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ABSTRACT 

 

Air pollution is an ongoing worldwide problem especially for developing countries. In 

South Asia, Future projection has shown potentially no slow-down of enhanced emissions (RCP 

8.5), while meteorology, a factor may help regulate the local pollution levels, tends to change in 

the future as well. We identified three key variables: U10, T200 and PBLH that are highly 

correlated with local pollution levels in India and constructed Hazy Weather Index for India 

(HWII). HWII helps build a statistical projection model to evaluate the contribution from climate 

change side. The results suggest that a more favorable atmospheric environment is expected for 

pollution dispersion in the future, however, such condition is likely to be overwhelmed by 

enhanced emissions. 

In addition to air pollution, heat has raised great concerns in public health field. Based on 

a model simulation, here we show that when daily average wet-bulb temperature of 25 °C is taken 

as the threshold for severe health impacts, heat extremes frequency averaged over South Asia 

increases from 45 days/year in 1997–2004 to 78 days/year in 2046–2054 under RCP8.5 scenario. 

Even more concerning is the joint occurrence of the heatwave and high-PM hazard (HHH), which 

would have substantial increases of 175% in frequency and 79% in duration. The alarming 

increases in just a few decades pose great challenges to adaptation and call for more aggressive 

mitigation. 

Simulations above were conducted using MOZART-MOSAIC chemistry module. Despite 

being a comprehensive chemistry suite, MOZART-MOSAIC simulations are computationally 

expensive, making a large area resolution simulation less practical. A modal aerosol module with 

three lognormal modes (MAM3) was developed by Ma et al., (2014) but suffers two major 
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deficiencies: (1) the biomass burning emission is ignored and (2) no mechanism that converts VOC 

to SOA. We perform six simulations (WRF-CAM5) to show progressive improvements in the 

model against various validation benchmarks. 

We tested our updated WRF-CAM5 for cloud-aerosol interactions off the US west coast. 

We show that the aerosol compositions and distributions play a significant role in regulating the 

cloud fraction and effective radius in the region. 
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CHAPTER I 

 INTRODUCTION 

 

 Air pollution is currently one of the major health risks along with high blood pressure, 

tobacco smoking, unsanitary water, and undernutrition (Lim et al., 2012; Lelieveld et al., 2015). 

Air pollutants include ozone (with its precursors of nitrogen oxides, carbon monoxide, and volatile 

organic compounds) and particulate matter (PM). Fine particles, i.e., PM with aerodynamic 

diameter of less than 2.5 µm (PM2.5), have raised great concerns, because they can infiltrate the 

respiratory system and damage human body (Tecer et al., 2008). Growing population exposure to 

exacerbated PM2.5 levels has become a serious public health concern worldwide. It is estimated 

that six million global annual premature deaths were PM-related (Lelieveld et al., 2015). For many 

developing countries, excessive amounts of population exposures to PM2.5 are especially alarming 

due to their large population and fragile health care systems (Cohen et al., 2005; Cohen et al., 

2017). In China, PM2.5 is estimated to have contributed to 1.6 million premature deaths annually, 

which accounts for 17% of the total deaths (Rohde and Muller, 2015). Similarly, in India, PM2.5-

related diseases caused an estimated 1.1 million premature deaths in 2012 (David et al., 2019) and 

2015 (Cohen et al., 2017; Lelieveld., 2017; Conibear et al., 2018a;) along with 1.24 million 

premature deaths in 2017 (Balakrishnan et al., 2017).  

South Asia is home to more than 1.5 billion people and is under rapid economic growth 

with an expected population of 2 billion by the mid-21st century (Jones and O’Neil, 2016; Table 

1). Among various environmental stresses, two prominent threats are heat extremes (Dash and 
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Mamgain, 2011) and air quality degradation (Li et al., 2017), both of which are reported to lead to 

major public health crises (Azhar et al., 2014; Chowdhury et al., 2018). 

 

Table 1. The population of seven nations within South Asia in the Decade 2000 and Decade 2050. 

Reprinted from Xu et al., (2020). 

 Population (million people) 

 

 Decade 2000 

 

Decade 2050 under SSP5 

Afghanistan 22.1 57.3 

Bangladesh 133.5 167.8 

Bhutan 2.3 1.2 

India 989.1 1518.7 

Nepal 23.4 43.2 

Pakistan 144.1 247.5 

Sri Lanka 17.5 19.5 

South Asia 1332.0 2055.1 

 

Similar to air pollution, heat extremes adversely impact human health by affecting 

respiratory and cardiovascular systems (e.g. Meehl et al., 2018). The heat hazard for human health 

is preferably quantified in humidity-related temperature indices (Kovats and Hajat, 2008), such as 

wet-bulb temperature (Sherwood and Huber, 2010) or heat index (Anderson et al., 2013). These 

indices are related to the efficacy of releasing heat from the skin to regulate body temperature. 
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Recent global climate model-based assessments show that the probability of reaching certain 

critical thresholds (jointly defined using temperature and relative humidity) empirically known to 

be life-threatening, will continue to rise, especially over South Asia (e.g. Mora et al., 2017) because 

of the lower climate variability and the higher background humidity. The South Asia region is 

projected to experience more frequent heat extremes with longer duration and enhanced severity 

in the future (Russo et al., 2017), which is consistent with observed trends during the past few 

decades (Pai et al., 2004; Alexander et al., 2016; Dash and Mamgain, 2011; Basha et al., 2017; 

Yin and Sun, 2018; Khan et al., 2019). 

Accurate model simulations of both meteorological and chemistry fields are crucial for 

studies of heat extremes and air pollutions. Proper numerical representation of atmospheric 

chemistry calls for accurate juxtaposition and coupling of both meteorology and chemistry 

processes (Brasseur and Jacob, 2017). There is an intrinsic tradeoff between the 

comprehensiveness of the model and the computational efficiency (or the availability of 

computational resources) (Peckham, 2012). A more complicated chemistry scheme generally, 

albeit not always, has more realistic representations of atmospheric chemistry when compared to 

a relatively simpler counterpart, because the former scheme considers more species and tracks 

more reactions that take place (Phoenix et al., 2017). However, comprehensive chemistry modules 

are less practical for regional simulations over a large domain or for global climate modeling. 

Since the chemical feedback from the meteorological side is usually non-linear (and vice versa), a 

realistic representation of both processes is crucial to yield reliable results. 

For climate-chemistry models, one of the great challenges for reliable simulations and 

projections comes from the accurate estimation of cloud radiative effects (Slingo and Palmer, 

2011).  Among all cloud types, marine boundary layer (MBL) clouds play a crucial role in 
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regulating Earth’s energy Budget (Bony and Dufresne). Due to its high brightness compared to the 

radiatively dark ocean background, MBL clouds serve the prominent role in back reflecting the 

incoming solar radiation to space (McFiggans et al., 2000). Despite being an indispensable 

component in modulating the earth's climate, yet MBL clouds remain as one of the largest 

uncertainties in future climate projections (Bennartz, 2007). This is because the presence of MBL 

cloud does not have strong impacts towards longwave cooling rates as the temperature differences 

are generically low between the surface of the ocean and top of the cloud (Meyer et al., 2013). 

However, the MBL clouds tend to have significant shortwave radiative impacts (Ahlgrimm et al., 

2018) and their future changes remain uncertain (Diaz et al., 2019). Therefore, despite being clear 

that MBL has net cooling effects for Earth’s energy budget, it is debatable that whether MBL 

clouds’ contribution in the future will trend up or down and accordingly, resulting in an uncertain 

net positive or negative energy contributions to the future Earth’s atmosphere. 

This dissertation is separated into two parts with four chapters. The first two chapters (Part 

I) are mostly from two published works (Wu et al., 2019; Xu et al., 2020) and the latter two are 

based on a model-improvement framework with preliminary analyses of cloud properties and 

aerosol interactions.  
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CHAPTER II 

AIR POLLUTION IN INDIA AND ITS INTERACTIONS WITH METEOROLOGY1 

 

2.1 Introduction 

 

Air pollution in megacities is a longstanding and ongoing problem mainly due to 

concentrated anthropogenic emissions from transportation and industrial activities, and a lack of 

effective mitigation measures (Molina and Molina, 2004). For India, the future of urban air 

pollution problem is especially concerning, because of rapidly expanding urban areas and fast 

population growth (James, 2011). For example, Delhi is projected to have a 39% increase in 

premature deaths in future due to excessive PM2.5 exposures (Chowdhury and Dey, 2016). 

It has long been appreciated that anthropogenic emission sources constitute a critical 

component for degradation of urban air quality (Querol et al., 2001). Meteorological conditions, 

however, could also play crucial roles in governing the transport, dispersion and removal of air 

pollutants (Arya, 1999). For example, ozone variability over Europe has been linked to North 

Atlantic Oscillation (NAO; Creilson et al., 2003; Doherty et al., 2013) and Arctic Oscillation (AO; 

Lamarque and Hess, 2004). Ozone variability over the Northern Hemisphere mid-latitudes has also 

been associated with the El Nino Southern Oscillation (ENSO) variability (Koumoutsaris et al., 

2008; Ziemke et al., 2010), especially in the middle and upper troposphere (Langford et al., 1998).  

                                                
1 Reprinted with permission from Wu, X., Xu, Y., Kumar, R., & Barth, M. (2019). Separating Emission and 
Meteorological Drivers of Mid-21st-Century Air Quality Changes in India Based on Multiyear Global-Regional 
Chemistry-Climate Simulations. Journal of Geophysical Research: Atmospheres, 124(23), 13420-13438. 
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The role of meteorological variability and change in driving PM pollution is less studied than it is 

for ozone (Dawson et al., 2014). There is empirical evidence relating synoptic weather with local 

PM concentration (e.g. Eder et al., 1993; Mahmud et al., 2010; Appelhans et al., 2013), but the 

physical processes involved are often complex and region-dependent. Previous studies have 

identified several key meteorological variables that could closely influence air pollution 

concentration, such as temperature, humidity, wind fields, boundary layer height, clouds, solar 

radiation, and precipitation (Dickerson et al., 1997; Davies et al., 2007; Jacob and Winner, 2009; 

Tao et al., 2014; Xu and Lamarque, 2018). These meteorological variables can influence 

atmospheric physical and chemical processes that determine the formation, transport, dispersion 

and removal of air pollution. Therefore, quantifying these meteorological variables and their roles 

in driving air pollution distribution, which might change under future global warming, can provide 

critical information to more effectively develop the long-term adaptation and regulatory measure.  

A number of studies focusing over the United States have highlighted the roles of synoptic scale 

processes (e.g. Fischer et al., 2010; Parrish et al., 2010; Lin et al., 2012) and mid-latitude weather 

systems (e.g. Tai et al., 2012; Hu et al., 2013) in affecting the surface pollution level. Similarly, 

the interactions between PM and meteorological conditions have been the subject of many recent 

studies in China (e.g. Yang et al., 2018; Zhang et al., 2018; Li et al., 2018; Chen et al., 2019). 

Notably, to better characterize the wintertime haze environment, Cai et al. (2017) developed a 

Hazy Weather Index (HWI) to link high PM2.5 levels in Beijing with meteorological fields and 

demonstrated that HWI could serve as a reliable indicator for local PM2.5 variability. Cai et al. 

(2017) went further to show that future global warming would induce meteorological conditions 

leading to higher PM2.5 level over Beijing.   The worsening effect of future global warming is 

consistent with a few studies at a global scale (Horton et al., 2014; Allen et al., 2016; Xu and 
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Lamarque, 2018). The general validity of such an undesirable future projection in pollution-related 

meteorological conditions, however, remains to be tested for other regions, such as South Asia, 

where local emission and meteorological conditions can change differently compared to the rest 

of the world (Lal et al., 2001; Meehl et al., 2005; Sharmila et al., 2015; Jayasankar et al., 2015).  

The relative contribution of climate change and local emission sources is also worth 

investigating quantitatively. For example, the increase in PM2.5 emission over India has been 

suggested by several recent studies to have a dominant effect over climate change in causing future 

degradation in air quality (Pommier et al., 2018; Venkataraman et al., 2018). But, to what direction 

and extent the pollution-related meteorological condition will change in future is still largely 

unquantified. Indian summer monsoon is well known to have a strong control over the distribution 

of surface pollutants over India (e.g., de Laat and Lelieveld, 2002; Lelieveld et al., 2018). 

However, a quantitative analysis, especially using multiple variables and a combined index, is less 

common in previous studies. The global-regional modeling system in Kumar et al. (2018) projects 

that in 2050, PM2.5 level in South Asia will increase by 32% under Representative Concentration 

Pathway (RCP) 8.5, with an 8% increase in number of days exceeding World Health Organization 

(WHO) limits. A separation of meteorological influence, however, is not presented in Kumar et 

al., (2018), which is the focus of our analysis here.  

Moreover, we aim to synthesize and modify the meteorological indices as suggested in 

previous studies (Horton et al., 2014; Cai et al., 2017) to develop a local index (hereafter referred 

to as Hazy Weather Index for India, HWII) that correlates better with South Asia regional pollution 

level. The identified key variables in the development and evaluation of HWII will also enable us 

to build a statistical model to predict the pollution levels based on meteorology alone and to use it 

to project future PM2.5 levels with global climate models even if they do not simulate or archive 



 

8 
 
 

 

chemical output explicitly. To demonstrate the effectiveness of HWII in predicting pollution 

levels, we select three representative megacities (Delhi, Kolkata and Mumbai) and Indo-Gangetic 

plain (IGP) in India (Figure 1) due to high PM2.5 levels and large population. Note that Mumbai 

and Delhi are two largest cities and Kolkata ranks at 7th in size, and the IGP region is the home to 

more than 400 million people.  

 

 

 

Figure 1. The domain of the simulation showing PM2.5 surface concentration during Historical 

Period with three representative cities and IGP region marked. The two black boxes indicate the 

selected area for meteorological indicators of T200 and U10. Four side panels show local emission 

fluxes over three cities and IGP during the Historical Period, and Decade 2050 under two RCP 

scenarios (RCP6.0 and RCP8.5). Reprinted from Wu et al., (2019). 
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After describing the model simulations and performance, we present the temporal 

correlations between PM2.5 and various meteorological variables as well as HWII. We then present 

the results of future projections of PM2.5 level using a multivariate linear regression model, 

followed by a discussion on chemical compositions and physical mechanisms. 

 

2.2 Methods 

2.2.1 Model setup 

This study utilizes multi-year air quality simulation as described in Kumar et al. (2018), 

using a framework called Nested Regional Climate Model coupled with Chemistry (NRCM-

Chem). The regional simulation over South Asia in based on Weather Research and Forecasting 

(WRF) model coupled with Chemistry, version 3.6.1 (WRF-Chem 3.6.1). The WRF-Chem uses 

outputs from version 1 of the Community Earth System Model (CESM1) (Hurrell et al., 2013) as 

the meteorological initial and boundary conditions. The 1981 to 2005 CESM1 outputs are bias-

corrected based on European Center for Medium-Range Weather Forecasts Interim Reanalysis 

(ERA-Interim, Dee et al., 2011) following the procedures described in Bruyère et al. (2014). Also, 

chemical initial and boundary conditions are from the global simulations of Community 

Atmosphere Model with Chemistry (CAM-Chem; Lamarque et al., 2012), which are available for 

all RCP scenarios from 1850 to 2100. The chemical boundary conditions are not bias-corrected, 

however, which is due to the lack of reliable dataset as benchmark. For example, when compared 

against in situ observations in Delhi collected during earlier 2000s, the simulated PM2.5 has a better 

agreement in terms of overall magnitude and seasonal cycles, than Modern-Era Retrospective 

analysis for Research and Applications, Version 2 reanalysis product (MERRA2; Gelaro et al., 

2017). 



 

10 
 
 

 

Next, we provide some details on the chemical schemes in NRCM-Chem configuration. 

The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et al., 2008) in 

four discrete size bins was selected to represent aerosol processes. MOSAIC treats black carbon 

aerosols as internally mixed with other aerosol species such as sulfate, ammonium, organic carbon, 

nitrate, sodium, chloride, methanesulfonate, calcium, carbonate, liquid water, and other inorganics 

(including dust) within each size bin. Thermodynamic processes such as particle deliquescence, 

aerosol water content, dynamic gas-particle partitioning, and solid-liquid phase equilibrium in 

MOSAIC are simulated using an accurate and computationally efficient module known as the 

Multicomponent Taylor Expansion Method (MTEM; Zaveri et al., 2005). Aerosol particles are 

allowed to interact with the clouds and the approach of Abdul-Razzak and Ghan (2002) is followed 

for activation of aerosol particles. Both dry and wet (in-cloud and impaction scavenging) 

deposition removes aerosol particles from the atmosphere following Binkowski and Shankar 

(1995) and Easter et al. (2004), respectively. The PM2.5 concentration is calculated in NRCM-

Chem codes using the equation below: 

 

[𝑃𝑀]%.' = [𝑆O+%,]%.' + [𝑁𝑂0,]%.' + [𝐶𝑙,]%.' + [𝑁𝐻+4]%.' + [𝑁𝑎4]%.' + [𝐵𝐶]%.' + [𝑂𝐶]%.' 

   +[𝑂𝐼𝑁]%.' + [𝑆𝑂𝐴]%.' 

 

For gas phase tropospheric ozone chemistry, we have used the Model for Ozone and 

Related Tracers (MOZART) chemical mechanism (Emmons et al., 2010; Knote et al., 2014). 

MOZART chemical mechanism contains 143 gas phase species, which participate in 347 reactions 

including 49 photolysis reactions. The photolysis frequencies of trace gases are calculated using 

the Fast Troposphere Ultraviolet Visible scheme (Tie et al., 2005) that also allows aerosols to 
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affect the photolysis rates (Kumar et al., 2014). Dry and wet deposition of trace gases follow 

Wesely (1989) and Neu and Prather (2012), respectively. 

 

2.2.2 Model Simulation 

In this study, the NRCM-Chem simulation domain covers 1.53°-44.74°N and 52.58°-

107.42°E with 51 vertical layers from surface up to 10 hPa. The simulation included two domains 

with different resolutions (60 km grid spacing for the entire domain and 12 km grid spacing for a 

smaller inner domain covering IGP region during the dry season. For detailed simulation set-ups 

and the evaluation of meteorology, ozone and related gases, readers are referred to Section 2 and 

Section 3 of Kumar et al., (2018). The dry season is defined as October-May and the wet 

(monsoon) season is defined as June-September. In this study, we mainly used the outer domain, 

because the high-resolution inner domain outputs did not include June to September monsoon 

season. However, we conducted sensitivity test for the IGP by combining the dry season high-

resolution data with the wet season lower resolution data. The original hourly model outputs are 

available, but only daily average PM2.5 mass concentrations are analyzed in this study. 

Two temporal periods are covered in the simulation: 1997-2004 (hereafter denoted as “Historical 

Period”) and 2046-2054 (hereafter denoted as “Decade 2050”). For Historical Period, emissions 

are based on the year 2000 level in the Atmospheric Chemistry and Climate Model 

Intercomparison Project (ACCMIP; Lamarque et al., 2011). For Decade 2050, we choose two 

emission scenarios of RCP6.0 and RCP8.5. RCP emission scenarios are constructed based on 

projection of socioeconomic development and have been extensively used in the fifth round of 

coupled climate model inter-comparison. Moreover, hourly climatological (2000-2014) open 
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biomass burning emissions are from the Fire INventory from NCAR (FINN; Wiedinmyer et al., 

2011), which is based on satellite-detected fire counts at 1 km resolution. 

Neither ACCMIP nor RCP emissions include emission of PM2.5, which is required for the 

NRCM-Chem setup. Therefore, PM2.5 emission is estimated from the close relationship between 

CO and PM2.5 emissions in EDGAR-HTAP v2 inventory (Janssens-Maenhout et al., 2012) with a 

high correlation varying from 0.7 to 0.9 over South Asia. The approach of scaling total PM2.5 

emission with CO might lead to some biases in the projected PM2.5 emission under RCP6.0, due 

to the projected reduction in CO emission, rather than the projected increase in other major species 

(Table 1 of Kumar et al., 2018). Note, however, that the species of SO2, NOx, BC, OC, NH3 are 

indeed assumed to increase in our future simulation under RCP6.0, and the scaling based on future 

CO (decreasing by 28% over South Asia) only affects “other inorganics”. Also, the local PM2.5 

emission is projected to increase in the three representative cities and IGP regions (see Figure 1).  

The simulated PM2.5 surface concentrations for the Historical Period were previously evaluated 

against seven observational sites in South Asia and 5 out of 7 sites have a monthly mean bias of 

less than 10% (Kumar et al., 2018). In general, the more populous sites have more accurate 

simulated PM2.5 levels than less populous sites, presumably because of a better estimate of PM2.5 

emissions in cities. The better PM2.5 emission estimate is also potentially aided by a stronger 

correlation of CO and PM2.5 due to similarity of emission sources. For example, in Delhi, the 

monthly mean bias is 6% with a correlation of~ 0.9, and in Hyderabad (the 4th largest city by 

population), the monthly mean bias is 2% with a correlation of 0.9. In contrast, Patiala in the state 

of Punjab, a relatively less populous city (compared to the other three cities in this study, but still 

with around half million population), has a monthly mean bias of 40%, potentially resulting from 

the uncertainties of local fire emission. Punjab is at the center of many agricultural burnings during 
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fall and spring seasons (Sharma et al., 2010), but the fire emission (FINN) in our simulation is 

satellite-based and has limitation in detecting small-scale agriculture-related burnings (Hawbaker 

et al., 2008).  

Simulated aerosol optical depth (AOD) were also previously compared to the observations 

retrieved from Aerosol Robotic Network, and similarly, the model outputs successfully capture 

the high AOD over large cities. For example, in Karachi, the monthly mean bias is less than 1% 

with a correlation as high as 0.96. Since this study mainly focuses on urban PM2.5 levels, such a 

low level of bias is considered acceptable.  

 

2.3 Results 

2.3.1 Simulated PM2.5 and Future Changes 

Figure 2 shows probability density function of daily PM2.5 levels in the Historical Period 

and mid-21st century under two different RCP scenarios. Mean PM2.5 concentrations (indicated by 

the vertical dash lines) increase in a warmer climate ("Historical Period < RCP6.0 < RCP8.5") in 

all cities and IGP. The changes vary in probability distribution of daily PM2.5 level for different 

regions. In Delhi, the Historical Period peak is lower than Decade 2050 peaks for both scenarios. 

Such a difference indicates not only an increased average PM2.5 levels but also more frequent 

heavy pollution days. In Kolkata, the Historical Period model peak is comparable with the RCP8.5 

peak but is slightly higher than the RCP6.0 peak. However, when considering extreme polluted 

cases (e.g., PM2.5 > 250 µg/m3), both Decade 2050 cases have higher frequency than the Historical 

Period. In Mumbai, despite that mean value of PM2.5 increase only slightly under RCP6.0 and 

RCP8.5 (by 9%), the frequency of exceeding 200 µg/m3 daily average increase by ~70% under 

RCP6.0 and ~260% under RCP8.5. When considering the IGP region as a whole, Historical Period 
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PM2.5 has comparable mean value and probability distribution with RCP6.0 future. However, 

under RCP8.5 scenario, both mean value and distribution shift rightward significantly (with a 47% 

increase).  

 
Figure 2. Probability density function (PDF) of PM2.5 daily levels for each region ((a) Delhi, (b), 

Kolkata, (c) Mumbai (d) IGP). Blue curves are Historical Period levels, red curves are Decade 

2050 under RCP6.0, and black curves are Decade 2050 under RCP8.5. Dashed lines are temporal 

average for each case. Reprinted from Wu et al., (2019). 

 

In the RCP8.5 case, PM2.5 levels over all three cities and IGP consistently show an 

increasing trend as in the entire South Asia region as discussed in Kumar et al., (2018). For 

RCP6.0, Kumar et al., (2018) showed an overall similar PM2.5 levels when averaged across the 
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entire South Asia compared to Historical Period. But for the three megacities and IGP region 

examined here, PM2.5 levels under RCP6.0 are still projected to increase from the current level by 

2-11% on average (Figure 1 bar charts).  

Based on the simulations here, Delhi is identified as the most polluted city (with mean 

PM2.5 value at ~ 140 µg/m3) followed by Kolkata and Mumbai, although Delhi has the lowest local 

emission fluxes among the three cities (~1 Ton/km2/year , 35% lower than other two cities and 

only higher than the IGP average, Figure 1). This simple contrast at city level serves to illustrate 

that PM2.5 surface concentration is not only dependent on local/regional emission, but also strongly 

affected by transport due to meteorological conditions and orography around the cities. Note that 

Delhi is sandwiched between the towering Himalayas to the north and Deccan Plateau to the South 

which limits meridional dispersion of emissions. While the contribution of emission is critically 

important and is the focus of regulatory measures, locally and nationally, the role of meteorology 

in meeting air quality target in the short-term (a few years) and long-term (a few decades) is often 

under-appreciated. As a result, there is a tendency to assume that PM2.5 levels will respond to 

emission reduction, while overlooking the potential exacerbating effects of climate change (Horton 

et al., 2014; Cai et al., 2017; Zou et al., 2017; Chen et al., 2019). Motivated by these earlier studies, 

in the following sections we aim to understand the relative contribution of meteorology and 

emission to high PM2.5 level, as well as their respective changes in Decade 2050.  

 

2.3.2 Effectiveness and Robustness of HWII in Capturing PM2.5 Variability 

Inspired by the index developed for Beijing (Cai et al., 2017), we tested similar 

meteorological variables for India but found rather weak correlations. For example, the correlation 

between PM2.5 and meridional wind at 850 hPa (V850) is as low as -0.17 and the correlation 
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between PM2.5 and local precipitation is -0.13. A low correlation with precipitation can be 

attributed to the prolonged precipitation during monsoon seasons when the PM2.5 is depleted as 

soon as the first rainy day occurs. Deep convection during the monsoon season also lifts aerosols 

to upper troposphere and lower stratosphere and reduces aerosol concentrations near the surface 

(Kumar et al., 2015). Therefore, we modified HWI for India (HWII) based on local meteorological 

features without including local precipitation as a factor. Instead, three selected meteorological 

variables are regional zonal wind at 10m above the surface (U10), temperature at 200 hPa (T200) 

and local planetary boundary layer height (PBLH). The averaging area for U10 is 12°-22°N, 60°-

70°E and for T200 is 10°-25°N, 60°-80°E (smaller and larger boxes in Figure 1). U10 and T200 

are robust indicators of seasonal changes in synoptic meteorology of South Asia. Local PBLH 

outputs from the bulk Richardson number based on Yonsei University PBL scheme (Hong et al., 

2006) are considered instead of regional average, for each individual city. Similar to Cai et al. 

(2017), to form a simple unitless index (HWII), all three variables are first normalized and then 

summed as in the equation below: 

 

𝐻𝑊𝐼𝐼 = 𝑈10=>?@ABCDEF + 𝑇200=>?@ABCDEF + 𝑃𝐵𝐿𝐻=>?@ABCDEF  

 

We next demonstrate the effectiveness of HWII by showing the correlation between PM2.5 

levels and HWII. Figure 3 uses Mumbai to provide an example for the Historical Period and future 

(under RCP8.5) temporal variability of PM2.5, individual meteorological variables and HWII. All 

three weather variables are negatively correlated with the PM2.5 levels. The correlation coefficients 

range from -0.5 (Historical Period PBLH, shown in Y-axis labels) to -0.64 (RCP8.5 U10). The 
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robust negative correlations imply a strengthened pollution dispersion mechanism should 

meteorological fields increase in strength with time.  

 

 

 
Figure 3. Daily mean PM2.5 concentrations (µg/m3), three normalized meteorological variables and 

HWII in Mumbai for (a) Historical Period and (b) Decade 2050 under RCP8.5. Values in the 

parenthesis of y-axis label are temporal correlations between each variable and PM2.5 levels. 

Reprinted from Wu et al., (2019). 

 

 

Table 2 summarized the correlation between HWII (along with three individual variables) 

and local PM2.5 levels with 95% confidence intervals. All three variables are negatively correlated 

with PM2.5 levels with correlation coefficients ranging from -0.45 (Delhi, Historical Period, T200) 

to -0.69 (Kolkata, RCP8.5, PBLH). HWII, as a composite index, usually has a better performance 

(r at -0.66) in capturing day-to-day PM2.5 variability than individual variables (except for Delhi 
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under RCP6.0 and RCP8.5). One noteworthy point is higher (more negative) correlations with 

individual meteorological does not necessarily lead to a higher correlation with HWII. For 

example, averaged over IGP (Historical Period), the PM2.5 correlations with three individual 

variables are: -0.62, -0.53, -0.54, while in Mumbai (Historical Period), the correlations are lower 

at -0.52, -0.52, -0.5. For IGP, the correlation of HWII (-0.63) is comparable with Mumbai (-0.64). 

Therefore, HWII, specifically modified for this region, serves as a useful tool to explain the 

variability and predict changes in PM2.5 concentration.  
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Table 2. Temporal correlations with 95% confidence interval between HWII and PM2.5 in three 

cities and IGP for Historical Period and Decade 2050 under the two warming scenarios. The values 

in the brackets indicate the lower and upper bound of confidence interval. The bottom row shows 

the results when the high-resolution model output over IGP during the dry season is used. Values 

in the parenthesis are correlations between PM2.5 and individual U10, T200, PBLH. Reprinted 

from Wu et al., (2019).  
 

Correlations between HWII (U10, T200, PBLH) and PM2.5 

 
Historical Period RCP6.0 RCP8.5 

Delhi -0.59 [-0.61 -0.56] 

(-0.53,-0.45,-0.58) 

-0.61 [-0.63 -0.58] 

(-0.53,-0.45,-0.63) 

-0.62 [-0.64 -0.60] 

(-0.54,-0.48,-0.64) 

Kolkata -0.71 [-0.73 -0.69] 

(-0.59,-0.51,-0.65) 

-0.7 [-0.71 -0.68] 

(-0.58,-0.49,-0.69) 

-0.72 [-0.73 -0.70] 

(-0.59,-0.51,-0.69) 

Mumbai -0.64 [-0.66 -0.62] 

(-0.52,-0.52,-0.5) 

-0.64 [-0.66 -0.62] 

(-0.51,-0.52,-0.52) 

-0.71 [-0.73 -0.70] 

 (-0.64,-0.62,-0.53) 

IGP -0.63 [-0.65 -0.61] 

(-0.62,-0.53,-0.54) 

-0.61 [-0.63 -0.59]  

(-0.56,-0.49,-0.6) 

-0.71 [-0.73 -0.69] 

(-0.64,-0.55,-0.7) 

IGP High-Res -0.64 [-0.66 -0.62] 

(-0.62,-0.53,-0.57) 

-0.67 [-0.69 -0.65] 

(-0.64,-0.53,-0.63) 

-0.68 [-0.69 -0.66] 

(-0.60,-0.52,-0.68) 

 

 

In addition to outer domain results, we also included the high-resolution inner domain 

(IGP) for analyses and incorporated the high-resolution IGP data (over the October to May dry 

season only). For the monsoon season, the analyses were done using the outer domain data only. 

For the dry season, we now use the high-resolution model output within the inner domain (IGP 
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region). The correlation between established HWII and IGP PM2.5 concentration remains high 

(Table 2).  

The strong correlation as found in the model simulation is further verified by correlations 

between HWII established from monthly MERRA2 and monthly PM2.5 observations from U.S. 

Consulate General in Mumbai (https://in.usembassy.gov/embassy-consulates/mumbai/air-quality-

data/; Table 3). Since the three predictive variables are not direct measurement in MERRA2 

reanalysis product, it is ideal to validate MERRA2 using in situ observation. However, the 

observation is not easy to obtain because, (1) U10/T200 has the definition area over the ocean and 

(2) PBLH is not a directly measured variable in routine meteorological monitoring, especially back 

in 1990s in India. Nevertheless, we have compared these three variables in MERRA2 and ERA-

interim (not shown) and found a close agreement between the two except MERRA2 tends to 

overestimate PBLH by 27%. In Mumbai, the correlation between observed PM2.5 and MERRA2-

derived HWII reaches as high as -0.85 (Table 3), which is comparable with the monthly correlation 

using model output only. The reason of showing the comparison between model and observation 

only in the monthly average is that US consulate observations have missing values for multiple 

days in a month, preventing us conducting the correlation calculation using daily values.  
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Table 3. Temporal correlations with 95% confidence interval between HWII and PM2.5 in Chennai, 

south India and Mumbai monthly results for Historical Period. The values in the brackets indicate 

the lower and upper bound of confidence interval. The bottom row shows Mumbai results based 

on monthly values of MERRA2 meteorology and PM2.5 observations from U.S. Consulate General 

in Mumbai. Values in the parenthesis are correlations between PM2.5 and individual U10, T200, 

PBLH. Reprinted from Wu et al., (2019).  
 

Correlations between HWII (U10, T200, PBLH) and 

PM2.5 

Chennai (daily) -0.38 [-0.41 -0.34] 

(-0.20,-0.18,-0.61) 

south India (daily) -0.18 [-0.21 -0.14] 

(-0.09,-0.14,-0.23) 

Mumbai (monthly based on model 

output) 

-0.86 [-0.88 -0.84] 

(-0.81,-0.80,-0.65) 

Mumbai (monthly based on 

observations)  

-0.85 [-0.87 -0.83] 

(-0.81,-0.79,-0.59) 

 

 

The connection between PM2.5 and T200 is strong, but the physical mechanism is less 

straightforward. Cai et al. (2017) used the ΔT calculated from the temperature difference between 

850 hPa and 250 hPa. But over India, we found weak correlations (less than 0.3) between PM2.5 

and ΔT. Instead, the upper tropospheric temperature alone has a stronger correlation with PM2.5. 

Studies have suggested that upper-level temperature vertical profile can regulate the pattern and 

strength of monsoon circulations (Li and Yanai, 1996; Boos and Kuang, 2010). Therefore, T200’s 

influence is not independent from U10 described above.  
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Instead of affecting the wind pattern in a confined region (like U10), T200 tends to have a 

broader impact on the overall monsoon circulation for the entire South Asia. Previous studies have 

shown that one of the robust signatures of the South Asian monsoon onset and withdrawal 

corresponds to a positive and negative meridional tropospheric temperature (averaged between 

200 hPa and 600 hPa) gradient (Goswami and Xavier, 2005; Xavier et al., 2007). The tropospheric 

temperature gradient has also been used in other studies focused on understanding the response of 

South Asian monsoon to aerosols. Upper-level temperature profile is also suggested to regulate 

the pattern and strength of monsoon circulations (Li and Yanai, 1996; Boos and Kuang, 2010). 

Previous studies (e.g. Ganguly et al. (2012) and Parthasarathy et al. (1990)) used the average 

temperature of multiple tropospheric layers (200-600 hPa) instead of a single layer. Our tests 

showed that either average of multiple layers or temperature at a single layer other than 200 hPa 

also work, but the highest correlation is obtained using T200. For example, the T300 and T600 

have the correlation coefficient of -0.4 and -0.33 for Historical Period in Delhi (where T200/PM2.5 

correlation is -0.45).  

The PBLH as a predictor of urban air quality has been extensively studied, and numerous 

studies have indicated that PBLH governs the convective lifting efficiency from surface into free 

troposphere, resulting in a vertical ventilation of PM2.5 (e.g. Banta et al., 1998; Aumont et al., 

2003; Petaja et al., 2016; Tang et al., 2016; Miao et al., 2017). Additionally, for the three 

representative cities in this paper, such a strong anti-correlation has also been documented in 

satellite-derived products (Sreekanth et al., 2017). 
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2.3.3 Predicting Future Changes in PM2.5 due to Meteorology Only 

In this section, we aim to quantitatively answer the following question: how does the future 

regional climate change affect PM2.5 level? 

The robust negative correlations between PM2.5 and three meteorological variables imply 

a lower PM level in future when these meteorological variables increase as projected under RCP8.5 

(Figure 4). Indeed, both U10 and T200 tend to increase in Decade 2050 (Table 4). U10 is projected 

to increase by 0.3 m/s and 0.5 m/s under RCP6.0 and RCP8.5, respectively. Similarly, T200 is 

projected to increases by 1.6 °C and 2.5 °C in the future. The PBLH in Delhi and Mumbai are 

expected to decrease slightly under RCP8.5, while PBLH in Kolkata and IGP are expected to 

increase (Table 4). 
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Figure 4. Historical Period monthly averaged PM2.5 levels from direct model outputs (blue), 

statistical predictions using meteorological variables (red) and statistical predictions using HWII 

(black) over (a) Delhi, (b) Kolkata, (c) Mumbai and (d) IGP. (e)-(h) Predicted Decade 2050 PM2.5 

levels under two warming scenarios (red for RCP6.0 and black for RCP8.5) for four regions. Solid 

horizontal lines are for multi-year average of each prediction and dashed horizontal lines are from 

direct model outputs. Blue solid line is for the multi-year average of Historical Period). Reprinted 

from Wu et al., (2019). 
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Table 4. U10, T200, and PBLH in the Historical Period and the changes from Historical Period in 

the future under two RCP scenarios. Reprinted from Wu et al., (2019).  

 Historical Period  Change under RCP6.0 Change under RCP8.5 

U10 (m/s) 2.4 +0.3 +0.5 

T200 (°K) 222.8 +1.6 +2.5 

PBLH (m) 

(Delhi, Kolkata, 

Mumbai, IGP) 

584, 473, 554, 555  -32, +18, +18, +1 -36, +17, -4, +11 

 

 

Here, we construct a multivariate linear regression model to predict the PM2.5 changes 

solely due to meteorological changes. We perform the linear regression over each city/region and 

for each meteorological variable. The statistical model is constructed as follows:   

 

𝑃𝑀%.'
J?EFCKLEF = (𝑎N	𝑈10 + 𝑎%	𝑇200 + 𝑎0	𝑃𝐵𝐿𝐻 + 𝐵)/3 

 

Where the slopes 𝑎N , 𝑎%  and 𝑎0  were derived from linear regressions applied to the 

Historical Period model output that is: 

 

𝑎N =（𝑃𝑀%.' − 𝑏N − 𝑒𝑟𝑟𝑜𝑟N)/𝑈10,  

𝑎% =（𝑃𝑀%.' − 𝑏% − 𝑒𝑟𝑟𝑜𝑟%)/𝑇200, 

 𝑎0 =（𝑃𝑀%.' − 𝑏0 − 𝑒𝑟𝑟𝑜𝑟0)/𝑃𝐵𝐿𝐻. 
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Where 𝑏C  are y-intercepts for each individual predictor and B is the summation of 𝑏C 

(i=1,2,3). The 𝑒𝑟𝑟𝑜𝑟C terms represent the differences between predicted y values using the linear 

regression and the actual y values. The coefficients in the linear regression model are listed in 

Table 5. 

 

 

Table 5. Fitted Linear regression coefficients in the predictive model for PM2.5 for three cities and 

IGP. Reprinted from Wu et al., (2019). 

 a1, a2, a3 b1, b2, b3 

Delhi -4.8,-9.7,-0.083 158.4, 2316.8, 195.8 

Kolkata -6.2,-13.3,-0.20 143.0, 3087.4, 222.5 

Mumbai -3.3,-8.0,-0.096 102.8, 1883.1, 148.4 

IGP -1.9, -3.9, -0.036 85.2, 925.6, 80.6 

 

 

The use of a regression-based model with three variables as separate predictors, in addition 

to HWII alone, is necessary here, even though both approaches can perform fairly well in 

predicting PM2.5 based on Historical Period meteorology (Figure 4, left panel c for Mumbai). Note 

that HWII is a normalized quantity and it is hard to quantify its change from historical period to 

future (Figure 5), because when conducting the normalization, the temporal average during the 

respective periods are already removed. In Figure 5, the T200 is shown with obvious increases 
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under RCP8.5. U10 has slightly higher values in first half of the climatological year and the 

increases are more apparent in second half of the climatological year. 
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Figure 5. Climatology of three predictive meteorological variables and HWII over three cities and 

IGP region. Blue curves are for Historical Period and red curves are for RCP8.5. Horizontal axis 

is for the day in the year. U10 and T200 are the same for all regions (shown in first row). PBLH 

and HWII for each region are shown in left and right columns, respectively. Reprinted from Wu 

et al., (2019). 
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In Figure 4 (left), the statistical prediction of PM2.5 levels (red) closely matches the direct 

model output (blue) for all three cities. The root-mean-square error (RMSE) of prediction is only 

~ 13% (with the correlation coefficient as high as ~ 0.9) compared to the direct model outputs.  

The disagreement mainly comes from difficulty to predict the highest and lowest annual values, 

presumably due to the weaker seasonal cycles of PBLH compared to the U10 and T200 (see Figure 

3). However, the prediction replicates the overall seasonal cycles and matches the annual mean 

simulated PM2.5 levels reasonably well. Note that the primary focus of this study is not to capture 

monthly peak values of simulated PM2.5 levels but to quantify the possibility of a “less polluted” 

future (in a multi-year average sense) if the changing meteorology is the only factor in play. The 

mean biases are also negligible (~ 0.1 µg/m3, less than 0.1%). The consistency for Historical Period 

simulation indicates the statistical model of PM2.5 can be reliably used in projecting the future 

changes (see in Figure 4 right panels). 

One may question the validity of Figure 3 and HWII by questioning the impacts from 

seasonal cycles. Indeed, the seasonal cycle is boosting up the performance. However, we should 

not take seasonal cycle as the only factor in play here. To begin with, we assessed other variables 

like surface temperature, which should have stronger seasonal cycle compared to T200 because 

atmosphere gets heated from bottom-up. However, the performance of temperature (r ~ -0.39) at 

surface is not as good as T200 (r ~ -0.53). Nonetheless, when considering the seasonal cycles, we 

should not forget the signal-to-noise ratio for surface temperature profiles as the surface 

temperature peaks prior to the arrival of monsoon and T200 peaks during the monsoon season. In 

addition, when considering the DJF only for the IGP, the HWII went from -0.63 to -0.58, which is 

still high anti-correlations. Also, we should not forget that South Asia is probably the region that 
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is most heavily impacted by seasonal cycle itself due to its distinctive circulation pattern or 

monsoon cycle. Monsoon, in essence, comes with the seasonal cycle and removing such cycle 

from monsoon neglects the dominant climatological system here. U10 and T200 apparently have 

seasonal cycles and such seasonal cycle is tightly associated with the monsoon patterns. Therefore, 

the variations presented here for different meteorological variables could be reflections of 

monsoon intensities and monsoon itself, may ultimately regulate the circulation patterns in this 

region, leading to variations of PM levels. Under such scenario, both U10 and T200 shall only be 

considered as indicators for monsoon intensities. Moreover, what we strive to demonstrate here is 

that we could utilize the meteorology as a tool for future scenario projections. The validity of such 

projection is shown in Figure 4. In Figure 4, the overall tracking record for the History was fine 

especially, for 8-year averaged data. When discussing the resulting impact of seasonal cycle, we 

should keep in mind that the projection for the future is an average of all days in all years instead 

of a portion or a short period. In addition, we also evaluated the correlations of annual mean values 

to test its validity for the interannual variability. When using Delhi as an example, the correlation 

is 0.71, which shall be considered reasonable in this case for the linear fitting results. Therefore, 

the temporal fluctuation itself should have minimal effects on the final averaged results. 

Nonetheless, we do acknowledge that removing seasonal cycle here may resulting a lower 

correlation, however, we should keep this in mind: a region heavily regulated by monsoon cycles 

is inherently strongly impacted by this circulation pattern.  

For all three cities and IGP, meteorology-driven PM2.5 change is a decrease of 2%-7% in 

the future (even including Delhi where the local PBLH is expected to decrease, which should 

contribute to PM2.5 increase by itself). Also, under the warmer RCP8.5 scenario, PM2.5 level is 
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projected to be lower than RCP6.0 case (by 5%). This is expected as RCP8.5 has a larger increase 

in all three meteorological variables (Table 4).  

The contributions toward a projected “cleaner future” are different from individual 

variables. T200 has the largest contribution (~49%) towards a projected lower PM2.5 level, while 

PBLH has the smallest contribution (<10%). Since T200 increase in future (evident in Figure 5) is 

the largest contributor to the PM2.5 reduction, it is interesting to test the sensitivity of our results 

to the inclusion of T200. First, the performance of HWII is not sensitive to inclusion of T200. 

When dropping the T200, the HWII and PM2.5 correlation has small variations. For example, the 

IGP has the correlation coefficient of -0.63 (Table 2) for Historical period with the inclusion of 

T200 and this value slightly weakens to -0.62 when T200 is taken out of the equation and the 

Historical Period correlation changes from -0.71 to -0.72 in Kolkata. Though the variations are 

small, including T200 in the predictive model, however, can help improve the quantitative 

prediction of PM2.5 level. For example, Mumbai in Figure 4 has a RMSE of 13.7 µg/m3 when T200 

is included and a RMSE of 14.5 µg/m3 after removing T200. Second, even after removing T200 

from the regression-based predictive model, the other two meteorological factors still predict a 

decrease in pollution level, but to a less extent. In Delhi, the predicted PM2.5 under RCP8.5 is 142 

µg/m3 (a drop of 3% from Historical Period) without inclusion of T200, compared to a larger 

decrease of 6% (139 µg/m3) when including T200 as a predictor. While the exact mechanism of 

the relationship between T200 and surface PM2.5 is not clear at this time, it appears to change PM2.5 

predictions considerably.  
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2.4 Concluding Remarks 

 The HWII consisting of U10, T200, and PBLH, is developed to investigate the connections 

between meteorology and PM2.5 levels in urban environments and IGP of India. We demonstrated 

that HWII is capable of depicting the day-to-day and season-to-season pollution level in major 

northern Indian cities. HWII, which combines the variability of three variables, generally have a 

better predictive skill than individual variables. The high correlation of PM2.5 with HWII enables 

us to statistically predict PM2.5 levels using a multivariate linear regression model, and also to 

apply such a regression model to estimate future changes in PM2.5 due to meteorological shifts 

alone. 

We find that under the two warming scenarios (RCP6.0 and RCP8.5) in Decade 2050, the 

three meteorological variables generally tend to increase leading to a more favorable environment 

for pollution dispersion. Our results over India are opposite to recent studies over other parts of 

the world, e.g., Cai et al. (2017) for Beijing and Chen et al., (2019) for eastern China. It implies a 

careful examination at a regional level is necessary before simply attributing past and future global 

warming as a source of degraded air quality. 

Meanwhile, PM2.5 levels are projected in our chemistry-climate model to rise in all three 

cities with RCP8.5 as the worst case. The overall increase in PM2.5 can be attributed to the 

emissions locally in all three cities that are projected to rise in the future. Accordingly, we conclude 

that air quality in northern Indian metropolitan areas will greatly benefit from stricter emission 

regulations. Future works may examine the PM-meteorology correlations by replacing the T200 

with tropospheric temperature gradient since T200 is very likely to increase due to global warming 
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trend (also apparent in Figure 5) and may therefore suffers the prediction biases accordingly. Also, 

future studies using global or regional chemistry transport models are needed to more rigorously 

separate the relative influence of emission and meteorology (and the individual mechanisms for 

the latter) by conducting further simulations such as those with fixed emission and oxidants levels 

and/or fixed meteorological conditions. 
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CHAPTER III 

HEAT AND HIGH-PM HAZARDS2 

 

3.1 Introduction 

 Air pollution is an ongoing issue globally. While there have been major efforts to cut air 

pollution emissions in developing nations, South Asia faces a unique challenge because of ongoing 

industrialization and urbanization processes. The next few decades will witness a continued 

increase in air pollution emissions (or only slightly decrease) in certain Shared Socioeconomic 

Pathways (SSP)/Representative Concentration Pathway (RCP) scenarios (Rao et al., 2017), which 

is opposite to the projected worldwide reduction including East Asia. Thus, local emissions 

continue to be the primary driver for air quality issues, while the influence of climate change 

cannot be ignored as well (Xu and Lamarque, 2018; Wu et al., 2019). 

Despite limited case studies on the urban heat island effect worsening air quality (Wilby, 

2008) and potential positive feedback to further enhance heat stress (Cao et al., 2016) in 

megacities, a decade-long continental-scale analysis of the co-occurrence of heatwave and air 

pollution extremes and their future changes is still missing. Recent examples are analyses of the 

heatwave and ozone episodes, such as Schnell and Prather (2017) using North American 

observations and Meehl et al., (2018) using global model output.  

                                                
2 Reprinted with permission from Xu, Y., Wu, X., Kumar, R., Barth, M., Diao, C., Gao, M., ... & Meehl, G. A. 
(2020). Substantial Increase in the Joint Occurrence and Human Exposure of Heatwave and High-PM Hazards Over 
South Asia in the Mid-21st Century. AGU Advances, 1(2), e2019AV000103. 
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Similarly, health risks associated with an elevated occurrence of heatwaves and high-PM 

weather are well studied, but often separately, highlighting a knowledge gap between 

understanding physical and chemical extremes. The compounding negative effect, when two types 

of conditions occur simultaneously, has only been studied at limited spatial scales (Stafoggia et 

al., 2008; Doherty et al., 2009; Jackson et al., 2010; Willers et al., 2016), including wildfire 

conditions induced by the 2010 Moscow heatwave. However, in the public health field, the 

synergistic impacts of two factors have raised great awareness on exacerbating health risks (Ren 

et al, 2006; Nawrot et al., 2007; De Sario et al., 2013; Qian et al., 2008; Katsouyanni et al., 2009; 

Li et al., 2011). 

 

3.2 Methods 

3.2.1 Main datasets used in this study. 

 This section briefly summarizes datasets used in this study, and detailed discussions are 

provided in the following sections. 

(a) WRF-Chem model simulation (Kumar et al., 2018) of 8 years for present-day (1997-

2004), and 9 years for the mid-21st century (2046-2054) under RCP8.5 and RCP6.0 emission 

scenarios. 

(b) MERRA2 reanalysis products (Randles et al., 2017; Buchard et al., 2017) are used for 

surface PM2.5, and ERA-Interim products (Dee et al., 2011) are used for deriving the wet-bulb 

temperature. 

(c) Ground measurement of daily temperature and relative humidity are from select airports 

(collected by the India Meteorological Department but downloaded free of charge from Weather 

Underground database). 
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(d) Ground measurement of PM2.5 in the late 1990s and early 2000s are compiled by Kumar 

et al., (2018), which are contributed by many observational studies (Pillai et al., 2002; Latha and 

Badarinath, 2003; Tiwari et al., 2009; Balakrishnaiah et al., 2011; Deshmukh et al., 2013; Tiwari 

et al., 2013). 

(e) Populations for present-day and future decades are based on Jones and O’Neill (2016). 

The spatially explicit population dataset is from Jones and O’Neill (2016) with a spatial resolution 

of 1/8º by 1/8º. Before any data analysis related to population exposure, environmental quantities 

are regridded into the grid cells of population data using MATLAB function (interp2). SSP data is 

provided every ten years between 2000 (base year) and 2100 (projections). For example, data are 

available for 2010, 2020, 2030, etc. The Decade 2050 population projection (with 2 billion 

population in South Asia, Table 1) is based on Shared Socioeconomic Pathway (SSP) 5 scenario 

(fossil-fueled development for the economy), which is consistent with RCP8.5 emission pathway. 

Other SSP scenarios compatible with other RCPs are available in Jones and O’Neill (2016) but are 

not used in this study.  

 

3.2.2 Model 

This study uses multi-year simulations conducted using a Nested Regional Climate model 

coupled with Chemistry (NRCM-Chem) that is based on the Weather Research and Forecasting 

(WRF) model coupled with Chemistry (WRF-Chem, version 3.6.1) as described in Kumar et al. 

(2018). The model uses Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) 

(Emmons et al., 2010) for gas-phase chemistry and simulates major aerosol species including 

sulfate, nitrate, ammonium, organic carbon, black carbon, dust and sea-salt using the Model of 

Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008).  
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The model domain covers the entire South Asia and surrounding oceanic regions (1.5º- 

44.7ºN and 52.6º-107.4ºE) using two domains with coarser horizontal grid spacing (60 km) for the 

outer domain; and finer horizontal grid spacing (12 km) for the smaller inner domain that 

encompasses the Indo-Gangetic Plain and the Himalayan region. All grid cells have the same area 

in this configuration. The simulation within the high-resolution inner domain only covers dry 

seasons (October to May) of each year. The model includes 51 vertical layers up to 10 hPa. 

The MOSAIC model includes a sophisticated aerosol thermodynamics module to simulate 

the effects of changes in temperature and humidity on gas-particle partitioning and on the 

intraparticle solid-liquid phase equilibrium. Meteorology and chemistry are fully coupled in 

NRCM-Chem and feedback to each other at every time step. Aerosols affect the meteorology by 

interacting with both the radiation and clouds, and the corresponding changes in meteorology 

(temperature, pressure, winds, solar radiation, planetary boundary layer height, and precipitation) 

affect trace gases and aerosols via feedback to atmospheric chemical kinetics, dry and wet 

deposition, transport, biogenic emissions, and boundary layer mixing. Fire emissions and land use 

types were kept constant between the present-day and future simulations to limit the number of 

drivers contributing to future changes in air quality.  

 

3.2.3 Simulations 

The historical simulation (“Decade 2000”) is from 1997 to 2004, and the future simulation 

(“Decade 2050”) is from 2046 to 2054. The simulation is driven by large-scale meteorological and 

chemical boundary conditions from a global climate model that has been bias-corrected against 

past ERA-Interim (Bruyere et al., 2014). The evaluation of present-day climate and air quality also 

show reasonable agreement (see evaluations in supplement) and identified meteorological bias was 
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further corrected before our analysis (see supplementary materials for details). In a nutshell,  we 

subtracted a geographically varying climatological bias as a function of time of the year ( historical 

simulation against ERA-Interim) from both the historical and future simulations. 

Due to high resolution and complex chemical scheme, Kumar et al. (2018) only performed 

three sets of decade-long time-slice simulations, as opposed to a continuous century-long transient 

simulation such as in Xu and Lamarque (2018). Note that the decade-long time span of our 

simulation is still considerably longer than the most previous simulation with fine-resolution 

chemistry-climate models that usually lasted for weeks to months. The multi-year simulation with 

hourly output (averaged in this study to daily mean) of meteorology and chemistry is crucial to 

capture the behavior of extreme events (heatwave and high-PM) and estimate future changes in 

their frequency. 

 

3.2.4 Scenarios 

The Decade 2000 simulation is driven by large-scale meteorological boundary conditions 

generated by Community Earth System Model version 1 (CESM1; Hurrell et al., 2013), which is 

bias-corrected towards the reanalysis data (European Reanalysis, ERA-Interim) (Dee et al., 2011). 

The bias correction procedure is detailed in Bruyere et al., (2014). The chemical initial and 

boundary conditions are provided by a global atmospheric chemistry model (Community 

Atmospheric Model version 4 with Chemistry, CAM4-Chem) (Lamarque et al., 2012), driven by 

the same meteorological fields from CESM1. Thus, the meteorological boundary conditions used 

for WRF-Chem are consistent with the chemical boundary conditions in these runs. 

The emission dataset was taken from the Atmospheric Chemistry and Climate Model 

Intercomparison Project (ACCMIP) (Lamarque et al., 2013). The simulated PM2.5 surface 
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concentration for the “Decade 2000” was evaluated against seven observational sites in South 

Asia, and five out of seven sites have a climatologically monthly mean bias of less than 10%. Note 

that in this paper we use “PM” as a broader term to refer those health-adverse fine particles (PM2.5, 

particulate matter with a diameter less than 2.5 um) while excluding the contribution of larger 

particles (>2.5 um) that could also be important for surface visibility. 

  The Decade 2050 simulation is driven by CESM1 output under two future emission 

scenarios: Representative Concentration Pathway (RCP) 8.5 (CO2-equivalent of 630 ppm in 2050) 

and RCP6.0 (505 ppm at 2050). The two scenarios considered are the two higher ones in the RCP 

database, and the global CO2 emission is tracking RCP8.5 closely (as of 2018, Figure 6), justifying 

the focus on the two higher emission scenarios as opposed to the two lower ones. The PM2.5 

emission in South Asia stays largely the same under RCP6.0, compared to the Historical Period. 

But for RCP8.5, a 77% increase in total emission from the Historical Period level is projected. All 

four RCP scenarios could not be run because of limited computational and storage resources. 



 

40 
 
 

 

 
Figure 6. (a) Global emission of Carbon (due to fossil fuel and land use) and (b) Indian emission 

of SO2 under different projections. RCP4.5 curves are dashed to distinguish from the RCP8.5 curve 

in (b). The “History” is according to CMIP5 and CMIP6 protocol. Future emissions (after 2005) 

are from four RCP scenarios (van Vuuren et al., 2011). The CO2 “observation” is from Le Quere 

et al., (2018). The Indian SO2 “observation” is based on satellite estimates in Li et al., (2017). (c) 

Emission of PM2.5 (ton km-2 yr-1) over South Asia in Decade 2000 and (d) its change in Decade 

2050 under RCP8.5. Reprinted from Xu et al., (2020). 

 

 

We note that the current global emission of CO2 is tracking RCP8.5 closely (as of 2018, 

see Figure 6). The satellite-based SO2 emission estimate (Li et al., 2017) is even higher than the 

RCP8.5 projection and more in line with the recently released CMIP6 emission dataset (SSP). 
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These provide a strong justification for focusing on the higher emission scenario such as RCP8.5 

as opposed to the lower ones.  

 

3.2.5 Calculation of the wet-bulb temperature (Tw) 

Many previous heat extremes analyses only considered temperature alone (e.g., Meehl and 

Tebaldi, 2004; Xu et al., 2015), but more recent studies have accounted for humidity impact on 

the heat stress (e.g., Kovats and Hajat, 2008). A recent assessment of heat extremes related 

mortality suggested that a combination of temperature and humidity is a better metric to quantify 

health risks (Mora et al., 2017). That is, under high humidity conditions, human exposure to a 

lower temperature can induce the same level of risk compared to higher temperature exposure but 

under lower humidity conditions. Here, we account for both temperature and humidity variations 

by computing the wet-bulb temperature (Tw; Sherwood and Huber, 2010). Tw should not be 

confused with the wet bulb globe temperature (WBGT) that additionally accounts for the effect of 

wind speed and solar radiation (or the simplified form by assuming moderate radiation and light 

wind speed as in Willett and Sherwood, 2012; Knutson and Ploshay, 2016).  

In practice, wet bulb temperature (Tw) can be measured by wet bulb thermometers as the 

environment saturation ratio of water vapor is reached. Here Tw is computed following Stull 

(2011) from the daily average of T (temperature, “dry-bulb”; unit: ºC) and RH (relative humidity; 

unitless, ranging from 0 to 100%).  

 

𝑇Y = 𝑇 ⋅ atan ^0.151977(100 ⋅ RH + 8.313659)
N
%f + atan(𝑇 + 100 ⋅ 𝑅𝐻) − atan(100 ⋅ 𝑅𝐻	

− 1.676331) + 0.00391838(100 ⋅ 𝑅𝐻)
0
% atan(0.023101 ⋅ 100 ⋅ 𝑅𝐻)

− 4.686035 
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Depending on the data availability, RH is calculated in the following two ways. 

(1) From the WRF-Chem model output, RH is calculated from T (temperature; unit: K), p 

(air pressure; unit: Pa) and q (specific humidity; unitless). 

𝑒i = 𝑒j	exp	(
𝐿n
𝑅Y

(
1
𝑇j
−
1
𝑇)) 

𝜔i =
𝑅A
𝑅Y

𝑒i
𝑝 − 𝑒i

 

𝜔 =
𝑞

1 − 𝑞 

𝑅𝐻 =
𝜔
𝜔i
100% 

(2) From the ERA-Interim dataset, RH is calculated from T, p, and Tdew (dew point 

temperature; unit: K). 

𝑒i = 𝑒j	exp	(
𝐿n
𝑅Y

(
1
𝑇j
−
1
𝑇)) 

𝑒FEY = 𝑒j	exp	(
𝐿n
𝑅Y

(
1
𝑇j
−

1
𝑇FEY

)) 

𝑅𝐻 =
𝑒FEY
𝑒i

𝑝 − 𝑒i
𝑝 − 𝑒FEY

100% 

In the equations above, e0 (611 Pa) is the reference water vapor pressure, and es and edew 

are the water vapor pressure at saturation and at dew point temperature, respectively. w and ws are 

water vapor mixing ratio (water vapor vs. dry air, unitless) at any given temperature or at 

saturation. T0 (273 K) is the reference temperature. Lv (2.5*106 J/kg) is the latent heat of water 

vaporization (from liquid to gas). Ra (287 J/kg/K) is the specific gas constant for dry air. Rw (461.5 

J/kg/K) is the specific gas constant for water vapor. Calculation of daily Tw has little differences 

from the mean-taking method, i.e., from the average of hourly Tw or from mean daily T and RH 

(Figure 7). 
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Figure 7. (a) Daily Tw in warm season (day 100 to 280) of 1997 calculated from two methods: 

(red) Daily Tw calculated from daily mean temperature and RH and (blue) Daily Tw calculated 

from hourly Tw for Delhi. (b) Tw differences induced by two calculation methods for four focused 

cities). Reprinted from Xu et al., (2020).  

 

 

3.2.6 Threshold for defining heatwave and high-PM extremes 

Here we adopt daily average Tw at 25ºC as the threshold for heat extremes in this analysis. 

This is close to the “deadly” threshold (red line in Figure 8) as reported in Mora et al., 2017 who 

established this threshold based on hundreds of heat-related deadly events during 1980 and 2014 

and recorded daily temperature and humidity (but treated separately, not jointly using Tw).  

In the context of weather extremes, the question often arises as to “how extreme” certain thresholds 

should be. Previous studies have used a higher threshold of 35ºC to identify deadly or even fatal 

extreme heat (Kang and Eltahir, 2018), which is the physical limit to heat removal from the body. 

Note that Lelieveld et al., (2014) used daily max temperature of 35ºC as the threshold, which is 

close to 25ºC Tw at 40% RH as in the two India heatwave events we identified (Figure 8), but not 

the wet-bulb temperature.  
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Figure 8. Tw as a function of temperature and relative humidity. The 25ºC Tw is close to the 

“deadly” threshold established in Mora et al., (2017) (red line, with 95% lethal events already 

occurring at this level). The blue line (Tw between 15ºC to 20ºC) is a weaker definition of heat 

extremes when the lethal events start to occur. Yellow star indicates a multi-week heat extremes 

event in Ahmedabad (in Western India) during May 2010 (T=36ºC, RH=34% from ERA-Interim 

monthly value; Azhar et al., 2014). The purple triangle indicates a heat extremes event in 

Allahabad (near central Indo-Gangetic Plain) during May, 2015 (T=35ºC, RH=40% calculated 

from ERA-Interim monthly value; Burke, 2015). Reprinted from Xu et al., (2020). 

 

 

In our case, using the 25ºC threshold allows more samples to enter the analysis and 

provides a more robust statistical analysis. However, the results with a higher threshold (e.g. Tw 
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of 28ºC, Table 6) would be qualitatively similar, the processes would be the same, and the basic 

results would not change with the caveat that the higher threshold would, of course, represent more 

lethal conditions. We also conducted a sensitivity test in Karachi using the threshold of daily 

maximum Tw>35ºC (Table 6) following Kang and Eltahir (2018), which suggests that RCP8.5 

could see a 720% increase in heat extremes frequency.  
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Table 6. South Asia frequency (day/year) and duration (day) of heat extremes by applying different 

thresholds. All results are based on the original Tw (or T) without bias correction. The threshold 

of T (daily mean temperature) and Tw_max (daily maximum wet-bulb temperature) is deliberately 

selected so that the Decade 2000 frequency is similar to the frequency when using Tw of 25ºC as 

the threshold (48 days). Reprinted from Xu et al., (2020). 

 Frequency (day/year) Duration (day) 

Threshold 

definition 

2000 2050  

 RCP6.0 

2050  

 RCP8.5 

2000 2050  

 RCP6.0 

2050  

 RCP8.5 

Tw > 25ºC  48 66 76 6 9 11 

Tw > 25ºC but 

individual 

extreme event to 

be >2 days 

38 54 65 

 

7 12 18 

Tw > 18ºC  168 183 191 75 119 141 

Tw > 28ºC 2 5 10 1 1 2 

T > 31ºC  49 56 63 8 9 10 

Tw_max > 26ºC  48 60 77 6 7 9 

Tw_max > 35ºC 

(as in Kang and 

Eltahir, 2018), 

for Karachi only 

0.5 0.2 3.6 0.3 0.1 1.3 

 

As acknowledged in Mora et al. (2017), previous assessments on deadly heat events have 

focused on developed nations in the Northern Hemisphere mid-latitudes (Europe and North 
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America). The applicability of the same threshold to tropical and developing nations remain to be 

tested using large-scale public health data. Here, we justify the robustness of the 25ºC Tw threshold 

with limited case studies over South Asia. The yellow star and purple triangle in Figure 8, both 

close to Tw of 25ºC, correspond to two heat extreme events, which reportedly killed more than 

1300 people (see Figure 8 caption for details).  

It has become clear to the climate and health research community that the humidity effect 

needs to be accounted for in heat extreme health impact studies (Sherwood, 2018). To put Tw in 

the perspective of two other temperature/humidity related heat metrics, Tw during the 2010 

Ahmedabad event is 24.8ºC (T=36ºC, RH=34%), and this is equivalent to 37.2ºC in “heat index” 

(using the formula of http://www.wpc.ncep.noaa.gov/html/heatindex.shtml;  Matthews et al., 

2017, also called “apparent temperature”; Russo et al., 2017; Herring et al., 2016) and 41.6ºC (in 

“humidex” using the formula of https://memory.psych.mun.ca/tech/js/humidex) (Barnett et al., 

2010). Such a high value of heat index is classified as “extreme caution” 

(https://www.weather.gov/safety/heat-index) by the National Oceanic and Atmospheric 

Administration (NOAA), and such a high value of humidex is classified as “great discomfort” by 

the Canadian meteorologists (https://en.wikipedia.org/wiki/Humidex). Other more complex 

indices that use factors beyond the relative humidity may be more relevant to health impacts, such 

as WBGT (Liang et al. 2011) or UTCI (Universal Thermal Climate Index; Jendritzky et al., 2012). 

Sustained exposure to high PM2.5 environment (such as 100 µg/m3) is conducive to 

cardiopulmonary mortality and lung cancer (Turner et al, 2011). The threshold of defining high-

PM extremes days is here set to 60 µg/m3 of daily mean surface concentration of PM2.5 following 

India air quality standard (CPCB, 2009). The 60 µg/m3 value is larger than the “unhealthy” level 

of the 25 µg/m3 recommended by the World Health Organization (WHO, 2005), the 55.5 µg/m3 
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level of “unhealthy” recommended by the Environmental Protection Agency of the US (EPA, 

2012), but it is smaller than the 75 µg/m3 definition of “severe air pollution” recommended in 

China (Jin et al., 2016). Sensitivity sensitivities (Figure 9) show the results are not particularly 

sensitive to the selection of threshold other than the expected absolute value change. 

 

 

 
Figure 9. Spatial distribution of Haze extremes frequency (day/year) during the Decade 2000. Note 

that the Haze extremes frequency varies with different thresholds (55.5, 60, 75 and 100 µg/m3). 

Reprinted from Xu et al., (2020). 
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3.2.7 Statistical metrics of occurrence of extreme events (heatwave and high-PM) 

To quantify the occurrence of the heatwave and high-PM extremes, the daily value of Tw 

and surface concentration of PM2.5 is calculated for all grid points of the model output. Having 

established a certain threshold (section 4), days with values higher than the threshold are classified 

as extreme days. The frequency (days/year) and the mean duration (days) of extreme events are 

calculated for each year, and then the multi-year average for the Decade 2000 and the Decade 2050 

under RCP6.0/8.5 is taken to remove the interannual variability of regional climate. Using a 

stronger definition of extreme events that requires the duration of any individual events to be at 

least 2 days (e.g., Xu et al., 2015 and references within), the frequency numbers in Table 7 would 

be lower (see Table 6), but not significantly, due to the low weather variability and long-lasting 

nature of tropical heat extremes in this region. 
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Table 7. (a) Tw (ºC), frequency of heat extremes (day/year), duration (day), and relative intensity. 

The numbers are for the Decade 2000 and Decade 2050 under two scenarios. The numbers in 

parentheses of South Asia row are based on original model output and the numbers in brackets are 

from ERA-Interim. (b) same as (a), but for haze events. Reprinted from Xu et al., (2020). 

(a)  

heat 

Tw (°C) Frequency 

(day/year) 

Duration (day) Relative Intensity 

(°C above 25) 

 2000 2050  

RCP

6.0 

2050  

RCP

8.5 

2000 2050  

RCP

6.0 

2050  

RCP

8.5 

2000 2050  

RCP

6.0 

2050  

RCP

8.5 

2000 2050  

RCP

6.0 

2050  

RCP

8.5 

Afgha

nistan 

6.4 7.3 7.4 0 0 0 0 0 0 0.0 0.1 0.1 

Bangla

desh 

22.2 23.6 24.2 156 191 211 14 18 21 1.3 1.8 2.2 

Bhutan 8.5 9.9 10.6 0 1 2 0 0 0 0.0 0.1 0.0 

India 18.7 19.8 20.3 53 81 97 5 8 9 0.6 1.0 1.1 

Nepal 9.8 11.0 11.6 9 16 21 1 1 2 0.1 0.2 0.2 

Pakista

n 

13.2 14.1 14.3 44 53 59 6 6 7 0.8 1.2 1.7 

Sri 

Lanka 

23.9 24.7 25.2 60 153 212 4 7 13 0.3 0.6 0.8 

South 

Asia 

15.9 

(15.0

) 

[16.7

] 

16.9 17.3 45 

(48) 

[47] 

67 78 5 

(6) 

[5] 

6 8 0.6 

(0.7) 

[0.6] 

0.9 1.0 
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Table 7 continued. 

(b)  

haze 

PM2.5 (µg/m3) Frequency 

(day/year) 

Duration (day) Relative Intensity 

(µg/m3 above 60) 

  

2000 

2050  
 

RCP

6.0 

2050  
 

RCP

8.5 

 

2000 

 

2000 

2050  
 

RCP

6.0 

2050  
 

RCP

8.5 

 

2000 

 

2000 

2050  
 

RCP

6.0 

2050  
 

RCP

8.5 

 

2000 

Afgha

nistan 

39.3 31.2 46.5 59 39.3 31.2 46.5 59 39.3 31.2 46.5 59 

Bangla

desh 

54.9 64.7 76.0 123 54.9 64.7 76.0 123 54.9 64.7 76.0 123 

Bhutan 19.3 15.3 21.8 4 19.3 15.3 21.8 4 19.3 15.3 21.8 4 

India 45.8 43.6 60.3 83 45.8 43.6 60.3 83 45.8 43.6 60.3 83 

Nepal 24.7 23.2 30.1 11 24.7 23.2 30.1 11 24.7 23.2 30.1 11 

Pakista

n 

42.2 46.4 55.5 69 42.2 46.4 55.5 69 42.2 46.4 55.5 69 

Sri 

Lanka 

25.1 24.6 27.0 1 25.1 24.6 27.0 1 25.1 24.6 27.0 1 

South 

Asia 

43.5 41.9 56.4 75 43.5 41.9 56.4 75 43.5 41.9 56.4 75 
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In addition to quantities of the number of days of extremes, the severity of extremes is also 

important. The relative intensity of extreme events is reported here in an anomalous sense, as the 

difference between quantities averaged within extreme days and the selected threshold. A large 

relative intensity (ºC or µg/m3) indicates a severe departure from the threshold and has been 

suggested as a predictor for heat stress-related mortality (Rocklov et al., 2012).  

We define a fourth metric here, accumulated relative intensity, as the product of frequency 

(days/year) and relative intensity (ºC or µg/m3). The concept of accumulated relative intensity for 

heat stress is similar to the cooling degree days ((temperature - 22ºC) * number of days with the 

temperature higher than 22ºC) that has been widely used in assessing the demand for air 

conditioning (Miller et al., 2008; Shi et al., 2016). 

 

3.3 Results 

3.3.1 Humidity-amplified heat stress 

  With the daily average wet-bulb temperature (Tw, as in Stull, 2011) of 25ºC as the 

threshold, heat extremes frequency is as high as 100-200 days/year over the coastal regions and 

the Indo-Gangetic Plains during the Decade 2000 (Figure 10), with a prolonged duration of more 

than 15 days particularly over the foothills of the Himalayas. The high values of Tw in the southern 

coastal regions are due to high humidity and in the Indo-Gangetic Plain due to high temperature 

(Figure 11). Under the RCP8.5 scenario, the future occurrence of heat extremes is projected to 

increase from 45 days/year (averaged over the seven countries within South Asia) to 78 days (a 

73% increase; Table 7 and Figure 12) and with a mean duration of heat extremes events of over 

14 days in cities such as Delhi (Table 8).  
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Figure 10. (Top row) Frequency of heat extremes (days/year) at Decade 2000 and its change at 

Decade 2050 under RCP8.5. (Middle row) Duration (days). (Bottom row) Relative intensity (ºC). 

The white areas are regions where no heat extremes occur in the Decade 2000. Reprinted from Xu 

et al., (2020). 
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Figure 11. (First row) Bias-corrected Tw in Decade 2000 and the change in Decade 2050 under 

RCP8.5. (Second row) T. (Third row) RH. (Fourth row) T as in the second row but from 19 CMIP5 

models (Source: KNMI Climate Explorer). Reprinted from Xu et al., (2020). 
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Figure 12. Future change (Decade 2050 minus Decade 2000) under RCP8.5 in frequency 

(days/year) of (a) heat extremes, (c) high-PM extremes and (e) HHH. Stippling indicates regions 

with statistically significant positive change at the 1% confidence level using the Student’s t-test. 

(b), (d) and (f): Same as the left column, but for the mean duration (day). Reprinted from Xu et al., 

(2020). 
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Table 8. Similar to Table 7, but for individual cities. The city scale is defined as 1 model grid box 

of 60 km * 60 km that is closest to the city center. In the case of using high-resolution 12 km model 

output, the domain for one city covers 25 grid boxes. Reprinted from Xu et al., (2020). 

(a) heat Tw (°C) Frequency 

(day/year) 

Duration (day) Relative Intensity 

(°C above 25ºC) 

 20

00 

2050  

RCP

6.0 

2050  

RCP8

.5 

20

00 

2050  

RCP

6.0 

2050  

RCP

8.5 

20

00 

2050  

RCP

6.0 

2050  

RCP

8.5 

20

00 

2050  

RCP

6.0 

2050  

RCP8

.5 

Delhi, India 17.

5 

18.8 19.1 10

9 

127 134 14 16 18 1.6 2.2 2.5 

Mumbai, 

India 

21.

7 

22.3 22.6 13 69 88 2 5 5 0.3 0.6 0.7 

Dhaka, 

Bangladesh 

21.

3 

22.9 24.7 18

3 

215 231 16 23 20 1.4 2.0 2.4 

Karachi, 

Pakistan 

19.

8 

20.8 22.5 11

3 

145 162 8 10 10 1.3 2.0 2.0 

Delhi, India 

(using 

12km data)  

16.

4 

17.6 18.0 91 111 117 14 21 26 1.4 1.8 2.1 
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Table 8 continued. 

(b) 

haze 

PM2.5 (µg/m3) Frequency 

(day/year) 

Duration (day) Relative Intensity 

(µg/m3above 60) 

  

2000 

2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

 

2000 

2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

Delhi, 

India 

147.

1 

171.

7 

183.

7 

352 353 356 46 51 65 80.9 116.

0 

127.

1 

Mum

bai, 

India 

95.0 100.

6 

107.

9 

298 304 298 15 15 16 46.3 51.6 62.2 

Dhak

a, 

Bangl

adesh 

70.9 79.3 101.

2 

206 229 271 7 8 9 33.8 41.7 61.0 

Karac

hi, 

Pakist

an 

59.3 65.5 71.8 130 145 178 5 5 5 33.1 40.9 42.7 

Delhi, 

India 

(using 

12km 

data)  

146.

7 

177.

9 

186.

4 

350 346 355 40 29 59 90.9 125.

2 

120.

1 
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The intensification of heat extremes shown above is comparable to previous studies over 

this region when the uncertainty of regional warming projection is considered. In this study, there 

is projected regional warming of 1.6ºC from Decade 2000 to Decade 2050 (similar to Chaturvedi 

et al., 2012; 1.4ºC for Tw as in Table 7). More informative than the absolute value of change 

projected by a single model is how much of the enhancement, as shown above, can be mitigated 

by adopting a (moderately) low carbon emission pathway (e.g. RCP6.0). Our Decade 2050 

simulation under RCP6.0 suggests the increase in frequency and duration in RCP8.5 can be cut by 

33% and 66%, respectively, over South Asia (Table 7). The relative magnitude is largely consistent 

with simulated lower regional warming (1.0ºC increase from now to mid-century in RCP6.0 

compared to a 1.6ºC increase in RCP8.5), suggesting the scalability of heat extremes statistics 

shown here to other low-warming scenarios (e.g. RCP2.6), at least for this region. The fractional 

increase quantified in previous studies is somewhat different due to various definitions of heat 

extremes, which are discussed next. 

The daily averaged Tw of 25ºC, at the 88th percentile of climatological Tw over South 

Asia (Table 7), may seem not very “extreme”, but indeed corresponds to the level of heat stress 

experienced in two major multi-week heatwave episodes (May 2010 and May 2015) in India that 

reportedly led to thousands of deaths (Figure 8). As a sensitivity test, using a weaker threshold of 

18ºC of Tw (the blue line in Figure 8, when the heat-related causality just started to be reported as 

in Mora et al., 2017), the Decade 2000 occurrence is more frequent at 168 days/year and the 

fractional increase into the future is much weaker (14%, Table 6) than when the 25ºC Tw is used 

as the threshold.  

The lower thresholds of 18ºC and 25ºC Tw (following Mora et al., 2017) are established 

empirically based on numerous multi-days to multi-week heatwave events that have led to major 
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casualty to vulnerable groups such as children and elderly. The lower threshold of Tw should be 

clearly distinguished from Tw thresholds of 30ºC to 35ºC adopted in some earlier studies 

(Sherwood and Huber, 2010; Lemke and Kjellstrom, 2012; Van Oldenborgh et al., 2017; Kang 

and Eltahir, 2018; Table 6), which refers to a lethal physiologic limit that can cause instantaneous 

hyperthermia, even to healthy active outdoor workers, within just a few hours of exposure 

(presumably during the daytime).  

When a higher threshold of Tw 28ºC is adopted as a sensitivity test, the Decade 2000 

frequency is much rarer (2 days/year averaged across South Asia) compared to hundreds of days 

with heat stress when the lower thresholds of Tw were used, and the fractional increase in the 

future is, understandably, much stronger (>400%, Table 6). This is similar to the case when using 

a strict definition of heat extremes by requiring individual episodes to be at least two consecutive 

days (e.g., Xu et al., 2018). The relative future increase in frequency under this stricter requirement 

will also be larger (71% as opposed to 65%, Table 6). 

Earlier studies, if using temperature alone without considering the humidity effect, omit 

the documented evidence that the human body responds negatively to high humidity conditions 

(Liu et al., 2014). Using temperature alone would underestimate the future increase of heat 

extremes. For example, if a threshold of T>31ºC is selected (intentionally) that leads to a Decade 

2000 frequency close to 48 days/year (similar to Tw>25ºC, Table 6), the same model projects a 

14-29% increase in frequency vs. 38-58% using Tw, and a 13-20% increase in duration vs. 50-

83% using Tw. The reason for the underestimation is that relative humidity over these tropical 

regions is projected by the latest global climate models to increase with global warming as well 

(Figure 13, Figure 11; see also Dai, 2006; Sherwood and Fu, 2014).  
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Figure 13. Simulated and observed changes over Dhaka, Bangladesh. (a): Tw in ERA-Interim (the 

thin blue line) and WRF-Chem (the thick black line). The red line is the linear fit of ERA-Interim 

data. (b): same as (a) but for heat extremes frequency (day/year) (c): Climatologically averaged 

temperature based on WRF-Chem (blue, left Y-axis) and relative humidity (red, right Y-axis) as a 

function of the month. The thick dashed lines are for the Decade 2000, and the thick solid line is 

for the Decade 2050). The thin dashed lines with high-frequency fluctuation are the daily time 

series in the year of 1997. (d): same as (c), but for WRF-Chem simulated PM2.5 and Tw (after the 

bias correction). Reprinted from Xu et al., (2020). 

 

 

Even if the relative humidity stays the same, there will still be an underprediction of heat 

stress risks if using T alone, just because of the greater health effect of moisture in a warmer 

climate (Figure 8). The additional benefit of combining temperature and humidity in heat stress 

assessments is that the model deficiency in simulating the two (Figure 14; Willett and Sherwood, 
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2012) tends to offset. Similarly, the model discrepancies in projecting temperature and relative 

humidity tend to be the opposite (Fischer and Knutti, 2013). 
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Figure 14. (Top) The bias of simulated Tw in WRF-Chem, when contrasted to ERA-Interim during 

the Decade 2000. (Left) the annual average. (Right) warm-season only, including May to 

September. (Middle) Same as the top panels but for temperature. (Bottom) Same as the top panels 

but for relative humidity. Values are only shown for seven South Asian countries (Afghanistan, 

Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka) within the thicker borderlines. 

Reprinted from Xu et al., (2020). 
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A potential underestimation of future increase in heat stress is also likely in previous 

studies (e.g. Im et al., 2017) if using daily maximum temperature instead of daily mean temperature 

(unless the specific health and economic concern are lost labor hours and occupational mortality 

of outdoor workers). There is only a 25-60% increase in frequency when a Tw_max threshold of 

26ºC is used (with the intention that a similar Decade 2000 frequency is found, Table 6), in contrast 

to the daily mean Tw used in this study (with a 38-58% increase in frequency). The future increase 

in health risk, when using Tw_max instead of daily averaged Tw as here, can be underestimated 

because: (a) cooler nights can provide a relief period for the human body to rest and recover 

(Obradovic et al., 2017) and (b) nighttime temperatures tend to increase faster than daytime 

temperatures under global warming (Davy et al., 2017).  

Are the simulations here (close to 10 years in each case) long enough to provide a robust 

projection of regional climate change? One may question that a single realization of 8 to 9 years, 

might not be sufficient because a single decade of simulation can be heavily influenced by the 

phase of decadal variability mode such as AMO. We argue our results are robust for the following 

two reasons: First, our simulation for Decade 2000 is highly constrained by observed meteorology 

(using ERA-Interim as the benchmark for bias correction) and thus represents the real meteorology 

as observed during those 8 years. Second, our Decade 2050 simulation is driven by boundary 

conditions provided by multiple runs from a global climate model (CESM1), and thus has 

effectively accounted for the decadal fluctuation of the climate system.  

Are the projected changes here similar to other global climate models? The mean 

temperature for the South Asia region is 20.2ºC in the Decade 2000. At the Decade 2050, this 

region would experience a 1.5ºC warming compared to the Decade 2000 under RCP8.5 and a 1.0ºC 

warming under RCP6.0. These numbers are within the uncertainty range of global climate model 
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output in Coupled Model Intercomparison Project phase 5 (CMIP5), consistent with the fact that 

CESM1 has a moderate climate sensitivity compared with other CMIP5 models. For reference, the 

CMIP5 models yield a mean 2050 warming of 1.6ºC for RCP8.5 (Figure 11, fourth row) and 1.2ºC 

for RCP6.0 with an uncertainty of a few tenths of a degree (also seen in Figure 11 of Chaturvedi 

et al., 2012).  

 

3.3.2 Human exposure to elevated heat risks 

Due to negative health consequences, it is important to assess human exposure to heat 

extremes and the reasons for future changes. We find that population-weighted heat extremes 

frequency in the Decade 2000 is 83 days/year, larger than the area-weighted estimate (45 

days/year) and is projected to increase by 51% to 125 days/year under RCP8.5 (Table 9). The 

population projection (under the SSP5 scenario; Jones and O’Neill, 2016) are spatially resolved 

and are consistent with the socio-economic drivers of RCP emissions. Similar results were also 

found for the increase in heat extremes duration to 13 days (under RCP8.5) from 9 days in the 

Decade 2000 (Table 9).  
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Table 9. Similar to Table 7 but for population-weighted results, as opposed to area-weighted 

results. Note the higher values here compared to Table 3, because co-location of population and 

extreme events tend to enhance risks, in particular for haze (part b of this table). Reprinted from 

Xu et al., (2020). 

(a)  

heat 

Tw (°C) Frequency 

(day/year) 

Duration (day) Relative Intensity 

(°C above 25) 

 2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

Afgha

nistan 

6.0 7.3 7.4 0 0 0 0 0 0 0.3 1.1 2.5 

Bangl

adesh 

22.3 23.4 24.4 166 200 219 14 19 21 1.3 1.9 2.2 

Bhuta

n 

11.3 13.9 14.5 0 3 7 0 1 1 0.0 0.0 0.1 

India 20.4 21.6 22.1 77 109 125 8 11 12 0.9 1.4 1.6 

Nepal 14.5 16.8 17.3 20 42 53 2 4 5 0.4 0.8 0.9 

Pakist

an 

16.8 18.4 18.7 74 92 101 10 11 14 1.5 2.0 2.2 

Sri 

Lanka 

23.7 24.6 25.1 43 131 193 3 6 11 0.3 0.5 0.7 

South 

Asia 

19.9 21.0 21.4 83 110 125 9 11 13 1.0 1.5 1.7 
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Table 9 continued. 

(b) 

haze 

PM2.5 (µg/m3) Frequency 

(day/year) 

Duration (day) Relative Intensity 

(µg/m3 above 60) 

 2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

2000 2050  

 

RCP

6.0 

2050  

 

RCP

8.5 

Afgha

nistan 

73.3 69.8 82.9 60 19 89 4 3 70 13.3 9.8 22.9 

Bangla

desh 

88.2 94.7 106.

7 

137 184 216 5 7 9 28.2 34.7 46.7 

Bhuta

n 

70.9 48.1 67.6 7 4 28 2 1 2 10.9 5.4 10.3 

India 80.4 82.1 95.1 123 113 200 5 5 9 20.4 22.1 35.1 

Nepal 70.2 66.0 72.6 25 29 77 3 2 4 10.2 8.4 13.4 

Pakist

an 

79.2 86.0 93.1 105 143 206 4 6 10 19.9 26.0 33.3 

Sri 

Lanka 

68.3 55.8 69.2 1 1 3 2 1 2 8.3 2.3 9.2 

South 

Asia 

80.6 82.6 94.7 118 117 194 5 5 11 20.6 22.7 34.7 
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The population-weighted average in Table 9 tends to be larger than the area-weighted 

results (Table 7) because populations are concentrated in the Indo-Gangetic Plain and coastal 

regions (Figure 15) where the heat extremes also tend to increase the most (Figure 10). The co-

location of heat extremes and population density is particularly worrisome considering the lower-

income and GDP over the Indo-Gangetic Plain (Im et al., 2017), which suggests that the most 

vulnerable population groups will be subject to stronger heat extremes in the future. 
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Figure 15. (Top and Middle Rows) Decade 2000 population count and its change at Decade 2050. 

Note the logarithmic scale (1 for 10, 2 for 100, 3 for 1000, -1 for -10, -2 for -100, -3 for -1000, 

etc.) (Bottom row) India population redistribution at Decade 2050 only due to migration, so that 

the regional average of this figure is zero. Only the redistribution of the population within India is 

considered in the bottom panel because it can be interpreted as the effects of demographic shift 

due to domestic factors (e.g., urbanization). Reprinted from Xu et al., (2020). 
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Human exposure to heat extremes is dominated by three nations: Bangladesh, India, and 

Pakistan. Over India, 189.7 billion people-days of heat exposure per year are projected in Decade 

2050 (Table 10), a 149% increase from the Decade 2000. Another health-related quantity is 

“accumulated relative intensity”, which is the product of frequency (number of days) and relative 

intensity (Tw within extreme events minus the selected threshold) (Table 10 and Figure 16). This 

quantity factors in both the prolonged exposure and the severity of heat extremes. Decade 2050 

will see 338 billion people ºC days/year (under RCP8.5), a daunting 258% increase from the 

Decade 2000. The larger relative increase (258% vs. 149%) is consistent with the enhanced 

severity of heat extremes (with the relative intensity increasing from 1.0 to 1.7ºC) (Table 9 and 

Figure 10). 
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Figure 16. Similar to Figure 11, but for haze extremes. PM2.5 concentration, haze extremes 

frequency, duration and relative intensity in the left column and changes at the Decade 2050 under 

RCP8.5. Reprinted from Xu et al., (2020). 
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Table 10. Population exposure to heat and haze extremes. Reprinted from Xu et al., (2020). 

(a) 

heat 

Frequency exposure  

(billion person*day/year) 

Accumulated Relative Intensity 

exposure (billion person*°C*day/year) 

 2000 2050 

RCP6.0 

2050 

RCP8.5 

2000 2050 

RCP6.0 

2050 

RCP8.5 

Bangladesh 22.1 33.5 36.7 30.5 65.1 83.7 

India 76.2 165.2 189.7 94.4 266.9 338.1 

Pakistan 10.6 22.6 24.9 17.3 48.6 58.7 

South Asia 110.2 225.8 257.3 142.8 383.6 485.5 

 

(b) 

haze 

Frequency exposure (billion 

person*day/year) 

Accumulated Relative Intensity 

exposure (billion 

person*µg/m3*day/year) 

 2000 2050 

RCP6.0 

2050 

RCP8.5 

2000 2050 

RCP6.0 

2050 

RCP8.5 

Bangladesh 18.3 30.9 36.3 512.4 1089.2 1744.9 

India 121.7 171.1 303.0 3322.2 5531.4 12637.8 

Pakistan 15.1 35.4 51.1 349.4 1027.0 1896.2 

South Asia 157.0 240.0 398.9 4224.1 7674.0 16597.3 

 

 

The increase in population exposure is due to three factors: future warming, population 

growth, and to a lesser extent, population redistribution arising from migration and urbanization. 
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The warming alone explains 41% of the total increase, while the population growth explains about 

39% (Table 11). Interestingly, the redistribution of population in India (Figure 1, while keeping 

total population fixed) also contributes 1.5% (1.6 billion people-day/year) of the total increase in 

human exposure to heat extremes (Table 11), which is due to future urbanization and well-captured 

urban heat island effects in this high-resolution regional climate model (Figure 10). We note that 

the exposure numbers presented here are the maximum potential human exposure (Mishra et al., 

2017) that do not account for the time spent indoors with active cooling (which could also change 

from now to future due to air conditioning penetration into household in developing countries 

(Auffhammer, 2014)), which requires estimates of sub-daily population distribution in cities.   
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Table 11. Separating the contribution of population growth and heat/haze conditions to increased 

human exposure (unit: billion person*day/year). The percentage of relative contribution to the total 

increase in the Decade 2050 under RCP8.5. The population redistribution (but not population 

growth) for India contributes to 1.5% (1.7 billion person*day/year) of the change in human 

exposure to heat extremes and 4.7% (4.0 billion person*day/year) of the change in human exposure 

to haze extremes. Reprinted from Xu et al., (2020). 

 Change in 

haze 

exposure 

due to 

population 

growth  

Change in 

haze 

exposure 

due to PM2.5 

emission 

increase 

Change in 

heat 

exposure 

due to 

population 

growth 

Change in 

heat 

exposure due 

to climate 

change 

Bangladesh 1.2 (10%) 8.9 (71%) 5.7 (39%) 7.0 (48%) 

India 17.7 (21%) 43.9 (51%) 42.3 (37%) 46.3 (41%) 

Pakistan 2.1 (14%) 7.1 (47%) 8.5 (59%) 3.2 (23%) 

South Asia 21.6 (19%) 60.2 (52%) 57.1 (39%) 59.7 (41%) 

 

 

In addition to the absolute value of human exposure, other important factors worth 

assessing are the fractions of population and land exposed to the prolonged heat extremes. In the 

Decade 2000, about 61% of the population within South Asia experienced heat extremes for more 

than 60 days per year, while in the future, 80% of the population will experience similar extreme 

heat conditions (Table 12). We estimate the total land fraction impacted by heat extremes for more 

than 60 days to be 35% in the Decade 2000 (Figure 17). That number will grow to 56% (RCP8.5) 
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or 48% (RCP6.0) in the Decade 2050. Those estimates are robust regardless of whether the model 

simulated Tw is corrected based on reanalysis or not (Table 12). 

 

 

 
Figure 17. An illustration of the land fraction impacted by prolonged (60 days or more) extremes. 

The area of each circle corresponds to the South Asia land fraction with prolonged heat (red) and 

high-PM (black) extremes (Table 2a). The smaller dash circles are Decade 2000 and the larger 

solid circles are Decade 2050. The overlapping area of smaller dash circles (red) and larger solid 

circles (yellow) corresponds to the multi-fold increase in the land area subjected to prolonged HHH 

(from 2% to 25%). The inserted images represent heat (left, credit: Skynews) and high-PM 

conditions (right, India Gate, credit: ibtimes.co.in). Reprinted from Xu et al., (2020). 
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Table 12. (a) The land area fraction within South Asia that is exposed to 60 or more days of heat 

extremes and high-PM extremes, and 60 more days of joint events of heatwave and high-PM. (b) 

The population fraction. The numbers in parentheses are based on the original model output. 

Reprinted from Xu et al., (2020). 

(a) Area fraction Heat > 60 days high-PM > 60 days heatwave and high-

PM > 60 days 

Decade 2000 35% (37%) 55% 2% (3%) 

Decade 2050 under 

RCP6.0 

48% (49%) 41% 10% (9%) 

Decade 2050 under 

RCP8.5 

56% (54%) 74% 25% (24%) 

 

 

(b) Population fraction Heat > 60 days high-PM > 60 days heatwave and high-

PM > 60 days 

Decade 2000 61% (64%) 73% 8% (9%) 

Decade 2050 under 

RCP6.0 

74% (74%) 62% 

 

24% (21%) 

Decade 2050 under 

RCP8.5 

80% (80%) 90% 

 

52% (50%) 
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3.3.3 A Hazier Future 

Air pollution has been recognized as a modulating factor, which can affect the health 

impact of heat extremes (Gosling et al., 2009). Similar compounding effects have also been found 

when assessing air quality-related mortality as a function of background temperature (Jackson et 

al., 2010). We next describe the characteristics of high-PM extremes before discussing the joint 

occurrence and risk.  

When using daily average surface PM2.5 mass concentration of 60 µg/m3 as the definition 

of high-PM extremes (CPCB, 2009), we find an increase in the frequency and duration of high-

PM extremes by 76% and 125%, respectively, from its Decade 2000 values of 75±9 days/year 

(frequency) and 4 days (mean duration) (under RCP8.5; Table 7). This is in line with the mean 

PM2.5 concentrations increase of 30% driven by an increase in regional PM emissions of 77% in 

RCP8.5 (Figure 6), while the climate change itself facilitates a stronger removal of PM2.5 (Wu et 

al., 2019).  

When using other threshold levels suggested by the World Health Organization, 

Environmental Protection Agency of the United States, or Chinese agencies, the main pattern of 

high-frequency regions remains the same, but the magnitude of future change would vary (Figure 

9). If a lower threshold of air pollution is used, more days (actually most of the days in some cities) 

will be classified as “high-PM extremes”, and its fractional increase into the future will be rather 

small. We here use a higher threshold of PM2.5 to illustrate to the “extreme” nature of high-PM 

issues.  Note that we also adopted a similar philosophy in choosing a higher threshold of heat (25ºC 

in Tw), again, to emphasize the rarity and extremity of those events. 

Similar to heat extremes, population-weighted results are considerably higher than area-

weighted results for the high-PM extremes. The population-weighted average of high-PM 
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extremes frequency is 118 days/year (Table 9) compared to the area-weighted average of 75 

days/year (Figure 18). This is a direct result of the strong co-location of emission sources (Figure 

6), PM2.5 concentrations (Figure 16), and the urban population (Figure 15). 

The population exposure to high-PM extremes frequency (number of people who 

experience extremes multiplied with the number of days exposed to the extreme; person*day/year) 

is projected to increase under RCP6.0 and RCP8.5 scenarios by 154% and 293% (Table 10), 

respectively. The lower population exposure to high-PM extremes under RCP6.0 is also largely 

due to lower emission growth. The population exposure to the accumulated relative intensity is 4.2 

trillion people*µg/m3*day/year in the Decade 2000 and will increase by 293% in the Decade 2050. 

Note that the larger fractional change in accumulated relative intensity (as the product of frequency 

and relative intensity) indicates that the severity of high-PM extremes is getting worse (Figure 16). 

The multi-fold increase in human exposure is again driven by both population growth and 

worsening air quality. But in the case of high-PM extremes, the population growth plays a smaller 

role (19% due to population growth vs 52% contributed by the hazier atmosphere). This is different 

from the stronger role of population growth for determining the increase in exposure to heat 

extremes (43% due to population growth vs 38% due to warming). The urbanization effect is also 

more important for high-PM (4.7% as opposed to 1.5% for heat shown previously).  

Since major air quality improvement initiatives have been planned by local governments, 

we also quantified the high-PM occurrences at the city level. Within South Asia, many cities are 

subject to a major increase in high-PM extremes but with different levels of severity (Table 8). For 

example, Mumbai is projected to experience a 34% increase in relative intensity. Cities such as 

Karachi are prone to the future growth of high-PM weather frequency by 37%, but some other 

cities appear to already experience ~300 days of high-PM extremes during the Decade 2000. The 
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city-level results are not particularly sensitive to the spatial resolution of the model simulation. 

When the 12 km resolution simulation over the inner domain is utilized (higher than the 25 km 

used by Im et al., 2017, but lower than the 4 km grid resolution used by Hu et al., 2015 for the 

smaller California domain), both the present-day and future PM2.5 in Delhi remain largely invariant 

compared to the 60 km simulation. However, the relative intensity for high-PM extremes 

documented here is slightly higher at 90.9 as opposed to 80.9 µg/m3. 

 

3.3.4 heatwave and high-PM hazards (HHH) 

Lastly, we quantify the joint heatwave and high-PM hazards (HHH), which has been largely 

missing in all previous studies. The Decade 2000 frequency for HHH is low at 12±2 days/year for 

South Asia (Figure 18), and 13 days/year for India. In the Decade 2050, the frequency would 

increase to 33±5 days/year, a 175% rise (under RCP8.5), much higher than the relative increase in 

heatwave or high-PM alone (73% to 76%). A stronger enhancement in HHH is also seen for other 

extreme quantities such as the mean duration (with a relative increase of 79%) and the relative 

intensity (with an increase of 0.4 ºC and 7.0 µg/m3) (Figure 18 and Figure 19).  
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Figure 18. (Top) Frequency of joint heat and haze hazards (HHH, Tw>25ºC and PM>60 µg/m3) 

in the Decade 2000 and the change in the Decade 2050 under RCP8.5. (Middle row) duration. 

(Bottom two rows) relative intensity (in ºC and µg/m3). The white area in the thicker borderline is 

regions where no heat extremes occur in the Decade 2000. Reprinted from Xu et al., (2020). 
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The changes in HHH are driven mostly by a larger increase over the spring to summer 

transitional period and that results in a greater number of days falling into the high-Tw/high-PM 

quadrant as illustrated in Figure 19 using the data over the four cities. Figure 13 (bottom panels) 

shows the seasonal variation of temperature, RH, Tw, and PM2.5. Moist monsoon season is 

relatively cooler than the pre-monsoon season but accounting for the humidity effects leads to an 

extended “hot” season (see Tw during April to October in Figure 13). A key feature is the extension 

of pre-monsoon high-PM (pollution season) into the monsoonal season, and concurrently, the 

extension of heat extremes into pre-monsoon season. These two factors, when simultaneously 

occurring, contribute to the multi-fold increase in the frequency of the joint hazards.  
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Figure 19. (a) and (b): The daily values over four major cities (Delhi, Mumbai, Dhaka, and 

Karachi). The X-axis is for Tw and the Y-axis (in logarithmic scale) is for PM2.5 surface 

concentration. (a) is for the Decade 2000 and (b) is for Decade 2050 under RCP8.5. Red horizontal 

and vertical lines are thresholds for heatwave and high-PM extremes. Black triangles indicate the 

average of all HHH events in the upper right quadrant. (c) and (d): Probability density function 

(PDF) for Tw and PM2.5 over the four cities. Red dashed lines are thresholds for the heatwave and 

high-PM extremes. Reprinted from Xu et al., (2020). 

 

The rarity of HHH frequency in the Decade 2000 also means there is a larger relative 

change in the future for area and population impacted by prolonged HHH events (a factor of 12 

increase for exposed land area, and a factor of 6.5 increase for the exposed population; Table 7). 

The multi-fold increase in the land or population fraction affected by HHH, as opposed to the 31-
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60% increase in heat-affected and 23-35% high-PM-affected land or population fraction, when 

computed separately, is the most remarkable message of this study (Table 7 and Figure 1). The 

multi-fold increase in land exposed to HHH is illustrated in Figure 17 by the overlapping area of 

black and red circles and will pose significant difficulties for adaptation. Given the potential 

underestimation of HHH health impacts, our results suggest a major increase in HHH-related 

mortality is on the horizon. Evidence-based quantification of HHH related mortality is clearly 

needed to account for the compounding effects of two types of extremes, and also to avoid double-

counting when linearly adding the mortality estimates from empirical approaches. 

Although beyond the scope of the paper, one can investigate extreme ozone (e.g., >70 ppb) 

because many of these regions are very prone to temperature-ozone overlap. Therefore, it will be 

interesting to assess the occurrence of all three. Our model simulates ozone concentration well 

(Kumar et al., 2018), even though one limitation of the current WRF-Chem simulations is that it 

does not include ozone-radiation interactions, which might be not as large as aerosol effects.  

However, in general, the monthly mean value rarely exceeds 70 ppb (see Dhaka in Figure 

4 of Kumar et al., 2018), thus ozone is less of concern for local air quality as of now. Note that it 

is possible the NOx to VOC ratios will change and ozone will be in exceedance in the future, which 

has started to happen in China. For North America and other regions, the co-occurrence of heat 

extreme and ozone can also be very important, as recently studied by Schnell and Prather (2017) 

and (Meehl et al., 2018). Thus, the extreme occurrence of all three could be a very interesting 

question to look at in future studies, for other regions. 
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3.4 Concluding Remarks 

Heat extremes occurrence worldwide has increased in the past decades, especially when 

accounting for the amplification due to the humidity effect and urban heat island influences. At 

the same time, many cities are facing severe air pollution problems featuring high-PM episodes 

(high concentration of particulate matter due to various sources) that last from days to weeks. 

Despite the potential compounding effects on vulnerable population groups and complex 

dynamical-physical-chemical interactions, the characteristics and potential predictive skills of the 

co-occurrence of heatwave and high-PM hazards (HHH) have not been extensively studied.  

Although previous studies have suggested common meteorological drivers for these two types of 

extremes (Schnella and Prather, 2017) and potential amplifying feedbacks (Cao et al., 2016), an 

integrated assessment of human exposure to the joint occurrence of heatwave and high-PM 

extremes and possible future changes has been missing (except for a few studies at local scale; 

Doherty et al., 2009; Jackson et al., 2010). 

A regional-scale assessment for the present-day heatwave and high-PM occurrence and 

future changes is presented here. The most crucial result here is that the frequency of these rare 

HHH events would increase by 175% in the future, which is in contrast to the 73-76% increase 

when heatwave or high-PM are assessed individually. Consequently, the land fraction affected by 

prolonged exposure to HHH events will increase by more than 10-fold rather than 35 to 60% when 

the heatwave or high-PM are studied separately. The unprecedented worsening of air quality and 

regional climate, if occurring in just a few decades, pose great challenges to adaptation. If the air 

pollution emission were not elevated as much as in projected in RCP8.5, then the high-PM extreme 

will not worsen. For example, under RCP6.0, the frequency of high-PM will decrease by 11% and 

HHH will only increase by 58%. 
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Our results suggest that the thermodynamic effect of regional warming leads to the increase 

in heat extremes, and the PM emission increase (as assumed in RCP8.5) is the first-order factor 

leading to an increase in the high-PM extremes. Other questions remain. How would atmospheric 

circulation (stagnation) and precipitation play a secondary role? How do the high-PM and heat 

interact with each other (e.g. heat extreme amplifying the high-PM concentration or a high-PM 

layer mitigating the intensity of urban heat island)? Those will need to be addressed in future 

studies because of the limitation of the current model set up. The main purpose of this study is to 

bring forth a greater awareness of the potential larger increase in the coincidence of two stressors. 

Our results have broad implications, both scientifically and societally. The quantification, 

projection, and communication of joint risks of the co-occurrence of physical and chemical 

weather extremes are important for public health and urban planning. The mechanisms have been 

examined before for individual cases, but the findings are often scattered amongst different 

research communities with limited integration. A holistic view of the health impacts of the 

heatwave and high-PM hazards (HHH) is therefore urgently needed. 

 

3.5 Summary of the PM and Heat 

 we constructed a composite index: HWII, which utilizes the ambient meteorology to 

predict the PM2.5 levels and we expect a more favorable environment for air pollution dispersions 

in Indian Subcontinent by 2050s. However, the simulated results suggested that the future pollution 

levels tend to increase. The contradiction comes from the enhanced emissions, which tend to 

overwhelm the favorable meteorological fields in the future. 

In addition, we presented a regional-scale assessment for present-day heat and haze 

occurrence and along with their future changes. We selected three major metrics: frequency, 
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duration and relative intensity to characterize the occurrences of heat and haze extremes. Under 

RCP 8.5 scenario, all metrics are projected to increase while maintaining an RCP 6.0 pathway is 

much more ideal from the public health perspective. Moreover, the rare heat and haze hazards 

(HHH) would have large future increases, in contrast to smaller increases in heat or haze when 

assessed individually and such alarming increases are only few decades away, posing great 

challenges for adaptations.  
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CHAPTER IV 

IMPROVE CBMZ-MAM3 IN THE WRF-CAM5 

 

4.1 Introduction 

 Atmospheric chemistry is closely related to air quality, climate change, and human being’s 

livelihood. Subjects range from the ozone hole in Antarctica (Thompson et al., 2011) to air 

pollution in major metropolitans (Molina and Molina, 2004) and from rising global CO2 levels 

(Pachauri et al., 2014) to climate forcings of air particles (Maria et al., 2004) are all within the 

scope of such a research field. The Weather Research and Forecasting (WRF) model (Skamarock 

et al., 2005) coupled with Chemistry (WRF-Chem; Fast et al., 2006; Grell et al., 2005) has wide 

applications in both research and forecast areas of atmospheric chemistry with general 

applicability. The utilizations of WRF-Chem includes, but is not limited to, air quality predictions 

(Kumar et al, 2019), future climate-chemistry projections (Kumar et al., 2018; Xu et al., 2020), 

meteorology-pollution interactions (Wu et al., 2019), Aerosol-cloud interactions (Feng and 

Ramanathan, 2010), atmospheric energy budget investigations (He et al., 2018), the 

characterization of biomass burnings (Grell et al., 2011) and examinations of regional visibility 

degradation (Durdina et al., 2017), etc.  

One of the most important aspects of atmospheric chemistry simulations carried out by 

WRF-Chem is the proper selection of chemistry schemes. In WRF-Chem, chemistry schemes 

consist of multiple modules with different treatments of chemistry for three phases: gas, aerosol 

and aqueous phases (Grell et al., 2005； Galin et al., 2007). For each phase, the treatment and 

processing are represented by individual modules. Depending on the complexity of the desired 

simulation, one may choose a chemistry suite to contain all or part of the three phases’ modules 
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(Barnard et al., 2010). For example, a simple aerosol-only module: Goddard Global Ozone 

Chemistry Aerosol Radiation and Transport (GOCART; Chin et al., 2000) may be simulated even 

without ozone chemistry in WRF-Chem (chem_opt=300) with only 18 chemical species tracked. 

In contrast,  Model for Ozone and Related Tracers with Model for Simulating Aerosol Interactions 

and Chemistry (MOZART; Emmons et al., 2010) Chemistry with 8 sectional bins of Model for 

Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et al., 2008) suite 

(chem_opt=202), the most complicated chemistry set-up in the current WRF-Chem model, would 

involve modules from all three phases. Such a chemistry suite could track as many as 143 gas 

species and all major aerosols like sulfate, nitrate, ammonium, black carbon (BC), organic carbon 

(OC), etc. with more than 300 reactions (Emmons et al., 2010) 

While more complicated model setups usually have better representations of real world air 

chemistry, the potentially expensive demands for computational resources may sometimes prohibit 

chemical parameterizations at ultra-high levels (Shrivastava et al., 2011). Therefore, tremendous 

amounts of effort have been made to simplify the chemical representations in global and regional 

models while maintaining certain levels of accuracy. For example, the Modal Aerosol Module 

(MAM) is a chemistry module that was originally developed for the Community Atmosphere 

Model version 5 (CAM5), the atmospheric component of the Community Earth System Model 

version 1 (CESM1; Liu et al., 2012). MAM is capable of treating major aerosol species including 

BC, OC, sulfates, sea salts, dust, etc. with a reasonable accuracy (e.g., SO4 simulations; Liu et al., 

2012) and computational cost.  

In addition to the large domain concern, model spatial resolution could be another major 

issue to limit the complexity of chemistry modules (Emmerson and Evans, 2009). For climate-

chemistry models, doubling the horizontal resolution leads to at least a factor of eight increase for 
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computational needs (Bey et al., 2001). Therefore, when focusing on a local feature with demands 

of high resolutions (e.g., convective clouds and terrain-complex domains), a regional model 

usually becomes the preferred choice over a global model (Gu et al., 2011). Moreover, for long-

term simulations, testing the simulation set-ups with a regional model implementation ahead of a 

global one can not only be resource-saving but also time-efficient (Gan et al., 2015).  

Although the application of modal or bulk aerosol approach in WRF-Chem can be dated 

back as early as 2004 (Peckham et al., 2017 and references therein), a version of the three 

lognormal modes of the MAM scheme (MAM3) was first implemented to WRF-Chem by Ma et 

al., (2014). Ma et al., (2014) adopted the CAM5 physics suite and transplanted the MAM3 module 

to WRF-Chem, called WRF-CAM5. However, studies utilizing such set-up are very limited and 

remain in the infantile stage. Studies utilizing the WRF-CAM5 set-ups have shown that in East 

Asia, there are consistently low biases for simulated chemical species and aerosol optical depth 

(AOD) against the observations (He et al., 2017; Zhang et al., 2015). Additionally, Ma et al., (2014) 

noticed that during the DC-8 flight campaign of boreal spring in 2008 in Alaska for Arctic 

Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), the 

observed BC could be 3 orders of magnitude higher than simulations. Ma et al., (2014) did not 

fully address this discrepancy but implied that the low model biases against observations were 

possibly related to the coarse simulation grid and showed improvements, albeit still two orders of 

magnitude off, with higher resolutions.  

In the MBL, clouds are a crucial component of the Earth’s energy budget while they remain 

as one of the largest uncertainties in climate simulations (Bony and Dufresne). Particularly, the 

presence of substantial MBL clouds off the California coast makes these clouds highly susceptible 

to the influences of continental aerosols (Painemal et al., 2015). In June 2013, A C-9 class ship, 
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serving as part of Marine ARM (Atmospheric Radiation Measurement) GPCI (Global Energy and 

Water Cycle Experiment (GEWEX)-Cloud System Study (GCSS)-Pacific Cross-section 

Intercomparison) Investigation of Clouds (MAGIC; Painemal et al., 2015)  missions, made a round 

trip between Los Angeles, CA and Honolulu, HI. This MAGIC field campaign provides valuable 

data for model evaluations in this study.  

Initial test runs using WRF-CAM5 indicate abnormally low aerosol concentrations and 

unrealistic spatial distributions particularly regarding the locations in the vicinity of biomass 

burning regions. This could be a consequence of an inconsistent implementation for the WRF-

CAM5 model when compared to the CESM1 model (Liu et al., 2012; Ma et al., 2014). Therefore, 

in this study, we aim to improve the CBMZ-MAM3 chemistry modules in the current WRF-CAM5 

model to address the following deficiencies:  

(i) The biomass burning emission is completely ignored for both aerosol-phase 

(MAM3) and gas-phase (CBMZ) chemistry. 

(ii) The mechanism that converts VOC to SOA is not included. 

We describe the model set-ups and modifications in Section 2. We compare the original 

and enhanced simulation results against various benchmarks, including surface observations, 

satellite observations, and reanalysis products in Section 3. The aforementioned modifications and 

improvement are presented in a progressive manner in the following sections to understand the 

role of different implementations. 
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4.2 Methods 

4.2.1 WRF-CAM5 model 

     We use version 3.9.1.1 of the WRF model (Skamarock et al., 2008) coupled with 

Chemistry (Fast et al., 2006; Grell et al., 2005) with CAM5 for the physics mechanism and CBMZ 

and MAM3 for gas- and aerosol-phase chemical mechanisms, respectively, in this study (referred 

to as WRF-CAM5 hereafter). The simulation domain spans from 180°-93°W and 9°-55°N (Figure 

20) with 27 vertical layers up to 100 hPa. The horizontal grid spacing is uniformly defined to 36 

km × 36 km. The surface processes are simulated by the unified NOAH land surface model 

(Tewariet al., 2004). The 1-month simulation period spans from June 1st, 2013 to June 30th, 2013 

were used for model assessment, which covers the observational periods of the MAGIC campaign. 

The meteorological initial and boundary conditions were from the 6-hourly National Centers for 

Environmental Prediction Final Analysis (NCEP-FNL; NCEP, 2000) and the simulated 

meteorology was nudged to NCEP-FNL every 6 hours. Chemical initial and boundary conditions 

are from the global simulations of the Community Atmosphere Model with Chemistry, version 5 

(Lamarque et al., 2012). Longwave and shortwave radiation processes are parameterized by 

applying Rapid Radiative Transfer Model developed for General Circulation Models (RRTMG; 

Iacono et al., 2008). 
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Figure 20. Surface temperature in (a) WRF-Chem simulation and (b) MERRA2 product. Ship track 

of the MAGIC campaign is shown in panel (a). The map shows the entire domain of the simulation. 

Precipitation in (c) WRF-Chem simulation and (d) TRMM observation. The white areas from 

WRF-Chem simulations are due to truncation to match TRMM latitude coverage. Note that the 

color bars are in log scales.  

 

 

4.2.2 Chemistry configurations: CBMZ-MAM3 (for enhancement) and MOZART-

MOSAIC 

     MAM has two versions: MAM3 and MAM7. In this study we use MAM3, which is 

specifically designated for computational demanding simulations. MAM3 is an aerosol module 

that has been widely applied in global models (e.g., CAM5; Liu et al., 2012; Xiao et al., 2014; 

Gantt 2014) for its economical computational cost (Liu et al., 2012). MAM3 simulates major 

aerosol species like: BC, OC, dust, sulfates, sea salts but without nitrate chemistry. In WRF-
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CAM5, the MAM3 is frequently linked with CBMZ gas chemistry (Peckham et al., 2017) and such 

combination is defined as chemistry option 503 in simulation set-ups.  

We run simulations with two suites of gas-phase and aerosol phase chemistry: CBMZ-MAM3 

(Zaveri and Peters, 1999; Liu et al., 2012) and MOZART-MOSAIC) (Emmons et al., 2010; Zaveri 

et al., 2008). The former one is the one we strive to improve in WRF-CAM5 as a workable 

configuration for reasons described in the Introduction, while the latter one is the most 

comprehensive and expensive chemistry scheme in WRF-Chem, serving as a benchmark. Ideally, 

we want to use the same physical schemes for the two simulations to isolate the chemistry impact, 

but this will result in chemistry-physics compatibility issues that either cause model syntax errors 

or yield unrealistic simulation results.  

Table 13 summarizes the details of key differences between the two chemistry 

configurations. For the CBMZ-MAM3 simulation, the planetary boundary layer (PBL) processes 

are parameterized by using University of Washington shallow convection and moist turbulence 

schemes (Park and Bretherton, 2009); while for MOZART-MOSAIC simulation, the PBL scheme 

is chosen to be Yonsei University (YSU) PBL scheme (Hong et al., 2006). We use different PBL 

schemes because the MAM3 chemistry module requires the CAM5 PBL scheme while such a 

scheme is not compatible with MOZART-MOSAIC setups. For cloud microphysics schemes, the 

CBMZ-MAM3 simulation uses the CAM5 Morrison-Gettleman scheme (Morrison et al., 2009) 

and MOZART-MOSAIC simulation adopts scale-resolved cloud physics representation by 

Morrison two-moment scheme (Morrison et al., 2009). In addition, the photolysis schemes of trace 

gases in WRF-CAM5 are set differently for two suites, by default. The CBMZ-MAM3 suite is 

coupled with Fast-J photolysis (Wild et al., 2000) and the most ideal photolysis option for 

MOZART-MOSAIC simulation is Fast Troposphere Ultraviolet Visible (Tie et al., 2005). 
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Table 13. Different physical and chemical schemes used in the CBMZ-MAM3 and MOZART-

MOSAIC simulations.  

 

 

WRF-CAM5 with CBMZ-

MAM3 

WRF-Chem with MOZART-

MOSAIC 

Chemistry  CBMZ MOZART 

Aerosol MAM3 MOSAIC (4-bins) 

Photolysis  Fast-J Madronich F-TUV 

Emission RADM2 gas emissions to 

CBMZ with MAM 3 aerosols 

MOZART + aerosols 

emissions 

Microphysics  CAM5: Morrison and 

Gettleman  

Morrison double-moment  

Cumulus  CAM5: Zhang-McFarlane Grell-Freitas 

PBL  CAM5: Univeristy of 

Washington  

Yonsei University  

 

 

MOSAIC simulates most major aerosol species like BC, sulfate, ammonium, OC, nitrate, 

sodium, chloride (Cl) with 4 or 8 size bins. This study uses the 4-bin version. The MOZART-

MOSAIC suite is considered to be more chemically sophisticated because it involves 143 gas-

phase species with 347 reactions, while CBMZ-MAM3 uses the bulk mechanism and approaches 

the detailed chemical species in lumped-group mechanism (Liu et al., 2012). Therefore, we would 
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expect more realistic simulation results from the MOZART-MOSAIC benchmark given its more 

comprehensive representation of chemical processes.  

 

4.2.3 Emissions 

For anthropogenic emissions, we use the United States Environmental Protection Agency 

(EPA) National Emissions Inventory (EPA-NEI). Then, we patch the NEI emissions with the 

version 2 of the Emission Database for Global Atmospheric Research (Janssens-Maenhout et al., 

2015) developed as a part of Hemispheric Transport of Air Pollution (EDGAR-HTAP v2) project 

to update continental US emissions. EPA-NEI has a spatial resolution of 12 km and EDGAR-

HTAP has a spatial resolution of 1° × 1°. Both datasets are regridded to match with simulation 

domains. We conduct patching because we have higher confidence in EPA products over the 

continental US, while a portion of our simulation domain is outside the EPA boundaries (e.g., the 

emissions from Hawaii) requiring the global emission dataset.  

For EPA’s emissions, the latest NEI inventory is for the year 2014 (1-year difference from 

our simulation year). For EDGAR, the latest emissions are for the year 2010 (3-year difference). 

EPA distinguishes the emissions by weekdays and weekends assuming weekday emissions are 

stronger in urban areas compared to the weekends (Janssens-Maenhout et al., 2015). A weekday 

in 2014 could be a weekend in 2013 and vice versa. Therefore, we conduct the calendar adjustment 

and make sure the emissions follow the 2013 weekday and weekend patterns. We map the EPA-

NEI emissions to the WRF-CAM5 model grids by utilizing the Sparse Matrix Operator Kernel 

(SMOKE) Modeling System to yield hourly anthropogenic emission input data. The EDGAR 

emissions are for diurnal cycles only (hour 0 UTC to 23 UTC) without weekday-weekend 

discrimination and therefore, do not require an adjustment as above.  
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For biomass burning emissions, we use the Fire Inventory from NCAR (FINN; 

Wiedinmyer et al., 2011), a widely-used satellite-based fire detection inventory with a horizontal 

resolution of 1 km. For biogenic emissions, we use the Model of Emissions of Gases and Aerosols 

from Nature (MEGAN; Guenther et al., 2006), which is affected by environmental conditions.  

In addition, we also perform a sensitivity simulation by enhancing the aerosol and VOC emissions 

by three times. The simulation is implemented by adding a scaling factor to the emission module 

and therefore boosting the read-in inventory values by three-fold.  

 

4.2.4 Data for model assessment 

4.2.4.1 MERRA2 Reanalysis Product 

Accurate model simulations are critical for representations of any physical or chemical 

processes. Therefore, we use the Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA2, Gelaro et al., 2017) for simulation validations of meteorology, 

chemical species and AOD. Although the MERRA2 should not be trusted as a truth, it has been 

tested for its acceptable authenticity in our study domain (Randles et al., 2017; Reichle et al., 

2017). MERRA2 has a relatively comprehensive variable category, allowing us to evaluate both 

meteorological and chemical variables. MERRA2 archives the results from 1980 onward and we 

use monthly data of June 2013 for evaluation. Since reanalysis products are spatially gridded, 

utilizing the MERRA2 product enables us to conduct model validations for large-scale spatial 

patterns. 
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4.2.4.2 Ground observations from EPA, IMPROVE, AERONET 

In addition to the reanalysis product, we also validate both meteorology and chemistry 

against ground-based observations. For both surface temperature and CO mixing ratios, we use 

EPA Air Quality System (AQS) for validations (EPA, 2017) as EPA AQS has both meteorological 

and chemical data in archive. AQS has been extensively applied for both meteorological and 

chemical validations in our study domain (e.g., Dury et al., 2010; Kharol et al., 2017; Zhang et al., 

2018) and therefore, we select six urban areas within the domain for model evaluation, including 

Irvine, CA, San Diego, CA, Salt Lake City, UT, Denver, CO, Seattle, WA and Phoenix, AZ. These 

sites are all within the simulation domain (western part of the US) with large amount of populations 

(>300,000). In addition, they are spatially separated and therefore ideally for testing the validity 

of model performances in different regions. 

The simulated AOD results are compared to the Aerosol Robotic Network (AERONET; 

Holben et al., 1998) by the National Aeronautics and Space Administration (NASA).  AERONET 

is a ground-based remote sensing aerosol network using Sun- and sky-scanning radiometers to 

measure aerosol optical properties (Dubovik and King, 2000). Similar to the EPA AQS sites, we 

select six AERONET sites within the simulation domain for model evaluation, including CalTech, 

CA, Santa Monica, CA, Kelowna, BC, White Sands, NM, Hermosillo and Neon-Civalla, CO. 

Finally, the simulated surface BC and OC concentrations are compared to the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) network. The IMPROVE network 

primarily measures the elementary carbon and OC at national parks and national monuments 

(Chow and Watson, 2002). Like EPA AQS and AERONET sites, we select six IMPROVE network 

sites for model evaluation, including Phoenix, AZ, Fresno, CA, Puget Sound, WA, Lava Beds, 

CA, Great Basin, NV and San Rafel, CA.  



 

97 
 
 

 

 

4.2.4.3 Satellites Observations 

Apart from ground-based observations, we also include the satellite products for further 

validations due to their broad spatial coverages. For precipitation, we compare the simulated 

results with the daily total accumulated precipitation products from Tropical Rainfall Monitoring 

Mission (TRMM; Adler et al., 2000). The performance of TRMM has been extensively examined 

in North America with relatively reliable results (Yamamoto et al., 2008). Since the WRF-CAM5 

simulation treats the precipitation in an accumulation manner, the final results are shown in a unit 

of the monthly total. We convert the precipitation from both TRMM product and simulation results 

to hourly fluxes for comparisons.  

For AOD validations over the ocean, we use the state-of-art Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observations (CALIPSO) retrievals (Painemal et al., 2019). Using 

CALIPSO for validations over the ocean is a widely adopted approach (Lu et al., 2014). CALIPSO 

has a relatively narrow swath (~ 60 km) because the beam is directed at a fixed angle near nadir 

and therefore may only cover 1-2 grid cells at one time step. In this study we compare the 

CALIPSO retrieval to the closest simulation grid for each time-step and take the average on a daily 

basis.  We then show the comparison between WRF-CAM5 simulated AOD and CALIPSO 

retrieved results. 

 

4.2.4.4 MAGIC Ship Campaign 

In addition to ground-based observations and satellite retrievals, the MAGIC ship 

campaign (Painemal et al., 2015) serves as a supplemental data source for observations over the 

ocean. In June 2013, a campaign vessel made a round trip between Los Angeles, CA and Honolulu, 
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HI (Figure 20a). In this study, we use the observations of surface temperature and AOD from the 

MAGIC campaign to evaluate our simulations over the East Pacific. The temperature data of the 

MAGIC campaign was collected every 1 minute while the AOD data were collected intermittently 

without specific temporal range. To match the simulation in time, the surface temperature data are 

taken for hourly averages and AOD data are taken for daily averages.  

For summarized and detailed data sources and variables used for model assessment in this 

study, readers are referred to Table 14.  
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Table 14. The source of observations used for validations. 

Data sources Variables  

Aerosol Robotic Network (AERONET) AOD  

Interagency Monitoring of Protected Visual 

Environments (IMPROVE) 

surface concentrations of BC and OC  

Environmental Protection Agency (EPA)  surface temperature; 

surface concentration of CO  

The Modern-Era Retrospective analysis for 

Research and Applications, Version 2 

(MERRA2) 

surface temperature;  

surface concentration of BC, CO, OC;  

AOD  

Tropical Rainfall Measuring Mission 

(TRMM) 

precipitation  

Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observations (CALIPSO) 

AOD 

MAGIC ship campaign for 2013 June surface temperature, AOD 

 

 

4.3 Model Enhancements 

We make enhancements to two major WRF-CAM5 modules: MAM3 and CBMZ to 

mitigate the two deficiencies (i.e., missing biomass burning emission processes in both MAM3 

and CBMZ, and missing VOC-to-SOA conversion mechanisms). In this study, we solve these two 

issues by focusing on the emission part first and implement the VOC conversion process afterward.  
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Therefore, we perform 6 sets of simulations in total with 4 progressively showing model 

improvements; one simulation adopts the increased emissions; one benchmark run with the more 

sophisticated MOZART-MOSAIC chemistry suites. All simulations use the same chemical and 

meteorological initial and boundary conditions. Specifically, these all simulations are summarized 

as:  

(a) the basic run with original WRF-CAM5 setups (Baseline).  

(b) Including the capability of ingesting biomass burning emissions of aerosols in MAM3 

(AddingBBaerosol). 

(c) In addition to (b), including the capability of ingesting biomass burning emissions of 

gaseous species in CBMZ (AddingBBgas).  

(d) In addition to (b) and (c), including conversion mechanisms from VOCs to SOAs 

through an intermediate product called SOAG (SOA gas; see Section 3.2 for details) 

(AddingSOA).  

(e) In addition to (b), (c), and (d), increasing biomass burning emissions by 3 times from 

the inventory (TriplingEmission).  

(f) A benchmark run with the MOZART-MOSAIC chemistry suite (MOZART-MOSAIC).  

 

 

4.3.1 Enhancements to Ingest Biomass Burning Emissions in CBMZ-MAM3 

Adding the capability of ingesting biomass burning emissions in the CBMZ-MAM3 

chemistry suite involves supplying the emitted species to these two modules separately. The first 

step is to add emitted aerosol phase species to the MAM3 module. We add three major biomass 

burning emitted aerosols, including BC, Primary OC (POC), and sulfate, to the MAM3 read-in 
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module. MAM3 partitions the aerosols into three-modes: Aitken, Accumulation, and Coarse. In 

this modification, we add all species to accumulation mode for simplicity. By default, the BC and 

OC should primarily be read into the accumulation mode (Liu et al., 2012) while sulfate could 

exist in all three modes. We add all species to accumulation mode because this is the most 

dominant mode. 

Next, we add gas-phase biomass burning emitted chemical species to the CBMZ module. 

The following primarily emitted gas species are added: SO2, NO2, NO, NH3, CO, CH3COCHO, 

CH3OH, C2H5OH, C5H6O2. Among all species listed, SO2 has the oxidation mechanism to produce 

aerosol phase product (e.g., sulfate) while for NOx species (NO and NO2), such a mechanism is 

not possible because MAM3, by default, does not have the nitrate chemistry mechanism integrated 

(Liu et al., 2012). 

 

4.3.2 Enhancements to Allow VOC to SOA Conversion 

Apart from missing biomass burning emissions, another major issue with the current 

MAM3 module in WRF-CAM5 is the failure of simulating SOA. SOA may consist of more than 

50% of total aerosols in certain areas (Kanakidou et al., 2005) and previous observations have 

indicated a dominant role of secondary originated sources for total organic matters (Tsigaridis and 

Kanakidou 2007). SOA is primarily formed by oxidation of various VOCs (Camredon et al., 2007). 

This poses an inherent challenge for numerical modeling due to a large amount of VOC types 

(> 100	; Park et al., 2013). Therefore, a more applicable approach is to group VOCs either by 

molecules or structures (Middleton et al., 1990). However, both approaches can still be 

computationally demanding depending on the number of groups simulated by the model, and the 
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complexity of SOA-related chemistry one may desire to simulate. Built to accommodate global 

models, MAM3 picked a simplified and less costly pathway.  

MAM3 treats the formation of SOA in a bulk mechanism from a predefined intermediate 

variable called SOAG (SOA gas; Liu et al., 2012). SOAG is calculated from summing up VOCs 

by groups (alkanes, toluene, isoprene, etc.) and assign individual yielding factors to each specific 

species (Liu et al., 2012), describe in the equation below 

𝑆𝑂𝐴𝐺 =u𝐶vwxy

=

CzN

∗ 𝑦𝑖𝑒𝑙𝑑C 

where 𝐶vwxy  is the concentration of individual VOC species in parts per billion (ppb) that 

converts to SOAG and 𝑦𝑖𝑒𝑙𝑑Cis the corresponding empirically determined yielding factors. The 

typical range for yielding factors are between 5% to 25% (Liu et al., 2012). 

To accomplish this task, we follow Liu et al., (2012) to add six groups of VOC species and 

the intermediate variable (SOAG) to the MAM3 module. These added VOC species are big 

alkanes, big alkenes, isoprene, toluene, monoterpenes, hydroxyacetone (a.k.a. acetol). Among 

these six groups of species, the first five species are defined in Liu et al., (2012), while the last 

species (hydroxyacetone) is further added in this study. Adding such species can significantly 

improve the simulation results as we examine the FINN inventory, hydroxyacetone is the dominant 

species among all emitted VOCs. In fact, the hydroxyacetone’s contributions towards SOA 

formation have been documented by several previous studies (e.g., Zhou et al., 2018; Fu et al., 

2008).  

For yielding factors, all species are assumed to be 15% except for isoprene and 

monoterpenes, which were assumed to be 4% (Kroll et al., 2006) and 25% (Ng et al., 2007), 

respectively. The yielding factors for big alkanes and big alkenes here are higher than the values 
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(5%) used in Liu et al., (2012). However, we found a better model performance by using higher-

yielding values instead of lower ones (e.g., 5%). Moreover, the adoption of 5% yielding factors 

for big alkenes species was also empirically assumed in Liu et al., (2012). 

 

4.3.3 Modifications to Enhance Emissions 

For the final modification, we conduct the sensitivity test for emission enhancements after 

two major modifications are completed above. For the emission enhancement, we define a new 

emission scaling factor in the MAM3 module and multiply it with the ingested emissions from the 

inventories. Then the updated emissions are passed to any subsequent modules.  

 

4.3.4 Modifications to Other Related Modules 

In addition to the two chemistry modules modified above, we have edited other 

accompanying modules that use either these modules or their output variables for further 

processing. There are three additional modules serving these purposes (Figure 21), including the 

chemistry driver module, the emission driver module, and the plume rise module. For the 

chemistry driver and emission driver modules, the required modifications are to add newly 

incorporated variables from biomass burning emissions, pass these variables to the two chemistry 

modules, and additionally define and compute a new species variable for SOAG.  
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Figure 21. Schematics of model modules. Brackets indicate that these two steps are implemented 

in parallel. Arrows indicate the proceeding orders (i.e., later steps require inputs from previous 

steps). Black bullet points are modification/contribution done in this study. 

 

 

For the plume rise module, additional adjustments are necessary. The first step is to identify 

the number of emission levels from inventories. In this case, FINN assumes the emissions all 

originated from the surface and the level is therefore set to 1. Then, we pass each emitted species 

to the vertical redistribution section where the module extracts the read-in emissions, stretching it 

vertically and assigning designated injection heights for each of the species based on the fire 

intensity. Figure 21 shows a schematic of module relationships and processing steps. 

Aside from all modules modified above, we need to define all simulated species in the 

registry of WRF-CAM5. The CBMZ-MAM3 module was coupled to WRF-CAM5 using the 

second generation Regional Acid Deposition Model (RADM2; Stockwell et al., 1990) and such 

emission conversion option was defined as option 9 in WRF-CAM5. However, the current WRF-

CAM5 version (3.9.1.1) does not have exhaustive VOC species listed in the registry. Changing the 
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chemistry modules alone without editing the registry would result in a significant underestimation 

of the total simulated SOA, since the model ignores the major VOC species we added to the MAM3 

module. . Thus, we add all the aforementioned but currently unlisted VOC species to the chemistry 

registry and align all species names to be consistent with the input inventory. Accordingly, the 

MAM3 chemistry module would be able to recognize the added species and process them 

successfully. 

 

4.4 Results 

4.4.1 Validation of Meteorology 

We first validate the simulated meteorology. Figure 20 compares the spatial distribution of 

monthly averaged surface temperature and precipitation from WRF-CAM5 simulations during 

June 2013. When compared to the MERRA2 products, the simulated temperatures are consistent 

with MERRA2 results with a mean bias of -1.7 K. For surface temperature, the WRF-CAM5 

simulation successfully identifies the hot regions inland (near Arizona and Baja California). Also, 

the magnitude of temperature is highly consistent with the MERRA2. For precipitation, TRMM 

identifies the Central Pacific and East Pacific at tropics as regions with strong precipitation. Both 

regions are captured by the WRF-CAM5 model. For inland areas, the simulation agrees with 

TRMM in that Colorado and New Mexico are states with heavy precipitations. Therefore, we 

conclude that the simulated precipitation has a decent agreement with the TRMM observations.  

For surface temperatures, we also evaluated the simulations against observations from six 

cities (Figure 22). All six cities witness highly consistent values between the simulated results and 

observed ones. The simulated results have 0-4 K cold biases for all sites. Nonetheless, for the 

period simulated, no days fall out of the error bars. The results here indicate that the model 
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simulations are highly consistent with the observations for temperature. In addition, we also 

evaluated the simulated temperature against the MAGIC Campaign (Figure 23), the simulated 

results are highly consistent with the ship observations. For each observational time-step, the ship 

observed surface temperature is within 1 K of our simulation. The small model error indicates that 

the meteorology simulations are reliable. 

 

 

 
Figure 22. Temperature over six cities (as in panel subtitles). Observations from EPA Air Data are 

shown in green, and WRF-Chem simulations are shown in red. Error bars are one standard 

deviation of day-to-day variability for the entire month. 
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Figure 23. Validations from MAGIC campaign and CALIPSO in June 2013. (a) Surface 

temperature validation from MAGIC Campaign. (b) AOD validation from MAGIC Campaign and 

(c) AOD validation from CALIPSO. Error bars are one standard deviation of day-to-day variability 

for the entire month 

 

 

4.4.2 Validation and Progressive Improvement of the Chemical Fields due to Model 

Enhancements 

4.4.2.1 Improvement of AOD 

Here, we show the validation of chemical species along with the demonstration of step-

wise model improvements. We first evaluated the simulated AOD at 550 nm against both the 

reanalysis product and station-wise observations. Generally, the later implemented runs have 

higher AOD levels compared to the previous ones (Figure 24). The AOD improvement after 
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adding the biomass burning emissions of aerosols (AddingBBaerosol) was rather trivial in the US, 

which cannot capture the hotspots shown in MERRA2 products. Instead, the major improvement 

in this case comes from the Mexico regions. After enabling VOC to SOA conversions 

(AddingSOA), the spatial pattern in the US side becomes more consistent with MERRA2. 

However, the magnitude is much smaller than the MERRA2 products (by roughly a factor of 2). 

Therefore, we further investigate the progress by comparing MERRA2 products with a tripled 

emission run (TriplingEmission). We find a much smaller model bias under this scenario for both 

US and Mexican regions. Almost all hotspots shown in MERRA2 are captured by the model 

simulation, however, the magnitudes at different hotspots are still inconsistent between the model 

and MERRA2 as MERRA2 has one dominated high AOD region in New Mexico areas. 

Nonetheless, we do see the progressive advancement of the model after the step-by-step chemistry 

enhancements.  

 

 

 
Figure 24. AOD at 550 nm from (a) Baseline, (b) AddingBBaerosol, (c) AddingSOA, (d) 

TriplingEmission, (e) MOZART-MOSAIC and (f) MERRA2 products.  
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We also evaluated the AOD against the AERONET observations (Figure 25). Overall, the 

AERONET observations have higher AOD even compared to the TriplingEmission, the run with 

the highest simulated AOD, except for a very short period of time in each station (e.g., June 11th 

at Caltech Station). However, we can clearly identify the gradual progress after each 

implementation as the biases become increasingly smaller (from -0.07 to -0.02). Such changes and 

biases are consistent with the results found in the MERRA2 products. Among all stations, the 

White Sands Station has the most distinctive improvements and is considered to have the best 

performance among them. The TriplingEmission simulation tracks the observations very well 

(mean bias of -0.02) for most days in June except for the last few days. Although the simulated 

AOD levels are generally lower than observations, the simulations have decent performances for 

some stations (e.g., Santa Monica and Kelowna) but have large biases in others (e.g., CalTech and 

Hermosillo). Thus, we conclude that the stepwise implementations reduce the biases and shall be 

considered acceptable for error reductions. 
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Figure 25. AOD at 550 nm for six stations (as described in panel titles, locations shown in Figure 

24a). Green lines are observations from AERONET stations. Blue lines are the Baseline; black 

lines are the AddingBBaerosol; magenta lines are AddingSOA and red lines are TriplingEmission. 

Red error bars are one standard deviation of day to day variability for the entire month for 

TriplingEmission. 

 

 

The performance of simulated AOD over the ocean is worse than the AOD inland. In Figure 

23, we compared the TriplingEmission AOD with both the MAGIC campaign and CALIPSO 

retrievals over the East Pacific. For the MAGIC campaign, the simulated AOD has consistently 

low biases between -0.02 to -0.17 and about half of the total observed days are within the range of 

uncertainties. In contrast, when comparing against the CALIPSO retrieval, our simulated results 

are consistently showing positive biases ranging from 0.01 to 0.07. For the majority of the period, 

the simulation results fall outside of the uncertainties except for one day (June 19). The inconsistent 

biases between simulations and benchmarks indicate that the improved WRF-CAM5 is less 

capable of producing accurate results over the ocean than land. This is likely because the AOD 
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over oceans are mainly controlled by sea salt productions and aerosol transport from continental 

source regions, which are not strongly affected by the several model enhancements made in this 

study. 

 

4.4.2.2 Improvement of BC and CO 

In addition to AOD, we also evaluated individual species. Figure 26 shows one-month 

averaged surface BC concentrations from each model modification comparing with MERRA2. For 

BC, the Baseline simulation completely misses the hotspots shown in MERRA2 with only slight 

plume footprints found near Los Angeles metropolitan area. After enabling the biomass burning 

emissions of aerosols (AddingBBaerosol), the spatial distribution of BC shows more consistent 

patterns compared to the MERRA2 results with a reduced bias from -0.3 to -0.1. Such 

improvement is furthered by TriplingEmission. Under this scenario, the simulated BC is 

comparable with MERRA2 results with only some overestimation of BC concentrations in 

Mexico. Such discrepancy could be attributed to the different intensities of biomass burning 

emissions in the US and Mexico considered in the model and reanalysis product.  
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Figure 26. Surface BC concentrations from (a) Baseline, (b) AddingBBaerosol, (c) 

TriplingEmission (d) MERRA2 product. 

 

 

Figure 27 shows the station-wise comparison between the simulated and observed surface 

BC concentrations at six IMPROVE sites. Generally, the observed BC is higher than the simulated 

values, especially for the Baseline simulation. Further chemistry and emission enhancements help 

mitigate the gap between the observations and simulated results. For most observed daily BC 

values, they are within the range of uncertainty of simulation, indicating that our simulation 

performs decently in most of the sites. Puget Sound, WA is the only site that the simulation failed 

to capture the observations. The large day-to-day variability is beyond the range and uncertainty 

of model results albeit witnessing some large values are closer to the improved/emission enhanced.  
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Figure 27. BC surface concentration for six stations (as described in panel titles, locations shown 

in Figure 27a). Green lines are observations from IMPROVE stations. Blue lines are the Baseline 

simulation; black lines are AddingBBaerosol and red lines are TriplingEmission.  Red error bars 

are one standard deviation of day-to-day variability for the entire month for TriplingEmission. 

 

 

For primarily emitted chemicals, we also made modifications to gas-phase species. Such 

improvement is documented in Figure 28 using CO as an example. In Figure 28, the biomass 

burning emitted CO begins to show up in the state of New Mexico as well as the southwestern part 

of Colorado. These hotspots of high CO mixing ratios coincide with the hotspots of high BC 

concentrations shown in Figure 26, implying that biomass burning dominates the contributions of 

these species in these areas. After adding biomass burning emissions of gas species, the spatial 

pattern of CO mixing ratios becomes closer to MERRA2 products shown in panel c. For surface 

observations of CO, we compared the daily mixing ratios against the observations (Figure 29) at 

the same sites as we did for temperature. For Irvine, CA, and Seattle, WA, the simulated CO 
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mixing ratios match observations very well. The results are less accurate in Salt Lake City, UT, 

and Phoenix, AZ. Simulated levels suffer 0.1 to 0.2 low biases in these two cities when compared 

against the observations. However, the daily results in both cities are within the range of 

observational uncertainties and shall be considered doing reasonably well. For the remaining two 

cities, San Diego, CA and Denver, CO, the simulated results were rather poor. The low biases are 

generally between 0.2 and 0.3. Most importantly, the model results in these cities are beyond the 

observational uncertainties for most of the days, especially for San Diego. Nonetheless, for most 

of the sites, the simulated CO mixing ratios are reasonable and trustworthy. 

 

 

 
Figure 28. Surface CO mixing ratios from (a) Baseline, (b) AddingBBgas and (c) MERRA2 

products. 
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Figure 29. CO mixing ratio validations for six cities (as described in panel titles). Green lines are 

observations from EPA Air Data. Blue lines are Baseline simulation. Red lines are AddingBBgas 

simulation. Error bars are one standard deviation of day-to-day variability for the entire month. 

 

 

4.4.2.3 Improvement of OC 

Similar to BC, simulated OC concentrations and spatial distributions underwent stage-wise 

improvements for the modifications mentioned above. In addition, OC does not only consist of 

primary sources but also secondary sources. Therefore, when comparing OC against observations 

or reanalysis products, we added one more simulation case VOC-to-SOA conversion 

(AddingSOA) for comparison. Figure 30 shows this improvement spatially (in log scale). Similar 

to BC, the OC spatial pattern is significantly impacted by the biomass burning locations. After 

AddingBBaerosol, the locations that witness strong biomass burning emissions become spatially 

consistent with MERRA2 products. Improvements as we see after adding the primary OC, the 

discrepancy between the simulation results and reanalysis remains large. Such differences can be 
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significantly reduced by comparing the AddingSOA with MERRA2 results. We also tested the 

results for TriplingEmission. In such cases, the simulated total OC tends to overshoot MERRA2 

products.  

 

 

 
Figure 30. Surface OC concentrations in (a) Baseline, (b) AddingBBaerosol, (c) AddingSOA, (d) 

TriplingEmission and (e) MERRA2 products.  

 

 

When comparing the simulated OC with observations from IMPROVE stations, the 

enhanced versions have much better performance than the Baseline (Figure 31). For most stations, 

the observed OC falls between the AddingSOA and TriplingEmission. Two stations (Lava Beds, 

CA, and Great Basin, NV) h ave the observed OC even higher, albeit slightly than the 

TriplingEmission. For most observed days, the observations fall within the range of simulation 

results, indicating that the enhanced model implementation successfully captures the overall levels 

of OC concentrations correctly.  
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Figure 31. OC surface concentration for six stations. Green lines are observations from IMPROVE 

stations. Blue lines are the Baseline; black lines are AddingBBaerosol; magenta lines are 

AddingSOA and red lines are TriplingEmission. Red error bars are one standard deviation of day-

to-day variability for the entire month for TriplingEmission. 

 

 

One may wonder why the simulated day one concentrations are different for AddingSOA 

and TriplingEmission as model should have the same initial state. The reason is straightforward. 

For plotted data, we conducted daily average as model were initiated at hour zero with forward 

running time step of 90 seconds and hourly output frames. Figure 32 shows that all selected sites 

have same initial states but the TriplingEmission curve tend to reach higher values hours after the 

initial state. We also selected Fresno, CA and Great Basin, NV to illustrate this. Fresno, CA sees 

relatively large value discrepancies between TriplingEmission and AddingSOA later in the day 

while Great Basin, NV has almost identical values throughout the day. Panel (g)-(f) of Figure 32 

explains such pattern. Fresno, CA locates right next to a biomass burning hotspot (<100 miles) 
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while Great Basin, NV has little emission sources nearby and therefore witness an almost identical 

simulated levels for two configurations. 

 

 

 
Figure 32. (a)-(f) hourly outputs for simulated OC concentrations for six sites on 06/01/2013. (g)-

(f) Biomass burning spatial distribution for surrounding areas for Fresno, CA and Great Basin, 

NV. Panels (g) and (i) are for TriplingEmission and (h) and (j) are for AddingSOA. 

 

 

4.4.3 Comparison with MOZART-MOSAIC 

One crucial question we aim to answer here is how good the results are from the CBMZ-

MAM3 simulation compared to the MOZART-MOSAIC counterpart. Thus, we evaluated the BC, 

OC, and AOD results for MOZART-MOSAIC simulation as well. To maintain input consistency, 

the evaluation was conducted based on the original emission levels (no enhancements). Figure 33 

shows the comparison between MOZART-MOSAIC and CBMZ-MAM3 simulation results. For 
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BC, the MOZART-MOSAIC yields comparable levels of concentrations compared to CBMZ-

MAM3 simulations while for OC, the MOZART-MOSAIC has much lower values compared to 

the CBMZ-MAM3 results. When using MERRA2 products as the benchmark, the improved 

CBMZ-MAM3 actually produces better results despite being a less sophisticated chemistry 

scheme. For AOD, the two suites have comparable performance in terms of the absolute magnitude 

but we are still able to identify better spatial agreement for the CBMZ-MAM3 scheme. Moreover, 

the CBMZ-MAM3 chemistry suite demands 2.5-time less computational core hours compared to 

MOZART-MOSAIC simulations.  
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Figure 33. Comparison of two chemistry suites. (Left column: a, c, e, g, i) are for CBMZ-MAM  

and (right column: b, d, f, h, j) are for MOZART-MOSAIC runs of AddingSOA, but not 

TriplingEmission. First row (a, b) is for AOD at 550 nm. Second row (c, d) is for BC. Third row 

(e, f) is for OC (in log scale). Fourth row (g, h) is for Primary OC and fifth row is for SOA (in log 

scale). 
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The major simulated OC difference between the two suites comes from the treatment of 

SOA. Figure 33 also shows the comparison of both primary OC and secondary OC between 

MOZART-MOSAIC simulations and CBMZ-MAM3 simulations. For primary OC, two chemistry 

suites show comparable results both in spatial pattern and magnitude. However, the enhanced 

CBMZ-MAM3 simulation is capable of picking up the SOA but MOZART-MOSAIC fails. One 

plausible explanation could be that the added VOC species contain hydroxyacetone for MAM3 

and this species dominates the VOC to SOA conversion. However, the current MOZART-

MOSAIC simulation has not incorporated this process yet.  

 

4.5 Summary 

WRF-CAM5 is widely used in many atmospheric chemistry applications, such as air 

quality, chemistry and climate interaction (Zhang et al., 2015). In this study, we enhanced the 

CBMZ-MAM3 chemistry suite in WRF-CAM5 by modifying both CBMZ and MAM modules 

and any accompanying modules or registry (i.e., plume rise module, emission driver module and 

chemistry driver module). We performed four modifications, including (1) adding the model 

capability of ingesting the biomass burning emitted aerosols in MAM (AddingBBaerosol); (2) 

adding the model capability of ingesting the biomass burning emitted gases in CBMZ 

(AddingBBgas); (3) implementing the VOC to SOA conversions (AddingSOA) and (4) enhancing 

the original emissions by 3 times (TriplingEmission).  

The simulated results see stepwise improvements after each modification. These 

improvements lead to not only more spatially consistent but also with higher surface observational 

agreements. Both the modeled concentrations of aerosol and gas-phase species and the AOD at 

550 nm show significant improvements after the aforementioned modifications. Species-wise, the 
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BC has better agreement with observations compared to the OC, potentially due to the simpler 

OC-related chemistry process involved as we only need to care about the direct emissions of BC 

instead of secondary processes. Nonetheless, we are still able to identify clear advancements for 

OC after introducing the secondary VOC-to-SOA processes and emission enhancement. In 

general, when compared to the observations, the model performance follows the order of 

TriplingEmission > AddingSOA > AddingBBaerosol > Baseline. This study suggests that the low 

biases of the current version (Baseline) comes from both model deficiencies (no ingested biomass 

burning emissions and VOC to SOA conversions) and imperfect emission inventories. The readers 

are reminded that there remain uncenrtainties regarding the tripling sectors of emissions (e.g., 

anthropogenic, biomass burning or bogenic emissions). 

Furthermore, we also tested the modified chemistry package with a parallel MOZART-

MOSAIC set-up. Results suggest that for directly emitted species (e.g., BC), they are comparable 

and for species involving secondary processes (e.g., OC), CBMZ-MAM3 has a higher agreement 

with the MERRA2 reanalysis data. It is noteworthy that the MOZART-MOSAIC chemistry suite 

is generally considered to be more sophisticated and the CBMZ-MAM3 chemistry suite actually 

costs 2.5-time less computational core hours than the MOZART-MOSAIC counterparts. Results 

here suggest that our improved WRF-CAM5 model with CBMZ-MAM3 schemes can not only 

produce trustworthy simulations but also make prospective examinations more computationally 

feasible. Future studies may consider implementing our upgraded CBMZ-MAM3 chemistry suites 

for testing elsewhere or in other temporal periods to check if these improved modules are indeed 

boosting the WRF-CAM5 performance consistently.  
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CHAPTER V 

WRF-CAM5 SIMULATED CLOUDS IN THE US WEST COAST 

 

5.1 Introduction 

 The west coast of US consists of more than 15% of total US residents, which translates to 

more than 48 million population (US Census, 2010). California alone, for example, contributes to 

more than 3 trillion Gross domestic product (GDP) or approximately 1/7 of total GDP of the entire 

country (BEA, 2019). The juxtaposition of two major metropolitans: Los Angeles metropolitans 

and San Francisco Bay Area emit more than 270 million tons of CO2 per year (CARB, 2017) along 

with other major aerosol species (BC, OC, SO4, etc.). In addition, California becomes a hotspot of 

wildfires in summertime (Herndon and Whiteside, 2018). The overwhelming amount of aerosol 

release from biomass burning not only causes significant economic losses, but also poses alarming 

respiratory health threats to local residents (Reid et al., 2016). In addition, studies (Grell et al., 

2011; Tomaz et al., 2018) has suggested that biomass burning introduced aerosols can later turn 

into cloud seeds by serving as cloud condensation nuclei. 

The wide-ranging MBL clouds near the US west coast makes these low clouds particularly 

susceptible to the influences of continental aerosols from both anthropogenic and biomass burning 

origins (Painemal, et al., 2015; Petters, et al., 2006). It has been noticed that, MBL tends to have 

biased dependency on aerosol types. For example, Tomlinson et al., (2007) investigated the 

presence of MBL in Southeast Pacific and noticed that despite the abundance of primary OC 

particles, the seeding efficiency for CCN is rather poor. In addition, for chemical species, other 

studies (e.g., Allan et al., 2000; Carpenter, 2003; Gomez et al., 2013) also emphasized the 
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importance of MBL iodine interactions in the lower levels as iodine, a halogen, is capable of 

catalyzed destruction of ozone in the marine boundary layer. 

In this study we aim to use the updated model to characterize the role of different aerosols 

(from both anthropogenic and biomass burning origins) at different height (by showing vertical 

proles) in cloud properties changes, and further investigate the cloud dependencies on various 

aerosols types. Finally, we integrate the chemistry analyses with ambient meteorological fields to 

account for such biases in different parts of the US west coast.  

 

5.2 Methods 

In this study, we adopt the same model setups as in Section 2.3. Instead of using multiple 

model configurations, we choose TriplingEmission run, the final and best performing simulation 

compared to various benchmarks, for the examination.  

For this study, we extend the simulation of updated WRF-CAM5 model for additional two 

month, making the total simulation covering the entire summertime (June 1st, 2013 to August 31st, 

2013) with same setups, including emissions, as one-month TriplingEmission run. We define a 

coastal area, focusing on cloud properties and aerosol-cloud interactions in this region. The defined 

off coast region was a tilted rectangular area (Figure 34a) with longitude spans from 132 °W to 

122°W and latitude from 30°N to 48°N. Please note that the defined area shown in Figure 34a may 

look like trapezoid instead of rectangle. This is due to the distortion caused by the map projection 

(lambert conformal) here and the defined area will look like a rectangle in a Mercator projection.  
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Figure 34. TriplingEmission simulation (First Row) and MERRA2 products (Second Row) for  

(a,d) BC, (b,e) OC, (c,f) AOD at 550 nm. 

 

 

After defining the coastal area, we aim to separate such area into three sections: North Box, 

Central Box and South Box (Figure 35) to test their respective cloud properties and responses to 

the presence of aerosols. For simplicity, we make the heights of all boxes equal, from surface to 

1000 m aloft. For Latitude of separations, the North Box is bounded between 42.67°N and 48°N; 

the Central Box is bounded between 35.33°N and 42.67°N and the South Box is bounded between 

30°N and 37.33 °N. Since the off coast selection area is tilted (i.e., not in parallel with longitudinal 

lines), when conducting the spatial averages for vertical profile analyses, we proceed along a tilted 

line with angle of 0.38 rad to a constant latitude line. In addition, for temporal analyses, we conduct 

the running average to turn hourly data in to weekly data to reduce the noise. 
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Figure 35. Averaged west coast boxed area vertical cross sections for (a) TriplingEmission 

simulation and (b) MODIS product. Total column summed water vapor from (c) TriplingEmission 

simulation and (d) MERRA2 product. Three boxes in each figure indicate the selected north, 

central and south boxes.  

 

 

In addition to model simulations, we also used multiple sources of criterion for both 

chemistry and cloud property comparisons. We use The Moderate Resolution Imaging 

Spectroradiometer (MODIS; Platnick et al., 2003) for validations of simulated cloud fractions and 

similar to section 2.3, we use MERRA2 products for both the validations of both chemical species 

(BC, OC and AOD) and cloud property (e.g., column burden of water vapor) for the entire three-

month long period. 
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5.3 Results 

5.3.1 Validations for Three-Month Simulations 

We first compare the three-month chemistry results with MERRA2 products and Figure 34 

shows such comparisons of BC, OC and AOD. Similar to one-month simulation shown in Section 

3.3, the three-month results are highly consistent when compared to the benchmark and for both 

BC, and OC, the spatial patterns align with reanalysis product. Unlike, one-month simulation 

whose hot spots are concentrated in Colorado and New Mexico, the three-month simulation 

witnesses the highest BC and OC concentrations in west coast (California, Portland and Idaho). 

The biomass burning hot spots shown in the one-month simulation remains, however, dwarfed by 

the later and much more intense wildfires along the west coast. Like BC and OC, the AOD values 

are significantly impacted by the coastal biomass burnings and therefore demonstrate dominant 

high values in these regions. 

In addition to chemistry fields, we also evaluated the three-month cloud-related properties. 

Figure 36 shows the spatial distribution comparisons of cloud fractions and column summed 

(burden) water vapor. For cloud fraction, the WRF-CAM5 simulation captures the spatial pattern 

as demonstrated from MODIS product. Two major peaks from simulation reside to the north and 

south of California with a local minimum in between. Similarly, in MODIS, both northern and 

southern areas show local maximum with central area showing local minimum of cloud fractions. 

For the magnitude of cloud fraction, the simulated results have on average 0.1 larger bias compared 

to the benchmark. Nonetheless, such value only accounts for less 12% of errors and shall be 

considered acceptable with comparable spatial patterns. Like cloud fraction, the simulated column 

summed (burden) water vapor is highly consistent with MERRA2 products as well. We see local 
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minimums along the coastal region and particularly close to the California. The farther south 

region was shown with much more abundant water vapors as expected due to its proximity towards 

the tropical areas. MERRA2 products show agreements on both minimums, maximums and overall 

spatial distributions with slightly higher values (~5 kg/m3). Again, the difference here is small 

compared to the overall magnitude and shall be considered acceptable. 

 

 

 
Figure 36. Cloud fraction from (a) TriplingEmission simulation and (b) MODIS product. Total 

column summed water vapor from (c) TriplingEmission simulation and (d) MERRA2 product. 

The black box in (a) indicates the selected region for off coast analyses and three black boxes in 

(c) indicate the breakdown of North, Central and South boxes. 
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5.3.2 Cloud Interactions with Aerosols 

Figure 35 shows the ambient meteorological conditions for north, central and south boxes 

along the coastal area. For both cloud fractions and potential temperature, three boxes show 

comparable and largely invariant distributions. However, when considering the water content, 

three boxes demonstrate distinctive patterns. For example, the South Box has the lowest cloud 

water mixing ratio among three boxes while it has the highest total water mixing ratios among 

three boxes. In contrast to South Box, both Central and North Boxes see the high cloud water 

mixing ratios while they the low total water mixing ratio. Such inconsistency indicates that the 

water availability is not the only factor that dominate the cloud formation in this region. 

Aerosols can serve as CCN and therefore facilitate the formation of cloud (Roberts et al., 

2006). Thus, we show the vertical profile of total aerosol concentrations in the area. Figure 37a 

shows the total aerosol concentration in the region with Central Box showing a dominant level 

followed by the South Box. The North Box, on the contrary, has much lower aerosol concentrations 

compared to both Central and South Boxes. We also show the cloud effective radius (Figure 37b) 

in company with aerosol levels. For effective radius, the Central Box is smaller than the South 

Box. This is expected because the Central Box has more abundant aerosols compared to the South 

Box. However, the North Box has the smallest cloud effective radius despite being the box with 

lowest aerosol concentrations. Although such distribution seems to contradict the Twomey Effect 

(Feingold et al., 2003), we should also consider the availability of cloud water as well. Figure 37c 

shows the cloud water number concentration and we can clearly identify that both South and 

Central Boxes have much less cloud water concentrations compared to the North Box. 

Additionally, when comparing the time series of all three variables analyzed in the Figure 37, the 

supply of aerosols tends to be heavily affected by the biomass burning events in the latter half of 
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the study period, during which time the supply of water number concentration is relatively low in 

the area and therefore potentially resulting a larger than expected cloud effective radius in the 

South and Central Boxes.  

 

 

 
Figure 37. Averaged west coast boxed area vertical cross sections for (a) Total aerosol 

concentrations (b) cloud effective radius and (c) cloud water number concentrations. Three boxes 

in each figure indicate the selected north, central and south boxes. (d), (e), (f) are time series for 

(a), (b), (c), respectively. 

 

 

We next break the aerosol compositions down for all three boxes (Figure 38). For all three 

boxes, two species dominate the total concentration: OC and SO4. Both South and Central Boxes 

have very similar aerosol composition with OC as the most abundant aerosol followed by SO4. 

However, such composition is not true for the North Box where the SO4 becomes the most 

abundant aerosol and OC falls even behind the levels of sea salt. The discrepancy here implies that 

there are biased supplies to the aerosol in three different boxes.  
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Figure 38. Aerosol distributions for (a) South, (b) Central and (c) North boxes.   

 

 

Since OC and SO4 are two most important aerosols in the region, we examine their 

concentrations and vertical profiles individually (Figure 39). OC has very similar vertical 

distributions and time series compared to the total aerosol concentrations (Figure 37), which is 

expected as OC dominates the aerosol composition in both South and Central Box. For SO4, the 

North Box has the highest levels and the other two boxes share similar total concentrations. Such 

variation also helps explain the cloud effective radius distribution shown in Figure 37b as SO4 has 

higher hygroscopicity compare to OC (Cruz and Pandis, 2000). More importantly, the abundance 

of SO4 coincides with the time period when the water number concentration stays high for the 

North Box as well (first half of the time period). 

 

 



 

132 
 
 

 

 
Figure 39. Averaged west coast boxed area vertical cross sections for (a) OC and (b) SO4. (c) and 

(d) are time series for (a) and (b). 

 

 

Moreover, to justify the biased coastal cloud response to OC and SO4 concentrations, we 

select the days with top 25% OC and SO4 concentrations and examine their responses to high 

aerosol concentration scenarios. In Figure 40, the distinctive cloud fraction spatial patterns are 

very obvious. In days with elevated OC levels, the Central and Southern part of coastal area see 

net increases in cloud fraction while in days with high SO4 values, the northern part of coastal area 

experiences the most remarkable cloud fraction boost followed by the southern part. In contrast, 

the Central part stays largely invariant according to the changes of SO4 levels.  
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Figure 40. Cloud fractions for days with top 25% of (a) BC Concentrations and (b) Sulfate 

Concentrations.  

 

 

The biased aerosol concentrations off the west US coast raises the question that what has 

caused the biased aerosol dependencies in different boxes? The answer lies in the emission sources 

and ambient meteorological conditions. Figure 41 shows the spatial distributions for OC and SO4 

along with averaged surface wind vectors overlaid. For OC, the emission source overwhelmingly 

comes from the biomass burning events near the California-Portland border along the coast while 

for SO4, the dominant sources actually come from the long-range transport and this is consistent 

with some Asian-originated aerosol transport studies (Van Donkelaar et al., 2008). Additionally, 

wind fields served different purpose for three boxes. When biomass burning plumes get dispersed 

into the air, the southward prevailing wind carries OC particles towards Central and South Boxes. 

Since the North Box resides in the opposite direction of wind, it receives little OC from coastal 

biomass burnings despite being in the proximity. For SO4, which potentially has an Asian origin, 

the North Box becomes the area with shortest distance after aerosols take a northern trans-Pacific 

route (Van Donkelaar et al., 2008). Therefore, the North Box is dominated by SO4 aerosols and 
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see higher levels when compared to the other two boxes. Finally, it contributes to various cloud 

properties in North Box as mentioned above.  

 

 

 
Figure 41. Aerosol concentration spatial distributions for (a) OC and (b) SO4. Arrows are temporal 

averaged wind vectors. Three boxes in each panel corresponds to three surface boxes.   

 

 

5.4 Concluding Remarks 

The three-month TriplingEmission simulation produced reasonable results for both 

chemistry fields and cloud properties when compared to MODIS and MERRA2 benchmarks. We 

selected a boxed area along the coast for studies of off coast MBL clouds and their interactions 

with various types of aerosols.  

For the selected coastal box, we further divide them into three parts: North, Central and 

South Boxes. In general, the South and Central Boxes share a lot of similarities while the North 

Box have distinctive patterns compared to the other two. The South Box contains the highest total 

water mixing ratio while demonstrating the lowest cloud water content. Such discrepancy is 

aerosol-related as the Central and South Boxes have much higher total aerosol concentrations when 
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compared to the North Box. In addition, the OC dominates the South and Central Boxes while the 

North Box sees the SO4 to be the aerosol with highest concentrations. Due to its higher 

hygroscopicity and co-occurrences of water abundant time period, the SO4 has led the North Box 

to produce lower cloud effective radius compared to both Central and South Boxes. 

Finally, the biased aerosol dependencies in three boxes are aerosol source and origin 

dependent. The OC abundant boxes (South and Central) receive the OC aerosols from coastal 

biomass burning sources while the SO4 rich box (North) accepts the SO4 aerosols from East Asia 

long-range transport. Moreover, the local wind fields promote the southward dispersions of OC 

particles, impeding the OC particles to reach North Box. On the contrary, such wind direction 

facilitates the trans-Pacific SO4 to reach North Box with a shorter distance.  

 

5.5 Summary of WRF-CAM5 Improvements and Cloud-Aerosol Interactions 

 We improved a chemistry suite (CBMZ-MAM3) for WRF-CAM5 model. We performed 

four modifications (AddingBBaerosol, AddingBBgas, AddingSOA and TriplingEmission) for the 

original model. The simulated results show progressive improvement out of each version for 

various chemical species as well as AOD when compared with the benchmarks. In addition, we 

compared our improved WRF-CAM5 model with WRF-Chem model using a much more 

complicated chemistry suite (MOZART-MOSAIC). Our model demonstrates higher agreement 

with reanalysis products despite using ~2.5 time less computational resources for simulation. 

In Chapter V, we conducted preliminary aerosol-cloud studies in the off coast area of US west 

coast. We extended the WRF-CAM5 simulation from one month to three months. The simulated 

results show agreement not only for chemistry fields but also cloud properties. We divide the 

selected off coast areas into three boxes and identified different aerosol and cloud patterns in the 
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North Box when compared to the other two boxes. The North Box is heavily SO4 dominated while 

the other two are OC dominated. The different hygroscopicity of different aerosols lead to different 

cloud properties like: cloud effective radius. The biased aerosol dominance in three boxes are due 

to their source of origins and local wind patterns.  
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