
 

 

EXAMINATION OF A BAYESIAN JOINT MODELING APPROACH FOR HANDLING 

MISSING MODERATORS IN META-REGRESSION 

A Dissertation 

by 

BRANDIE SEMMA  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Christopher Thompson 

Co-Chair of Committee,   Wen Luo 

Committee Members, Oi-Man Kwok 

 Lei-Shih Chen 

 Myeongsun Yoon 

Head of Department, Fuhui Tong 

 

 

 

 

December 2020 

Major Subject: Educational Psychology 

Copyright 2020 Brandie Semma 

 



 

ii 

 

ABSTRACT 

Meta-regression is used to understand the role of moderators in a meta-analytic model. However, 

during data extraction it is common for the data to not be clearly presented, incomplete, or 

missing. Consequently, missing study and participant characteristics arise, which can make it 

difficult to estimate meta-regression models. This dissertation examines a Bayesian conditional 

joint modeling (CJM) method for handling missing moderators in meta-regression using a series 

of conditional distributions. The use of CJM has been proposed in the meta-analysis literature to 

predict missing moderators (Hemming, Hutton, Maguire, & Marson, 2010). However, its 

performance has yet to be empirically studied. This dissertation investigated the CJM approach 

through a simulation study. Results suggest that the CJM approach performed similarly to 

listwise deletion when estimating the missing moderator, but performed better when estimating 

the overall true effect-size. 
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NOMENCLATURE 

i = 1,…,K Number of studies 

K Number of effect sizes 

𝑇𝑖 Observed effect size in study 𝑖 
𝜃𝑖  True effect size in study 𝑖 
𝜃 Overall true effect size 

휀𝑖 Sampling error associated with study 𝑖 
𝛿𝑖 Random error associated with study 𝑖 
𝑣𝑖 Within-study variance parameter for study 𝑖 
𝜏2 Between-studies variance parameter 

𝜂𝑖 Total variability of the observed study effect size in study 𝑖 
𝑤𝑖 Unconditional random-effects weight for study 𝑖 
𝑄 Q statistic 

𝑗𝑖 Fixed-effect weight for study 𝑖 
𝑎𝑖 Unconditional random-effects weight for study 𝑖 
𝛽 Regression coefficient 

𝑝(̇ ⋅) Probability function 

𝑝(𝐴) Prior distribution 

𝑝(𝐵|𝐴) Likelihood function 

𝑝(𝐴|𝐵) Posterior distribution 

𝑝(𝐵) Normalizing constant 

𝛽0 Model intercept 

𝛽1,…, 𝛽𝑝 Regression coefficients for 𝑝 predictors 

𝑥𝑖1,…, 𝑥𝑖𝑝 Study characteristics for 𝑝 predictors 

𝜑𝑖 Random error in the conditional random-effects model for study 𝑖 
𝜏𝑥

2 Conditional between-studies variance parameter 

𝑤𝑖
∗ Conditional random-effects weight for study 𝑖 

Y Generic explanatory variable 

𝑌𝑜𝑏𝑠 Observed data 

𝑌𝑚𝑖𝑠 Missing data 

𝑅 Binary variable or a matrix of values indicating score missingness 

r = 1 Observed score 

r = 0 Missing score 

MCAR Missing completely at random 

MNAR Missing not at random 

MAR Missing at random 

∅ Unknown parameters 

∀ For all 

∏ Multiplication operator 

𝐿𝑖 Likelihood function for study i 

r Number of explanatory variables in the missing data model 

𝑽𝒐 Score vector for case o 

𝝁 Vector of population means 
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𝜮 Covariance matrix 

m Number of imputations 

𝑌𝑡
∗ Imputed values at I-step 𝑡 

𝜗 Parameter of interest/model parameter 

𝑌𝑡
∗ Imputed values at I-step 𝑡 

𝝑𝑡−1
∗  Mean vector and the covariance matrix 

𝜃𝑡
∗ Simulated parameter values from P-step 𝑡 

X Matrix of moderators 

𝑌_𝑗 Missing explanatory variable 

𝜶𝑗 Vetor of parameters for the pth distribution 

y Response variable 

𝜏𝑥𝑝 Variance for 𝛾𝑝 

𝑑𝑖 Standardized mean difference in study i 

�̅�𝑖
𝑇 Treatment group mean in study i 

�̅�𝑖
𝐶 Control group mean in study i 

𝑆𝑖
𝑃 Pooled standard deviation in study i 

𝑠𝑑𝑇
2  Treatment group standard deviation in study i 

𝑠𝑑𝐶
2 Control group standard deviation in study i 

𝑛𝐶  Sample size of the control group 

𝑛𝑇 Sample size of the treatment group 

𝑠𝑑𝑖

2  Variance of the standardized mean difference in study i 

g Hedges’ g 

𝐽 Correction factor for Hedges’ g 

𝑑𝑓 Degrees of freedom 

𝛾𝑝 Joint moderator distribution for predictor 𝑝 

𝜂2 Eta-squared from ANOVA model 

𝐸 Coverage 

B Number of replications 
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INTRODUCTION 

The occurrence of missing data is a common issue when reviewing articles for a meta-

analysis (Pigott, 2019). Missing data are especially problematic when including variables to be 

analyzed in a moderator analysis. Moderators are typically included in a meta-analysis to explain 

the presence of effect-size heterogeneity (Thompson & Higgins, 2002; Thompson & Sharp, 

1999; Tipton, Pustejovsky, & Ahmadi, 2019). One reason missing moderators can be an issue is 

that it becomes difficult to include several moderators in a single statistical model, which can 

help control for confounding factors. Current practices tend to exclude the primary article for 

analysis if there is a missing moderator (Pigott, 2019). Unfortunately, excluding the article 

results in loss of information, which may cause biased estimates. Commonly used methods for 

missing moderators, such as listwise and pairwise deletion, tend to yield biased estimates of the 

observed effect sizes and regression coefficients (Pigott, 2001). There still remains a need for 

missing data methods in the presence of missing moderators (Tipton et al., 2019). 

Bayesian methods are becoming increasingly popular in meta-analytical research (Van de 

Schoot, Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2017). One reason for its rise in 

popularity is due to its flexibility in answering a range of questions. Other reasons include the 

use of prior distributions and the ability to make direct probability statements. Bayesian methods 

also allow researchers to account for the uncertainty due to missing data. 

The purpose of this dissertation is to present a Bayesian joint modeling approach for 

handling missing moderators in meta-analysis. I examine a method that uses Bayesian estimation 

to predict missing moderators, conditional on at least one fully observed moderator. The next 
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immediate sections of this dissertation detail the relevant literature, introduces the Bayesian 

conditional joint model, and explains the methodology to complete the simulation. 

Chapter II begins by introducing the role of meta-analyses in research and reviews two 

statistical models used to estimate parameters, namely the unconditional random-effects model 

and the conditional random-effects model. Chapter II also addresses several methods of 

heterogeneity estimation in meta-analysis and introduces Bayesian estimation. The chapter 

details general missing data theory, as well as in meta-analysis, explaining different mechanisms 

and presenting two classical procedures of handling missing data (listwise and pairwise 

deletion). The chapter goes on to explain two common methods for handling missing data 

(maximum likelihood and multiple imputation). Last, an overview of the current methods 

available to handle missing moderators in meta-analysis is provided. 

Chapter III examiness a Bayesian conditional joint modeling (CJM) approach for 

handling missing moderators and outlines the methodology of the dissertation. The CJM 

approach was created by Lipsitz and Ibrahim (1996) and applied to missing moderators, as 

proposed by Hemming et al. (2010). The chapter details the way the CJM approach is evaluated 

using computer simulations. Various simulation conditions, as well as imputation and evaluation 

procedures, are described. 

Chapter IV summarizes the results of the computer simulation. Results compare the CJM 

to listwise deletion. Additionally, results are also compared across conditions, focusing on the 

statistical bias, coverage, and mean squared error. Chapter V discusses findings, implications, 

and presents areas of further research. 
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LITERATURE REVIEW 

Meta-Analysis 

Meta-analysis is a set of statistical methods used to combine results from studies of the 

same topic (Glass, 1976). The power to detect an effect and the generalizability of the results 

increases by combining the results (Cooper, Hedges, & Valentine, 2009). As an example, in the 

medical sciences literature meta-analysis can be used to assess the clinical effectiveness of 

healthcare interventions (Haidich, 2010). In the social sciences literature, for example, meta-

analysis can be used as evidence to inform educational initiatives and policies affecting mental 

health care (Davis, Mengersen, Bennett, & Mazerolle, 2014). 

One component of meta-analysis is to synthesize research results to obtain an overall 

effect-size estimate for a population of studies. Study results are combined using effect sizes 

from primary studies to estimate an overall effect size. There are several types of effect sizes, 

including standardized mean difference, bivariate correlation, and odds ratio (Borenstein, 

Hedges, Higgins, & Rothstein, 2011). The focus of this dissertation is on the standardized-mean-

difference effect-size metric. 

Three popular statistical models for meta-analysis are the fixed-effect (FE) model, 

unconditional random-effects (URE) model, and conditional random effects (CRE; sometimes 

referred to as a mixed-effects) model. Model choice is important because it impacts 

computations, helps define the goals of analyses, and influences interpretations of results 

(Borenstein, Hedges, Higgins, & Rothstein, 2010). A FE model assumes only one source of 

variation in the observed effect sizes, that of variation within a primary study. Put another way, 
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there is only one level of sampling in a FE model, therefore there is only one source of variance 

(Borenstein et al., 2011). In a notational form, the FE model can be stated as 

𝑇𝑖 = 𝜃𝑖 + 휀𝑖 where 휀𝑖~𝑁(0, 𝑣𝑖), (1) 

where 𝑇𝑖 is the observed effect size for study 𝑖, and 𝜃𝑖 is the true effect size for study 𝑖. The term 

휀𝑖 is the difference between the true effect size and the observed overall effect size and is the 

only source of variation in the FE model. This source of variation is equal to the within-study 

error variance. The term 𝑣𝑖 is the known variance for study 𝑖. 

In an URE model, effect sizes are assumed to be realizations from a common distribution 

of effect sizes. In contrast to the FE model, the URE model has two sources of variance (within-

study variance and between-studies variance). This involves the examination of variability of 

effect sizes across studies (i.e., heterogeneity). Effect sizes in a meta-analysis may be considered 

homogenous if they share a common underlying true effect size. The error assumption in a FE 

model is often unrealistic to assume in social science research (Higgins, Thompson, & 

Spiegelhalter, 2009); effect sizes may vary depending on 1) study characteristics, and/or 2) 

sampling error, and/or 3) at random. It is important to assess heterogeneity in meta-analysis 

because identifying and describing the variation among the effect sizes provides a deeper 

understanding of the topic of interest (Davis et al., 2014; Haidich, 2010). Different true effects 

among the studies can be due to the presence of study characteristics. For example, studies may 

differ on the average age of participants or intervention type. This dissertation focuses on the 

conditional random-effects (CRE) model, in which I will go into more detail later. 

Unconditional Random-effects Model 

Like the FE, in a URE model true effect sizes also differ from each other because of 

sampling error. However, unlike the FE model, in the URE model true effect sizes also differ 
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because they are assumed to be a sample from a population of effect sizes. Put another way, true 

effect sizes also differ due to random error. As I will go into detail when explaining the CRE 

model, studies are expected to have some variability in terms of their participant, treatment, 

and/or other study-specific characteristics. 

In both the FE and URE models, each study provides information about a different effect 

size, presumably from a common population. The URE model attempts to represent these effect 

sizes in the overall estimate (Borenstein et al., 2010). The URE model assumes that each true 

effect-size variance is partitioned into two components. In a multilevel framework, there is a 

within-study level (level 1) and a between-studies level (level 2): error due to sampling error 

(level 1) and error due to heterogeneity between studies (level 2). Provided i = 1, …, K 

statistically independent effect-size estimates, the URE model can be defined as 

𝑇𝑖 = 𝜃𝑖 + 휀𝑖 where 휀𝑖~𝑁(0, 𝑣𝑖) 

𝜃𝑖 = 𝜃 + 𝛿𝑖 where 𝛿𝑖~𝑁(0, 𝜏2), 
(2) 

where 𝑇𝑖 is the observed effect size for study 𝑖, 𝜃𝑖 is the true effect size in study 𝑖, and 𝜃 is the 

overall true effect. The error term 휀𝑖 represents random deviations from the true effect size and 

are assumed independent with mean zero and known variance, 𝑣𝑖. The error term 𝛿𝑖 is the 

random error in study 𝑖. The variance of the random error 𝛿𝑖 is the random-effects variance 

parameter, 𝜏2. The term 𝜏2 measures the amount of heterogeneity in the distribution of true 

effects (i.e., between-studies variance). Both error components are assumed to be normally 

distributed. 

The total variability of an effect-size estimate under the URE model, 𝜂𝑖, can be expressed 

as 
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𝜂𝑖 = 𝑣𝑖 + 𝜏2. (3) 

When 𝜏2 is equal to zero, the model simplifies to the FE model with 𝜂𝑖 = 𝑣𝑖 (Konstantopoulos & 

Hedges, 2019). Weighted least squares regression can be used to estimate the URE model with 

weights 

𝑤𝑖
∗ =

1

𝑣𝑖 + 𝜏2
. (4) 

Conditional Random-effects Model 

Exploring sources of effect-size heterogeneity is a crucial step in meta-analysis (Hedges 

& Pigott, 2004; Konstantopoulos & Hedges, 2019; Viechtbauer, 2007). In the URE model, the 

between-studies variance represents the excess variation in observed effects after accounting for 

sampling error. A second type of random-effects model considered in this dissertation is a CRE 

model. The CRE model evaluates studies together in attempt to understand similarities and 

differences in the reported outcomes. The CRE model includes moderators, which may explain 

the possible causes of heterogeneity, as well as sampling and a random/residual error component. 

By including moderators, true effect sizes partially depend on a set of study 

characteristics. Equation (2) can be rewritten to include moderators, 

𝜃𝑖 =  𝛽0 +  𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜑𝑖, (5) 

where 𝛽0 is the intercept, 𝛽1, … , 𝛽𝑝 are regression parameters for 𝑝 moderators, 𝑋𝑖1, … , 𝑋𝑖𝑝 are 

respective study characteristics, and the variance of 𝜑𝑖 = 𝑣𝑖 + 𝜏𝑋
2. As opposed to the URE model, 

the between-studies variance in the CRE model accounts for 𝑝 moderators and is denoted as 𝜏𝑋
2. 

As a single-level model, the CRE model can be written as 

𝑇𝑖 =  𝛽0 +  𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜑𝑖 + 휀𝑖, (6) 
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휀𝑖~𝑁(0, 𝑣𝑖) 

𝜑𝑖~𝑁(0, 𝜏𝑋
2). 

 One approach for examining moderators is meta-regression, which accommodates 

continuous and categorical predictors (Borenstein et al., 2011; Konstantopoulos & Hedges, 

2019). Here, the weights, 𝑤𝑖
∗, are equal to 

𝑤𝑖
∗ =

1

𝑣𝑖 + 𝜏𝑋
2  . (7) 

The goal of meta-regression is to examine how a set of moderators relate to the overall effect. 

Meta-regressions are also used to assess the influence of study characteristics on the effect-size 

variability (Borenstein et al., 2011; Terri D. Pigott, 2012; Tipton et al., 2019). 

Between-Studies Variance Estimation 

In this section, I present several common methods for estimating between-studies 

variability from a URE model, including the DerSimonian and Laird method (1986) and 

restricted maximum likelihood estimation. 

DerSimonian and Laird Estimator 

DerSimonian and Laird (1986) proposed a method-of-moments estimator to estimate the 

heterogeneity variance in a random-effects meta-analysis, which is a partial function of 

Cochran’s 𝑄 statistic: 

 

𝑄 = ∑  𝑤𝑖(𝑇𝑖 −  𝜃)2, (8) 

where  𝑤𝑖 is equal to 1/𝑣𝑖. The DerSimonian and Laird estimator is given by 

�̂�𝑀𝑀
2 =

𝑄 − (𝑘 − 1)

∑ �̂�𝑖
𝑘
𝑖=1 − ∑  𝑤𝑖

2/ ∑ �̂�𝑖
𝑘
𝑖=1

𝑘
𝑖=1

. (9) 



 

8 

 

This method is unbiased if the within-study variances are known and does not make assumptions 

regarding the distribution of 𝜏2. Due to its simplicity and non-iterative estimation approach, 

�̂�𝑀𝑀
2  method is one of the most commonly used estimators in URE models (Brockwell & 

Gordon, 2001; Sidik & Jonkman, 2007; Thompson & Sharp, 1999). However, it lacks efficiency 

and tends to underestimate the standard error of the overall effect-size estimate (Bodnar, Link, 

Arendacká, Possolo, & Elster, 2017; Brockwell & Gordon, 2001). 

Restricted Maximum Likelihood Estimator 

Restricted maximum likelihood (REML) assumes a normal distribution for the random 

effects. The log-likelihood function of REML stems from the maximum likelihood method 

(MLE; Hardy & Thompson, 1996). The difference between REML and MLE is that REML does 

not directly estimate the parameter 𝜃. Consequently, no assumptions are made about 𝜃, which 

can be a benefit of REML over MLE (Viechtbauer, 2005). 

The REML estimator is given by 

�̂�𝑅𝐸𝑀𝐿
2 = max {0,

∑ 𝑎𝑖
2 ((𝜃𝑖 − 𝜃𝑅𝐸)

2
− 𝜃𝑖

2)𝑘
𝑖=1

∑ 𝑎𝑖
2𝑘

𝑖=1

+
1

∑ 𝑎𝑖
𝑘
𝑖=1

}, (10) 

where 𝑎𝑖 = 1/(𝑣𝑖 + �̂�𝑅𝐸𝑀𝐿
2 ). The parameter estimate of �̂�𝑅𝐸𝑀𝐿

2  is computed through an iterative 

procedure (Hardy & Thompson, 1996; Konstantopoulos & Hedges, 2019; Sidik & Jonkman, 

2007; Raudenbush, 2009). REML obtains estimates by maximizing the likelihood as a function 

of 𝜏2 alone. 

Bayesian Estimation 

Bayesian inference is a statistical approach that is based on Bayes’ rule for probabilities. 

In a Bayesian approach to statistical analysis, probability is interpreted as a subjective knowledge 



 

9 

 

of uncertainty and is regarded as a degree of belief (de Finetti, 1974; Jackman, 2009). Bayes rule 

can be expressed as 

𝑝(𝐴|𝐵) =
𝑝(𝐵|𝐴) 𝑝(𝐴)

𝑝(𝐵)
 , (11) 

where 𝑝(𝐴) is the prior distribution, 𝑝(𝐵|𝐴) is the likelihood function, 𝑝(𝐴|𝐵) is the posterior 

distribution, and 𝑝(𝐵) is a normalizing constant to ensure the distribution integrates to unity 

(Turner & Higgins, 2019). 

In frequentist methods, parameters are unknown quantities that are to be estimated by a 

statistic (e.g., mean, standard deviation). These parameters, though unknown, are assumed to be 

fixed. However, in a Bayesian framework, unknown parameters contain uncertainty and are 

described by probability distributions (Gelman, 2003; Jackman, 2009; Schmid, 2001; Van de 

Schoot et al., 2014). The probability distributions of the unknown parameters are also referred to 

as prior distributions and contain our state of knowledge or beliefs about the parameters. The 

unknown parameters in a URE meta-analysis are the within-study variances 𝑣𝑖, between-studies 

variance, 𝜏2, and the population treatment effect 𝜃; though, only prior information is available 

about 𝜏2 and 𝜃 (Abrams & Sansó, 1998; R. M. Turner & Higgins, 2019). The within-study 

variances 𝑣𝑖 are usually not considered to be unknown parameters because they are assumed to 

be known and are replaced by the observed within-study variances from each study (Abrams & 

Sansó, 1998). When conducting meta-regression, the regression coefficients of the moderators 

are also unknown parameters. 

Observed data are used in the likelihood function, which determines the probability of the 

data, conditional on the parameters. Conceptually, the prior distribution is combined with the 

likelihood function and the unconditional distribution of the data to create new information about 

the parameters. This combination produces a posterior distribution, which describes the 
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parameters after observing the data (Schmid, 2001; Van de Schoot et al., 2014). Probability 

statements about the parameters are taken from the posterior distribution. 

There are several advantages to using a Bayesian approach in meta-analysis. First, 

Bayesian inference produces a distribution for the parameters of interest, which allows for direct 

probability statements (Sutton & Abrams, 2001; Turner & Higgins, 2019). For example, if we 

are interested in testing the difference in means between sex (male and female), we can compute 

the probability that the average effect size for males is larger or smaller than the average for 

females. A Bayesian approach uses credible intervals to draw these inferences and make these 

statements. 

Second, because the Bayesian approach can incorporate external evidence on the 

between-studies variance, Higgins & Whitehead (1996) suggest incorporating real data from 

previous studies rather than using subjective opinion to formulate the prior distribution of the 

between-studies variance. This allows researchers to “borrow strength” from other studies, which 

in turn reduces the imprecision and enables predictions of effects in future studies (Sutton & 

Abrams, 2001; Turner, Jackson, Wei, Thompson, & Higgins, 2015). 

Third, the Bayesian approach allows for all parameter uncertainty to be investigated in 

the analysis (Sutton & Abrams, 2001), not just the between-studies variance. Obtaining 

information about the parameters through the posterior distribution is advantageous because 

researchers can analyze the posterior estimates to determine if the results are meaningful, or to 

investigate possible explanations for certain results. 

A fourth advantage is that the Bayesian approach allows for a more flexible modeling 

framework. Using prior distributions naturally allows researchers to account for uncertainty due 

to missing data (Turner, Dias, Ades, & Welton, 2015) 
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A potential drawback to this approach stems from the use of prior distributions. Different 

prior distributions can be used to generate varying results, especially if the observed data are 

sparse (Kruschke & Liddell, 2018). Additionally, the overall computational method can be 

complex to implement and time consuming to write and to conduct (Sutton & Abrams, 2001). 

Missing Data Theory 

A common problem in quantitative research is that of missing data; many statistical 

methods assume complete information for all the variables in an analysis (Enders, 2010; Peugh 

& Enders, 2004). For example, missing data may occur when research participants refuse or 

forget to answer a survey question. In a meta-analysis, missing data can occur when primary 

studies fail to provide the necessary quantitative information (e.g., means or standard deviations) 

to calculate effect sizes. 

There are several reasons why missing data is an issue. First, the presence of missing data 

may reduce statistical power. Second, missing data may introduce statistical bias in the 

estimation of parameters. Third, it can reduce the representativeness of the samples. Overall, 

missing data can threaten statistical validity (Kang, 2013). 

A “complete dataset” can be thought of as having two components: observed data (𝑌𝑜𝑏𝑠) 

and missing data (𝑌𝑚𝑖𝑠). The complete dataset can also be represented as a data matrix that 

contains values of a collection of explanatory variables. Each row represents individual units, 

cases, observations, subjects, etc. and columns represent characteristics or explanatory variables 

that are measured for each unit. 

In missing data theory, it is assumed that there is a score on every explanatory variable 

for each case (Enders, 2010). For example, if a participant responds to a 10-item instrument (e.g., 

10 explanatory variables), it is assumed there will be a score on each of the 10 items. However, 
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in practice suppose some portion of data are missing. In the above example, it is possible the 

participant may respond to only a portion of the 10 explanatory variables. 

Rubin (1976) conceptualizes missingness as a binary variable, 𝑅, with a probability 

distribution. This variable indicates whether a score on an explanatory variable is observed or 

missing (r = 1 if a score is observed or r = 0 if the score is missing). However, provided 

multivariate data, R becomes a matrix of missing data indicators, denoted as R. What is most 

important for missing data methods is the relationship (or lack thereof) of the missing data to 

other explanatory variables in the dataset (Enders, 2017). Below is an example of an R matrix 

with three variables (or items) and four participants: 

[

1 0 1
1 1 0
1 1 0
0 0 0

]. (12) 

Columns indicate items 1 through 3 on some questionnaire and rows indicate participants 1 to 4 

who answered the questionnaire. Specifically, participant 1 responded to items 1 and 3, however 

did not respond to item 2. Participants 2 and 3 responded to the first two items but did not answer 

the third item, and participant 4 did not respond to any items. 

Missing Data Mechanisms 

Missing data mechanisms represent the relationship between observed explanatory 

variables and the probability of missing data (Enders, 2010; Little & Rubin, 2019; Rubin, 1976). 

This explanation is not causal. Missing data mechanisms specify what conditions must be present 

to accurately estimate the missing parameters, for example, missing effect sizes in a meta-

analytic context (Little & Rubin, 2019; Rubin, 1976a). 

Rubin (1976) defines three types of missing data mechanisms: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR). The nature of 
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the relationship between 𝐑 (missing data matrix) and the observed data is what determines the 

missing data mechanisms. The type of missing data mechanism influences the appropriate 

statistical analysis of the dataset (Enders, 2010; Little & Rubin, 2019; Rubin, 1976). 

Missing Completely at Random (MCAR) Mechanism 

The MCAR mechanism is the probability of missing data for an explanatory variable, Y, 

that does not depend on either observed explanatory variables or Y itself (Rubin, 1976). That is, 

the missing data are completely independent of the combined observed data (i.e., 𝐑 is 

independent of 𝑌𝑜𝑏𝑠 and 𝑌𝑚𝑖𝑠). This can be expressed as the probability equivalence 

𝑝(𝑅|𝑌, ∅) = 𝑝(𝑅|∅) ∀ {𝑌, ∅}, (13) 

where ∅ represents the set of unknown parameter(s) (Little & Rubin, 2019). There is no assumed 

systematic difference between the missing data for an explanatory variable and the observed data 

for the explanatory variable. The missing observations are a random sample of all observations, 

had the data been complete (Bhaskaran & Smeeth, 2014). 

In a meta-analytic context, the MCAR mechanism stipulates that studies with completely 

observed data can be considered to be a random sample of the studies originally identified for the 

synthesis (Pigott, 2019). For example, primary authors make different decisions when reporting 

information in a research article; the result of these differences can be values of a specific 

explanatory variable being MCAR (Pigott, 2019). 

Missing at Random (MAR) Mechanism 

If the probability of missing a value on an explanatory variable, 𝑌, is related to observed 

or unobserved explanatory variables, but not the actual value of Y, then the missing mechanism 

is said to be MAR (Rubin, 1976). This can be expressed as a probability equivalence: 
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𝑝(𝑅|𝑌, ∅) = 𝑝(𝑅|𝑌𝑜𝑏𝑠, ∅) ∀ {𝑌𝑚𝑖𝑠,∅}. (14) 

The probability of missingness depends on observed data by some unknown parameter(s) ∅, that 

relates 𝑌𝑜𝑏𝑠 to R (Enders, 2010; Little & Rubin, 2019). This relationship implies that R is 

dependent on 𝑌𝑜𝑏𝑠, but not 𝑌𝑚𝑖𝑠. That is, the probability of a missing observation is independent 

of the missing value for the explanatory variable Y, but is dependent on the values of completely 

observed explanatory variables (Bhaskaran & Smeeth, 2014; Pigott, 2012). 

 The MAR assumption is relevant to meta-analysis as well: 

“Some studies may report the income level of subjects as a function of the percent of 

students who qualify for free lunch, while others report income level as the average 

income reported by parents. The differences between these studies could be due to the 

discipline of the primary author – studies in education tend to use the percent of studies 

with low income in a school while large-scale studies may have the resources to conduct 

a survey of parents to obtain a more direct measure of income. A missing value for a 

particular measure of income in a particular study is not necessarily related to the value 

of income itself but to the choices of the primary author and constraints on the published 

version of the study” (Pigott, 2012, p. 91-92). 

A systematic relationship between one or more measured explanatory variables and the 

probability of missing data exists because the missing values for Y are not random. There is no 

way that the probability of the missing data on Y is solely a function of other measured 

explanatory variables. Thus, there is no way to test or verify the MAR mechanism. MAR is 

described as ignorable missingness in the missing data literature because likelihood-based 

analyses of missing data, such as maximum likelihood estimation and multiple imputation, do 
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not require an estimate of the missing data distribution (Enders, 2010). Later I discuss likelihood-

based missing data methods. 

Missing Not at Random (MNAR) Mechanism 

 The third missingness mechanism, missing not at random (MNAR), occurs when the 

probability distribution of R depends on the missing values (Enders, 2010; Little & Rubin, 

2019). This mechanism assumes the probability of the missing data on Y relates to the observed 

values of Y itself, even after considering other variables. Like the MAR mechanism, there is no 

way to verify that scores are MNAR without knowing the values of the missing variables. The 

probability distribution of the MNAR mechanism is 

𝑝(𝑅|𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, ∅). (15) 

 As one example in meta-analysis, this can occur when effect sizes are not reported in a 

study because they are not statistically significant (Pigott, 2019). Specific values are more likely 

to be missing than other values because they are censored based on statistical significance. 

Classical Missing Data Techniques 

This section provides an overview of two classical approaches to handling missing data: 

listwise deletion and pairwise deletion. Advantages and disadvantages to these methods are 

highlighted. 

Listwise deletion 

A popular missing data handling method is listwise deletion (i.e., complete case analysis). 

This method involves discarding cases where one or more explanatory variables are missing 

(Enders, 2010; Little & Rubin, 2019; Schafer & Graham, 2002). Listwise deletion is 

advantageous because a set of fully observed cases is used for all analyses. Listwise deletion also 
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allows for the comparability of univariate statistics because all are computed from a common 

sample (Little & Rubin, 2019). 

However there are also several disadvantages to this approach (Little & Rubin, 2019). 

Listwise deletion is inefficient because it excludes data that may be informative analyses. 

Estimates may be biased if the missing information is MAR (i.e., complete cases systematically 

differ from the full sample). Furthermore, a decrease in the number of cases used for the analysis 

can lead to loss of statistical power. Overall, listwise deletion is a limiting technique and is 

generally not recommended (Graham, 2009; Little & Rubin, 2019). 

Pairwise Deletion 

Pairwise deletion (i.e., available case analysis) eliminates cases on an analysis-by-

analysis basis, which allows for the use of as much observed data as possible. Consequently, the 

sample of data changes from variable to variable and analysis to analysis with respect to the 

pattern of missingness. Although this method uses more information than listwise deletion, it is 

still an inefficient method. Like listwise deletion, pairwise deletion requires the data to be 

MCAR and can produce biased estimates if the assumption is not met (Enders, 2010; Little & 

Rubin, 2019). 

Additionally, using different subsets of cases may cause issues when estimating 

correlations or covariances among the variables. This is particularly important in case of 

multivariate analyses that use a covariance matrix as the input data (e.g., regression). If each 

correlation/covariance is estimated on the basis of having data for all variables, then there is no 

guarantee that the correlation matrix will be positive definite (Graham, 2009). Non-positive 

definite matrices can lead to estimation problems for some multivariate statistical analyses 

(Graham, 2009). A non-positive definite variance-covariance matrix occurs when a correlation or 
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covariance matrix contains combinations of estimates that would have been mathematically 

impractical. Due to these issues, pairwise deletion is also generally not recommended (Graham, 

2009; Little & Rubin, 2019). 

Modern Missing Data Techniques 

Likelihood-based analyses, such as MLE and multiple imputation (MI), have been shown 

to be more effective than the two classical procedures mentioned above (Allison, 2000; Graham, 

2009; Schafer, 1997). These methods are supported by a growing number of empirical research 

studies that demonstrate their effectiveness (e.g., Anderson, 1957; Buuren & Groothuis-

Oudshoorn, 2011; Carpenter, Kenward, & White, 2007; Collins, Schafer, & Kam, 2001; 

Dempster, Laird, & Rubin, 1977; Furukawa, Barbui, Cipriani, Brambilla, & Watanabe, 2006; 

Gold & Bentler, 2000; Grund, Lüdtke, & Robitzsch, 2018). MLE and MI require less 

assumptions about the cause of missing data and produce parameter estimates with less statistical 

bias and greater power (Enders, 2001; 2010). Furthermore, these methods also do not require 

information about the unknown parameter ∅ if the data are assumed to be MAR or MCAR (Little 

& Rubin, 2019; Rubin, 1976). 

Maximum Likelihood Estimation (MLE) 

MLE begins by specifying a distribution for the population of data, which is commonly 

assumed to be normally distributed for areas in the social sciences (Enders, 2010). In most cases, 

MLE is applied to multivariate data because datasets typically contain more than one explanatory 

variable. Thus, MLE examines the probability of a score from a multivariate normal distribution 

because it generalizes the curve of the distribution of data to multiple explanatory variables 

(Enders, 2010). 
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The probability density function describes the relative likelihood that an explanatory 

variable takes on a given value. The probability density function is directly estimated using only 

the observed data when the dataset contains missing values (Grund, Lüdtke, & Robitzsch, 2019). 

However, the natural logarithm of the individual likelihood values is used during estimation due 

to rounding errors and computational simplicity (Enders, 2001; 2010). 

 The goal of MLE is to identify population parameter values that have the highest 

probability of reproducing a particular sample of data (Enders, 2001, 2010; Gold & Bentler, 

2000; Graham, Hofer, & MacKinnon, 1996; Kenward & Molenberghs, 1998). Different log-

likelihood values are estimated based on the unique combination of parameter estimates. MLE 

attempts to identify the set of estimates that produces the largest log-likelihood. This involves an 

iterative process which tests different values for the unknown parameters until the model 

converges to a set of parameter values that maximize the likelihood (Dempster et al., 1977). The 

log-likelihood for each case is 

𝐿𝑜𝑔(𝐿0) = −
𝑟

2
log(2𝜋) −

1

2
log|𝜮| −

1

2
(𝑽𝑜 −  𝝁)𝑇𝜮−1(𝑽𝑜 −  𝝁), (16) 

where 𝑟 is the number of explanatory variables, 𝑽𝑜 is the score vector for case 𝑜, and 𝝁 and 𝜮 are 

the population mean vector and covariance matrix for case 𝑜 (Enders, 2010). The mean vector 

(𝝁) contains the means of each variable and the covariance matrix (𝜮) consists of the variances 

of the variables along the main diagonal and the covariances between each pair of variables on 

the off-diagonals. 

Values of the log-likelihood that are closest to zero reflect a higher relative probability of 

drawing a sample of scores and closer proximity to the population mean than values those are 

further away from zero. The sample log-likelihood quantifies the fit between the data and the 
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parameter estimates. It also provides a basis for choosing among a set of potential parameter 

values (Enders, 2010). 

Multiple Imputation (MI) 

The key idea behind MI (Rubin, 1986) is to use the distribution of the observed data to 

estimate a set of potential values for the missing data (Graham, Olchowski, & Gilreath, 2007; 

White, Royston, & Wood, 2011). One advantage of this technique is that it allows for unbiased 

parameter estimates (Graham et al., 2007). MI can be thought of as having three phases (Enders, 

2017; Rubin, 1987): imputation phase, analysis phase, and pooling phase. 

Imputation phase 

The imputation phase first creates several versions of a sample dataset. The researcher 

selects the number of imputations m (i.e., copies of the data). However, it is suggested that at 

least 20 datasets (m = 20) are imputed (Graham et al., 2007). Each version contains different 

estimates of the missing values (Enders, 2017). The estimated parameters are then used to 

generate a new set of parameters for the next iteration of imputation. 

 Conceptually, we can think of the imputation phase as having two steps (Enders, 2010): 

imputation step (I-step) and posterior step (P-step). The I-step builds a set of regression 

equations using an estimate of 𝝁 and 𝜮. The development of MI is rooted in a Bayesian 

framework (Rubin, 1987), where each I-step is a random draw from the full conditional 

distribution. Also known as the posterior predictive distribution, the full conditional distribution 

is the distribution of possible unobserved values, conditional on the observed values. This can be 

summarized as 

𝑌𝑡
∗ ~ 𝑝(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠, 𝝑𝑡−1

∗ ), (17) 



 

20 

 

where 𝑌𝑡
∗ represents the imputed value at the 𝑡th I-step and 𝝑𝑡−1

∗  contains the parameter values 

that generate the imputation regression equations (i.e., �̂� and �̂� from the P-step). That is, 𝝑𝑡−1
∗  

contains the parameter values from the imputed value before I-step t. Essentially, imputed values 

at an I-step are taken from a distribution that makes the missing values conditional on the 

observed data and the parameter estimates of �̂� and �̂� from the previous I-step. 

Missing values are then replaced by imputed values that are sampled from their posterior 

predictive distribution, given the observed data. The P-step generates different parameter values 

using data from the previous I-step via adding a random residual term to each element of the 

mean vector, �̂�, and covariance matrix, �̂�: 

𝝑𝒕
∗~𝑝(𝜗|𝑌𝑜𝑏𝑠, 𝑌𝑖

∗), (18) 

where 𝜽𝒕
∗ are the new estimated values from the P-step t (Enders, 2010). The values of �̂� 

and �̂� are taken as a random draw from their respective posterior predictive distributions. 

Analysis and pooling phases 

After the imputation phase, the set of m datasets contains different estimates of the 

missing values. Each imputed dataset is analyzed to provide m sets of parameter estimates and 

their standard errors. The pooling phase combines the estimated missing values into a single set 

of results (Enders, 2010). 

According to Rubin (1987), the average can be computed to pool the estimates from the 

analysis phase. Standard errors are pooled by computing the within-imputation variance and the 

between-imputation variance (Enders, 2010). The within-imputation variance is the average of 

the m sample variances and estimates the variability in the sample as if there were no missing 

data. The between-imputation variance estimates the variability across the m imputations and 

examines the sampling error due to missing data. The total sampling variance is the sum of the 
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within and between-imputation variances. This three-step process is used for all MI procedures. 

However, the imputation phase can incorporate several different algorithms, depending on the 

specific missing data problem (Enders, 2010). For example, a longitudinal dataset requires a 

different imputation algorithm when compared to a cross-sectional dataset. Common algorithms 

for MI are expectation maximization (Dempster et al., 1977) and data augmentation (Tanner & 

Wong, 1987). Additionally, there are several methods of MI, including fully conditional 

specification (FCS; Van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006) and joint 

modeling (JM; Liu, Taylor, & Belin, 2000). 

Joint Modeling (JM) 

Joint modeling (Schafer, 1997) involves specifying a single imputation for all 

explanatory variables with missing data, where missing data are specified as having a 

multivariate distribution. Imputations are created for all explanatory variables simultaneously, 

which are drawn from conditional distributions by Markov Chain Monte Carlo (MCMC) 

techniques (Grund, Lüdtke, & Robitzsch, 2018a; Kline, Andridge, & Kaizar, 2017; Van Buuren 

& Groothuis-Oudshoorn, 2011). 

MCMC techniques combine two properties: Monte-Carlo and Markov Chain. Monte 

Carlo examines random samples from a distribution to be able to describe the distribution (e.g., 

estimate the mean of the distribution). A Markov Chain is when samples from a probability 

distribution are obtained randomly through a sequential process. Each random sample in the 

Markov chain is used to generate the next random sample. Samples taken from a Markov chain 

only depend on the one before it; they do not directly depend on samples before the previous 

one. MCMC is constructed to establish a stationary distribution (Lin, 2010). The properties of 
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the stationary distribution are estimated by examining random samples from the distribution 

(Van Ravenzwaaij, Cassey, & Brown, 2018). 

As stated in Enders et al. (2016), “the term ‘joint model’ comes from the fact that the 

incomplete variables are assumed to follow a common distribution” (p. 225). The main idea of 

the JM approach is to define a joint multivariate model for all the explanatory variables in the 

dataset (Quartagno, Grund, & Carpenter, 2019). The JM approach first specifies a parametric 

multivariate density, 𝑝(𝑌|𝜗) for the data 𝑌, given model parameters 𝜗 (Schafer, 1997). Next, 

imputations are drawn from the posterior predictive distribution, 𝑝(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠). Bayesian 

methods, specifically Gibbs sampling, are typically used to fit and impute the missing data via a 

data augmentation algorithm (Tanner & Wong, 1987). New values for the parameters in the 

model are repeatedly drawn from a conditional distribution (Quartagno et al., 2019). 

One advantage of the JM approach is that it works well with multilevel data structures 

(Andridge, 2011; Liu et al., 2000; Mistler & Enders, 2017). However, it can be difficult to build 

a joint model when there are a large number of explanatory variables or when variables are not 

normally distributed (Kline et al., 2017). 

Fully Conditional Specification (FCS) 

Fully conditional specification (FCS) imputes multivariate missing data on a variable-by-

variable basis. This is completed by specifying a multivariate distribution through a set of 

conditional densities, one for each incomplete explanatory variable (Van Buuren, 2007). The 

conditional density is used to impute the missing explanatory variable provided the matrix of 

moderators, missing explanatory variable, 𝑌𝑚𝑖𝑠𝑠, and the Y missingness indicator, R. FCS 

begins with simple random draws from the marginal distribution, which is a distribution 
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containing data from a single parameter in the dataset. Values are imputed by iterating over the 

conditional densities (Liu & De, 2015). 

There are several other advantages to the FCS approach over the JM approach. One 

advantage is that the FCS approach may be easier to generalize models under nonignorable 

missing data mechanisms (Van Buuren et al., 2006). Additionally, Van Buuren et al. (2006) 

states that it may be easier to communicate this model to others because each variable has a 

separate imputation model. However, FCS is not without its disadvantages. One disadvantage of 

FCS is that each conditional density must be specified separately, which may be an issue if a 

dataset has many of variables (Van Buuren et al., 2006). 

FCS has been proposed using several names, including regression switching (Van 

Buuren, Boshuizen, & Knook, 1999), sequential regressions (Raghunathan, Lepkowski, Hoewyk, 

& Solenberger, 2001), ordered pseudo-Gibbs sampler (Heckerman, Chickering, Meek, 

Rounthwaite, & Kadie, 2000), partially incompatible MCMC (Rubin, 2003), iterated univariate 

imputation (Gelman, 2004), multiple imputation by chained equations (Van Buuren & 

Groothuis-Oudshoorn, 2011), and fully conditional specification (Van Buuren, 2007). 

Missing Data in Meta-Analysis 

There are three main ways missing data can occur in meta-analysis: 1) studies are missing 

from the review due to publication bias or reporting bias, 2) effect sizes are missing due to 

inadequate quantitative reporting, including those needed to compute sample variances, and 3) 

moderators for regression models of effect-size variation are missing (Pigott, 2012; 2019). I will 

focus on the third scenario, missing moderator(s). 
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Missing Moderators 

Meta-regression can be used to explore the extent to which study characteristics (i.e., 

moderators) explain the variation between studies. Reviewers generally code what information is 

most relevant pertaining to these characteristics. However, a lot of variation in terms of reporting 

in primary studies exists, thus missing study characteristics can occur. 

Classical procedures for handling missing data tend to have several issues (Pigott, 2012; 

2001). In a meta-analysis, using only complete case analysis (i.e., listwise deletion) limits the 

number of studies available for analysis. If studies that do not provide adequate information are 

deleted, then reviewers assume the remaining studies for the analysis are representative of those 

originally gathered for review (i.e., studies are MCAR; Pigott, 2001). However, this is a strong 

and unlikely realistic assumption. Instead, information contained in the complete studies is lost 

and statistical power decreases (Kim & Curry, 1977; Pigott, 2012; Rubin, 1987). Lastly, Pigott 

(2001) showed that a listwise deletion inflates standard errors and underestimates parameter 

estimates when utilized in a meta-analysis. 

Estimation problems can also occur if a reviewer implements an available case analysis 

(i.e., pairwise deletion; Pigott, 2001). One statistical problem that may arise is a non-positive 

definite variance-covariance matrix. Again, a non-positive definite variance-covariance matrix 

occurs when the correlation or covariance matrix has combinations of estimates that are not 

plausible. For example, if a correlation exceeds one. 

Another issue concerns the within-study sample size when computing standard errors for 

the parameter of interest (Allison, 2000). This is because each parameter can be estimated with a 

different subset of studies. Pigott (2001) argues that the performance of an available case 

analysis is not reliable because each estimated value is based on a different subset of the original 
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data set. If data are MCAR, then the subset is representative of the original data. However, if the 

data are MAR, then the subset is not representative of the original data and will produce biased 

estimates (Pigott, 2012) 

Pigott (2001; 2012; 2019) recommends the use of multiple imputation for handling 

missing moderators in meta-analysis, arguing that multiple imputation may be more flexible 

when compared to MLE. Other researchers have also assessed the issue of missing moderators in 

meta-analysis by utilizing a joint modeling approach (Hemming et al., 2010). 

Consistent with the JM approach, Hemming et al. (2010) imputed one explanatory 

variable at a time, conditional on the other included variables. The method by Hemming et al. 

(2010) was illustrated to contain a mixture of continuous and discrete variables. Moderators are 

specified to have a joint density, which is modeled as a factorization of a meta-regression model 

and a conditional factorization of the density for the moderators. 

Hemming et al. (2010) followed the conditional joint model (CJM) specification by 

Lipsitz and Ibrahim (1996), which suggested a conditional approach where the joint distribution 

of p-dimensional moderator vector 𝑿𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑝) is modeled as 

𝑝(𝑋𝑖1, … , 𝑋𝑖𝑝|𝜶) 

= 𝑝(𝑋𝑖𝑝|𝑋𝑖1, … , 𝑋𝑖𝑝−1 , 𝜶𝑝) × 𝑝(𝑋𝑖𝑝−1 |𝑋𝑖1, … , 𝑋𝑖𝑝−2 , 𝜶𝑝−1) × … × 𝑝(𝑋𝑖1|𝜶𝑖), 
(19) 

where 𝜶𝑝 is the vector of parameters for the pth conditional distribution, 𝜶 = (𝛼1, … , 𝛼𝑝). The 

purpose of this model is to estimate the parameter vector of the regression coefficients of the 

conditional distribution of the response variable given the moderator vector X. 

 Equation (19) outlines this model, in which there is a conditional distribution of the 

response variable given the moderator vector X, and then a sequence of one-dimensional 
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conditional distributions are specified for X (Lipsitz and Ibrahim 1996). This model was 

proposed exclusively for missing categorical data models. 

This work was extended to include a Monte Carlo version using the EM algorithm to 

obtain the maximum likelihood estimate and was implemented through the use of the Gibbs 

sampler (Ibrahim, Chen, & Lipsitz, 1999). Only moderators that are missing are modeled. The 

moderators that are completely observed are used in the conditional distribution when 

constructing the distribution of the missing moderators (Ibrahim, Chen, Lipsitz, & Herring, 

2005). 

 The CJM approach has been shown to perform better than listwise deletion (Ibrahim et 

al., 1999). Hemming et al. (2010) compared the CJM approach to listwise and pairwise deletion. 

Deviance Information Criterion (DIC) was used to compare the models, where models with 

smaller DIC values among models with the same data are considered to have better fit. Although 

Hemming et al. (2010) stated their proposed model performed the best, DIC values were unclear 

and hard to interpret. However, comparable models were not presented with the DIC values 

(Hemming et al. 2010) (2010). Thus, it may not be possible to directly compare the models 

because the sample sizes are different. 

Lastly, a simulation was not performed which may have been helpful when comparing 

the CJM model to listwise deletion. Simulation studies produce empirical results about statistical 

methods in certain situations or scenarios (Morris, White, & Crowther, 2019). This is beneficial 

when evaluating new methods, such as the proposed missing moderator method, and comparing 

alternative methods. 

The focus of this dissertation was to examine the conditional joint modeling approach 

illustrated by Hemming et al. (2010) and proposed by Ibrahim et al., (1999) under known 
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conditions using computer simulations. Specifically, I aim to answer the following two 

questions: 

1. How does the CJM method perform under various conditions? 

2. How does the CJM method compare to listwise deletion? 
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METHOD 

As mentioned in the literature review, few methods exist for handling missing moderators 

in meta-analysis other than classical approaches. One approach, proposed by (Ibrahim et al., 

1999) and later illustrated by Hemming et al. (2010) used a CJM approach. The purpose of this 

chapter is to present the key components of the research including the simulation conditions, data 

generation, and the evaluation procedures used to assess the effectiveness of the CJM 

imputation. 

Data Generation 

A simulation study is a valuable tool when examining new statistical methods. In 

simulation studies, data are created by pseudo-random sampling from known probability 

distributions (Morris et al., 2019). Data were generated to simulate multiple meta-regression 

models with a continuous outcome variable and two covariates for this dissertation. 

Mean differences were used as the effect size of interest. First, the standardized mean 

difference (SMD), or 𝑑, was estimate for study i, where i = 1,…,K: 

𝑑𝑖 =
�̅�𝑖

𝑇 − �̅�𝑖
𝐶

𝑆𝑖
𝑃 , (20) 

where �̅�𝑖
𝑇 and �̅�𝑖

𝐶 are the treatment and control means, respectively, and 𝑆𝑖
𝑃 is the pooled 

standard deviation. Let 𝑛𝐶 and 𝑛𝑇 be the sample sizes in the two groups, and (𝑆𝑇)2 and (𝑆𝐶)2 be 

the sample standard deviations of the two groups, respectively. Then, 

𝑆𝑖
𝑃 = √

(𝑛𝐶 − 1)(𝑆𝐶)2 + (𝑛𝑇 − 1)(𝑆𝑇)2

𝑛𝐶 + 𝑛𝑇 − 2
. (21) 

The variance of the ith value of d is estimated by 
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𝑆𝑑𝑖

2 =
𝑛𝑖

𝑇 + 𝑛𝑖
𝐶

𝑛𝑖
𝑇𝑛𝑖

𝐶 +
𝑑𝑖

2

2(𝑛𝑖
𝑇 + 𝑛𝑖

𝐶)
. (22) 

However, d is slightly biased (Borenstein et al., 2011) and tends to overestimate the absolute bias 

of the mean differences, particularly provided small within-study sample sizes. A correction 

factor, 𝐽, was applied to convert 𝑑 to Hedges’ 𝑔: 

𝐽 = 1 −
3

4(𝑑𝑓 − 1)
, (23) 

where  

𝑑𝑓 = (𝑛𝐶 + 𝑛𝑇 − 2). (24) 

The computation for Hedges’ 𝑔 is 

𝑔 = 𝐽 ∗ 𝑑. (25) 

Hedges’ 𝑔 was used as the overall effect size, denoted as 𝛽0 in Equation (10), and was set 

as a medium effect size of 0.5 (i.e., 𝛽0 = 0.5; Lopez-Lopez, Botella, Sanchez-Meca, & Marin-

Martinez, 2013). The use of a fixed effect size is common in mixed-effects meta-regressions in 

simulation studies (see Lopez-Lopez et al., 2013; Viechtbauer, López-López, Sánchez-Meca, & 

Marín-Martínez, 2015). The within-study sample sizes were also fixed to 𝑛𝐶 = 𝑛𝑇 = 250 per 

group, or 𝑁𝑇𝑜𝑡𝑎𝑙 = 500 for ease of simulation computing. 

Similar to Viechtbauer et al. (2015), the standardized coefficient values for the covariates 

𝑋𝑖1 and 𝑋𝑖2 were set to reflect low (𝛽𝑝 = 0.05), medium (𝛽𝑝 = 0.20), and high (𝛽𝑝 = 0.50) 

values. The study characteristic values (𝑿𝑖𝑝) were generated from a multivariate normal 

distribution with a sample size equal to the number of effect sizes (K) and a mean equal to a 

vector of zeros. The standard deviation component of this distribution was equal to a 2x2 

correlation matrix, 
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[
1 0.30

0.30 1
], (26) 

where 0.30 is the correlation between 𝑋𝑖1 and 𝑋𝑖2. The generated values of 𝑥𝑖1 and 𝑥𝑖2 were used 

to produce values for the individual effect sizes, 𝜃𝑖, 

𝜃𝑖 =  (𝛽1  × 𝑋𝑖1) + (𝛽2 × 𝑋𝑖2) +  𝜔, (27) 

with 

 𝜔~ 𝑁(0,1). (28) 

The effect size 𝜃𝑖 in Equation (27) was used in the generation for the control and 

treatment means. The treatment mean was generated from a normal distribution with a sample 

size equal to 250 and the mean equal to 0.50 plus the generated effect size 𝜃𝑖 and the generated 

random effect. The variance of the treatment mean generation was equal to one. The control 

group mean was also generated from a normal distribution with a sample size equal to 250, mean 

equal to zero plus the generated effect size 𝜃𝑖, and a variance of one. 

The random effect was generated from a normal distribution with a sample size equal to 

K, a mean of 0, and a variance equal to the between-studies variance, 𝜏2, that was set to reflect 

low (0.01), medium (0.40) and high (1.00) values. The sample size of the meta-analysis, K, was 

manipulated to be 20 or 80 to simulate small and large meta-analyses. 

Lastly, the conditions were reflected to contain 15%, 30% or 50% missing values for 𝑋2. 

All data were generated and analyzed using R version 1.2.5033 (R Studio Team, 2020). This 

procedure was used to create k rows of data that contained the mean and SD of the control and 

treatment groups, effect sizes and variances, and the mean of the study characteristics 𝑋1 and 𝑋2. 

This can be thought of as a single individual meta-analytic study. Each individual meta-analysis 

was a “complete dataset” as it contained all the simulated values. 
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Missing Data and Meta-Analysis Procedure 

A total of 3 (𝛕2) × 2 (K) × 3 (𝜷1) × 3 (𝜷𝟐) × 3 (% Missing) × 2 (Missing Procedures) 

provided 324 simulation conditions. For each of these conditions, 500 datasets were simulated. 

The simulation was conducted in R (R Core Team, 2020) and JAGS (Plummer, 2003), using 

several packages including metafor (Viechtbauer, 2010), rjags (Plummer, 2019), coda 

(Plummer, Best, Cowles, & Vines, 2006), and jagsUI (Kellner, 2019). Error! Reference source n

ot found. Table 1 outlines all the conditions in the simulation. 

Missing Data Procedure 

Missing data for 𝑋2 were generated with a missing data mechanism of MAR. This 

implies that the missing data mechanism can be ignored in estimating the missing parameters. 

Each generated dataset was specified to have 15%, 30%, and 50% missing. The same data set 

was used for all three percent missing conditions. This was completed utilizing the mice (Van 

Buuren & Groothuis-Oudshoorn, 2011) package in R. As stated earlier, these datasets were 

analyzed using two procedures: 1) listwise deletion, and 2) CJM procedure. 

Overall Meta-Analysis Procedure 

A meta-analysis was conducted on each dataset utilizing the metafor package 

(Viechtbauer, 2010) in R. Study characteristics 𝑋1 and 𝑋2 were included as moderators in the 

analysis. The between-studies variance was estimated using restricted maximum likelihood in 

metafor and Bayesian estimation in rjags. 
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Missing Data Methods 

Listwise Deletion 

The listwise method was implemented in the metafor package in R, which automatically 

eliminates all studies with missing data. The remaining full cases were analyzed using restricting 

maximum likelihood. 

Conditional Joint Modeling 

The CJM method was implemented using Bayesian techniques. Several R packages were 

used, including rjags (Plummer, 2019), coda (Plummer, Best, Cowles, & Vines, 2006), and 

jagsUI (Kellner, 2019). Estimates were based on iterations of length 100,000 after an initial 

burn-in length of 50,000. MCMC convergence was established to be enough after examination of 

traceplots, autocorrelations, and the Geweke statistic. 

Choices of prior distributions were based on Hemming et al. (2010). Priors for 𝛽0, 𝛽1, 

and 𝛽2 were specified to have a normal distribution with a mean of 0 and a variance of 100. The 

conditional densities for the moderators 𝑋1 and 𝑋2 were specified to have normal distributions 

with a mean 𝛾10 for 𝑋1 and 𝛾20 + 𝛾21𝑋1 for 𝑋2 and a variance 

1

𝜎𝑥𝑝 ∗ 𝜎𝑥𝑝
, (29) 

where 

𝜎𝑥𝑝~ 𝑈(0, 100)  (30) 

The terms 𝛾10 and 𝛾20 were specified to have normal priors with a mean of 0 and a variance of 

100. A conditional joint distribution was only considered for 𝑋2 because it was the only 

moderator that had missing values. The moderator 𝑋2 was modeled by 𝑝(𝑋2|𝑋1), where the 

missing values of 𝑋2 were conditional on 𝑋1. 
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Evaluation Procedure 

After obtaining the estimated missing values, data sets were evaluated using several 

assessment and diagnostic methods: relative bias, mean squared error (MSE), and 95% coverage. 

Parameter estimates accuracy was evaluated through relative bias and MSE. Relative bias 

measures the degree to which the average of the simulated value of interest exceeds the true 

value of the parameter. This was calculated as 

E[𝜐] − 𝜐,

E[𝜐]
× 100, (31) 

where �̂� reflects the average of the simulated parameters of interest for each missing condition 

(i.e., 𝛽0 or Hedges’ 𝑔, 𝛽1, and 𝛽2), and 𝜐 represents the true value of the parameter, which is the 

fixed value used in the simulation design. A negative relative bias indicates that the estimated 

value is smaller than the true value of the parameter (i.e., underestimated). An overestimated 

parameter has a positive relative bias, where the estimated value is larger than the true parameter 

value. 

 MSE represents efficiency when the parameter estimate is unbiased. MSE values can be 

compared to determine the relative efficiency. These values must be from the same parameter 

but can be from different simulation conditions. MSE is calculated as 

E[(�̂� − 𝜐)2]. (32) 

MSE is a measure of how close an estimated value is to the true value (Walther & Moore, 2005). 

A large MSE indicates less accuracy in the estimate. 

Lastly, coverage is determined by the proportion of 95% confidence or credible intervals 

that contained the true population value for each parameter. This is defined as 

𝑃𝑟(𝑣𝐿𝑜𝑤 ≤ 𝜐 ≤ �̂�𝑈𝑝𝑝𝑒𝑟), (33) 
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where �̂�𝐿𝑜𝑤 and �̂�𝑈𝑝𝑝𝑒𝑟 are the lower and upper limits of the interval. Coverage measures how 

well the parameter and standard errors are estimated. According to Burton, Altman, Royston, & 

Holder (2006), coverage should not fall outside two standard errors (SE) of the nominal coverage 

probability, which is calculated as 

√
𝐸(1−𝐸)

𝐵
, (34) 

where 𝐸 is equal to 0.95 and 𝐵 is the number of replications in the simulation (i.e., 500). In this 

dissertation, adequate coverage should be between 0.94 and 0.96. 

 Each of these evaluation procedures are discussed for both the effect size, 𝑔, and the 

regression coefficient for the missing moderator, 𝛽2. Furthermore, a mixed-effects analysis of 

variance (ANOVA), with two within-subject factors and four between-subject factors, was used 

to determine the effects of the design factors on bias and MSE. Missing data method and missing 

percentage were treated as within-subjects’ factors because each simulated meta-analysis dataset 

was analyzed using both methods (i.e. listwise deletion and the CJM approach) and was 

simulated to have 15%, 30%, and 50% missing data. 

Furthermore, five two-way interactions were calculated: 

1. 𝜏2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑, 

2. 𝐾 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑, 

3. 𝛽1 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑, 

4. 𝛽2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑,  

5. 𝑀𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

The mixed-effects ANOVA also included 10 three-way interactions:  

1. 𝐾 × 𝜏2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑, 
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2. 𝐾 × 𝛽1 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑, 

3. 𝐾 × 𝛽2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑,  

4. 𝐾 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

5. 𝜏2 × 𝛽1 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

6. 𝜏2 × 𝛽2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

7. 𝜏2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

8. 𝛽1 × 𝛽2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

9. 𝛽1 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

10. 𝛽2 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 

Following Luo and Kwok (2012), partial eta-squared (𝜂𝑝
2) greater than 0.01 effect size will be 

reported for the ANOVA rather than the p-value of the F test.  
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RESULTS 

Performance of Bayesian Estimation 

Several diagnostic measures were used to assess the convergence performance of the 

Bayesian CJM approach. The Geweke diagnostic was used to assess the adequacy of the burn-in 

length. Values between the first chain and the second chain suggested adequate burn-in length. 

Additionally, autocorrelation was used to examine if values were statistically independent during 

the MCMC iterations. Assessment of autocorrelation revealed a rapid decline in values as the 

number of lags increased, suggesting minimal-to-no issues via MCMC convergence.  

Relative Bias 

Relative bias for 𝛽2 

Simulation results assessing estimated relative bias for the true parameter of β2 are 

provided in Table 2. Specifically, Table 2 shows differences among relative bias for both missing 

data methods across values of 𝜏2, K, β1, β2, and percentage missing. Overall, the CJM approach 

and listwise deletion showed considerable negative bias. Further examination of Table 2 showed 

that relative bias ranged from -1.357 and -0.023. Unexpectedly, these values both occurred when 

listwise deletion was implemented as the missing data method with 50% missing data at K = 20. 

The lowest value (i.e., -1.357) occurred when 𝜏2= 1.00 and β1 was 0.5 β2 was 0.05 and  the 

maximum value (i.e., -0.023) occurred when 𝜏2= 0.40, β1 = 0.05, and β2= 0.05. 

A two-way interaction between K and missing data method accounted for approximately 

11% of the error variance, 𝜂𝑝
2 = 0.107. As shown in Figure 1, relative bias was better for listwise 

deletion than it was for the CJM approach when there were 20 studies in the meta-analysis. 

Relative bias at 20 studies was around -0.42 for the CJM approach and -0.38 for listwise 
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deletion. However, when there was an increase in K, the CJM approach performed better than 

listwise deletion, with relative bias improving to approximately -0.3 for the CJM approach and to 

approximately -0.35 for listwise deletion. 

 The interaction between the true value of 𝜏2 and the missing data method interaction 

accounted for about 11% of the error variance, 𝜂𝑝
2 = 0.111. Figure 2 shows that relative bias 

decreased for both missing data methods when there was an increase in 𝜏2 to 0.04. However, 

relative bias increased when 𝜏2 increased from 0.4 to 1. 

Additionally, a two-way interaction between the missing data method and the true value 

of 𝛽1 accounted for approximately 4% of the error variance, 𝜂𝑝
2 = 0.038; while a two-way 

interaction between the missing data method and the true value of 𝛽2 explained approximately 

3% of the error variance, 𝜂𝑝
2 = 0.029. 

Figure 3 illustrates the interaction between the missing data method and the missing 

percentage, 𝜂𝑝
2 = 0.045. Relative bias for both missing data methods was approximately -0.3 at 

15% missing data and -0.35 at 30% missing data. When missing percentage increased to 50%, 

relative bias increased to -0.6 for the CJM approach and approximately -0.4 for listwise deletion. 

A three-way interaction between the true value of 𝜏2, the number of studies K, and the 

missing data method explained approximately 7% of the error variance, 𝜂𝑝
2 = 0.071. Figure 4 

illustrates this three-way interaction and shows that relative bias slightly decreased for both 

missing data methods when the true value of 𝜏2 increased from 0.01 to 0.40, regardless of the 

number of studies K. Though, there was an increase in relative bias when the true value of 𝜏2 

increased from 0.40 to 1.0, except when the CJM approach was implemented with 80 studies. 

Instead, the CJM approach with 80 studies slightly decreased in relative bias. 



 

38 

 

A three-way interaction between the number of studies K, true value of 𝛽1, and the 

missing data method explained 3% of the error variance, 𝜂𝑝
2 = 0.030. Figure 5 shows that when K 

= 20 for both missing data methods, relative bias increased in conjunction with the increase of 

the true value of 𝛽1. When K = 80 for both missing data methods, average relative bias did not 

change when there was an increase in the true value of 𝛽1. However, when examining Table 2, 

this trend did not appear as prevalent. This may be because when 𝛽1= 0.5, relative bias reaches 

as high as -0.730. 

Examination of a three-way interaction between K, the true value of 𝛽2, and the missing 

data methods suggested that relative bias decreased as there was an increase in the true value of 

𝛽2. This interaction explained 2% of the error variance, 𝜂𝑝
2 = 0.022. 

Additionally, the interaction between K, the missing percentage, and the missing data 

method also explained 2% the error variance, 𝜂𝑝
2 = 0.023. Overall, relative bias increased as there 

was an increase in the missing percentage, except when there were 80 studies, when 

implementing listwise deletion. When the CJM method had 80 studies included in the meta-

analysis, relative bias was lower than when the CJM method included only 20 studies. However, 

this trend was not observed when examining changes in missing percentage as both K and 

missing percentage increased for listwise deletion. When there was 50% missing data, listwise 

deletion with 80 studies decreased in relative bias. This trend can be seen in Figure 6. 

Results suggest that the three-way interaction between 𝜏2, 𝛽1, and missing data method 

explained approximately 14% of the error variance (𝜂𝑝
2 = 0.136) and that three-way interaction 

between 𝜏2, 𝛽2, and missing data method explained approximately 17% of the error variance, 

(𝜂𝑝
2= 0.171). However, examination of Table 2 indicated that this may be due to the extreme 

values found when 𝛽2= 0.5. ANOVA results also suggested that the three-way interaction 
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between 𝛽1, 𝛽2, and missing data method explained 10% (𝜂𝑝
2= 0.10) of the error variance, and 

that the interaction between 𝛽1, missing percentage, and missing data method explained 

approximately 3% (𝜂𝑝
2= 0.030) of the error variance. 

Relative bias for Hedges’ 𝑔 

Like the performance of 𝛽2, the CJM approach and listwise deletion underestimated the 

true parameter of Hedges’ 𝑔, on average. Table 3 showcases the differences among relative bias 

for both missing data methods across values of 𝜏2, K, 𝛽1, 𝛽2, and percentage missing. 

Examination of Table 3 showed that relative bias was larger for listwise deletion. Additionally, 

the largest relative bias values occured when 𝜏2 = 1.00 and listwise deletion was implemented. 

As shown by Table 3, relative bias slightly decreased when K increased to 80 studies for 

the CJM approach. However, when K was 80 studies for listwise deletion, there was barely any 

change in relative bias. Additionally, relative bias for the CJM approach was -0.04, on average, 

but was about -0.16, on average, for listwise deletion. This interaction between K and the 

missing data method explained almost 99% of the error variance, 𝜂𝑝
2 = 0.988. 

Estimated relative bias values for varying degrees of 𝜏2 for the two missing data methods 

are given in Figure 7, which illustrated that as the value of 𝜏2 increased for each missing data 

method, the relative bias became more negative. This finding was supported with the ANOVA 

results, which indicated the interaction between the true value of 𝜏2 and the missing data method 

explained 97% of the error variance, 𝜂𝑝
2 = 0.967. Specifically, as the value of 𝜏2 increased, the 

relative bias increased for both missing data methods. In comparison, when 𝜏2 = 0.4, values of 

relative bias were approximately 0.00 for the CJM approach and -0.1 for listwise deletion. 

Greater differences were observed when 𝜏2 increased to 1.0. Specifically, the CJM approach had 

relative bias around -0.1, while listwise deletion had relative bias values around -0.4, on average. 
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ANOVA results also indicated that the percentage of missing data paired with the 

missing data method explained about 29% of the error variance, 𝜂𝑝
2 = 0.291. As Figure 8 

illustrates, relative bias values for the CJM approach were less than -0.1 for all conditions of 

missing percentage. However, relative bias values became more negative when missing 

percentage increased for listwise deletion. At 30% missing, relative bias values for listwise 

deletion were approximately -0.15, and at 50% missing, relative bias values were approximately 

-0.25.  

The two-way interaction between missing data method and the true value of 𝛽1 explained 

approximately 11% of the error variance, 𝜂𝑝
2 = 0.109. Examination of Table 3 showed that there 

was no considerable change for the CJM approach when there was an increase in 𝛽1. Relative 

bias for the CJM approach was around -0.05 for all conditions of 𝛽1. Instead, differences in 

relative bias emerged for the listwise deletion approach. As illustrated by Figure 9, relative bias 

slowly decreased as the true value of 𝛽1 increased. Relative bias was approximately -0.2 when 𝛽1 

was 0.05 for listwise deletion, then around -0.18 when 𝛽1 = 0.2, and then around -0.15 when 𝛽1 

= 0.5. 

Examination of Table 3 suggested an interaction between K, missing data method, and 

𝜏2, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.233. Relative bias slightly increased for 

both missing data methods, when 𝜏2 increased from 0.01 to 0.4, regardless of number of studies 

K, and when 𝜏2 increased from 0.4 to 1.0. Figure 10 illustrates the three-way interaction, which 

also shows a considerable difference in relative bias between listwise deletion and the CJM 

approach. Specifically, relative bias for the CJM approach at K = 20 and at K = 80 increased 

from approximately 0.00 to approximately -.05 when 𝜏2 increased to 0.4. In comparison, relative 

bias for listwise deletion increased from approximately 0 to -0.1 for listwise deletion at K = 20 
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and at K = 80. When 𝜏2 increased to 1.0, relative bias for both conditions of K increased to -0.1, 

on average, for the CJM approach, which is an increase of about .05. Relative bias for listwise 

deletion increased to -0.4, which is an increase of about 0.3. 

Table 3 shows that the CJM approach had lower relative bias values than listwise deletion 

when examining by K and the true value of 𝛽2. This three-way interaction explained 7% of the 

error variance, 𝜂𝑝
2 = 0.072. In Table 3, when 𝛽1= 0.05 and 𝛽2 = 0.05 at K = 20, relative bias 

values for the CJM approach are - 0.001, - 0.022, and - 0.079, and for listwise deletion are higher 

at -0.005, -0.073, and -0.229. Figure 11 illustrates this interaction, showing that the CJM 

approach had lower relative bias, overall, than does listwise deletion. Additionally, Figure 11 

also illustrates that relative bias decreased as the true value of 𝛽2 increased, for both missing data 

methods and conditions of K. 

Examination of Table 3 suggested a three-way interaction between K, missing data 

method, and missing percentage, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.926. Table 

3 shows that, overall, listwise deletion had higher relative bias than did the CJM approach at all 

conditions of K and missing percentage. Figure 12 also illustrates this interaction, which shows 

that the CJM approach at both conditions of K did not have relative bias values that were greater 

than -0.1. However, when K = 80 for the CJM approach, relative bias values were slightly larger 

than were relative bias values when K = 20 for the CJM approach. Generally, as both missing 

percentage and K increased, relative bias values increased for the CJM approach. 

Similar results were found when examining listwise deletion, however with greater 

relative bias values. As both missing percentage and K increased for listwise deletion, relative 

bias values got considerably more negative. As illustrated by Figure 12, when missing 

percentage is 15, relative bias values for listwise deletion at both K conditions were -0.1. As 
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missing percentage increased to 30, relative bias was about -0.15 for both K conditions, and then 

about -0.25 when missing percentage was 50. 

The three-way interaction between missing data method, the true value of 𝛽1 and 𝜏2 

explained approximately 20% of the error variance, 𝜂𝑝
2 = 0.195. Table 3 shows that as 𝜏2 and 𝛽1 

increased, relative bias improved for both missing data methods, and that listwise deletion had 

more negative relative bias values than did the CJM approach. For example, when 𝜏2 when 0.1 

and 𝛽1 = 0.05, relative bias ranged from -0.002 to approximately 0.000 for the CJM approach 

and ranged from -0.004 to -0.007 for listwise deletion. This interaction is also illustrated by 

Figure 13, which shows that, on average, relative bias values for the CJM approach at any value 

of 𝜏2 did not reach greater than -0.1, but was as large as -0.4 for listwise deletion when 𝜏2 = 1.0. 

Furthermore, Figure 13 shows that as the true value of 𝛽1 increased, relative bias slightly 

decreased for all conditions of 𝜏2 and missing data methods. 

A similar relationship occurred when examining the three-way interaction between 

missing data method, 𝜏2, and 𝛽2 which was supported by the ANOVA results, 𝜂𝑝
2 = 0.128. Figure 

14 shows this three-way interaction, illustrating that relative bias was largest when 𝜏2 = 1.0 and 

the missing data method was listwise deletion. Specifically, Figure 14 shows that relative bias 

decreased as 𝛽2 increased, but that relative bias increased as 𝜏2 increased. 

Examination of Table 3 suggested a three-way interaction between missing data, 𝜏2, and 

missing percentage, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.800. Specifically, as 

missing percentage increased, relative bias increased when 𝜏2 was 0.40 for the CJM approach, 

and when 𝜏2 was 0.40 and 1.0 for listwise deletion. This three-way interaction is also shown in 

Figure 15. 



 

43 

 

ANOVA results suggested that a three-way interaction between missing data method, 𝛽1, 

and 𝛽2 explained approximately 8% of the error variance, 𝜂𝑝
2 = 0.084. Specifically, as 𝛽2 

increased for the CJM approach, there was a slight decrease in relative bias regardless of the true 

value of 𝛽1. That is, relative bias was relatively the same for all values of 𝛽1 and 𝛽2 for the CJM 

approach. However, relative bias was slightly smaller for larger values of 𝛽1 for listwise deletion. 

Additionally, relative bias also decreased as 𝛽2 increased. That is, as 𝛽1 and 𝛽2 both increased, 

relative bias for listwise deletion decreased. 

Lastly, ANOVA results suggested a three-way interaction between missing data method, 

as 𝛽1, and missing percentage, 𝜂𝑝
2 = 0.043. Table 3 shows that when there was 15% missing data 

and as 𝛽1 = 0.05, the CJM approach had lower relative bias values than did listwise deletion. 

Specifically, when was 𝛽1 = 0.05, relative bias values ranged from – 0.099 to 0.015 for the CJM 

approach but ranged from -0.635 to 0.000 for listwise deletion. As missing percentage increased, 

no noticeable change was observed in relative bias values for the CJM approach, regardless of as 

𝛽1 values. Not only did relative bias increase when missing percentage increased, but that 

relative bias was larger for smaller values of as 𝛽1. 

Mean Squared Error 

MSE for 𝛽2 

The simulation results for assessing the estimated MSE for the true parameter of 𝛽2 for 

the various conditions are provided in Table 4. ANOVA results indicated that several conditions 

explained the variation in observed MSE values for 𝛽2. First, the interaction between true value 

of 𝜏2 and missing data method explained approximately 46% of the error variance, 𝜂𝑝
2 = 0.462. 

As illustrated by Table 4, when the true value of 𝜏2 equaled 0.001, MSE values were the highest 

for both the CJM approach (M = 0.021, SD = 0.040) and listwise deletion (M = 0.021, SD = 
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0.040). The average MSE value decreased when τ2 increased to 0.40 with a mean of 0.010 (SD = 

0.011) for the CJM approach and a mean of 0.010 (SD = 0.12) for listwise deletion. However, 

MSE values increased for both missing data methods when 𝜏2 increased to 1.0 with a mean of 

0.012 for both the CJM approach and listwise deletion (CJM, SD = 0.014; listwise deletion, SD = 

0.13). 

Second, the true value of 𝛽1 explained approximately 57% of the error variance in MSE 

values for 𝛽1, 𝜂𝑝
2 = 0.570. On average, MSE values were smaller when the true value of 𝛽1 was 

low. The average MSE when 𝛽1 = 0.050 was 0.010 (SD = 0.011) for the CJM approach and was 

0.011 (SD = 0.12) for listwise deletion. MSE stayed relatively the same when 𝛽1 was 0.200 with 

an average MSE of 0.010 (SD = 0.012) for the CJM approach and 0.011 (SD = 0.012) for 

listwise deletion, but increased when  𝛽1 increased to 1 for both the CJM (M = 0.023, SD = 

0.040) and listwise deletion (M = 0.022, SD = 0.040). Overall analysis indicated that MSE values 

for this two-way interaction were relatively the same for both missing data methods. 

Furthermore, the true value of 𝛽2 explained approximately 25% of the error variance in 

MSE values for 𝛽2, 𝜂𝑝
2 = 0.254. Like 𝛽1, MSE values were smaller when the true value of 𝛽2 was 

low. The average MSE when 𝛽2 = 0.05 was approximately 0.000 (SD ≈ 0.000) for the CJM 

approach and was approximately 0.000 (SD = 0.001) for listwise deletion. MSE slightly 

increased when 𝛽2 increased to 0.200 with an average MSE of 0.005 (SD = 0.002) for the CJM 

approach and 0.005 (SD = 0.001) for listwise deletion. MSE increased again when 𝛽2 increased 

to 1 for both the CJM approach (M = 0.038, SD = 0.034) and listwise deletion (M = 0.038, SD = 

0.033). Overall analysis indicated that MSE values for this two-way interaction were relatively 

the same for both missing data methods. 
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ANOVA results suggested that the three-way interaction between missing data method, 

𝜏2, and 𝛽1 explained approximately 33% of the error variance, 𝜂𝑝
2 = 0.331. As shown by Table 4 

and Figure 16, when 𝜏2 was 0.01 for both missing data methods, MSE values were 

approximately 0.01 when 𝛽1 = 0.05 and 0.2. However, when 𝛽1 increased to 0.5 and 𝜏2 was 0.01, 

MSE values for the CJM approach and listwise deletion increased to about 0.045. Moreover, 

when 𝜏2 increased to 0.04 for both missing data methods, MSE values were also approximately 

0.01 for all conditions of 𝛽1. When 𝛽1 increased to 0.5 and 𝜏2 was 0.1.0, MSE values for the 

CJM approach and listwise deletion slightly increased from 0.01 to about 0.0125. 

Similarly, ANOVA results suggested that the three-way interaction between missing data 

method, 𝜏2, and 𝛽2 explained approximately 28% of the error variance, 𝜂𝑝
2 = 0.279. Table 4 

shows that regardless of the value of  𝜏2,  MSE for the CJM approach increased as the true value 

of 𝛽2 increased. Though, Figure 17 shows that MSE values varied for different conditions of 𝜏2 

and 𝛽1 for listwise deletion. Specifically, MSE values were similar at 𝛽2= 0.05 and 0.2 for all 

conditions of 𝜏2. However, when 𝛽2 increased to 0.5 and 𝜏2 was 0.01, MSE values increased 

substantially increased from below 0.01 to about 0.06 when 𝛽2 increased to 0.5. 

Lastly, examination of Table 4 suggested a three-way interaction between missing data 

method, 𝛽1 and 𝛽2, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.329. Particularly, MSE 

values increased when 𝛽1 and 𝛽2 increased for both missing data methods. The increase in MSE 

values was relatively similar for both missing data methods, until 𝛽1 and 𝛽2 were 0.50, then MSE 

was approximately 0.01 greater for listwise deletion than it was for the CJM approach. 

MSE for Hedges’ 𝑔 

Table 5 provides the performance of MSE values for Hedges’ 𝑔 for the various conditions. 

ANOVA results indicated differences among MSE values for several conditions for Hedges’ 𝑔. 
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First, the interaction between K and missing data method explained approximately 97% of the 

error variance, 𝜂𝑝
2 = 0.967. 

From Table 5, when comparing MSE values by K and the missing data method, listwise 

deletion had considerably higher MSE values than did the CJM approach. When K = 20, listwise 

deletion had an average MSE value of 0.016 (SD = 0.028), while the CJM approach had an 

average MSE of 0.001 (SD = 0.002). When K increased to 80, listwise deletion still had higher 

MSE values than the CJM approach with a mean of 0.017 (SD = 0.028) for listwise deletion and 

a mean of 0.001 (SD = 0.001) for the CJM approach. 

Examination of Table 5 also suggested a two-way interaction between the missing data 

method and the true value of 𝜏2, which was supported by the ANOVA, 𝜂𝑝
2 = 0.950. As can be 

seen by Figure 18, MSE values for both the CJM approach and listwise deletion were 

approximately 0 when 𝜏2 was 0.01. However, MSE values began to increase for the listwise 

deletion missing data method when the value of 𝜏2 increased to 0.4 and 1.0. When 𝜏2 = 0.40, the 

average MSE was 0.000 (SD ≈ 0.000) for the CJM approach and was 0.004 (SD = 0.003) for 

listwise deletion. When 𝜏2 = 1.00, the average was 0.002 (SD = 0.002) and 0.045 (SD = 0.033) 

for the CJM approach and listwise deletion, respectively.  

A two-way interaction between the missing data method and the true value of 𝛽1 

accounted for approximately 7% the error variance, 𝜂𝑝
2 = 0.073. Figure 19 shows the differences 

in MSE for both missing data methods across the varying values of 𝛽. MSE values for all three 

𝛽1 conditions for the CJM approach were approximately 0.00, however MSE values for listwise 

deletion were approximately 0.002. Additionally, Figure 19 shows a slight decrease in MSE 

values for listwise deletion when there was an increase in 𝛽1. 
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ANOVA results also suggested a two-way interaction between the missing data method 

and the percentage missing, 𝜂𝑝
2 = 0.032. Examination of Table 5 across missing percentage 

between the missing data methods suggested that MSE values increased for listwise deletion as 

missing percentage increased. MSE values were lowest for both missing data methods when 

missing percentage was 15%. The average MSE for the CJM approach at 15% missing data was 

approximately 0.000 (SD = 0.001) and for listwise deletion was 0.004 (SD = 0.006). When 

missing percentage increased to 30%, the CJM approach slightly increased to approximately 

0.001 (SD = 0.001), while listwise deletion increased to 0.013 (SD = 0.016). When missing 

percentage increased to 50%, the average MSE for the CJM approach stayed the same at 0.001 

(SD = 0.003) but increased again for listwise deletion to 0.032 (SD = 0.041). 

The three-way interaction between K, the missing data method, and 𝜏2 accounted for 

approximately 4% of the error variance, 𝜂𝑝
2 = 0.037. Table 5 shows that overall MSE values were 

smaller for the CJM approach than they were for listwise deletion regardless of K or 𝜏2. Figure 

20 shows differences among MSE values for the CJM approach when K was 20 versus when K 

was 80. Specifically, MSE values were slightly larger the CJM approach when K was 20 than 

when K was 80 for the CJM approach. Additionally, MSE increased for the CJM approach when 

𝜏2 increased to 1. In terms of listwise deletion, Figure 20 shows minimal differences between the 

various conditions of K, however MSE values increased whenever there was an increase in 𝜏2 

values. There was a substantial jump of about 0.045 in MSE for listwise deletion when there was 

an increase in 𝜏2 from 0.4 to 1.0. 

The three-way interaction between K, the missing data method, and 𝛽2, accounted for 

approximately 2% of the error variance, 𝜂𝑝
2 = 0.015. Illustrated by Figure 21, we can see that 

average MSE values for the CJM approach got slightly smaller as there was an increase in the 
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true value of 𝛽2, regardless of the value of K.  MSE values were also slightly larger when K was 

20 for the CJM approach. When examining listwise deletion, MSE values were larger than they 

were for the CJM approach. Additionally, MSE values were larger when K was 80 for listwise 

deletion than when K was 20. Like the CJM approach, MSE values slightly decreased as 𝛽2 

increased regardless of K. However, most notable in Figure 21 is that MSE values were 

approximately 0 for listwise deletion when 𝛽2 = 0.05 and there were 20 studies. When 𝛽2 

increased to 0.2, MSE values jumped to around 0.015. 

A three-way interaction between K, the missing data method, and missing percentage 

accounted for approximately 93% of the error variance 𝜂𝑝
2 = 0.934. Figure 22 shows that both the 

largest MSE values for both missing data methods occurred when K = 80 and there was 50% 

missing data. The CJM approach had lower MSE values than did listwise deletion. 

ANOVA results also suggested that the three-way interaction between missing data 

method, 𝜏2, and 𝛽1 explained approximately 21% of the error variance, 𝜂𝑝
2 = 0.206. As shown by 

Table 5 and Figure 23, MSE values were largest when listwise deletion was implemented and 𝜏2 

was 1.0. Figure 23 also illustrates that as 𝜏2 increased for listwise deletion, there was also an 

increase in MSE values. However, as 𝛽1 increased, MSE values decreased for all conditions of  

𝜏2 for listwise deletion. In terms of the CJM approach, MSE values were lower than 0.01 

regardless of 𝜏2 value or 𝛽1. 

Similarly, ANOVA results suggested that the three-way interaction between missing data 

method, 𝜏2, and 𝛽2 explained approximately 18% of the error variance, 𝜂𝑝
2 = 0.176. As shown by 

Table 5 and Figure 24, MSE values were largest when listwise deletion was implemented and 𝜏2 

was 1.0. Figure 24 also illustrates that as 𝜏2 increased for listwise deletion, there was also an 

increase in MSE values. However, as 𝛽1 increased, MSE values decreased for all conditions of 
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𝜏2 for listwise deletion. In terms of the CJM approach, MSE values were lower than 0.01 

regardless of  𝜏2 value or 𝛽1. 

A three-way interaction between missing data method, 𝜏2, and missing percentage 

accounted for approximately 90% of the error variance, 𝜂𝑝
2 = 0.901. As illustrated by Figure 25, 

MSE values were largest when listwise deletion was implemented with a 𝜏2 of 1.0 and 50% 

missing data. When missing percentage was 15%, MSE for listwise deletion at all values of 𝜏2 

ranged from approximately 0.00 to 0.01. When missing percentage was 15% for the CJM 

approach, MSE values were approximately 0 for all values of 𝜏2. When missing percentage 

increased to 30%, MSE values slightly increased for the CJM approach but were still below 0.01. 

MSE values for listwise deletion at 30% missing data were below 0.01 for listwise deletion when 

𝜏2 was 0.01 and 0.40 but were approximately 0.035 when 𝜏2 was 1.0. Values of MSE were 

larger for listwise deletion when 𝜏2 was 0.40 than they were for listwise deletion when 𝜏2 was 

0.01. As the value of missing percentage increased to 50, MSE values for all conditions of 

missing data method and 𝜏2 increased but were not below 0.01 for any condition other than 

listwise deletion when 𝜏2 was 1. 

Examination of Table 5 suggested a three-way interaction between missing data method, 

𝛽1 and 𝛽2, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.069. In general, Figure 26 shows 

that MSE values were larger for listwise deletion than they were for the CJM approach. 

Regardless of 𝛽1 or 𝛽2 values, MSE was approximately 0 for the CJM approach. However, when 

𝛽1 and 𝛽2 were both small for listwise deletion, MSE values were the largest. For example, when 

𝛽1 was 0.05 and 𝛽2 was 0.05, Figure 26 shows that the average MSE for listwise deletion was 

around 0.019. However, when 𝛽1 was 0.50 and 𝛽2 was 0.05, MSE values for listwise deletion 
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were around 0.015. As 𝛽2 increased, MSE values decreased for all values of 𝛽1 for listwise 

deletion. 

Examination of Table 5 suggested a three-way interaction between missing data method, 

𝛽1 and missing percentage, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.062. 

Particularly, MSE values increased when 𝛽1 and missing increased for listwise deletion but not 

for the CJM approach. MSE values were approximately 0 for all values of 𝛽1 and missing for the 

CJM approach. In comparison, MSE values for listwise deletion across the varying values of 𝛽1 

and missing percentage ranged from approximately 0.005 to 0.035. 

Coverage 

Coverage rates for 𝛽2 

Table 5 provides coverage performance for 𝛽2 for the various conditions. ANOVA results 

indicated differences among coverage for several conditions for 𝛽2. First, the interaction between 

K and missing data method explained approximately 24% of the error variance, 𝜂𝑝
2 = 0.236. 

From Table 5, when comparing coverage by K and the missing data method, listwise 

deletion had considerably lower coverage than did the CJM approach. When K = 20, listwise 

deletion had an average coverage of 0.849 (SD = 0.092), while the CJM approach had an average 

coverage of 0.875 (SD = 0.099). When K increased to 80, listwise deletion still had lower 

coverage than the CJM approach with a mean of 0.830 (SD = 0.110) for listwise deletion and a 

mean of 0.0841 (SD = 0.108) for the CJM approach. 

Examination of Table 5 also suggested a two-way interaction between the missing data 

method and the true value of 𝜏2, which is supported by the ANOVA, 𝜂𝑝
2 = 0.794. As can be seen 

by Figure 27, coverage for both the CJM approach and listwise deletion were around 0.848 (SD 

= 0.115). and 0.836 (SD = 0.112) when 𝜏2 was 0.01. Coverage slightly decreased when 𝜏2 
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increased to 0.4 for listwise deletion (M = 0.830, SD = 0.106) but stayed the same for the CJM 

approach (M = 0.848, SD = 0.109). When 𝜏2 increased to 1, coverage increased to approximately 

0.877 (SD = 0.088) and 0.852 (SD = 0.087) for the CJM approach and listwise deletion, 

respectively. 

A two-way interaction between the missing data method and the true value of 𝛽2 

accounted for approximately 97% of the error variance, 𝜂𝑝
2 = 0.968. Table 5 shows that listwise 

deletion had relatively lower coverage than did the CJM approach throughout all values of 𝛽1. 

Furthermore, a two-way interaction between the missing data method and the true value of 𝛽2 

accounted for approximately 64% of the error variance, 𝜂𝑝
2 = 0.641. As can be seen by Figure 28, 

the relationship between 𝛽2 regarding coverage was similar for both missing data methods. 

Specifically, coverage rates decreased as the true value of 𝛽2 increased. 

ANOVA results also suggested a two-way interaction between the missing data method 

and the percentage missing, 𝜂𝑝
2 = 0.057. Examination of Table 5 across missing percentage 

between the missing data methods suggested a slight increase in coverage as missing percentage 

increased, and that coverage was slightly higher for the CJM across all conditions of missing 

percentage than listwise deletion. Average coverage for the CJM approach at 15% missing data 

was 0.85 (SD = .109) and for listwise deletion was 0.832 (SD = 0.108) for listwise deletion. 

When missing percentage increased to 30%, the CJM approach had a slight increase of coverage 

to approximately 0.855 (SD = 0.107), while listwise deletion increased to 0.835 (SD = 0.108). 

When missing percentage increased to 50%, the average coverage for the CJM approach 

increased to 0.868 (SD = 0.100) and for listwise deletion to 0.851 (SD = 0.090). 

The three-way interaction between K, the missing data method, and 𝜏2 accounted for 

approximately 16% of the error variance, 𝜂𝑝
2 = 0.155. Table 5 shows that overall coverage was 
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smaller for listwise deletion than for the CJM approach by K and 𝜏2. Figure 29 shows differences 

among coverage for the CJM approach when K was 20 versus when K was 80. Specifically, MSE 

values were slightly larger the CJM approach when K was 20 than when K as 80 for the CJM 

approach. Additionally, coverage increased for the CJM approach when 𝜏2 increased to 1. In 

terms of listwise deletion, Figure 29 shows minimal differences between the various conditions 

of K, however coverage increased whenever there was an increase in 𝜏2, and listwise deletion 

with 20 studies had slightly larger coverage than did listwise deletion with 80 studies. 

The three-way interaction between K, the missing data method, and 𝛽1 accounted for 

approximately 3% of the error variance, 𝜂𝑝
2 = 0.027. Illustrated by Figure 30, the average 

coverage for the CJM approach increased as 𝛽1 increased when K = 20. When 𝛽1 = 0.05 at K = 

20, the average coverage for the CJM approach was 0.855 (SD = 0.120), at 𝛽1 = 0.20, the 

average coverage for the CJM approached increased to 0.863 (SD = 0.107) and then increased 

again to 0.906 (SD = 0.056) when 𝛽1 increased to 0.50 and K = 20. In comparison at K = 20 and 

𝛽1 = 0.05, the average coverage for listwise deletion was 0.859 (SD = 0.114), which was slightly 

larger than the CJM approach given the same conditions. However, coverage decreased to 0.83 

(SD = 0.098) for listwise deletion when 𝛽1 increased to 0.20, and then increased again to 0.866 

(SD = 0.055) when 𝛽1 increased to 0.50 at K = 20. 

When 𝛽1 = 0.05 and K = 80 the average coverage was higher for the CJM approach than 

when 𝛽1 = 0.05 and K = 20. Specifically, the average coverage at these conditions was 0.862 (SD 

= 0.112), and then decreased to 0.833 (SD = 0.111) when 𝛽1  = 0.20. Average coverage increased 

for the CJM approach at K = 80 when 𝛽1 = 0.50 to 0.847 (SD = 0.104). In comparison, average 

coverage was smaller for listwise deletion when K = 20 and 𝛽1 = 0.05, with a mean of 0.831 (SD 
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= 0.112). As 𝛽1 increased to 0.20, coverage decreased to 0.822 (SD = 01.114), and then 

increased to 0.837 (SD = 0.109) when 𝛽1 increased to 0.50. 

Similarly, the three-way interaction between K, the missing data method, and 𝛽2 

accounted for approximately 29% of the error variance, 𝜂𝑝
2 = 0.285. Illustrated by Figure 31, 

coverage for the CJM approach and listwise deletion decreased as there was an increase in the 

true value of 𝛽2, regardless of the value of K. However, coverage was higher for the CJM 

approach and listwise deletion when K = 20. Coverage ranged from approximately 0.95 to about 

0.70. 

ANOVA results suggested that the three-way interaction between missing data method, 

K, and missing percentage explained approximately 2% the error variance, 𝜂𝑝
2 = 0.016. As shown 

by Table 6 coverage values increase as missing percentage also increased, but as K increased, 

coverage values decreased. For example, when K = 20 and there was 15% missing data, the 

average coverage for the CJM approach was 0.865 (SD = 0.105) and the average coverage for 

listwise deletion was 0.840 (SD = 0.103). When K increased to 80 and there was15% missing 

data, the average coverage for the CJM approach was 0.835 (SD = 0.112) and the average 

coverage for listwise deletion was 0.824 (SD = 0.115). When missing percentage increased and 

K = 20, the average for the CJM approach was 0.874 (SD = 0.102) and the average coverage for 

listwise deletion was 0.848 (SD = 0.097). When K was increased to 80, average coverage 

decreased at 30% missing for both missing data methods to 0.837 (SD = 0.111) and 0.823 (SD = 

0.118) for the CJM approach and listwise deletion, respectively. Lastly, when missing was 

increased to 50%, the average coverage at K = 20 for the CJM approach is 0.886 (SD = 0.93) and 

is 0.858 (SD = 0.078) for listwise deletion. When K is increased to 80, average coverage was 
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0.850 (SD = 0.105) and 0844 (SD = 0.213) for the CJM approach and listwise deletion, 

respectively. 

ANOVA results also indicated that the three-way interaction between missing data 

method, 𝜏2, and 𝛽1 explained approximately 4% of the error variance, 𝜂𝑝
2 = 0.036. As shown by 

Table 5, coverage increased as 𝜏2 increased, on average. Additionally, coverage was largest for 

the CJM approach for all conditions of 𝛽1, specifically when 𝜏2 was equal to 1. Overall analysis 

shows that coverage was between 0.80 and 0.90 for all values of 𝛽1 and 𝜏2. 

Figure 32 illustrates the three-way interaction between missing data method, 𝜏2, and 𝛽2, 

which explained approximately 46% of the error variance, 𝜂𝑝
2 = 0.459. Specifically, the lower 

values of 𝛽2 and 𝜏2 had the highest coverage for both missing data methods. When 𝛽2 was 0.05 

and 𝜏2 was 0.01, the average coverage for the CJM approach was 0.971 (SD = 0.013) and for 

listwise deletion was 0.95 (SD = 0.010). When 𝜏2 increases to 0.40, the average coverage when 

𝛽2 = 0.20 was 0.886 (SD = 0.029) for the CJM approach and 0.863 (SD =0.025) for listwise 

deletion. In contrast, when 𝜏2 = 0.40 and 𝛽2 = 0.05, the average coverage decreased to 0.955 (SD 

= 0.010) for the CJM approach and decreased to 0.935 (SD = 0.016) for listwise deletion. 

Overall, Figure 32 shows that coverage was lowest when 𝛽2 was largest and 𝜏2 is lowest. 

The three-way interaction between the missing data method, 𝜏2 and missing percentage 

explained approximately 5% of the error variance, 𝜂𝑝
2 = 0.051. The largest coverage occurred in 

the CJM approach when 𝜏2 was 1.0 and missing percentage was 50%. However, all coverage for 

this three-way interaction was between 0.80 and 0.90. 

Examination of Table 5 also suggested a three-way interaction between missing data 

method, 𝛽1 and missing percentage, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.165. 

Particularly, coverage increased as missing percentage and 𝛽1 increased for both missing data 
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methods. Figure 33 illustrates that the CJM approach had larger coverage for all values of 𝛽1 and 

missing percentage. When missing percentage was 15% for the CJM approach, coverage was 

approximately 0.85 for all values of 𝛽1. As missing percentage increased to 30, coverage 

increased for the CJM approach when 𝛽1 was 0.50 but was relatively the same for the CJM 

approach when 𝛽1 was 0.05 or 0.20. When missing percentage increased to 50%, coverage for 

the CJM approach at 𝛽1 = 0.05 and 0.20 became larger than when 𝛽1 was 0.50 for the CJM 

approach. 

In terms of listwise deletion, coverage was lowest when missing percentage was 15. 

Coverage also increased for all values of 𝛽1 as there was an increase in missing percentage. 

When missing percentage increased to 50%, coverage was slightly above 0.85 when 𝛽1 was 0.05 

and 0.5, but not when 𝛽1 was 0.20. 

ANOVA results also suggested a three-way interaction between missing data method, 𝛽2 

and missing percentage, which was supported by the ANOVA results, 𝜂𝑝
2 = 0.017. Particularly, 

coverage increased as missing percentage and 𝛽2 increased for both missing data methods. 

Figure 34 illustrates that the CJM approach and listwise deletion had larger coverage rates for 

values of 𝛽1 and missing percentage. When missing percentage was 15% for the CJM approach 

and listwise deletion, coverage was approximately 0.95 when 𝛽2 was 0.05. As missing 

percentage increased to 30 and 50, coverage was relatively the same for both missing data 

methods when 𝛽2 was 0.05. When 𝛽2 was 0.20 for both missing data methods, coverage was 

between 0.80 and 0.90 across all values of missing percentage. Lastly, when 𝛽2 was 0.50 for 

both missing data methods, coverage was around 0.70 at 15% missing and 30% missing, and 

then slightly increased to about 0.75 when missing percentage is 50. 

 



 

56 

 

Coverage for Hedges’ 𝑔 

Table 7 provides coverage performance for 𝑔 for the various conditions. ANOVA results 

indicated differences among coverage for several conditions for Hedges’ 𝑔. First, the interaction 

between K and missing data method explained approximately 24% of the error variance, 𝜂𝑝
2 = 

0.236. 

From Table 7, when comparing coverage by K and the missing data method, listwise 

deletion had considerably lower coverage than did the CJM approach. When K = 20, listwise 

deletion had an average coverage of 0.863 (SD = 0.091), while the CJM approach had an average 

coverage of 0.922 (SD = 0.059). When K increased to 80, listwise deletion still had lower 

coverage than the CJM approach with a mean of 0.724 (SD = 0.254) for listwise deletion and a 

mean of 0.028 (SD = 0.122) for the CJM approach. 

Examination of Table 7 also suggested a two-way interaction between the missing data 

method and the true value of 𝜏2, which was supported by the ANOVA, 𝜂𝑝
2 = 0.714. As can be 

seen by Figure 35, coverage for both the CJM approach and listwise deletion was over 0.95, with 

an average of 0.971 (SD = 0.011) for the CJM approach and 0.955 (SD = 0.014) for listwise 

deletion when 𝜏2 was 0.01. Coverage values decreased for both missing data methods when 𝜏2 

increased 0.4 with an average of 0.897 (SD = 0.049) for the CJM approach and an average of 

0.812 (SD = 0.106) for listwise deletion. When 𝜏2 increased to 1, coverage continued to decrease 

to approximately 0.757 (SD = 0.088) and 0.614 (SD = 0.230) for the CJM approach and listwise 

deletion, respectively. 

ANOVA results also suggested a two-way interaction between the missing data method 

and the percentage missing, 𝜂𝑝
2 = 0.240. Examination of Table 7 across missing percentage 

between the missing data methods suggested that overall coverage for the CJM approach was 
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approximately the same for all values of missing percentage. However, as can be seen by Figure 

36, coverage decreased as there was an increase in missing percentage. When missing percentage 

was 15 for listwise deletion, coverage was approximately 0.875, but was around 0.755 when 

missing was 30% and was around 0.725 when missing was around 50%. 

The three-way interaction between K, the missing data method, and 𝜏2 accounted for 

68% of the error variance, 𝜂𝑝
2 = 0.680. Figure 37 shows differences among coverage between K, 

missing data method, and 𝜏2. When K = 20, coverage was between 0.75 and 0.99 for both 

listwise deletion and CJM approach, regardless of 𝜏2 value. In general, coverage decreased as 𝜏2 

increased. However, coverage decreased substantially when 𝜏2 increased when K was 80. 

Specifically, coverage was as low as 0.45 for listwise deletion when K = 80 and 𝜏2 = 1.0. In 

comparison, when K = 80 and 𝜏2 = 1.0, coverage was around 0.78 for the CJM approach.  

 A three-way interaction between K, missing data method, and 𝛽1 accounted for 

approximately 4% of the error variance, 𝜂𝑝
2 = 0.036. Figure 38 shows when K = 20, coverage was 

above 0.80 for both listwise deletion and the CJM approach, regardless of 𝛽1 value. When K = 

20, there was barely any change in coverage for listwise deletion and the CJM approach as there 

was an increase in 𝛽1. This is also true for the CJM approach when K = 80. However, when K = 

80 for listwise deletion, coverage increased as the true value of 𝛽1 increased. Coverage rates 

were as low as 0.70 for the CJM approach at 𝛽1= 0.05, and as high as 0.75 when 𝛽1 = 0.50. 

 Figure 39 illustrates the three-way interaction between K, missing data method, and 

missing percentage. When K = 20 and missing percentage increased, coverage did not change for 

the CJM approach. However, coverage decreased for listwise deletion. Coverage decreased from 

around 0.90 at 15% missing to about 0.85 at 50% missing for listwise deletion. When K = 80, 

coverage was a little bit above 0.80 for the CJM approach. However, like when K = 20 for 
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listwise deletion, coverage decreased as missing percentage increased for listwise deletion when 

K = 80. Specifically, coverage was as high as 0.98 at 15% missing for listwise deletion and as 

low as 0.60 at 50% missing when K = 80.  This three-way interaction accounted for 

approximately 24% of the error variance, 𝜂𝑝
2 = 0.241. 

 ANOVA results indicated that a three-way interaction between missing data method, 𝜏2, 

and 𝛽1 accounted for about 7% of the error variance, 𝜂𝑝
2 = 0.069. Figure 40 illustrates that 𝛽1 

only influenced the coverage within listwise deletion and not the CJM approach. Similarly, a 

three-way interaction between missing data, 𝜏2, and 𝛽2 suggested that only 𝜏2 influenced the 

coverage within listwise deletion and not the CJM approach. This interaction accounted for 3%, 

𝜂𝑝
2 = 0.028. 

 A three-way interaction between missing data method, 𝜏2, and missing percentage 

accounted for approximately 23% of the error variance, 𝜂𝑝
2 = 0.230. As missing percentage 

increased for listwise deletion, coverage decreased substantially. This occurred specifically when 

𝜏2 was 0.40 and 1.0. 
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CONCLUSIONS 

Summary of Results 

One of the most widely employed methodology to handle missing moderators when 

performing meta-analysis is listwise deletion (Pigott, 2001). However, listwise deletion tends to 

have several issues including bias estimation and a loss of statistical power (Pigott, 2019). Being 

able to accurately predict missing moderators in meta-analysis is beneficial. With the growth of 

evidence based practice, meta-analyses are typically considered at the top of the hierarchy of 

reliable evidence (Berlin & Golub, 2014). Consequently, it is important to be able to account for 

missing data. 

This dissertation examined a Bayesian joint model for handling missing moderators, 

which is based on a sequence of conditional distributions, namely conditional joint modeling 

(CJM). The use of CJM has been used in the meta-analysis literature to predict missing 

moderators (Hemming et al., 2010). However, its performance has yet to be empirically studied 

in the context of meta-analysis.  

This study primarily aimed to answer 1) how the CJM method performs under various 

conditions, and 2) how the CJM method performed compared to listwise deletion. CJM was 

examined under various simulation conditions and then analyzed using three forms of 

assessment: relative bias, mean squared error, and coverage.  Relative bias was calculated to 

measure how consistently the estimated parameter under or overestimated the true value of the 

parameters of interest. Results from the simulation show that the CJM method severely 

underestimated the true value of 𝛽2. Relative bias values ranged from as low as -0.956 to as high 

as -0.03815.   
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In terms of the comparison between listwise and CJM, the CJM approach performed 

similarly to listwise deletion when estimating 𝛽2. Though, there were a few instances where one 

method outperformed the other method. For example, CJM and listwise deletion performed 

similarly when there was a small or medium amount of missing data (relative bias was between -

0.35 and -0.30). However, listwise deletion produced more precise estimates of 𝛽2 than did CJM 

when missing percentage increased to 50%. Listwise deletion also performed better in estimating 

𝛽2 when the number of studies in the meta-analysis was small (i.e., K = 20); but, CJM performed 

better than listwise deletion when K increased to 80. As indicated by the mixed-effects ANOVA, 

CJM tended to perform better than listwise deletion across all other conditions when the number 

of studies in the meta-analysis was large.  

Most of the relative biases for Hedges’ 𝑔 were also underestimated when implementing 

CJM, with values ranging from as low as -0.221 to as high as 0.020. Overall, in terms of Hedges’ 

𝑔,  CJM outperformed listwise deletion across all simulation conditions.   

MSE was calculated to quantify the differences between the estimated and true values of 

the parameters of interest, indicating how close the estimates were to the true value(s). 

Examination of MSE when estimating 𝛽2 indicated that 1) CJM did not accurately predict the 

missing regression coefficient, and 2) CJM and listwise deletion performed similarly. Overall, 

estimated 𝛽2 was the least accurate when the true values of the regression coefficients were large 

and there was a small amount of between-studies variance. 

Examination of MSE when estimating Hedges’ 𝑔 suggested that CJM was more accurate 

than listwise deletion across all conditions. In all the scenarios of simulation, MSE was never 

larger than 0.0 1when CJM was implemented as the missing data method. However, accuracy 

declined as there was an increase in the between-studies variance for both missing data methods. 
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This implies that when there is a large amount of between-studies variance in a meta-analytic 

study and either CJM or listwise deletion is implemented, there is less accuracy in the prediction 

of the overall true effect size.  

The pattern of the results also suggest that K is an important factor for accuracy of 

Hedges’ 𝑔 when measured by MSE. First, there was considerably larger MSE values for listwise 

deletion than there was for the CJM approach when comparing by values of K. Second, the CJM 

approach also performed better when examining the three-way interaction between K, 𝜏2, and the 

missing data method.  Listwise deletion did not perform well as there was an increase in 

between-studies variance and the number of studies. Additionally, the CJM approach also 

performed better when examining the three-way interaction between K, 𝛽2, and missing data 

method. 

The CJM approach generally performed better than listwise deletion, with respect to 

coverage for the coefficient of the missing moderator, 𝛽2. However, examination of Table 6 

illustrates a severe amount of under-coverage for both missing data methods.  For example, when 

the regression coefficient of 𝛽2 was high (i.e., greater than 0.2), the average coverage for both 

missing data methods was at, or, below 0.85. When 𝛽2 increased, there was a decrease in 

coverage, which reached as low as 70% when 𝛽2 was at its largest of 0.50. 

The CJM approach also generally performed better than listwise deletion, with respect to 

coverage for Hedges’ 𝑔. Results also suggested that 1) greater between-studies variance resulted 

in lower coverage for both missing data methods, 2) a larger number of studies resulted in lower 

coverage for both missing data methods, and 3) the interaction between between-studies variance 

and number of studies resulted in lower coverage for both missing data methods 
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In general, results suggested that both methods for both parameters had inflated type 1 

error rates. This is because there was a large amount of conditions in which coverage was lower 

than the acceptable value of 0.94 (i.e., 94%). Inflated type I errors occur because there is greater 

confidence in the estimates due to more simulations incorrectly finding a significant result 

(Burton et al., 2006; Luo & Kwok, 2012).  

Implications and Limitations 

A limitation is noted when drawing conclusions from this research. An error message 

occurred when trying to compute the meta-analysis in the metafor package for 50% missing data. 

It is worth nothing that this estimation issue occurred randomly. That is, sometimes the metafor 

package computed the meta-analysis with 50% missing and sometimes it did not. No pattern was 

found as to why this occurred. 

However, we can see from these results how statistical analyses can be affected if studies 

with missing moderators are omitted from the meta-analysis. The major implication of this 

dissertation is that simply dropping a moderator with missing values from the analysis can lead 

to biased regression coefficients of the remaining moderators, which can change the conclusions 

of meta-analytic studies. Furthermore, dropping a study with missing values may result in losing 

important information that may impact the overall effect size. 

Although the CJM approach was not perfect, it still performed better than listwise 

deletion when estimating Hedges’ 𝑔.  As modeled, the CJM approach did not contain any 

missing values for Hedges’ 𝑔. The point of this dissertation was to be able to accurately estimate 

𝛽2 when there were missing values in the moderator. The Bayesian model (i.e., CJM approach) 

was able to compute g even if the study had missing data because all the cases were available to 

compute 𝑔. 
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 However, in the listwise deletion approach, any study that had missing data was deleted. 

This includes all the full information that could have been used to calculate g. This difference in 

calculation and method may explain the differences in results when comparing Hedges’ g. 

Future Research and Conclusion 

According to Li, Yu, and Rubin (2012) the CJM approach is “theoretically valid” when 

the missing data and data analysis are considered at the same time. However, if the method is 

only used to impute missing data, then the order of the moderator variables can lead to 

completely different joint distributions and resulting imputations. Other research (e.g., Murray, 

2018) has also stated that different orders of the moderating variables tend to lead to different 

joint distributions. 

This dissertation focused on the utilizing the CJM approach to impute missing data. The 

different orders of the moderating variables were not examined given that only two moderators, 

one with missing data, were utilized. Future research should examine more than two moderators, 

with different orderings of the joint distribution. 

Other research suggests that estimates can be biased if the covariate distribution is 

misspecified (Ibrahim et al., 2012; Zhang & Rockette, 2005). Ibrahim et al. (1999) mention the 

CJM approach has the potential to be misspecified, suggesting that “great care be taken in 

specifying the [moderator] distributions” (p. 596). Ibrahim et al. (1999) also suggest conducting 

a sensitivity analysis. The sensitivity analysis should be used to examine the robustness of the 

regression coefficient estimates under different prior distributions specified for the moderators.   

Though misspecification was not examined in this dissertation, a sensitivity analysis of 

the different choice of prior distributions can help future research. As mentioned in this 

dissertation, one advantage of using Bayesian methods is the ability to “borrow strength” from 
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other studies. A sensitivity analysis of priors may help reduce the imprecision when used to 

impute missing data. Sensitivity analyses are recommended by 1) changing the order of the 

condition in the covariate distributions, and 2) examining how the different choice in priors may 

influence the outcome.  

Although this dissertation focused on two missing data methods, listwise deletion method 

and the CJM approach, many other methods are available to analyze missing data. For example, 

multiple imputation is generally recommended for use in meta-analysis (Pigott, 2019); however, 

there exists a range of algorithms for multiple imputation procedures.  Other algorithms should 

also be examined for handling missing moderators in meta-analysis. 

In summary, analysis of moderators in meta-analysis should be interpreted with caution 

when missing data exists, especially if the research implemented listwise deletion. Overall, 

current recommendations for handling missing moderators still suggest the use of maximum 

likelihood or multiple imputation (Pigott, 2019). However, the specifics of what algorithm or 

approach to take is still an area that needs to be examined. 
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APPENDIX 

FIGURES AND TABLES 

 
Figure 1. Two-way interaction of the effects of K and missing data method on relative bias for 

𝜷𝟐. 
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Figure 2. Two-way interaction of the effects of τ2 and missing data method on relative bias for 

𝜷𝟐. 
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Figure 3. Two-way interaction of the effects of missing percentage and missing data method on 

relative bias for 𝜷𝟐. 
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Figure 4. Three-way interaction of the effects of 𝝉𝟐, K, and missing data method on relative bias 

for 𝛃𝟐. 
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Figure 5. Three-way interaction of the effects of 𝛃𝟏, K, and missing data method on relative bias 

for 𝛃𝟐. 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.05 0.2 0.5

R
el

at
iv

e 
B

ia
s

β1

CJM 20K

CJM 80K

LWD 20K

LWD 80K



 

78 

 

 

Figure 6. Three-way interaction of the effects of missing percentage, K, and missing data method 

on relative bias for 𝛃𝟐. 
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Figure 7. Two-way interaction of the effects of 𝝉𝟐 and missing data method on relative bias for 

𝒈. 
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Figure 8. Two-way interaction of the effects of missing percentage and missing data method on 

relative bias for 𝒈. 
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Figure 9. Two-way interaction of the effects of 𝛃𝟏 and missing data method on relative bias for 

𝒈. 
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Figure 10. Three-way interaction of the effects of 𝝉𝟐, K, and missing data method on relative 

bias for 𝒈. 
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Figure 11. Three-way interaction of the effects of 𝛃𝟐, K, and missing data method on relative 

bias for 𝒈. 
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Figure 12. Three-way interaction of the effects of missing percentage, K, and missing data 

method on relative bias for 𝒈. 
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Figure 13. Three-way interaction of the effects of 𝛃𝟏, 𝝉𝟐, and missing data method on relative 

bias for 𝒈. 
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Figure 14. Three-way interaction of the effects of 𝛃𝟐, 𝝉𝟐, and missing data method on relative 

bias for 𝒈. 
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Figure 15. Three-way interaction of the effects of missing percentage, 𝝉𝟐, and missing data 

method on relative bias for 𝒈. 
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Figure 16. Three-way interaction of the effects of 𝛃𝟏, 𝝉𝟐, and missing data method on mean 

squared error for 𝛃𝟐. 
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Figure 17. Three-way interaction of the effects of 𝛃𝟐, 𝝉𝟐, and missing data method on mean 

squared error for 𝛃𝟐. 
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Figure 18. Two-way interaction of the effects of 𝝉𝟐 and missing data method on mean squared 

error for 𝒈.  
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Figure 19. Two-way interaction of the effects of 𝛃𝟏 and missing data method on mean squared 

error for 𝒈. 
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Figure 20. Three-way interaction of the effects of 𝝉𝟐, K, and missing data method on mean 

squared error for 𝒈. 
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Figure 21. Three-way interaction of the effects of 𝛃𝟐, K, and missing data method on mean 

squared error for 𝒈. 
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Figure 22. Three-way interaction of the effects of missing percentage, K, and missing data 

method on mean squared error for 𝒈. 
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Figure 23. Three-way interaction of the effects of 𝛃𝟏, 𝝉𝟐, and missing data method on mean 

squared error for 𝒈. 
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Figure 24. Three-way interaction of the effects of 𝛃𝟐, 𝝉𝟐, and missing data method on mean 

squared error for 𝒈. 
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Figure 25. Three-way interaction of the effects of missing percentage, 𝝉𝟐, and missing data 

method on mean squared error for 𝒈. 
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Figure 26. Three-way interaction of the effects of 𝛃𝟏, 𝛃𝟐and missing data method on mean 

squared error for 𝒈. 
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Figure 27. Two-way interaction of the effects of 𝝉𝟐 and missing data method on coverage for 𝛃𝟐. 
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Figure 28. Two-way interaction of the effects of 𝛃𝟐 and missing data method on coverage for 

𝛃𝟐. 
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Figure 29. Three-way interaction of the effects of 𝝉𝟐, K, and missing data method on coverage 

for 𝛃𝟐. 
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Figure 30. Three-way interaction of the effects of 𝛃𝟏, K, and missing data method on coverage 

for 𝛃𝟐. 
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Figure 31. Three-way interaction of the effects of 𝛃𝟐, K, and missing data method on coverage 

for 𝛃𝟐. 
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Figure 32. Three-way interaction of the effects of 𝛃𝟐, 𝝉𝟐, and missing data method on coverage 

for 𝛃𝟐. 
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Figure 33. Three-way interaction of the effects of 𝛃𝟏, missing percentage, and missing data 

method on coverage for 𝛃𝟐. 
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Figure 34. Three-way interaction of the effects of 𝛃𝟐, missing percentage, and missing data 

method on coverage for 𝛃𝟐. 
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Figure 35. Two-way interaction of the effects of 𝝉𝟐 and missing data method on coverage for 𝒈. 
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Figure 36. Two-way interaction of the effects of missing percentage and missing data method on 

coverage for 𝒈. 
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Figure 37. Three-way interaction of the effects of K, 𝝉𝟐, and missing data method on coverage 

for 𝒈. 
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Figure 38. Three-way interaction of the effects of K, 𝛃𝟏,and missing data method on coverage 

for 𝒈. 
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Figure 39. Three-way interaction of the effects of K, missing percentage, and missing data 

method on coverage for 𝒈. 
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Figure 40. Three-way interaction of the effects of 𝛃𝟏, 𝝉𝟐, and missing data method on coverage 

for 𝒈. 
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Table 1   

Simulation Conditions   

Parameter # Levels Conditions 

𝜏2 3 .01, .40, 10 

k 2 20, 80 

n* 1 500 

𝛽0 1 .50 

𝛽1 3 .05, .20, .50 

𝛽2 3 .05, .20 .50 

Missing Data Handling Procedure 2 Listwise Deletion 

Conditional Joint Modeling 

Percent Missing 3 15, 30, 50 

   

Note. *The combined within-study sample size 
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Table 2 

Bias Performance for Missing 𝛽2 

  CJM  Listwise Deletion 

  K = 20  K = 80  K = 20  K = 80   

True 

𝛽1 

True 

𝛽2 

15% 

Missin

g 

30% 

Missin

g 

50% 

Missin

g  

15% 

Missin

g 

30% 

Missin

g 

50% 

Missin

g  

15% 

Missin

g 

30% 

Missin

g 

50% 

Missin

g  

15% 

Missin

g 

30% 

Missin

g 

50% 

Missin

g 

τ2 = 0.01 

0.05 0.05 -0.355 -0.462 -0.521  -0.311 -0.328 -0.361  -0.338 -0.417 -0.376  -0.304 -0.348 -0.314 
 0.2 -0.309 -0.329 -0.355  -0.279 -0.282 -0.282  -0.306 -0.329 -0.357  -0.285 -0.307 -0.287 
 0.5 -0.319 -0.316 -0.304  -0.285 -0.281 -0.289  -0.322 -0.322 -0.313  -0.291 -0.303 -0.299 

0.2 0.05 -0.330 -0.363 -0.437  -0.336 -0.350 -0.423  -0.297 -0.278 -0.299  -0.328 -0.336 -0.380 
 0.2 -0.311 -0.302 -0.346  -0.272 -0.279 -0.271  -0.311 -0.299 -0.324  -0.276 -0.301 -0.275 
 0.5 -0.306 -0.304 -0.302  -0.282 -0.278 -0.277  -0.308 -0.304 -0.305  -0.289 -0.300 -0.286 

0.5 0.05 -0.288 -0.331 -0.523  -0.431 -0.378 -0.520  -0.269 -0.274 -0.371  -0.432 -0.366 -0.503 
 0.2 -0.326 -0.323 -0.358  -0.284 -0.279 -0.295  -0.320 -0.318 -0.353  -0.288 -0.298 -0.302 
 0.5 -0.730 -0.729 -0.743  -0.714 -0.711 -0.718  -0.728 -0.727 -0.741  -0.715 -0.719 -0.721 

τ2 = 0.4 

0.05 0.05 -0.344 -0.382 -0.274  -0.313 -0.360 -0.359  -0.330 -0.292 -0.023  -0.334 -0.373 -0.357 
 0.2 -0.341 -0.369 -0.490  -0.304 -0.309 -0.326  -0.340 -0.346 -0.448  -0.333 -0.364 -0.348 
 0.5 -0.308 -0.316 -0.379  -0.293 -0.298 -0.301  -0.308 -0.317 -0.356  -0.312 -0.342 -0.339 

0.2 0.05 -0.211 -0.257 -0.521  -0.215 -0.336 -0.362  -0.149 -0.148 -0.520  -0.222 -0.392 -0.377 
 0.2 -0.355 -0.388 -0.469  -0.284 -0.285 -0.310  -0.355 -0.384 -0.436  -0.300 -0.341 -0.327 
 0.5 -0.316 -0.327 -0.383  -0.292 -0.280 -0.304  -0.322 -0.329 -0.354  -0.312 -0.320 -0.337 

0.5 0.05 -0.339 -0.514 -0.506  -0.269 -0.283 -0.272  -0.305 -0.461 -0.292  -0.306 -0.395 -0.288 
 0.2 -0.346 -0.391 -0.392  -0.287 -0.298 -0.322  -0.318 -0.340 -0.278  -0.303 -0.325 -0.334 
 0.5 -0.309 -0.333 -0.358  -0.286 -0.279 -0.295  -0.316 -0.329 -0.324  -0.299 -0.308 -0.305 

τ2 = 1 

0.05 0.05 -0.272 -0.362 -0.599  -0.330 -0.190 -0.346  -0.412 -0.276 -0.594  -0.382 -0.307 -0.375 

 0.2 -0.375 -0.380 -0.448  -0.294 -0.267 -0.273  -0.392 -0.414 -0.380  -0.355 -0.358 -0.343 

 0.5 -0.297 -0.348 -0.404  -0.291 -0.289 -0.313  -0.305 -0.329 -0.306  -0.332 -0.363 -0.367 

0.2 0.05 -0.381 -0.677 -0.662  -0.441 -0.436 -0.489  -0.403 -0.644 -0.528  -0.493 -0.486 -0.585 

 0.2 -0.300 -0.366 -0.521  -0.325 -0.364 -0.400  -0.345 -0.410 -0.489  -0.360 -0.403 -0.434 

 0.5 -0.363 -0.388 -0.454  -0.274 -0.285 -0.297  -0.355 -0.372 -0.343  -0.314 -0.343 -0.346 

0.5 0.05 -0.615 -0.887 -0.957  -0.134 -0.161 -0.038  -0.607 -0.592 -1.357  -0.187 -0.287 -0.058 

 0.2 -0.384 -0.406 -0.444  -0.311 -0.316 -0.358   -0.426 -0.391 -0.388  -0.346 -0.398 -0.403 

  0.5 -0.362 -0.379 -0.454   -0.285 -0.306 -0.318  -0.347 -0.342 -0.344   -0.320 -0.367 -0.352 
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Table 3 

Bias Performance for Hedges’ 𝑔 

  CJM  Listwise Deletion 

  K = 20  K = 80  K = 20  K = 80   

True 

𝛽1 

True 

𝛽2 

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing 

τ2 = 0.01 

0.05 0.05 -0.001 0.000 -0.002  -0.002 -0.001 0.000  -0.005 -0.004 -0.013  -0.005 -0.005 -0.007 

 0.2 0.004 0.007 0.015  -0.001 0.001 0.005  -0.001 -0.001 -0.006  -0.005 -0.008 -0.008 

 0.5 0.002 0.007 0.015  0.002 0.004 0.005  -0.002 -0.001 0.000  -0.001 -0.003 -0.006 

0.2 0.05 0.000 -0.001 0.001  -0.003 -0.002 -0.002  -0.001 -0.005 -0.005  -0.005 -0.004 -0.004 
 0.2 -0.001 0.004 0.005  0.001 0.004 0.006  -0.003 -0.002 -0.005  -0.001 -0.001 -0.004 
 0.5 0.002 0.004 0.013  0.000 0.002 0.005  -0.002 -0.002 -0.003  -0.003 -0.004 -0.004 

0.5 0.05 -0.001 -0.001 0.000  -0.002 -0.002 -0.002  -0.003 -0.005 0.001  -0.004 -0.005 -0.005 

 0.2 0.001 0.004 0.004  0.000 0.002 0.005  -0.002 -0.004 -0.010  -0.002 -0.002 -0.003 

 0.5 0.001 0.004 0.004  0.000 0.002 0.005  -0.002 -0.004 -0.010  -0.002 -0.002 -0.003 

τ2 = 0.4 

0.05 0.05 -0.022 -0.042 -0.053  -0.011 -0.013 -0.019  -0.073 -0.143 -0.214  -0.072 -0.127 -0.211 
 0.2 -0.020 -0.028 -0.054  -0.017 -0.021 -0.027  -0.069 -0.135 -0.210  -0.072 -0.129 -0.205 

 0.5 -0.015 -0.015 -0.025  -0.018 -0.022 -0.023  -0.052 -0.099 -0.169  -0.058 -0.104 -0.174 

0.2 0.05 -0.013 -0.023 -0.034  -0.021 -0.024 -0.029  -0.072 -0.119 -0.181  -0.074 -0.125 -0.194 

 0.2 -0.022 -0.027 -0.044  -0.015 -0.018 -0.023  -0.070 -0.120 -0.173  -0.063 -0.109 -0.184 
 0.5 -0.003 -0.004 -0.008  -0.018 -0.018 -0.025  -0.043 -0.097 -0.158  -0.058 -0.099 -0.161 

0.5 0.05 -0.008 -0.015 -0.032  -0.013 -0.015 -0.016  -0.044 -0.087 -0.150  -0.053 -0.095 -0.147 
 0.2 0.023 -0.030 -0.038  -0.016 -0.018 -0.018  -0.052 -0.095 -0.148  -0.055 -0.096 -0.148 

 0.5 -0.004 -0.008 -0.004  -0.016 -0.019 -0.028  -0.039 -0.085 -0.129  -0.049 -0.089 -0.139 

τ2 = 1  

0.05 0.05 -0.079 -0.099 -0.172  -0.067 -0.078 -0.093  -0.229 -0.387 -0.606  -0.238 -0.417 -0.635 

 0.2 -0.075 -0.117 -0.158  -0.055 -0.065 -0.088  -0.243 -0.421 -0.622  -0.230 -0.385 -0.626 

 0.5 -0.062 -0.084 -0.119  -0.068 -0.082 -0.097  -0.210 -0.365 -0.561  -0.233 -0.377 -0.601 

0.2 0.05 -0.111 -0.072 -0.221  -0.048 -0.057 -0.074  -0.272 -0.424 -0.682  -0.221 -0.380 -0.613 

 0.2 -0.056 -0.078 -0.151  -0.061 -0.071 -0.088  -0.183 -0.344 -0.594  -0.225 -0.377 -0.607 

 0.5 -0.059 -0.083 -0.138  -0.069 -0.072 -0.095  -0.217 -0.356 -0.552  -0.225 -0.370 -0.590 

0.5 0.05 -0.075 -0.097 -0.159  -0.073 -0.080 -0.099  -0.208 -0.347 -0.564  -0.226 -0.374 -0.587 

 0.2 -0.074 -0.090 -0.157  -0.058 -0.068 -0.084  -0.196 -0.342 -0.562  -0.213 -0.360 -0.572 

  0.5 -0.072 -0.099 -0.148  -0.070 -0.076 -0.090  -0.195 -0.368 -0.551  -0.212 -0.358 -0.537 
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Table 4 

MSE Performance for Missing 𝛽2 

  CJM  Listwise Deletion 

  K = 20  K = 80  K = 20  K = 80 

True 

𝛽1 

True 

𝛽2 

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing 

τ2 = 0.01 

0.05 0.05 0.000 0.001 0.001  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.2 0.004 0.004 0.005  0.003 0.003 0.003  0.004 0.004 0.005  0.003 0.004 0.003 
 0.5 0.025 0.025 0.023  0.020 0.020 0.021  0.026 0.026 0.024  0.021 0.023 0.022 

0.2 0.05 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.2 0.004 0.004 0.005  0.003 0.003 0.003  0.004 0.004 0.004  0.003 0.004 0.003 
 0.5 0.023 0.023 0.023  0.020 0.019 0.019  0.024 0.023 0.023  0.021 0.023 0.020 

0.5 0.05 0.000 0.000 0.001  0.000 0.000 0.001  0.000 0.000 0.000  0.000 0.000 0.001 
 0.2 0.004 0.004 0.005  0.003 0.003 0.003  0.004 0.004 0.005  0.003 0.004 0.004 
 0.5 0.133 0.133 0.138  0.127 0.127 0.129  0.133 0.132 0.137  0.128 0.129 0.130 

τ2 = 0.4 

0.05 0.05 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.2 0.005 0.005 0.010  0.004 0.004 0.004  0.005 0.005 0.008  0.004 0.005 0.005 
 0.5 0.024 0.025 0.036  0.021 0.022 0.023  0.024 0.025 0.032  0.024 0.029 0.029 

0.2 0.05 0.000 0.000 0.001  0.000 0.000 0.000  0.000 0.000 0.001  0.000 0.000 0.000 
 0.2 0.005 0.006 0.009  0.003 0.003 0.004  0.005 0.006 0.008  0.004 0.005 0.004 
 0.5 0.025 0.027 0.037  0.021 0.020 0.023  0.026 0.027 0.031  0.024 0.026 0.028 

0.5 0.05 0.000 0.001 0.001  0.000 0.000 0.000  0.000 0.001 0.000  0.000 0.000 0.000 
 0.2 0.005 0.006 0.006  0.003 0.004 0.004  0.004 0.005 0.003  0.004 0.004 0.004 
 0.5 0.024 0.028 0.032  0.020 0.019 0.022  0.025 0.027 0.026  0.022 0.024 0.023 

τ2 = 1 

0.05 0.05 0.000 0.000 0.001  0.000 0.000 0.000  0.000 0.000 0.001  0.000 0.000 0.000 
 0.2 0.006 0.006 0.008  0.003 0.003 0.003  0.006 0.007 0.006  0.005 0.005 0.005 
 0.5 0.022 0.030 0.041  0.021 0.021 0.024  0.023 0.027 0.023  0.028 0.033 0.034 

0.2 0.05 0.000 0.001 0.001  0.000 0.000 0.001  0.000 0.001 0.001  0.001 0.001 0.001 
 0.2 0.004 0.005 0.011  0.004 0.005 0.006  0.005 0.007 0.010  0.005 0.006 0.008 
 0.5 0.033 0.038 0.052  0.019 0.020 0.022  0.032 0.035 0.029  0.025 0.029 0.030 

0.5 0.05 0.001 0.002 0.002  0.000 0.000 0.000  0.001 0.001 0.005  0.000 0.000 0.000 
 0.2 0.006 0.007 0.008  0.004 0.004 0.005  0.007 0.006 0.006  0.005 0.006 0.006 

  0.5 0.033 0.036 0.051  0.020 0.023 0.025  0.030 0.029 0.030  0.026 0.034 0.031 
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Table 5 

MSE Performance for Hedges’ 𝑔 

  CJM  Listwise Deletion 

  K = 20  K = 80  K = 20  K = 80 

True 

𝛽1 

True 

𝛽2 

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing 

τ2 = 0.01 

0.05 0.05 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.2 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.5 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 

0.2 0.05 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.2 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.5 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 

0.5 0.05 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.2 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 
 0.5 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 

τ2 = 0 .4 

0.05 0.05 0.000 0.000 0.001  0.000 0.000 0.000  0.001 0.005 0.011  0.001 0.004 0.011 
 0.2 0.000 0.000 0.001  0.000 0.000 0.000  0.001 0.005 0.011  0.001 0.004 0.011 
 0.5 0.000 0.000 0.000  0.000 0.000 0.000  0.001 0.002 0.007  0.001 0.003 0.008 

0.2 0.05 0.000 0.000 0.000  0.000 0.000 0.000  0.001 0.004 0.008  0.001 0.004 0.009 
 0.2 0.000 0.000 0.000  0.000 0.000 0.000  0.001 0.004 0.007  0.001 0.003 0.008 
 0.5 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.002 0.006  0.001 0.002 0.006 

0.5 0.05 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.002 0.006  0.001 0.002 0.005 
 0.2 0.000 0.000 0.000  0.000 0.000 0.000  0.001 0.002 0.005  0.001 0.002 0.005 
 0.5 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.002 0.004  0.001 0.002 0.005 

τ2 = 1 

0.05 0.05 0.002 0.002 0.007  0.001 0.002 0.002  0.013 0.037 0.092  0.014 0.043 0.101 
 0.2 0.001 0.003 0.006  0.001 0.001 0.002  0.015 0.044 0.097  0.013 0.037 0.098 
 0.5 0.001 0.002 0.004  0.001 0.002 0.002  0.011 0.033 0.079  0.014 0.036 0.090 

0.2 0.05 0.003 0.005 0.012  0.001 0.001 0.001  0.019 0.045 0.116  0.012 0.036 0.094 
 0.2 0.001 0.002 0.006  0.001 0.001 0.002  0.008 0.030 0.088  0.013 0.036 0.092 
 0.5 0.001 0.002 0.005  0.001 0.001 0.002  0.012 0.032 0.076  0.013 0.034 0.087 

0.5 0.05 0.001 0.002 0.006  0.001 0.002 0.002  0.011 0.030 0.080  0.013 0.035 0.086 
 0.2 0.001 0.002 0.006  0.001 0.001 0.002  0.010 0.029 0.079  0.011 0.032 0.082 

  0.5 0.001 0.002 0.006  0.001 0.001 0.002  0.010 0.034 0.076  0.011 0.032 0.072 
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Table 6 

Coverage Performance for Missing 𝛽2 

  CJM  Listwise Deletion 

  K = 20  K = 80  K = 20  K = 80 

True 

𝛽1 

True 

𝛽2 

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing 

τ2 = 0.01 

0.05 0.05 0.976 0.976 0.982  0.978 0.958 0.95  0.954 0.958 0.954  0.964 0.946 0.94 
 0.2 0.864 0.87 0.922  0.84 0.858 0.908  0.856 0.852 0.908  0.84 0.848 0.902 
 0.5 0.692 0.69 0.716  0.7 0.698 0.714  0.664 0.676 0.716  0.686 0.674 0.712 

0.2 0.05 0.97 0.974 0.982  0.962 0.96 0.962  0.956 0.942 0.966  0.948 0.95 0.946 
 0.2 0.878 0.888 0.898  0.848 0.866 0.876  0.85 0.864 0.912  0.834 0.86 0.89 
 0.5 0.686 0.7 0.722  0.706 0.69 0.714  0.682 0.686 0.74  0.686 0.666 0.712 

0.5 0.05 0.99 0.994 0.99  0.966 0.956 0.96  0.974 0.976 0.972  0.942 0.946 0.938 
 0.2 0.864 0.882 0.9  0.848 0.878 0.882  0.84 0.852 0.872  0.842 0.852 0.876 
 0.5 0.688 0.698 0.712  0.686 0.68 0.69  0.666 0.69 0.754  0.68 0.658 0.69 

τ2 = 0.4 

0.05 0.05 0.95 0.96 0.976  0.944 0.952 0.938  0.93 0.918 0.936  0.934 0.944 0.934 
 0.2 0.898 0.914 0.898  0.85 0.854 0.874  0.876 0.902 0.856  0.828 0.834 0.866 
 0.5 0.7 0.706 0.744  0.694 0.686 0.702  0.692 0.694 0.74  0.666 0.654 0.692 

0.2 0.05 0.958 0.968 0.96  0.958 0.94 0.946  0.932 0.95 0.916  0.956 0.944 0.93 
 0.2 0.908 0.912 0.91  0.864 0.862 0.86  0.878 0.874 0.854  0.85 0.85 0.854 
 0.5 0.684 0.714 0.726  0.674 0.684 0.692  0.676 0.676 0.704  0.668 0.672 0.674 

0.5 0.05 0.948 0.964 0.948  0.96 0.952 0.966  0.93 0.912 0.902  0.958 0.952 0.954 
 0.2 0.912 0.924 0.934  0.85 0.848 0.876  0.888 0.916 0.884  0.83 0.834 0.858 
 0.5 0.712 0.726 0.756  0.686 0.684 0.694  0.704 0.716 0.764  0.676 0.664 0.722 

 τ2= 1 

0.05 0.05 0.954 0.968 0.956  0.964 0.966 0.96  0.924 0.942 0.902  0.96 0.962 0.954 
 0.2 0.93 0.914 0.932  0.872 0.872 0.926  0.89 0.884 0.884  0.866 0.878 0.916 
 0.5 0.816 0.824 0.86  0.698 0.698 0.722  0.782 0.818 0.822  0.676 0.672 0.702 

0.2 0.05 0.964 0.95 0.952  0.956 0.95 0.956  0.932 0.906 0.89  0.956 0.924 0.944 
 0.2 0.912 0.924 0.948  0.874 0.886 0.886  0.866 0.9 0.896  0.86 0.878 0.88 
 0.5 0.806 0.826 0.852  0.704 0.716 0.752  0.742 0.794 0.806  0.696 0.684 0.744 

0.5 0.05 0.952 0.956 0.95  0.928 0.938 0.93  0.926 0.9 0.904  0.918 0.928 0.924 
 0.2 0.936 0.934 0.936  0.868 0.866 0.894  0.894 0.896 0.896  0.858 0.868 0.884 

  0.5 0.812 0.834 0.858  0.678 0.696 0.726  0.782 0.794 0.82  0.662 0.674 0.738 
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Table 7 

Coverage Performance for Hedges’ 𝑔 

  CJM  Listwise Deletion 

  K = 20  K = 80  K = 20  K = 80 

True 

𝛽1 

True 

𝛽2 

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing  

15% 

Missing 

30% 

Missing 

50% 

Missing 

τ2 = 0.01 

0.05 0.05 0.992 0.992 0.988  0.970 0.970 0.964  0.947 0.963 0.964  0.947 0.950 0.958 
 0.2 0.968 0.974 0.980  0.958 0.958 0.960  0.933 0.950 0.970  0.967 0.937 0.956 
 0.5 0.970 0.974 0.986  0.960 0.972 0.954  0.940 0.973 0.970  0.933 0.960 0.938 

0.2 0.05 0.972 0.974 0.982  0.964 0.964 0.970  0.987 0.967 0.964  0.940 0.963 0.932 
 0.2 0.978 0.980 0.980  0.958 0.958 0.946  0.947 0.947 0.954  0.953 0.967 0.950 
 0.5 0.972 0.966 0.984  0.962 0.968 0.964  0.967 0.947 0.968  0.947 0.963 0.962 

0.5 0.05 0.990 0.990 0.988  0.954 0.954 0.952  0.940 0.963 0.972  0.933 0.927 0.960 
 0.2 0.968 0.986 0.972  0.972 0.974 0.962  0.953 0.960 0.960  0.960 0.960 0.948 
 0.5 0.960 0.976 0.990  0.972 0.976 0.976  0.913 0.953 0.970  0.967 0.963 0.972 

τ2 = 0.4 

0.05 0.05 0.942 0.946 0.944  0.838 0.850 0.844  0.927 0.817 0.808  0.833 0.633 0.506 
 0.2 0.934 0.934 0.946  0.850 0.846 0.862  0.887 0.850 0.812  0.853 0.670 0.556 
 0.5 0.950 0.954 0.972  0.846 0.852 0.844  0.860 0.883 0.840  0.880 0.733 0.654 

0.2 0.05 0.936 0.932 0.946  0.844 0.844 0.866  0.853 0.897 0.826  0.793 0.677 0.600 
 0.2 0.924 0.924 0.940  0.858 0.852 0.854  0.893 0.873 0.864  0.853 0.720 0.612 
 0.5 0.944 0.944 0.942  0.858 0.852 0.856  0.933 0.860 0.842  0.933 0.760 0.718 

0.5 0.05 0.950 0.952 0.952  0.872 0.872 0.874  0.927 0.907 0.848  0.940 0.800 0.736 
 0.2 0.944 0.942 0.936  0.840 0.848 0.842  0.913 0.887 0.840  0.887 0.740 0.706 
 0.5 0.942 0.940 0.968  0.818 0.836 0.834  0.960 0.890 0.886  0.933 0.763 0.764 

τ2 = 1 

0.05 0.05 0.824 0.826 0.830  0.670 0.676 0.666  0.827 0.717 0.700  0.773 0.310 0.172 
 0.2 0.830 0.848 0.846  0.676 0.676 0.666  0.767 0.723 0.680  0.773 0.370 0.164 
 0.5 0.858 0.864 0.882  0.660 0.670 0.662  0.840 0.767 0.744  0.780 0.373 0.216 

0.2 0.05 0.844 0.840 0.856  0.688 0.688 0.690  0.827 0.750 0.666  0.827 0.397 0.202 
 0.2 0.838 0.838 0.854  0.658 0.658 0.660  0.807 0.733 0.720  0.767 0.357 0.214 
 0.5 0.830 0.852 0.844  0.682 0.674 0.678  0.840 0.767 0.706  0.787 0.430 0.244 

0.5 0.05 0.842 0.838 0.846  0.666 0.664 0.662  0.787 0.723 0.726  0.827 0.413 0.234 
 0.2 0.816 0.818 0.832  0.672 0.672 0.668  0.867 0.717 0.738  0.813 0.423 0.274 

  0.5 0.854 0.840 0.880   0.666 0.662 0.674   0.820 0.763 0.736   0.840 0.413 0.286 

 

 

 

 


