] obtained the second-order wave force without solving 

for the second-order wave potential. However, those schemes were not able to calculate local 

quantities such as hydrodynamic pressures and wave elevations at any point. A more direct method 

to calculate the second-order force in the frequency domain by direct pressure integration over the 

body surface was shown in [25-29]. These studies were carried out without considering the steady-

uniform flow, which considerably increases the theoretical complexity. As shown by [30] [12], the 

second-order wave drift load is highly affected by the currents. In this regard, [31] and [32] solved 

the wave-current interaction problem that is accurate up to the second-order in wave slope and 

first-order in current speed, including the second-order unsteady velocity potential. Both methods 

adopted a time-domain simulation and required free-surface discretization. However, to the 

authors’ knowledge, no study has tried to solve the same problem for a floating body in the 

frequency domain using the direct pressure integration method.  

Slowly varying force components of the second-order wave loading can be of high importance 

in most station keeping problems especially when the natural frequencies of the platform are 

considerably lower compared to the dominant wave frequencies. This happens in the horizontal 

motion of slack moored floaters and heave-pitch motions of large-volume deep-draft platforms. In 
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this paper, we focus on the second-order difference-frequency wave exciting forces including the 

second-order-potential force. The present study also solves the second-order velocity potential in 

the presence of small uniform flow. By adopting frequency-domain formulation, we reduce the 

computational burden when solving the complete quadratic transfer function (QTF). Furthermore, 

[26] showed that the free-surface-integral effect on the difference frequency wave loading is 

negligible. Therefore, when combined with the uniform-flow approximation, we can further 

reduce the computational cost by omitting the free-surface effect, which is to be useful in many 

practical applications.   

4.2.    The Second Order Problem 

The 2nd order variables include the multiplication between two 1st order oscillating variables. 

Consider two oscillating 1st order variables of Fie𝑖𝑖ωeit and Gje
𝑖𝑖ωejt, with the oscillation frequency 

of ωeiand ωej , the multiplication between the two can be written as:  

𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅�Fie𝑖𝑖ωeit� ∙ 𝑅𝑅𝑅𝑅 �Gje
𝑖𝑖ωejt� = 1

2
𝑅𝑅𝑅𝑅 ��Fie𝑖𝑖ωeit� �Gje

𝑖𝑖ωejt  + Gj
∗e−𝑖𝑖ωejt ��  (4.1) 

where Fi and Gj are time-invariant complex variables, and the (*) superscript indicates its complex 

conjugates. Note that in the above equation, only the real values are considered to have any 

physical relevance. We can further decompose eq.(4.1) into: 

𝑞𝑞𝑖𝑖𝑖𝑖+ = 𝑞𝑞𝑖𝑖𝑖𝑖+ = 1
2
𝑅𝑅𝑅𝑅�𝐹𝐹𝑖𝑖𝐺𝐺𝑖𝑖𝑅𝑅𝑖𝑖�𝜔𝜔𝑒𝑒𝑒𝑒+𝜔𝜔𝑒𝑒𝑒𝑒�𝑡𝑡�   (4.2) 

𝑞𝑞𝑖𝑖𝑖𝑖− = 𝑞𝑞𝑖𝑖𝑖𝑖−∗ = 1
2
𝑅𝑅𝑅𝑅�𝐹𝐹𝑖𝑖𝐺𝐺𝑖𝑖∗𝑅𝑅𝑖𝑖�𝜔𝜔𝑒𝑒𝑒𝑒−𝜔𝜔𝑒𝑒𝑒𝑒�𝑡𝑡�    

Considering eq.(4.2) above, and considering multiple frequency combinations, the 

multiplication between two first-order solutions can be written in the symmetric form as follow:  
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Q(𝒙𝒙�, 𝑡𝑡) = 1
2

Re∑ ∑ �Q𝑖𝑖𝑖𝑖
− (𝒙𝒙�)𝑅𝑅𝑖𝑖�𝜔𝜔𝑒𝑒𝑒𝑒 −𝜔𝜔𝑒𝑒𝑒𝑒 �𝑡𝑡 + Q𝑖𝑖𝑖𝑖

+ (𝒙𝒙�)𝑅𝑅𝑖𝑖�𝜔𝜔𝑒𝑒𝑒𝑒 +𝜔𝜔𝑒𝑒𝑒𝑒 �𝑡𝑡�𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1   (4.3) 

Q𝑖𝑖𝑖𝑖
− (𝒙𝒙�) =

𝑞𝑞𝑒𝑒𝑒𝑒
−(𝒙𝒙�)+𝑞𝑞𝑒𝑒𝑒𝑒

−∗(𝒙𝒙�)

2
    

Q𝑖𝑖𝑖𝑖
+ (𝒙𝒙�) =

𝑞𝑞𝑒𝑒𝑒𝑒
+(𝒙𝒙�)+𝑞𝑞𝑒𝑒𝑒𝑒

+(𝒙𝒙�)

2
    

Note that the Q(𝒙𝒙�, 𝑡𝑡) has the same form as the second-order potential Φ(2)(𝒙𝒙�, 𝑡𝑡) in eq.(1.13). 

By considering eq.(1.3) – eq.(1.10) and considering the Taylor expansion in eq.(1.19) – eq.(1.21), 

the 2nd   order variables can be found in Table 4.1 below.  

Table 4.1. The 2nd  order variables  

Variables 𝑂𝑂(ϵ2) 

𝒏𝒏� 𝒏𝒏�(2) = [𝑯𝑯]𝒏𝒏 + 𝜶𝜶(2) × 𝒏𝒏 

𝒙𝒙� 𝒙𝒙�(2) = [𝑯𝑯]𝒙𝒙 + 𝝃𝝃(2) + 𝜶𝜶(2) × 𝒙𝒙  

𝒙𝒙� × 𝒏𝒏�   (𝒙𝒙� × 𝒏𝒏�)(2) = [𝑯𝑯](𝒙𝒙 × 𝒏𝒏) + 𝝃𝝃(2) × 𝒏𝒏 + 𝜶𝜶(2) × (𝒙𝒙 × 𝒏𝒏)   

P(𝒙𝒙�)𝑆𝑆𝐵𝐵    
P(𝒙𝒙�)𝑆𝑆𝐵𝐵

(2) = −ρ�∂ϕw
(2)

∂t
− U ∂ϕw

(2)

∂x
+ 1

2
�ϕw

(1)�
2

+ g𝒙𝒙�(2).𝒌𝒌��
𝑆𝑆𝐵𝐵0

  

−ρ�𝝃𝝃(1) + 𝜶𝜶(1) × 𝒙𝒙� ∙ 𝜵𝜵 �∂ϕw
(1)

∂t
− U ∂ϕw

(1)

∂x
+ g𝒙𝒙�(1).𝒌𝒌��

𝑆𝑆𝐵𝐵0
     

 𝜁𝜁(x�, y�) 
𝜁𝜁(x�, y�)(2) = −1

g
�∂ϕw

(2)

∂t
− U ∂ϕw

(2)

∂x
+ 1

2
�ϕw

(1)�
2
�
𝑧𝑧=0

+ 1
g2
�∂ϕw

(1)

∂t
−

U ∂ϕw
(1)

∂x
� 𝜕𝜕
𝜕𝜕𝑧𝑧
�∂ϕw

(1)

∂t
− U ∂ϕw

(1)

∂x
�
𝑧𝑧=0

   

 

where the second term in the P(𝒙𝒙�)𝑆𝑆𝐵𝐵 and  𝜁𝜁(x�, y�) come from the Taylor expansion as defined in 

eq.(1. 21). [𝑯𝑯] is a roll-pitch-yaw second order coordinate transformation matrix which elements 

are the multiplication between the first order rotational motions as explained in [3]  as follow: 
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[𝑯𝑯] =

⎣
⎢
⎢
⎢
⎢
⎡−

1
2
��α𝑦𝑦

(1)�
2

+ �α𝑧𝑧
(1)�

2
� 0 0

α𝑥𝑥
(1)α𝑦𝑦

(1) −1
2
��α𝑥𝑥

(1)�
2

+ �α𝑧𝑧
(1)�

2
� 0

α𝑥𝑥
(1)α𝑧𝑧

(1) α𝑦𝑦
(1)α𝑧𝑧

(1) −1
2
��α𝑥𝑥

(1)�
2

+ �α𝑦𝑦
(1)�

2
�⎦
⎥
⎥
⎥
⎥
⎤

  

(4.4) 

Different from the 1st order boundary value problem, the boundary conditions in the 2nd order 

problem are inhomogeneous, with the right-hand side consisting of multiplication between two 

known first-order solutions. The second-order boundary value problem is subjected to the 

following 2nd order boundary conditions as follow: 

• Free surface boundary condition: 

�g 𝜕𝜕
𝜕𝜕𝑧𝑧

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝑥𝑥
�
2
�ϕw

(2) = QF  on 𝑆𝑆𝐹𝐹(𝑧𝑧 = 0) (4.5) 

where QF is the free surface quadratic forcing function, defined as follow: 

QF =
1
g
�
𝜕𝜕
𝜕𝜕t
− U

𝜕𝜕
𝜕𝜕𝜕𝜕
�ϕw

(1) 𝜕𝜕
𝜕𝜕𝑧𝑧

(LF) − �
𝜕𝜕
𝜕𝜕t
− U

𝜕𝜕
𝜕𝜕𝜕𝜕
� �ϕw

(1)�
2
 (4.6) 

The first term containing 𝜕𝜕
𝜕𝜕𝑧𝑧

(LF) comes from the Taylor expansion of the free surface evaluated 

at z = 0, with LF defined in eq.(2.1). Recalling that the first-order potential ϕw
(1) consist of 

incident wave potential ϕI
(1), and wave potential due to the presence of the body ϕB

(1) = ϕS
(1) +

ϕR
(1), QF can be decomposed into the following components: 

 QF = QFII + QFIB + QFBB  (4.7) 
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where, QFII consist of multiplication between two 1st order incident wave potentials (i. e.,

𝑓𝑓(ϕI
(1),ϕI

(1))), QFIB consist of multiplication between 1st order incident wave potentials and 

body disturbance potentials (i. e., 𝑓𝑓(ϕI
(1),ϕB

(1))),  and  QFBB consist of multiplication between 

two 1st order body disturbance potentials (i. e., 𝑓𝑓(ϕB
(1),ϕB

(1))). From these definitions, we 

decompose the 2nd order free surface boundary condition in eq.(4.5) into the following 

formulation: 

�g 𝜕𝜕
𝜕𝜕𝑧𝑧

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝑥𝑥
�
2
�ϕI

(2) = QFII  (4.8) 

�g 𝜕𝜕
𝜕𝜕𝑧𝑧

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝑥𝑥
�
2
�ϕS

(2) = QFIB + QFBB  (4.9) 

�g 𝜕𝜕
𝜕𝜕𝑧𝑧

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝑥𝑥
�
2
�ϕrk

(2) = 0  (4.10) 

• Bottom boundary condition: 

𝜕𝜕ϕw
(2)

𝜕𝜕𝑧𝑧
= 0  on 𝑆𝑆ℎ(𝑧𝑧 = −ℎ)  (4.11) 

• Body boundary condition of the scattering potential: 

𝜕𝜕ϕS
(2)

𝜕𝜕𝒏𝒏
= −𝜕𝜕ϕI

(2)

𝜕𝜕𝒏𝒏
+ QB   on 𝑆𝑆𝐵𝐵 = 𝑆𝑆𝐵𝐵0  (4.12) 

where QB is the body boundary quadratic forcing function, defined as follow: 

QB = 𝒏𝒏 ∙ ∂[𝑯𝑯]
∂t

 𝒙𝒙 −  [𝑯𝑯]𝒏𝒏 ∙ U �̂�𝒊 + �𝜶𝜶(1) × 𝒏𝒏� ∙ �𝜕𝜕�𝝃𝝃
(1)+𝜶𝜶(1)×𝒙𝒙�

𝜕𝜕𝑡𝑡
− 𝜵𝜵ϕw

(1)� − 𝒏𝒏 ∙

��𝝃𝝃(1) + 𝜶𝜶(1) × 𝒙𝒙� ∙ 𝜵𝜵�𝜵𝜵ϕw
(1)  

(4.13) 
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The last term containing second-order spatial derivative comes from the Taylor expansion of 

the  fluid velocity evaluated at the body at rest, i.e.,  𝜵𝜵Φ|𝑆𝑆𝐵𝐵 ≅  𝜵𝜵Φ|𝑆𝑆𝐵𝐵0 + 𝒙𝒙|𝑆𝑆𝐵𝐵 ∙ 𝜵𝜵(𝜵𝜵Φ)|𝑆𝑆𝐵𝐵0 +

⋯.The effect of the second term [𝑯𝑯]𝒏𝒏 ∙ U �̂�𝒊  are particularly interesting since it comes from the 

steady flow U �̂�𝒊, which is not included in the typical 2nd order wave diffraction-radiation 

boundary value problem. 

• Body boundary condition of the radiation potential: 

ηk
(2) 𝜕𝜕ϕ𝑟𝑟k

(2)

𝜕𝜕𝒏𝒏 = ∂ηk
(2)

∂t
nk′ + Uηk

(2)mk            ,k=1,2,…,6             on 𝑆𝑆𝐵𝐵 = 𝑆𝑆𝐵𝐵0 (4.14) 

Just like on the 1st order boundary condition, the m terms come from the interaction between 

the zeroth-order potential with 2nd order normal direction (see Table 4.1). For wave-uniform-

flow interaction model, the m terms are reduced to: 

mj = (0, 0, 0, 0, n3,−n2)  (4.15) 

For the case without uniform flow, the body boundary condition of the radiation potential is 

reduced to: 

ηk
(2) 𝜕𝜕ϕ𝑟𝑟k

0(2)

𝜕𝜕𝒏𝒏 = ∂ηk
(2)

∂t
nk′          ,k=1,2,…,6 on 𝑆𝑆𝐵𝐵 = 𝑆𝑆𝐵𝐵0 (4.16) 

• Far-field boundary condition: 

𝑙𝑙𝑙𝑙𝑙𝑙
|𝒙𝒙|→∞

�|𝒙𝒙| � 𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑙𝑙𝑘𝑘𝑒𝑒�ϕw

(2)  on 𝑆𝑆|𝒙𝒙|→∞ (4.17) 

The uniform flow affect the 2nd order boundary problem through all the terms containing the 

uniform flow speed U, and through the 1st order motions 𝝃𝝃(1) and 𝜶𝜶(1). Just like on the first order 
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free surface condition, we consider 𝜔𝜔𝑒𝑒 ≫  U(𝜕𝜕/𝜕𝜕x) to be valid throughout this study. Due to this 

consideration, the second-order free surface boundary condition is reduced back to the same form 

as the case without uniform flow such as below: 

�g 𝜕𝜕
𝜕𝜕𝑧𝑧

+ �𝜕𝜕
𝜕𝜕t
− U 𝜕𝜕

𝜕𝜕𝑥𝑥
�
2
�ϕw

(2) ≅ �g 𝜕𝜕
𝜕𝜕𝑧𝑧

+ 𝜕𝜕
𝜕𝜕t

2
�ϕw

(2) = 𝑄𝑄𝐹𝐹0  (4.18) 

QF0 = 1
g
𝜕𝜕ϕw

(1)

𝜕𝜕t
𝜕𝜕
𝜕𝜕𝑧𝑧

(LF0) − 𝜕𝜕
𝜕𝜕t
�ϕw

(1)�
2
   (4.19) 

All of the above 2nd order boundary conditions can be used to solve both the sum frequency 

potentials ϕ𝑖𝑖𝑖𝑖
+(𝒙𝒙�), and the difference frequency potentials ϕ𝑖𝑖𝑖𝑖

−(𝒙𝒙�) without losing any generality. 

However, in this study, we only consider the difference frequency potentials and the associated 

loading due to the reasons stated in the Introduction section. 

Considering the symmetric form in eq.(4.4), the difference frequency component of the 

quadratic forcing functions and other relevant quadratic variables can be written as follow: 

[𝑯𝑯] 
−

=
1
2
⎣
⎢
⎢
⎢
⎡− �α𝑦𝑦𝑒𝑒

(1)α𝑦𝑦𝑒𝑒
∗(1) + α𝑧𝑧𝑒𝑒

(1)α𝑧𝑧𝑒𝑒
∗(1)� 0 0

α𝑥𝑥𝑒𝑒
(1)α𝑦𝑦𝑒𝑒

∗(1) + α𝑥𝑥𝑒𝑒
∗(1)α𝑦𝑦𝑒𝑒

(1) −�α𝑥𝑥𝑒𝑒
(1)α𝑥𝑥𝑒𝑒

∗(1) + α𝑧𝑧𝑒𝑒
(1)α𝑧𝑧𝑒𝑒

∗(1)� 0

α𝑥𝑥𝑒𝑒
(1)α𝑧𝑧𝑒𝑒

∗(1) + α𝑥𝑥𝑒𝑒
∗(1)α𝑧𝑧𝑒𝑒

(1) α𝑦𝑦𝑒𝑒
(1)α𝑧𝑧𝑒𝑒

∗(1) + α𝑦𝑦𝑒𝑒
∗(1)α𝑧𝑧𝑒𝑒

(1) −�α𝑥𝑥𝑒𝑒
(1)α𝑥𝑥𝑒𝑒

∗(1) + α𝑦𝑦𝑒𝑒
(1)α𝑦𝑦𝑒𝑒

∗(1)�⎦
⎥
⎥
⎥
⎤
 

(4.20) 

QF𝑖𝑖𝑖𝑖− = 1
4g
�𝑙𝑙ωei − U 𝜕𝜕

𝜕𝜕𝑥𝑥
�ϕwi

(1) 𝜕𝜕
𝜕𝜕𝑧𝑧
�g 𝜕𝜕

𝜕𝜕𝑧𝑧
+ �−𝑙𝑙ωej − U 𝜕𝜕

𝜕𝜕𝑥𝑥
�
2
�ϕwj

∗(1)  

+ 1
4g
�−𝑙𝑙ωej − U 𝜕𝜕

𝜕𝜕𝑥𝑥
�ϕwj

∗(1) 𝜕𝜕
𝜕𝜕𝑧𝑧
�g 𝜕𝜕

𝜕𝜕𝑧𝑧
+ �𝑙𝑙ωei − U 𝜕𝜕

𝜕𝜕𝑥𝑥
�
2
�ϕwi

(1)  

−1
2
�𝑙𝑙 �ωei − ωej� − U 𝜕𝜕

𝜕𝜕𝑥𝑥
�𝜵𝜵ϕwi

(1) ∙ 𝜵𝜵ϕwj
∗(1)   

(4.21) 

QF𝑖𝑖𝑖𝑖0− =
1

4g
𝑙𝑙ωeiϕwi

(1) 𝜕𝜕
𝜕𝜕𝑧𝑧
�g

𝜕𝜕
𝜕𝜕𝑧𝑧

− 𝑙𝑙ωe
2
j�ϕwj

∗(1) (4.22) 
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− 1
4g
𝑙𝑙ωejϕwj

∗(1) 𝜕𝜕
𝜕𝜕𝑧𝑧
�g 𝜕𝜕

𝜕𝜕𝑧𝑧
− 𝑙𝑙ωe

2
i�ϕwi

(1)  

−
𝑖𝑖�ωei−ωej�

2
𝜵𝜵ϕwi

(1) ∙ 𝜵𝜵ϕwj
∗(1)  

QB𝑖𝑖𝑖𝑖
− =

𝑖𝑖�ωei−ωej�

2
[𝑯𝑯]−𝒙𝒙 ∙ 𝒏𝒏 −  1

2
[𝑯𝑯]−𝒏𝒏 ∙ U �̂�𝒊  

+ 1
4
�𝜶𝜶i

(1) × 𝒏𝒏� ∙ �−𝑙𝑙ωej�𝝃𝝃j
∗(1) + 𝜶𝜶j

∗(1) × 𝒙𝒙� − 𝜵𝜵ϕwj
∗(1)�  

+ 1
4
�𝜶𝜶j

∗(1) × 𝒏𝒏� ∙ �𝑙𝑙ωei�𝝃𝝃i
(1) + 𝜶𝜶i

(1) × 𝒙𝒙� − 𝜵𝜵ϕwi
(1)�    

−1
4
𝒏𝒏 ∙ ��𝝃𝝃i

(1) + 𝜶𝜶i
(1) × 𝒙𝒙� ∙ 𝜵𝜵�𝜵𝜵ϕwj

∗(1) − 1
4
𝒏𝒏 ∙ ��𝝃𝝃j

∗(1) + 𝜶𝜶j
∗(1) × 𝒙𝒙� ∙

𝜵𝜵�𝜵𝜵ϕwi
(1)   

(4.23) 

By substituting the eq.(2.12) into eq.(4.18)-(4.19) the 2nd order difference-frequency incident 

potential ϕIij
−  for uni-directional seas can be written as follow [26]: 

ϕIij
− = QFII−

cosh�𝜅𝜅𝑒𝑒ij
− (𝑧𝑧+ℎ)� 

�−𝜈𝜈eij
− +𝜅𝜅𝑒𝑒ij

− 𝑡𝑡𝑡𝑡𝑛𝑛ℎ�𝜅𝜅𝑒𝑒ij
− h��𝑐𝑐𝑐𝑐𝑐𝑐ℎ�𝜅𝜅𝑒𝑒ij

− ℎ�
   

(4.24) 

where, 

QFII− = �
𝑖𝑖gAiAj

∗

2
� �

�kej
2 −𝜈𝜈ej

2 �

2ωej
− �kei

2 −𝜈𝜈ei
2 �

2ωei
−

�ωei−ωej�

ωeiωej
�𝒌𝒌i ∙ 𝒌𝒌j + 𝜈𝜈ei 𝜈𝜈ej �� 𝑅𝑅−𝑖𝑖�𝒌𝒌i−𝒌𝒌j�∙𝒙𝒙   

𝜈𝜈ei = ωei
2 /g  

𝜈𝜈eij
− = �ωei − ωej�

2
/g  

𝜅𝜅𝑒𝑒ij− = �𝒌𝒌i − 𝒌𝒌j� = �ki2 + kj2  

(4.25) 
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4.3.    The Second-order Wave Loading 

After solving the 1st order potentials, forces, and motions, the 2nd order forces are obtained by 

collecting the 𝑂𝑂(𝜖𝜖2)  terms in eq.(1.22)-(1.23) as follow: 

𝑭𝑭(2) = F1−3
′(2)  

= −∬ P(0)[𝑯𝑯]𝒏𝒏 dS 
𝑆𝑆𝐵𝐵0

  

−∬ P(0) �𝜶𝜶(2) × 𝒏𝒏� dS 
𝑆𝑆𝐵𝐵0

−∬ P(1)�𝜶𝜶(1) × 𝒏𝒏� dS 
𝑆𝑆𝐵𝐵

  

− ∬ P(2)𝒏𝒏 dS 
𝑆𝑆𝐵𝐵

  

(4.26) 

𝑴𝑴(2) = F4−6
′(2)   

= −∬ P(0) � 𝝃𝝃(2) × 𝒏𝒏� dS 
 𝑆𝑆𝐵𝐵

−∬ P(0)  � 𝜶𝜶(2) × (𝒙𝒙 × 𝒏𝒏)�  dS 
 𝑆𝑆𝐵𝐵

  

−∬ P(0)[𝑯𝑯](𝒙𝒙 × 𝒏𝒏) dS 
 𝑆𝑆𝐵𝐵

  

−∬ P(1) � 𝝃𝝃(1) × 𝒏𝒏� dS 
 𝑆𝑆𝐵𝐵

−∬ P(1)  � 𝜶𝜶(1) × (𝒙𝒙 × 𝒏𝒏)�  dS 
 𝑆𝑆𝐵𝐵

  

−∬ P(2) (𝒙𝒙 × 𝒏𝒏) dS 
 𝑆𝑆𝐵𝐵

  

−∫ ∫ 𝜌𝜌gz(𝒙𝒙 × 𝒏𝒏)ζr
(1)

0 dz 
𝑤𝑤𝑤𝑤 dl  

(4.27) 

Similar to the eq.(1.13) the total time-varying forces and moments are defined as 𝑭𝑭T
′(2)(𝑡𝑡) =

Re∑ ∑ { 𝑭𝑭ij′−𝑅𝑅𝑖𝑖�𝜔𝜔𝑒𝑒𝑒𝑒 −𝜔𝜔𝑒𝑒𝑒𝑒 �𝑡𝑡 + 𝑭𝑭ij′+𝑅𝑅𝑖𝑖�𝜔𝜔𝑒𝑒𝑒𝑒 +𝜔𝜔𝑒𝑒𝑒𝑒 �𝑡𝑡 }𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 , with 𝑭𝑭′ defined in eq.(1.24) and 𝑭𝑭ij

′± referred 

to as the force quadratic transfer function (QTF). Collecting the forcing terms with similar 

characteristics, the second-order forces can be written in the following form: 

𝑭𝑭′(𝟐𝟐) = 𝑭𝑭𝒒𝒒
′(𝟐𝟐) + 𝑭𝑭𝒑𝒑

′(𝟐𝟐) + 𝑭𝑭𝒉𝒉
′(𝟐𝟐) + �𝑨𝑨(𝟐𝟐) − 𝒊𝒊

𝝎𝝎𝒆𝒆
𝑩𝑩(𝟐𝟐)� �̈�𝜼(𝟐𝟐)  (4.28) 
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where 𝑭𝑭𝒒𝒒
′(𝟐𝟐) is the quadratic wave force and moment from multiplication between two first-order 

terms, 𝑭𝑭𝒑𝒑
′(𝟐𝟐) is the second-order diffraction force from ϕI

(2) + ϕS
(2) terms, ��𝑨𝑨(𝟐𝟐)� − 𝑙𝑙�𝑩𝑩(𝟐𝟐)�/ωe� 

are the added mass and hydrodynamic damping from 𝝓𝝓𝒓𝒓
(𝟐𝟐) terms, �̈�𝜼(𝟐𝟐) is the second-order body’s 

acceleration, and  𝑭𝑭𝒉𝒉
(𝟐𝟐) is the hydrostatic forces that only depends on second-order motions 𝜼𝜼(𝟐𝟐) 

and independent from the wave potentials.  𝑭𝑭𝒒𝒒
′(𝟐𝟐) and 𝑭𝑭𝒑𝒑

′(𝟐𝟐) is of particular interest, since it acts as 

the second-order wave exciting force 𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆
′(𝟐𝟐) on the right-hand side of the equation of motion. With 

only considering the difference frequency force, the quadratic force and second-order diffraction 

force are defined as follow: 

𝑭𝑭𝒒𝒒ij
− = 1

4
ρg∫ �𝜁𝜁i

(1) − �ξ𝑧𝑧i
(1) + αxi

(1)𝑦𝑦 − αyi
(1)𝜕𝜕�� �𝜁𝜁j

∗(1) − �ξ𝑧𝑧j
∗(1) + αxj

∗(1)𝑦𝑦 − 
𝑤𝑤𝑤𝑤 

αyj
∗(1)𝜕𝜕�� 𝒏𝒏

�1−nz
 dl   

−1
4
ρ∬ 𝜵𝜵ϕwi

(1) ∙ 𝜵𝜵ϕwj
∗(1)𝒏𝒏 dS 

𝑆𝑆𝐵𝐵
  

−1
4
ρ∬ �𝝃𝝃i

(1) + 𝜶𝜶i
(1) × 𝒙𝒙� ∙ 𝜵𝜵�

∂ϕwj
∗(1)

∂t
− U

∂ϕwj
∗(1)

∂x
 �𝒏𝒏 dS 

𝑆𝑆𝐵𝐵
  

−1
4
ρ∬ �𝝃𝝃j

∗(1) + 𝜶𝜶j
∗(1) × 𝒙𝒙� ∙ 𝜵𝜵 �

∂ϕwi
(1)

∂t
− U

∂ϕwi
(1)

∂x
 �𝒏𝒏 dS 

𝑆𝑆𝐵𝐵
  

+ 1
4
ρ 𝜶𝜶𝐢𝐢

(1) × ∬ �
∂ϕwj

∗(1)

∂t
− U

∂ϕwj
∗(1)

∂x
 �𝒏𝒏 dS 

𝑆𝑆𝐵𝐵
  

+ 1
4
ρ 𝜶𝜶j

∗(1) × ∬ �
∂ϕwi

(1)

∂t
− U

∂ϕwi
(1)

∂x
 �𝒏𝒏 dS 

𝑆𝑆𝐵𝐵
   

−1
4
𝜌𝜌gAwp �αxi

(1)αzj
∗(1)xf + αyi

(1)αzj
∗(1)yf + 1

2
�αxi

(1)αxj
∗(1) + αyi

(1)αyj
∗(1)� Z0� 𝒌𝒌�  

−1
4
𝜌𝜌gAwp �αzi

(1)αxj
∗(1)xf + αzi

(1)αyj
∗(1)yf + 1

2
�αxi

(1)αxj
∗(1) + αyi

(1)αyj
∗(1)� Z0� 𝒌𝒌�  

(4.29) 
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𝑴𝑴𝒒𝒒ij
− = 1

4
ρg ∫ �𝜁𝜁i

(1) − �ξ𝑧𝑧i
(1) + αxi

(1)𝑦𝑦 − αyi
(1)𝜕𝜕�� �𝜁𝜁j

∗(1) − �ξ𝑧𝑧j
∗(1) + αxj

∗(1)𝑦𝑦 − 
𝑤𝑤𝑤𝑤 

αyj
∗(1)𝜕𝜕�� (𝒙𝒙×𝒏𝒏)

�1−nz
 dl   

−1
4
ρ∬ 𝜵𝜵ϕwi

(1) ∙ 𝜵𝜵ϕwj
∗(1)(𝒙𝒙 × 𝒏𝒏) dS 

𝑆𝑆𝐵𝐵
  

−1
4
ρ∬ �𝝃𝝃i

(1) + 𝜶𝜶i
(1) × 𝒙𝒙� ∙ 𝜵𝜵�

∂ϕwj
∗(1)

∂t
− U

∂ϕwj
∗(1)

∂x
 � (𝒙𝒙 × 𝒏𝒏) dS 

𝑆𝑆𝐵𝐵
  

−1
4
ρ∬ �𝝃𝝃j

∗(1) + 𝜶𝜶j
∗(1) × 𝒙𝒙� ∙ 𝜵𝜵�

∂ϕwi
(1)

∂t
− U

∂ϕwi
(1)

∂x
 � (𝒙𝒙 × 𝒏𝒏) dS 

𝑆𝑆𝐵𝐵
   

+ 1
4
ρ 𝝃𝝃𝐢𝐢

(1) × ∬ �
∂ϕwj

∗(1)

∂t
− U

∂ϕwj
∗(1)

∂x
 �𝒏𝒏 dS 

𝑆𝑆𝐵𝐵
+ 1

4
ρ 𝝃𝝃j

∗(1) × ∬ �
∂ϕwi

(1)

∂t
− 

𝑆𝑆𝐵𝐵

U
∂ϕwi

(1)

∂x
 �𝒏𝒏 dS  

+ 1
4
ρ 𝜶𝜶𝐢𝐢

(1) × ∬ �
∂ϕwj

∗(1)

∂t
− U

∂ϕwj
∗(1)

∂x
 � (𝒙𝒙 × 𝒏𝒏) dS 

𝑆𝑆𝐵𝐵
  

+ 1
4
ρ 𝜶𝜶j

∗(1) × ∬ �
∂ϕwi

(1)

∂t
− U

∂ϕwi
(1)

∂x
 � (𝒙𝒙 × 𝒏𝒏) dS 

𝑆𝑆𝐵𝐵
  

+ 1
4
ρgV �−ξxi

(1)αzj
∗(1) − ξxj

∗(1)αzi
(1) + �αxi

(1)αyj
∗(1) + αxj

∗(1)αyi
(1)� xb − �αyi

(1)αzj
∗(1) +

αyj
∗(1)αzi

(1)� zb − �αxi
(1)αxj

∗(1) + αzi
(1)αzj

∗(1)� yb� �̂�𝒊   

+ 1
4
ρgV �−ξyi

(1)αzj
∗(1) − ξyj

∗(1)αzi
(1) + �αxi

(1)αzj
∗(1) + αxj

∗(1)αzi
(1)� zb + �αyi

(1)αyj
∗(1) +

αzi
(1)αzj

∗(1)� xb� 𝒋𝒋̂   

+ 1
4
ρgV �ξxi

(1)αxj
∗(1) + ξxj

∗(1)αxi
(1) + ξyi

(1)αyj
∗(1) + ξyj

∗(1)αyi
(1) + �αyi

(1)αzj
∗(1) +

αyj
∗(1)αzi

(1)� xb − �αxi
(1)αzj

∗(1) + αxj
∗(1)αzi

(1)� yb� 𝒌𝒌�   

(4.30) 
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+ 1
4
ρg �− �αxi

(1)αzj
∗(1) + αxj

∗(1)αzi
(1)�L12 − �αyi

(1)αzj
∗(1) + αyj

∗(1)αzi
(1)� L22 −

�αxi
(1)αxj

∗(1) + αyi
(1)αyj

∗(1)�Z0Awpyf� �̂�𝒊    

+ 1
4
ρg ��αxi

(1)αzj
∗(1) + αxj

∗(1)αzi
(1)� L11 + �αyi

(1)αzj
∗(1) + αyj

∗(1)αzi
(1)�L12 +

�αxi
(1)αxj

∗(1) + αyi
(1)αyj

∗(1)�Z0Awpxf� 𝒋𝒋̂  

𝑭𝑭𝒑𝒑Iij
− = −ρ∬ �

∂ϕIij
−

∂t
− U

∂ϕIij
−

∂x
� 𝒏𝒏 dS 

 𝑆𝑆𝐵𝐵0
  (4.31) 

𝑴𝑴𝒑𝒑Iij
− = −ρ∬ �

∂ϕIij
−

∂t
− U

∂ϕIij
−

∂x
� (𝒙𝒙 × 𝒏𝒏) dS 

 𝑆𝑆𝐵𝐵0
  (4.32) 

𝑭𝑭𝒑𝒑Sij
− = −ρ∬ �

∂ϕSij
−

∂t
− U

∂ϕSij
−

∂x
� 𝒏𝒏 dS 

 𝑆𝑆𝐵𝐵0
   (4.33) 

𝑴𝑴𝒑𝒑Sij
− = −ρ∬ �

∂ϕSij
−

∂t
− U

∂ϕSij
−

∂x
� (𝒙𝒙 × 𝒏𝒏) dS 

 𝑆𝑆𝐵𝐵0
  (4.34) 

where 𝐴𝐴𝑤𝑤𝑤𝑤 =  ∬ nz dS 
𝑆𝑆𝐵𝐵0

 is the waterplane area, xf and yf are the coordinate center of floatation, 

Lmn is the second moment over the waterplane area (e.g., L12 =  ∬ x y nz dS 
𝑆𝑆𝐵𝐵0

 ). When ω0i =

ω0j  (i.e., the main diagonal of the QTF), the total 2nd order wave exciting force only depends on 

the quadratic force, since the 2nd order diffraction force is zero-valued.  It is clear that the quadratic 

force only depends on the 1st order variable and doesn’t require the solving of the rather 

complicated 2nd order boundary value problem (eq.(4.5)-(4.19)).  

4.4.    Implementation 

Similar to the 1st order problem, the difference frequency scattering potentials ϕSij
−  or each 

encounter frequency combinations 𝜔𝜔𝑒𝑒𝑒𝑒 and 𝜔𝜔𝑒𝑒𝑒𝑒, can be obtained by solving the following boundary 

integral equations: 
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2πϕSij
− (𝒙𝒙) + ∬ ϕSij

− (𝒙𝒙′)
𝜕𝜕G0�𝜅𝜅𝑒𝑒ij

− ,𝒙𝒙,𝒙𝒙′�

∂𝒏𝒏
dS 

𝑆𝑆𝐵𝐵
=  

∬ �−
𝜕𝜕ϕIij

− �𝒙𝒙′�

𝜕𝜕𝒏𝒏
+ QBij

−(𝒙𝒙′)�G0�𝜅𝜅𝑒𝑒ij− ,𝒙𝒙,𝒙𝒙′�dS 
𝑆𝑆𝐵𝐵

      

+ 1
g∬ �QFIBij

0− (𝒙𝒙′) + QFBBij
0− (𝒙𝒙′)�G0�𝜅𝜅𝑒𝑒ij− ,𝒙𝒙,𝒙𝒙′�dS 

𝑆𝑆𝐹𝐹
  

(4.35) 

The right-hand side of the boundary integral equation contains an infinite-domain free-surface 

integral part that does not exist on the 1st order problem. This additional integral significantly 

increases the numerical complexity since it needs to satisfy the infinite domain boundary condition 

and require free surface discretization. Kim [26] and Ma et.al., [33] show that for uni-directional 

seas, the free surface contribution to the total difference frequency forces is negligible for most 

engineering cases. We also validate this claim by comparing the present model (without free 

surface contribution) with the industry-standard software WAMIT (with free surface contribution) 

[34] in the Validation section. Therefore, to maintain the advantages of the uniform flow 

approximation model, i.e., the use of zero speed free surface green function without free surface 

discretization, we neglect the free surface contribution in this study. We call this approach the 

weak second-order potential, which obtained the difference frequency scattering potentials by 

solving the following boundary integral equation: 

2πϕSij
− (𝒙𝒙) + � ϕSij

− (𝒙𝒙′)
𝜕𝜕G0�𝜅𝜅𝑒𝑒ij− ,𝒙𝒙,𝒙𝒙′�

∂𝒏𝒏
dS

 

𝑆𝑆𝐵𝐵
≅ 

∬ �−
𝜕𝜕ϕIij

− (𝒙𝒙′)

𝜕𝜕𝒏𝒏
+ QBij

−(𝒙𝒙′)�G0�𝜅𝜅𝑒𝑒ij− ,𝒙𝒙,𝒙𝒙′�dS 
𝑆𝑆𝐵𝐵

  

(4.36) 

Considering that the right-hand side of eq.(4. 36) above is given by the body boundary 

condition in (4.23)-(4.24), ϕSij
−  can be solved by solving the discretized form of the second-kind 

Fredholm integral equation. 
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In the irregular wave’s analysis, the structure is  subjected to JONSWAP wave’s spectra 

defined as follow [35]: 

𝑆𝑆𝜂𝜂𝜂𝜂(𝜔𝜔𝑖𝑖) = 𝛼𝛼𝛼𝛼𝐻𝐻𝑐𝑐2𝜔𝜔𝑤𝑤4𝜔𝜔𝑖𝑖
−5 exp �−1.25 𝜔𝜔𝑒𝑒

4

𝜔𝜔𝑝𝑝
4�  (4.37) 

where, 

𝑎𝑎 = 𝛾𝛾 exp �−�𝜔𝜔𝑒𝑒
𝜔𝜔𝑝𝑝
− 1�

2
/2𝜎𝜎2�  

𝛼𝛼 = 0.597+0.3125𝛾𝛾
1.27+1.47𝛾𝛾+0.168𝛾𝛾2

   

𝜎𝜎 = �
0.07, 𝜔𝜔𝑖𝑖 < 𝜔𝜔𝑤𝑤
0.09, 𝜔𝜔𝑖𝑖 ≥ 𝜔𝜔𝑤𝑤

    

(4.38) 

where 𝐻𝐻𝑐𝑐, 𝜔𝜔𝑤𝑤, and 𝛾𝛾 is the significant wave’s height, peak frequency, and wave’s enhancement 

factor, respectively. Given the irregular wave’s energy spectral density Sηη(ωi) and the complex 

quadratic transfer function of the difference frequency force 𝑸𝑸𝑸𝑸𝑭𝑭𝑭𝑭−�ωi,ωj�, the energy spectral 

density of the slowly varrying force 𝑭𝑭ij′− can be readily calculated by using the following equation: 

𝑺𝑺𝑭𝑭𝑭𝑭
(𝟐𝟐)−(δω) = 8 ∫ Sηη(ω + δω)Sηη(ω)|𝑸𝑸𝑸𝑸𝑭𝑭𝑭𝑭−(ω+ δω,ω)|2dω∞

0    (4.39) 

In the discrete form with fixed ∆𝜔𝜔 the eq.(4. 39) can be rewritten into eq.(4.40), while its 

corresponding time series can be found in eq.(4.41)-(4.42). 

𝑺𝑺𝑭𝑭𝑭𝑭
(𝟐𝟐)−(δ𝜔𝜔𝑖𝑖) = 8 � {Sηη�ωj + (i − 1)∆𝜔𝜔�Sηη�ωj�

Nw

j=1
 

�𝑸𝑸𝑸𝑸𝑭𝑭𝑭𝑭−�ωj + (i − 1)∆𝜔𝜔,ωj��
2
∆𝜔𝜔}    

(4.40) 
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|Ai| = �2𝑆𝑆𝐴𝐴𝐴𝐴(δ𝜔𝜔𝑖𝑖)∆𝜔𝜔  (4.41) 

A(t) = ∑ |Ai| cos(δωit + θi)
Nw
𝑖𝑖=1   (4.42) 

where |Ai| is the frequency dependent real valued amplitude, Nw is the total number of simulated 

frequency, δ𝜔𝜔𝑖𝑖 is the frequency difference, and θi is the random phase angle between 0 and 2π. 

The slowly varying force time series can also be directly calculated from the wave’s amplitude 

time series and the force’s QTFs, by employing a double inverse Fourier transform as follow: 

𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆
′(𝟐𝟐)−(𝑡𝑡) = ∑ ∑ AjAk�𝑅𝑅𝑅𝑅�𝑸𝑸𝑸𝑸𝑭𝑭𝑭𝑭−�ωj,ωk�� cos��ωk − ωj� + �θk − θj�� +Nw

k=1
Nw
j=1

𝐼𝐼𝑙𝑙�𝑸𝑸𝑸𝑸𝑭𝑭𝑭𝑭−�ωj,ωk�� sin��ωk − ωj� + �θk − θj���  
(4.43) 

where Aj and Ak are the wave’s amplitude as defined in eq. .(4.41)-(4.42). In this study, the slowly 

varying force time series is calculated by employing the eq. (4. 44), while the wave’s elevation 

time series is calculated by employing the eq. (4.42). The energy spectra can be described in terms 

of the encounter frequency ωe or the zero uniform flow frequency ω0. The relation between the 

two can be achieved by the conservation of energy as described in eq.(4.45) below: 

SAA�ωei� = SAA�ω0i�
dω0
dωe

= SAA�ω0i� �
g

g+2ω0iUcos(βcw)�       (in deepwater)  (4.45) 

4.5.    Validation 

The proposed interaction theory for wave with uniform flow is validated through comparisons 

with experiments and numerical simulation data available from the literature. Also, the 

approximation omitting the free surface integral in eq.(4. 36) is compared against the industry-

standard software WAMIT. In this study, a slender ship with forward speed (or a weather-vanning 
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vessel in head seas) ( i.e. 𝛼𝛼𝑐𝑐𝑤𝑤 = 00 and 𝛼𝛼 = 1800 ) is considered so that the uniform flow 

assumptions are satisfied. Deepwater condition (h ≫ 0.5λ) is chosen to simplify the problem. 

Two types of slender hulls with analytical expression are used for the case study, with one 

having a slightly larger breadth to length ratio than the other. These hull shapes are also known as 

Wigley hull, and can be described as 𝜂𝜂 = (1 − 𝜁𝜁2)(1 − 𝜉𝜉2)(1 + 𝑎𝑎2𝜉𝜉2 + 𝑎𝑎4𝜉𝜉4) + 𝑎𝑎𝜁𝜁2(1 −

𝜁𝜁8)(1− 𝜉𝜉2)4. Where 𝜉𝜉 = 2𝑥𝑥
𝐿𝐿

 , 𝜂𝜂 = 2𝑦𝑦
𝐵𝐵

, 𝜁𝜁 = 𝑧𝑧
𝐷𝐷

 . L, B, and D are the ship’s length, breadth and draft, 

respectively. The particulars of the two Wigley hulls are given in Table 4.2, and its hull shapes are 

shown in Fig. 4.1. 

Table 4.2. Particulars of the Wigley hulls 

Name 𝑎𝑎 𝑎𝑎2 𝑎𝑎4 𝐿𝐿 𝐵𝐵 𝐷𝐷 

Wigley I (Slender) 1.0 0.2 1.0 2 0.3 0.125 

Wigley II (Blunt) 1 0.6 1 2.5 0.5 0.175 

    
Fig. 4.1. Hull shape of the Wigley I (left) and Wigley II (right) 
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Fig. 4.2. Amplitudes comparisons of the difference frequency force and moment QTFs for 

Wigley II (Blunt), considering the free surface integral (bullets) and without free surface integral 

(solid lines)  

Fig. 4.2 illustrates the free-surface-integral contribution to the 2nd order force and moment for 

the case without uniform flow. On the figures, 𝜈𝜈𝑚𝑚𝐿𝐿 = �ω0i − ω0i�
2

L/4g is the non-dimensional 

mean frequency, and 𝜈𝜈−𝐿𝐿 = �ω0i − ω0i�
2

L/g is the non-dimensional difference frequency. The 

results show that the free-surface-integral contribution is negligible in the total 2nd-order wave 

exciting force 𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆ij
′− , especially when the quadratic force 𝑭𝑭𝒒𝒒ij

′−dominates the 𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆ij
′−  close to the 
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QTF’s main diagonal (i.e., ω0i ≈ ω0j). In other words, when frequency differences are not large, 

the present method is reliably applicable. Note that the present results give slightly more 

conservative values. This conclusion also agrees with [26], which also shows the same trend for 

bottom-mounted cylinder. 

 

Fig. 4.3. Validation of the main-diagonal QTFs with forward speed. EUT results are from 

ref.[30], MDLHydro results are from ref.[37], and Experiment results are from ref.[36] 
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The proposed wave-uniform flow method is validated against experiments and numerical 

simulation data from the literature [30, 36, 37] in Fig. 4.3. The figure shows the drift force, i.e., 

2nd order force in x-dir, with ω0i = ω0j, for various cases of experiments and numerical 

simulations. This drift force with forward speed is also called the added resistance in some 

literature. The present results show good agreement with other numerical simulations (EUT and 

MDLHydro) developed independently by [30] and [37]. The present results also correlate well 

with the published experimental results. The minor discrepancies may be attributed to higher-order 

nonlinear and viscous effects. The good comparison in second-order drift force also implies that 

the first-order solutions are well matched, which was confirmed but not presented here, since the 

2nd order forces consist of the products of first-order quantities. It is well known that the added 

resistance (drift force with forward speed) is a small quantity and thus hard to measure in 

experiment, as shown in Fig.4. 3. 

4.6.    Case Study 

In the previous two sections, we validated the present approach in calculating the second-order 

force QTFs without forward speed in bi-frequency domain and those with forward speed (or added 

resistance) in regular waves. In this section, the effect of the uniform flow on the 2nd-order 

quadratic, diffraction, and total exciting force QTFs are presented in the bi-frequency domain. The 

same hull shapes and sea conditions as the previous sections are used. As for the QTFs in the bi-

frequency domain with forward speed, there is no published result available for comparison. The 

present approach is practically important in that it provides reasonably reliable QTF solution with 

forward speed in random waves with minimal human effort and computational time. 
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First, the uniform flow effects on the total surge-heave-pitch exciting force QTF for both 

Wigley I and Wigley II are shown in Fig. 4.4-Fig. 4.5. The figures show that the magnitudes of 

the QTFs’ are generally increased with uniform flow (U). It implies that the added resistance with 

forward speed is generally larger than mean drift force without forward speed in random waves. 

Similarly, the mean drift force in head current is larger than that without current in random waves. 

For both hull shapes, the slopes of the surge-heave-pitch force QTFs near their peaks are also 

increased. In addition, the peak locations in the QTFs are shifted to the lower frequency region, 

owing to the additional −𝑈𝑈(𝜕𝜕𝜙𝜙𝑤𝑤/𝜕𝜕𝜕𝜕) in the pressure formulation. 

 

 
Fig. 4.4. The uniform flow effect on the complete QTF of the total wave loading of Wigley I 
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Fig. 4.5. The uniform flow effect on the complete QTF of the total wave loading of Wigley II 

To examine the effect of the uniform flow more closely, the QTFs for non-dimensional 

difference-frequency values of 𝜐𝜐− = 0.00;  0.23;  2.43 are presented in Fig. 4.6. – 4.8. Small 

increments of uniform flow magnitude (𝐹𝐹𝑛𝑛 = 0.00;  0.02;  0.05) are chosen to show the gradual 

change of the QTFs. From these figures, we can see that the total 2nd-order forces increase with U  

except for the surge force and pitch moment at  𝜐𝜐− = 0.23 𝑎𝑎𝑎𝑎𝑎𝑎 0, respectively. These figures also 

show that the local peaks on the total exciting force are mainly attributed to the quadratic forces. 

These local peaks generally increase with U, except for the pitch moment at 𝜐𝜐− = 0.00. All the 

figures shown in this section suggest that the uniform flow affects both the 2nd-order quadratic and 

diffraction forces and its effect is not negligible even for small uniform flow magnitude. Therefore, 

the importance of the uniform flow effect on the 2nd-order force QTFs cannot be understated. 
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Fig. 4.6. Wigley II – uniform flow effect on difference frequency surge force components and 

total exciting force 

 
Fig. 4.7. Wigley II – uniform flow effect on difference frequency heave force components and 

total exciting force 
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Fig. 4.8. Wigley II – uniform flow effect on difference frequency pitch moment components and 

total exciting force 

4.7.    Comparisons with Other Approximation Methods 

Considering the importance of the uniform flow effect and that the QTFs’ calculation in the 

previous sections involves a high computation complexity, several less computationally 

demanding solutions are examined in this section.  

First, the far-field solution as presented by Aranha et al. [38] is used to calculate the horizontal 

drift force in regular waves with uniform flow i.e. along the main diagonal (ω0i = ω0j). Aranha 

et al. derived the correction factors by current to the transmitted and reflected waves acting on a 

floating body by utilizing the far-field approach. From the difference in energy between the 

incoming and transmitted waves, the drift force applied to the floating body can be formulated as 

𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆−
ii(𝜔𝜔0, U) = 1

2
ρgA2|R(ωe, U)|2, where R(ωe, U) is the wave’s reflection coefficient. The 

resulting drift force in the presence of current (or uniform flow) can be summarized into: 
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Fext−
kii

(ω0, U) = Fext−
kii

(ωe, 0)[1 − 4(Ug/ωo)]            k =1,2,6 (4.46) 

This method is far less computationally expensive compared to the direct pressure integration 

method even with the present uniform flow approximation. However, Aranha’s far-field method 

also has disadvantages such as being insensitive to local hull shape variations [37], based on 

heuristic arguments [39], and providing no solutions for heave-pitch-roll modes. Also, Aranha’s 

formulas were validated by more direct numerical methods by others for fixed bodies but have still 

been controversial for floating-body cases. A similar study for ship-shaped structures under 

various wave heading angles was presented by [40].  

 
Fig. 4.9. Main diagonal comparisons of the difference frequency surge QTF between the 

Aranha’s method and the present study 

The surge drift force comparisons between the present (direct pressure integration with 

uniform flow approximation) and the Aranha’s methods are presented in Fig. 4.9. The base value 

of 𝐹𝐹𝑛𝑛 = 0.0 is also validated with the experiment from [36]. The figure shows that the Aranha’s 

and present methods give comparable results for both hull shapes when the uniform-flow 

magnitude is relatively small (𝐹𝐹𝑛𝑛 ≪ 0.1), However, for higher uniform-flow magnitude, Aranha’s 

method tends to underpredict the maxima of the drift force. Note that the peaks of drift forces with 
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forward speed Fn=0.2 by the present method were validated against experimental results in Fig. 

4.3. Xie and Falzarano in [40] also presented the similar conclusion for different hull shapes and 

various wave heading angles. 

Next, we examine a couple of other approximation methods that utilize the main-diagonal 

values to predict the off-diagonal QTF values, called Newman’s approximation [41]. These 

approximations require less computational effort since only the diagonal values depending only 

on the quadratic products of linear quantities need to be computed. Similar studies for zero uniform 

flow case were conducted in [42, 43]. In the present study, two Newman’s approximation methods 

are used to predict the off-diagonal QTFs with uniform flow. These approximation methods use 

the arithmetic mean or geometric mean, as given in eq.(4.47) and eq.(4.48), respectively. 

𝑭𝑭extij
− =

𝑭𝑭extii
− +𝑭𝑭extjj

−

𝟐𝟐
   (4.47) 

𝑭𝑭extij
− = sgn�𝑭𝑭extii

− ��𝑭𝑭extii
− ∙ 𝑭𝑭extjj

−    (4.48) 

The effect of the uniform flow on the surge QTFs’ diagonal is considered by using both the 

uniform flow approximation and the Aranha’s method. For other degrees of freedom, only the 

uniform flow approximation method is considered. The Froude number of 𝐹𝐹𝑛𝑛 = 0.05 is used so 

that the Aranha’s formula is valid. All of the approximation-method combinations are presented 

in Table 4.3. From all the cases presented in Table 4.3, the Approx 1 and Approx 2 cases require 

the least computational effort, while the Def case requires the highest computational effort. 

Fig. 4.10-Fig. 4.12 show the off-diagonal QTF results calculated by the methods presented in 

Table 4.3. It shows that for the same diagonal values, the arithmetic and geometric mean models 

give similar results. Even for small difference frequency pairs, no approximation methods give 
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reliable results when compared to the direct pressure integration method. For both the pitch 

moment and heave force, eq.(4.47) and eq.(4.48) under-predict the actual values. This under-

prediction is caused by the positive QTF slopes near the heave and pitch diagonals (see Fig. 4.4-

Fig. 4.5). The same conclusion was found in [26] in the case without uniform flow.  

According to Fig. 4.4-Fig. 4.5, the slope of the QTFs near the diagonal is also significantly 

increased by the presence of the uniform flow. These steep slopes cause the eq.(4.47)-eq.(4.48) to 

over predict the actual value of the off-diagonal surge QTF (see  Fig. 4.10 - Fig. 4.12), despite 

having a negative slope near its main-diagonals. The results show that when the uniform flow is 

involved, it is important to directly solve the off-diagonal QTFs without using any main-diagonal 

approximation methods. 

Table 4.3. Approximation-methods to calculate the off-diagonal QTFs  

Case  Diagonal �ω0i = ω0j�  Off-Diagonal �ω0i ≠ ω0j� DOF 
Def Present model Present model Surge, heave, pitch 
Approx 1 Present model Arithmatic mean, eq.(4.47) Surge, heave, pitch 
Approx 2 Present model Geometric mean, eq.(4.48) Surge, heave, pitch 

 

 
Fig. 4.10. Comparisons of the off-diagonal difference-frequency QTFs between various 

approximation methods – surge of Wigley II hull 
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Fig. 4.11. Comparisons of the off-diagonal difference-frequency QTFs between various 

approximation methods - heave of Wigley II hull 

 
Fig. 4.12. Comparisons of the off-diagonal difference-frequency QTFs between various 

approximation methods - pitch of Wigley II hull 

The importance of solving the off diagonal QTFs is further demonstrated in irregular wave’s 

analysis (eq.(4. 39)-(4.41)). The case of JONSWAP wave’s spectra with Hs = 0.075m, Tp = 1.18 

sec, and 𝛾𝛾=3 in head seas condition is simulated for Wigley II hull. In a full scale model (Lpp =

100m) this case corresponds to Hs = 3m and Tp = 7.5 sec. The total slowly varying surge force 

and wave’s spectra can be seen in Fig. 4.13 and the corresponding time series can be seen in Fig. 

4.14. The results shows that the Newman’s diagonal approximations tends to over predict the force, 

especially when uniform flow is present.  Ma et.al. [33] also shows the same trend for different 

type of hull in the case without uniform flow.  Note that in the case with uniform flow, a good 

force estimates close to 𝛿𝛿𝜔𝜔 = 0 was not achieved. 
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Fig. 4.13. Irregular wave’s spectra and the corresponding slowly varying force power spectra 

density 

 

 
Fig. 4.14. Time series comparison between the present method, and Newman’s approximation 

method 
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4.8.    Conclusions 

In this paper, an efficient method to compute second-order difference-frequency wave loads in 

the presence of uniform flow in the frequency domain was presented. A slender body with small 

uniform flow magnitude was assumed to reduce the numerical complexity associated with body-

disturbance flow and steady Kelvin-ship wave. Under the assumptions, the complete second-order 

difference-frequency wave loads in uniform current (or forward speed) were obtained except for 

the term from free-surface integral, which is known to be relatively unimportant in the case of 

difference-frequency force QTFs. In this regard, the discretization of the free surface was avoided 

in the proposed method, thus reducing the programming effort and computational burden. In spite 

of employing those approximations, the present numerical results agreed well against more 

complete second-order QTF results from a commercial program WAMIT in the case of zero 

current (or forward speed). As for the second-order mean-drift forces with current, the present 

results also agreed well against published experimental and more complex numerical results. In 

the case of the off-diagonals terms of the difference-frequency QTFs with forward speed, no 

comparison was made since no published results were available.  

From our numerical results, it is seen that the uniform flow has a significant influence on both 

the difference frequency quadratic and diffraction forces. Both the main-diagonal and off-diagonal 

parts of the difference frequency force QTFs were affected by the uniform flow and the uniform 

flow generally increased the total force magnitudes and their slopes. The uniform flow also shifted 

the QTF-peak locations mainly due to the encounter-frequency effect.  

Due to the numerical complexity associated with solving the 2nd order boundary problem with 

uniform flow in the frequency domain, other approximation methods, such as Aranha’s method 

and Newman’s approximation, also exist. Aranha’s method only showed similar mean-drift-force 
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results compared with the present method when Froude number is relatively small (𝐹𝐹𝑛𝑛 < 0.1). In 

addition, the Newman’s diagonal approximations that evaluate the off-diagonal QTFs in terms of 

the diagonal QTFs showed unreliable results when compared to the more exact present solution, 

especially when the uniform flow is considered. These results further emphasize the importance 

of the presently developed practical approach incorporating simplified but essential features of the 

uniform flow effects on difference-frequency force QTFs.  
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5.  RANS CFD SIMULATION OF WAVE-UNIFORM CURRENT 

INTERACTION WITH SLENDER BODY 

 

5.1.    Background and Literature Review 

CFD is well known for its capabilities for solving non-linear fluid-structure interactions. 

Although several completely non-linear BEMs were also capable of simulating highly non-linear 

motions under wave excitations (i.e., [1]), they still assume non-breaking waves and inviscid 

fluids. On the contrary, the CFD method solved the completely non-linear fluid-structure 

interaction by considering real fluid conditions, including the viscous effects and breaking waves 

[2-4]. The viscous effect is typically crucial in the case where flow separation is high (e.g., FPSO’s 

oblique current loads [5]) or when the damping is dominated by viscous effect (e.g., bilge keel roll 

damping [6]). However, for mild seas condition cases with small wave’s heading angle, the forcing 

and motion is typically pressure dominated, so the inviscid fluid’s assumption can still be used in 

the CFD simulation to save computation time [7]. 

Many studies show that the CFD gives very reliable results when set up correctly in the wave’s 

radiation-diffraction problems. For instance, [8] shows a good agreement between the CFD and 

experiment for head seas and oblique wave’s condition with 0 forward speed. Seakeeping 

validation for moderate Froude number 0.1 < 𝐹𝐹𝑛𝑛 < 0.25 were investigated in [9-11] for both short 

and long wave’s length, and head seas and oblique wave directions. Even more complicated 

loading conditions were shown in [2], where bi-directional seas are considered in the seakeeping 

analysis, and in [12], where a high speed (𝐹𝐹𝑛𝑛 = 0.7) trimaran vessel is simulated. All of these 
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versatility and capabilities comes at a cost, with the RANS method requires considerably larger 

computational resources compared to the standard BEM. In addition, the typical CFD methods 

requires many numerical tuning parameters and also require an intensive effort to set it up. When 

not set up properly, identical problems might yield different solutions. To tackle this problem, 

several efforts led by the industry were made to standardize the best practice in simulating practical 

engineering problem by using CFD tools [5, 13]. 

This section investigates the completely non-linear wave-uniform flow simulation by an 

industry-standard RANS-based CFD software. Noting that the wave-uniform flow coupling is 

completely non-linear in the CFD simulation, we can expect a better numerical representation than 

the BEM method. Special cases of wave periods that excites the pitch resonance are simulated to 

excite large motion so that the non-linearity effect is pronounced. By comparing the proposed UF 

approximation method in the previous sections with the CFD solutions, we can also gain a better 

understanding of its capabilities and limitations.  

5.2.    Theory and Implementations 

5.2.1. Navier-Stokes Equation 

An industry-standard CFD software Star-CCM+ is used to model the fully non-linear fluid-

structure interaction. Star-CCM+ software capabilities include, but not limited to, solving for the 

fluid flow problem in both turbulent and laminar regimes by using the Finite Volume Method. The 

governing equation is based on the mass, momentum, and energy conservation in the form of 

continuity, Navier-Stokes, and the first law of thermodynamic equations.  

 ∂ρ
∂t

+ ∇ ∙ (ρ𝒗𝒗) = 0 (5.1) 
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 ∂(ρ𝒗𝒗)
∂t

+ 𝜵𝜵 ∙ (ρ𝒗𝒗⊗ 𝒗𝒗) = −𝜵𝜵 ∙ (p𝑰𝑰) + 𝜵𝜵 ∙ 𝑻𝑻 + 𝒇𝒇𝒃𝒃 (5.2) 

 ∂(ρE)
∂t

+ 𝜵𝜵 ∙ (ρE𝒗𝒗) = −𝜵𝜵 ∙ (𝒗𝒗 ∙ p𝑰𝑰) − 𝜵𝜵 ∙ (𝒗𝒗 ∙ 𝑻𝑻) + 𝒇𝒇𝒃𝒃 ∙ 𝒗𝒗 + SE (5.3) 

where ⊗ is the outer product operator, ρ is the fluid’s density per unit volume, 𝒗𝒗 is the velocity 

vector, p is the pressure, 𝑰𝑰 is the identity matrix,  𝒇𝒇𝒃𝒃 is the resultant body force (such as gravity or 

centrifugal force), SE is the energy source per unit volume, and 𝑻𝑻 is the viscous or shear stress 

tensor, defined as: 

 

𝑻𝑻 = μ

⎣
⎢
⎢
⎢
⎡2

∂ux
∂x

�∂ux
∂y

+ ∂uy
∂x
� �∂ux

∂z
+ ∂uz

∂x
�

 2 ∂uy
∂y

�∂uy
∂z

+ ∂uz
∂y
�

Sym  2 ∂uz
∂z ⎦

⎥
⎥
⎥
⎤

  (5.4) 

where μ, ux, uy, and uz is the dynamic viscosity of fluid, x-component velocity, y- component 

velocity, and z-component velocity, respectively. These governing equations are then used to solve 

the mass, velocity, energy, and stresses over a finite control volume (cell). This is done by solving 

the weak form (integral form) of the differential equations in each time step. However, most of the 

cases resulted in more unknown variables than the number of equations. Therefore, several 

constitutive laws, such as the turbulence model and equation of state, are needed to close the 

model. For marine application, the fluid’s density is kept at a constant value ρ0, while other closure 

models are explained below. 

5.2.2. Reynold Averaged Navier-Stokes and Turbulence Closure Model 

In the RANS model, the fluctuated variables, e.g., 𝜙𝜙, can be represented as a mean value and 

its perturbation, i.e.: 
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 𝜙𝜙 = 𝜙𝜙 + 𝜙𝜙′  (5.5) 

where 𝜙𝜙 is the average value of 𝜙𝜙 over a particular time or spatial scale, and 𝜙𝜙′ is the perturbation 

along  𝜙𝜙, such as illustrated in Fig. 5.1. 

 
Fig. 5.1. Variables description in RANS formulation 

Substituting eq.(5.5) into eq.(5.1)-(5.3), the governing equations for the RANS models are 

written as:  

 ∂ρ
∂t

+ ∇ ∙ (ρ𝒗𝒗) = 0  (5.6) 

 ∂(ρ𝒗𝒗)
∂t

+ 𝜵𝜵 ∙ (ρ𝒗𝒗⊗ 𝒗𝒗) = −𝜵𝜵 ∙ (p𝑰𝑰) + 𝜵𝜵 ∙ �𝑻𝑻 + 𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� + 𝒇𝒇𝒃𝒃  (5.7) 

 ∂�ρE�
∂t

+ 𝜵𝜵 ∙ �ρE𝒗𝒗� = −𝜵𝜵 ∙ (p𝑰𝑰)𝒗𝒗 − 𝜵𝜵 ∙ �𝑻𝑻 + 𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹�𝒗𝒗 + 𝒇𝒇𝒃𝒃 ∙ 𝒗𝒗 + SE  (5.8) 

Note that eq.(5.1)-(5.3) and eq.(5.6)-(5.8) are almost identical, except for the additional 

Reynold stress tensor 𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 in the RANS formulation which is defined as: 

 

𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = −ρ �
2kTE + ux′ ux′ ux′ uy′ ux′ uz′

 2kTE + uy′ uy′ ux′ uy′

Sym  2kTE + uz′uz′
�  (5.9) 

where kTE is the turbulent kinetic energy. Note that  𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 is a non-linear term, consisting of 

multiplication between two unknown variables. Therefore, a turbulence closure model to describe 
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the 𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 in terms of the mean value is needed to solve the RANS equations. One of the most 

practical and straight forward approaches is by employing the Boussinesq hypothesis, i.e., the 

small scale turbulent stress 𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 is assumed to be linearly proportional to the large scale mean 

stress 𝑻𝑻. In other words, the Boussinesq hypothesis requires that ux′ uy′ ~ 1
2
�∂ux
∂y

+ ∂uy
∂x
�. By 

employing this hypothesis, the Reynold stress tensor formula (5.9) can be rewritten into: 

 

𝑻𝑻𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = ρ𝜈𝜈𝑇𝑇
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  (5.10) 

Due to the introduction of the turbulent eddy viscosity  𝜈𝜈𝑇𝑇, this approach is also called the 

Eddy viscosity model. Although it is called ‘viscosity’, 𝜈𝜈𝑇𝑇 is entirely different from the fluid’s 

kinematic viscosity 𝜈𝜈 = 𝜇𝜇/𝜌𝜌. Where the latter is a fluid’s intrinsic property, the former is a flow 

property that highly dependent on the flow condition itself. Several different closure models are 

developed to provide constitutive relations to solve for the turbulent eddy viscosity and turbulent 

kinetic energy. These closure models include but are not limited to Sparat Almaras, 𝑘𝑘 − 𝜖𝜖, and 

𝑘𝑘 − 𝜔𝜔 model.  

According to recent development on the standard CFD practice in the industry [13],  𝑘𝑘 − 𝜔𝜔 is 

the preferred choice of turbulence model when dealing with minimum flow separation and no eddy 

detachment in marine application involving free surface waves. In summary, the 𝑘𝑘 − 𝜔𝜔 model 

solves for eddy viscosity 𝜈𝜈𝑇𝑇 by solving the transport equations of two turbulence related variables: 

the turbulent kinetic energy 𝑘𝑘𝑇𝑇𝑇𝑇 and the dissipation rate per unit kinetic energy stream 𝜔𝜔𝑇𝑇𝑇𝑇. The 

detailed derivation, validation, and comparative study of the 𝑘𝑘 − 𝜔𝜔 model can be found in [14]. 
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However, from preliminary test cases, it is found that the laminar model is sufficient to solve 

the diffraction force and ship’s motion when the uniform flow is not involved. Therefore, to reduce 

the computation cost, the laminar model is used for wave only cases while the  𝑘𝑘 − 𝜔𝜔 with 

boundary layer mesh refinement is used for the wave with uniform flow cases.  

In real fluids, there exists a small thin layer of fluid close to a boundary where the viscous force 

is at least of the same magnitude as that of the inertial force. This so-called boundary layer typically 

has a thickness of much smaller magnitude compared to the stream-wise characteristic length of 

the flow, i. e. , 𝛿𝛿/𝐿𝐿𝑥𝑥 ≪ 1, where 𝛿𝛿 is the boundary layer thickness and 𝐿𝐿𝑥𝑥 is the stream-wise 

characteristic length. The definition of the boundary layer can be seen in Fig. 5.2. 

 
Fig. 5.2. Description of boundary layer 

Recalling equation (5.4) and (5.10), the viscous effect in the boundary layer, such as illustrated 

in Fig. 5.2, causes shear stress along the stream-wise direction of the flow. Note that the boundary 

layer thickness is proportional to the fluid's viscosity and that the thicker boundary layer causes 

smaller shear stress (due to smaller velocity gradient).  

In turbulent flow, the boundary layer is thinner compared to that of the laminar flow. This is 

due to the additional turbulent kinetic energy and eddy viscosity, causing higher shear stress in 

high Reynolds number flow. Furthermore, the shear stress can also cause the flow to separate from 
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the body when the conditions are met. This separation effectively causes a pressure-driven non-

zero resultant force in the stream-wise direction to appear, an important phenomenon that is not 

considered in the potential flow theory (D’Alambert’s paradox).  

To properly account for both flow separation and viscous shear stress effect, the computational 

cell close to the non-slip surface needs a sufficiently large resolution, especially for turbulent flow. 

To calculate the boundary layer thickness, first, we introduced a non-dimensional distance and 

velocity such as follow [15]: 

 
𝑦𝑦+ =

𝑢𝑢∗𝑦𝑦
𝜈𝜈

 (5.11) 

 𝑢𝑢∗ = �𝜏𝜏𝑤𝑤/𝜌𝜌    (5.12) 

where 𝑢𝑢∗, 𝜏𝜏𝑤𝑤, and 𝜈𝜈, are the wall friction velocity, wall shear stress, and the fluid’s viscosity, 

respectively. The 𝑦𝑦+ is a non-dimensional distance from the wall that divides the boundary layer 

regions into several sub layer: 

• 𝑦𝑦+ < 5: Viscous sub-layer. Flows are dominated by the  fluid’s intrinsic viscosity, causing 

the flow to be streamlined and laminar 

• 5 < 𝑦𝑦+ < 30: Buffer later. Flows are starting to be affected by the outer flow’s turbulence, 

but the viscous effect still dominates 

• 30 < 𝑦𝑦+ < 200: Inertial sublayer or log law region. The turbulence effect becomes more 

apparent, and the velocity profile can be estimated by log function.  

• 𝑦𝑦+ > 200:Oouter later. Flows are dominated by turbulence 

The shear stress can be calculated by its relation to the skin friction coefficient and the skin 

friction coefficient approximation C�f as follow [16]: 
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 C�f =
2𝜏𝜏𝑤𝑤
ρU�2

 (5.13) 

 C�f ≅
0.066

(log R𝑒𝑒 − 2.03)2 (5.14) 

where 𝑅𝑅𝑒𝑒 is the Reynold number, defined as Re = ρU�Lx/μ. The first cell’s centroid location can 

then be calculated Substituting eq.  (5.12)-(5.14) into eq. (5.11) and choosing the appropriate value 

of 𝑦𝑦+ that we want to resolves. In marine application without any significant flow separation, [13] 

suggested that the first cell height has to sufficiently resolve 𝑦𝑦+ value of < 10. The first cell height 

can then be determined to be twice the y value computed from eq.  (5.12)-(5.14) with 𝑦𝑦+ = 10 

such as illustrated in Fig. 5.3. 

 
Fig. 5.3. First cell definition with regards to the computed y value 

In marine applications, the viscous effect such as turbulence, skin drag, and vortex shedding 

provides significant additional forcing or damping. For example, in a ship roll resonance motion 

case where wave-making damping is small, the motion is largely affected by the viscous damping 

[6]. 

5.2.3. Volume of Fluid 

In CFD, free-surface flow is considered as a non-mixing two-phase flow involving a sharp 

interface boundary between a heavy fluid (water) and light fluid (air). There are several ways of 
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treating the free surface (phase interface) in both Eulerian (e.g., the volume of fluid method) and 

Lagrangian (e.g., smoothed particle hydrodynamics) frame of reference. The Lagrangian approach 

typically has a straightforward interface definition and can deal with a violent free-surface flow 

with relative ease. However, this method typically requires a considerable computing effort since 

the resolution is typically kept the same throughout the domain (no local refinement) and that each 

computation point’s position is changing at each time step [17]. Since we only consider quasi-

steady flows with minimum breaking waves, the Eulerian approach is chosen to track the interface 

to reduce computation cost.  

In the volume of fluid method, volume fraction ∝𝑖𝑖= ∀𝑖𝑖/∀𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 is used to describe the 

distribution of phases and the location of the interface, with ∀𝑖𝑖 defined as the volume of phase i 

that is located inside a cell with a volume of ∀𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐. The volume fractions of all phases in a cell must 

added up to 1. In two-phase fluid flow, the interface location is located where ∝𝑖𝑖= 0.5 for any i. 

The volume fraction is also applied to the governing transport equation (5.1)-(5.3) as a 

multiplication factor. 

The transport equation is then solved for only one of the phases in each cell, with the second 

phase variables are adjusted so that the sum of the volume fraction of all the phases equals one. A 

detailed description of the volume of fluid method can be found in [18]. 

This phase tracking approach requires the mesh resolution to be high enough in the interface 

region to resolve its position and shape, as illustrated in Fig. 5.4. Considering this limitation, free 

surface mesh refinement is needed to adequately capture the wave’s height (H) and wavelength (λ 

). According to STAR-CCM+ guidelines, the typical value of λ/dx =80-120 and H/dz =15-40 is 

needed in the free surface region. 



125 
 

 
Fig. 5.4. Grid requirements in VOF method 

5.2.4. Boundary and Initial Condition  

There are five types of boundary condition that are used in this study:  

• Velocity inlet:  

Used for upstream, top, and side boundary conditions. The x-y-z velocity components are 

set to match specific values at this boundary. 

• Symmetric plane:  

Used at the horizontal half-plane of the computation domain. No normal direction velocity 

is allowed, while the other velocity components are mirrored to the other half-plane. By 

using this type of boundary condition, we can cut the computation domain to half (saving 

a large amount of computation cost). 

• Pressure outlet:  

Used for the downstream boundary condition. The pressure is set to match specific values. 

The velocity values need to be set as “extrapolated” for flows with a significant tangential 

velocity to the boundary. Furthermore, due to the periodic nature of the waves, backflow 

on this boundary is to be expected.  

• No-Slip wall: 
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Used at the bottom boundary and ship’s hull. No normal velocity direction is allowed in 

these boundaries. Furthermore, the boundary layer theory is applied to these boundaries 

depending on the cell resolution and outer flow conditions. 

• Overset mesh: 

Used at small control volume enclosing the hull and some part of the fluid domain. This 

boundary is used to communicate the field functions (velocity, pressure, etc.) calculated 

from the inner, freely moving, computation domain (foreground region) to the outer 

computation domain (background region) and vice versa. A more detailed explanation of 

the overset mesh can be found in the Overset Mesh sub-section. 

The illustration of the boundary conditions in the present study’s computation domain can be 

found in Fig. 5.5. 

 
Fig. 5.5. Boundary conditions 
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Linear (Airy) wave’s kinematics (free surface position) and dynamics (fluid’s velocity and 

pressure) is used as the boundary and initial values throughout the fluids. The wave tank is set so 

that the deepwater condition is fulfilled 𝑑𝑑/𝜆𝜆 > 0.5. Therefore, the initial and boundary conditions 

are: 

 ux = Awω0 cos(kx −ω0t) 𝑒𝑒kz (5.15) 

 uz = Awω0 sin(kx −ω0t) 𝑒𝑒kz (5.16) 

 𝜂𝜂 = Aw sin(kx −ω0t) 𝑒𝑒kz (5.17) 

where the wave’s related variables definition, including the dispersion relation, follows the 

previous chapters. The wave’s steepness is chosen so that it always falls within the linear wave’s 

theory limit of H < 0.00625λ tanh(2πh/λ). 

The volume fraction of the fluid can be found from the sea level position 𝜂𝜂 by employing the 

level set function [19] as follows: 

 ∝i=∝1 H(η∗) +∝2 �1 − H(η∗)� (5.18) 

 H(η∗) = �    
0                                                    if η∗ < −ϵ
1
2
�1 + η∗

ϵ
+ 1

π
sin �πη

∗

ϵ
��        if |η∗| < ϵ

1                                                      if  η∗ > ϵ
  (5.19) 

where η∗ = (η − z) and 𝜖𝜖 = 1.6dz.  

5.2.5. Wave Forcing Zone 

Even though the boundary values are set to follow the linear wave’s field values, it is only 

enforced at the boundary location. Because of this, the wave’s reflection and flow discontinuity 

can still occur, especially at the pressure outlet and velocity inlet. To avoid this phenomenon, the 

wave forcing zone is introduced. The wave forcing zone enforced the momentum equation 
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(velocity values) over a bounded region of the computational domain to follow the predefined 

theoretical values by using the Euler overlay method [20]. In the Euler overlay method, the 

following additional forcing term is added to the momentum conservation equation: 

 qϕ = −γwzρ(ϕ− ϕ∗)  (5.20) 

where  qϕ, γwz,ϕ, and ϕ∗ is the momentum forcing term, forcing coefficient, current solution of 

the transport equation, and predefined theoretical value which the solution is forced towards. The 

forcing coefficient 𝛾𝛾𝑤𝑤𝑤𝑤 is chosen to be monotonically increasing from the edge of the wave forcing 

zone to its maximum value at the boundary. In STAR-CCM+, the cosine function is used as the 

forcing coefficient: 

 γwz = −γ0 cos2 � πx
2Lwz

�  (5.21) 

where γ0 and Lwz is the wave forcing coefficient and wave zone distance from the boundary, 

respectively. Depending on the length of the wave zone and the flow characteristics, typically, γ0 

is chosen to be a large value (γ0 > 10). We found that when the wave zone distance is set to be 

Lwz < 2𝜆𝜆, the waves with smaller wavelength require higher γ0 compared to that of a longer 

wavelength. In this study, Lwz is chosen to be 𝜆𝜆 < Lwz < 2𝜆𝜆 at the downstream boundary and  

0.5𝜆𝜆 < Lwz < 𝜆𝜆 at the upstream and side’s boundary, and 50 < γ0 < 150 is used. 

5.2.6. Overset Mesh and Dynamic Fluid-Body Interaction 

Overset mesh (also called the chimera grid method) is used to discretize the computational 

domain with several different meshes that overlap each other in an arbitrary manner [16]. Because 

the mesh regions are independent with each other, the overset method is suitable for problems with 

large relative motions without the need to regenerate the mesh throughout the whole computation 
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domain. With this method, only local mesh cutting and regeneration around the enclosed 

foreground region is needed (see Fig. 5.5 for the definition of foreground region). Furthermore, 

the majority of overlapping meshes are only solved in the foreground region, while the same mesh 

in the background region is excluded in the calculation through mesh hole cutting. There are three 

distinct cell type on the overset mesh method:  

• Active cells: Cells where the governing equations are solved. 

• Passive cells: Cells where no equations are solved. These cell type is excluded from the 

background mesh through a hole cutting procedure 

• Donor cells: Cells on the overset boundaries which are used to provide interpolation 

information to the other mesh acceptor cell. 

• Acceptor/ghost cells: Cells on the overset boundaries which receives interpolated 

information from the other mesh donor cells. 

For each acceptor cell, there are typically four donor cells that are used to provide the 

interpolated values to the other mesh. The information exchange between the donor and acceptor 

cells ensures the continuity and conservation between the meshes. The hole cutting region and cell 

type in a typical sea keeping analysis set up can be found in Fig. 5.6, while detail information and 

formulations used in the overset mesh can be found in [21]. 
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Fig. 5.6. Overset mesh cell type 

The Dynamic Fluid Body Interaction (DFBI) models solve for the rigid-body motion of an 

object exposed to surface forces (e.g., shear and pressure from fluid) as well as body forces (e.g., 

gravity). DFBI calculates the resultant moment and forces acting on the selected wall boundaries 

and then updated the body's new position at each inner iteration step until convergence is reached. 

The equation of motion for translation degree of freedom can be found on eq.(5.22), while the 

rotation degree of freedom can be found on eq.(5.23).  

 m ∂𝒗𝒗
𝜕𝜕𝜕𝜕

= 𝐅𝐅  (5.22) 

 𝑰𝑰 ∂𝝎𝝎
𝜕𝜕𝜕𝜕

+ 𝝎𝝎 × 𝑰𝑰𝝎𝝎 = 𝑴𝑴  (5.23) 

where m is the body mass, 𝑰𝑰 is the moment of inertia tensor, and 𝝎𝝎 is the rotation vector. The 

external force vector 𝑭𝑭 and moment vector 𝑀𝑀 is calculated by integrating the stresses over the 

body’s surface. Combined with the overset mesh, the DFBI solver provides a robust tool to solve 

the fully non-linear fluid-body interaction.  

For steady flow analysis such as towing tank simulation, the motion solver can be frozen for 

several time steps until the predetermined convergence criteria are met. After that, the body is 

moved to a new position, and the same step is repeated until the change of the body’s position is 
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negligible. This quasi-static approach can significantly reduce computation cost in the steady flow 

analysis and was used in our uniform-flow only simulation. 

5.2.7. Time Stepping Considerations 

A second-order implicit unsteady scheme is recommended for free surface flow with a sharp 

interface [7]. The stability Courant–Friedrichs–Lewy (CFL) stability requirement of the second-

order scheme is higher compared to that of the first order. However, it can properly propagate the 

free surface with minimum numerical dissipation. The following time-stepping criteria are used to 

reduce the cost of the computation while maintaining numerical stability: 

1. Stopping the inner iteration within one time step and go to the next time step when one of 

the following conditions are met: 

• Volume fraction residual < 0.001. 

• Momentum residual < 0.001. 

• Continuity residual < 0.1. 

• 15 iteration is reached. 

2. Setting reference / initial time step value to be the minimum value of the following criteria: 

a. ∆t = T/(4.8Nx): To properly capture the wave’s behavior at each period. Where T is 

the wave’s period, and Nx is the number of cells per wavelength 

b.  ∆𝑡𝑡 = 0.5∆𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 max�Cg, [U + |𝒗𝒗|]� : from CFL requirement to restrict the flow so that 

in only propagates half the smallest cell size (∆𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛). Where Cg is the wave’s group 

velocity, U is the uniform flow speed, and |𝒗𝒗| is the magnitude of the wave’s particle 

velocity. 
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3. The built-in automatic adaptive time step is set to keep the maximum instantaneous CFL 

number to be < 0.54. The minimum allowable time step is set to be 1/103 of the reference 

time step from point number 2. 

5.2.8. Computational Domain and Meshing Considerations 

 

 
Fig. 5.7. Computational domain 

The computation domain needs to be large enough to incorporate the wave forcing region 

without significantly changing the free surface profile close to the body. Furthermore, it needs to 

be large enough so that the body's local flow field perturbation does not reach the boundaries to 

avoid reflection. The water depth also needs to be deep enough (𝑑𝑑 > 0.5𝜆𝜆) so that deep water 

assumption can be maintained. However, the computation domain needs to be kept as small as 
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possible to reduce the computational cost. Considering all of the above, the computation domain 

size is kept at a particular ship’s and wave’s length ratio, as illustrated in Fig. 5.7. 

 
 

 
Fig. 5.8. Mesh refinement regions 

To properly capture the free surface and non-linear body motion, mesh refinements are applied 

to certain vital regions, as shown in Fig. 5.8. In summary, each of the mesh refinement regions 

objectives is: 

• Free surface refinement (blue line): To adequately capture the incoming, diffracted, and 

radiated wave’s interface. Since the body is streamlined in the head seas condition, the 

refinements are only done in x and z directions (see VoF subsection for details). 

• Wake refinement (yellow line): To adequately capture the steady ship waves (Kelvin 

wave). Since the waves are radiated outward from the body with 200 angle, the refinements 

are done in x and y direction, while the z refinement follows the free surface refinement 
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• Near overset boundary refinement (red line): To provide sufficient interpolation cells for 

the overset mesh and to resolve local perturbation such as the bow and stern waves and 

wave run-up close to the body (see overset and VoF subsection for details). 

5.3.    Case Definition 

Modified blunt Wigley hull as defined in Table 5.1. This hull is similar to the blunt Wigley 

hull used in [22] with a 1:2 Froude scaling ratio. Furthermore, the hull is extended vertically 

upward from the water line to reach the desirable total depth so that the wave’s run-up can be 

properly accounted. To validate all of the body’s input (e.g., displaced volume, inertia, the center 

of gravity), we first did the hydrostatic test with a freely floating body. The body’s input is 

considered correct when the body is at the equilibrium position, e.g., no pitch or heave motion (or 

static offset) is observed. Note that since we use a symmetric computation domain, all the mass 

properties need to be halved, while all the resulting forces need to be multiplied by two. We also 

need to calibrate the wave’s height so that the comparison with other methods can be appropriately 

made. This calibration is done by simulating the waves without the presence of the body. 

Table 5.1. Hull’s particulars 

Hull Shape Item Notation Value Unit 

 

Length L 5 m 
Breadth B 1 m 

Total Depth hbm 0.85 m 
Draft d 0.35 m 

Displaced Volume  ∇ 1.109 m3  
Vertical CoG 𝐾𝐾𝐾𝐾 0.062 m 

y - Radii of Gyration  𝑟𝑟𝑦𝑦𝑦𝑦/𝐿𝐿  0.236 m 
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The wave’s slope of 𝐻𝐻/𝜆𝜆 = 0.03 is chosen to match the experiment condition [22]. Three 

wave’s length condition is simulated, the first, 𝜆𝜆/𝐿𝐿 = 2 is the long wave condition that is far from 

any resonance or cancellation frequency (i.e., easier to simulate), 𝜆𝜆/𝐿𝐿 = 1.25 is the pitch 

resonance condition (in the case of 𝐹𝐹𝑛𝑛 = 0.2, according to BEM simulation) to see the large 

amplitude motion effect on the dynamics. Lastly, 𝜆𝜆/𝐿𝐿 = 1.1 is the maximum added resistance load 

condition according to Kashiwagi’s experiment [22]. In these simulations, the body is fixed in the 

surge direction, but allowed to move in the pitch and heave direction, similar to the towing tank 

experiment with waves. A fixed body (diffraction only) simulation is also simulated for the  𝜆𝜆/𝐿𝐿 =

2 case to validate our simulation. Since shorter waves requires higher resolution but smaller total 

domain size, three type of tanks are created to reduce the computation cost. All the simulated cases 

can be seen in Table 5.2. 

Table 5.2. Case definitions 

Case Name 𝑭𝑭𝒏𝒏 H (m) 𝝀𝝀 (m) 𝐓𝐓𝐞𝐞 (sec) Body Wave Tank 

Tow 0.2 N/A N/A N/A Yes Tank0 

Wave1_Only 0.0 0.3 10 2.53 No Tank1 

Wave1_Mot0 0.0 0.3 10 2.53 Yes Tank1 

Wave1_MotU 0.2 0.3 10 1.87 Yes Tank1 

Wave2_Only 0.0 0.1875 6.25 2.00 No Tank2 

Wave2_Mot0 0.0 0.1875 6.25 2.00 Yes Tank2 

Wave2_MotU 0.2 0.1875 6.25 1.38 Yes Tank2 

Wave3_Only 0.0 0.1875 5.5 1.88 No Tank2 

Wave3_Mot0 0.0 0.1875 5.5 1.88 Yes Tank2 

Wave3_MotU 0.2 0.1875 5.5 1.27 Yes Tank2 
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5.4.    Results and Discussion 

5.4.1. Wave Height Calibration 

Wave height calibration is done to record the simulated wave height at the ship’s center of 

gravity location to be used as the non-dimensionalization factor. The recorded sea-level elevation 

and the corresponding wave's height can be found in Fig. 5.9 and Table 5.3 Recorded wave’s 

height and period for each of 𝜆𝜆/L cases, respectively. The wave’s height is calculated by zero up 

crossing method and then averaging them over several wave’s cycles (>5 cycles).  The smaller 

simulated wave’s height compared to the target wave’s height does not cause complication as long 

as the wave’s height is stable and target wavelength (therefore, period) is achieved. As can be seen 

from the figures, these conditions are successfully achieved. 

 
Fig. 5.9. Calibration of the simulated wave’s height and period. 
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Table 5.3. Recorded wave’s height and period for each of 𝜆𝜆/𝐿𝐿 cases 

Case 
H (m) T (sec) 

Simulated  Target Diff. Simulated Target Diff 
Wave1_Only 0.289 0.3 -4% 2.53 2.53 0% 
Wave2_Only 0.162 0.1875 -13% 2.00 2.00 0% 
Wave3_Only 0.171 0.1875 -9% 1.88 1.88 0% 

 

5.4.2. Uniform Flow Problem 

     
Fig. 5.10. Steady waves (Kelvin-ship wave) pattern illustration (Tow Case) 

Towing tank (uniform flow simulation without waves) simulation is done to see the uniform 

flow effect on the steady wave’s pattern (Fig. 5.10) and the corresponding run up along the hull 

(Fig. 5.11). As expected, the diverging Kelvin ship waves at ~19𝑜𝑜 angle from the ship’s hull along 

with the transverse waves is observed. From Fig. 5.10, we can see that the sea surface elevation at 

the bow is larger than that of the stern, which confirms that this might cause discrepancies in our 

hydroelectricity analysis close to the bow in Chapter 3. The difference in the steady wave run-up 

elevation between the bow and the stern coupled with the dynamic pressure caused a steady 

sinkage and trim on the ship, which can be seen in Table 5.4. 
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Fig. 5.11. Steady waves run up along the Wigley hull. Experiment result is from ref.[22] 

Table 5.4. Steady displacements 

Trim (Pitch) 0.128o 

Sinkage (Heave) 0.01851m 
 

A comparison with Kashiwagi [22] experiment shows that the wave’s run-up along the hull 

agrees well with the present CFD method. Minor discrepancies can be found in the bow that was 

caused by the method in which the wave’s run-up position is extracted from the simulation results, 

which was done manually. Confirming that all of the essentials phenomena of the steady flow 

problem were properly captured, we can then confidently incorporate waves into our simulation. 

5.4.3. Wave and Uniform Flow Interaction Problem 

Both waves only problem and waves-uniform flow interaction problem was simulated in this 

section. The resulting wave’s pattern for the unrestricted heave-pitch degree of freedom simulation 

can be seen in Fig. 5.12. From the waves only problem, we can clearly see the radiating waves 

because of the heave and pitch motion that is moving outwards from the hull. The diffracted wave 

cannot be clearly seen since the hull is slender, and the wave is coming from the head seas 

direction. On the other hand, we can see that the wave’s pattern in the case with the uniform flow 
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is highly affected by the flow. Both maxima and the minima of the wave’s height were both 

increased due to the uniform flow.  

   

   
Fig. 5.12. Wave’s profile when the body is at the wave’s peak for 𝜆𝜆/𝐿𝐿 = 2, without (top) and 

with uniform flow (bottom) effect 

The forces and moment time-series validation for a fixed body (diffraction problem) is shown 

in Fig. 5.13. The experiment (Kashiwagi, [22]) and the BEM time series are reconstructed from 

the frequency domain results using simple sinusoidal functions. From the figure, we can see that 

both the amplitude and the frequency of the current CFD model matched well with the experiment. 

In the case with forward speed, the encounter frequency effect is observed, and the force increase 

due to additional convective pressure is also observed. Small non-linearities can be seen in the 

CFD results where their profile does not match precisely with sinusoidal functions (sharper peaks 

and milder slopes).    
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Fig. 5.13. Forces and moment time series for 𝜆𝜆/𝐿𝐿=2. Experiment result is from ref.[22] 

The ship’s pitch and heave motion are compared against the experiment and BEM simulation 

in Fig. 5.14. The results show a good agreement with both the BEM and the experiment, except 

for the 𝜆𝜆/𝐿𝐿 = 1.25 case with 𝐹𝐹𝑛𝑛 = 0.2. The reason for this discrepancies is that when resonance 

motion is excited (i.e., 𝜆𝜆/𝐿𝐿 = 1.25, based on the BEM analysis in Chapter 1), the problem becomes 

more complicated. Because of the large pitch motion, non-linearity in the form of impact loading 

and breaking waves occurs, as shown in Fig. 5.15-Fig. 5.16. this non-linearity is not considered in 

the BEM method but is well documented in the experiment [22]. Kashiwagi also stated that these 

phenomena caused the added resistance experiment data to be widely spread close to the resonance 

frequency.  
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Fig. 5.14. Motion comparisons between the present CFD simulation with the present BEM 

method and experiment results from ref.[22] 

 
Fig. 5.15. Non-linearity in surge force time series for unrestrained heave and pitch for 𝜆𝜆/𝐿𝐿=1.25  

(pitch and heave resonance frequency) 
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Fig. 5.16. Motion visualization comparison between wave only case (left) and wave with 

uniform flow case (right) for 𝜆𝜆/𝐿𝐿 = 1.25 

Despite the highly non-linear nature of the problem, the CFD simulation was able to capture 

all the essential dynamics properly. This claim is strengthened by comparing the slowly varying 

non-linear force in the form of added resistance of the current CFD model against the experiment 

and BEM results inFig. 5.17-Fig. 5.18. The added resistance is calculated by time-averaging the 

surge force time series over several cycles after the quasi-static state is reached. From these results, 

we see that the current CFD results compare well with both the BEM and experiments.  

Even though the CFD simulation was able to capture all the non-linear interactions, it requires 

a very high computation cost. For illustration, in the case of highly non-linear physics (e.g., 
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breaking waves), 100 CPU hours typically only yield 0.5 sec of simulation time. Therefore, the 

BEM method is still preferred in many engineering practices. The results from the BEM can serve 

as a benchmark to choose cases with high non-linearity or viscous effect (e.g., close to resonance 

frequency), to be simulated with the CFD method.     

 
Fig. 5.17. Surge drift force for 𝐹𝐹𝑛𝑛 = 0.0 case. Experiment result is from ref.[22]  

 
Fig. 5.18. Surge drift force for 𝐹𝐹𝑛𝑛 = 0.2 case. Experiment result is from ref.[22] 
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5.5.    Conclusion 

RANS based CFD simulation was conducted for theoretical Wigley hull shape to reproduce 

the real flow condition with minimum simplifications. The Step-by-step set up of the model was 

explained to ensure the reproducibility of the model. Several quality assurances, including static 

wave tank, wave only case, and steady towing simulation, were also conducted to ensure the 

model's fidelity before wave excitation can be introduced to the model.  

The CFD results for both zero and non-zero current simulations show a good agreement with 

either the BEM method (with UF approximation) or the experiment results. Highly non-linear 

dynamics involving wave’s breaking and large motions are observed for 𝜆𝜆/𝐿𝐿 = 1.25 with 𝐹𝐹𝑛𝑛 =

0.2 case due to pitch resonance. CFD simulation was also able to capture the second order mean 

drift loading successfully. Even though the CFD simulation was able to capture all the non-linear 

interactions, it requires a very high computation cost. On the contrary, the BEM shows comparable 

results, with significantly less computational cost.. Therefore, in most cases, BEM is proven to be 

the more reliable tool, except for several special cases (i.e., at resonance frequency). Therefore, 

the BEM can be used as a guide in choosing these special cases to be simulated with CFD so that 

the computation requirement in solving the completely non-linear simulations can be decreased.  
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6. GENERAL CONCLUSIONS 

 

An in-house linear wave-current interaction simulation tool is developed by considering UF 

approximation in the frequency domain - 3D BEM framework. An in-house program originally 

developed for a linear zero speed wave diffraction-radiation problem was used as a base. The 

program is then extended to include the source formulation to calculate velocity more accurately 

and also extended to include the linear wave-current interaction effect. 

The linear UF wave-uniform flow interaction model was proven to be robust enough to solve 

typical fluid-structure interaction problems, especially when the structure is considered to be 

slender. The UF approximation was also proven to be straightly applicable to any BEM simulation 

tools since all interaction terms were reduced to correction terms obtained from zero uniform speed 

simulation. Due to the ease of implementation in the linear problem, there are still rooms for this 

method to be applied to a broader range of problems. 

In the third chapter, a multi-body uniform-flow-based wave-current interaction hydrodynamic 

model was developed. Coupled with the DMB (Discrete-Module-Beam)-based hydro-elasticity 

method, the aforementioned model can be used as a practical and efficient numerical tool for the 

hydro-elastic analyses with forward-speed effect. The developed model shows comparable results 

with more exhaustive methods. The developed model also successfully captured the increase of 

elastic responses and bending moments by forward speed, especially due to the resonance at the 

first bending mode. Several parametric studies were conducted to show the forward speed effect 

on the elastic behavior of the structure, and several key findings were found as follow: 
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• The forward speed effect (up to 𝐹𝐹𝑛𝑛 = 0.3)  on the natural period and mode shape was nontrivial 

at the first bending mode but negligible at higher bending modes.  

• The maximum dynamic bending moment occurred at the mid-ship section when 𝜆𝜆 ≫ 0.5𝐿𝐿. 

However, when 𝜆𝜆 < 0.5𝐿𝐿, higher elastic modes can be excited to change the location of the 

maximum bending moment. 

• The increase of bending moments with a forward speed in the operational sea was more 

pronounced than the swell sea because of the encounter frequencies getting close to the first 

bending resonance. 

• Modification to local elasticity parameter was straightforward, as shown by damaged hull case. 

In the fourth chapter, an efficient method to compute second-order difference-frequency wave 

loads in the presence of uniform flow in the frequency domain was presented. From our numerical 

results, it is seen that the uniform flow has a significant influence on both the difference frequency 

quadratic and diffraction forces. Both the main-diagonal and off-diagonal parts of the difference 

frequency force QTFs were affected by the uniform flow, and the uniform flow generally increased 

the total force magnitudes and slopes. The uniform flow also shifted the QTF-peak locations, 

mainly due to the encounter-frequency effect. The comparison results with other approximations, 

such as the Aranha’s added resistance method and Newman’s QTF approximation, further 

emphasize the importance of the presently developed practical approach incorporating simplified 

but essential features of the uniform flow effects on difference-frequency force QTFs.  

In the fifth chapter, RANS based CFD simulation was conducted for theoretical Wigley hull 

shape to reproduce the real flow condition with minimum simplifications. The CFD results for 

both zero and non-zero current simulations show a good agreement with either the BEM method 

(with UF approximation) or the experiment results. The CFD simulation was able to capture the 
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non-linear dynamics involving breaking waves and large motions that are not considered in the 

potential theory based-3D BEM. However, because of the very high computation cost associated 

with the CFD method, the BEM simulation results is still needed to provide the information on 

which specific cases need to be simulated. 

In summary, the presently developed UF approximation model to account for the wave-current 

interaction showed a promise to be a highly efficient, practical tool to solve complicated problems. 

These problems include the currently presented hydro-elasticity problem with forward speed and 

the second-order slowly varying force under small uniform flow. Nonetheless, due to several 

pragmatic approximations, care should be exercised when applying the proposed method, 

especially when the steady free surface effect is not negligible (e.g., local dynamics close to the 

bow), the hull shape is not slender, uniform flow speed is large, or in the case of second-order 

sum-frequency wave loadings. 
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