
OPTIMAL SENSING FOR FILTERING WITH BOUNDED ERRORS

A Dissertation

by

NILADRI DAS

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Raktim Bhattacharya
Committee Members, Srinivas Rao Vadali

Suman Chakravorty
P.R. Kumar

Head of Department, Srinivas Rao Vadali

December 2020

Major Subject: Aerospace Engineering

Copyright 2020 Niladri Das



ABSTRACT

We address the problem of designing optimal sensing strategy for stochastic discrete-

time systems. Sensors are an integral part of a system, providing knowledge about

system states, through state filtering. The problem of designing optimal sensing,

primarily addresses questions regarding, a) which type of sensor do we need, b) how

accurate sensors do we need, and c) when and d) where do we use them. The desired

performance of an optimal sensing strategy might also include minimizing energy

consumption and total cost of operation or maximizing sensing accuracy or control

performance, among various other metrics. Upper bounding and lower bounding

the performance of a sensing strategy is tied to the notion of utility and privacy of

the filtered system. The main contributions of this research are the formulations of

algorithms and theorems that gives a structured way to manipulate sensing param-

eters to ensure either utility of the filtering system or privacy against the filtering

system. To this end we show results on privacy and utility for Kalman Filter, En-

semble Kalman Filter, and Unscented Kalman Filter. The development of optimal

sensing for Ensemble Kalman Filter and Unscented Kalman Filter is motivated by

the space situational awareness problems regarding allocating sensing resources as

well as exchanging data. The proposed contributions of this research are organized as

follows. First we show preliminary results on optimal sensing for Ensemble Kalman

Filter, and Unscented Kalman Filter, focusing on the utility problem. Next we ad-

dress the utility and privacy problem for Kalman Filter in steady state scenario using

Eigen-values analysis. We then move on to the utility problem for Kalman Filter

for single-step, muti-step scenario. Finally, the utility and privacy formulations for

Ensemble Kalman Filter, and Unscented Kalman Filter are further developed with
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a focus on addressing space situational awareness problems.
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1. INTRODUCTION TO OPTIMAL SENSING PRECISION IN ENSEMBLE

AND UNSCENTED KALMAN FILTERING∗

1.1 Introduction

In this work, we focus on the problem of sensor design for non-linear stochastic

discrete-time systems. Sensors are an integral part of a system, providing knowledge

about system states, through state estimation (filtering), which can further be uti-

lized to control the system. The problem of sensor design for a system, primarily

addresses questions regarding, a) which type of sensor do we need, b) how accurate

sensors do we need, and c) when and d) where do we use them, as mentioned in [50].

The answers to the above problems explicitly depend upon, either the desired observ-

ability of the system, or the performance of the estimator and (or) the controller, or

some performance metric of the system. This desired performance might also include

minimizing energy consumption and total cost of operation or maximizing sensing

accuracy or control performance, among various other metrics. In summary, sensor

design strategy aims to strike a balance between the quality of sensing performance,

sensing accuracy choice, and activation over space and (or) time.

A considerable work on sensor design for state estimation focuses on addressing sensor

selection problem, such as [44, 86, 87], when sensor precisions are known. A typical

sensor selection problem either deals with choosing a minimal subset of sensors, from

a set of available sensors that guarantees the state estimate covariance to be bounded,

as in [78], or in [88] where the authors minimizes the state estimate covariance when

∗Reprinted with permission from Optimal Sensing Precision in Ensemble and Unscented Kalman
Filtering by Niladri Das and Raktim Bhattacharya, presented at IFAC World Congress 2020, [19],
Copyright 2020 by International Federation of Automatic Control.
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the cardinality of the sensor set is bounded. Owing to the combinatorial complexity

of the problem, current methods are heuristic and developed in the Kalman filtering

framework for linear Gaussian systems. There is also limited work on nonlinear state

estimation which includes [13], which focusses on choosing sparse sensor network with

known sensor precisions.

The focus of this work is not on sensor selection, but on determining the sensor pre-

cisions. Particularly, determining the least precise sensors for which state estimation

is achieved with desired accuracy. This is achieved by solving an l1 minimization

problem. Once the sensor precisions are determined, existing sensor selection al-

gorithms such as in [44, 86, 87], can be applied to arrive at a reduced sensor set.

However, due to the l1 minimization, it is possible that the optimal solution assigns

some of the precisions to zero, leading to sparsity in the sensor set. These sensors

can be removed, indirectly addressing the sensor selection problem. Existing sensor

selection algorithms can aid in further reducing the sensor set, possibly at the loss

of estimation accuracy. In this work, we present sensor precision selection algorithm

for nonlinear estimation based on ensemble Kalman filtering (EnKF) as discussed in

[25] and unscented Kalman filtering (UKF) in [80].

Specifically, this work addresses the problem of determining the accuracy (or preci-

sion) of a given dictionary of sensors, for a given upper-bound on the estimation ac-

curacy. This problem has been addressed by [50] for a linear continuous-time system,

where the sensor precision and the control law were co-designed to achieve a specified

closed-loop performance. The work also presents a state-estimation problem, where

sensor precisions were determined to achieve a certain estimation accuracy. In this

work, we look at a similar problem, but for a nonlinear discrete-time system, with a

user specified upper-bound on the estimation error covariance.

2



This problem is important in many engineering applications where the choice and

precision of sensors for state-estimation is not obvious. Examples of such applica-

tions include many large-scale spatio-temporal problems including space situational

awareness where space objects are tracked using ground/space based sensor net-

works [20], structural health monitoring [50], environmental and climate monitoring

[56], and distributed power-system monitoring [6], flow control applications [16], and

many other practical problems mentioned in [9, 90, 39, 70, 37, 12].

However, due to the constraints on the communication bandwidth and sensor battery

life, it may not be desirable to have all the sensors report their measurements at all

time instants or use the highest energy settings as in active sensing scenario such as

in [14]. Therefore, determining what should be the least accuracy of each sensor to

achieve a given accuracy in the state estimate becomes important from a practical

point-of-view. Since precision of a sensor is explicitly related to its cost, solution to

the sensor precision problem has economical implication.

Contributions of the work: In this work we formulate a convex optimization

problem to determine the optimal sensor precision for a given upper bound on the

state estimation error covariance. This is presented for nonlinear discrete-time dy-

namical systems in EnKF and UKF frameworks. To the best of our knowledge, the

sensor precision-selection problem for EnKF and UKF has not been addressed before.

In this work, the l1 norm of the sensor precision is minimized, subjected to a con-

vex constraint that guarantees the desired estimation error. This allows us to start

with an over parameterization of the problem and determine a sparse solution via

l1 regularization. Therefore, the system designer can specify a dictionary of sensors

with unknown sensor precisions and use the algorithm presented here to determine

the optimal precision (and possibly eliminate a few sensors) to achieve the require

3



estimation accuracy.

It is important to understand that the true error covariance calculated using exact

Bayesian update, might be different from that predicted by EnKF and UKF. When

EnKF and UKF are used to approximate the exact Bayesian update, the approxi-

mate error covariance is guaranteed to be bounded, if the sensor precision selection

algorithms presented in this work are applied.

Notations: For a square matrix M , let MT denote its transpose. The variable

k ∈ Z where Z is the set of integers, is used to index discrete time points; when

used as subscript it refers to quantities taken at time k. The quantities X i−
k and

X i+
k denotes prior and posterior random variable associated with state X i

k, where

the superscript i denotes sample index. Observed value of the random variable Y k

is denoted by Y o
k. A positive definite matrix M is denoted by M � 0. An identity

and a zero matrix of dimension n × n is denoted by In×n and 0n×n respectively.

Random variable x which has a Gaussian distribution with mean µ and covariance

Σ, is represented as x ∼ N (µ,Σ). We represent the set of time indexed variable xk

as {xk}.

Layout of the work: The remainder of the work is organized as follows. In Section

2, we present the system model along with its corresponding augmented model.

In Section 3, we describe the EnKF and UKF filter models, leading to the problem

formulation in Section 4, where we present the algorithms to solve the sensor precision

selection problem. In Section 5, the proposed framework is applied to the Lorenz

1996 model. The work finally concludes with Section 6.
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1.2 System Model

Consider an input/output discrete-time stochastic system modeled by,

xk+1 = fk(xk,wk), (1.1)

yk = hk(xk) + vk, (1.2)

where fk : Rn×Rnw → Rn represents the dynamics, hk : Rn → Rny is a measurement

function, xk ∈ Rn and yk ∈ Rny are the state vector and the observation vector

respectively, whereas wk ∈ Rnw and vk ∈ Rny are the process noise and measurement

noise respectively. We assume that both {wk} and {vk} are zero-mean, Gaussian,

independent white random processes [wk ∼ N (0,Qk),vk ∼ N (0,Rk),E
[
wkw

T
l

]
=

Qkδkl, and E
[
vkv

T
l

]
= Rkδkl]. For sake of simplicity, the initial random variable

x0 ∼ N (µ0,Σ0) is independent of {wk} and {vk}. We assume that Rk is a diagonal

matrix, representing the measurement noise covariance. The inverse of Rk is the

referred to as the precision matrix.

In EnKF and UKF, the measurement data (yok) is used to determine the estimate

of the state xk, which minimizes the estimation variance. We next introduce an

augmented model, based on (4.3) and (4.4), which aids in formulating a multi-step

precision selection problem that satisfies the specified performance criteria.

Augmented Model: We consider each of the q time steps {kq − q + 1, ..., kq} of

the system defined in (4.3) & (4.4) for k ∈ Z, as a single time step

5



1 2 3 4 q

q + 1 2q
q steps

q steps

for the following augmented model:

Xk+1 = F k(Xk,W k), Y k = Hk(Xk) + V k, (1.3)

where,

Xk := [xTkq−q+1, ...,x
T
kq]

T , (1.4)

Y k := [yTkq−q+1, ...,y
T
kq]

T ,

W k := [wT
kq−q+1, ...,w

T
kq+q−1]

T ∼ N (0,Qk),

V k := [vTkq−q+1, ...,v
T
kq]

T ∼ N (0,Rk),

Qk := diag([Qkq−q+1, ...,Qkq+q−1]), (1.5)

Rk := diag([Rkq−q+1, ...,Rkq]),

denotes stacked random variables. Function F k(.) can be recursively generated us-

ing f i(.)s. It should be noted that the augmented model represents a q-step q-shift

process, rather than a q-step sliding-window process.

Remark 1: In the rest of the work, we only use the augmented state model and

consequently time step k denotes the batch of q time points {kq−q+1, ..., kq}, unless

otherwise specified.
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1.3 Filter Models: EnKF and UKF

The filtering process for the augmented model (4.5) consists of two sequential steps:

dynamics update and measurement update. In EnKF, random samples are generated

using Monte Carlo techniques, whereas the state distribution in UKF is represented

by a Gaussian random variable (GRV) and is specified using a minimal set of carefully

chosen deterministic sample points along with their associated weights, as shown in

[80]. The sensor-selection problem for each these filtering frameworks are presented

in the next section.

1.3.1 Dynamic Update for EnKF Model

Let X+
k ∈ Rnq×N be the matrix with N number of posterior samples X i+

k at time k,

i.e.

X+
k =

[
X1+

k X2+
k · · · XN+

k

]
.

The posterior mean from the samples is approximated as,

µ+
k := E

[
X+

k

]
≈ 1

N

N∑
i=1

X i+
k =

1

N
X+

k 1N ,

where 1N ∈ RN is a column vector of N ones. We define,

X̄+
k :=

[
µ+
k · · · µ+

k

]
= µ+

k 1T =
1

N
X+

k 11T ,

then variance from the samples Σ+
xx,k is,

E
[
(X i+

k − µ
+
k )(X i+

k − µ
+
k )T
]
≈ X+

kAX+T
k . (1.6)

7



where

A :=

[
1

N − 1

(
IN −

11T

N

)(
IN −

11T

N

)]
The state of each ensemble member at the next time step is estimated using the

dynamics model:

X i−
k+1 = F k(X

i+
k ,W

i
k), (1.7)

If applied to a linear system, this ensemble approach reduces the cost associated

with the time propagation of the covariance matrix from O(n3q3) (classical KF) to

O(n2q2N) (EnKF).

1.3.2 Measurement update for EnKF Model

The ensemble members are corrected to minimize the error with respect to the mea-

surements in the presence of noise and model uncertainties. A measurement update

formulation proposed by [27] is:

X i+
k+1 =X i−

k+1 + Σ−xy,k+1(Σ
−
yy,k+1 + Rk)

−1

× (Y o
k+1 −Hk+1(X

i−
k+1) + εik), (1.8)

where εik is sampled from N (0,Rk). We define Σ−xy,k+1 as:

Σ−xy,k+1 =
1

N − 1
(X−k+1 − X̄−k+1)×

(Hk+1(X−k+1)−Hk+1(X̄
−
k+1))

T , (1.9)
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and Σ−yy,k+1 is defined as:

Σ−yy,k+1 =
1

N − 1
{Hk+1(X−k+1)−Hk+1(X̄

−
k+1))×

(Hk+1(X−k+1)−Hk+1(X̄
−
k+1))

T}. (1.10)

Remark 2: Equation (4.10) and (4.11) allows for direct evaluation of the nonlinear

measurement function Hk(x) in calculating the Kalman gain, which is shown in [77]

to hold for unbiased measurement forecasts {Hk(X
i−
k )}, which we assume to be true

in our work.

The covariance update equation of the augmented model is:

Σ+
xx,k+1 = Σ−xx,k+1 −Σ−xy,k+1(Σ

−
yy,k+1 + Rk+1)

−1

×Σ−
T
xy,k+1, (1.11)

where Σ−xx,k+1 = X−k+1AX−Tk+1.

1.3.3 Dynamic Update for UKF Model

The dynamic update step from k → k + 1 starts with generating deterministic

points called σ points. To capture the mean aµ
+
k of the augmented state vector

aX
+
k :=

X+
k

W k

, where aX
+
k ∈ Rna and na = nq + nwq, as well as the augmented

9



error covariance aΣ
+
xx,k =

Σ+
xx,k 0

0 Qk

 the sigma points are chosen as

aX
0+
k = aµ

+
k ,

aX
i+
k = aµ

+
k +

(√
(na + ρ)aΣ

+
xx,k

)
i
, i = 1, ..., na,

aX
i+
k = aµ

+
k −

(√
(na + ρ)aΣ

+
xx,k

)
i−nq

, i = na + 1, ..., 2na,

with associated weights as

ω
(m)
0 = ρ/(na + ρ),

ω
(c)
0 = ρ/(na + ρ) + (1− α2 + β),

ω
(m)
i = 1/{2(na + ρ)}.

The weight vectors are:

Wm = [ω
(m)
0 ω

(m)
1 ... ω

(m)
2na+1]

T ,

Wc = [ω
(c)
0 ω

(c)
1 ... ω

(c)
2na+1]

T ,

where ρ = α2(na + κ) − na is the scaling parameter, α is set to 0.001, κ is set to

0, and β is 2 in this work. The term
(√

(na + ρ)aΣ
+
xx,k

)
i

represents ith row of the

matrix square root. The propagated state of each ensemble member at time k+ 1 is

generated exactly as EnKF by using X i−
k+1 = F k(X

i+
k ,W

i
k), where aX

i+
k :=

X i+
k

W i
k

.
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But unlike EnKF, the corresponding prior mean and covariance at time k + 1 are:

µ−k+1 = X−k+1W
m

Σ−xx,k+1 = X−k+1BkX−Tk+1

where Bk := LLT , L :=
(
diag(Wc)−Wc1T2nq+1

)
.

We define the following terms which we use in the following measurement update

phase of UKF.

Y−k+1 = H(X−k+1), Ȳ
−
k+1 = Y−k+1W

m1T2nq+1,

X̄−k+1 = X−k+1W
m1T2nq+1,

where Y−k+1 =

[
Y 1−

k+1 Y 2−
k+1 · · · Y

(2nq+1)−
k+1

]
and X−k+1 =

[
X1−

k+1 X2−
k+1 · · · X

(2nq+1)−
k+1

]

1.3.4 Measurement Update for UKF

We calculate Σ−xy,k+1 and Σ−yy,k+1 as:

Σ−xy,k+1 = (X−k+1 − X̄−k+1)× diag(Wc)

× (Y−k+1 − Ȳ−k+1)
T (1.12)

Σ−yy,k+1 = (Y−k+1 − Ȳ−k+1)× diag(Wc)

× (Y−k+1 − Ȳ−k+1)
T (1.13)

The covariance update equation is exactly same as (4.12).

Remark 3: Since the covariance update equation for EnKF and UKF are identical,
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this allows us to formulate a common precision selection algorithm that is presented

next.

1.4 Problem Formulation

We define precision matrix of measurement (Sk) as the inverse of the covariance

matrix of the augmented measurement noise (Rk). We assume that the precision

matrix Sk is a diagonal matrix, with diagonal elements {λi}, where i ∈ [1, ..., qny].

The sensor precision associated with the ith sensor is λi. Equation (4.12) for time

step k, can be written as:

Σ+
xx,k = Σ−xx,k −Σ−xy,k(Σ

−
yy,k + S−1k )−1Σ−

T
xy,k

= Σ−xx,k −Σ−xy,k{Σ
−
yy,k + diag([λ1, ..., λqny ])−1}−1

×Σ−
T
xy,k (1.14)

The λi’s are the control variables, that regulate the estimation error covariance ma-

trix Σ+
xx,k, when we have the prior ensemble X−k which is generated from X+

k−1 using

(4.8). The augmented process noise W k is generated by sampling from Qk in (1.5).

Our objective is to design {λi} such that M qΣ
+
xx,kM

T
q is upper-bounded by a pre-

scribed positive definite matrix P d
kq, where the matrixM q := [01

n×n,0
2
n×n, ...,0

q−1
n×n, In×n],

is utilized to extract error covariance matrix of posterior estimate of xkq from Σ+
xx,k.

The matrix P d
kq is the performance bound based on which we select sensor precisions.

Remark 4: Although we use the augmented model in (4.5), the performance bound

is on the covariance of the estimate of xkq.
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1.4.1 Optimal Sensor Precision

The solution to the sensor selection problem for EnKF and UKF is presented as the

following theorem:

Theorem 1. The optimal precision of each of the sensors, λk := [λ1, ..., λqny ] at

time k, which guarantees M qΣ
+
xx,kM

T
q � P d

kq, for given prior ensemble X+
k−1, is

obtained by solving the following semidefinite programming (SDP) problem,

λ∗k = min
λk:=[λ1,...,λqny ]

T
||λk||1, (1.15)

subject to,

P d
kq +A B

BT D

 � 0, λi ≥ 0, ∀i ∈ [1, ..., qny], (1.16)

where

A := −M qΣ
−
xx,kM

T
q +M qΣ

−
xy,kSkΣ

−T
xy,kM

T
q ,

B := M qΣ
−
xy,kSk,

D := (Σ−yy,k)
−1 + Sk,

Sk := diag([λ1, ..., λqny ]).

The matrices Σ−xx,k,Σ
−
xy,k,Σ

−
yy,k are calculated using the prior ensemble X−k and the

expected observations, Hk(X−k ) using (4.10) & (4.11) for EnKF, or (4.20) & (4.21)

for UKF. We calculate X−k from X+
k−1 using (4.8) both for EnKF and UKF.
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Proof.

Σ+
xx,k = Σ−xx,k −Σ−xy,k(Σ

−
yy,k + Rk)

−1Σ−
T
xy,k

= Σ−xx,k −Σ−xy,k{R
−1
k −R−1k

× [(Σ−yy,k)
−1 + R−1k ]−1R−1k }Σ

−T
xy,k

= Σ−xx,k −Σ−xy,kR−1k Σ−
T
xy,k︸ ︷︷ ︸

−Â

+ Σ−xy,kR
−1
k︸ ︷︷ ︸

B̂

[(Σ−yy,k)
−1 + R−1k ]−1︸ ︷︷ ︸
D−1

×R−1k Σ−
T
xy,k︸ ︷︷ ︸

B̂T

Σ+
xx,k = −Â+ B̂D−1B̂

T
,

Collection the error covariance corresponding to posterior estimate of xkq.

M qΣ
+
xx,kM

T
q = −M qÂM

T
q +M qB̂D

−1B̂
T
MT

q

Now,

−A+BD−1BT � P d
kq

P d
kq +A−BD−1BT � 0, (1.17)

where M qÂM
T
q := A and M qB̂ := B. Since D � 0 and P d

kq +A−BD−1BT � 0,

using Schur’s complement we get the following,

P d
kq +A B

BT D

 � 0. (1.18)
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as the necessary and sufficient condition for (1.17) to be true.

Matrices A,B, and D are linear in R−1k or Sk. Equation (1.18) is a linear ma-

trix inequality (LMI) over Sk. The fact that the precision values are non-negative

introduces the linear constraint λi ≥ 0. The optimal precision is thus obtained by

minimizing ‖λk‖1, subject to the above LMI and linear constraint on λk.

Algorithm 1 Precision Selection

Input: fk(.), gk(.), hk(.), q, k, X+
k−1, Qk, P

d
kq

Output: A set λ ∈ {R+(qny×1) ∪ 0qny×1} of sensor precisions.

1: procedure
2: Calculate Qk

3: X+
k−1 → X−k using F k(.), W k ∼ N (0,Qk)

4: Calculate Σ−xx,k,Σ
−
xy,k,Σ

−
yy,k

5: Calculate M q

6: Construct Sk := diag([λ1, ..., λqny ])
7: Construct A,B,D matrices
8: Solve SDP problem in (1.15), (1.16)

Remark 5: Theorem 1 determines the optimal set of sensor precisions. The l1

regularization induces sparseness in the solution. Therefore, if the optimization is

performed on an over parameterized problem, i.e. with a large dictionary of sensors

that considers all possible sensor choices, we expect the optimal solution λ∗ to have

entries that are zero. This indicates that those sensors are not needed to achieve the

require state estimation accuracy and can be removed.

However, numerical solution to the sensor precision problem will result in small

precision values that are not exactly zero. Those sensors can then be eliminated

iteratively using theorem 1 with the reduced dictionary of sensors, discussed later in
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this work. An upper bound on the precision for sensor(s) can also be incorporated

in the optimization problem as a convex constraint over the argument space. For

EnKF, covariance inflation [85] technique is used while calculating Σ−xx,k,Σ
−
xy,k,Σ

−
yy,k

matrices.

Remark 6: Before solving the SDP problem, it is recommended to formulate the

optimization problem with respect to normalized variables. This improves the numer-

ical accuracy of the solution and make the optimal solution meaningful. For instance,

in sensor precision selection for improving space-situational awareness, certain states

are in the order of 103 km and others are in radians. Therefore, normalization with

respect to dynamics, error covariance, and sensor noise is required to avoid ill con-

ditioning of covariance matrices and improve the efficacy of the proposed optimal

sensor precision algorithm.

1.4.2 Discussion: Sensor Pruning

As mentioned earlier, numerical solution of the l1 regularization problem may assign

small precision to certain {λi}s of λ, which are not exactly zero and can possibly

be removed without affecting the estimation quality. Therefore, a separate pruning

process is required to reduce the set of sensors in the system. We define sensor

pruning as choosing a subset of available sensors, which ensures that the covariance

bound P d
kq is satisfied. The rationale behind choosing a subset of the sensors is

to eliminate the sensors whose precision requirement is too low compared to other

sensors.

An adhoc algorithm to address this has been presented in [50], where the calculated

sensor precision vector λ∗ is first sorted in ascending order. Iteratively, the smallest

16



precision sensor are removed and the precisions are recalculated. This is continued

till the problem becomes infeasible. The work of [50] focusses on integrated design

of controller and sensing architecture, without taking observability into considera-

tion. However, in the context of state-estimation, observability condition must be

addressed while sensor pruning. Other sensor selection algorithms proposed in [78]

and [88] can also be investigated. However, the problem of sensor pruning becomes

challenging for nonlinear system, and is the focus of our future work.

1.5 Numerical Experiment

In this section, we provide simulation results for the sensor precision selection algo-

rithm for single time step update (q = 1) and multiple time step update (q = 3);

also including the case where sensor precisions are constrained.

1.5.1 Test Problem: The Lorenz (1996) model

The sensor precision selection scheme is applied to the Lorenz-96 (L96) model to test

its validity, when an EnKF and an UKF filter are used for state estimation. The L96

model consists of Nx equally spaced variables, xi for i = 1, ..., Nx, which are evolved

in time using the set of differential equations:

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, (1.19)

with cyclic boundaries: xi+N = xi and xi−N = xi. The three terms in (1.19) are

analogous to advection, damping, and forcing. The system exhibits varying degrees

of chaotic behaviors depending on the choices of F and Nx. We fix Nx and F at 20

and 8 respectively, which leads to chaotic behavior in the system dynamics as shown
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in [54], and [55].

1.5.2 Experimental Setup

In this experiment we consider no process noise, i.e. Qk = 0, but with initial

condition uncertainty. Forward integration of (1.19) is performed numerically using

the fourth-order Runge-Kutta method with 20 internal stages for k → k + 1, with a

time step of 0.05 time units for each stage as shown in [54]. We assume the following

non-linear measurement model:

yi,k =
1

1 + e−xi,k
+ vi,k (1.20)

where (.)i,k denotes ith component of a vector at time point k, with measurement

noise vk ∼ N (0,Rk). The initial ensemble is generated from a multivariate Gaussian

distribution with mean vector of size qNx, whose elements are chosen randomly

from [0, F ] and a random positive definite matrix (Σinit) of size qNx × qNx as the

covariance, where qNx denotes the size of the augmented state vector. We use 2qNx+

1 number of samples for both EnKF and UKF, for q = 1 and 3.

To study the effects of state estimate covariance bounds on the optimal sensor pre-

cision values, we linearly vary the required error covariance bound from a factor of

0.9 to 0.6 of the initial covariance Σinit as shown along the x-axis of the figures.

For q = 1 shown in fig.(1.1) and fig.(1.3), 21 linearly varying bounds are considered

within the interval of [0.9, 0.6], where as for q = 3 shown in fig.(1.2), fig.(1.4), 7

linearly varying bounds are chosen from the same interval. Measurement model in

(1.20) shows 20 different sensors, whose indices are plotted along the y-axis of each

of the figures.
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1.5.3 Solving for Sensor Precisions

We use CVX software of [33] to solve our SDP problem. CVX internally calls Se-

DuMi solver of [74], a MATLAB implementation of the second-order interior-point

methods. The l1 norm minimization problem with LMI constraint yields desired

precision values for the sensors shown in the figures as heat maps, with sensor preci-

sion ranges shown in the right y-axis. Fig.(1.1) and fig.(1.2) show optimal precisions

required for EnKF for q = 1 and q = 3 respectively, satisfying prescribed covariance

bounds. Fig.(1.3) and fig.(1.4), are the corresponding plots for UKF. For q = 1,

sensor precisions are calculated to satisfy the covariance bound at the immediate

next time instant. When q = 3, sensor precision are calculated for consecutive 3

time instants to satisfy covariance bound on the state variable at the end of the time

horizon. For EnKF, the sensor precisions are restricted to be below 15, whereas for

UKF precisions are bounded above by 3, while solving the SDP problem. We see

that the optimal solution results in high accuracy sensing only at the end of the time

interval, with poor (or no) sensing within the interval. However, this changes when

upper limit on the precisions are reduced. In that case, we will see higher precision

within the interval.

Note that we get different values for the optimal precisions for EnKF and UKF.

These also depend on the sample size and covariance inflation parameter for EnKF,

and choices of α, β, κ for UKF. It will be interesting to investigate the impact of these

two frameworks on the sensor precision problem, and determine if one requires more

precision than the other to arrive at the same estimation accuracy. These important

questions will be addressed in our future work.
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Figure 1.1: Precision of sensors updated at each time step (q = 1) for EnKF without
precision bounds. Reprinted with permission from [19].

1.6 Conclusion

In this work, a new sensor precision selection problem for non-linear dynamical sys-

tems is presented in the framework of EnKF and UKF. The problem is shown to

be convex, which can be easily solved using standard software such as CVX. The

algorithm is applied to the Lorenz 1996 model of order 20 and results from both

EnKF and UKF framework are presented. Sensor pruning, in the event of very small

precisions in the optimal solution, is also discussed and methods to solve them are

presented. Future work involves developing new sensor pruning algorithms for non-

linear systems, and also investigating impact of EnKF and UKF framework, along

with other norm minimizations, on optimality and practicality.
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Figure 1.2: Precision of sensors updated for 3 consecutive time step (q = 3), with
precision bounds for EnKF. Reprinted with permission from [19].
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Figure 1.3: Precision of sensors updated at each time step (q = 1) for, for UKF
without precision bounds. Reprinted with permission from [19].
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Figure 1.4: Precision of sensors updated for 3 consecutive time step (q = 3), for UKF
with precision bounds. Reprinted with permission from [19].
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2. PRIVACY-UTILITY AWARE KALMAN FILTERING FOR DISCRETE LTI

SYSTEMS∗

2.1 Introduction

The goal of privacy-utility aware output data sharing of a discrete time linear time in-

variant (D-LTI) stochastic system is establishment of mechanisms that enables states

estimation with fidelity (utility) by a data receiver without deeply jeopardizing pri-

vacy of the data sharer. This paper deals with a D-LTI stochastic system whose

states at time instant k are random variable xk ∈ Rnx , are shared as yk ∈ Rny with

a data receiver through an linear stochastic observation function. In this work we

deal with states xk that are partitioned into {x(p)
k := public,x

(q)
k := private} states.

The objective of the paper is to design algorithms to enhance utility of the public

states while ensuring privacy of the private states, when a Kalman filter in its steady

state, is used by the data receiver to estimate the states. Although there are some

recent progress on dynamic data privacy and Kalman filtering (KF), partitioning

state data into private and public data is relatively new. Our proposed approaches is

shown to be applicable to such privacy-utility problems as health monitoring, traffic

management , smart meters, all of which is encompassed by the domain of Internet

of Things (IOT), just to name a few. With the evolution and development of the

5th generation (5G) technology, Internet of Things (IoT) within 5G provides a foun-

dation and opportunity for smart home and smart healthcare [81].

∗Part of the data is reprinted with permission from Eigen Value Analysis in Lower Bounding
Uncertainty of Kalman Filter Estimates by Niladri Das and Raktim Bhattacharya, presented at
IFAC World Congress 2020, [18], Copyright 2020 by International Federation of Automatic Control.
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The idea of using privacy and utility preserving mechanisms for D-LTI stochastic sys-

tem being estimated by a Kalman filter in its steady state is the following. First, we

need to define proper metrics for privacy and utility and combine them to construct

a joint privacy-utility payoff function. We cannot treat them separately since the

private and public states are coupled with each other though the D-LTI stochastic

dynamics. The payoff function is based on the state error covariance matrix of the

KF. The data receiver who has the perfect knowledge of the system dynamics, should

be allowed to estimate the public steady-states with minimal state error covariance

, while preventing it from estimating the private steady-states with maximal state

error covariance. After that we need to identify the free parameters that effects the

privacy-utility payoff function. We have identified three free parameters: measure-

ment noise, the linear transformation operator in the measurement function, and

sensor selection. In this paper we are interested in the first two parameters. The

idea of regulating measurement noise to effect the error covariance matrix of steady

state KF has been addressed before in [50] as a parameterization of steady state

observer. The algorithm ensures upper bound on the error covariance which ensures

utility of the measurement data. This work do not address the lower bounding the

error covariance which is essential to ensuring privacy.

The idea of linearly transforming the measurements is not new. This is a standard

procedure in compressed sensing [24] and has been widely studied in the context

of accurate data recovery. In [73] the authors presented a linear transform to map

the measurement space into a lower dimensional space. The results presented are

only applicable for single step or two step time update. Their scheme although

ensures optimal privacy-utility payoff, fails to recover the transformation matrix.

Though their methodology do not provide the transformation matrix, their definition
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of privacy-utility payoff provides a good starting point for our framework. The

third free parameter which is sensor selection is loosely related to the measurement

transform method. In [73] the authors have presented a masking matrix constructed

using {0, 1} that does the operation of sensor selection. It is evident that the sensor

selection problem is a contained version of linear transform of the measurements.

The privacy problem has been studied widely in the context of different problems.

With the emergence of the data driven information technologies, there are increasing

concern over the breach of privacy of personal data collected from sensors. In gen-

eral, privacy can be categorized into two classes: data privacy and inference privacy.

Data privacy protected the original measurements from being inferred by the fusion

center. In the context to data privacy, techniques such as generalization and buck-

etization have been designed to provide privacy protection. But without care this

reduces the utility of the data. It is hence important to carefully study the tradeoff

between privacy and utility. Other privacy metrics that have been proposed includes

homomorphic encryption and local differential privacy. Inference privacy prevents

fusion center from making certain statistical inferences. The privacy metric that

have been proposed for inference privacy includes information privacy, differential

privacy and average information leakage. The privacy that we consider in this paper

belongs to inference privacy.

We need a crisp and clear definition of privacy in the context of state estimation using

measurement data. Privacy-utility preserving solution provide support in different

ways. But they do not have robust theoretical basis for both privacy and utility.

Such a basis is important for several reasons. First, a theoretical abstraction allows

us to recast the problem in a technology-independent manner. Second, a theoretical

framework enables us to examine the costs of lost privacy against the benefits of
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data dissemination, namely, the tradeoff between privacy and utility. It would be

desirable to give each customer the ability to decide that tradeoff and also to give the

third party (service provider) the ability to incentivize the customer to participate

in such a bargain by offering interesting points of tradeoff. Finally, a theoretical

framework for privacy and utility may expose points of tradeoff that are unexpected.

We propose a theoretical framework for privacy-utility preserving in the context of

inferencing using KF on a LTI system’s measurements. We provide two independent

schemes based on either manipulating the measurement noise covariance or linearly

compressing the measurement space. In contrast to the works mentioned before, we

deal with upper and lower bound of the error covariance matrix in the same frame-

work, connect it to the privacy-utility payoff function, consider the steady state

scenario compared to the single step, two step or over finite time horizon Kalman

update of others. In the first scheme of manipulating the measurement noise covari-

ance we present new results completely based on Eigen-value analysis. This approach

significantly reduces the complexity of similar related results presented in [50] only

for the upper bound of error covariance matrix. Mesurement compression technique

for the steady state KF although new, has been inspired by the ideas presented in

[73].

On a formulation level, if the system dynamics for states x is: xk+1 = Axk +

Bwk, ∀k ∈ N, and the measurement equation for measurements y is: yk = HTCxk+

nk, ∀k ∈ N, whose Kalman filtering based covariance update equation is:

P k|k = P k|k−1 − P k|k−1C
TH(HTCP k|k−1C

TH +R)−1HTCP k|k−1

for P k|k−1 and P k|k denoting the prior and posterior covariance matrix, the ques-

tion that we are interested in answering is: manipulate R or HT matrix such that
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a certain privacy-utility tradeoff is satisfied. Details on the variables used and the

privacy-utility definitions are given in the succeeding sections. Regulating R is akin

to adding synthetic measurement noise, scheduling sensing regimes, or deciding noise

intensity for active sensors such as lidar or laser. On the other hand linear transforma-

tion of system measurement using HT matrix falls under the purview of compressed

sensing. Both of these privacy-utility preserving schemes are explored in this work.

This chapter is organized as follows. In Section 2.2 we describe the system model

followed by the description of Kalman Filtering in Section 2.3. Then we introduce

the concept of privacy and utility in Section 2.4, followed by problems statements in

Section 2.6 and Section 2.7. Next we provide one numerical example in Section 2.8

and conclude.

Notation: Let N and R (R+) represent the sets of natural number and real (positive

real) numbers respectively. The state space of system X is a closed set in Rnx , where

nx is the dimension of the states. Transpose of a square matrix M ∈ Rn×n is

denoted as MT . A positive definite (semi-definite) matrix M is denoted by M � 0

(M � 0) and M � N (M � N ) if M − N � 0 (M − N � 0), for some matrix

N ∈ Rn×n. The set of all positive definite (semi-definite) matrices of size n × n is

denoted by S++
n (S+

n ). Let λi(M) denotes ith eigen value of the matrix M, when we

arrange them as λ1(M) ≥ λ2(M) ≥ ... ≥ λn(M). Similarly, singular values σi(M)

of M, are arranged in non-increasing order: σ1(M) ≥ σ2(M) ≥ ... ≥ σn(M). Let

diag(a) denotes a diagonal matrix, with a as its diagonal elements. We assume that

x ∈ X is continuous, µ(x) is a Lebesgue measure, and p(x) is the probability density

function (pdf). The expected value of the random variable x with respect to p(x) is

represented as E [x].
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2.2 System dynamics and measurement model

We focus on the class of discrete-time linear time-invariant stochastic systems. Let

xk represent the true states of a system at the kth time instant, where xk ∈ Rnx for

all k ∈ N. The dynamics is modeled as

xk+1 = Axk +wk, ∀k ∈ N, (2.1)

where A ∈ Rnx×nx is the state transition matrix. The process noise variable wk ∈

Rnw , is the nw dimensional zero-mean Gaussian additive noise with E[wkw
T
l ] = Qδkl.

The discrete dynamics in (3.1a) is observed by a linear measurement model. Let

yk ∈ Rny denote the measurement taken at the kth time instant as

yk = Cxk + nk, ∀k ∈ N, (2.2)

where yk is corrupted by a ny dimensional additive observation noise nk ∈ Rnn .

The sensor noise at each time instant is a zero-mean Gaussian random variable

with E[nkn
T
l ] = Rδkl. The matrix C ∈ Rny×nx is known as the observation or the

measurement or the generative matrix.

The initial state of (3.1a) is modeled by a Gaussian random variable x0 with mean

µ0 and covariance P0. The random variable x0 denotes the system state at the 0th

time instant. The process noise wk, observation noise nk, and initial state variable

x0 are all assumed to be independent, unless otherwise specified. These assumptions

are strongly motivated by analytical tractability. The restriction to zero-mean noise

sources is not a loss of generality. When the noise sources are not zero-mean, the A

and C matrices are modified and extra states are introduced.
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2.3 Kalman filtering

The discrete time system in (3.1a) and (3.1b) induces a Kalman filter, as the optimal

state estimator with dynamics

Propagation –

µ−k = Aµ+
k−1, (Mean Propagation)

P−k = AP+
k−1A

T +Q, (Covariance Propagation)

Update –

µ+
k = Aµ+

k−1 +Kk(yk −Cµ−k ), (Mean Update)

P+
k = (I−KkC)P−k , (Covariance Update)

Kk = P−kC
T
[
CP−kC

T + R
]−1

, (Kalman Gain)

µ+
0 = µ0, (Initial State Mean)

P+
0 = P0, (Initial State Covariance)

where the variables µ−k ,µ
+
k ∈ Rnx , denote the prior and posterior mean estimates

of the random variable xk. Kk is the Kalman gain, at time k. The positive semi-

definite matrices P−k ,P
+
k ∈ Rnx×nx are the prior and posterior co-variance matrices

at time instant k respectively. We define the matrix inverse of the observation noise

co-variance R as the precision matrix S, i.e. S := R−1.

2.4 Privacy and utility problem

The primary challenge in characterizing the privacy-utility tradeoffs is creating the

right abstraction – we need a principled approach that provides quantitative measures

of both the amount of information leaked as well as the utility retained and provides
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a basis for a negotiated level of benefit for both consumer and supplier.

We assume that the true state xk can be partitioned into two parts as xk =

{x(p)
k ,x

(q)
k } , where x

(p)
k ∈ RLpub contains public states that are shareable with oth-

ers whereas x
(q)
k ∈ RLpri represents private states containing sensitive information

that should be accessible only to authorized users. The variables are related to each

through two masking matrices M (p) and M (q) as:

x
(p)
k = M (p)xk ; x

(q)
k = M (q)xk

The corresponding steady state (prior) error covariance matrices are:

P (p)
ss = M (p)P ssM

(p)T ; P (q)
ss = M (q)P ssM

(q)T

The public error covariance matrix P
(p)
ss ∈ RLp×Lp whereas P

(q)
ss ∈ RLq×Lq and Tr(.)

denotes trace operator. We define the privacy metric to be Tr(P
(q)
ss ).

2.5 Problem formulation

There are three distinct problems that we address here. These problems are explicitly

dependent upon determining three tune-able parameters that effect the privacy or

utility metric, which are R, Kss, and C, where Kss is the steady state Kalman

gain matrix. Changing R is commonly referred to as perturbing measurement noise

intensity in privacy-utility literature as one of the privacy preserving mechanisms. In

this case one sanitizes the available measurements with spurious noises. Measurement

compression is done by manipulating the C matrix. We see the perturbation in Kss
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matrix in cases where only the Kalman Gain matrix is made available along with the

measurements to update the estimates on the consumer side ensuring desired level

of privacy and (or) utility.

2.6 Problem statement I

We assume that the system matrices (A,B,C) and noise parameter Q in (3.1a) and

(3.1b) are known. The matrix R which is the sensor noise covariance, is the design

variable. For a prescribed upper or lower bound on the steady state of public and

private variable’s prior covariance using the Kalman filter, we are to design R or

the precision matrix S := R−1, that satisfies these bounds.

2.6.1 Preliminaries

In the steady state scenario of a Kalman filter, the prior state covariance P is related

to our design variable R through the Discrete Algebraic Riccati Equation (DARE).

The following preliminary discussions aim to connect the eigenvalues of P with that

of R, leading to the Linear Matrix Inequalities (LMIs), that helps in synthesizing

the R matrix.

2.6.1.1 Eigen-Value Based Analysis

Middleton and Goodwin in [61] introduced the Unified Algebraic Riccati Equation :

PA+ATP + ∆ATPA− (∆AT + I)PB

× (I + ∆BTPB)−1BTP (∆A+ I) +Q = 0, (2.3)
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where A ∈ Rnx×nx and B ∈ Rnx×ny represent constant matrices, Q ∈ Rnx×nx is in

S+
n , the matrix P ∈ Rnx×nx is the positive definite solution to (2.3), and ∆ represents

sampling period.

We introduce an extra parameter R ∈ Rny×ny in UARE and call it UARE-R. This

UARE-R:

PA+ATP + ∆ATPA− (∆AT + I)PB

× (R+ ∆BTPB)−1BTP (∆A+ I) +Q = 0, (2.4)

is often encountered in Optimal Control [10] and Estimation [4] problems.

Remark 1. (a) Using ∆ = 0, replacing A by AT , and B by CT , we recover the

Continuous Time Algebraic Riccati Equation (CARE), solution to which gives us the

steady state covariance for a Kalman-Bucy filter. (b) Using ∆ = 1, replacing A+ I

by AT , and B by CT we recover the DARE associated with steady state covariance

of the Kalman Filter, where P denotes the steady-state error covariance matrix.

Reiterating, our objective is to design R matrix that satisfies prescribed bounds on

the steady-state estimated state error covariance matrix P , using (2.4). We closely

follow the calculations in [49] to relate the bounds on R with that of P in (2.4).

2.6.1.2 Preliminary results:

In the following three theorems we examine the charactertization of the lower and

upper bounds on the P matrix of the UARE-R, as a function of R. As our final

results we will provide theorems that will connect the eigen values of R to upper or

lower bounds on P . This opens up a way to generate the feasible set for choosing R

32



matrix.

Theorem 2. Let P be the positive solution of the UARE-R in equation (2.4), then

P �(∆A+ I)T (P−1u0 + ∆BR−1BT )−1(∆A+ I) + ∆Q, (2.5)

where P ∈ S+
nx
,A ∈ Rnx×nx ,B ∈ Rnx×ny ,R ∈ S++

ny×ny
,Q ∈ S+

nx×nx
6= 0nx×nx ,∆ ≥ 0,

P u0 ≡ (∆A+ I)T
(I
η

+ ∆BR−1BT
)−1

(∆A+ I)

+ ∆Q, (2.6)

η ≡ −a+
√
a2 + bc

b
> 0,

a ≡ −λmax(A+AT + ∆ATA)

−∆λmax(Q)λmin(R−1)λmin(BBT ),

b ≡ 2λmin(R−1)λmin(BBT ), c ≡ 2λmax(Q).

Proof. Using

∆(PA+ATP + ∆ATPA) =(∆A+ I)TP (∆A+ I)− P , (2.7)

in UARE-R

(∆A+ I)T [P −∆PB(R+ ∆BTPB)−1BTP ](∆A+ I) + ∆Q = P . (2.8)

followed by matrix inversion lemma

(∆A+ I)T (P−1 + ∆BR−1BT )−1(∆A+ I) + ∆Q = P . (2.9)
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Following [49]

P � λmax(P )I;BR−1BT � λmin(R−1)λmin(BBT )I

P � λmax(P )

1 + λmax(P )∆λmin(R−1)λmin(BBT )
(∆A+ I)T (∆A+ I) + ∆Q. (2.10)

Using λmax(A1+B1) ≤ λmax(A1)+λmax(B1) from [53] where A1,B1 are symmetric

matrices

λmax(P ) ≤ λmax(P )

1 + λmax(P )∆λmin(R−1)λmin(BBT )

× λmax[(∆A+ I)T (∆A+ I)] + ∆λmax(Q).

Using λmax[(∆A+I)T (∆A+I)] = ∆λmax(A+AT +∆ATA)+1 we get a quadratic

in λmax(P )

b

2
λ2max(P ) + aλmax(P )− c

2
≤ 0,

where

a ≡ −λmax(A+AT + ∆ATA)−∆λmax(Q)λmin(R−1)λmin(BBT ),

b ≡ 2λmin(R−1)λmin(BBT ),

c ≡ 2λmax(Q).

which denotes

0 ≤ λmax(P ) ≤ −a+
√
a2 + bc

b
≡ η.
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In (2.9)

P �(∆A+ I)T (λ−1max(P )I + ∆BR−1BT )−1(∆A+ I) + ∆Q,

�(∆A+ I)T (η−1I + ∆BR−1BT )−1(∆A+ I) + ∆Q ≡ P u0. (2.11)

Putting it back to the modified UARE-R in equation (2.9), we get,

P �(∆A+ I)T (P−1u0 + ∆BR−1BT )−1(∆A+ I) + ∆Q ≡ P u1

P u1 is a more tighter bound from above compared to P u0.

Remark 2. IfQ = 0 and a positive solution of UARE-R exists, we have λmax(Q) =

0.

λmax(P ) ≤ λmax(P )

1 + λmax(P )∆λmin(R−1)λmin(BBT )

× λmax[(∆A+ I)T (∆A+ I)]

λmax(P )(1 + λmax(P )∆λmin(R−1)λmin(BBT ))

≤ λmax(P )λmax[(∆A+ I)T (∆A+ I)]

λmax(P )∆λmin(R−1)λmin(BBT ) ≤ λmax[(∆A+ I)T (∆A+ I)]− 1

λmax(P ) ≤ λmax[(∆A+ I)T (∆A+ I)]− 1

∆λmin(R−1)λmin(BBT )
≡ η.

Similarly it follows that if R = 0 and a positive solution of UARE-R exists, we have

P � ∆Q.
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Theorem 3. Let P be the positive solution of the UARE-R in equation (2.4), then

P �(∆A+ I)T (P−1l0 + ∆BR−1BT )−1(∆A+ I) + ∆Q (2.12)

where P ∈ S+
nx
,A ∈ Rnx×nx ,B ∈ Rnx×ny ,R ∈ S++

ny×ny
,Q ∈ S+

nx×nx
6= 0nx×nx ,∆ ≥ 0,

P l0 ≡ (∆A+ I)T (ϕ−1I + ∆BR−1BT )−1(∆A+ I)

+ ∆Q,

ϕ ≡ −a+
√
a2 + bc

b
,

a ≡ −λmin(A+AT + ∆ATA)

−∆λmin(Q)λmax(R
−1)λmax(BB

T ),

b ≡ 2λmax(R
−1)λmax(BB

T ), c ≡ 2λmin(Q).

Proof. Following [49]

P−1 � λ−1min(P )I. (2.13)

BR−1BT � λmax(R
−1)λmax(BB

T )I. (2.14)

leading to

P � λmin(P )

1 + λmin(P )∆λmax(R−1)λmax(BBT )
(∆A+ I)T

× (∆A+ I) + ∆Q. (2.15)

Using λn(A1 + B1) ≥ λn(A1) + λn(B1) from [53] where A1,B1 are symmetric
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matrices

λmin(P ) ≥ λmin(P )

1 + λmin(P )∆λmax(R−1)λmax(BBT )

× λmin[(∆A+ I)T (∆A+ I)] + ∆λmin(Q).

Using λmin[(∆A+I)T (∆A+I)] = ∆λmin(A+AT + ∆ATA) + 1 we get a quadratic

in λmin(P ) inequality

b

2
λ2min(P ) + aλmin(P )− c

2
≥ 0, (2.16)

where

a ≡ −λmin(A+AT + ∆ATA)

−∆λmin(Q)λmax(R
−1)λmax(BB

T ),

b ≡ 2λmax(R
−1)λmax(BB

T ), c ≡ 2λmin(Q).

which is of quadratic form. This denotes

λmin(P ) ≥ −a+
√
a2 + bc

b
≡ ϕ.

Following from

(∆A+ I)T (P−1 + ∆BR−1BT )−1(∆A+ I) + ∆Q = P , (2.17)
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we have

P � (∆A+ I)T (ϕ−1I + ∆BR−1BT )−1

× (∆A+ I) + ∆Q ≡ P l0. (2.18)

Using the lower bound P l0 of in equation (2.18) we get,

P � (∆A+ I)T (P−1l0 + ∆BR−1BT )−1(∆A+ I) + ∆Q (2.19)

Remark 3. IfQ = 0 and a positive solution of UARE-R exists, we have λmin(Q) =

0.

λmin(P ) ≥ λmin(P )

1 + λmin(P )∆λmax(R−1)λmax(BBT )

× λmin[(∆A+ I)T (∆A+ I)]

λmin(P ) ≥ λmin[(∆A+ I)T (∆A+ I)]− 1

∆λmax(R−1)λmax(BBT )
≡ ϕ.

Similarly it follows that if R = 0 and a positive solution of UARE-R exists, we have

P � ∆Q.

2.6.2 Calculating Noise Intensity R

We discussed how we retrieve DARE:

APAT − P −APCT (R+CPCT )−1CPAT +Q = 0,
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for solving the steady-state covariance matrix P for Kalman filter, applying suit-

able substitution to the UARE-R. Conventionally, designing R is related to upper

bounding the performance of a filter with some additional constraints. Topics like

differential privacy and bounded information exchange such as in robotics has lead

to the requirement of switching between different R matrices to keep the perfor-

mance within bounds (upper or lower), rather than just upper bounding it which

has been typically done in problems related to sensing architecture design. In this

work, we utilize Thorem 2 and 3 to propose a technique to design the measurement

noise covariance matrix R or the precision matrix S such that the P is upper or

lower bounded. We will see in the succeeding sections that the feasible set of S is

represented as a set of LMIs.

In the following results we first construct the feasible set of S that satisfies prescribed

upper or lower bound on the matrix P . A particular choice of S matrix results from

an optimization problem over the set of feasible S for a given cost function. We use

c(S) to represent a generic cost function.

Remark 4. If S is a diagonal matrix, the cost function is essentially over the space

of vector λ, that constitutes the diagonal elements of S.

2.6.3 Calculate R for lower bound on steady state Kalman filter state error

covariance of private state x
(p)
k

Using ∆ = 1, replacing A + I by AT and B by CT in UARE-R, we recover the

Discrete Algebraic Riccati Equation (DARE) associated with steady state covariance

update equation of a linear system using Kalman Filter.
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We assume complete detectability of [A,C] and stabilizability of [A,Q1/2] ([4], pg.82)

for (3.1a) and (3.1b). This ensure that the steady state prior covariance matrix P

exists and is unique (for a fixed R) for the corresponding DARE.

Theorem 4. For a given scalar cost function c(R) and an lower bound (1/λfu) on

the spectrum of R, the solution R∗, whose spectrum is

λ(R∗) := {λ1 ≥ λ2 ≥ · · · ≥ λny−1 ≥ λny},

where λny ≥ (1/λfu), that satisfies a given lower bound P f
l on the steady state prior

covariance matrix P (p) := M (p)PM (p)T of Kalman filter, is given by the following

optimization problem.

R∗ := argmin
R

c(R)

Such that,

R � 1

λfu
I,

T 1 T 2

T T
2 T 4

 � 0

where,

T 1 = M (p)AP ′l0A
TM (p)T − P f

l +M (p)QM (p)T

T 2 = M (p)AP ′l0C
T ,T 4 = R+CP ′l0C

T

P
′

l0 ≡A(ϕ′−1I + λfuC
TC)−1AT +Q.

ϕ′ ≡f(−[λmin(AAT − I) + λmin(Q)λfuλmax(C
TC)]

, 2λfuλmax(C
TC), 2λmin(Q)),
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Proof. In Theorem 3

ϕ ≡ −a+
√
a2 + bc

b
,

a ≡ −λmin(A+AT + ∆ATA)

−∆λmin(Q)λmax(R
−1)λmax(BB

T ),

b ≡ 2λmax(R
−1)λmax(BB

T ), c ≡ 2λmin(Q).

Notice that ϕ is a function of λmax(R
−1), where R is the design variable. We restrict

the solution space of R by assuming λmax(R
−1) ≤ λfl . We define

ϕ′ ≡ −a+
√
a2 + bc

b
,

a ≡ −λmin(A+AT + ∆ATA)

−∆λmin(Q)λfl λmax(BB
T ),

b ≡ 2λfl λmax(BB
T ), c ≡ 2λmin(Q).

It can be proved that ϕ ≥ ϕ′. We have,

P l0 ≡(∆A+ I)T (ϕ−1I + ∆BR−1BT )−1(∆A+ I)

+ ∆Q

P l0 �(∆A+ I)T (ϕ−1I + ∆λmax(R
−1)BBT )−1

× (∆A+ I) + ∆Q,

�(∆A+ I)T (ϕ′−1I + ∆λfuBB
T )−1

× (∆A+ I) + ∆Q ≡ P ′l0, (2.20)
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Using Theorem 3 we have,

P � (∆A+ I)T (P−1l0 + ∆BR−1BT )−1(∆A+ I) + ∆Q

� (∆A+ I)T (P ′l0
−1

+ ∆BR−1BT )−1(∆A+ I) + ∆Q.

Let M (p) be the privacy masking matrix :

M (p)PM (p)T �M (p)(∆A+ I)T (P ′l0
−1

+ ∆BR−1BT )−1

× (∆A+ I)M (p)T +M (p)∆QM (p)T � P f
l .

P (p) �M (p)(∆A+ I)T (P ′l0
−1

+ ∆BR−1BT )−1

× (∆A+ I)M (p)T +M (p)∆QM (p)T � P f
l .

Or,

M (p)(∆A+ I)T (P ′l0
−1

+ ∆BR−1BT )−1(∆A+ I)M (p)T � P f
l −M

(p)∆QM (p)T .

Using matrix inversion lemma

M (p)(∆A+ I)T (P ′l0 −∆P ′l0B(R+ ∆BTP ′l0B)−1BTP ′l0)

× (∆A+ I)M (p)T � P f
l −M

(p)∆QM (p)T ,

M (p)(∆A+ I)TP ′l0(∆A+ I)M (p)T − P f
l +M (p)∆QM (p)T

−M (p)(∆A+ I)T∆P ′l0B(R+ ∆BTP ′l0B)−1BTP ′l0

× (∆A+ I)M (p)T � 0.
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Using Shurs complement,

T 1 T 2

T T
2 T 4

 � 0,

where

T 1 = M (p)(∆A+ I)TP ′l0(∆A+ I)M (p)T − P f
l +M (p)∆QM (p)T ,

T 2 = M (p)(∆A+ I)T
√

∆P ′l0B,

T 4 = R+ ∆BTP ′l0B.

Using ∆ = 1, replacing A+ I by AT and B by CT we get the theorem.

2.6.4 Choosing feasible lower bound of P (p) for Kalman filter

The desired covariance bounds on P (p) should be chosen carefully. When system

matrices A,B,C and noise parameter Q is already chosen or are known, there

exists an lower bound on the P for any choice of the matrix R. Choosing any

positive definite matrices, as the desired Pf
l , lower than this bound, will result in

an in-feasible solution for the precision matrix. Hence it is important to choose the

desired performance bounds accordingly. The prescribed Pf
l should be above Plb

satisfying the following:

Plb := A(Plb −PlbCT
[
CPlbCT

]−1
CPlb)AT +BQBT
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The matrices Plb is calculated using R = 0 in the DARE, which is solved using

generalized Shur method [71] on an extended matrix pencil. The corresponding

lower bound on P (p) is M (p)P lbM (p)T

2.6.5 Calculate S := R−1 for upper bound on steady state Kalman filter state

error covariance of public state x
(q)
k

Theorem 5. For a given scalar cost function c(S)and an lower bound λfl on the

spectrum of S, the solution S∗, whose spectrum is

λ(S∗) := {λ1 ≥ λ2 ≥ · · · ≥ λny−1 ≥ λny},

that satisfies a given upper bound P f
u on the M (q)PM (q)T matrix, is given by the

following optimization problem.

S∗ := argmin
S

c(S)

Such that,

S � λfl I,P f
u −M (q)QM (q)T M (q)A

ATM (q)T P ′u0
−1 +CTSC

 � 0,
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Proof. In Theorem 2

η ≡ −a+
√
a2 + bc

b
> 0,

a ≡ −λmax(A+AT + ∆ATA)

−∆λmax(Q)λmin(R−1)λmin(BBT ),

b ≡ 2λmin(R−1)λmin(BBT ), c ≡ 2λmax(Q).

The η being a monotonically decreasing function with respect to λmin(R−1) if λmin(R−1) ≥

λfl , then η ≤ η′, where

η′ ≡ −a+
√
a2 + bc

b
> 0,

a ≡ −λmax(A+AT + ∆ATA)−∆λmax(Q)λfl λmin(BBT ),

b ≡ 2λfl λmin(BBT ), c ≡ 2λmax(Q).

Now

P u0 ≡(∆A+ I)T (η−1I + ∆BR−1BT )−1(∆A+ I) + ∆Q

�(∆A+ I)T (η′−1I + ∆BR−1BT )−1(∆A+ I) + ∆Q,

�(∆A+ I)T (η′−1I + λmin(R−1)∆BBT )−1(∆A+ I) + ∆Q ≡ P ′u0,

(2.21)

Using Theorem 3 we have,

P �(∆A+ I)T (P−1u0 + ∆BR−1BT )−1(∆A+ I) + ∆Q,

�(∆A+ I)T (P ′u0
−1

+ ∆BR−1BT )−1(∆A+ I) + ∆Q
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Now M (q)PM (q)T is upper bounded by P f
u which implies

M (q)PM (q)T �M (q)(∆A+ I)T (P ′u0
−1

+ ∆BR−1BT )−1

× (∆A+ I)M (q)T +M (q)∆QM (q)T � P f
u.

We have,

M (q)(∆A+ I)T (P ′u0
−1

+ ∆BR−1BT )−1

× (∆A+ I)M (q)T +M (q)∆QM (q)T � P f
u.

M (q)(∆A+ I)T (P ′u0
−1

+ ∆BR−1BT )−1

× (∆A+ I)M (q)T � P f
u −M (q)∆QM (q)T .

This leads to the following LMI,

P f
u −M (q)∆QM (q)T M (q)(∆A+ I)T

(∆A+ I)M (q)T P ′u0
−1 + ∆BSBT

 � 0,

Using ∆ = 1, replacing A+ I by AT and B by CT we recover the theorem.

Remark 5. An analogous result for calculating S for upper bound on steady state

Kalman filter state error covariance can be recovered without using the eigen value

approach.

Theorem 6. The optimal precision of the sensors for a LTI system, which guarantees

that the steady state prior covariance matrix P � P f
u for any initial condition is

obtained by solving the following optimization problem,

46



S∗ = min
S
c(S),

Subjected to:

 T 3 AP f
uC

TSC

CTSCP f
uA

T (P f
u)
−1 +CTSC

 � 0,

where

T 3 :=P f
u −AP f

uA
T +AP f

uC
TSCP f

uA
T −Q

and assuming uniform complete controllability regarding the process noise and uni-

form complete observability of the linear time varying discrete-time system.

Remark 6. Theorem 6 can be modified exactly as same as Theorem 5 to construct

the result for the public variable x(q).

2.6.6 Choosing feasible upper bound of P (q) for Kalman filter

The maximum covariance on the estimated state variable x i.e. P should be less

than Pub, which satisfies the following:

Pub := (APubAT +BQBT )
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The matric Pub is calculated by using R = ∞ in the DARE. The corresponding

P (q) := M (q)PubM (q)T .

2.6.7 Discussion on the cost function c(R) or c(S)

2.7 Problem statement II

The dynamics is modeled as:

xk+1 = Axk +Bwk, ∀k ∈ N. (2.22)

where xk can be partitioned into two parts as xk = {x(p)
k ,x

(q)
k }; private and public

variable respectively. The discrete dynamics is observed by a linear measurement

model:

yk = Cxk + nk, ∀k ∈ N,

zk = HTyk (2.23)

where C is the measurement matrix which is known. The measurements yk are

being compressed to zk by HT , which is a variable before being transmitted to the

end-user.

The problem that we are now interested in is: we assume that the system matrices

(A,C) and noise parameters (Q,R) are known. The matrixHT that compresses the

real measurement space, is the design variable. For a prescribed upper or lower bound

on the steady state of public and private variable’s prior covariance respectively using

the Kalman filter, we are to design HT , that satisfies these bounds.
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The corresponding UARE-R with the masking matrix HT is:

PA+ATP + ∆ATPA− (∆AT + I)PBH

× (HTRH + ∆HTBTPBH)−1HTBTP (∆A+ I) +Q = 0. (2.24)

We recover the DARE for prior covariance matrix by the usual substitutions.

Theorem 1 becomes:

Theorem 7. Let P be the positive solution of the UARE-R in equation (2.4), then

P �(∆A+ I)T (P−1u0 + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q ≡ P u1 (2.25)

where the matrix P u0 is defined as,

P u0 ≡(∆A+ I)T (η−1I + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q (2.26)

and the positive constant η is defined as,

η ≡f
(
− [λ1(A+AT + ∆ATA) + ∆λ1(Q)

1

γ2
λny(R−1)

× σ2
ny

(B)], 2
1

γ2
λny(R−1)σ2

ny
(B), 2λ1(Q)

)
, (2.27)

where f(a, b, c) is defined as,

f(a, b, c) ≡ −a+
√
a2 + bc

b
. (2.28)
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Proof. We have,

∆(PA+ATP+∆ATPA)(∆A+ I)TP (∆A+ I)− P , (2.29)

Re-writing UARE-R as:

∆(PA+ATP + ∆ATPA)−∆(∆AT + I)

× PBH(HTRH + ∆HTBTPBH)−1

×HTBTP (∆A+ I) +Q) = 0, (2.30)

or,

(∆A+ I)T [P −∆PBH(HTRH + ∆HTBTPBH)−1

×HTBTP ](∆A+ I) + ∆Q = P . (2.31)

Using Matrix Inversion lemma we get,

(∆A+ I)T (P−1 + ∆BH(HTRH)−1HTBT )−1

(∆A+ I) + ∆Q = P . (2.32)

Following [49] we have,

P � λ1(P )I
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and,

BH(HTRH)−1HTBT

� λny((HTRH)−1)λny(BHHTBT )I

� λny((HTRH)−1)λny(BBT )λny(HHT )I

� 1

λn1(H
TRH)

λny(BBT )λny(HHT )I

=
1

λn1(H
TH)

λny(R−1)λny(BBT )λny(HHT )I

=
λny(HHT )

λn1(H
TH)

λny(R−1)σ2
ny

(B)I

=
λny(HTH)

λn1(H
TH)

λny(R−1)σ2
ny

(B)I

� 1

γ2
λny(R−1)σ2

ny
(B)I

where condition number of H is less than or equal to γ.

Using them, we have:

P � λ1(P )

1 + λ1(P )∆ 1
γ2
λny(R−1)σ2

ny
(B)

(∆A+ I)T

× (∆A+ I) + ∆Q (2.33)

Lemma 1 in [49] (Amir-Moez 1956) states,

λi+j−1(A1 +B1) ≤ λj(A1) + λi(B1), i+ j ≤ n+ 1,

for any symmetric matrices, A1,B1 ∈ Rn×n and 1 ≤ i, j ≤ n.
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Using i = 1 and j = 1 we have,

λ1(A1 +B1) ≤ λ1(A1) + λ1(B1). (2.34)

Hence,

λ1(P ) ≤ λ1(P )

1 + λ1(P )∆ 1
γ2
λny(R−1)σ2

ny
(B)

λ1[(∆A+ I)T

× (∆A+ I)] + ∆λ1(Q)

Using λ1[(∆A+ I)T (∆A+ I)] = ∆λ1(A+AT + ∆ATA) + 1 and then rearranging

we get,

1

γ2
λny(R−1)σ2

ny
(B)λ21(P )− [λ1(A+AT + ∆ATA)

+ ∆λ1(Q)
1

γ2
λny(R−1)σ2

ny
(B)]λ1(P )− λ1(Q) ≤ 0. (2.35)

which is of quadratic form. Hence finally,

λ1(P ) ≤ f(−[λ1(A+AT + ∆ATA) + ∆λ1(Q)

× 1

γ2
λny(R−1)σ2

ny
(B)], 2

1

γ2
λny(R−1)σ2

ny
(B), 2λ1(Q)) ≡ η.

where,

f(a, b, c) ≡ −a+
√
a2 + bc

b
. (2.36)

52



Using (2.9),

P �(∆A+ I)T (λ−11 (P )I+

∆BH(HTRH)−1HTBT )−1(∆A+ I) + ∆Q,

�(∆A+ I)T (η−1I + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q ≡ P u0. (2.37)

Putting it back to the modified UARE-R in equation (2.9), we get,

P �(∆A+ I)T (P−1u0 + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q ≡ P u1

Using similar argument Theorem 3 becomes:

Theorem 8. Let P be the positive solution of the UARE-R in equation (2.4), then

P �(∆A+ I)T (P−1l0 + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q ≡ P l1 (2.38)

where the matrix P l0 is defined as,

P l0 ≡(∆A+ I)T (ϕ−1I + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q (2.39)
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and the positive constant ϕ is defined as,

ϕ ≡f(−[λnx(A+AT + ∆ATA) + ∆λnx(Q)γ2λ1(R
−1)

× σ2
1(B)], 2γ2λ1(R

−1)σ2
1(B), 2λnx(Q)), (2.40)

where f(a, b, c) is defined as,

f(a, b, c) ≡ −a+
√
a2 + bc

b
. (2.41)

Proof. Following [49] we have,

P−1 � λ−1nx
(P )I. (2.42)

BH(HTRH)−1HTBT

� λ1(H
TH)

λn(HTH)
λ1(R

−1)σ2
1(B)I.

� γ2λ1(R
−1)σ2

1(B)I. (2.43)

where condition number of H is less than or equal to γ. Using (2.42) and (2.43) in

(2.9), we have:

P � λnx(P )

1 + λnx(P )∆γ2λ1(R−1)σ2
1(B)

(∆A+ I)T

× (∆A+ I) + ∆Q (2.44)

Lemma 1 in [49] (Amir-Moez 1956) states,

λi+j−n(A1 +B1) ≥ λj(A1) + λi(B1), i+ j ≥ n+ 1,
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for any symmetric matrices, A1,B1 ∈ Rn×n and 1 ≤ i, j ≤ n.

Using i = n and j = n we have,

λn(A+B) ≥ λn(A1) + λn(B1). (2.45)

Using equation (2.45) in equation (2.44) after applying eigen value operator on equa-

tion (2.44), we get,

λnx(P ) ≥ λnx(P )

1 + λnx(P )∆γ2λ1(R−1)σ2
1(B)

λnx [(∆A+ I)T

× (∆A+ I)] + ∆λnx(Q).

Using λnx [(∆A+I)T (∆A+I)] = ∆λnx(A+AT +∆ATA)+1 and then rearranging

we get,

∆γ2λ1(R
−1)σ2

1(B)λ2nx
(P )− [∆λnx(A+AT + ∆ATA)

+ ∆λnx(Q)∆γ2λ1(R
−1)σ2

1(B)]λnx(P )−∆λnx(Q) ≥ 0, (2.46)

which is of quadratic form. Hence finally,

λnx(P ) ≥ f(−[λnx(A+AT + ∆ATA) + ∆λnx(Q)

× γ2λ1(R−1)σ2
1(B)], 2γ2λ1(R

−1)σ2
1(B), 2λnx(Q)) ≡ ϕ,

where,

f(a, b, c) ≡ −a+
√
a2 + bc

b
. (2.47)
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We have,

λ−1n (P ) ≤ ϕ−1 (2.48)

Using equation (2.48) in equation (2.44) we get,

P � (∆A+ I)T (ϕ−1I +BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q ≡ P l0 (2.49)

Using the lower bound P l0 of in equation (2.9) we get,

P � (∆A+ I)T (P−1l0 +BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q (2.50)

2.7.1 Calculate HT for lower bound on steady state of private state x(p) estimates

Theorem 9. The convex feasible set of compressive mapping HT for a condition

number less or equal to given γ, that satisfies P (p) � P f
l , on the prior covariance

of estimates of the private states for Kalman filtering on system described in (2.22)

and (2.23), is given by the following four matrix inequalities:
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X1 − P ′l0
−1 CTH

HTC X2

 � 0,

M (p)AX3A
TM (p)T I

I (P f
l )
−1

 � 0

X2 HT

H R−1

 � 0,

X3 I

I X1

 � 0,

where,

P ′l0 ≡ A(ϕ−1I + γ2CTR−1C)−1AT +Q (2.51)

ϕ ≡f(−[λnx(AAT − I) + λnx(Q)γ2λ1(R
−1)

× σ2
1(CT )], 2γ2λ1(R

−1)σ2
1(CT ), 2λnx(Q)), (2.52)

where f(a, b, c) is defined as,

f(a, b, c) ≡ −a+
√
a2 + bc

b
. (2.53)

Proof. We first take a look at Theorem 8, the lower bound theorem. The variable ϕ

is defined as,

ϕ ≡ f(−[λnx(A+AT + ∆ATA) + ∆λnx(Q)γ2λ1(R
−1)

× σ2
1(B)], 2γ2λ1(R

−1)σ2
1(B), 2λnx(Q))
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We notice that ϕ is a function of λ1(R
−1). In this case R is known or λ1(R

−1) is

known. Hence we have,

P l0 ≡(∆A+ I)T (ϕ−1I + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q

�(∆A+ I)T (ϕ−1I + ∆γ2BR−1BT )−1

× (∆A+ I) + ∆Q ≡ P ′l0,

Using Theorem 8 we have,

P � (∆A+ I)T (P−1l0 + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q.

Let’s assume M (p) is the privacy masking matrix :

M (p)PM (p)T

�M (p)(∆A+ I)T (P−1l0 + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I)M (p)T +M (p)∆QM (p)T

�M (p)(∆A+ I)T (P ′l0
−1

+ ∆BH(HTRH)−1HTBT )−1

× (∆A+ I)M (p)T +M (p)∆QM (p)T � P f
l .

P (p)

�M (p)(∆A+ I)T (P ′l0
−1

+ ∆BH(HTRH)−1HTBT )−1

× (∆A+ I)M (p)T +M (p)∆QM (p)T � P f
l .
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Or,

M (p)(∆A+ I)T (P ′l0
−1

+ ∆BH(HTRH)−1HTBT )−1

× (∆A+ I)M (p)T � P f
l −M

(p)∆QM (p)T

Let’s assume there exists X1 such that,

M (p)(∆A+ I)T (P ′l0
−1

+ ∆BH(HTRH)−1HTBT )−1

× (∆A+ I)M (p)T

�M (p)(∆A+ I)TX−11 (∆A+ I)M (p)T

� P f
l −M

(p)∆QM (p)T

which denotes,

X1 � P ′l0
−1

+ ∆BH(HTRH)−1HTBT (2.54)

and

M (p)(∆A+ I)TX−11 (∆A+ I)M (p)T

� P f
l −M

(p)∆QM (p)T (2.55)

In (2.54) we introduce a new variable X2 such that:

X1 � P ′l0
−1

+ ∆BHX−12 H
TBT

� P ′l0
−1

+ ∆BH(HTRH)−1HTBT
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which gives us,

X1 − P ′l0
−1 √∆BH

√
∆HTBT X2

 � 0 (2.56)

and

X2 �HTRH (2.57)

From (2.55) we get,

X2 HT

H R−1

 � 0 (2.58)

We need to satisfy,

P f
l �M

(p)(∆A+ I)TX−11 (∆A+ I)M (p)T (2.59)

We introduce another variable X3 such that,

P f
l �M

(p)(∆A+ I)TX−11 (∆A+ I)M (p)T

�M (p)(∆A+ I)TX3(∆A+ I)M (p)T
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which gives us,

M (p)(∆A+ I)TX3(∆A+ I)M (p)T I

I (P f
l )
−1

 � 0 (2.60)

and

X3 �X−11

which leads us to,

X3 I

I X1

 � 0 (2.61)

Using ∆ = 1, replacing A + I by AT and B by CT in LMIs (??),(2.56),and (2.58)

we get the theorem.

Remark 7. For a fixed γ, the preceding LMIs (??),(2.56), and (2.58) give a feasible

set of H . For a given problem the dimension of HT needs to be fixed a priori.

If HT is required to be square, non-singular matrix with a condition number which

is less than γ, the P (p) � P f
l is either satisfied or non satisfied irrespective of a

particular choice of the HT matrix. This is because the covariance update equation

is independent of the choice of HT when it is square non-singular.

IfHT is required to be full rank matrix with row-size less than column-size (compres-

sion of real measurement space), the LMIs (??),(2.56), and (2.58) gives the feasible

set of all HT that has their condition number less than fixed γ. If HT is square but

non-singular, or HT has more rows than columns. We can add an iterative algo-

rithm if the condition number needs to be minimized. Minimizing condition number

improves the numerical stability of the HT . A corollary can be established for the
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case when M (p) := I akin to that of Corollary ??.

2.7.2 Calculate HT for upper bound on steady state Kalman filter state error

covariance of public state x
(q)
k

Theorem 10. The convex feasible set of compressive mapping HT for a given con-

dition number, that satisfies P (q) � P f
u, on the prior covariance of estimates of the

public states for Kalman filtering on system described in (2.22) and (2.23), is given

by the following equations:

P f
u −M (q)QM (q)T M (q)A

ATM (q)T P ′u0
−1 +X1

 � 0, (2.62)

X1 � CTR−1/2UUTR−1/2C, (2.63)

UTU = I, U ∈ Rny×nz

nz≤ny

. (2.64)

where

A(η−1I +
1

γ2
CTR−1C)−1AT

+Q ≡ P ′u0 (2.65)

where

η ≡f(−[λ1(AA
T − I) + λ1(Q)

1

γ2
λny(R−1)

× σ2
ny

(CT )], 2
1

γ2
λny(R−1)σ2

ny
(CT ), 2λ1(Q)
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where condition number of H is less than or equal to γ and f(a, b, c) is defined as,

f(a, b, c) ≡ −a+
√
a2 + bc

b
. (2.66)

and H := R−1/2H̄ and the “economy size” SVD of H̄ is UΛV T

Proof. In Theorem 7, the upper bound theorem, the variable η is defined as,

η ≡f(−[λ1(A+AT + ∆ATA) + ∆λ1(Q)
1

γ2
λny(R−1)

× σ2
ny

(B)], 2
1

γ2
λny(R−1)σ2

ny
(B), 2λ1(Q)

Now,

P u0 ≡(∆A+ I)T (η−1I + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q,

�(∆A+ I)T (η−1I +
1

γ2
∆CTR−1C)−1

× (∆A+ I) + ∆Q ≡ P ′u0,

Using Theorem 7 we have,

P �(∆A+ I)T (P−1u0 + ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q ≡ P u1,

�(∆A+ I)T (P ′u0
−1

+ ∆BH(HTRH)−1HTBT )−1

× (∆A+ I) + ∆Q
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Now we want to upper bound M (q)PM (q)T by P f
u. That is ensured if we have,

M (q)PM (q)T �M (q)(∆A+ I)T (P ′u0
−1

+ ∆BH

× (HTRH)−1HTBT )−1(∆A+ I)M (q)T

+M (q)∆QM (q)T � P f
u.

We have,

M (q)(∆A+ I)T (P ′u0
−1

+ ∆BH(HTRH)−1HTBT )−1

× (∆A+ I)M (q)T +M (q)∆QM (q)T � P f
u.

M (q)(∆A+ I)T (P ′u0
−1

+ ∆BH(HTRH)−1HTBT )−1

× (∆A+ I)M (q)T � P f
u −M (q)∆QM (q)T . (2.67)

Lets assume that H := R−1/2H̄ and the SVD of H̄ is UΛV T . We have,

∆BH(HTRH)−1HTBT

= ∆BR−1/2H̄(H̄
T
H̄)−1H̄

T
R−1/2BT

= ∆BR−1/2H̄(V ΛTUTUΛV T )−1H̄
T
R−1/2BT

= ∆BR−1/2H̄(V Λ̄2V T )−1H̄
T
R−1/2BT

= ∆BR−1/2UΛV T (V Λ̄2V T )−1V ΛTUTR−1/2BT

= ∆BR−1/2UΛV T (V (Λ̄2)−1V T )V ΛTUTR−1/2BT

= ∆BR−1/2UΛ(Λ̄2)−1ΛTUTR−1/2BT

(2.68)
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For a compressive mapping HT and taking “economy size” SVD this becomes,

∆BH(HTRH)−1HTBT = ∆BR−1/2UUTR−1/2BT

where UTU = I From (2.67) we have,

M (q)(∆A+ I)T (P ′u0
−1

+ ∆BR−1/2UUTR−1/2BT )−1

× (∆A+ I)M (q)T � P f
u −M (q)∆QM (q)T . (2.69)

where UTU = I We introduce a variable X1 such that,

M (q)(∆A+ I)T (P ′u0
−1

+ ∆BR−1/2UUTR−1/2BT )−1

× (∆A+ I)M (q)T �

M (q)(∆A+ I)T (P ′u0
−1

+X1)
−1

× (∆A+ I)M (q)T

� P f
u −M (q)∆QM (q)T . (2.70)

The feasible set of U is thus the solution to the following three equations,

P f
u −M (q)∆QM (q)T M (q)(∆A+ I)T

(∆A+ I)M (q)T P ′u0
−1 +X1

 � 0, (2.71)

X1 � ∆BR−1/2UUTR−1/2BT , (2.72)

UTU = I, U ∈ Rny×nz

nz≤ny

. (2.73)

The equality UTU = I is an orthonormal constraint. Equation (2.72) and (2.73)

combined is the most general case of the quadratic feasibility problem. Using ∆ = 1,
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replacing A+ I by AT and B by CT we recover the theorem.

2.7.2.1 Algorithm to solve for feasible HT

Algorithm 2

We look at (2.72) and inflate X1 to δX1 where δ >> 1 to construct a convex cost

function:

F (U) = (δX1 −∆BR−1/2UUTR−1/2BT )2 (2.74)

This cost function along with the Stiefel manifold acts as a surrogate problem to

solving a feasible set for (2.72) along with the Stiefel manifold constraint. The idea

is to keep reducing the δ parameter to 1, while making sure that the resulting U

satisfies (2.72).

The outline of our approach is as follows:

1. Solve (2.71) to generate one solution of X1.

2. Initialize δ >> 1

3. Minimize the cost function

F (U) = (δX1 −∆BR−1/2UUTR−1/2BT )2 (2.75)

on the Stiefel manifold, UTU = I using [8].

4. In each iteration reduce δ towards 1.
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5. Stop if (2.72) is not feasible for new δ.

6. Choose the previous U as your solution.

After we have a feasible U satisfying all the constraints, we generate HT , where

H := R−1/2H̄ and the SVD of H̄ is UΛV T . The choice of Λ is not completely

arbitrary. We need to ensure that the condition number on H which is assumed

to be less than γ is satisfied. The inflation parameter δ is reduced exponentially

to 1. The reduction methodology will effect the convergence rate for our proposed

algorithm to search for a feasible U .

We first transform the cost function using ∆ = 1, replacing A+ I by AT and B by

CT to:

F (U) = (δX1 −CTR−1/2UUTR−1/2C)2 (2.76)

where X1 is generated by solving,

P f
u −M (q)QM (q)T M (q)A

ATM (q)T P ′u0
−1 +X1

 � 0 (2.77)

where

A(η−1I +
1

γ2
CTH(HTRH)−1HTC)−1AT

+Q ≡ P ′u0 (2.78)
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where

η ≡f(−[λ1(AA
T − I) + λ1(Q)

1

γ2
λny(R−1)

× σ2
ny

(CT )], 2
1

γ2
λny(R−1)σ2

ny
(CT ), 2λ1(Q)

where condition number of H is less than or equal to γ.

2.7.2.2 Newton’s method to minimize cost function F (U) on the Stiefel manifold,

UTU = I

• Given U such that UTU = I

– Computing G = FU −UF T
UU , where

FU =− 2(δX1 −CTR−1/2UUTR−1/2C)

×CTR−1/2U (2.79)

– Computing ∆ = −Hess−1G such that UT∆ is skew symmetric and

FUU (∆)−Uskew(F T
U∆)− skew(∆F T

U )U

− 1

2
Π∆UTFU = G (2.80)

where skew(X) = (X −XT )/2 and Π = I −UUT

• Moving from U in the direction of ∆ to U(1) using the geodesic formula

U(t) = UM (t) +Q1N (t)
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where Q1R1 is the compact QR-decomposition of (I −UUT )∆. We assume

A1 = UT∆, and M (t) and N (t) are given by the matrix exponential

M (t)

N (t)

 = expt

A1 −RT
1

R1 0


I

0

 (2.81)

• Repeat until the absolute value of the difference is cost function between two

consecutive steps is within a specified bound.

2.8 Numerical Example

The system considered here is a nx dimensional discrete time linear Gaussian system.

TheB matrices are chosen to be identity. TheQ matrix is I. TheA and C matrices

are chosen such that [A,C] pair is detectable and [A,BQ1/2] pair is stabilizable.

We choose R to be a diagonal matrix. Hence, the spectrum of R, i.e. {λi} are its

diagonal elements. We choose Theorem 4 and show results for minimizing l1 norm on

λ (R := diag(λ)), for a prescribed lower bound on P , where nx = 10 and ny = 10.

The matrix C in this example is chosen to be 2I. The matrices Plb and Pub are first

calculated. The eigen values of

eig(Pub) = [1.000 1.001 1.012 1.123 1.186 2.139 3.172 4.705 9.096 279.143],

while the eigenvalues of Plb all are equal to 1.

We then select the prescribed lower bound P f
l to be (1/16) × (Pub + 15Plb). This

convex combination ensures a smooth transition from Plb to Pub when R goes from

0 to ∞. We calculate ϕ′ = 1.0000193 and P ′u0. We select the upper bound λfu to be
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0.03.

The eigen values of P ′l0 :

eig(P ′l0) = [28.689 2.601 2.028 1.599 1.480 1.103 1.078 1.006 1.000 1.000].

We solve the optimization problems using CVX in Matlab. The minimum l1 norm

cost is 18336.433 . On a 2GHz Intel Core i5 machine, the l1 problem takes 1.20

seconds.
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Figure 2.1: Plot of sensor covariance values for 10 sensors for prescribed lower bound
on P . Circle denotes covariance values calculated from minimization of l1 norm of
the vector λ. Reprinted with permission from [18].
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The λ vector of sensors for l1 norm shown in fig(2.1) are:

λ =[33.333 1390.292 2488.968 604.108 811.228

1437.797 2305.879 3563.793 3465.244 2235.787]

The R := diag(λ) noise covariance that we calculated is the minimum noise that

needs to be in the measurements to ensure that the steady state error covariance

matrix is greater than the prescribed lower bound P f
l . This is verified by calculating

the eigen values of the P −P f
l matrix, which turns out to be all positive. Matrix P

is the DARE solution for the optimal R. We notice that there is a large gap between

the lower bound and the final steady state value of P . This is due to the fact that

we used eigen value approximations in deriving the result. An ad-hoc method to

reduce this gap is to iteratively reduce the magnitude of the λ till the eigenvalues of

P − P f
l remain all positive. We found out that we can reduce the λ by a factor of

0.08 and still ensure P � P f
l .

The calculated R can be assumed to be comprised of actual measurement noise due

to the system Ra and synthetic noise Rs. Since in most practical cases Ra is known,

our algorithm effectively calculates the minimum synthetic noise Rs that needs to be

added to the actual measurement to ensure privacy with respect to state estimation.

2.9 Conclusions

In this chapter we formulate an algorithms to calculate the measurement noise co-

variance and measurement compression matrix which ensures that the steady state

error covariance of the state estimates are lower-bounded by a prescribed bound.
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3. OPTIMAL SENSOR PRECISION FOR STATE ESTIMATION OF LINEAR

TIME-VARYING DISCRETE-TIME SYSTEMS WITH BOUNDED ERRORS

3.1 Introduction

Given a set of sensors with known noise variance, Kalman filtering provides the state

estimate with minimum error variance. In this paper, we look at the inverse problem:

what is the sensor noise for which the error variance is less than a given upper bound?

It is possible that for a set of sensors, there are several solutions to this problem.

Therefore, there is scope for optimization. In this paper, we seek to determine the

noisiest sensors, for which the upper bound on the error is satisfied. We show in the

paper that the optimization is convex with respect to the inverse of the noise variance,

which we refer to as the sensor precision. Therefore, the optimization minimizes the

sensor precisions, for which the estimation error is below the prescribed bound.

This problem is of significant engineering value. For example, in emerging sensor

networks, designers are challenged by the tradeoff between cost and utility. Since

sensor cost is directly proportional to the sensor precision, the inclusion of unnec-

essarily precise sensors in the design is undesirable. However, for such applications,

it is not trivial to determine the precision of the sensors, for which the utility is

achieved. Or, if there is a future requirement to improve the accuracy, determining

which sensors need to be improved is another non-trivial task. These problems are

hard for large-scale systems with complex interactions. The proposed framework can

address both these problems in a convex optimization framework.

The proposed framework also impacts other important problems in sensing, such as
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sensor scheduling and selection. Existing algorithms for sensor scheduling [34, 35,

90, 39, 70, 65, 42, 75, 37, 12] and selection [44, 21, 14, 62, 78, 89] assume that the

sensors noise variance is given. The framework in this paper can be used to optimally

determine them.

While the focus of this paper is on determining the optimal sensor precisions, the

presented framework can also be applied to schedule and select sensors. Starting with

a dictionary of sensors with unknown precisions, minimizing the l1 norm of the sensor

precisions will promote sparseness in the solution. Sensors with zero precisions can

be eliminated from the system, and sensors with non zero precisions will guarantee

the required estimation accuracy. Therefore, using the proposed framework, it is

possible to simultaneously determine the optimal sensor precisions and prune out

unnecessary sensors. This is appealing because the problem can be solved in a

convex optimization framework in a very general setting. This is in contrast with

the NP-hard formulations and heuristic methods to solve them.

The problem of determining optimal sensor precision was first introduced in [50], in

the context of output-feedback controller design for continuous-time systems without

uncertainty, and with steady-state performance guarantees. Recently, we extended

that work to determine optimal sensing precisions for continuous-time robust output-

feedback control, with guaranteed H2 performance [69].

3.1.1 Key Contribution

In this paper, we look at the problem of determining the optimal sensor precision for

state estimation of linear time-varying, discrete-time, stochastic systems, with multi-

rate sensing. It is assumed that the measurements are periodic over m time steps,
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and the state estimation is performed at the mk time resolution, where k represents

the base clock of the discrete-time system. The objective is to determine the set of

least-precise sensors, for which the errors in the state estimates are upper bounded

by a prescribed value.

The main results are presented as four theorems, describing convex optimization

problems, the solution of which achieves the aforementioned objective. The first two

theorems address the problem of determining optimal sensor precisions to bound

estimation error over time mk to m(k + 1). The remaining two theorems determine

the optimal sensor precision to bound the steady-state error for m-periodic time-

varying systems.

To the best of our knowledge, this is the first paper that determines optimal sen-

sor precision for state-estimation of linear time-varying discrete-time systems, with

multi-rate sensing.

3.1.2 Layout

Section 3.2 presents the preliminaries for this paper, where we define the model of

the dynamical system and the sensor model assumed in the paper. We also introduce

the inverse problem to determine the optimal precisions for a given upper bound in

the estimation error. Section 3.3 presents the first two theorems for determining the

sensing precision if the objective is to bound the error after one-time step. The results

here are formulated in a batch processing framework, where the prior at time xkm

and sensors at times tkm+1, · · · , t(k+1)m are given, and the objective is to determine

the sensor precisions such that the error variance of the posterior at t(k+1)m is below a

prescribed value. In section 3.4, we present the next two theorems for determining the
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sensor precisions to bound the steady-state estimation error. Section3.5, highlights

the engineering relevance of the proposed framework, where the theoretical results

are applied to state-estimation problems from flight mechanics and astrodynamics.

3.2 Preliminaries

We focus on determining the optimal sensor precision for linear time-varying discrete-

time stochastic systems described by the model of the form:

xk+1 = Akxk +Bkwk, (3.1a)

yk = Ckxk + nk, (3.1b)

where k = 0, 1, 2, ... are the time indices, xk ∈ Rnx is the nx dimensional state

of the model at time instant k, wk ∈ Rnw is the nw dimensional zero-mean Gaus-

sian additive process noise variable with E[wkw
T
l ] = Qk where E[.] denotes the ex-

pected value. The nyk dimensional observations at time k is denoted by yk ∈ Rnyk ,

which is corrupted by an ny dimensional additive observation noise nk ∈ Rnyk at

time instant k. The sensor noise at each time instant is a zero mean Gaussian

random variable with E[nkn
T
l ] = Rk. The initial conditions are E [x0] = µ0 and

E
[
(x0 − µ0)(x0 − µ0)

T
]

= Σ0. The process noise wk, observation noise nk, and

initial state variable x0 are assumed to be independent.

The optimal state estimator for the stochastic system in (3.1) is the Kalman filter,
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defined by

Kk = Σ−kC
T
k

[
CkΣ

−
kC

T
k + Rk

]−1
, (Kalman Gain)

µ−k = Akµ
+
k−1, (Mean Propagation)

Σ−k = AkΣ
+
k−1A

T
k +BkQkB

T
k , (Variance Propagation)

µ+
k = µ−k +Kk(yk −Ckµ

−
k ), (Mean Update)

Σ+
k = (Inx −KkCk)Σ

−
k , (Variance Update)

µ+
0 = µ0, (Initial State Mean)

Σ+
0 = Σ0, (Initial State Variance)

where Σ−k ,Σ
+
k ∈ Rnx×nx are the prior and posterior variances at time instant k

respectively. The variables µ−k ,µ
+
k ∈ Rnx are the prior and posterior mean of xk and

denote the estimate of the true state, and Kk is the Kalman gain, at time k.

Conventionally, Rk is given and the Kalman filtering results in state estimates with

minimum error variance. That is, given Rk, we determine Kk that results in the

optimal posterior error variance, i.e.

Kk := arg min
Kk

tr
[
Σ+
k

]
,

where

Σ+
k := Σ−k −Σ−kC

T
k

(
CkΣ

−
kC

T
k +Rk

)−1
CkΣ

−
k .

In this paper, we treat Rk as a variable, and for a given desired Σd, ask the following

question: what should optimal Rk be such that Σ+
k ≤ Σd? Assuming Rk to be
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diagonal, i.e.

Rk := diag (rk) ,

where rk :=

[
r1 r2 · · · rnyk

]T
, with ri > 0; and optimality is determined with

respect to some function of rk.

In this paper, we choose the cost function to determine the noisiest set of sensors, i.e.

maximize tr [Rk], for which Σ+
k ≤ Σd. As shown later, it is convenient to formulate

the problem in terms of sensor precisions, defined by Sk, which is the inverse of sensor

noise Rk, i.e. Sk := R−1k , resulting in si := 1/ri. Defining s :=

[
s1 s2 · · · sny

]T
,

we can determine the least precise sensors, i.e. minimize tr [Sk], for which Σ+
k ≤ Σd

is guaranteed. Since more precise sensors are more expensive, satisfying required

accuracy with least precise sensors has favorable economic implications.

Minimization of tr [Sk] also has sparseness implications as tr [Sk], for Sk ≥ 0, is

equivalent to ‖s‖1. Since it is well-known that l1 norm is sparseness promoting,

minimizing tr [Sk] will result in a sparse solution that satisfies Σ+
k ≤ Σd, if a sparse

solution exists for the problem. Consequently, sensors with zero precisions would not

contribute to achieving tr
[
Σ+
k

]
≤ Σd, and thus can be removed from the system.

With this background, we next present the formulation to determine the optimal

precision for multi-rate information fusion in the Kalman filtering framework.

3.3 Optimal Sensing Precision for Update after One Time Step

Here we present the formulation that determines the optimal sensing precision that

guarantees bounded estimation error after one update. The problem is formulated in

a batch processing framework, where m measurements are collected before the state
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is updated. Specifically, given the state uncertainty at time tkm, the objective is to

determine the precisions of these m measurements, such that the state estimate at

time t(k+1)m has bounded error.

Consider sensing over m time steps, as shown below where ykm+j ∈ Rnykm+j and

tkm

xkm

tkm+1

ykm+1

tkm+2

ykm+2

t(k+1)m

x(k+1)m

y(k+1)m

Figure 3.1: Multi-rate measurements over m time steps. Reprinted with permission
from [18].

captures nykm+j
∈ Z+ measurements at time (km + j). This allows us to model

multi-rate sensing, with m being the least-common-multiple of the various sensing

intervals. With each measurement ykm+j, for j = 1, · · · ,m, we associate sensor

noises rkm+j ∈ Rnykm+j .

In conventional Kalman filtering, the sensor noises rkm+j are known and the ob-

jective is to estimate the state at time t(k+1)m, given the posterior at time tkm and

measurements ykm+1, · · · ,y(k+1)m, at times tkm+1, · · · , t(k+1)m. This scenario is com-

mon in control system applications where the control-loop is band limited (to prevent

excitation of high-frequency dynamics), but the sensing loop can be faster. In such

a scenario, the Kalman filter determines the state estimate every m time steps, by

batch-processing m measurements. In this paper, we are interested in maximizing

rkm+j for which the posterior state estimation error at time t(k+1)m satisfies a given

upper bound.
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3.3.1 Augmented Dynamical System

To determine the posterior at time t(k+1)m, we need to propagate the state uncertainty

from tkm to t(k+1)m, to obtain the prior at t(k+1)m. This is done by lifting discrete-time

signals defined over times tk to signals defined over times tkm, for k = 0, 1, · · · ,∞.

We define lifted signals Xk ∈ Rmnx and Y k ∈ Rnyk,m as a vector with m consecutive

state vectors and measurements stacked vertically, respectively, i.e.

Xk :=


xkm+1

...

x(k+1)m

 , (3.2)

Y k :=


ykm+1

...

y(k+1)m

 , (3.3)

where m ≥ 1, and nyk,m =
∑m

j=1 nykm+j
.

Using the system defined in equation (3.1a), the state Xk can be expressed as

Xk = Akxkm + BkW k, (3.4)
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where

Ak :=



Akm

Akm+1Akm

...
m−1∏
i=0

Akm+i


, (3.5)

Bk :=



Bkm 0 ... 0

Akm+1Bkm Bkm+1 ... 0

...
...

...
m−1∏
i=1

Akm+iBkm ... ... Bkm+m−1


, (3.6)

W k :=


wkm

...

wkm+m−1

 , (3.7)

with

i2∏
i=i1

Ak+i := Ak+i2 × · · · ×Ak+i1+1Ak+i1 , (3.8)

if i2 ≥ i1, and

i2∏
i=i1

Ak+i := Inx , (3.9)

if i2 < i1.
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The augment measurement model from (3.1b) is

Y k = CkXk +N k, (3.10)

where

Ck := diag
(
Ckm+1, ...,C(k+1)m

)
, and (3.11)

N k :=


nkm+1

...

n(k+1)m

 . (3.12)

We define the augment process noise and observation noise variances as:

Qk := E
[
W kW k

T
]
,

= diag
(
E
[
wkmw

T
km

]
, · · · ,E

[
wkm+m−1w

T
km+m−1

])
,

= diag (Qkm, · · · ,Qkm+m−1) , (3.13)

and

Rk := E
[
N kN k

T
]
,

= diag
(
E
[
nkmn

T
km

]
, · · · ,E

[
nkm+m−1n

T
km+m−1

])
,

= diag (Rkm, · · · ,Rkm+m−1) , (3.14)
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where

Qkm+j := E
[
wkm+jw

T
km+j

]
,

Rkm+j := E
[
nkm+jn

T
km+j

]
.

3.3.2 Uncertainty Propagation and Measurement Update

The prior statistics ofXk are related to the posterior statistics of xkm i.e. (µ+
km,Σ

+
km)

as

X̄−k := E [Xk] = Akµ
+
km, (3.15)

P−k := E
[
(X−k − X̄

−
k )(X−k − X̄

−
k )T
]
,

= AkΣ
+
kmA

T
k + BkQkBT

k . (3.16)

Prior statistics of the augmented state, i.e. X̄−k and P−k , can be updated using the

augmented measurements Y k to obtain posterior (X̄+
k ,P

+
k ), using similar steps as

in standard Kalman filtering, i.e.

X̄+
k := Akµ

+
km−q + Kk(Y k − CkAkµ

+
km−q), (3.17)

P+
k := (I−KkCk)P−k , (3.18)

where

Kk := P−k C
T
k

[
CkP−k C

T
k + Rk

]−1
. (3.19)
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The state at time t(k+1)m can be determined from Xk as

x(k+1)m := MmXk,

where

Mm :=

[
0nx×nx(m−1) Inx

]
.

The posterior statistics of x(k+1)m can then be determined from the posterior statis-

tics of Xk using

µ+
(k+1)m := MmX̄

+
k , (3.20)

Σ+
(k+1)m := MmP

+
kM

T
m. (3.21)

3.3.3 Optimal Sensor Precision for a Single Measurement Update

Here we present a convex optimization framework for determining the nosiest sensors,

for which the estimation errors are below a given upper bound after one measurement

update. That is, maximize tr [Rk] or minimize tr [Sk] where Sk := R−1k , for which

Σ+
(k+1)m ≤ Σd, given Σ+

km. This is achieved by solving the following optimization

problem.

Theorem 11. Optimal sensor precision sk ∈ Rnyk,m ≥ 0, which satisfies Σ+
(k+1)m ≤
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Σd, is given by the solution of the following optimization problem,

min
sk

tr [WSk], subject toM 11 MmP
−
k

(∗)T L+LSkL

 ≥ 0,

0 ≤ sk ≤ smax
k ,


(3.22)

where (∗)T represents symmetric terms, and

Sk := diag (sk) ,

M 11 := Σd −MmP
−
kM

T
m +MmP

−
kL
−1P−kM

T
m,

L := CkP−k C
T
k .

The variable W is a diagonal matrix, which is user defined and serves as a normal-

izing weight on Sk.

Proof. Inequality Σ+
(k+1)m ≤ Σd, is equivalent to

MmP
−
kM

T
m−

MmP
−
k C

T
k

(
CkP−k C

T
k + Rk

)−1 CkP−kMT
m ≤ Σd. (3.23)

Using matrix-inversion lemma on
(
CkP−k C

T
k + Rk

)−1
, (3.23) simplifies to
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Σd −MmP
−
kM

T
m +MmP

−
kL
−1P−kM

T
m

−MmP
−
k

(
L+LR−1k L

)−1
P−kM

T
m ≥ 0,

where L := CkP−k C
T
k . Substituting Sk := R−1k , and using Schur complement we get

the following linear matrix inequality in Z and Sk,M 11 MmP
−
k

(∗)T L+LSkL

 ≥ 0, (3.24)

where

M 11 := Σd −MmP
−
kM

T
m +MmP

−
kL
−1P−kM

T
m.

Noting that Sk := diag (sk), for sk ∈ Rnyk,m ≥ 0, optimal precision can be de-

termined by minimizing the cost function tr [WSk]. Practical considerations may

upper-bound maximum precision, which is incorporated in the formulation using the

constraint

sk ≤ smax
k . (3.25)

Inequalities (3.24), (3.25), along with minimization of tr [WSk], result in the opti-

mization problem in (3.22).

Theorem 11 presents the optimization problem for determining optimal precisions to

bound the errors after one time step at time t(k+1)m, given the posterior uncertainty
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at time tkm.

Remark 1. It is also possible to bound the trace of Σ+
(k+1)m, i.e. tr

[
Σ+

(k+1)m

]
≤ γd,

where γd is user specified. With this relaxation, the optimization problem in (3.22)

modifies to

min
sk,F

tr [WSk], subject toM 11 MmP
−
k

(∗)T L+LSkL

 ≥ 0,

0 ≤ sk ≤ smax
k ,

F ≥ 0,

tr [F ] ≤ γd,



(3.26)

where

Sk := diag (sk) ,

M 11 := F −MmP
−
kM

T
m +MmP

−
kL
−1P−kM

T
m,

L := CkP−k C
T
k ,

and W is the normalizing weight on Sk, as in theorem 11. In (3.26), a new variable

F ∈ Snx
+ is introduced to impose tr

[
Σ+

(k+1)m

]
≤ γ, where Snx

+ denotes space of

symmetric positive definite matrices of dimension nx × nx.

The above optimization problems require L−1, which could be problematic in some

applications. Next, we present an alternate formulation, which avoids the computa-

tion of L−1. This is stated as the following theorem.

Theorem 12. Optimal sensor precision sk ∈ Rnyk,m ≥ 0, which satisfies
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tr
[
Σ+

(k+1)m

]
≤ γd, is given by the solution of the following optimization problem,

min
sk,Kk,F

tr [WSk], subject to
F M 12

√
P−k Kk

(∗)T Imnx 0mnx×nyk,m

(∗)T (∗)T Sk

 ≥ 0

0 ≤ sk ≤ smax
k ,


(3.27)

where M 12 := Mm(Imnx −KkCk). The variable W is a diagonal matrix, which is

user defined and serves as a normalizing weight on Sk.

Proof. We can write the posterior error variance as

P+
k = (Imnx −KkCk)P−k (Imnx −KkCk)T + KkRkKT

k . (3.28)

The optimal Kk is determined by minimizing tr
[
P+
k

]
and is given by (3.19).

However, in this formulation, we leave Kk ∈ Rmnx×nyk,m as a variable, and write

tr
[
MmP

+
kM

T
m

]
≤ γd equivalently as

F −M 12P
−
kM

T
12 −MmKT

kRkKT
kM

T
m ≥ 0,

tr [F ] ≤ γd,

where M 12 := Mm(Imnx−KkCk) and F ∈ Snx
+ . Representing

√
P−k as the principal

matrix square-root of P−k , substituting Sk := R−1k , and using Schur complement we
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get the following LMI,


F M 12

√
P−k MmKk

(∗)T Imnx 0mnx×nyk,m

(∗)T (∗)T Sk

 ≥ 0.

Combining the inequalities and minimizing tr [WSk] we get (3.27).

Remark 2. It is easy to show that the optimal gain K∗k, obtained by solving the

optimization problem in (3.27), is the minimum variance gain for the noise variance

R∗k := (S∗k)−1.

Let P+
k (Rk,Kk) be defined by (3.28), and the minimum variance posterior

P+
k,mv(Rk) is defined by

P+
k,mv(Rk) := P−k − P kCTk

(
CkP kCTk + Rk

)−1 CkP k.

It is easy to verify that P+
k,mv(Rk) is a monotonic function of Rk, i.e. P+

k,mv(Rk) ≥

P+
k,mv(R

∗
k) for any R ≥R∗k.

Since by definition,

P+
k (R∗k,K∗k) ≥ P+

k,mv(R
∗
k),

R∗k is maximum when

P+
k (R∗k,K∗k) = P+

k,mv(R
∗
k),

or

K∗k = K∗k,mv := P kCTk
(
CkP kCTk + Rk

)−1
.

Remark 3. In both theorem 11 and theorem 12, the sparseness of the solution
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can be improved by iteratively solving the optimization problem (3.22) with weights

W j+1 := (S∗k + εI)−1j , with W 1 := Inyk,m
, where subscript j denotes the iteration

index [67, 11].

3.4 Optimal Sensor Precision for Bounded Steady-State Errors

In this section, we present the result that determines the optimal sensor precision

for bounded steady-state error, assuming the system to be m-periodic. If the system

in (3.1a) is m-periodic, i.e. Akm+j = A(k+1)m+j, Bkm+j = B(k+1)m+j, and Ckm+j =

C(k+1)m+j for j = 1, · · · ,m; it will be of interest to determine the sensing precisions

that bound the steady-state errors, assuming it exists.

3.4.1 Augmented Dynamical System

From (3.4), the augmented dynamics of the m-periodic system is given by,

x(k+1)m = MmAkxkm +MmBkW k. (3.29)

In this section we generalize the sensor model in (3.1b) by including the process

noise in the measurement. This scenario, for example, occurs in measurements from

accelerometers where the disturbance forces algebraically impact accelerations. The

new measurement model is therefore,

yk = Ckxk +Dkwk + nk. (3.30)
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Consequently, the augmented sensor model is

Y k = CkXk + DkW k +N k,

= Ck(Akxkm + BkW k) + DkW k +N k,

= CkAkxkm + (CkBk + Dk)W k +N k, (3.31)

where Dk := diag
(
Dkm+1, ...,D(k+1)m

)
.

The presence of W k in (3.31) makes derivation of the Kalman filter complicated.

This is circumvented by assuming the process noise to be colored, or filtered white

noise. That is, we model the process noise as

Zk+1 = GZk + HΛk, W k = Zk, (3.32)

where Λk is white noise, Zk is the filter state, and the pair (Gk,Hk) defines the

filter.

If white noise λk ∈ Rnw is filtered via

zkm+1 = Gzkm +Hλkm, (3.33)

then for the augmented system,

Zk :=


zkm

...

z(k+1)m−1

 , Λk :=


λkm

...

λ(k+1)m−1

 , (3.34)

G := Iq ⊗G, and H := Iq ⊗H , where G ∈ Rnw×nw and H ∈ Rnw×nw define the
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filter in (3.33).

Introducing a new state variable

Γk :=

xkm
Zk

 ∈ RNx , (3.35)

where Nx := nx +mnw, we can write the dynamics of Γk and measurement Y k as

Γk+1 = AmΓk + BmΛk, (3.36a)

Y k = CmΓk +N k. (3.36b)

where

Am :=

MmAk MmBk

0qnw×nx G

 , (3.37a)

Bm :=

0nx×qnw

H

 , (3.37b)

Cm :=

[
CkAk (CkBk + Dk)

]
. (3.37c)

Note that for the m-periodic system, matrices Am, Bm, and Cm are time invariant.

States xkm can be recovered from Γk as

xkm = MxΓk, (3.38)
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where Mx is a mask-matrix defined by

Mx :=

[
Inx 0nx×qnw

]
. (3.39)

We next define

Qm := E
[
ΛkΛ

T
k

]
, (3.40a)

Rm := E
[
N kN

T
k

]
. (3.40b)

For steady-state analysis, we assume (Am,R1/2
m Cm) is detectable and

(Am, (BmQmBT
m)1/2) is stabilizable.

3.4.2 Steady-state Variance

Let Γ̄
−
k and P−k be the prior mean and variance of Γk at time k. This defines the prior

random variable Γ−k ∼ N (Γ̄
−
k ,P

−
k ), where N (·, ·) defines a Gaussian distribution.

In Kalman filtering we assume the posterior is a linear function of the prior and the

measurement, i.e.

Γ+
k := (INx −KkCm)Γ−k + KkY k, (3.41)

where Kk ∈ RNx×nyk,m is the unknown gain.

The coefficient Kk is determined by minimizing the posterior variance. However, in

this formulation, we leave it as a free variable along with Rm. Both these variables

will be jointly determined in a single optimization problem, presented in theorem 14.
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Using (3.41), the posterior variance is given by

P+
k = (INx −KkCm)P−k (INx −KkCm)T

+ KkRmKT
k . (3.42)

Using (3.36a), the prior mean and variance of Γk at time k + 1 is given by

Γ̄
−
k+1 = AmΓ̄

+
k , (3.43a)

P−k+1 = AmP
+
kA

T
m + BmQmBT

m, (3.43b)

which defines the random variable Γ−k+1 ∼ N (Γ̄
−
k+1,P

−
k+1).

Replacing P−k from (3.42) in (3.43b), we get the propagation equation for the prior

variance

P−k+1 = Am(INx −KkCm)P−k (INx −KkCm)TAT
m

+ AmKkRmKT
kAT

m + BmQmBT
m. (3.44)

Steady-state variance P∞ is determined by solving

P∞ = Am(INx −K∞Cm)P∞(INx −K∞Cm)TAT
m

+ AmK∞RmKT
∞AT

m + BmQmBT
m, (3.45)

where K∞ is the steady-state gain. The steady-state variance of x(k+1)m is then

given by Σ∞ := MxP∞M
T
x .

Remark 4. Equations (3.44) becomes the Riccati difference equation (RDE) if Kk is
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determined by minimizing the posterior variance. Consequently, it transforms (3.45)

to the algebraic Riccati equation (ARE). That is, for Kk given by (3.19), (3.44)

transforms to

P k+1 =

Am(P k − P kCTm[CmP kCTm + Rm]−1CmP k)AT
m

+ BmQmBT
m, (3.46)

and (3.45) transforms to

P∞ =

Am(P∞ − P∞CTm[CmP∞CTm + Rm]−1CmP∞)AT
m

+ BmQmBT
m, (3.47)

Equation (3.47) has a unique positive semi-definite solution if (Am,R1/2
m Cm) is de-

tectable and (Am, (BmQmBT
m)1/2) is stabilizable.

3.4.3 Optimal Sensor Precision for Steady-State Estimation

Let P d
∞ be the desired steady-state error, and let us assume that it is the solution

of (3.47) for some Rd
m, i.e.

P d
∞ =

Am(P d
∞ − P d

∞CTm
[
CmP d

∞CTm + Rd
m

]−1 CmP d
∞)AT

m

+ BmQmBT
m.
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Therefore, for any Rm ≤Rd
m,

P d
∞ ≥

Am(P d
∞ − P d

∞CTm[CmP d
∞CTm + Rm]−1CmP d

∞)AT
m

+ BmQmBT
m, (3.48)

which makes the solution of the RDE monotonic from P d
∞.

According to Lemma 2 in [7], if for some k the solution of the RDE in (3.46) is

monotonic, i.e. P k ≥ P k+1, then P k+i ≥ P k+i+1 for all i ≥ 1. Therefore, (3.48),

guarantees that the evolution of P d
∞ is monotonic, and actual steady-state error P∞

is guaranteed to satisfy P d
∞ ≥ P∞. The gap in the inequality can be minimized

by maximizing tr [Rm]. The optimization problem is presented as the following

theorem.

Theorem 13. Optimal sensor precision sk ∈ Rnyk,m ≥ 0, which satisfies Σ∞ ≤ Σd
∞

is given by the solution of the following optimization problem,

min
sm

tr [WSm] subject toM 11 MxAmP
d
∞CTm

(∗)T Lm +LmSmLm

 ≥ 0,

0 ≤ sm ≤ smax,


(3.49)

where Sm := diag (sm), Σd
∞ and P d

∞ are given,

M 11 := Mx

(
P d
∞ −AmP

d
∞AT

m −BmQmBT
m

+ AmP
d
∞CTmL−1m CmP d

∞AT
m

)
MT

x ,
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and Lm := CmP d
∞CTm. The variable W is a diagonal matrix, which is user defined

and serves as a normalizing weight on Sm.

Proof. Pre and post multiplying (3.48) with Mx and MT
x respectively, we get

Σd
∞ ≥

MxAm(P d
∞ − P d

∞CTm[CmP d
∞CTm + Rm]−1

× CmP d
∞)AT

mM
T
x +MxBmQmBT

mM
T
x

Using matrix inversion lemma on [CmP d
∞CTm + Rm]−1 we get

Mx(P
d
∞ −AmP

d
∞AT

m −BmQmBT
m)MT

x

+MxAmP
d
∞CTmL−1m CmP d

∞AT
mM

T
x

−MxAmP
d
∞CTm

(
Lm +LmR−1m Lm

)−1
× CmP d

∞AT
mM

T
x ≥ 0,

where Lm := CmP d
∞CTm. Substituting Sm := R−1m , and using Schur complement we

get the following linear matrix inequality,

M 11 MxAmP
d
∞CTm

(∗)T Lm +LmSmLm

 ≥ 0.

where

M 11 := Mx

(
P d
∞ −AmP

d
∞AT

m −BmQmBT
m

+ AmP
d
∞CTmL−1m CmP d

∞AT
m

)
MT

x .
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Optimal precision is determined by minimizing tr [Sm].

Theorem 13 can be used to determine the optimal precisions to bound the steady-

state error, given P d
∞ and Σd

∞. Like in theorem 11, providing these quantities can

be challenging in some applications. For arbitrary, P d
∞ and Σd

∞, the LMI in (3.49)

can be infeasible. Also, since Σd
∞ = MxP

d
∞M

T
x , it is unclear how MxP

d
∞M

T
x can

be constructed from Σd
∞, assuming we know a feasible Σd

∞. We circumvent this by

treating P d
∞ as a variable of optimization, and relaxing relax the accuracy constraint

to tr
[
MxP

d
∞M

T
x

]
≤ γd, where γd is given. Introducing P d

∞ as a variable makes the

optimization problem in (3.49) nonconvex. We next present a convex formulation

with P d
∞ as variable.

Theorem 14. Optimal sensor precision s ∈ Rnyk,m ≥ 0, which satisfies

tr
[
MxP

d
∞M

T
x

]
≤ γd is given by the solution of the following optimization prob-

lem,

min
sm,Z,P d

∞,K∞
tr [WSm] subject to (3.50a)

M11 MxAm(INx −K∞Cm) MxAmK∞

(∗)T Z 0Nx×nyk,m

(∗)T (∗)T Sm

 ≥ 0, (3.50b)


INx P d

∞ Z

P d
∞

1
δINx 0Nx×Nx

Z 0Nx×Nx δINx

 ≥ 0, (3.50c)

tr
[
MxP

d
∞M

T
x

]
≤ γd, (3.50d)

0 ≤ sm ≤ smax, (3.50e)

M 11 := Mx

(
P d
∞ −BmQmBT

m

)
MT

x , Sm := diag (sm), ns :=
∑m

j=1 pj, and pj is
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the dimension of the jth sensor. Variables γd > 0 and δ > 0 are user specified.

The variable W is a diagonal matrix, which is also user defined, and serves as a

normalizing weight on Sm.

Proof. From (3.44), monotonicity of P d
∞ is guaranteed if

P d
∞ ≥ Am(INx −K∞Cm)P d

∞(INx −K∞Cm)TAT
m

+ AmK∞RmKT
∞AT

m + BmQmBT
m.

Introducing a new variable Z ∈ SNx
+ , and the relaxation

Z−1 ≥ P d
∞,

the condition for monotonicity can then be written as

P d
∞ ≥ Am(INx −K∞Cm)Z−1(INx −K∞Cm)TAT

m

+ AmK∞RmKT
∞AT

m + BmQmBT
m.

However, we want to enforce monotonicity of MxP
d
∞M

T
x , i.e.
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MxP
d
∞M

T
x ≥MxAm(INx −MxK∞Cm)Z−1

× (INx −MxK∞Cm)TAT
mM

T
x

+MxAmK∞RmKT
∞AT

mM
T
x +MxBmQmBT

mM
T
x .

Using Schur complement, and substituting Sm := R−1m , we get
M11 MxAm(INx −K∞Cm) MxAmK∞

(∗)T Z 0Nx×nyk,m

(∗)T (∗)T Sm

 ≥ 0,

where M 11 := Mx

(
P d
∞ −BmQmBT

m

)
MT

x .

The relaxation Z−1 ≥ P d
∞ can be written as P d

∞Z ≤ INx , which is non convex.

However, we know that

P d
∞Z +ZP d

∞ ≤ δP d
∞P

d
∞ +

1

δ
ZZ,

for a given δ. Therefore,

δP d
∞P

d
∞ +

1

δ
ZZ ≤ INx , (3.51)

guarantees P d
∞Z ≤ INx . The inequality in (3.51), can be written as the following

linear matrix inequality


INx P d

∞ Z

P d
∞

1
δ
INx 0Nx×Nx

Z 0Nx×Nx δINx

 ≥ 0.
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The optimal precision is given by minimizing tr [Sm].

Remark 5. The parameter δ can be tweaked, to improve the solution, using tech-

niques from successive convex over-bounding techniques described in [82].

Remark 6. Like in theorem 11, and theorem 12, the sparseness of the solution can

be improved by iteratively solving the optimization problem in theorems 13 and 14,

with weights W j+1 := (S∗m)−1j , with W 1 := Ins , where subscript j denotes the

iteration index.

Remark 7. The optimal S∗m can be conservative, since it guarantees P d
∞ is contrac-

tive. The actual steady-state variance, denoted by P∞, can be much smaller than

P d
∞. At the same time, it is possible that P∞ is smaller than P d

∞ without requiring

P d
∞ to be monotonic. Thus, theorems 13 and 14 are conservative and result in more

precision than that required to achieve P d
∞.

We remove the conservativeness by applying the following strategy. The optimization

problems in theorems 13 and 14 are solved to determine the sparse solution S∗m for

which P d
∞ is contractive. It is then scaled by ξ to reduced the gap between P d

∞

and P∞, where optimal ξ∗ is obtained using the bisection algorithm described in

Algorithm 2.

3.5 Examples

Next, we apply the theory to two estimation problems related to aerospace engi-

neering. The first example is related to the state estimation of an aircraft, and the

second example is related to the tracking of a space object.
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Algorithm 2 Bisection algorithm for optimal scaling of sensor precision.

Define: ξmin := 0
Define: ξmax := 103 # Something large

Solve optimization problem (3.49) to get R∗m := (S∗m)−1.
Define: MAXITER = 100 # Something large

for i = 1:MAXITER

ξ = 1
2
(ξmin + ξmax)

P ss := solution of ARE in (3.45) with noise ξR∗m
if tr

[
MxP ssM

T
x

]
< γd

ξmin := ξ
else

ξmax := ξ
end

end

3.5.1 Flight Control Example

Here we demonstrate practical applications of the result presented in theorem 14.

It is applied to a steady-state estimation problem for an aircraft model. We first

present the details of the aircraft model. We then present two examples, which

highlight different applications of theorem 14.

3.5.1.1 Model

Let us consider the longitudinal motion model of an aircraft, where the states of the

system are as velocity V (ft/s), angle of attack α(rad), pitch angle θ(rad), and pitch
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rate q(rad/s), i.e.

x :=



V

α

θ

q


. (3.52)

We consider onboard sensors that measure body acceleration u̇ (ft/s2) along roll

axis, body acceleration ẇ (ft/s2) along yaw axis, angle of attack α(rad), pitch rate

q(rad/s), and dynamic pressure q̄ := 1
2
ρV 2 (lb/ft2), where ρ is the atmospheric

density. Variables u and w are defined as u := V cos(α), and w := V sin(α).

Therefore, the vector of measured outputs is

y := [u̇, ẇ, α, q, q̄]T . (3.53)

In aircraft, these measurements are available from accelerometers, angle-of-attack

sensors, gyro sensors, and pitot tube, respectively.

The dynamics and measurement model is given by the following equations

ẋ = Ax+Bd, (3.54a)

y = Cx+Dd+ n, (3.54b)
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where ∗

A =



−0.0179 33.2244 −32.1700 0.6728

−0.0001 −1.4528 0 0.9323

0 0 0 1.0000

−0.0000 −4.1970 0 −1.8836


,

B =

[
0.5697 −0.0029 0 −0.4670

]T
,

C = 103 ×



−0.0000 0.0332 −0.0322 0.0007

−0.0001 −1.3544 0 0.8692

0 0.0010 0 0

0 0 0 0.0010

0.0017 0 0 0


,

D =

[
0.5697 −2.7345 0 0 0

]T
,

d is the disturbance acting on the system, and n is the sensor noise. Note that there is

a direct feed-through term because the disturbance directly impacts the acceleration

measurements. In this example, we model the disturbance as a filtered white noise,

filtered by 1
s/ωc+1

, where ωc is the cutoff frequency. The disturbance is generated by

a vibrating control surface in the aircraft.

Let the filter state be xd, and the filter dynamics is given by

ẋd = ωc(−xd + w), and d = xd,

∗More accurate data is available upon request.
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where w is white noise with a given variance. In this example, we choose the variance

to be 5 deg2. This corresponds to small angular deflections in the control surface,

which is measured in degrees.

3.5.1.2 Optimal Sensor Precision for Standard Discrete-Time Kalman Filtering

Here we discretize the continuous time system with sampling time ∆t := 0.01 seconds

and determine the least precision needed to achieve a steady-error that satisfies

tr
[
MxP∞M

T
x

]
≤ γd for γd := 0.1, where P∞ quantifies the actual steady-state

error. In this example, theorem 14 is applied with m = 1. For the filter, the cutoff

frequency ωc is chosen to be 10 rad/s. Finally, δ = 200 was chosen to implement

constraint in (3.50c).

Fig.(3.2) shows the sensor precisions from the unweighted optimization (indicated

by legend “1”), the precisions from iteratively weighted optimization to improve

sparseness (indicated by legend “1/s”), and finally, the scaled precision to remove

the conservativeness in the optimal solution (indicated by legend “s/ξ∗”). The top-

panel in fig.(3.2) shows the sparse solution, and the bottom panel shows the same

data on the logarithmic scale. We observe that out of the five sensors chosen in the

design, only two significantly contribute to the required estimation accuracy.

Iteratively weighted optimization significantly improves the sparseness in the solu-

tion by several orders of magnitude. We also observe the solution of the weighted

optimization is conservative and the precisions can be further reduced to get closer

to the boundary of tr
[
MxP∞M

T
x

]
≤ γd.

Fig.(3.3) shows the scaled optimal precisions for ξ∗ = 64.1106. The precision values

in fig.(3.3) indicate that only angular velocity measurement q and dynamic pressure
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data q̄ are needed in higher precision, to estimate all four states of the system with

the required accuracy.

Figure 3.2: Sensor precisions for the five sensors from different algorithms. In the leg-
end, 1 indicates solution from unweighted optimization, 1/s indicates solution from
iteratively weighted optimization to improve sparseness, and s/ξ indicates scaled
optimal solution using algorithm 2. The bottom-panel shows the same data as the
top-panel, but in logarithmic scale.

To completely remove the sensor for u̇, v̇, and α, we can set their corresponding

precisions to exactly zero, prior to ξ scaling. Since detectability and stabilizability

conditions are satisfied for this sensor configuration, (3.45) has a unique solution.
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Figure 3.3: Optimal scaled sensor precisions satisfying tr
[
MxP∞M

T
x

]
≤ γd for

γd := 0.1.

Therefore, using algorithm 2 we can determine the optimal ξ scaling that guarantees

tr
[
MxP∞M

T
x

]
≤ γd. For this example, we get ξ∗ = 3.375, and the scaled sensor

precisions are shown in fig.(3.4). We see from fig.(3.4) that the required precisions

for q and q̄ in this case are much higher than those in fig.(3.3).

It is noteworthy, that without the sensors for u̇, v̇, and α, optimization problem

in theorem 14 is infeasible. The infeasibility also occurs without the constraint

tr
[
MxP∞M

T
x

]
≤ γd. Therefore, for this sensor configuration, there does not exist

any P d
∞ ∈ SNx

+ that results in monotonic solutions of (3.44), even though detectability

106



Figure 3.4: State estimation with only q and q̄: required precisions to achieve
tr
[
MxP∞M

T
x

]
≤ γd for γd := 0.1.

and stabilizability conditions are satisfied. This highlights the conservativeness of

the results, as mentioned in remark 7.

Therefore, from a sensor pruning perspective, an ad-hoc approach would be to start

with a dictionary of sensors and determine the optimal sensor precisions using theo-

rem 14, then assign zero precisions to those sensors with small precisions, and finally

apply algorithm 2 to arrive at the optimal precisions of the reduced number of sen-

sors. More sophisticated algorithms [21, 51, 78] for sensor pruning or sensor selection
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can also be applied. These algorithms assume sensor precisions are known, which

can be determined from the optimization problems presented in this paper.

3.5.1.3 Tradeoff Between Sensing-Rate & Sensor Precision

In this section, we apply theorem 14 to explore the tradeoff between sensing rate

and sensing precision. We use the same F16 example described in §3.5.1.1. In this

example, the continuous-time model is discretized with dt = 1/1000, using Tustin’s

method. The augmented system is created with q = 10. This formulation captures

a scenario where the sensor data is available at 1 Khz, but the state estimates are

needed at 100 Hz. We assume that the state’s estimates are used by some control

law executing at 100 Hz.

In this example, the 5 physical sensors in (3.53) are treated as virtual sensors over

10 time steps and are assigned an unknown precision. Thus, there are 50 virtual

sensors. Optimization in (3.50), results in the sparse precisions shown in fig.(3.5).

The y-axis are the five physical sensors, and the x-axis are times steps from 1 to q.

The heat-map shows the precisions of the 5 sensors across the 10 time steps. The

three panels in fig.(3.5) are solutions with smax = 5, 2.5, 1 respectively, and scaled by

ξ∗ determined by Algorithm 2. They have the same required accuracy, defined by

γd = 0.1. In the top panel, we see that the required precisions for sensors with 1000

Hz are much lower than the results shown in fig.(3.4), which is for 100 Hz sensing.

Therefore, less precise data at a higher rate can achieve the same accuracy. It is also

interesting to note that the sensors with nonzero precision are different in the two

cases. In the 100 Hz example, the angular velocity sensor is the most precise, followed

by the dynamic pressure sensor. Other sensors have very low precision. In the 1000

Hz example, the angular velocity sensor and angle of attack sensors have very low
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precisions, but acceleration measurements have relatively higher precisions, with the

dynamic pressure sensor the most precise. We also observe that the dynamic pressure

sensor plays an important role in both the cases and the angle-of-attack sensor has

very low precision in both cases.

It is also interesting to note that the sensor values at the beginning and the end of the

10 time-step window have higher precision. However, as smax is reduced, we observe

that intermediate values of q̄ are needed to achieve the same accuracy. We can infer

from this observation, that if sensor precision is poor, we can achieve a higher estima-

tion accuracy by fusing data at a higher rate. Theorem 14, reveals data from which

sensors are needed at a higher rate, and the corresponding precisions, to achieve this

accuracy. From a real-time scheduling perspective, this is very useful because from

fig.(3.5) we can determine exactly when to poll the sensors. This optimizes sensor

polling, reduces the associated delays, and improves real-time schedulability.

3.5.2 Satellite Tracking Problem

Here we consider the problem of determining the optimal sensor precision for tracking

a space object with the required accuracy. We first describe the model for the satellite

dynamics and then present the result from the optimization problem in theorem 12.

3.5.2.1 Model

Here we consider a simple satellite dynamics model given by

r̈ = −µE
r2

+ θ̇2r +
3J2
2r4

(
3 sin(θ)2 − 1

)
, (3.55a)

θ̈ = −2θ̇ṙ

r
− 3J2

r4
cos(θ) sin(θ). (3.55b)
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Length and time in the dynamics are normalized using RE (radius of Earth), and

Tp (time for one orbit) respectively. Fig.(3.6) shows the trajectory of the satellite,

with normalized initial condition

r0 =
RE + h

RE

= 1.0533, (3.56a)

ṙ0 = 0, (3.56b)

θ0 = 0, (3.56c)

θ̇0 =

(
VθTp
RE

)
1

r0
= 6.2832. (3.56d)

The parameters necessary to simulate the system are provided in table 3.1.

RE = 6378.1363 km µE = 398600.4415 km3/s2

Tp = 5.48× 103 s J2 = 1.7555× 1010 km5/s2

Vθ = 7.7027 km/s h = 340 km

Table 3.1: Parameters in the satellite dynamics model.

Equation (3.55) is linearized about a nominal trajectory to obtain a continuous-time

periodic system. We augment the linear model with process noise, to account for

the effects of sporadic thrusts that are necessary for orbital station keeping. The

augmented model is given by,

ẋ = A(t)x+Bw(t), (3.57)

where x :=

[
r ṙ θ θ̇

]T
is the state vector, w(t) :=

[
wr(t) wθ(t)

]T
is a zero-mean
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Gaussian random process,

A(t) :=



0 1.0 0 0

a21(t) 0 a23(t) 12.59

0 0 0 1.0

a41(t) −12.21 a43(t) 0


, (3.58a)

B :=



0 0

1 0

0 0

0 1


, (3.58b)

with

a21(t) = 0.416 cos(12.4t) + 126.4,

a23(t) = 0.2113 sin(12.4t),

a41(t) = 0.2774 sin(12.4t),

a43(t) = −0.1408 cos(12.4t).

In this example, we assume the mass of the satellite is 100 kg, and the satellite

sporadically applies maximum of 1mN of thrust for orbital station keeping. The

normalized accelerations due to these thrusts are modeled as zero-mean Gaussian

random processes wr(t) and wθ(t), with E
[
wrw

T
r

]
= E

[
wθw

T
θ

]
= 0.04712. Fig.(3.7)

shows the propagation of mean µ(t) and variance Σ(t) for the time-varying linear

111



system, with

µ(t0) :=



50/RE

0

0

0


, and (3.59a)

Σ(t0) := 0.01× diag (µ(t0)) . (3.59b)

The evolution equation for µ(t) and Σ(t) are given by

µ̇(t) = A(t)µ(t), (3.60)

Σ̇(t) = A(t)Σ(t) + Σ(t)AT (t) +BQBT , (3.61)

where Q := 0.04712 × I2.

We discretize the normalized time interval [0, 1] with dt = 0.1, resulting in the

temporal grid {tk}, where tk := kdt. We assume that measurements are available at

these times. The dynamics in (3.57) is discretized over {tk}, and is given by

xk+1 = Ad(tk)xk +wk, (3.62)

where

Ad(tk) := Φ(tk+1, tk), (3.63)

wk :=

∫ tk+1

tk

Φ(τ, tk)Bw(τ)dτ, (3.64)
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and Φ(·, ·) is the state-transition matrix, which is obtained by numerical integration

of the fundamental matrix.

It is easy to verify that if E [w(t)] = 0, then E [wk] = 0. Therefore, wk is a zero-

mean random process. To determine the optimal precision, we need to quantifyQk :=

E
[
wkw

T
k

]
, which is difficult to determine from (3.64). Instead, we use the covariance

Σ(t), determined by solving (3.61), and the discrete-time covariance propagation

equation, to determine the time-varying Qk. It is given by

Qk := Σ(tk+1)−Ad(tk)Σ(tk)A
T
d (tk). (3.65)

3.5.2.2 Optimal Precision for One-Time Step Update

In this example, we consider a set of 10 laser-ranging sensors located on the surface

of the Earth, at angular positions θ(tk). For the periodic system described above, the

objective is to determine the optimal sensor precisions such that tr [Σ+(tk = 1)] ≤ γd,

given Σ−(tk = 0). Here we apply theorem 12 to determine the optimal sensor

precisions, which are shown in fig.(3.8) for various values of smax.

The optimization is done with Σ(tk = 0) = Σ(t0), and γd = 0.1 × tr [Σ−(tk = 1)],

where Σ−(tk = 1) is the prior obtained at tk = 1. It is obtained by propagating

Σ(tk = 0) using (3.61). Variance Σ(t0) is defined in (3.59b). The value of γd

specifies that we want the trace of the posterior to be 10% of the prior at tk = 1.

From fig.(3.8), we see that there is a tradeoff between sensor precision and sens-

ing frequency. With low precision sensors (smax = 819.60), we need to sense the

satellite at all the sites to guarantee tr [Σ+(tk = 1)] < γd. As smax is increased, the
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sensing becomes more sparse. With smax = 2500, we only need to get two range

measurements, in order to estimate the state at tk = 1 with the required accuracy.

This is significant for large-scale spatio-temporal sensing, and especially for tracking

space objects. Currently, there are about 500K space objects, and only 30K are

tracked. The number of sensing sites is significantly lower than that. Therefore,

by applying theorem 12, it is possible to determine the sparse sensing schedule for

each object, thereby increasing the ability to track more objects with guaranteed

accuracy.

Precision in laser-ranging sensors is determined by the energy of the laser beam

and the reflectivity of the object being sensed. For a given object, a lower value of

precision implies lower energy requirements, which results in optimal sensor designs.

Modern satellites have reflectors, which allows precise sensing with low powered

lasers. Whereas, some space objects (e.g. asteroids, etc) have poor reflectivity, which

fundamentally limits how accurately it can be sensed. This limit can be incorporated

using the variable smax.

3.6 Summary & Conclusion

In this paper, we presented convex optimization problem-formulations to determine

optimal sensor precisions that guarantee a specified estimation accuracy. The formu-

lation is presented in a general multi-rate sensing framework, with linear time-varying

discrete-time system dynamics. Optimality is achieved by minimizing sensor preci-

sions, subject to upper bound on the estimation error, as defined in the discrete-time

Kalman filtering framework. Since the minimization of precisions is done with respect

to the l1 norm, the proposed optimization framework can also be used to determine
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sparse sensing architectures. This will be valuable in the design of large-scale sensor

networks. We have shown the engineering value of the proposed theory by applying

it to realistic flight mechanics and astrodynamics problems.
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Figure 3.7: Uncertainty propagation with the linear time-varying periodic system.
Solid line shows the evolution of the mean perturbation, and the shaded region shows
µi ±

√
Σii for i = 1, 2, 3 and 4.
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4. PRIVACY AND UTILITY AWARE DATA SHARING FOR SPACE

SITUATIONAL AWARENESS FROM ENSEMBLE AND UNSCENTED

KALMAN FILTERING PERSPECTIVE∗

4.1 Introduction

As space becomes more congested, maintaining a timely and accurate picture of

space activities simultaneously becomes both more important and difficult. The

seriousness of this problem has been highlighted by the 2009 collision between U.S.

Iridium LLC and Russian Federation Cosmos satellites, which destroyed both the

satellites and added more than 2,000 additional pieces of debris in space. Prior

to that, in 2007, China used a hit-to-kill interceptor to destroy their Fengyun-1C

satellite. Since then, U.S. Space Surveillance Network has cataloged more than 2,200

trackable debris fragments larger than 10 centimeters originating from this collision

[84]. It cannot be emphasized enough that as the number of assets orbiting Earth

increases the danger and effects of collisions also increases. The new Starlink Mission

of SpaceX is planned to have 12,000 satellites [29]. With the increased number of

space objects, we can no longer assume that the space is big and collisions between

space objects will rarely occur.

In fact, close approaches and even collisions occur with increasing regularity, with

at least a dozen collisions having occurred in LEO. There are also strong indicators

of at least five collisions in GEO [57, 1, 2, 43, 59] since the dawn of the space age.

∗Reprinted with permission from Privacy and Utility Aware Data Sharing for Space Situational
Awareness from Ensemble and Unscented Kalman Filtering Perspective by Niladri Das and Raktim
Bhattacharya, accepted in IEEE Transactions on Aerospace and Electronic Systems 2020, [17],
Copyright 2020 by IEEE.
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There could easily have been more collisions in both LEO and GEO that have not

been publicly disclosed [63]. More recently on September 2 in 2019, the European

Space Agency (ESA) maneuvered one of its Earth science satellites Aeolus, to avoid

a potential catastrophic collision with a SpaceX Starlink satellite [30]. The maneuver

took place just about half an orbit before closest approach, indicating the importance

of maintaining situational awareness in space.

Space situational awareness (SSA) refers to the ability to view, understand and pre-

dict the physical location of natural and manmade objects in orbit around the Earth,

with the objective of avoiding collisions. To address the growing SSA challenge, the

U.S. and other nations, along with commercial operators, have established a new ap-

proach to exchange information regarding space objects (USSTRATCOM & Space

Data Association), hoping to increase the safety of satellite operations. While there

are significant benefits to sharing of data from the SSA perspective, there are several

privacy/security related concerns from both commercial and military perspectives,

which lead to conservative data-sharing policy. For example, the policy for shar-

ing SSA data from military owned sensors, unveiled by U.S. Strategic Command in

2014, has led to removal of more SSA data from public access. This includes re-

moval of data on the estimated size of space objects in the public satellite catalog,

and limitations on what data is provided privately to satellite operators. Many of

these restrictions stem from the desire to hide national utility satellites and their

activities [83]. This has led to some operators question the accuracy, and especially

the completeness, of the information provided to them by the US Department of

Defense (DoD). For example, some South Korean government officials estimate that

their country receives data on only about 40 percent of the objects tracked by the

DoD, due to sensitivity of U.S. assets [48]. This has resulted in lack of confidence in
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the DoD-provided data, especially in the commercial sector. This lack of confidence

in the data also undermines any collision warning issued based on this data, since it

is expensive for operators to perform a maneuver. Thus, a security-conscious data

sharing policy, impedes utility and commercial growth of the space industry.

On the other hand, improving utility raises several privacy/security concerns. Na-

tional security concerns have become more critical, owing to the recent development

of anti-satellite weapons and other counter-space capabilities. Accurate knowledge

of space assets present risks from directed energy weapons, electronic jamming, ki-

netic energy threats, and other orbital threats [64, 40, 38]. From a commercial

perspective, there are concerns that access to highly accurate SSA data will allow

operators to assess their competitor’s coverage limits, detection capabilities, and

details of operation. This can be detrimental to the emerging space economy. In

summary, low-accuracy SSA data increases risk of collision but reduces risk from

counter-space operations and protects details of operations, i.e. it improves privacy

but degrades utility. Whereas, high-accuracy SSA data improves utility but degrades

privacy/security.

Currently, the US military adds synthetic noise to the public domain SSA data, much

like the early GPS data model, which impacts how accurately the space objects can

be tracked. Currently, this noise level is chosen conservatively and is mostly privacy

or national-security conscious. With the deployment of mega-constellations in low

earth orbits [66], this conservative approach will not work and will impede accurate

space traffic management. Consequently, in June 2018, the Space Policy Directive 3,

directed the US Department of Defense to give the publicly releasable portion of its

space situational awareness data to the Commerce Department [41]. This initiative

will allow non-military entities to create and sell SSA services to governments and
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satellite operators. Thus, the SSA data can be commoditized [48], with stratified

pricing models reflecting different levels of accuracy, enabling creation of several

value-added services in space-data analytics. These new developments in SSA data

sharing, present an important question: what should be the accuracy in the SSA data

that satisfies given utility and privacy objectives? What we lack is a framework that

addresses this question in a methodological manner, enabling more informed privacy

and utility preserving policies for sharing SSA data.

Privacy in dynamical systems is an emerging area of work, and has been primarily

in differential privacy [22, 60, 23, 15, 47, 46, 28], where the focus is to ensure that

participation of an entity or an individual does not change the outcome significantly,

and also guarantees privacy of an entity based on aggregated data from many entities.

Our focus here is on inferential privacy [72, 32, 76], where we are trying to bound

the inferences an adversary can make based on auxiliary information. In both these

kinds of privacy, the mechanism for data obfuscation is either corruption of data with

synthetic noise, or projection of data to a lower dimensional space. In this paper, we

use synthetic noise to formulate various algorithms for privacy-utility tradeoff.

Our focus is on privacy of entities that are governed by dynamical systems. The

dynamical system, which is a space object in this paper, is observed by various ge-

ographically distributed sensors. These observations are functions of states, and are

noisy due to imperfect sensing. A filtering process uses these measurements to esti-

mate the true state of the space object, which also has errors. The accuracy of the

estimates is a measure of inference privacy. More error results in more privacy, and

consequently less utility. For dynamical systems with Gaussian uncertainty models,

Kalman filter gives the minimum variance estimates, which is function of the prior,

the sensor model, and the sensor noise. In [76], the authors manipulate the mea-
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surement data by compressing it using a linear transformation, hereby regulating the

error covariance matrix or the inference privacy. This linear transformation, which

creates synthetic sensors, is designed appropriately to achieve the privacy goals. In

this paper, we regulate the inference privacy by manipulating the measurement noise

covariance. This is done by adding synthetic noise to the measurements.

In this paper, we look at the trade-off between privacy and utility in the Ensemble

Kalman Filtering (EnKF) [26] and Unscented Kalman Filtering (UKF) framework

[45], which is commonly used for data assimilation and forecasting in SSA applica-

tions. We assume that the privacy and utility constraints are specified in terms of

bounds on the error variances in the state-estimates. This paper presents a convex

optimization framework that determines the optimal synthetic noise to be added to

the sensor data, which will satisfy the given privacy and utility bounds. The for-

mulation, however, is quite general and is not limited to SSA related problems. To

the best of our knowledge, this is the first paper that addresses the privacy-utility

trade-off using synthetic noise in the EnKF/UKF framework. Our future work will

be on extending this work to other particle-filtering algorithms [58].

This paper is organized as follows. We first present the model for the space object

used in the privacy-utility formulation. This is followed by a very brief technical

summary of Ensemble and Unscented Kalman filtering. Key technical contributions

are presented in §4.3, as theorems 15 to 18, and corollary 1. This is followed by an

example that applies the proposed privacy-utility formulation to a realistic space-

object tracking problem and considers various scenarios. The paper concludes with

a summary section.
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4.2 Background Material

We next present preliminaries on dynamical models of space objects, their sources

of uncertainty, and measurement models. This is followed by a brief description of

Ensemble and Unscented Kalman filtering. In particular, how the estimate and error

variances are computed from particles, and updated from available measurements.

This section also defines all the notations used to present the technical material.

4.2.1 System Model

We assume the motion of a space object is given by the differential equation (Cowell’s

Formulation)

r̈ =
µ⊕
r3
r + apert(r, ṙ, t,ψ), (4.1)

where r and ṙ are the position and velocity of the space object in 3 dimensions re-

spectively. The vector apert encapsulates all the perturbing accelerations of the space

object other than those due to the two-body point mass gravitational acceleration.

These perturbations could be due to higher-order gravity terms, atmospheric drag,

solar radiations, etc; and ψ ∈ Rd parameterizes these effects. The perturbation in-

volved in the dynamics of the satellite is essentially parametric [79], which simplifies

the uncertainty propagation algorithm considerably, and particle-based methods can

be used [36].

Sensor observations essentially provide range, azimuth and elevation information

and are derived from signals of electromagnetic radiation. Sensors receive one-way

and two-way data via radar or laser measurements, which have varying degree of
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accuracy for a particular sensing objective such as obtaining range, range-rate and

angular information for a satellite. Most sensors can provide observations at far

higher frequencies than required. Thus, data density is not an issue. However, the

proximity of data to other information is a more serious concern in satellite tracking.

In some cases, due to mechanical design, geographical, and political constraints,

observations are limited to a small arc of the orbit, which we denote as short-arc

observations. If a satellite is observed over multiple revolutions, it is referred to

as long-arc observation. Long-arc observations are preferred because they provide

more accurate determination of the satellite’s orbit. Short-arc observations on the

other hand are important for more accurate near-term satellite motion. Thus the

sensor data is available at multiple-time scales, and a data privacy-utility formulation

must account for this multi-scale nature. For space situational awareness problems,

keeping track of a satellite’s location in its orbit is critical, which relies on the short-

arc measurements. Data from these sensors are only available when the satellites are

within sensor range. Thus, predictions must be made over long intervals between

these sensor updates, which is associated with larger error growths. This impacts

the tradeoff between accuracy and privacy. We expect that higher accuracy data

is necessary to resolve errors after long-term uncertainty propagation, and lower

accuracy data is necessary to resolve errors after long-term uncertainty propagation.

That is, short-arc observations can have lower accuracy than long-arc observations,

to achieve a given accuracy in the state-estimate. Consequently, the data privacy-

utility policy must also be time varying, accounting for the variability in the data

frequency.

Let x ∈ Rn be the state vector describing the motion of a space object. While there

exists many satellite based coordinates systems to choose from for orbital state-
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estimation, it is well known that many of these systems are ill defined for some

circular and elliptical orbits [79]. The equinoctial system eliminates this difficulty

and is the best choice to quantify uncertainty in satellite dynamics. However, the

data privacy-utility formulation presented in this paper is agnostic to the choice of

the coordinate system.

Let y ∈ Rny be the measurement variable (measuring range, range-rate and angular

information for a satellite, etc), which is mathematically defined as

y = h(x) + v, (4.2)

where v represents sensor noise, assumed to be zero-mean Gaussian random process,

and x is the system state vector.

In this paper, we develop the data privacy-utility algorithm in discrete time, and

write (4.1) and (4.2) in discrete time as

xk+1 = f(xk,ψk), (4.3)

yk = h(xk) + vk, (4.4)

where f(·, ·) represents the discrete-time dynamics and xk := (x, y, z, ẋ, ẏ, ż)T is the

state vector, and sensor noise vk is assumed to be independent zero-mean Gaussian

random variable, i.e. vk ∼ N (0,Rk) and E
[
vkv

T
l

]
= Rkδkl. We further assume

that Rk is a diagonal matrix, and define the inverse of Rk as the precision matrix

Sk. Finally, the only uncertainty considered here is the initial condition uncertainty,

which is also assumed to be Gaussian i.e. x0 ∼ N (µ0,Σ0) and independent of {vk}.

Other variables have the same meaning as in (4.1) and (4.2).
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To account for the multiple-time scales in the data, and exploit the periodic nature

of the satellite motion, we augment the system in (4.1) and (4.2) to capture the

motion over q time steps. Starting from time kq, for k ∈ {1, 2, · · · }, we define the

augmented discrete-time system dynamics as

Xk+1 = F (Xk,Ψk), Y k = H(Xk) + V k, (4.5)

where,

Xk := [xTkq−q+1, · · · ,xTkq]T ,

Y k := [yTkq−q+1, · · · ,yTkq]T ,

Ψk := [ψT
kq−q+1, · · · ,ψT

kq]
T ,

V k := [vTkq−q+1, · · · ,vTkq]T ∼ N (0,Rk),

Rk := diag(Rkq−q+1, · · · ,Rkq),


(4.6)

denotes stacked variables. Function F k(.) is recursively generated using f(.). The

initial condition X0 is determined by propagating the uncertain initial condition x0

over q time steps. It should be noted that the augmented model represents a q-step

q-shift process, instead of a q-step sliding-window process. Augmenting the model

to q time steps allows Y k to include multi-rate sensor data y, by defining q to be the

lowest common multiple of the various sensing rates, resulting in a q-periodic system.

In this paper, we formulate the privacy-utility policy for the multi-rate data, using

the system in (4.5).

4.2.2 Review of Ensemble and Unscented Kalman Filter

In this paper, the data privacy-utility policy is developed in the EnKF and UKF

framework, which is summarized next. The filtering process for the augmented model
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(4.5) consists of uncertainty propagation using the state-dynamics to obtain the prior

or model predicted estimate, and using the data from measurements to obtain the

posterior estimate. In EnKF, random samples are generated directly from the state

probability density function (PDF) using standard sampling techniques. Whereas,

UKF uses a deterministic sampling technique known as the unscented transformation

to pick a minimal set of sample points (called sigma points) around the mean. In both

these approaches, the sample points are propagated using the nonlinear dynamics,

from which the prior mean and variance of the states are computed. These are

updated using measurements to arrive at the state estimate with minimum error

variance. We briefly present next, the technical details of both these approaches,

which will be necessary for formulating the data-privacy vs data-utility problem in

the EnKF/UKF framework.

4.2.2.1 Ensemble Kalman Filter

In this section, we briefly present ensemble Kalman filtering. Let X+
k ∈ Rnq×N be

the matrix with N number of posterior samples X i+
k at time k, i.e.

X+
k :=

[
X1+

k X2+
k · · · XN+

k

]
.

The sample mean is then given by,

µ+
k := E

[
X+

k

]
≈ 1

N

N∑
i=1

X i+
k =

1

N
X+

k 1N ,

where 1N ∈ RN is a column vector of N ones.
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Defining,

X̄+
k :=

[
µ+
k · · · µ+

k

]
= µ+

k 1T =
1

N
X+

k 1N1TN ,

we can compute the variance from the samples Σ+
xx,k as,

E
[
(X i+

k − µ
+
k )(X i+

k − µ
+
k )T
]
≈ X+

kAX+T
k . (4.7)

where

A :=

[
1

N − 1

(
IN −

1N1TN
N

)(
IN −

1N1TN
N

)]
The state of each ensemble member at the next time step is determined using the

dynamics model:

X i−
k+1 = F (X i+

k ,Ψ
i
k). (4.8)

In the EnKF framework, the model predicted ensembles (or prior ensembles) are

corrected using measurements, as proposed by Evensen and Van Leeuwen [26, 27]

X i+
k+1 = X i−

k+1 + Σ−xy,k+1

(
Σ−yy,k+1 + Rk+1

)−1 (
Y k+1 −Hk+1(X

i−
k+1) + εik

)
, (4.9)

where εik is sampled from N (0,Rk). Quantities Σ−xy,k+1 and Σ−yy,k+1 are computed

from the samples using

Σ−xy,k+1 :=
1

N − 1

(
X−k+1 − X̄−k+1

)(
Hk+1(X−k+1)−Hk+1(X̄

−
k+1)

)T
, and (4.10)

Σ−yy,k+1 :=
1

N − 1

(
Hk+1(X−k+1)−Hk+1(X̄

−
k+1)

)(
Hk+1(X−k+1)−Hk+1(X̄

−
k+1)

)T
.

(4.11)
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The variance update equation of the augmented model is given by

Σ+
xx,k+1 = Σ−xx,k+1 −Σ−xy,k+1

(
Σ−yy,k+1 + Rk+1

)−1
Σ−

T
xy,k+1, (4.12)

where Σ−xx,k+1 = X−k+1AX−Tk+1. Later in the paper, we will be using (4.12) to deter-

mine the optimal privacy-utility tradeoff.

4.2.2.2 Unscented Kalman Filter

The main difference between EnKF and UKF is the generation of the samples and

computation of the first two moments from the samples. The dynamic update step

from k → k + 1 starts with generating deterministic points called σ points. Our

dynamic model has no process noise. To capture the mean µ+
k of the state vector

X+
k , where X+

k ∈ Rnq, as well as the error covariance Σ+
xx,k the sigma points are

chosen as

X0+
k = µ+

k ,

X i+
k = µ+

k +
(√

(nq + ρ)Σ+
xx,k

)
i
, i = 1, ..., nq,

X i+
k = µ+

k −
(√

(nq + ρ)Σ+
xx,k

)
i−nq

, i = nq + 1, ..., 2nq,

with associated weights as

ω
(m)
0 = ρ/(nq + ρ),

ω
(c)
0 = ρ/(nq + ρ) + (1− α2 + β),

ω
(m)
i = 1/{2(nq + ρ)}.
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The weight vectors are:

Wm = [ω
(m)
0 ω

(m)
1 ... ω

(m)
2nq+1]

T ,

Wc = [ω
(c)
0 ω

(c)
1 ... ω

(c)
2nq+1]

T ,

where ρ = α2(nq + κ) − nq is the scaling parameter, α is set to 0.001, κ is set to

0, and β is 2 in this work. The term
(√

(nq + ρ)Σ+
xx,k

)
i

represents ith row of the

matrix square root.

The propagated state of each ensemble member at time k+ 1 is generated exactly as

EnKF by using (4.8). However for UKF, the corresponding prior mean and variance

at time k + 1 are given by

µ−k+1 = X−k+1W
m, (4.13)

Σ−xx,k+1 = X−k+1BkX−Tk+1, (4.14)

where Bk := LLT , and L := diag(Wc)−Wc1T2nq+1.

We next define the following terms that will be used in the following measurement

update phase,

Y−k+1 := H(X−k+1), (4.15)

Ȳ−k+1 := Y−k+1W
m1T2nq+1, and (4.16)

X̄−k+1 := X−k+1W
m1T2nq+1, (4.17)
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where

Y−k+1 :=

[
Y 1−

k+1 Y 2−
k+1 · · · Y

(2nq+1)−
k+1

]
, (4.18)

X−k+1 :=

[
X1−

k+1 X2−
k+1 · · · X

(2nq+1)−
k+1

]
. (4.19)

were Y i−
k+1 = H(X i−

k+1) is the ith measurement sample generated using the measure-

ment model without the measurement noise.

For the measurement update step, we first calculate Σ−xy,k+1 and Σ−yy,k+1 as

Σ−xy,k+1 :=
(
X−k+1 − X̄−k+1

)
× diag (Wc)

(
Y−k+1 − Ȳ−k+1

)T
(4.20)

Σ−yy,k+1 :=
(
Y−k+1 − Ȳ−k+1

)
× diag (Wc)

(
Y−k+1 − Ȳ−k+1

)T
, (4.21)

and then obtain the updated variance using (4.12).

Remark 8. Since the variance update equation for EnKF and UKF are identical,

this allows us to formulate a common data privacy-utility policy for both the filtering

frameworks. Equation (4.12) is fundamental in determining the optimal noise for

privacy-utility aware data-sharing.

4.3 Privacy-Utility Aware Data Sharing in EnKF and UKF

As defined in (4.12), the accuracy of the state-estimate from EnKF/UKF is quantified

by Σ+
xx,k+1, which is defined as

Σ+
xx,k+1 = Σ−xx,k+1 −Σ−xy,k+1

(
Σ−yy,k+1 + Rk+1

)−1
Σ−

T
xy,k+1,
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and is the minimum variance for a given Rk+1. Clearly, changing Rk+1 will change

Σ+
xx,k+1. From an estimation perspective, Rk+1 is given by the sensing hardware, and

defines the noise in the measurements Y k. However, from a data-sharing perspective,

we are concerned with the privacy-utility tradeoff in sharing Y k with end users, which

can be influenced by changing Rk+1. For a state variable, larger error covariance

results in increase in privacy and decrease in its utility. On the other hand, a smaller

error covariance, leads to increase in utility and decrease in privacy.

In this paper, we formulate a data privacy-utility trade-off policy in terms of synthetic

noise to be added to Y k to regulate how accurately end users are able to estimate

the satellite states in the EnKF/UKF framework. Consequently, we modify (4.12),

by defining

Rk+1 := Rsensor
k+1 + Rdata

k+1 ,

where Rsensor
k+1 is the known sensor noise variance and quantifies the accuracy of the

measured data, and Rdata
k+1 defines the additional synthetic noise to be determined

that should be added to the measured data to achieve a privacy-utility tradeoff.

Usually, the sensor noise is assumed to be uncorrelated, which results in a diagonal

Rsensor
k+1 with positive entries. However, Rdata

k+1 can be assumed to be a general positive

semidefinite matrix.

Therefore, Σ+
xx,k+1 is now defined as

Σ+
xx,k+1 = Σ−xx,k+1 −Σ−xy,k+1

(
Σ−yy,k+1 + Rsensor

k+1 + Rdata
k+1

)−1
Σ−

T
xy,k+1. (4.22)

We generalize the formulation by defining utility in terms of variable Xu := MuX,

and privacy in terms of variable Xp := M pX, where Mu, and M p are known
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matrices. Partitioning the augmented state space into privacy and utility variable is

motivated by the work in [73]. The authors used it to partition the state variable

at a particular instant into privacy and utility variables, i.e. partitioning along the

dimension of the variable. In this paper, since we augment the state-vector to include

time-series data, our partitioning matrix M p and Mu partitions the augmented

state-vector in both space and time. Consequently, we can achieve privacy-utility

tradeoffs in space and time, and are highlighted in the examples.

The error variance in the estimates for Xu and Xp are given by

Σ+
xuxu,k+1 := MuΣ

+
xx,k+1M

T
u ,

= MuΣ
−
xx,k+1M

T
u −MuΣ

−
xy,k+1

(
Σ−yy,k+1 + Rsensor

k+1 + Rdata
k+1

)−1
Σ−

T
xy,k+1M

T
u , and

(4.23)

Σ+
xpxp,k+1 := M pΣ

+
xx,k+1M

T
p ,

= M pΣ
−
xx,k+1M

T
p −M pΣ

−
xy,k+1

(
Σ−yy,k+1 + Rsensor

k+1 + Rdata
k+1

)−1
Σ−

T
xy,k+1M

T
p .

(4.24)

Thus, the objective here is to determine Rdata
k+1 that allows end users to estimate

states Xu accurately enough, but not estimate states Xp too accurately, i.e. given

Σp and Σu, we would like to determine Rdata
k+1 that satisfies Σp ≤ Σ+

xpxp,k+1 and

Σ+
xuxu,k+1 ≤ Σu simultaneously, where Σp defines the accuracy limit from a privacy

perspective and Σu defines the accuracy limit from a utility perspective.

Since Σ+
xpxp,k+1 and Σ+

xuxu,k+1 depend on Rdata
k+1 , they are upper and lower bounded
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by values obtained for Rdata
k+1 = ∞ and Rdata

k+1 = 0 respectively, i.e.

Σ+
xpxp,k+1(0) ≤ Σ+

xpxp,k+1(R
data
k+1 ) ≤ Σ+

xpxp,k+1(∞) = Σ−xpxp,k+1, (4.25)

Σ+
xuxu,k+1(0) ≤ Σ+

xuxu,k+1(R
data
k+1 ) ≤ Σ+

xpxu,k+1(∞) = Σ−xuxu,k+1, (4.26)

where Σ+
xpxp,k+1(·) and Σ+

xuxu,k+1(·) denote the functional dependence of the vari-

ances on Rdata
k+1 . Consequently, these inequalities define the limits on the achievable

privacy and utility.

We next present the main results of this paper, which are convex optimization for-

mulations for achieving optimal privacy-utility tradeoff in the general EnKF/UKF

framework. We use a relaxed definition for privacy and utility, by defining them in

terms of trace of the variance matrices, i.e.

Privacy: tr
[
Σ+
xpxp,k+1

]
≥ γp, (4.27a)

Utility: tr
[
Σ+
xuxu,k+1

]
≤ γu, (4.27b)

where γp and γu are user defined.

4.3.1 Maximum Noise Satisfying Utility Constraints

Here we present a convex optimization problem, which determines the maximum

synthetic noise that can be added and still satisfy the upper bound on tr
[
Σ+
xuxu,k+1

]
and is given by the following theorem.

Theorem 15. The maximum noise that satisfies tr
[
Σ+
xuxu,k+1

]
≤ γu, is given by

the solution of the following optimization problem
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min
Sdata

k+1≥0,Qu≥0
tr
[
Sdata
k+1

]
, (4.28a)

subject to

Qu −MuΣ
−
xx,k+1M

T
u +MuΣ

−
xy,k+1Z

−1Σ−
T
xy,k+1M

T
u MuΣ

−
xy,k+1

Σ−
T
xy,k+1M

T
u Z +ZSdata

k+1Z

 ≥ 0,

(4.28b)

tr [Qu] ≤ γu, (4.28c)

where Z := Σ−yy,k+1 +Rsensor
k+1 . The maximum noise in the data for which the utility

constraint is satisfied is then given by Rdata
k+1 :=

(
Sdata
k+1

)−1
.

Proof. Using (4.23), tr
[
Σ+
xuxu,k+1

]
≤ γu, is equivalent to

Qu −MuΣ
−
xx,k+1M

T
u +MuΣ

−
xy,k+1

(
Σ−yy,k+1 + Rsensor

k+1 + Rdata
k+1

)−1
Σ−

T
xy,k+1M

T
u ≥ 0,

and tr [Qu] ≤ γu. Using matrix inversion lemma (Hua’s identity), we get

Σ−yy,k+1 + Rsensor
k+1︸ ︷︷ ︸

:=Z

+Rdata
k+1


−1

= Z−1 −
{
Z +Z

(
Rdata

k+1

)−1
Z
}−1

.

Therefore, the inequality becomes

Qu −MuΣ
−
xx,k+1M

T
u +MuΣ

−
xy,k+1

[
Z−1 −

{
Z +Z

(
Rdata

k+1

)−1
Z
}−1]

Σ−
T
xy,k+1M

T
u ≥ 0,
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or

Qu −MuΣ
−
xx,k+1M

T
u +MuΣ

−
xy,k+1Z

−1Σ−
T
xy,k+1M

T
u−

MuΣ
−
xy,k+1

{
Z +Z

(
Rdata

k+1

)−1
Z
}−1

Σ−
T
xy,k+1M

T
u ≥ 0.

Using Schur complement we get

Qu −MuΣ
−
xx,k+1M

T
u +MuΣ

−
xy,k+1Z

−1Σ−
T
xy,k+1M

T
u MuΣ

−
xy,k+1

Σ−
T
xy,k+1M

T
u Z +Z

(
Rdata

k+1

)−1
Z

 ≥ 0.

Introducing a new variable Sdata
k+1 :=

(
Rdata

k+1

)−1
, which is the precision of the data, we

get the LMI in (4.28b). Therefore, maximization of tr
[
Rdata

k+1

]
becomes minimization

of tr
[
Sdata
k+1

]
.

The above optimization is performed every time a new batch of Y k+1 is shared,

which is corrupted using Rdata
k+1 .

For a special case of linear sensor model, i.e. H(Xk) := CXk, we can substitute

Σ−xy := Σ−xxC
T and Σ−yy := CΣ−xxC

T , in the above optimization problem.

Remark 9. In the above theorem, we need to compute the inverse of Z :=

(Σ−yy,k+1 + Rsensor
k+1 ), which may be ill-conditioned, particularly when Σ−yy,k+1 is rank

deficient and Rsensor
k+1 is small (corresponding to very precise sensor measurements,

for example from laser ranging). This problem occurs in satellite tracking problems.

We next present an alternate formulation, which does not require the matrix inverse,

but the matrix square root, at the expense of increasing the problem size. This is

given by the following result, assuming linear measurement model.
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Theorem 16. The maximum noise that satisfies tr
[
Σ+
xuxu,k+1

]
≤ γu, is given by

the solution of the following optimization problem

min
Sdata

k+1≥0,Qu≥0,K
tr
[
Sdata
k+1

]
, (4.29a)

subject to



Qu Mu(I −KC)
√

Σ−xx,k+1 MuK MuK√
Σ−xx,k+1(I −KC)TMT

u I 0 0

KTMT
u 0

(
Rsensor

k+1

)−1
0

KTMT
u 0 0 Sdata

k+1


≥ 0,

(4.29b)

tr [Qu] ≤ γu. (4.29c)

Proof. Recalling that the posterior variance in Kalman filtering is also given by

Σ+
xx = (I −KC)Σ−xx(I −KC)T +KRKT , tr

[
Σ+
xuxu,k+1

]
≤ γu, is equivalent to

Qu −Mu(I −KC)Σ−xx,k+1(I −KC)TMT
u +MuK

(
Rsensor

k+1 + Rdata
k+1

)
KTMT

u ≥ 0,

(4.30)

along with tr [Qu] ≤ γu.

Using Schur complement we can write (4.30) as,



Qu Mu(I −KC)
√

Σ−xx,k+1 MuK MuK√
Σ−xx,k+1(I −KC)TMT

u I 0 0

KTMT
u 0

(
Rsensor

k+1

)−1
0

KTMT
u 0 0

(
Rdata

k+1

)−1


≥ 0.
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Introducing a new variable Sdata
k+1 :=

(
Rdata

k+1

)−1
, we get the LMI in (4.29b), in terms

of Sdata
k+1 . Maximization of tr

[
Rdata

k+1

]
becomes minimization of tr

[
Sdata
k+1

]
.

The above result simultaneously determines the Kalman gain K and the optimal

noise in the data, for which upper bound on posterior variance is achieved.

Remark 10. The discussion so far has been on adding maximum synthetic noise

to existing data, for which utility is achieved. This is relevant in situations where the

collected data has multiple use with different accuracy needs. Thus, it is meaningful

to sense at the highest accuracy and then add synthetic noise depending on accuracy

needs. However, in some applications, it may be economical to determine the sensing

accuracy directly, since higher accuracy is associated with higher cost. Theorem 16

can be modified to determine the optimal sensing precision for which the prescribed

accuracy in the state estimate is achieved. It is given by the following result.

Corollary 1. The minimum sensing precision that satisfies tr
[
Σ+
xuxu,k+1

]
≤ γu, is

given by the solution of the following optimization problem

min
λ≥0,Qu≥0,K

‖λ‖1, (4.31a)

subject to


Qu Mu(I −KC)

√
Σ−xx,k+1 MuK√

Σ−xx,k+1(I −KC)TMT
u I 0

KTMT
u 0 Ssensor

 ≥ 0, (4.31b)

tr [Qu] ≤ γu. (4.31c)

140



where

Ssensor := diag(λ),

and λ is the sensor precision which is the reciprocal of the sensor noise.

Proof. The proof is similar to theorem 16, with the sensor precision as a variable

with a diagonal structure.

Remark 11. Sparse Sensing: The l1 cost in (4.31a) induces sparseness in the

solution, i.e. many entries of the optimal λ are expected to be zero. These cor-

respond to zero precision, implying that the corresponding sensor is not required

to achieve the required accuracy in the state estimate, and can be eliminated from

further consideration. From a system design perspective, this is quite useful. We can

formulate the optimization problem with a dictionary of sensors, admitting redun-

dancy in the sensing. The l1 optimization will result in the optimal (possibly sparse)

sensing precisions that will achieve the required accuracy in the state estimate.

Remark 12. It is possible that the user specifies multiple partitions of the aug-

mented state X for utility, i.e. Xu1 := Mu1X, . . . ,Xur := MurX, with accuracy

bounds

tr
[
Mu1Σ

+MT
u1

]
≤ γu1 , · · · , tr

[
MurΣ

+MT
ur

]
≤ γur .

In such a case, each upper-bound constraint will add a pair of inequalities to the

optimization problem, similar to (4.31b) and (4.31c), but in terms of variable Qui .
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4.3.2 Minimum Noise Satisfying Privacy Constraints

We next present a convex optimization problem, which determines the minimum

synthetic noise needed to satisfy the lower bound on Σ+
xpxp,k+1. It is given by the

following theorem.

Theorem 17. The minimum noise that satisfies tr
[
Σ+
xpxp,k+1

]
≥ γp, is given by the

solution of the following optimization problem

min
Rdata

k+1≥0,Qp≥0
tr
[
Rdata

k+1

]
, (4.32a)

such that,

M pΣ
−
xx,k+1M

T
p −Qp M pΣ

−
xy,k+1

Σ−
T
xy,k+1M

T
p

(
Σ−yy,k+1 + Rsensor

k+1 + Rdata
k+1

)
 ≥ 0, (4.32b)

tr [Qp] ≥ γp. (4.32c)

Proof. From (4.24), and tr
[
Σ+
xpxp,k+1

]
≥ γp we get the following equivalent condi-

tions

M pΣ
−
xx,k+1M

T
p −Qp −M pΣ

−
xy,k+1

(
Σ−yy,k+1 + Rsensor

k+1 + Rdata
k+1

)−1
Σ−

T
xy,k+1M

T
p ≥ 0,

(4.33)

tr [Qp] ≥ γp. (4.34)

Using Schur complement, we can write inequality in (4.33) as the LMI in (4.32b)
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with respect to Rdata
k+1 .

Remark 13. Like in the utility case, it is possible that the user specifies multiple

partitions of the augmented state X for privacy, i.e. Xp1 := M p1X, . . . ,Xpq :=

M pqX, with privacy bounds

tr
[
M p1Σ

+MT
p1

]
≥ γp1 , . . . , tr

[
M pqΣ

+MT
pq

]
≥ γpq .

In such a case, each lower-bound constraint will add a pair of inequalities to the

optimization problem, similar to (4.32b) and (4.32c), but in terms of variable Qpi .

4.3.3 Optimal Privacy-Utility Tradeoff

The optimization problems in the previous two sections have addresses utility and

privacy separately. In this section, we present a joint formulation for determining

the optimal privacy-utility trade-off. We formulate the optimization problems around

two notions of the trade-off.

4.3.3.1 Utility-aware privacy

The first notion is utility-aware privacy, where the utility is specified via hard con-

straint γu and the privacy is maximized. This results in the following optimization

formulation: This results in the following formulation:

max γp, subject to tr
[
Σ+
xpxp,k+1

]
≥ γp, and tr

[
Σ+
xuxu,k+1

]
≤ γu, (4.35)
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for a given γu. This can be generalized to multiple partitions of X for privacy and

utility.

4.3.3.2 Privacy-aware utility

The second notion is privacy-aware utility, where the privacy is specified via hard

constraint γp and the utility is maximized. This results in the following formulation:

min γu, subject to tr
[
Σ+
xpxp,k+1

]
≥ γp, and tr

[
Σ+
xuxu,k+1

]
≤ γu, (4.36)

for a given γp. This can also be generalized to multiple partitions of X for both

privacy and utility.

The idea is to combine the optimization formulations from theorem 15 (or 16) and

theorem 17 into a single formulation. However, theorems 15 (or 16) and 17 involve

variables Sdata
k+1 and Rdata

k+1 that are constrained by Sdata
k+1Rdata

k+1 = Iny . which is non-

convex. In this paper, we linearize this constraint about a known value of Sdata
k+1 and

Rdata
k+1 , and iteratively update it to arrive at a suboptimal solution. That is, initially

we assume S̄data
k+1 and R̄data

k+1 are given and we write,

Sdata
k+1 := S̄data

k+1 + S̃data

k+1 ≥ 0, and (4.37)

Rdata
k+1 := R̄data

k+1 + R̃data

k+1 ≥ 0, (4.38)

and linearize Sdata
k+1Rdata

k+1 = Iny about S̄data
k+1 and R̄data

k+1 , to get

S̃data

k+1R̄
data
k+1 + S̄data

k+1R̃
data

k+1 = 0, (4.39)

and solve for S̃data

k+1 and R̃data

k+1 .
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We next present the complete optimization formulation for utility-aware privacy,

formulated assuming linear sensing model. It can be generalized to nonlinear sensing

model by formulating it around theorems 15 and 17.

Theorem 18. The data noise that satisfies the utility-constraint tr
[
Σ+
xuxu,k+1

]
≤ γu

for a given γu, and maximizes privacy, is given by the solution of the following

optimization problem:

max
Qp,Qu, S̃

data
k+1, R̃

data
k+1,K, γp

γp (4.40a)

subject to



Qu Mu(I −KC)
√

Σ−xx,k+1 MuK MuK√
Σ−xx,k+1(I −KC)TMT

u I 0 0

KTMT
u 0

(
Rsensor

k+1

)−1
0

KTMT
u 0 0 Sdata

k+1


≥ 0,

(4.40b)M pΣ
−
xx,k+1M

T
p −Qp M pΣ

−
xx,k+1C

T

CΣ−xx,k+1M
T
p

(
CΣ−xx,k+1C

T + Rsensor
k+1 + Rdata

k+1

)
 ≥ 0, (4.40c)

tr [Qu] ≤ γu, (4.40d)

tr [Qp] ≥ γp, (4.40e)

Sdata
k+1 := S̄data

k+1 + S̃data

k+1 ≥ 0, (4.40f)

Rdata
k+1 := R̄data

k+1 + R̃data

k+1 ≥ 0, (4.40g)

S̃data

k+1R̄
data
k+1 + S̄data

k+1R̃
data

k+1 = 0. (4.40h)
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Proof. Builds on the proof for theorems 16 and 17, along with linearization of the

nonconvex constraint Sdata
k+1Rdata

k+1 = Iny .

Remark 14. The optimization for privacy-aware utility can be formulated by

replacing (4.40a) with

min
Qp,Qu, S̃

data
k+1 , R̃

data
k+1 ,K, γu

γu (4.41)

where γp is user specified.

Remark 15. Optimization problem (4.40) can also be generalized to multiple

partitions of X for both privacy and utility, by introducing new variables {Qpi},

{Quj}, and {γpi} or {γuj}.

Optimization in (4.40), is solved repeatedly with updated values of S̄data
k+1 and R̄data

k+1 ,

until there is no significant change in the cost function. For the next iteration, S̄data
k+1

and R̄data
k+1 are updated with the optimal S̃data

k+1 and R̃data

k+1 . The update however, is

slightly different for utility-aware privacy and privacy-aware utility. For utility-aware

privacy, we must ensure utility constraints are satisfied. Since the optimization in

(4.40) satisfies this constraint with Sdata
k+1 := S̄data

k+1 +S̃data

k+1 , we update S̄data
k+1 and R̄data

k+1

as

S̄data
k+1 := S̄data

k+1 + S̃data

k+1 , and (4.42a)

R̄data
k+1 :=

(
S̄data
k+1

)−1
. (4.42b)
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For privacy-aware utility, we must ensure privacy constraints are satisfied. Since the

optimization (see remark 14) satisfies this constraint with Rdata
k+1 := R̄data

k+1 + R̃data

k+1 ,

we update S̄data
k+1 and R̄data

k+1 for this case, as

R̄data
k+1 := R̄data

k+1 + R̃data

k+1 , and (4.43a)

S̄data
k+1 :=

(
R̄data

k+1

)−1
. (4.43b)

Pseudocode for implementing the above iterative algorithm for utility-aware privacy

is presented in Algorithm 3. The algorithm for privacy-aware utility can be similarly

developed by incorporating the changes from remark 14 and (4.43), in Algorithm 3.

Algorithm 3 Algorithm for utility-aware privacy

Initialize: S̄data
k+1 := Iny , R̄data

k+1 := Iny # Any other initialization may work

Initialize: γpold := 1e10 # Something large

Initialize: ε := 10−3 # Tolerance

Initialize: done := false

while done == false

Solve optimization problem in (4.40) to get γp, S̃
data

k+1 and R̃data

k+1

if |γp − γpold | ≤ ε
done := true

else

γpold := γp

Update S̄data
k+1 and R̄data

k+1 using (4.42)
end

end

147



4.4 Numerical Simulation

In this section, we apply the proposed algorithms for tracking the International Space

Station (ISS), with its orbit defined by the following TLE set:

ISS (ZARYA)

1 25544U 98067A 19248.67387091 0.00001921 00000-0 41082-4 0 9997

2 25544 51.6464 322.0340 0007976 9.5374 121.4565 15.50435809187740

The orbit is propagated in Keplerian coordinates (a, e, i,Ω, ω, f), with uncertain

initial conditions and J4 perturbation. Initial condition uncertainty is assumed to

be only in the semi-major axis (a). It is modeled as a Gaussian random variable

with mean defined by the TLE set and standard-deviation equal to 1% of the mean.

This uncertainty is represented with 100 samples.

Since the algorithms proposed here assume Gaussian uncertainty (EnKF and UKF),

we transform the 6 dimensional orbit data from Keplerian coordinates (a, e, i,Ω, ω, f)

to Cartesian coordinates (x, y, z, u, v, w), and investigate the privacy-utility tradeoff

in this representation. From fig.(4.1), we see that 1% uncertainty in a causes signif-

icant increase in the state uncertainty after only one orbit, and therefore it provides

a rich enough data set for investigating privacy-utility tradeoff.

We also assume that we can sense (x, y, z), which gives us a linear measurement

model. Consequently, we apply the corresponding algorithms to demonstrate the

privacy-utility tradeoff. The orbit data is generated for 6000 seconds, at 1 second

intervals. This captures one orbit of the ISS. We extract (x, y, z) at arbitrarily chosen

times 0, 1600, 1900, 3400, 5100 seconds, and treat them as measurements. These times

are also expressed as 0, 0.27Torb, 0.32Torb, 0.57Torb, 0.85Torb, where Torb := 6000 sec-
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Figure 4.1: Growth in positional uncertainty due to 1% uncertainty in the initial
semi-major axis. Reprinted with permission from [17].

onds is the time for one orbit. The locations of these measurements, or the sensing

sites, are shown in fig.(4.2a). Using these five sensing sites, the objective of this

example is to demonstrate:

1. the optimal sensor precisions that achieve the given utility in the state estimate,

2. minimum synthetic noise in the sensed data that achieves the prescribed pri-

vacy,

3. the optimal sensor precisions that achieve utility-aware privacy, i.e. maximize

privacy with given utility constraints.

These studies are performed with respect to the position of the ISS, and are presented

next.
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Figure 4.2: Optimal sensing precision satisfying utility constraints only. Reprinted
with permission from [17].

4.4.1 Minimum Precision Guaranteeing Required Utility

Here we determine the precisions of sensors for which the utility constraints are

satisfied. This is achieved by applying the optimization problem formulation from

corollary 1. Fig.(4.2a) shows the location of the sensing sites, along with the locations

where the utility constraints are to be satisfied. These are imposed at times 0.15Torb,

and 0.4Torb. Recall that utility constraints are defined by (4.27), and for this example

we choose γui := 1 km, i.e. the utility constraints are tr
[
MuiΣ

+MT
ui

]
≤ 1. Matrices

Mui are mask matrices, which extract the variance of the error in (x, y, z) estimates,

at times 0.15Torb and 0.4Torb respectively. Fig.(4.2b) shows the summation of the

(x, y, z) sensor precisions, at each of the five sensing sites, for which the utility

constraints are satisfied. This is confirmed by fig.(4.2c).

From fig.(4.2b), we see that minimization of the l1 norm in (4.31) results in a sparse

sensing architecture, i.e. many of the sensor precisions are zero. Therefore, only

data from the sensing site #5, with the indicated precision, is required to satisfy the
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utility constraint. There are three implications of this result. Firstly, from a sensing

perspective, only sensors at site #5 are sufficient to track the object at the specified

locations with the required accuracy. This helps in sensor allocations for space object

tracking. Secondly, the optimal sensing precision can be used to optimize the energy

used in the radar/laser based sensing. Finally, from a data sharing perspective,

if data is available from all the sensing sites – only data from location #5 needs

to be shared. If the accuracy of the sensed data is more than required, it can be

corrupted by noise defined by the reciprocal of the precision value. This will protect

the economic value of the data [31].

We also observe that data from the future is used to satisfy the utility constraints

in the past, resulting in optimal smoothing. Since the optimization is formulated

as a batch estimation, this is possible. The results are consistent with the fact that

optimal smoothers generally achieve lower mean-square error than optimal filters [5].

This allows utility constraints in the past to be satisfied with least sensor precisions.

4.4.2 Minimum Noise Guaranteeing Required Privacy

In this section, we apply the optimization problem from theorem 17 to determine

the minimal noise in the sensor data for which the errors in the state estimates

are above a prescribed value, at the specified location in the orbit. The location

where privacy is required is shown in fig.(4.3a), which corresponds to time 0.82Torb.

The privacy constraint is defined by (4.27) with γp := 5.172. This is determined by

requiring tr
[
M pΣ

+MT
p

]
≥ 10−4tr

[
M pΣ

−MT
p

]
, where M p extracts the variance

of the error in (x, y, z) estimates at time 0.82Torb. The sensing sites are the same as

the above problem.
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Fig.(4.3b) shows the summation of the (x, y, z) sensor noise variances, at each of the

five sensing sites, for which the privacy constraints are satisfied. We see that the mini-

mum noise, for which privacy is guaranteed, has an increasing trend, with higher noise

in the vicinity of the location where privacy is required. Fig.(4.3c) shows
√

tr [Σ+],

which satisfies the privacy constraints at t = 0.82Torb, i.e.
√

tr
[
M pΣ+MT

p

]
≥ 5.17.

Therefore, from a data-sharing perspective, sensor data from the 5 sites should be

corrupted with synthetic noise – defined by the optimal noise variances in fig.(4.3b),

to ensure the required privacy.
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Figure 4.3: Optimal sensor noise for only privacy. Reprinted with permission from
[17].

4.4.3 Utility-Aware Maximum Privacy

We next present results obtained by applying Algorithm 3 to the ISS data set, where

privacy is maximized with utility constraints. The locations of sensors, the utility

constraints, and the location where privacy is required, are the same as in the above

studies. Fig.(4.4b) shows the sensor precisions for which the utility constraints (same
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as those in §4.4.1) are satisfied and privacy is maximized. The resulting posterior

is shown in fig.(4.4c). We observe that utility constraints are satisfied at times

0.15Torb, and 0.4Torb, while privacy is maximized at time 0.82Torb . Fig.(4.4c) also

shows the case when privacy is not maximized, but only utility is satisfied with

minimum precision, i.e. the case discussed in §4.4.1. We see that utility-aware

maximum privacy is able to achieve about 1.63 times more privacy. The value of√
tr
[
M pΣ+MT

p

]
in §4.4.1 is 2.26, whereas

√
tr
[
M pΣ+MT

p

]
in this case is 4.35.

Thus, we can see the benefit Algorithm 3.
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Figure 4.4: Optimal sensor precision for utility-aware privacy over one orbit of the
ISS. Reprinted with permission from [17].

Fig.(4.4b) shows that the utility constraints are satisfied using most precise data

from the future (i.e. site #4) , which implies that the optimization primarily ap-

plies smoothing to satisfy the utility constraints. This is similar to the results from

fig.(4.2b), where smoothing was used to satisfy the utility constraints.
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We also see that privacy is maximized by reducing the precision at site #5. Data from

site #5 is from the future, and incorporating this data would reduce uncertainty at

all past locations due to smoothing. This would not maximize privacy. Low precision

data from site #5 essentially means that no update is made to the prior beyond the

data from the sensing site #4, and this maximizes the privacy. Consequently, data

from site #4 plays an important role. It is used to satisfy the uncertainty constraints

at the utility sites using smoothing, and maximize uncertainty at the privacy site

using prediction.

Remark 16. The examples above, are shown with data from one orbit, where

privacy is maximized after the utility. This is a simpler scenario, because state

uncertainty grows without update and hence it is easier to achieve higher uncertainty,

and hence privacy, at later times.

In the next example, we consider an interesting scenario where privacy is maxi-

mized in between two locations where utility is constrained. For this scenario, we

consider data from five orbits of the ISS, with data saved every 100 seconds and

measurements available at arbitrarily chosen times 0, 0.15Torb, 0.82Torb, 1.65Torb,

3.32Torb, 4.15Torb, and 4.98Torb. Therefore, there are 7 sensing sites, measuring

(x, y, z). The utility constraints are imposed at times 0.48Torb and 4.82Torb, with

tr
[
MuiΣ

+MT
ui

]
≤ 1. Privacy is maximized at the time 2.48Torb. Therefore, privacy

is maximized in between the two times where utility is constrained. The privacy and

utility time points are chosen arbitrarily.

Fig.(4.5) shows the results from the utility-aware privacy optimization for this case.

In fig.(4.5a), the optimal sensor precisions that satisfy the utility constraints are

shown. We observe that data from sites #1 to #5 are not required to satisfy the
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Figure 4.5: Optimal sensor precision for utility-aware privacy over five orbits of the
ISS. Reprinted with permission from [17].

utility constraints. Only data from sites #6 and #7 are required, with the given

precisions. The corresponding
√

tr [Σ+] is shown in fig.(4.5c) in blue, and we can

see that the utility constraints are satisfied at times 0.48Torb and 4.82Torb. Achiev-

ing the utility with minimum precision implicitly achieves a certain level of pri-

vacy at time 2.48T , as we can see
√

tr [Σ+] increases between times 0.48T and

4.82T . Fig.(4.5c) also shows in red,
√

tr [Σ+] from utility-aware privacy maximiza-

tion. We can see that it achieves significantly higher privacy at time 2.48T . The

value of
√

tr
[
M pΣ+MT

p

]
from utility-only optimization is 2.67, and the value of√

tr
[
M pΣ+MT

p

]
from utility-aware privacy maximization is 4.45, resulting in an

improvement by a factor of 1.67. The corresponding sensor precisions are shown in

fig.(4.5b). Therefore, for this example too, we see that Algorithm 3 is able to achieve

higher privacy, while satisfying the utility constraints.

We next discuss the convergence property of Algorithm 3. For the results shown

in fig.(4.4) and fig.(4.5), the respective convergences are shown in fig.(4.6), where
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∆J := |γp − γpold |.
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(a) Convergence of Algorithm 3 for
the 1-Orbit problem shown in fig.(4.4).
Reprinted with permission from [17].
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Figure 4.6: Convergence of Algorithm 3. Reprinted with permission from [17].

Empirically, we observe that in both the cases the algorithm convergences to the

optimal solution within 18 iterations, for ε := 10−3. The associated computational

times are summarized in table 4.1. For every iteration, the optimization problem for

the 1-orbit problem takes an average of 3.5 seconds. Whereas, for the 5-orbit problem,

optimizations take an average of 235.93 seconds, which is higher due to larger problem

size. The computational times for the utility-only optimization are also shown in the

table. We observe that for 1 and 5 orbit problems, the computational times are

0.5 and 28.26 seconds respectively. These times are obtained in MATLAB, with

YALMIP [52] as the parser and MOSEK [3] as the solver, executing in a Mac Book

Pro with 2.3 GHz Quad-Core Intel Core i7 processor and 16 GB (1600 MHz DDR3)

memory.
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1-Orbit Problem 5-Orbit Problem

Utility-aware Privacy 3.5 235.93

Utility-Only 0.5 28.26

Table 4.1: Average computational times (sec) for 1 and 5 orbit problems. These
times are obtained in MATLAB, with YALMIP [52] as the parser and MOSEK [3]
as the solver. Reprinted with permission from [17].

Therefore, the utility-only optimization results in significantly faster solution, but the

privacy is not maximized. Whereas, with the utility-aware privacy maximization, we

are able to achieve higher privacy but with significantly higher computational time.

Since both the formulations solve a semi-definite program, the computational times

are expected to grow polynomially using interior-point method. Therefore, for large-

scale problems, specialized methods (such as first order methods) can be applied to

solve the optimization problem.

4.5 Conclusion & Summary

In this paper we presented a new formulation that addresses optimal privacy vs utility

tradeoff in the Ensemble/Unscented Kalman filtering framework. Privacy and utility

are defined in terms of the estimation error variances. The formulation achieves this

tradeoff by injecting synthetic noise to the sensor data, which is used to regulate the

posterior error covariance.

We demonstrated how this formulation can be applied to achieve the tradeoff in the

context of space-object tracking problem. We were able to show that it is possible

to satisfy utility (defined by upper bounding the estimation error), while achieving

a certain level of privacy (defined by lower-bounding the estimation error).
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In particular, the presented results demonstrated that:

1. Utility upper-bounds can be satisfied with sparse sensing, which also indirectly

helps in sensor scheduling. This is achieved by satisfying the utility constraints

with maximum sensor noise or minimum sensor precision, where the precision

is defined to be the inverse of noise. Sparseness in sensing is achieved by l1

minimization.

2. Privacy lower-bounds can be satisfied by maximizing the noise in the sensor.

3. A joint optimization problem for utility-aware privacy is able to maximize

privacy (i.e. maximize the lower bound), while satisfying utility upper bound.

Similarly, a joint-optimization can maximize utility (i.e. minimize the upper

bound), while satisfying the privacy lower bound.

These results have significant implications from a data sharing perspective. The

above optimization problems determine the level of synthetic noise that should

be added to the raw sensed data, such that the desired privacy-utility tradeoff is

achieved. This is important, because privacy concerns can result in conservative

data obfuscation and severely impede utility. On the other hand, utility concerns

can result in excessive sensing accuracy, which can violate privacy concerns and per-

haps be uneconomical from a system design and operations perspective. Therefore,

we expect our framework to enable better data collection and sharing policy, partic-

ularly for the SSA community. In addition, since SSA data is being commoditized,

the proposed algorithms will enable data-products with different levels of accuracy,

corresponding to various stratified pricing models for future value-added services in

space-data analytics.
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5. SUMMARY AND FUTURE WORKS

In this work we presented a novel formulation that addresses optimal privacy vs

utility tradeoff in the Kalman & Ensemble/Unscented Kalman filtering framework.

We defined privacy and utility in terms of the estimation error variances. The for-

mulation that we presented satisfies this tradeoff by injecting synthetic noise to the

sensor data, which regulates the posterior error covariance. Mainly in the context of

space-object tracking problem, we demonstrated how this formulation can be applied

to achieve the privacy-utility tradeoff . We were able to show that it is possible to

satisfy utility (defined by upper bounding the estimation error), while achieving a

certain level of privacy (defined by lower-bounding the estimation error). The prob-

lem of sensor precision selection can be extended to selecting the optimal locations

of sensors, sensor types, and sensor noise characteristics, for making measurements

of some dynamic spatio-temporal process. When designing sensing strategies, the

aim is usually to find the design which minimizes expected post-experimental or

data-collection uncertainties on the model parameters or system states or function

of system states. Classical design methods are inefficient in non-linear problems

because they assume linear design criteria. These inaccurate assumptions include

linear mapping from parameter or states to measurement space along with Gaussian

assumptions on the priors and measurement noises. Bayesian design of experiments

(BDE) [68] or data collection is a framework developed to incorporate some form of

available prior information in the design stage of measurement process. Although

the design stage of the measurement process or sensing involves various parameters,

we are particularly interested in that subspace that is spanned by the parameters

related to the measurement model, such as sensor type, sensor noise characteristics,
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sensor location and sensor set cardinality. If we consider the problem of sensor design

for multiple time steps together, we might need to add sensing schedule to the set of

unknown design parameters. Algorithms for generic sensing architecture design can

be addressed along the lines of Bayesian design of experiments.
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allocation for sampled networked systems. Automatica, 85:100–112, nov 2017.

[13] Sundeep Prabhakar Chepuri and Geert Leus. Sparsity-promoting adaptive sen-

sor selection for non-linear filtering. In 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, may 2014.

[14] Sundeep Prabhakar Chepuri and Geert Leus. Sparsity-promoting sensor selec-

tion for non-linear measurement models. IEEE Transactions on Signal Process-

ing, 63(3):684–698, feb 2015.

[15] Jorge Cortés, Geir E Dullerud, Shuo Han, Jerome Le Ny, Sayan Mitra, and

George J Pappas. Differential privacy in control and network systems. In 2016

IEEE 55th Conference on Decision and Control (CDC), pages 4252–4272. IEEE,

2016.

[16] Andre F. C. da Silva and Tim Colonius. Ensemble-based state estimator for

aerodynamic flows. AIAA Journal, 56(7):2568–2578, jul 2018.

[17] Niladri Das and Raktim Bhattacharya. Privacy and utility aware data sharing

for space situational awareness from ensemble and unscented kalman filtering

perspective, 2019.

[18] Niladri Das and Raktim Bhattacharya. Eigen value analysis in lower bounding

uncertainty of kalman filter estimates, 2020.

[19] Niladri Das and Raktim Bhattacharya. Optimal sensing precision in ensemble

and unscented kalman filtering, 2020.

163



[20] Niladri Das, Vedang Deshpande, and Raktim Bhattacharya. Optimal-transport-

based tracking of space objects using range data from a single ranging station.

Journal of Guidance, Control, and Dynamics, pages 1–13, feb 2019.

[21] Neil K. Dhingra, Mihailo R. Jovanovic, and Zhi-Quan Luo. An ADMM algo-

rithm for optimal sensor and actuator selection. In 53rd IEEE Conference on

Decision and Control. IEEE, dec 2014.

[22] Cynthia Dwork. Differential privacy. Encyclopedia of Cryptography and Security,

pages 338–340, 2011.

[23] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differen-

tial privacy. Foundations and Trends R© in Theoretical Computer Science, 9(3–

4):211–407, 2014.

[24] Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applica-

tions. Cambridge university press, 2012.

[25] Geir Evensen. The ensemble kalman filter: theoretical formulation and practical

implementation. Ocean Dynamics, 53(4):343–367, nov 2003.

[26] Geir Evensen. The ensemble kalman filter: Theoretical formulation and practical

implementation. Ocean dynamics, 53(4):343–367, 2003.

[27] Geir Evensen and Peter Jan Van Leeuwen. Assimilation of geosat altimeter data

for the agulhas current using the ensemble kalman filter with a quasigeostrophic

model. Monthly Weather Review, 124(1):85–96, 1996.

[28] Farhad Farokhi and Henrik Sandberg. Ensuring privacy with constrained addi-

tive noise by minimizing fisher information. Automatica, 99:275–288, jan 2019.

[29] Jeff Foust. Spacex’s space-internet woes: Despite technical glitches, the company

plans to launch the first of nearly 12,000 satellites in 2019. IEEE Spectrum,

56(1):50–51, 2018.

[30] Jeff Foust. Esa spacecraft dodges potential collision with starlink satellite.

164



SPACENEWS, Sep 2019.

[31] Nate Frierson. An economic goods analysis of us space situational awareness

(ssa) policy.

[32] Arpita Ghosh and Robert Kleinberg. Inferential privacy guarantees for differ-

entially private mechanisms. arXiv preprint arXiv:1603.01508, 2016.

[33] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex

programming, version 2.1. http://cvxr.com/cvx, March 2014.

[34] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor

placements in gaussian processes. In Proceedings of the 22nd international con-

ference on Machine learning - ICML 05. ACM Press, 2005.

[35] Vijay Gupta, Timothy H. Chung, Babak Hassibi, and Richard M. Murray. On a

stochastic sensor selection algorithm with applications in sensor scheduling and

sensor coverage. Automatica, 42(2):251–260, feb 2006.

[36] Abhishek Halder and Raktim Bhattacharya. Dispersion analysis in hypersonic

flight during planetary entry using stochastic liouville equation. Journal of

Guidance, Control, and Dynamics, 34(2):459–474, 2011.

[37] Duo Han, Junfeng Wu, Huanshui Zhang, and Ling Shi. Optimal sensor schedul-

ing for multiple linear dynamical systems. Automatica, 75:260–270, jan 2017.

[38] Todd Harrison, Kaitlyn Johnson, and Thomas G Roberts. Space Threat Assess-

ment 2018. Center for Strategic & International Studies, 2018.

[39] Ying He and Edwin K.P. Chong. Sensor scheduling for target tracking: A monte

carlo sampling approach. Digital Signal Processing, 16(5):533–545, sep 2006.

[40] Jeff Hecht. A “star wars” sequel? the allure of directed energy for space weapons.

Bulletin of the Atomic Scientists, 75(4):162–170, 2019.

[41] White House. Space Policy Directive-3, National Space Traffic Man-

agement Policy . https://www.whitehouse.gov/presidential-actions/

165



space-policy-directive-3-national-space-traffic-management-policy/.

[42] Syed Talha Jawaid and Stephen L. Smith. Submodularity and greedy algorithms

in sensor scheduling for linear dynamical systems. Automatica, 61:282–288, nov

2015.

[43] Nicholas L Johnson, Eugene Stansbery, David O Whitlock, Kira J Abercromby,

and Debra Shoots. History of on-orbit satellite fragmentations. NASA/TM 2008

214779, 2008.

[44] S. Joshi and S. Boyd. Sensor selection via convex optimization. IEEE Transac-

tions on Signal Processing, 57(2):451–462, feb 2009.

[45] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to

nonlinear systems. In Signal processing, sensor fusion, and target recognition

VI, volume 3068, pages 182–193. International Society for Optics and Photonics,

1997.

[46] Yu Kawano and Ming Cao. Differential privacy and qualitative privacy analysis

for nonlinear dynamical systems. IFAC-PapersOnLine, 51(23):52–57, 2018.

[47] Fragkiskos Koufogiannis and George J Pappas. Differential privacy for dynam-

ical sensitive data. In 2017 IEEE 56th Annual Conference on Decision and

Control (CDC), pages 1118–1125. IEEE, 2017.

[48] Bhavya Lal, Asha Balakrishnan, Becaja M Caldwell, Reina S Buenconsejo, and

Sara A Carioscia. Global trends in space situational awareness (ssa) and space

traffic management (stm). IDA Science & Technology Policy Institute, 2018.

[49] Chien-Hua Lee. Matrix bounds of the solutions of the continuous and dis-

crete riccati equations–a unified approach. International Journal of Control,

76(6):635–642, 2003.

[50] Faming Li, Maurcio C. De Oliveira, and Robert E. Skelton. Integrating infor-

mation architecture and control or estimation design. SICE Journal of Control,

166



Measurement, and System Integration, 1(2):120–128, 2008.

[51] Fu Lin, Makan Fardad, and Mihailo R. Jovanovic. Design of optimal sparse

feedback gains via the alternating direction method of multipliers. IEEE Trans-

actions on Automatic Control, 58(9):2426–2431, sep 2013.
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