
GENERATION OF VIRTUAL 3D CONCRETE MICROSTRUCTURES APPLIED TO

MODELING CREEP AND RELAXATION

A Dissertation

by

CHRISTA E. TORRENCE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPY

Chair of Committee, Zachary Grasley
Committee Members, Patrick Shamberger

Joseph Bracci
Bjorn Birgisson
Edward J. Garboczi
William B. Lawrimore

Head of Department, Ibrahim Karaman

December 2020

Major Subject: Materials Science & Engineering

Copyright 2020 Christa E. Torrence

ABSTRACT

Nearly all nuclear power plants in the United States are operating past their intended lifetimes or

are requesting lifetime extensions. Therefore, understanding changes to the concrete containment

structure over time is crucial to evaluate the structure’s continued viability. Concrete materials are

heterogeneous particulate composites that exhibit viscoelastic material properties, which can lead

to slow deformation over time, causing stress redistribution and the potential for creep cracking. A

code to generate random, 3D concrete microstructures has been developed with a novel overlap de-

tection algorithm that reduces the computational time to generate a microstructure with a realistic

volume fraction by 85%. This code is paired with finite element analysis to predict the long-term

viscoelastic properties of concrete, where data from these simulations are used to develop consti-

tutive equations for the viscoelastic behavior of the homogenized concrete. To validate this work,

the simulated creep behavior of concrete is compared to 800 days of experimental data that has

been extended to 27 years of data using the Time-Temperature superposition (TTS) principal. Ex-

cellent agreement between the simulation results and experimental data is seen. Additionally, two-

dimensional (2D) and three-dimensional (3D) simulations were compared to determine the impact

of simulation dimensionality on predicted creep behavior. Boundary conditions, both morpholog-

ical and mathematical, are investigated for their influence on concrete creep predictions. Lastly,

short-term mortar stress relaxation is simulated to demonstrate the application of this framework to

short term and early age creep The codes in this work are used to virtualize laboratory experiments,

to obtain long-term creep data in a faster, cheaper manner.

ii

DEDICATION

To my parents

iii

ACKNOWLEDGMENTS

First, I’d like to express my appreciation and gratitude towards my advisor, Dr. Zachary Grasley.

His guidance, patience, and support of me and my research throughout the past four years has

been invaluable and has made my graduate school experience an enjoyable one. I would also

like to thank my two external committee members, Dr. Edward J. Garboczi and Dr. William B.

Lawrimore, for sharing their expertise and investing their time into helping shape and improve my

research. My TAMU committee members, Dr. Joe Bracci, Dr. Patrick Shamberger, and Dr. Bjorn

Birgisson have also each played an important role in the creation of this dissertation by providing

helpful feedback and encouragement along the way.

I’d like to thank my labmate Aishwarya Baranikumar for providing experimental data on mortar

and concrete for use in this work, as well as being a lovely officemate. Additionally, Cesario

Tavares has provided collaboration ideas and experimental data used in this work as well.

I am immensely grateful for my parents, Mom, Dad, Bud, and Dani, for being my biggest cheer-

leaders and always supporting my goals (even when it meant moving away). None of this would

have been possible without you.

To my friends, both near and far, I appreciate each one of you dearly. I am so happy to be sur-

rounded by such wonderful, thoughtful, and inspiring people. You all have supported me in so

many ways and for that I am forever grateful.

Finally, a special thank you to my fiance Connor, for being an unwavering source of support

throughout this journey. Thank you for the many words of encouragement, always making me

laugh, and for being a great cat dad.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee chaired by Professor Zachary Grasley of

Civil Engineering and Materials Science & Engineering. The committee members include Pro-

fessor Patrick Shamberger of Materials Science & Engineering, Professor Joseph Bracci of Civil

Engineering, Professor Bjorn Birgisson of Civil Engineering, Dr. Edward J. Garboczi of the Na-

tional Institute of Standards and Technology (NIST), and Dr. William B. Lawrimore of the U.S.

Army Engineering Research and Development Center (ERDC).

The Anm coefficients used to reconstruct the aggregate shapes, presented in Chapter 3 was gen-

erated and analyzed by Dr. Edward J. Garboczi. The mortar and concrete experimental data

presented in Chapters 5 and 6 was collected and analyzed by Aishwarya Baranikumar. The cement

paste and mortar experimental data in Chapter 7 was collected and analyzed by Cesario Tavares.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by the College of Engineering Graduate Engineering Merit fel-

lowship from Texas A&M University. This research was also supported by a Nuclear Energy

University Partnership (NEUP) grant 16-10457 through US DOE, Office of Nuclear Energy, Light

Water Reactor Sustainability (LWRS) Program. Additional support came from the US Army En-

gineering Research and Development Center (ERDC) grant W912HZ19C0042. Portions of this

research were conducted with high performance research computing resources provided by Texas

A&M University (https://hprc.tamu.edu).

v

NOMENCLATURE

2D Two-Dimensional

3D Three-Dimensional

ASTM American Society for Testing and Materials

DEM Discrete Element Method

EDF Électricité de France

ERDC Engineering Research and Development Center

FEA Finite Element Analysis

FEM Finite Element Method

FFT Fast Fourier Transform

NIST National Institute of Standards and Technology

PBC Periodic Boundary Conditions

RVE Representative Volume Element

TAMU Texas A&M University

TTS Time-Temperature Superposition

XCT X-Ray Computed Tomography

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xvi

1. INTRODUCTION. 1

1.1 Motivation and Problem Statement . 1
1.1.1 Research Scope and Objectives . 4
1.1.2 Research Outline . 6

2. LITERATURE REVIEW .. 8

2.1 Generation of Random Concrete Microstructures . 8
2.1.1 Particle Packing Algorithms . 8
2.1.2 Overlap Detection . 10

2.2 Computational Modeling of Concrete Mechanical Behavior . 12
2.2.1 Impact of Aggregate Shapes . 12
2.2.2 Two-Dimensional vs Three-Dimensional Modeling . 15
2.2.3 Viscoelasticity . 16
2.2.4 Influence of Boundary Conditions on Mechanical Properties 18

2.2.4.1 Representative Volume Element (RVE) Size. 18
2.2.4.2 Mechanical Properties. 18

2.3 Gaps in the Current Literature . 20

3. GENERATION OF RANDOM, VIRTUAL CONCRETE MICROSTRUCTURES 22

3.1 Reconstruction of Aggregates . 22
3.1.1 Pre-Rotation of Aggregates . 23

vii

3.2 Particle Placement Algorithm . 24
3.2.1 Periodic Boundary Conditions . 25
3.2.2 Cored Boundary Conditions . 26
3.2.3 Cast Boundary Conditions . 27
3.2.4 Cylindrical Microstructures . 28

3.3 Summary . 30

4. ASPERITY-BASED VIRTUAL PARTICLE-PARTICLE OVERLAP DETECTION AL-
GORITHM.. 32

4.1 Asperity Detection . 32
4.2 Overlap Check. 34

4.2.1 Radii Comparison . 35
4.2.2 Asperity Check . 36
4.2.3 Brute Force Check. 38

4.3 Aggregate Shape Analysis . 39
4.4 Results . 40

4.4.1 Aggregate Size Gradations . 40
4.4.2 Influence of nmax Value . 42
4.4.3 Efficiency Improvements . 44
4.4.4 Proportion of Overlap Detection Methods . 47

4.5 Summary . 49

5. LONG-TERM CREEP AND RELAXATION MODELING OF CONCRETE 52

5.1 Finite Element Mesh Generation . 52
5.2 Implementation of Periodic Boundary Conditions . 53
5.3 Description of Viscoelastic Mortar . 56

5.3.1 Experimental Sample Preparation . 56
5.3.2 Experimental Data Analysis . 59

5.4 Simulation Data Analysis . 60
5.5 Convergence Studies . 61

5.5.1 Finite Element Mesh Density . 61
5.5.2 RVE Size . 67

5.6 Results . 70
5.6.1 Comparison to Experimental Data. 70
5.6.2 Influence of Dimensionality . 72
5.6.3 Influence of the Mortar’s Poisson’s Ratio . 73

5.7 Summary . 74

6. INFLUENCE OF BOUNDARY CONDITIONS ON MODELING OF CONCRETE CREEP
AND RELAXATION . 77

6.1 Microstructure Generation . 77
6.2 Convergence Studies . 78

6.2.1 Finite Element Mesh Density . 78

viii

6.2.2 RVE Size . 81
6.3 Results . 84

6.3.1 Influence of Morphological Boundary Conditions. 84
6.3.2 Influence of Periodic Boundary Condition Constraint Equations 85

6.4 Summary . 88

7. SHORT-TERM RELAXATION MODELING OF MORTAR . 90

7.1 Mortar Microstructure Generation . 90
7.2 Description of Viscoelastic Cement Paste . 92

7.2.1 Experimental Sample Preparation . 92
7.3 Mortar Simulation . 93

7.3.1 Description of Viscoelastic Cement Paste . 94
7.3.2 Mesh Density Convergence Study . 95
7.3.3 Results . 96

7.4 Summary . 99

8. SUMMARY AND CONCLUSIONS . 101

8.1 Dissertation Summary . 101
8.2 Primary Conclusions . 102
8.3 Implications & Applications . 104
8.4 Future Work & Next Steps. 105

REFERENCES . 106

APPENDIX A. MICROSTRUCTURE GENERATION CODE. 122

A.1 Aggregate Reconstruction and Pre-Rotation . 122
A.2 Asperity Identification . 126
A.3 Microstructure Generation Main File . 129
A.4 Particle Placement. 137

A.4.1 Periodic Placement . 137
A.4.2 Intersecting/Cored Placement . 150
A.4.3 Cast Placement . 151

A.5 Overlap Detection with Asperity Check . 153
A.6 Generation of Image Stack . 162

APPENDIX B. ABAQUS INPUT FILE GENERATION CODE . 168

B.1 Matlab Code to Generate Abaqus Input File and Apply Periodic Boundary Condi-
tion Constraint Equations . 168

APPENDIX C. DATA ANALYSIS CODE . 184

C.1 ODB File Reader . 184
C.2 Constituitive Viscoelastic Equation Calculation . 187

ix

LIST OF FIGURES

FIGURE Page

1.1 Age distribution of nuclear reactors at selected dates [1].. 2

1.2 Creep compliance data on log time scale (left) used to create master curve for creep
compliance (right) using the TTS principle [2] . 3

2.1 Categories of numerical model recreations of composites [3] . 9

2.2 Concrete microstructures generated with a) spheres, b) Vornoi polygons, c) flat-
tened Voronoi polygons, and d-f) real aggregate shapes extracted from XCT scans
[4] . 13

2.3 Modeling of metal matrix composite with real inclusions shapes (labelled ’mi-
crostructure’), spheres, and ellipsoidal inclusions [5] . 14

2.4 Example of clustered spheres of varying sizes used to represent aggregates [6] 14

2.5 3D digital image taken from XCT data (left), processed and reconstructed with
spherical harmonics (right) [7] . 15

2.6 The Young’s modulus calculated from an FEA simulations of a 3D microstructure
and the stack of 2D microstructures taken from slices of the 3D microstructure. [8] . 16

2.7 Relation between cast and cored cylinder compressive strength [9] . 19

2.8 Wall effect observed in cast samples [10] . 20

3.1 Three-dimensional aggregates reconstructed from XCT data using spherical har-
monics . 23

3.2 Particle Packing Algorithm . 25

3.3 Visualization of periodic boundary conditions and a representative volume element
(RVE) . 26

3.4 A 2D microstructure (left) and a 3D microstructure (right) with periodic boundary
conditions composed of 38% coarse aggregates by area and volume, respectively. . . 26

3.5 A 2D microstructure (left) and a 3D microstructure (right) with cored boundary
conditions composed of 38% coarse aggregates by area and volume, respectively. . . 27

x

3.6 A 2D microstructure (left) and a 3D microstructure (right) with cast boundary con-
ditions composed of 38% coarse aggregates by area and volume, respectively. 28

3.7 A cast cylindrical microstructure viewed from the side (left) and from the top
(right), where all aggregates can be seen to be fully contained within the cylin-
drical domain . 30

4.1 Asperities identified on an particle . 34

4.2 Overlap check algorithm . 35

4.3 Lens of potential intersection formed by intersecting bounding spheres. Only as-
perities that lie in this lens are checked for overlap with the neighboring particle.
In this example, the asperities that lie in this lens are identified with blue markers. . . . 36

4.4 Assessing overlap by comparing the distance from the center of particle A (iden-
tified with a white marker) to the asperity on particle B (identified with a blue
marker) with the radius of particle A along the same vector (identified with a black
marker). On the left, the radius is shorter than the distance to the asperity, indi-
cating there is not overlap with the asperity point, while on the right the radius is
longer, leading to the detection of overlap. 37

4.5 Two arrangements of of aggregate A with respect to aggregate B - fully contained
in the bounding sphere of aggregate B (left) and intersecting the bounding sphere
of aggregate B (right) . 39

4.6 Shape parameters for each of the four sieve sizes: a) length-thickness (L/T) ratio, b)
length-width (L/W) ratio, C) Wadell sphericity, and d) maximum-minimum radius
ratio. Error bars represent ± one standard deviation . 40

4.7 The four gradation curves studied - with two coarse gradations (A and B), alongside
two finer gradations (C and D) . 41

4.8 Asperities identified on a particle plotted and analyzed with an nmax value of a)
4, b) 6, c) 8, d) 10, e) 12, f) 20. The largest asperities are identified on all, with
increasingly subtle asperities detected as nmax increases . 42

4.9 The time to generate a 40% volume fraction microstructure, using gradation A,
with asperities identified using an nmax value of 6, 8, 10, and 12. Each data point
represents the average runtime of generating three microstructures. Error bars rep-
resent ± one standard deviation . 44

4.10 Combined speedup data of each volume fraction and sieve gradation 46

4.11 Average percentage reduction in runtime for each combination of volume fraction,
20%, 30% and 40%, and sieve gradation, A-D . 47

xi

4.12 Proportion of overlap detected by each of the three filters as a function of volume
fraction in a 40% volume fraction microstructure for gradations A-D. Overlap de-
tected by the minimum diameter is labelled in green, the asperity check is labelled
red, and the brute force is marked in blue. Each data point represents the propor-
tions of overlap detected during each aggregate’s total number of placement attempts. 49

5.1 A 2D microstructure meshed with OOF2. 53
5.2 Strain along the edges of a 105mm square two-dimensional microstructure after 0

days, in X-direction with the edge of the microstructure overlaid below the curves
to indicate composition along the lines. Mortar is identified in blue and aggregates
in gray. Deviations between the two lines is the result of differences in the finite
element mesh between the two edges. 55

5.3 Stress along the edges of a 105mm square two-dimensional microstructure after 0
days, in X-direction with the edge of the microstructure overlaid below the curves
to indicate composition along the lines. Mortar is identified in blue and aggregates
in gray. Deviations between the two lines is the result of differences in the finite
element mesh between the two edges. 55

5.4 Strain along the edges of a 90mm cubic three-dimensional microstructure after
7,084 days, in X-direction with the edge of the microstructure overlaid below the
curves to indicate composition along the lines. Mortar is identified in blue and
aggregates in gray. Deviations between the two lines is the result of differences in
the finite element mesh between the two edges. 56

5.5 Stress along the edges of a 90mm cubic three-dimensional microstructure after
7,084 days, in X-direction with the edge of the microstructure overlaid below the
curves to indicate composition along the lines. Mortar is identified in blue and
aggregates in gray. Deviations between the two lines is the result of differences in
the finite element mesh between the two edges. 57

5.6 The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days,
and d) 5,000 days of a two-dimensional square microstructure with an edge length
of 90 mm plotted against the density of finite elements to determine convergence
at a 38% coarse aggregate volume fraction . 62

5.7 The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days,
and d) 5,000 days of a three-dimensional cubic microstructure with an edge length
of 75 mm plotted against the density of finite elements to determine convergence
at a 38% coarse aggregate volume fraction . 63

5.8 The RMS of the L2 norm of the strain error at a) 0 days, b) 100 days, c) 1,000 days,
and d) 5,000 days of a stress relaxation simulating using a three-dimensional cubic
microstructure with an edge length of 75 mm plotted against the density of finite
elements to determine convergence at a 38% coarse aggregate volume fraction 65

xii

5.9 The RMS of the L2 norm of the strain error at a) 0 days, b) 100 days, c) 1,000 days,
and d) 5,000 days of a three-dimensional cubic microstructure with an edge length
of 75 mm plotted against the number of degrees of freedom (DOF) on a log scale
to determine convergence at a 38% coarse aggregate volume fraction 66

5.10 The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days,
and d) 5,000 days of a two-dimensional square microstructure plotted against the
domain edge length to determine convergence at a 38% coarse aggregate volume
fraction and a finite element mesh density of 0.6 elements/mm2. Error bars on
plots b-d represent ± one standard deviation. 68

5.11 The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days,
and d) 5,000 days of a three-dimensional cubic microstructure plotted against the
domain edge length to determine convergence at a 38% coarse aggregate volume
fraction and a finite element mesh density of 0.6 elements/mm3. Error bars on
plots b-d represent ± one standard deviation . 69

5.12 Creep compliance data at 20o C over 800 days, showing a comparison of the ex-
perimental concrete creep data to the 2D and 3D simulations. Error bars represent
the standard error of the experimental data. The 2D and 3D simulation data points
are averages of five 90mm edge length square and cubic microstructures, meshed
with a density of 0.6 elements/mm2 and elements/mm3 respectively. 71

5.13 The creep compliance over 10,000 days modeled in 2D and 3D, plotted with ex-
perimental data extended using the TTS principle.The 2D and 3D simulation data
points are averages of five 90mm edge length square and cubic microstructures
meshed with a density of 0.6 elements/mm2 and elements/mm3 respectively. 72

5.14 The percentage difference between the 2D and 3D simulations from the extended
experimental data over 10,000 d. 73

5.15 The creep compliance over 10,000 days modeling using a 75mm cubic microstruc-
ture with periodic boundary conditions. The Poisson’s ratio of the mortar phase
was altered in increments from 0.1 to 0.3 . 74

6.1 Volume fraction of a 38% volume fraction 90mm cubic periodic, cast, and cored
microstructure as a function of the Z-coordinate . 77

6.2 The Young’s modulus a), and relaxation modulus at b) 100 d, c) 1,000 d, and d)
10,000 d of a 3D cored cubic microstructure with an edge length of 90 mm plotted
against the density of finite elements to determine convergence at a 38% coarse
aggregate volume fraction . 79

xiii

6.3 The Young’s modulus (equivalent to the relaxation modulus at t = 0) a), and re-
laxation modulus at b) 100 d, c) 1,000 d, and d) 10,000 d of a 3D cast cubic mi-
crostructure with an edge length of 105 mm plotted against the density of finite
elements to determine convergence at a 38% coarse aggregate volume fraction 80

6.4 The Young’s modulus a), and relaxation modulus at b) 100 d, c) 1,000 d, and
d) 10,000 d of a 3D cored cubic microstructures plotted against the domain edge
length to determine convergence at a 38% coarse aggregate volume fraction, meshed
with a density above 0.8 elements/mm3. Each data point is the average of three
simulations, with error bars representing ± one standard deviation. 82

6.5 The Young’s modulus a), and relaxation modulus at b) 100 d, c) 1,000 d, and d)
10,000 d of a 3D cast cubic microstructures plotted against the domain edge length
to determine convergence at a 38% coarse aggregate volume fraction meshed with
a density above 0.5 elements/mm3. Each data point is the average of three simula-
tions, with error bars representing ± one standard deviation.. 83

6.6 The creep compliance over 10,000 d modeled with 3D periodic, cast, and cored
boundary conditions, plotted with experimental data extended using the TTS prin-
ciple. Each curve is generated from the average of three simulations for each mi-
crostructure category, where the periodic and cored microstructures have an edge
length of 90mm and the cast microstructures have an edge length of 105mm. 85

6.7 The creep compliance over 10,000 days simulated from a 90mm cubic periodic
microstructure with and without periodicity constraint equations, plotted alongside
experimental data extended using the TTS principle. 86

6.8 The creep compliance over 10,000 days simulated from a 90mm cubic periodic
microstructure with and without periodicity constraint equations, plotted alongside
experimental data extended using the TTS principle on a logarithmic time scale. 86

6.9 The creep compliance over 10,000 days simulated from a 90mm cubic periodic mi-
crostructure with and without perioidicity constraint equations, plotted alongside
experimental data extended using the TTS principle. 87

7.1 A mortar microstructure.. 91

7.2 The Young’s modulus a) and relaxation modulus at 14 days b) of a three-dimensional
cubic mortar microstructure with an edge length of 2 mm plotted against the den-
sity of finite elements to determine convergence at a 50% fine aggregate volume
fraction with a w/c ratio of 0.4 . 96

7.3 Experimental and simulated mortar stress relaxation data, loaded 28 days after
mixing with a w/c of 0.50. The gray band around each curve represnts ± the
standard error. 97

xiv

7.4 Experimental and simulated mortar stress relaxation data, loaded 3 days after mix-
ing with a w/c of 0.40. The gray band around each curve represnts ± the standard
error. 97

xv

LIST OF TABLES

TABLE Page

4.1 Mean and median number of asperities identified on each aggregate for varying
nmax values. 43

4.2 Runtime and improvement results for each volume fraction using Gradation A. 45

4.3 Runtime and improvement results for each volume fraction using Gradation B 45

4.4 Runtime and improvement results for each volume fraction using Gradation C 45

4.5 Runtime and improvement results for each volume fraction using Gradation D. 45

4.6 Average percentage reducting in time to generate a microstructure for each volume
fraction and sieve gradation combination . 48

4.7 Average proportion of overlap detected by each filter for a 40% volume fraction
microstructure generated with gradations A-D . 48

5.1 Concrete mix design used for experimental concrete creep samples, based on the
EDF Vercors concrete mix. 58

xvi

1. INTRODUCTION

1.1 Motivation and Problem Statement

In the United States, 96 nuclear reactors are in operation across 58 commercially operating nuclear

power plants [11]. These plants are initially designed with a 40 year operating lifespan, however

47 reactors are operating at ages between 40 and 60 years. The Nuclear Regulatory Commission

grants 20 year licence renewals to reactors that pass extensive safety and environmental impact

reviews. In December 2019, the NRC granted its first subsequent license renewal to two reactors,

allowing them to operate until they reach 80 years of age. As shown in Figure 1.1, the fleet

of reactors in the US is quickly aging, with many reactors applying for for subsequent license

renewals in the coming years.

Within these nuclear power plants, concrete plays a crucial role by serving as the biological shield

surrounding the reactor, blocking radiation from escaping. While over 50% of operating nuclear

reactors are safely in use past their initial design life, not all reactors have had such success. In

2009 during scheduled refueling and maintenance work at the Crystal River power plant in Florida,

cracks formed throughout the 42 inch thick concrete containment structure [12]. Additional dam-

age to the containment structure occurred two years later during an attempt to repair the initial

damage [13]. The estimated cost of repairs exceeded $3 billion dollars, leading to permanent

closure of the plant [12].

To ensure the safe operation of aging nuclear power plants, as well as other concrete structures, un-

derstanding the changes to the concrete components over time is crucial. Concrete is a viscoelastic

material, meaning under a constant load the strain will slowly increase, a phenomena called creep

that continues for the duration of loading [14]. The importance of understanding long-term con-

crete creep stems from how long-term deformations associated with creep lead to loss of prestress,

stress redistribution, and the potential for creep cracking. As prestress post-tensioned concrete

1

Figure 1.1: Age distribution of nuclear reactors at selected dates [1].

have a wide variety of infrastructure applications, understanding the changes to the loss of pre-

stress and post-tensioning is crucial to assess the concrete structure’s ongoing viability and service

life. Modeling of concrete creep has been researched for decades, both analytically [15, 16, 17, 18]

and through numerical simulations [4, 19]. Due to the lengthy time required to measure creep in an

experimental setting, a computational alternative that is both faster and cheaper is highly attractive.

A computational approach to model concrete creep has several notable difficulties, including the

complexity of concrete creep and the accurate morphological representation of concrete as a com-

posite material. In regards to the former, a variety of mechanisms are involved in the creep of

concrete, including drying creep, aging, temperature dependence, and basic creep [14]. Consid-

ering the application at hand, nuclear containment structures, several of these mechanisms can

be mitigated. Most NPPs in the US have a steel liner that prevents drying from occurring from

the internal surface. Experiments performed on 30 year old concrete in a nuclear containment

wall with a liner showed that internal relative humidity (RH) was above 80% across much of the

wall’s thickness [20]. Thus, drying creep can be considered a minor component of the overall

creep of concrete in NPP containment walls. Aging effects of concrete have the biggest impact

2

Figure 1.2: Creep compliance data on log time scale (left) used to create master curve for creep
compliance (right) using the TTS principle [2]

during the early stages of curing, specifically the first 28 days. This can then treated as a a minimal

factor of structural concrete creep because NPP concrete is loaded at ages greater than 28 days.

The dependence of concrete creep on temperature is leveraged as an advantage through the use of

the Time-Temperature Superposition (TTS) principle. TTS is a concept that has been applied to

temperature-dependent creep in other materials, particularly polymers. Concurrent research has

been performed on the creep of mortar specimens at three different temperatures. The TTS princi-

pal is used to generate a master curve depicting room-temperature creep data over several decades

as seen in Figure 1.2 [2, 21].

The second substantial hurdle to modeling concrete creep is the generation of a representative vir-

tual concrete sample. As concrete is a particulate composite composed of aggregates suspended in

a cement paste matrix, the development of a virtual microstructure is akin to a particle packing or

particle placement problem. As particle packing has applications in a vast array of industries and

fields of research, a wide number of approaches have been developed. An important distinction be-

tween the concrete application at hand and a majority of the particle packing codes and approaches

is the morphology of the particles, which in this case are the aggregates in concrete. Sphere pack-

ing is the most well-studied [22, 23, 24, 25, 26, 27], followed by other regularly shaped particles

including ellipsoids [28, 29, 30, 31], and cylinders [32, 33, 34]. Irregular shapes add a substan-

3

tial layer of complexity to placement and packing codes, as detecting overlap between irregularly

shaped particles is challenging to implement. As two particles, or aggregates, cannot coexist in the

same physical space at the same time, preventing virtual particle-particle overlap is an extremely

important aspect of placement and packing codes. Retaining the morphology of real aggregates is

important, as aggregate shape has been shown to influence many physical [35, 36, 37, 38, 4] and

chemical [39, 40] properties of concrete.

Concrete creep has been studied for many years both experimentally and analytically in efforts

to predict it [15, 16, 17]. As shown by Brooks (2005), concrete continues indefinitely, therefore

measuring it in an experimental setup poses many challenges to obtaining long-term data [41].

On the other hand, computational methods to model viscoelasticity in concrete is not well studied

and remains a large gap in the literature. Aside from the obvious time savings, computational

approaches allow for the study of how various parameters impact the creep behavior, such as

boundary conditions, aggregate properties, and the size of a sample.

1.1.1 Research Scope and Objectives

The overarching objective of this research is to build an experimentally validated computational

framework to predict creep in concrete over several decades. This project includes the development

of a random, virtual microstructure generation code, based on the Anm model [42, 43], that gen-

erates 3D concrete microstructures using real aggregate shapes obtained from X-Ray Computed

Tomography (XCT) data [7] made available for this work by collaborators Edward J. Garboczi

(National Institute of Standards and Technology) and Jeffery Bullard (Texas A&M University).

The code will also allow for flexibility in aggregate size distribution in order to match sieve curves

from experimental concrete mix designs. Additionally, the microstructure generation code can

handle various boundary conditions, including periodic, cast, and cored boundaries. A large focus

is placed on improving the efficiency of the detection of aggregate-aggregate intersection. The an-

alytical equation describing the surface of the aggregate is leveraged in a novel overlap detection

algorithm that successfully reduces the computational expense of generating a microstructure.

4

Generated concrete microstructures will then be converted to a finite element mesh using OOF3D

[44]. The finite element solver Abaqus will then be used to simulate the viscoelastic response of

the concrete over time. For simplicity, a stress relaxation simulation will be performed in Abaqus.

The relationship between the relaxation modulus and creep compliance is simple in the Laplace

domain, making the conversion between the two constituitive equations straightforward. Simula-

tions utilizing the virtual microstructures will be performed on a variety of microstructure groups

to compare and assess the influence of various factors including two-dimensional (2D) vs three-

dimensional (3D) simulations and assessment of boundary conditions. To validate the finite ele-

ment analysis results, comparisons to experimental concrete creep tests conducted in concurrent

research is performed [45]. These experimental creep tests are conducted at two temperatures,

producing data that will be combined using the TTS principal to extend the data into a long-term

master curve.

Lastly, short-term simulations of mortar relaxation are performed to model fourteen days of mortar

creep. Two mortar mix designs are assessed - one loaded at early age and one loaded at maturity.

Experimental data for the associated mortars has been made available for validation of the simula-

tions [46].

The specific tasks of this proposed research are summarized below:

1. Write an efficient particle placement code, based on the Anm model [42, 43], to pack re-

constructed aggregates into a domain at volume fractions of 38%. The code shall have the

ability to generate microstructres in both two and three dimensions using cast, cored, and

periodic boundary conditions.

2. Develop a novel overlap detection algorithm that utilizes the asperities on the aggregate’s

surface. Quantify time savings provided by this novel asperity overlap detection method on

several different aggregate volume fractions and size gradations.

3. Use finite element analysis (FEA) to simulate decades of basic creep of concrete by upscaling

5

mortar experimental creep data paired with virtual concrete microstructures.

4. Perform RVE size and finite element mesh density convergence studies to determine the

optimal domain size and number of finite elements

5. Validate finite element analysis results with experimental concrete creep data

6. Determine the viability of using 2D simulations to model viscoelastic behavior

7. Assess the similarities and differences in viscoelastic behavior of 3D periodic, cast, and

cored concrete microstructures

8. Model short-term mortar viscoelastic behavior through the use of virtual mortar microstruc-

tures and experimental cement paste data

1.1.2 Research Outline

This dissertation is organized as follows. Chapter 2 discusses the previous and current publications

relevant to this work. Section 2.1 provides an overview of published concrete microstructure gen-

eration codes, while Section 2.2 reviews a variety of computational models used to simulate the

mechanical behavior of concrete.

Chapter 3 walks through the code developed to generate the virtual microstructures by randomly

placing reconstructed aggregates into a domain without intersecting one another. The novel overlap

detection algorithm is described in Chapter 4, where the approach to identifying and using an

aggregate’s surface asperities to determine if it overlaps with another aggregate is described in

detail. The improvements in efficiency are demonstrated in Section 4.3.

The generated microstructures are put to use in FEA simulations in Chapters 5 - 7. Chapter 5 de-

scribes the use of 2D and 3D periodic microstructures to simulate 10,000 days of concrete creep,

showcasing the results alongside experimental concrete creep data. The impact of boundary condi-

tions, both during the microstructure generation process and the imposition of periodic stress and

6

strain fields is explored in Chapter 6. Finally, the simulation of mortar stress relaxation is presented

in Chapter 7.

7

2. LITERATURE REVIEW

This chapter discusses the background information and published research in the areas of study

related to the objectives of this dissertation. The primary areas covered in this chapter are the

generation of virtual concrete microstructures, numerical analysis of cement-based material to

measure and predict mechanical properties, influence of dimensionality, simulation of viscoelastic

behavior, and impact of RVE size and boundary conditions on the predicted mechanical behavior.

2.1 Generation of Random Concrete Microstructures

The precursor to any numerical simulation is a recreation of the material or structure to be stud-

ied. Composite materials present challenges when depicted virtually due to the complexity of

accurately representing a heterogeneous material. As a particulate composite material composed

of aggregates suspended in a cementitous binder, concrete presents challenges when generating

an accurate computational representation due to the irregular shapes of aggregates, their random

spatial distribution, and size gradation.

A wide variety of approaches have been taken to represent concrete in numerical simulations. Yang

et. al described how these approaches can be divided into two general methods: image-based or

computer generated, as shown in Figure 2.1 [3]. Image-based methods include XCT scans and

series of optical images. The quality of the reconstructed microstructure depends heavily on the

resolution of the the instruments used to image the material. Computer-generated models, on the

other hand, alleviate this limitation by providing an analytical description of the aggregate’s shape.

Computer generated models are the focus of the work presented in this dissertation.

2.1.1 Particle Packing Algorithms

Particle packing and spatial arrangement play important roles in many fields of research and in-

dustrial applications. Codes generating virtual representations or particles and composite materials

have gained immense popularity for use in simulating mechanical behavior [47, 48, 4], fluid dy-

8

Figure 2.1: Categories of numerical model recreations of composites [3]

namics [32, 49], permeability, and thermal conductivity [47, 50, 51, 22, 23]. The random packing

and placement of regularly shaped particles such as spheres [22, 23, 24, 25, 26, 27], cubes [52],

cylinders [32, 33, 34], and ellipsoids [28, 29, 30, 31] have been widely studied.

Efficient particle packing algorithms can be classified into several general groups:

1. Ballistic algorithms: Particles placed along a trajectory [53, 54, 55]

2. Random placement algorithms: Particles placed in a randomly selected location in the do-

main [56, 57, 43, 58]

3. Growth algorithms: Particles placed randomly, then slowly expanded until they touch or

intersect another particle [59, 60].

4. Domain shrinkage algorithms: Particles plotted in a large domain, then moved closer to the

9

center as the domain decreases in size [61]

5. Advancing front algorithms: Particles are placed next to each other starting at a given

location and subsequent particles are placed at the edge of the particle conglomeration

[62, 63, 64, 65]

A review of the literature indicates that the packing of highly realistic aggregate shapes is primarily

accomplished with random placement and growth algorithms [60, 57, 43]. The other methods

presented above are generally used for packing regular shapes. In 2014, Qian et. al published

the Anm model, a code that placed these reconstructed aggregates into a cubic domain [57]. This

code was improved by the addition of parallelization in a second paper [43]. The Anm model

generates microstructures representing cast samples and RVEs with periodic boundary conditions

by randomly rotating and placing the aggregates into a cubic domain.

2.1.2 Overlap Detection

As in real life, two particles cannot exist in the same space at the same time, so prevention of

virtual particle-particle overlap is an important aspect of particle placement codes. Particle-particle

contact and collision has been extensively studied in for the application of discrete element method

(DEM) analysis, as DEM measures interparticle forces [66]. Representations of particles in DEM

typically utilizes sphere clusters [6, 67] or superquadric functions to describe regular shapes such

as ellipsoids, cubes, and cylinders [68, 69]. Detection of overlap between spheres is the most

straightforward, warranting only a comparison of the distance between the centers to the sum of the

radii. Furthermore, overlap between cubes can be determined by evaluating if any of the vertexes

or line segments lie within another cube. In the case of cylinder-cylinder overlap detection, a

variety of approaches are used - including projection on a line, separation axis tests, and three-

dimensional parallel testing [70, 71]. Contact between two ellipses can be determined by solving

the quartic equation derived from combining the equations of two ellipses. Minimization of the

geometric potential of the two eclipses can be used to locate intersection points, described in [72].

Additional contact and overlap detection algorithms for ellipsoids can be found in the literature

10

[30, 73, 74, 75, 76].

When placing or packing irregularly shaped particles, detecting overlap becomes challenging.

Some applications combine regular shapes to form more complex particle morphologies - such

as such as tablets [77, 78], clusters of spheres [6, 67, 68], and sphere-cylinder combinations

[70, 77, 78]. Other methods of irregular particle shape representation include X-Ray Computed

Tomography (XCT) scans [4], laser scans [79], random Voronoi polygons [80, 81, 82], and spher-

ical harmonics [7, 83]. A review of published literature has shown the main approach to overlap

detection of non-spherical particles is calculating the minimum distance between the surfaces of

two particles [83, 61]. This provides accurate detection of overlap, but is computationally ex-

pensive. An alternative method involves representing particle shapes as a cluster of component

spheres of differing sizes. Each sphere composing the particle in question is checked for overlap

with the spheres composing the nearby particles, the accuracy of this method is dependent on the

conformity of the sphere cluster to the original particle shape [84, 85]. Another method is to repre-

sent each particle’s surface as a collection of planes, where the space enclosed by the intersecting

planes represents the particle. The overlap test then checks if all the points on other particles lie

on opposing sides of each of these planes from the particle in question [86]. This approach re-

quires the use of particles that are able to be defined by a set of planes - a criteria that fits random

polygons and similar shapes well, but does not suit some classes of particle morphology including

non-convex particles, curved particles, or very irregular particles. Voxel based approaches treat

particles as 3D images, composed of cubic voxels. Overlap detection is fast, however there is a

tradeoff between the resolution of the particle’s surface characteristics and reducing the number

of voxels used [87]. A mathematically driven approach can be used to determine exactly where

the two particle surfaces intersect, however this is computationally expensive [43, 88, 89]. In this

dissertation, the focus is on determining if two particles overlap, not precisely where they overlap.

11

2.2 Computational Modeling of Concrete Mechanical Behavior

2.2.1 Impact of Aggregate Shapes

Aggregates in virtual concrete microstructures have been represented by a number of geometries,

including the regular shapes such as circles [90, 91, 18, 92, 93, 94, 95] and spheres [96, 97, 98,

99, 100, 101], ellipsoids [102, 90, 103], polygons and irregular shapes [90, 104, 105, 106, 99,

107]. as well as shapes reconstructed from XCT scans [4, 42, 43]. An illustrative example from

Bernachy-Barbe et. al (2019) shows concrete microstructures generated from a range of aggregate

morphology representations in Figure 2.2.

The shape of aggregates has been found to influence a variety of concrete material properties,

including diffusivity [39, 40], fracture patterns [35, 37], and mechanical behavior [35, 36]. Ide-

alized aggregate models describe aggregates as smooth spheres or ellipsoids. While this is the

simplest model for aggregate shape, the downfall of this methodology is that the surface texture

and angularity is not captured by smooth, rounded aggregate representations. Research modeling

aluminum alloys with silicon carbide (SiC) particle inclusions compared the representation of the

SiC particles as spheres, ellipsoids, and real SiC particle shapes extracted from image analysis.

Differences in the stress-strain curves are shown in Figure 2.3 [5]. In a step towards representing

irregular shapes, clustered spheres have been used to represent irregular aggregate shapes in dis-

crete element method (DEM) analysis techniques, such as the microstructure seen in Figure 2.4

[6, 68, 67]. Fu and colleagues found that the clustering technique of representing aggregates pro-

vided a much better prediction of shear strength and strain than individual spheres, confirming the

need for representative aggregate morphologies. As such, this dissertation work employs the use

of real aggregate shapes, recreated using spherical harmonics and XCT data [7]. Garboczi (2002),

developed a code in FORTRAN to assess 3D micro-XCT data of both coarse and fine aggregate

particles, calculating the coefficients of the spherical harmonics equations that could then be used

to recreate the shape of the scanned aggregate on nearly any computer.

12

Figure 2.2: Concrete microstructures generated with a) spheres, b) Vornoi polygons, c) flattened
Voronoi polygons, and d-f) real aggregate shapes extracted from XCT scans [4]

13

Figure 2.3: Modeling of metal matrix composite with real inclusions shapes (labelled ’microstruc-
ture’), spheres, and ellipsoidal inclusions [5]

Figure 2.4: Example of clustered spheres of varying sizes used to represent aggregates [6]

14

Figure 2.5: 3D digital image taken from XCT data (left), processed and reconstructed with spheri-
cal harmonics (right) [7]

In 2002, the concept of pairing spherical harmonics with XCT scan data was first published in

Garboczi (2002). In this study, a code was written in FORTRAN to assess 3D micro-XCT data of

both large and fine aggregate particles. Algorithms written in this code calculated the coefficients

of the spherical harmonics equations that could then be used to recreate the shape of the scanned

aggregate on nearly any computer [7]. Additional work has been done using aggregate shapes

extracted from XCT data that shows the tomographic aggregates give an excellent prediction of

experimental data, while isotropic and convex aggregate representations show softer behavior and

lead to notable differences on both the macroscopic and local scale [4].

2.2.2 Two-Dimensional vs Three-Dimensional Modeling

Two-dimensional simulations have the advantage of short computational time, however finite el-

ement method (FEM) simulations have shown mixed results when predicting the stress-strain re-

sponse of concrete [108, 19, 109, 110, 103]. Published literature has indicated that 2D simula-

tions both do [110, 103, 111] and do not accurately predict the elastic properties of composites

[108, 109, 8, 112]. It was hypothesized by Huang and colleagues that 2D microstructures do not

capture the out-of-plane aggregate interlock effects that impact the material’s response under load-

ing [19]. As seen in Figure 2.6, the 2D images taken from a 3D microstructure do not accurately

represent the Young’s modulus when simulated in FEA [8].

Furthermore, computational research on materials other than concrete revealed that 2D simula-

15

Figure 2.6: The Young’s modulus calculated from an FEA simulations of a 3D microstructure and
the stack of 2D microstructures taken from slices of the 3D microstructure. [8]

tions do not capture the changes in the stress field [111], defect prediction [113], fracture modeling

[109], among others. Thus, additional work is needed to determine whether 2D or 3D simulations

can be used to accurately model concrete creep behavior over extended periods of time. Addi-

tionally, given that concrete in nuclear containment structures undergoes a 3D state of stress, a

2D modeling technique may not be suitable. To the author’s best knowledge, a comparison of

viscoelastic behavior simulated in 2D and 3D has not been published at the time of this disserta-

tion. Thus, additional work is needed to determine whether 2D or 3D simulations can be used to

accurately model concrete creep behavior over extended periods of time.

2.2.3 Viscoelasticity

Viscoelastic materials exhibit both elastic and viscous behavior, giving their mechanical behav-

ior a time-dependent component. The classical linear theory of viscoelasticity was first described

by Ludwig Boltzmann for cases of three-dimensional isotropic materials [114]. Creep is a phe-

16

nomenon that causes viscoelastic materials such as concrete to continue to deform over time while

subjected to a constant stress. Concrete creep has been an area of study for many decades, over

which time several studies have aimed to predict concrete creep [15, 16, 17]. Brooks (2005)

showed that creep continues indefinitely, meaning computational approaches to measuring and

predicting concrete creep are highly attractive [41].

Concrete creep is a combination of basic creep and drying creep [14]. Drying creep, also called

the Pickett effect, results from the dehydration of the pores in the cement paste [115]. Basic creep

occurs due to the viscous nature of the material, independent of the relative humidity profile in the

sample.

Linear viscoelastic materials maintain a linear relationship between stress and strain at all points in

time. Concrete remains a viscoelastic material until it is loaded past it’s elastic strain limit. Creep

compliance, J(t), can be characterized in a variety of ways; such as a Kelvin-Voigt chain is used to

describe the creep of concrete. The relationship between creep compliance, J(t), and strain, ε(t),

is given in Equation 2.1,

ε(t) =

∫ t

0

J(t− t′) δσ(t
′)

δt′
dt, (2.1)

where t is the present time and t′ is the dummy time variable.

Viscoelasticity in concrete using three-dimensional simulations is not well researched in the pub-

lished literature, a majority of the revelant publications are very recent. A study by Bernachy-

Barbe and Bary in 2019 showed that 3D aggregate shapes extracted from XCT scans showed that

the XCT aggregates showed the most realistic creep behavior when compared to experimental

data. The spherical aggregates showed the most creep, followed by the Voronoi polygons, then

finally the XCT aggregates [4]. Aydin et. al (2007) found that the use of irregularly shaped ag-

gregates resulted in a higher resistance to creep than smooth, regular shaped aggregates in 2D

concrete simulations, confirming the findings of Bernachy-Barbe and Bary (2019) [38]. On the

other hand, Lavergne et. al (2015) found that spherical aggregates and random polygon shaped

17

aggregates resulted in creep compliance predictions that were not statistically significant [116].

Barnachy-Barbe and Bary (2019), Aydin et. al (2007) and Lavergne et. al (2015) all performed

simulations on cubic microstructures. A lone publication simulating cylinders was located. Wang

et. al (2019) simulated 90 days of creep 3D cast cylinders filled with spherical aggregates [117].

Good agreement with experimental data was shown, however the source or procedures used to

obtain the experimental data was not reported. Given the minimal literature available on this topic

and the disagreement in the results, more study is needed.

2.2.4 Influence of Boundary Conditions on Mechanical Properties

Cored and cast cylinders have been studied in numerous publications [118, 119]. Additionally,

cylinder and cube concrete specimens have been contrasted in a number of papers [119, 120, 121,

122, 123, 124, 125]. Although the topic of experimental sample preparation has been an area of

focus in the civil engineering community, study regarding the RVE size and impact of sample

geometry on viscoelastic behavior has not been well studied. Published work regarding the RVE

size and mechanical properties of cast and cored concrete samples is discussed further in following

two sections.

2.2.4.1 Representative Volume Element (RVE) Size

In regards to concrete strength, it is widely understood that cored cylinders have a lower compres-

sive strength than cast cylinders [118, 119]. The rule of thumb is that the width or diameter of

the concrete sample should be at least 3x larger than the largest aggregate size [14]. While this

guideline has been followed for many years, little work has been performed to determine the mini-

mum sample size needed to accurately assess Young’s modulus, and even fewer publications have

assessed other mechanical properties, such as viscoelastic behavior.

2.2.4.2 Mechanical Properties

As shown in Figure 2.7, a different exists in the measured compressive strength between cast

and cored concrete cylinders. Cored samples have been found to be equivalent to cast samples

tested at a younger age [118], resulting in compressive strengths up to 30% lower than the cast

18

Figure 2.7: Relation between cast and cored cylinder compressive strength [9]

cylinder counterparts. Cast samples will have wall effect, as seen in Figure 2.8, meaning that the

volume fraction of aggregates is low around the surfaces of the sample, which may contribute to the

difference in compressive strength between cored and cast samples. When comparing the strength

of cylindrical cored samples to cube samples, there was no significant different in the compressive

strength [9]. A study by Ergun et. al (2012) found that a 19% difference in the compressive strength

between cored and cast cylindrical samples, hypothesizing the difference was caused by damage

inflicted on the cored samples during the drilling process [119]. This same study found a 16%

difference between cube and cast cylindrical specimens [119]. It was noted in Smith (2017) that as

the diameter of the cylinders increased the compressive strength began to converge [9]. Although

the topic of experimental sample preparation has been an area of focus in the civil engineering

community, study regarding the RVE size and impact of sample geometry on the stiffness and

viscoelastic behavior has not been well studied.

The relationship between these methods of sample preparation and viscoelastic behavior remains

a gap in the literature. To the author’s best knowledge, publications on this topic could not be

19

Figure 2.8: Wall effect observed in cast samples [10]

located.

2.3 Gaps in the Current Literature

From a review of the current scientific literature, a few notable gaps can be identified. These gaps

are addressed in the subsequent chapters of this dissertation.

The generation of virtual concrete microstructures is not a new area of research, however the pack-

ing of highly realistic, reconstructed gravel shapes presents a novel challenge of rapidly identifying

particle-particle overlap. Given the evidence that aggregate shape plays an important role in the

simultion of mechanical properties, it is important to incorporate real aggregate shapes into virtual

concrete microstructures. A vast array of approaches to particle-particle overlap have been devel-

oped and utilized in the literature, however they are largely unsuitable in the application at hand. A

computationally inexpensive, accurate method to determine overlap between two virtual aggregate

particles is needed.

The next gap is the simulation of concrete viscoelastic behavior. As concrete creep is a very

slow and continual process [41], measurements collected via computational methods have many

20

advantages, however, only a handful of publications have been located that perform simulations to

measure concrete creep [38, 4, 116, 117]. The impact of simulation dimensionality on the creep

prediction is unclear, as it has not been demonstrated in the published literature, to the best of the

author’s knowledge.

Sample preparation’s impact on concrete strength is extremely well documented [119, 120, 121,

122, 123, 124, 125], however no studies could be found that compared the creep or relaxation of

concrete samples prepared via cast and cored methods. =

These gaps can be summarized into the following main points:

• Rapid test for overlap between two irregularly shaped virtual particles

• Modeling of concrete viscoelastic behavior via virtual concrete microstructures

• Appropriateness of 2D and 3D computational models to predict creep

• Impact of boundary conditions on concrete creep

21

3. GENERATION OF RANDOM, VIRTUAL CONCRETE MICROSTRUCTURES

The precursor to many numerical simulations is a virtual recreation or development of a digital

twin or statistically representative surrogate of the material or structure to be studied. Particles and

particulate composite materials present challenges when depicted virtually due to the complexity

of accurately representing the morphology of the particulate components. As discussed in Chap-

ter 2, the morphology of particles has been shown to play a role in numerous material properties,

thus real aggregate shapes are utilized in this work. This chapter describes the process of recon-

structing real aggregate shapes and using them to generate realistic cubic and cylindrical concrete

microstructures.

3.1 Reconstruction of Aggregates

Realistic three-dimensional aggregate shapes are reconstructed from micro-XCT data using a math-

ematical approach termed spherical harmonics, an approach first utilized in Garboczi 2002 [7]. The

data for these reconstructions was shared for use in this work by Garboczi. This is a technique that

uses associated Legendre functions and cosines to mathematically deform a sphere in a spherical

coordinate system. The spherical harmonics series is defined as

Y m
n (θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos(θ))eimφ, (3.1)

where the term Pm
n represents the associated Legendre functions and i is the square root of -1, also

termed the imaginary number. In Garboczi 2002, spherical harmonics was applied to XCT scans

of individual aggregates using a FORTRAN code that calculated the coefficients to fit Equation

(3.1) to the morphological shape in the XCT scan [7]. These coefficients, anm, are used to define

the radius in a spherical coordinate system through the relationship:

r(θ, φ) =
nmax∑
n=1

n∑
m=−n

anmY
m
n (θ, φ), (3.2)

22

Figure 3.1: Three-dimensional aggregates reconstructed from XCT data using spherical harmonics

where the azimuth angle, θ, ranges from 0 to 2π and the polar angle, φ, ranges from 0 to π. It

is recommended that Equation (3.2) is carried out to an nmax value of approximately 18 to 26.

Additional summation terms will not generate an appreciable level of additional detail and may

even go beyond the level of detail captured in the XCT scans [7]. Spherical harmonics represents

the three-dimensional morphology of irregular, star-shaped particles through the anm coefficients,

which are unique for each n and m pair. To be considered star-shaped, a particle must contain

at least one interior point, such as the center of mass, from which a line segment connecting any

surface point to this point is entirely inscribed within the particle. Each aggregate reconstructed

and used in this work is star-shaped. The aggregates reconstructed from spherical harmonics are

defined in three-dimensions at any location in a spherical coordinate system. Three reconstructed

aggregates are shown in Figure 3.1. To obtain aggregates in two-dimensions, the value of θ in

Equation (3.2) is set to π
2
, thus defining the surface of the aggregate in the θ = π

2
plane

3.1.1 Pre-Rotation of Aggregates

To reduce the computational time needed to generate a microstructure, a stockpile of pre-rotated

aggregates was created. Each aggregate was used to make 10 pre-rotated copies of itself. This was

carried out by rotating the anm coefficients by a random degree around each the X-, Y-, and Z-axis.

The anm were rotated using the code provided in Appendix A.1. With the new coefficients, the

pre-rotated aggregates were then re-constructed using Equation (3.2).

23

3.2 Particle Placement Algorithm

An aggregate’s length is defined by the longest line segment connecting two points on the surface

that lies entirely within the aggregate. The width is the longest axis perpendicular to the length

axis, as described in ASTM D4791 [126]. Using the size of the openings on standard aggregate

sieves, aggregates are sorted by their width into sieve size groups [14]. A sieve curve, also called

the sieve gradation, provides information about the percent of aggregates in the stockpile that pass

through each sieve. The mix design for concrete is the source of information regarding the relative

percentages of the fine aggregates and coarse aggregates in the mix. This particle placement code

makes use of experimental sieve curves by calculating the volume fraction of coarse aggregate

that come from each sieve size range. The largest aggregate size used in this work measures

approximately 30mm.

To generate a sample of virtual concrete, the sample must be ‘mixed’, this process involves placing

coarse aggregates randomly into a square or cubic domain and ensuring that they do not overlap

with any previously-placed aggregates. The 2D and 3D microstructures are generated using the

same procedures, the difference being the 2D aggregates are slices of the 3D aggregates at θ = π
2
.

The code starts with the largest sieve size and works down the sieve gradation curve to sequentially

smaller sieves. During the particle placement loop, the instantaneous volume fraction is used

to determine which sieve an aggregate will be randomly selected from. Center coordinates are

randomly selected to fall within the domain, chosen by Matlab’s internal random number generator.

Using these values, the aggregate is translated to it’s potential location in the domain. From there,

the aggregate is checked for overlap with neighboring aggregates, a process described in more

detail in the Chapter 4. The microstructure generation code exists in several versions, based on the

desired boundary conditions, as described in the subsequent sections.

Concrete test samples prepared in a standard laboratory environment are typically made by ei-

ther casting concrete into a mold or coring a sample from a larger piece of concrete. Generated

24

Figure 3.2: Particle Packing Algorithm

microstructures used for the bulk of this research are plotted with periodic boundary conditions,

which reduces the size of the RVE, but is not physically replicable. In the interest of studying the

potential difference in viscoelastic behavior between cast and cored samples, the plotting code is

adjusted to add these two boundary condition options. The cast microstructure plots will forbid ag-

gregates from contact with the domain boundaries. Cored microstructures will allow aggregates to

intersect the boundary but the portion of the aggregate that lies outside the domain will be deleted.

This is described in the proceeding sectiosn

3.2.1 Periodic Boundary Conditions

Periodic boundary conditions are used in this work to prevent wall effects and minimize the size of

the representative volume element (RVE). A periodic RVE is the smallest volume that represents

the morphology in an infinite pattern [127]. An important aspect of periodic RVEs is that opposing

boundaries are identical to one another. This is achieved by cutting any aggregate that intersects

the boundary and translating the external piece to the internal face of the opposing boundary.

Periodic microstructures enforce periodicity, meaning the microstructure is continuous between

opposing boundaries. Aggregates that intersect a boundary are cut and the external piece(s) are

translated to the internal side of the opposing boundary or boundaries. An example periodic bound-

ary in two dimensions is demonstrated in Figure 3.3.

An example of completed 2D and 3D periodic microstructures are seen in Figure 3.4.

25

Figure 3.3: Visualization of periodic boundary conditions and a representative volume element
(RVE)

Figure 3.4: A 2D microstructure (left) and a 3D microstructure (right) with periodic boundary
conditions composed of 38% coarse aggregates by area and volume, respectively.

3.2.2 Cored Boundary Conditions

The cored microstructures permit intersection between the aggregates and the walls of the cylinder.

As each aggregate is placed into the domain, it is ’cored’, meaning any external portions of the

26

aggregate surface are cut and deleted. In cubic domains, this simply involves removing portions

of the surface that contain coordinates in any direction that are less than zero or greater than the

domain edge length. Figure 3.5 shows an example of both a 2D and 3D cored microstructure.

Figure 3.5: A 2D microstructure (left) and a 3D microstructure (right) with cored boundary condi-
tions composed of 38% coarse aggregates by area and volume, respectively.

3.2.3 Cast Boundary Conditions

As many concrete samples prepared in both laboratory and field settings are cast cylinders and

cubes, a version of the code was developed to generate microstructures that represent these sam-

ples. Cast microstructures do not permit any aggregates intersecting the boundaries of the domain.

Intersection with the boundaries is assessed in the same manner as the cored microstructure gen-

eration, however instead of erasing the external portion of the aggregate, a flag is raised and the

aggregate in question is translated to a new, random location in the domain and are checked for

intersection with the boundary again. This process repeats until the aggregate is placed in a loca-

tion where it is fully contained within the domain. In order to minimize the number of tries to find

27

center coordinates where the aggregate is fully contained in the domain, aggregates are subjected

to an additional constraint when center coordinates are randomly selected. The inscribed sphere

radius, also referred to as the minimum radius, is the closest the center coordinates can be to the

domain boundaries, because if the distance from the center of the aggregate to the boundary is less

than the minimum radius, there is no change the aggregate is fully contained in the domain. An

example of cast boundary conditions applied to both a 2D and 3D microstructure is seen in Figure

3.6.

Figure 3.6: A 2D microstructure (left) and a 3D microstructure (right) with cast boundary condi-
tions composed of 38% coarse aggregates by area and volume, respectively.

3.2.4 Cylindrical Microstructures

An additional version of the generation code was created to produce cylindrical microstructures in

order to represent the cylinder samples commonly used in laboratory and field testing. In order to

do this, the code was adjusted to consider the domain as a cylinder, rather than a cube. The center

axis of the cylinder is taken to be a line parallel to the Z-axis. A user-defined diameter is used

to set the height-to-diamter ratio. Periodicity in a cylindrical system is not possible, so the code

28

prescribes either cast or cored boundary conditions.

To generate a cylindrical microstructure, a rectangular cuboid is generated as the initial domain,

where the height of the cylinder is equal to the height of the cuboid. A user-defined radius delin-

eates the outline of a cylinder centered in the XY plane around an axis parallel to the Z-direction.

As center coordinates for the aggregates are randomly chosen, they are restricted to fall only within

this cylinder.

To generate a cored cylinder, the aggregate placement process proceeds as it does with the cubic

microstructure generation, however after an aggregate is successfully placed, it is ’cored’ by re-

moving any part of the surface that is further from the center axis than the defined radius. The

volume of the aggregate is then re-calculated from the remaining portion using Matlab’s built-in

function, alphaShape. The volume fraction is then updated and the code proceeds to place the next

aggregate. Cylindrical microstructures require two assessments to locate surface points outside the

domain - the first determines the distance in the XY plane from the center of the cylinder, followed

by the second assessment that checks if the Z-coordinates fall between zero and the domain height.

In the case of cast cylinders, during the aggregate’s random rotation and translation, the code

checks if any points on the surface exist outside the cylindrical boundary. If this is found to be

true, the aggregate is then rotated and/or translated again until it can find a location where it lies

entirely in the cylindrical domain, then it is assessed for overlap. When randomly selecting the

center coordinates for the aggregates, the code restricts the center to fall within the cylinder, but

also that the center coordinates of the aggregate have a minimum distance from the cylinder’s

surface equal to that of the aggregate’s minimum radius. This is because if the center is closer than

this minimum radius, there’s no possibility that it lies entirely within the domain. This is a quick

check that helps improve the efficiency of the cast microstructure generation code. An example of

aggregates packed into cylindrical microstructure is seen in Figure 3.7.

29

Figure 3.7: A cast cylindrical microstructure viewed from the side (left) and from the top (right),
where all aggregates can be seen to be fully contained within the cylindrical domain

3.3 Summary

2D and 3D microstructures are generated by randomly placing virtual aggregates into a domain.

Specifically, 2D microstructures can be generated using a square domain with either periodic,

cored, or cast boundary conditions. Similarly, versions of the code exist to generate 3D cubic do-

mains with periodic, cored, or cast boundary conditions. The codes to generate these microstruc-

tures can be found in Appended A. A 3D cylindrical generation code was developed as well,

utilizing either cast or cored boundaries with a user-defined height to diameter ratio.

Much flexibility in this code can be found through various domain shapes and boundary condi-

tions allowing for the generation and study of a wide variety of concrete microstructures. The

development of a novel overlap detection method used to increase the efficiency of the microstruc-

ture generation code is presented in the next chapter. The succeeding chapters of this dissertation

are investigations that stem from the work presented in this chapter by utilizing the generated

microstructures. Impact of dimensionality and morphological boundary conditions are studied in

30

Chapters 5 and 6, respectively. Additionally, mortar microstructures are generated and simulated

in Chapter 7.

31

4. ASPERITY-BASED VIRTUAL PARTICLE-PARTICLE OVERLAP DETECTION

ALGORITHM

Detection of overlap between two particles is not a new area of research, as it has applications

in the fields of molecular dynamics, DEM, video games, and more, as discussed in Chapter 2.

However, detection of intersection of two irregularly shaped particles remains a challenge. In

this section, a novel approach to detect overlap between two irregularly shaped virtual particles is

described. This method identifies a priori the asperities on each aggregate’s surface, corresponding

to the most likely points on the aggregates where overlap will occur. Discussion and demonstration

of this method are applied to coarse aggregates in this dissertation, however this approach can be

implemented in any system involving particles with surfaces described by an analytical function.

4.1 Asperity Detection

The first and second spatial derivatives of the analytical function describing the surface of an

aggregate, given in Equation (3.2), are used to identify the local maxima in the particle’s radii on

the particle’s surface, called asperities. These maxima can be detected by first determining the

locations where the first derivatives with respect to φ and θ are equal to zero. For brevity, the

parameter fnm,

fnm =

√
(2n+ 1)(n−m)!

4π(n+m)!
, (4.1)

is used to represent the factorials common to all the derivative equations [7]. The first derivative

with respect to φ,

rφ =
nmax∑
n=1

n∑
m=−n

(im)anmY
m
n (θ, φ), (4.2)

and the first derivative with respect to θ,

rθ =
nmax∑
n=1

n∑
m=−n

−anmfnm
sin(θ)

[(n+ 1)cos(θ)Pm
n − (n−m+ 1)Pm

n+1]e
imφ, (4.3)

32

are equal to zero at locations of minima and maxima in the radius. Next, the second derivative with

respect to φ,

rφφ =
nmax∑
n=1

n∑
m=−n

(−m2)anmY
m
n (θ, φ) (4.4)

and the second derivative with respect to θ,

rθθ =
nmaxx∑
n=1

n∑
m=−n

(
anmfnm
sin2(θ)

[(n+ 1 + (n+ 1)2cos2(θ))Pm
n

−2cos(θ)(n−m+ 1)(n+ 2)Pm
n+1+

(n−m+ 1)(n−m+ 2)Pm
n+2]e

imφ,

(4.5)

are assessed [7]. The second angular derivatives are positive in minima locations and negative

in maxima locations. Locations in the spherical coordinate system where the first derivatives are

zero and the second derivatives are negative are identified as asperities and are stored for each

particle. The asperities are unchanging on the particle surface, therefore the identification of the

asperity locations is only performed once. That is, coordinates of the asperities are properties of

the individual particle not the microstructure, and can thus be identified prior to any microstructure

generation. The location data are stored and recalled as needed during the particle placement

process.

Due to the computational expense of solving the equations analytically, the asperities on the sur-

face of each particle are detected through numerical assessment, performed in Mathematica, of

incremental values of θ and φ. A small tolerance above and below zero is used when analyzing

the first derivative values, as the θ and φ increments may not fall on the precise location where the

first derivatives are equal to zero. Identified asperities are saved in a text file for recall during the

particle placement process. An example of an aggregate with identified asperities is seen in Figure

4.8.

33

Figure 4.1: Asperities identified on an particle

4.2 Overlap Check

Detection of overlap between two virtual aggregates in this work involves a three-step approach.

The overlap check function is divided into three filters. The first, coarse filter is to compare the

distance between the centroid of the particle in question and the centroid of a previously placed

particle to the sum of the two particles’ maximum radii. An enclosing sphere, as opposed to an

enclosing box used in [43], was chosen due to compatibility with a spherical coordinate system.

This approach is very fast, however, it is also very coarse and if used alone it leads to false detection

of overlap because it treats the particles as spheres. Next, the asperities on the surface of the two

aggregates are assessed, followed by the third filter that applies a brute force check if necessary.

This process is visualized in Figure 4.2

34

Figure 4.2: Overlap check algorithm

4.2.1 Radii Comparison

Each particle has an imaginary bounding sphere with a radius equal to its maximum radii and a

minimium inscribed sphere with a radius equal to its minimum radii. The bounding sphere can be

imagined as the smallest sphere centered at the aggregate’s center of mass that fully contains the

particle. The inscribed sphere is the largest sphere that lies entirely in the interior of the aggregate’s

surface while also being centered at the aggregate’s center of mass. If the distance between the

centroids is greater than the sum of the maximum radii, the two particles can’t possibly overlap.

On the other hand, if the distance between the centroids is less than the sum of the maximum radii

of the respective particles, the function computes the centroid distance to the minimum radii. If

the distance between the two centers is less than the sum of their minimum radii, it is not possible

that the two particles are free of overlap and a flag is raised. This flag is used to bypass rotation of

the particle in question and jump to translating it to a new, random location within the domain. If

35

the minimum radii assessment is passed, the algorithm advances to the second filter, described in

the proceeding section.

4.2.2 Asperity Check

The overlap between the two enclosing spheres forms a lens of potential intersection as seen in

Figure 4.3. This lens represents the only 3D space where overlap between the two particles is

possible. Only the asperities located in the lens of potential intersection are assessed in this filter.

Figure 4.3: Lens of potential intersection formed by intersecting bounding spheres. Only asperities
that lie in this lens are checked for overlap with the neighboring particle. In this example, the
asperities that lie in this lens are identified with blue markers.

Starting with the particle in question, the asperities present in the lens of potential intersection are

identified from the previously stored list of all the surface asperities. The locations are retrieved

and the vector between the asperity and the center of the other particle is established. This vector’s

magnitude is compared to the radius of the other particle at the exact location, as shown in Figure

4.4. If the radius is shorter than the vector’s length, there is no overlap at that asperity and the code

36

Figure 4.4: Assessing overlap by comparing the distance from the center of particle A (identified
with a white marker) to the asperity on particle B (identified with a blue marker) with the radius of
particle A along the same vector (identified with a black marker). On the left, the radius is shorter
than the distance to the asperity, indicating there is not overlap with the asperity point, while on
the right the radius is longer, leading to the detection of overlap.

moves on to assessing the remaining asperities in the lens of potential intersection. If the radius is

longer, overlap has been detected and the function exits. This radii-distance comparison was ini-

tially seen in [43], however it was used to sweep the entire region of potential intersection, whereas

this approach targets specific, predetermined locations within the lens of potential intersection. If

all the asperities from the first particle are checked and no overlap is found, the function begins

checking the asperities on the second particle. If overlap is detected the function immediately stops

and exits.

A similar approach is found in [83], where the L2 norm of Equation (3.2), is used to determine the

minimum distance between two particles. This differs from the approach in this paper in that in [83]

the radius equations for each pair of analyzed particles are assessed to find the minimum distance

each time they are checked for overlap. In this work, the approach uses the radius equation’s spatial

derivatives to identify local maximas in the radii and stores the information for recall during future

overlap checks.

37

4.2.3 Brute Force Check

If all asperities pass the previous assessment, the code applies the third filter - a brute force com-

parison of the surfaces. The brute force method assesses the point clouds of the two aggregates to

determine if a point on one aggregate lies within the surface of the other aggregate. This approach

is the most robust and will catch all instances of overlap, however it is computationally intensive.

The brute force check operates with two filters. The first checks if any points on the surface of

aggregate A lie within the inscribed sphere of aggregate B. If any points on aggregate A lie within

this sphere, there is overlap between the two particles and the function exits. Otherwise, the func-

tion advances to the second filter, which filter relies on MATLAB’s built-in function "alphaShape"

(https://www.mathworks.com/help/matlab/ref/alphashape.html), which creates a bounding region

around a set of points. As the number of points used to define the surface of each 3D aggregate is

high, 28,800 points, specifically, the bounding region is very closely aligned with the morphology

of the aggregate. The subfunction, "inShape" assesses whether a specified point or set of points

lie within the alphaShape. The most straightfoward approach to using the alphaShape objects is

to generate an alphaShape of the aggregate in question, herein referred to as aggregate A, and

assess if the surface points of nearby aggregates lie within the alphaShape of aggregate A. While

this catches most of the overlap between aggregate A and neighboring aggregates, one important

exception exists - when aggregate A lies entirely inside another aggregate, referred to as aggregate

B, such as the example shown in Figure 4.5. This scenario is caught and prevented during the

asperity check, because for any asperity on aggregate A, the radius of B will be larger than the

distance to the asperity - resulting in detection of overlap. However the control copy of the code

needs an additional layer of consideration, because if aggregate A lies entirely within aggregate B,

the points on the surface of aggregate B will not be detected as ’in’ the alphaShape of aggregate A.

In order to detect this, the code checks if all points on aggregate A lie within the bounding sphere

of aggregate B. If all of the points on aggregate A fall in the bounding sphere, the code generates

an alphaShape of aggregate B and assesses if the points on A are located within it. In the case

where part of aggregate A lies outside of the bounding sphere, there is no possibility of aggregate

38

A being fully enclosed within aggregate B, thus the code uses the previously generated alphaShape

of aggregate A to assess if any points on B lie within the alphaShape of A. Each neighboring ag-

gregate is assessed in this manner in order to perform only one alphaShape assessment per pair of

aggregates.

Figure 4.5: Two arrangements of of aggregate A with respect to aggregate B - fully contained in the
bounding sphere of aggregate B (left) and intersecting the bounding sphere of aggregate B (right)

4.3 Aggregate Shape Analysis

To provide context for the aggregates used in this work, several shape parameters are assessed

and presented here. The ratio of the length and thickness of the particle, generally referred to as

the aspect ratio, is assessed alongside the length-width ratio, and the ratio of the maximum and

minimum radii. Additionally, the Wadell sphericity parameter, defined as

Sw =
Surface area of particle

Surface area of volume-equivalent sphere
, (4.6)

is used to describe the roundness of a particle on a scale of 0 to 1, where a Sw value of 1.0 is

equivalent to a perfect sphere [128]. As seen in Figure 4.6, the shape parameters are relatively

39

consistent between the four size gradations, indicating that the four gradations assessed in the next

section can be compared simply without needing to account for differing aggregate shape ratios in

the resulting microstructures.

Figure 4.6: Shape parameters for each of the four sieve sizes: a) length-thickness (L/T) ratio, b)
length-width (L/W) ratio, C) Wadell sphericity, and d) maximum-minimum radius ratio. Error bars
represent ± one standard deviation

4.4 Results

4.4.1 Aggregate Size Gradations

Four particle size distributions were studied to determine the impact of the asperity check on com-

putation time in a variety of packing scenarios. The particles are divided into four size groups

based on their width. These gradation curves are seen in Figure 4.7. Gradations A and B contain

greater proportions of larger particles, whereas gradations C and D contain a finer mix of particles.

Gradation curve C is based on the Fuller curve, where the percentage of aggregate, Y , passing

40

through a sieve with diameter, D, is given to be

Y = 100 ∗ D

D
1/2
max

, (4.7)

where Dmax is the diameter of the largest aggregate [129].

Figure 4.7: The four gradation curves studied - with two coarse gradations (A and B), alongside
two finer gradations (C and D)

All microstructure plots were carried out using Matlab R2018a on the Texas A&M University High

Performance Computing Center’s supercomputer Ada, a hybrid cluster from IBM with Intel Ivy

Bridge processors and a Mellanox FDR-10 Infiniband interconnect. The plotting code is carried

out serially, placing one particle at a time, on a single node with 2500 MB of allotted memory. For

each gradation, three microstructures are plotted at each 20 %, 30 %, and 40 % particle volume

fractions. The control code is a copy of the plotting code with the asperity check removed and

41

the additional consideration to determine if an aggregate lies entirely within another. All other

parameters and functions in the codes remain the same.

4.4.2 Influence of nmax Value

As the asperities of interest are the major maxima in the radii, not the surface detail, a reduced

number of summations can be used in the derivative equations. In Figure 4.8, an example of

asperity detection using a variety of nmax values is depicted.

Figure 4.8: Asperities identified on a particle plotted and analyzed with an nmax value of a) 4, b)
6, c) 8, d) 10, e) 12, f) 20. The largest asperities are identified on all, with increasingly subtle
asperities detected as nmax increases

42

Table 4.1: Mean and median number of asperities identified on each aggregate for varying nmax
values.

nmax Value Mean Median

6 18.2 16
8 23.2 21
10 28.3 26
12 33.1 31

To quantify the level of influence that the nmax parameter used during asperity detection has, the

set of pre-rotated aggregates was run through the asperity detection code four times - using nmax

values of 6, 8, 10, and 12. The nmax value of 4 was not considered due to the notable morphological

difference between the aggregate generated with an nmax value of 4 and the aggregates generated

with higher nmax values in Figure 4.8.

As the mean and median number of asperities detected by the varying nmax values in Table 4.1

varies by up to 15 asperities per aggregate - a test determine the optimal nmax value to use dur-

ing the asperity detection process was conducted. Three microstructures of 40% volume fraction

coarse aggregate were then generated using each set of asperities. The average runtime of the

microstructure generation for each nmax value using gradation A is shown in Figure 4.9.

It was found that the nmax values used during asperity detection did not cause a statistically signifi-

cant difference in the overlap detection time, as each of the error bars overlapped. This is likely due

to the major asperities being visible and detected at an nmax value as low as 4. As seen in Figure

4.8, the morphology of the aggregate generated with an nmax value of 4 is notably morphologically

smoother and simpler than the aggregates with a higher nmax value. In this work, the asperities

are detected with an nmax value of 10, as this value provides a balance of computational speed and

morphological detail during the asperity detection process. Aggregates are generated for particle

packing with an nmax value of 18 to 26 based on the recommendation attached the data set.

43

Figure 4.9: The time to generate a 40% volume fraction microstructure, using gradation A, with
asperities identified using an nmax value of 6, 8, 10, and 12. Each data point represents the average
runtime of generating three microstructures. Error bars represent ± one standard deviation

4.4.3 Efficiency Improvements

Tables 4.2 thru 4.5 shows the runtime data differences between microstructure plotting with and

without the asperity check, giving the average runtime ± the standard deviation of the three runs.

Speedup is a parameter describing the improvement in code performance, according to

Speedup =
Average Runtime of Control Code

Average Runtime of Code with Asperity Check
. (4.8)

44

Table 4.2: Runtime and improvement results for each volume fraction using Gradation A

Volume Fraction Avg. Runtime ±
Std. Dev. (hrs)

Avg. Runtime Con-
trol ± Std. Dev.
(hrs)

Avg. Speedup

20% 0.05 ± 0.0001 0.19 ± 0.009 3.7
30% 0.12 ± 0.0009 0.94 ± 0.16 7.6
40% 1.45 ± 0.55 12.24 ± 3.1 8.5

Table 4.3: Runtime and improvement results for each volume fraction using Gradation B

Volume Fraction Avg. Runtime ±
Std. Dev. (hrs)

Avg. Runtime Con-
trol ± Std. Dev.
(hrs)

Avg. Speedup

20% 0.03 ± 0.001 0.11 ± 0.02 3.4
30% 0.16 ±0.02 1.08 ± 0.14 6.7
40% 2.92 ± 1.1 36.9± 8.5 12.6

Table 4.4: Runtime and improvement results for each volume fraction using Gradation C

Volume Fraction Avg. Runtime ±
Std. Dev. (hrs)

Avg. Runtime Con-
trol ± Std. Dev.
(hrs)

Avg. Speedup

20% 0.11 ± 0.003 0.42 ±0.015 3.8
30% 0.54 ± 0.11 4.3 ± 0.89 7.9
40% 10.37 ± 1.8 91.3 ± 25.3 8.8

Table 4.5: Runtime and improvement results for each volume fraction using Gradation D

Volume Fraction Avg. Runtime ±
Std. Dev. (hrs)

Avg. Runtime Con-
trol ± Std. Dev.
(hrs)

Avg. Speedup

20% 0.15 ± 0.004 0.52 ± 0.02 3.44
30% 0.68 ± 0.014 4.6 ± 0.77 6.7
40% 9.52 ± 0.2 98.9 ± 7.5 10.3

45

The speedup values for each volume fraction and gradation are shown together in Figure 4.10. The

average speedup demonstrated across the four gradations is 3.6, 7.2, and 10.0 for the 20%, 30%,

and 40% volume fractions, respectively. While the plotting code executes serially, the plotting

time is, on average, cut by an over 70% in the lowest volume fraction and over 85% in the higher

volume fractions by utilizing an asperity-based overlap detection algorithm. It can be seen that

the average time to plot increases with the fineness of the particle size gradation, which can be

directly linked to the number of particles placed in order to reach the desired volume fraction.

Furthermore, the relative speedup values for the higher volume fractions are greater than the lower

volume fractions, the result of more particles plotted, and thus more overlap checks, to reach the

desired volume fraction.

Figure 4.10: Combined speedup data of each volume fraction and sieve gradation

When reaching high percentages of runtime reduction, a very small percentage difference can

46

result in a large difference in speedup values. For example, consider the average speedup values of

gradations A and B for the 40% microstructure generations. Gradation A has an average speedup

value of 8.5, while gradation B averages at 12.6. Table 4.6 shows the percentage reduction in the

runtime, where it can be seen that gradation A’s average reduction for a 40% microstructure is

88.2%, while gradation B’s average is 92.1%. This data is presented in Figure 4.11 to visualize

the similarity in the percentage reductions for each gradation and volume fraction. This data is the

same as that of Figure 4.8, however it is presented in terms of percentage reduction in runtime to

provide perspective on the gaps in the speedup values between the gradations.

Figure 4.11: Average percentage reduction in runtime for each combination of volume fraction,
20%, 30% and 40%, and sieve gradation, A-D

4.4.4 Proportion of Overlap Detection Methods

While the improvements in efficiency due to the addition of the asperity check are clear, to de-

termine the proportion of overlap detected by each of the three filters, counters were added to the

47

Table 4.6: Average percentage reducting in time to generate a microstructure for each volume
fraction and sieve gradation combination

Gradation 20% 30% 40%

A 73.1% 86.9% 88.2 %
B 70.1% 85.0 % 92.1 %
C 73.4% 87.4 % 88.6 %
D 70.9% 85.1% 90.4 %

Table 4.7: Average proportion of overlap detected by each filter for a 40% volume fraction mi-
crostructure generated with gradations A-D

Gradation Minimum Radii Asperity Check Brute Force

A 13.1% 86.4 % 0.5 %
B 13.3% 86.5 % 0.2 %
C 10.7% 89.2 % 0.1 %
D 12.8% 86.6 % 0.6 %

code to track each instance of overlap detection. The data collected by these counters can be seen

in Figure 4.12 for a 40% microstructures generated with gradations A-D.

Table 4.7 gives the average proportion of overlap detected by each of the three overlap detection

methods implemented in this code. The data is taken as a simple average from the raw data shown

in Figure 4.12. The minimum proportion of overlap detected through the asperity-radii comparison

is 86.4 %, confirming that this approach is highly effective. The proportion of overlap that makes its

way to the brute force check is very low, at a maximum of 0.6%. This explains why the reductions

in runtime given in Figure 4.11 are so substantial.

48

Figure 4.12: Proportion of overlap detected by each of the three filters as a function of volume
fraction in a 40% volume fraction microstructure for gradations A-D. Overlap detected by the
minimum diameter is labelled in green, the asperity check is labelled red, and the brute force
is marked in blue. Each data point represents the proportions of overlap detected during each
aggregate’s total number of placement attempts.

4.5 Summary

As demonstrated, the asperity check reduces the time to plot a microstructure, on average, over

85% for realistic volume fractions. The particles used in this study were reconstructions of gravel,

however this approach is useful in any type of particle described by any analytical function with a

real second derivative or has otherwise identifiable surface asperities. The code used in this work

49

places particles serially; additional improvements in efficiency would be seen if the code was exe-

cuted in parallel. Additional future work could look at the impact of various shape parameters on

the efficiency improvements to determine what kinds of aggregates are best suited to this method.

The value of nmax used during asperity detection was shown to not play an impactful role on the

level of efficiency improvement but more work needed to more fully understand if there is a link

between aggregate morphology and level of efficiency improvement. The following overarching

conclusions can be drawn from this chapter:

• Particles described by analytical functions can be assessed for the detection of surface asper-

ities

• To determine overlap between a surface asperity and a neighboring aggregate, the angles be-

tween the two aggregates are calculated and used to determine the radius of the neighboring

particle in the direction of the surface asperity. If the radius is longer than the distance to the

asperity, overlap is detected.

• In the spherical harmonics reconstruction of the aggregates used in this work, the nmax value

used during asperity detection did not play a large role in the computational runtime during

the generation of 40% volume fraction microstructure.

• The improvements in efficiency were above 85% for microstructures containing greater than

30% volume fraction coarse aggregates.

• The speedup values increase with increasing volume fraction. The average speedup values

are 3.6, 7.2, and 10.0 for the 20%, 30% and 40% volume fractions, respectively.

• The asperity check detected between an average of 85% and 90 % of all aggregate-aggregate

overlap in 40% microstructures of each gradation. Less than 1% of overlap made it to the

brute force check

• Future work should assess additional aggregate sets with differing shape parameters to quan-

50

tify the efficiency improvement’s linkage to aggregate morphology.

51

5. LONG-TERM CREEP AND RELAXATION MODELING OF CONCRETE

The periodic microstructures generated from the methods described in Chapters 3 and 4 are used

in finite element analysis (FEA) to simulate the long-term viscoelastic behavior of the virtual con-

crete. Cast and cored microstructures are assessed in the following chapter. For validation pur-

poses, comparison to experimental data is performed out to 10,000 days. Variables including the

dimensionality of the microstructure and the Poisson’s ratio are investigated for their impact on the

prediction of concrete creep.

5.1 Finite Element Mesh Generation

To convert the virtual microstructures into a finite element mesh, this work utilizes software pack-

ages called OOF2 and OOF3D, developed by the National Institute of Standards and Technology

(NIST). In preparation, the 2D microstructures are saved as an image and the 3D microstructures

are ’sliced’ into a stack of images. Image slicing is done by sectioning the microstructure in 0.3mm

increments up the Z-axis and saving each slice increment as an image. The image stack is then

loaded into OOF3D, where the images are re-stacked up the Z-axis, forming voxels by assigning

each pixel a height of 0.3mm. A burn algorithm is used to identify the matrix and classify it as a

different material from the un-selected aggregate regions.

With the pixels and voxels categorizes as matrix and aggregate regions, OOF3D moves to creating

the finite element mesh. The 3D microstructures are meshed by starting with a uniform tetrahedral

mesh composed of elements with an edge length of 3mm and a volume of 3.1 mm3. 2D mi-

crostructures begin with a uniform triangular mesh with element edge lengths of 3mm. In both 2D

and 3D, the uniform mesh is then subjected to several rounds of adaptive refinement to subdivide

heterogenous elements along matrix-aggregate interfaces in order to retain the aggregate’s original

morphology. In the case of 2D microstructures, the refinement functions introduce quadrilateral

elements, making the resulting mesh a mixture of triangular and quadrilateral elements, while the

52

Figure 5.1: A 2D microstructure meshed with OOF2.

3D meshes are composed solely of tetrahedral elements. A meshed 2D microstructure can be seen

in Figure 5.1. An area of future work is to mesh the microstructures in a non-imaged based manner.

5.2 Implementation of Periodic Boundary Conditions

Periodic boundary conditions in the morphology of microstructures has been previously discussed,

however periodicity applies to the stress and strain fields as well, meaning that opposing boundaries

should be identical to one another. To enforce periodicity in these fields, the surface nodes are each

paired with their respective opposite nodes on the opposing boundary. Here, the term ’opposing

boundary’ refers to the corners, edges, and walls on opposite sides of an RVE that touch when the

RVE is used to reconstruct the large, infinite pattern it represents. For example, nodes on the ± X-

Z plane walls are paired together. In order to pair nodes on opposing boundaries, each node on the

a boundary is assessed to find it’s most closely aligned node on the opposite boundary. These node

53

pairing are used to write the constraint equations into the Abaqus input file. Each pair of nodes,

given as node a and node b, are constrained such that their displacement, u, in each direction is

bound by the relationships:

uax − ubx = 0

uay − uby = 0

uaz − ubz = 0,

(5.1)

in the x, y, and z directions respectively.

To ensure the periodic boundary condition constraints are correctly implemented, the stress and

strain along the elements compositing the top and bottom edges of a two-dimensional microstruc-

ture at time = 0 are plotted together. True periodicity is seen when the stress and strain values are

identical along opposing boundaries. As seen in Figure 5.2, the X-direction of the strain field in

the elements along the two edges is nearly equal, indicating the periodicity in the strain field has

been properly enforced. stress values are also assessed for periodicity, as depicted in Figure 5.3.

Slight differences in the curves can be attributed to differences in the finite element mesh and edge

element construction at the top and bottom edges of the microstructure. Furthermore, the stress and

strain values are taken as the stress of the element along the edge, meaning that the differences in

element sizes along the two edges imposes differences in the strain data along the top and bottom

edges in Figures 5.2 and 5.3.

To ensure the stress and strain fields are also periodic in the 3D microstructure simulations, as

well as over time, two opposing edges in the X-direction on the X-Z plane are assessed for their

stress and strain values after 10,000 simulated days. Two edges, labelled the top and bottom, were

assessed by evaluating the stress and strain in the edge elements from x = 0 mm to x = 90 mm with

a constant Z-coordinate of 90 mm and 0 mm for the top and bottom edges respectively. Much like

the 2D results, the strain and stress are found to be periodic and the values at opposing edges nearly

equal to each other, with the results shown in Figure 5.4 and Figure 5.5 for the strain and stress

54

Figure 5.2: Strain along the edges of a 105mm square two-dimensional microstructure after 0 days,
in X-direction with the edge of the microstructure overlaid below the curves to indicate composi-
tion along the lines. Mortar is identified in blue and aggregates in gray. Deviations between the
two lines is the result of differences in the finite element mesh between the two edges.

Figure 5.3: Stress along the edges of a 105mm square two-dimensional microstructure after 0 days,
in X-direction with the edge of the microstructure overlaid below the curves to indicate composi-
tion along the lines. Mortar is identified in blue and aggregates in gray. Deviations between the
two lines is the result of differences in the finite element mesh between the two edges.

55

Figure 5.4: Strain along the edges of a 90mm cubic three-dimensional microstructure after 7,084
days, in X-direction with the edge of the microstructure overlaid below the curves to indicate com-
position along the lines. Mortar is identified in blue and aggregates in gray. Deviations between
the two lines is the result of differences in the finite element mesh between the two edges.

respectively. The differences between the stress and strain two opposing edges is more pronounced

in the 3D microstructures than in the 2D, as OOF3D does not have the ability to generate periodic

finite element meshes in 3D, as it does in 2D. This adds an additional layer of difference to the

opposing boundaries in 3D because while in 2D the nodes were periodic but the element size and

shape differed, in 3D the nodes are not periodic. The outcome of this is that the finite elements

composing opposing boundaries in 3D have additional mesh-based differences that translate to

nearly, but not perfectly periodic stress and strain fields.

5.3 Description of Viscoelastic Mortar

Experimental mortar and concrete creep tests were performed in concurrent research [45, 21, 2].

The mixture design, setup, and data is briefly presented here for context.

5.3.1 Experimental Sample Preparation

The VeRCoRs concrete mix design from Électricité de France (EDF) serves as the basis for the

concrete mix used in this work. The concrete samples are a mixture of Type I/II cement, fine ag-

gregates that pass a 4 mm sieve, intermediate aggregates that are sieved to pass between 8 mm and

56

Figure 5.5: Stress along the edges of a 90mm cubic three-dimensional microstructure after 7,084
days, in X-direction with the edge of the microstructure overlaid below the curves to indicate com-
position along the lines. Mortar is identified in blue and aggregates in gray. Deviations between
the two lines is the result of differences in the finite element mesh between the two edges.

4 mm sieves, and coarse aggregates that pass between the 16 mm and 8 mm sieves [130]. Aggre-

gates were dried in an oven for 24 h prior to mixing. Pozzolith 80, a water reducing admixture, was

added at a proportion of 4.22 mL per kilogram of cementitious material to improve the workabil-

ity. The resulting water to cement (w/c) ratio in this concrete mix is 0.52 by mass in the saturated

surface dry SSD condition. Table 5.1 gives the proportions of the concrete mix components. For

the purposes of virtual microstructure generation, the sum of the intermediate and coarse aggre-

gate volume fractions, 38%, is used as the target aggregate volume fraction of aggregates in the

generate microstructures.

The concrete was mixed using the procedure outlined in ASTM C192 and immediately cast into

101.6 mm by 203.2 mm (4 in by 8 in) cylindrical molds [131]. Embedded strain gauges were

suspended from fishing line that were positioned axially in the center of the molds. Filling of the

molds was done in three increments with tapping in between to minimize air voids in the samples.

The concrete remained in the molds for 28 days to prevent moisture loss prior to testing. Once the

samples reached an age of 28 days, they were demolded and sealed with one layer of adhesive-

57

Table 5.1: Concrete mix design used for experimental concrete creep samples, based on the EDF
Vercors concrete mix.

Materials Quantity

Cement (Type I/II) 320 kg/m3

Fine Aggregate 837 kg/m3

Intermediate Aggregate 456 kg/m3

Coarse Aggregate 560 kg/m3

Water 137 kg/m3

Pozzolith 80 (Water-reducing admixture) 1.35 l/m3

backed aluminum foil to minimize drying effects.

The samples were divided into two groups, the first to be used for the uniaxial creep tests, and

the second used measure free strain shrinkage. The two groups were then each divided into two

temperature groups: 20o C and 60o C. The 60o C creep test samples were heated to this temperature

before beginning the test to prevent thermal strains from building up during creep. The creep test

samples were loaded with a uniaxial compressive load of 5300 N (1200 lbs), corresponding to

20% of the 28 days compressive strength. This value was chosen as it allowed the concrete to

be considered as a non-aging linearly viscoelastic material; higher loads risk entering the non-

linear viscoelastic regime [14]. The free strain samples were left untouched at their respective

temperatures .

Due to the short time to needed apply the compressive load to the creep samples, the applica-

tion of the load was approximated as a Heaviside step function. Data from the embedded strain

gauges was read and recorded by a datalogger. For both the creep and free strain samples, the data

was read and recorded immediately upon loading, followed by daily readings for one week, then

weekly readings for one month, and finally monthly readings thereafter. Additionally, detachable

mechanical (DEMEC) strain gauges were attached to the external surface of the samples to collect

strain data on the outer surfaces of the cylinders.

58

Despite sealing the samples with adhesive-backed aluminum foil, a small amount of drying creep

was observed. This creep was separated from the total creep to divide the creep data into drying

creep and basic creep. More information on how this was done can be found in Baranikumar et. al

(2020) [45]. Only the basic creep is assessed in this work.

5.3.2 Experimental Data Analysis

Creep tests ideally consist of a sample under a constant load over time, however in reality it is

difficult to maintain an unchanging load. To account for changes in the applied compressive stress,

the load history is accounted for through σ(t), which is the stress as a function of time, t. Measured

creep data over time is represented by ε(t). The constitutive relationship between the stress history,

σ(t), the strain, ε(t), and creep compliance, J(t) is

ε(t) =

∫ t

0

J(t− t′) δσ(t
′)

δt′
dt, (5.2)

where t is time in days and t′ is the dummy time variable. J(t) is assumed to be of the form

J(t) = J0 + J1 · Ln[1 +
−t
τ1

] + J2 · Ln[1 +
−t
τ2

] + J3 · Ln[1 +
−t
τ3

]

+J4 · Ln[1 +
−t
τ4

] + J5 · Ln[1 +
−t
τ5

] + J6 · Ln[1 +
−t
τ6

]
1

GPa
,

(5.3)

where J0, J1, J2, J3, J4, J5, and J6 are coefficients with units GPa−1. The relaxation times τ0, τ1,

τ2, τ3, τ4, τ5 and τ6 are in units of days and are chosen to be 1, 10, 100, 1,000, 10,000, and 100,000

respectively. To determine the coefficients in the J(t) equation, Equation (5.2) is integrated and fit

to the ε(t) data. The values of the fitted coefficients are then plugged into Equation (5.3) to obtain

J(t). Mortar creep data from experimental work is used to calculate the mortar’s bulk and shear

compliance functions. This data originates in Baranikumar et. al (2020), where further details

regarding the sample preparation, experimental procedure, and application of TTS are described

59

[45]. The mortar creep compliance data is given by the equation J(t),

J(t) = 0.039 + 1.86 · 10−3 · Ln[1 + t]− 5.19 · Ln[1 + t

10
]

+3.85 · 10−2 · Ln[1 + t

100
] + 8.56 · 10−3 · Ln[1 + t

1000
]

+2.58 · 10−9 · Ln[1 + t

100000
]

1

GPa
.

(5.4)

The creep compliance is directly related to the bulk modulus, B(t), given by the relationship,

B(t) =
J(t)

3 · (1− 2 · ν)
, (5.5)

where ν is the poisson’s ratio. The Poisson’s ratio was calculated confined mortar creep tests and

found to be nearly constant over time [21], which allows for the simple interconversion between

the bulk, shear, and elastic moduli. As a result, this work is assuming a constant Poisson’s ratio.

The shear compliance, G(t), is found through a similar relationship,

G(t) =
J(t)

2 · (1 + ν)
. (5.6)

The bulk and shear compliance functions are then normalized by their values at t = 0 days, and

used to generate a data file containing the normalized data. This file is read by ABAQUS, which

then fits the data to a Prony series, representing the dimensionless relaxation modulus.

5.4 Simulation Data Analysis

The software ABAQUS was selected to be the FEA solver for this research. To analyze the meshed

microstructures, a simulated stress relaxation simulation experiment was chosen. The coarse ag-

gregates are assumed to be linear elastic, while the mortar phase is described by the data collected

from laboratory mortar creep experiments [45]. The microstructure is subjected to a constant com-

pressive strain of 0.02% applied in the X-direction and held for the remainder of the simulation.

The ± Y-Z planes where the displacement is applied are not permitted to translate in the Y- or

Z-directions or rotate. A stress relaxation simulation was chosen over a creep simulation due to the

60

ease of applying a constant strain boundary condition. Moreover, the stress relaxation modulus,

E(t), and the creep compliance are inversely related in the Laplace domain,

E(s) =
1

s2J(s)
, (5.7)

where s is the Laplace transformed time variance, J(s) is the Laplace transformed J(t), andE(s) is

the Laplace transformed E(t), allowing for simple interconversion between the creep compliance

and stress relaxation equations.

5.5 Convergence Studies

In this section, the influence of the finite element mesh and the microstructure domain size are

assessed. In order to ensure the simulations are run with the optimal microstructure size and

density of the finite element mesh, convergence studies were performed to locate the lowest values

that yielded results consistent with higher values.

5.5.1 Finite Element Mesh Density

Increasing finite element mesh density directly raises the computational expense of the finite ele-

ment simulation, due to increasing the number of equations to be solved in FEA. As such, mini-

mizing the number of finite elements is advantageous. For both 2D and 3D, a single microstructure

was converted to a finite element mesh with varying values of mesh densities, defined as

Mesh Density =
Number of Elements

Area or Volume of Microstructure
. (5.8)

Each finite element mesh generated was used to run identical stress relaxation simulations; the re-

sulting relaxation modulus was plotted against the mesh density at four time points. In Figure 5.6,

convergence can be seen above 0.6 elements/mm2 for a two-dimensional microstructure. Simi-

larly, in the three-dimensional case, convergence can be seen above 0.6 elements/mm3, as shown

in Figure 5.7. Mesh densities above 0.8 elements/mm3 were found to have poor mesh quality and

thus were not included in this paper. In both Figure 5.6 and Figure 5.7, the convergence is most

61

Figure 5.6: The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days, and
d) 5,000 days of a two-dimensional square microstructure with an edge length of 90 mm plotted
against the density of finite elements to determine convergence at a 38% coarse aggregate volume
fraction

prominently seen in the relaxation moduli at 1,000 and 5,000 days, indicating that the mesh density

becomes more influential at later time steps.

To further assess convergence, the L2 norm of the strain tensor error was assessed, where the strain

error was taken to be

εu = ε− εa, (5.9)

where εu is the strain error tensor, ε is the strain tensor, and εa is the analytical solution for the

strain. As this doesn’t problem doesn’t have an analytical solution, the value of the analytical

strain tensor is taken to be that of the strain using the highest mesh density. The εu tensor was used

62

Figure 5.7: The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days, and
d) 5,000 days of a three-dimensional cubic microstructure with an edge length of 75 mm plotted
against the density of finite elements to determine convergence at a 38% coarse aggregate volume
fraction

63

to calculate the L2 norm,

||εu||L2 =

√∮
V

εu · εu dV . (5.10)

The root mean square (RMS) of the L2 norm of the strain error tensor,

RMS =

√∑N
n=1 ||εu(i)||2L2

N
, (5.11)

where N is the number of entries in the strain tensor. The RMS of the strain error tensor was

plotting against the mesh density in Figure 5.8, where the convergence can be seen more clearly at

earlier ages. The convergence is seen around 0.4 elements/mm3 in Figure 5.8, lower than the value

of approximately 0.6 elements/mm3 seen in Figure 5.7. Figure 5.9 shows the data from Figure 5.8

plotted against the number of degrees of freedom in each mesh. Each node in the finite element

mesh has six degrees of freedom - three translational degrees of freedom and three rotational. The

RMS of the L2 norm of the strain error tensor of the highest mesh density, approximately 0.8

elements/mm3is zero, and thus the log value is negative infinity, and as such, it is not included on

the graphs in Figure 5.8. To err on the side of caution, the convergence of the finite element mesh

density will be taken as 0.6 elements/mm3 moving forward.

64

Figure 5.8: The RMS of the L2 norm of the strain error at a) 0 days, b) 100 days, c) 1,000 days, and
d) 5,000 days of a stress relaxation simulating using a three-dimensional cubic microstructure with
an edge length of 75 mm plotted against the density of finite elements to determine convergence at
a 38% coarse aggregate volume fraction

65

Figure 5.9: The RMS of the L2 norm of the strain error at a) 0 days, b) 100 days, c) 1,000 days, and
d) 5,000 days of a three-dimensional cubic microstructure with an edge length of 75 mm plotted
against the number of degrees of freedom (DOF) on a log scale to determine convergence at a 38%
coarse aggregate volume fraction

66

5.5.2 RVE Size

Five microstructures of 38% volume fraction were generated for each RVE size in both two- and

three-dimensions. A finite element mesh density of 0.6 elements/mm2 and 0.6 elements/mm3 was

used for the 2D and 3D microstructures respectively. Each was subjected to a FEM stress relaxation

simulation, using a strain of 0.02%, the results were averaged across the five simulations and the

resulting relaxation moduli were plotted at four time points to determine the RVE size at which

convergence begins. In regard to the 2D microstructures, the RVE size doesn’t show as clear a

convergence trend as the mesh density convergence study did. Figure 5.10 shows the relaxation

modulus at four different time points ranging from 0 days (the Young’s modulus) to 5,000 days,

showing the maximum difference between the data points to be about 1 GPa. On the other hand,

the 3D simulations show a clear convergence at a domain size of 90 mm, as visible in Figure 5.11.

67

Figure 5.10: The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days, and
d) 5,000 days of a two-dimensional square microstructure plotted against the domain edge length
to determine convergence at a 38% coarse aggregate volume fraction and a finite element mesh
density of 0.6 elements/mm2. Error bars on plots b-d represent ± one standard deviation.

68

Figure 5.11: The Young’s modulus a), and relaxation modulus at b) 100 days, c) 1,000 days, and
d) 5,000 days of a three-dimensional cubic microstructure plotted against the domain edge length
to determine convergence at a 38% coarse aggregate volume fraction and a finite element mesh
density of 0.6 elements/mm3. Error bars on plots b-d represent ± one standard deviation

69

5.6 Results

5.6.1 Comparison to Experimental Data

Comparison to experimental data began with plotting 2D and 3D simulation results with experi-

mental creep compliance data. The standard error, defined as,

Standard Error =
Standard Deviation√
Number of Samples

, (5.12)

is used to construct error bars on the experimental data to determine how the simulation data

does or does not agree with the experimental data. As seen in Figure 5.12, data from both the

internal strain gauges and the DEMEC strain gauges is presented alongside results from 2D and

3D simulations. The DEMEC strain gauge data represents only basic creep, as the B3 model

was used to subtract off creep due to surface drying [132]. Creep compliance predicted by the

3D simulations falls within the experimental data bounds throughout all 800 days, while the 2D

simulation results increasingly deviate from the experimental data after 300 days.

Moving forward, simulations of 27+ years of concrete creep were conducted using 2D square and

3D cubic microstructures, all with an edge length of 90mm and a finite element mesh density of

0.6. Although the 2D simulations did not show good agreement with experimental data in Figure

5.12, they were used in the long-term simulations in order to assess the level of overprediction over

time. The TTS principle was used to construct a concrete creep compliance master curve from the

experimental creep data collected from the DEMEC strain gauges at 20o C and 60o C. The shift

factor for the 60o C data is 12.5, thus the master curve for creep at 20o C extends to 10,000 days,

or approximately 27.4 years. Further information on the application of the TTS principle and its

application to the creep of cementitious materials can be found in Baranikumar et. al (2020) [45].

Figure 5.15 displays the master curve, in black, plotted with the average of five simulations, where

excellent agreement can be seen with the 3D simulations.

The close agreement between the extended experimental concrete data and the 3D simulations

70

Figure 5.12: Creep compliance data at 20o C over 800 days, showing a comparison of the ex-
perimental concrete creep data to the 2D and 3D simulations. Error bars represent the standard
error of the experimental data. The 2D and 3D simulation data points are averages of five 90mm
edge length square and cubic microstructures, meshed with a density of 0.6 elements/mm2 and
elements/mm3 respectively.

71

Figure 5.13: The creep compliance over 10,000 days modeled in 2D and 3D, plotted with ex-
perimental data extended using the TTS principle.The 2D and 3D simulation data points are av-
erages of five 90mm edge length square and cubic microstructures meshed with a density of 0.6
elements/mm2 and elements/mm3 respectively.

indicates the assumptions to treat the aggregates as linear elastic and neglect the ITZ did not impact

the accuracy of the 3D concrete creep compliance simulations. This agrees with the conclusions

of Barnachy-Bary et. al (2015), which suggested the ITZ has little influence in creep simulations

at this scale [133], at least at the scale of the coarse aggregate.

5.6.2 Influence of Dimensionality

The 2D simulations provide a reasonable prediction of the Young’s modulus, falling on average

6-7 % lower than the experimental values. The Young’s modulus is found to be 33 GPa experimen-

tally, and the 2D and 3D simulations predict a Young’s modulus of 31 and 33 GPa respectively.

As time goes on, the gap between the 2D simulations’ creep compliance and the experimental data

continues to grow, reaching a difference of 49% at 10,000 days, as shown in Figure 5.15. This is an

important finding, as it shows that the 2D simulations may be useful in approximating the Young’s

modulus of concrete but, are likely unsuitable to predict viscoelastic behavior. On the other hand,

72

Figure 5.14: The percentage difference between the 2D and 3D simulations from the extended
experimental data over 10,000 d

the 3D simulations remain in close agreement with the extended experimental data, with a differ-

ence between the two curves of 3% at 10,000 days. Figure 5.14 shows the percentage difference

between the 2D and 3D simulation results and the concrete master curve over time. Beyond 4,000

days, the 2D simulation diverges from the concrete master curve at a rate of approximately 0.66%

per year. Major differences in the creep compliance predictions between the 2D and 3D simula-

tions indicate that the viscoelastic behavior is not accurately captured by a two-dimensional stress

state. Much like the findings of Huang et. al (2016) and Shen (2007), the 2D simulations in this

work do not accurately represent the stress-strain behavior, whereas the 3D counterpart simulations

do [134, 111]. Huang et. al (2016) also showed that the 2D concrete simulations underpredict the

Young’s modulus on average by 5.6%, echoing the results presented in this chapter. The conse-

quences of this finding include the demonstrated need to model viscoelasticity of concrete in 3D,

even though it is slower and computationally more expensive than 2D models.

5.6.3 Influence of the Mortar’s Poisson’s Ratio

Viscoelastic Poisson’s ratio (VPR) of concrete has been published in scientific literature with a

wide variety of results - studies showing it increases [], decreases [], and remains constant [?] over

73

Figure 5.15: The creep compliance over 10,000 days modeling using a 75mm cubic microstruc-
ture with periodic boundary conditions. The Poisson’s ratio of the mortar phase was altered in
increments from 0.1 to 0.3

time. The experimental mortar data showed the Poisson’s ratio to be nearly constant over time

through the use of confined creep tests, however in order to determine the influence that the VPR

plays on the magnitude of concrete creep, the Poisson’s ratio of the mortar phase was altered over

nine increments ranging from 0.1 to 0.3. The maximum difference between the highest and lowest

creep compliance value at 10,000 days was 7.9%. This indicates that there is some influence of

the VPR on the unixial creep compliance, however it is relatively minor. A key takeaway from

these results is that whether the Poisson’s ratio remains the same, or changes with time, it is a

small factor in predicting the overall creep of concrete. Thus, an estimation of a Poisson’s ratio,

or even simply an assumption that it remains constant could be considered acceptable for many

applications.

5.7 Summary

Simulation tools can be very useful in the world of concrete, and composites in general, to obtain

information on viscoelastic behavior. As lab tests on materials with long-term viscoelasticity, such

as concrete, are very slow to generate data, the methods presented in this paper offer a good al-

74

ternative to experiments by demonstrating the process to generate morphologically representative

microstructures and using FEM to predict long-term viscoelastic behavior. The following conclu-

sions can be drawn from this work:

• Periodic boundary conditions were successfully applied both the aggregate geometry and

mathematically. The geometrical periodicity was exact, while the stress and strain along

opposite edge elements on 2D and 3D microstructures were compared and found to have

good, but not perfect, agreement, indicating approximate periodicity. Small differences in

the stresses and strains resulted from the differences in size and shape of the edge elements

between the opposite edges.

• Convergence of the finite element mesh density was determined to be approximately 0.6

elements/mm2 and 0.6 elements/mm3 for 2D and 3D microstructures respectively. Simula-

tions performed with lower mesh densities showed up to 20 % difference from the converged

results, showing the importance of using a proper finite element mesh.

• Convergence of the RVE size was found to be at approximately 60 mm for 2D and 90 mm

3D microstructures, corresponding to an edge length approximately 2x and 3x longer than

the largest aggregate’s length for the 2D and 3D microstructures, respectively.

• Both the convergence of the RVE size and the finite element mesh density show a time-

dependence of the value of convergence, indicating the need for convergence studies of time

dependent properties to assess multiple time points. Additionally, the convergence of the

Young’s modulus does not represent the convergence of the creep/relaxation behavior, fur-

ther reinforcing the need to assess the convergence over time.

• Both 2D and 3D simulations accurately predict Young’s modulus within 7 % and 3 %, re-

spectively. However, the 2D simulations greatly overpredict creep, with the overprediction

of the creep compliance increasing over time to about 50 % after 10,000 days. Therefore,

one should not use 2D models to predict long-term creep, but rather make the computational

75

time and resource investment needed to solve 3D models.

• The treatment of aggregates as linear elastic and the decision to neglect the ITZ regions

around the coarse aggregates in this work appear to be valid simplifications given the close

agreement between the 3D simulation results and experimental data. Any significant effect

of the ITZ regions around sand grains were not studied but were swept into the mortar matrix

creep data.

• The Poisson’s ratio was found to have an impact on the creep compliance predictions, how-

ever the difference between the largest, 0.3, and smallest, 0.1, Poisson’s ratio simulated was

under 8% after 10,000 days of creep. The implications of this finding are that if the Pois-

son’s ratio of a sample are not known, the value can be estimated with a non-negligible but

relatively small risk of error.

• Due to the time-dependent nature of concrete creep, it is challenging to collect creep behav-

ior data in a timely fashion. This approach has successfully upscaled experimental mortar

creep data, which is significantly easier to test than concrete, using the TTS principle. This

upscaled mortar data can then be used in the concrete models to give long-term predictions.

76

6. INFLUENCE OF BOUNDARY CONDITIONS ON MODELING OF CONCRETE CREEP

AND RELAXATION

Although the topic of experimental sample preparation has been an area of focus in the civil engi-

neering community, study regarding the RVE size and impact of sample geometry on the stiffness

and viscoelastic behavior has not been well studied. This is discussed further in following two

sections.

6.1 Microstructure Generation

The cast, cored, and periodic microstructures utilized in the simulations presented in this chapter

were generated using the methods described in Chapter 3. The cast microstructures induced a

’wall effect’, where the aggregates pack less-densely in regions close to the boundary [10]. This

phenomenon can be seen in Figure 6.1, where the volume fraction of a cubic microstructure of

each boundary condition category is plotted along the Z-axis. In Figure 6.1, the volume fraction of

aggregate drops as the Z-coordinate approaches the top or bottom of the cube.

Figure 6.1: Volume fraction of a 38% volume fraction 90mm cubic periodic, cast, and cored
microstructure as a function of the Z-coordinate

77

6.2 Convergence Studies

In this section, the influence of the finite element mesh and the microstructure domain size are

assessed in the same manner presented in Chapter 5.

6.2.1 Finite Element Mesh Density

As discussed in previous chapters, using a proper finite element mesh with a density above the

convergence value is important, particularly in creep behavior past 5,000 days. In Chapter 5, the

coarsest and finest meshes predicted up to a 20% difference in creep compliance. A mesh den-

sity convergence study was performed on a 90mm cored microstructure of 38% coarse aggregate

volume fraction. In Figure 6.2 convergence can be seen above a density of 0.75 elements/mm3.

Similar to the mesh density convergence study in Chapter 5, the difference in the simulated creep

compliance between the finest and coarsest mesh is over 20%.

A mesh density convergence study was also performed on a cast cubic microstructure with an

edge length of 105mm. As seen in Figure 6.3, the convergence trend is not as pronounced as

the periodic and cored mesh density convergence studies. In Figure 6.3 d), the data can be seen

to level off around 0.45 elements/mm3, potentially as early as 0.3 elements/mm3, depending on

interpretation.

In Chapter 5, the periodic microstructures showed convergence at a density of about 0.6 elements/mm3.

The cored microstructures may contain more aggregate-boundary intersections because during the

particle placement process, the aggregate does not return on the opposing boundary - meaning

it does not need to fit within the space associated with the opposing boundary. As a result, the

higher number of aggregate-boundary intersection would increase the number of elements needed

to properly discretize the interface between the aggregate and the domain boundary(ies). Cast mi-

crostructures, on the other hand, are composed of aggregates that are fully contained within the

domain, thus do not have aggregate - domain boundary interfaces. Additional study is needed to

confirm or deny these hypotheses.

78

Figure 6.2: The Young’s modulus a), and relaxation modulus at b) 100 d, c) 1,000 d, and d) 10,000
d of a 3D cored cubic microstructure with an edge length of 90 mm plotted against the density of
finite elements to determine convergence at a 38% coarse aggregate volume fraction

79

Figure 6.3: The Young’s modulus (equivalent to the relaxation modulus at t = 0) a), and relaxation
modulus at b) 100 d, c) 1,000 d, and d) 10,000 d of a 3D cast cubic microstructure with an edge
length of 105 mm plotted against the density of finite elements to determine convergence at a 38%
coarse aggregate volume fraction

80

6.2.2 RVE Size

To determine the appropriate RVE size for the cored and cast cubic microstructures, RVE con-

vergence studies were carried out. Figure 6.4 shows the relaxation modulus at four different time

points plotted against the domain edge length for a variety of cored microstructure sizes. Unlike the

results of the periodic microstructure RVE size in Figure 5.11, a clear convergence trend is not seen

in the cored RVE convergence study. Looking closely, the data appears to level out around 90mm,

therefore this will be considered the cored cubic microstructure’s RVE size moving forward.

An RVE size convergence study was also performed on a cast cubic microstructure, results shown

in Figure 6.5. Much like the cored RVE convergence study, a distinct convergence is not seen in

the data presented in Figure 6.5. Micorstructures with an edge length smaller than 50mm were

unable to be generated at a 38% volume fraction, as the code stalled at lower volume fractions

due to difficulty of placing aggregates into a small domain without intersecting one another or the

boundaries of the domain. Improvements in the code to overcome this limitation is an area of

future work.

81

Figure 6.4: The Young’s modulus a), and relaxation modulus at b) 100 d, c) 1,000 d, and d) 10,000
d of a 3D cored cubic microstructures plotted against the domain edge length to determine conver-
gence at a 38% coarse aggregate volume fraction, meshed with a density above 0.8 elements/mm3.
Each data point is the average of three simulations, with error bars representing ± one standard
deviation.

82

Figure 6.5: The Young’s modulus a), and relaxation modulus at b) 100 d, c) 1,000 d, and d) 10,000
d of a 3D cast cubic microstructures plotted against the domain edge length to determine conver-
gence at a 38% coarse aggregate volume fraction meshed with a density above 0.5 elements/mm3.
Each data point is the average of three simulations, with error bars representing ± one standard
deviation.

83

6.3 Results

6.3.1 Influence of Morphological Boundary Conditions

The simulation results for the cast, cored, and periodic cubic microstructures are plotted next to the

experimental data extended with the TTS principle [45] in Figure 6.6. The periodic microstruc-

tures, as discussed in Chapter 5 shows the closest agreement with the experimental data, followed

by the cast simulations. The cored simulations display a notably higher level of creep compliance,

measuring 13.9% higher creep compliance than the extended experimental data at 10,000 days.

The cast microstructures predict a compliance value 5.5% higher. Error bars are not included on

Figure 6.6 because the simulations are very consistent, with a standard deviation of less than 0.5%

at 10,000 days for both the cast and cored simulations, resulting in error bars that are difficult to

see on the graph.

The cast microstructures predict the concrete creep compliance behavior well, which is expected

because the experimental samples were cast, albeit into cylinders. Experimental data comparing

creep behavior of cubes vs cylinders has not been located during an extensive literature review. The

cored samples, on the other hand, have a notably higher over prediction of creep. As previously

discussed in Section 6.2.2, it is hypothesizes that the cored samples have more aggregates that

intersect the boundary, and thus more boundary-aggregate interfaces. The creep of the microstruc-

tures may be sensitive to the number of aggregate-boundary intersections. Additional research is

needed to more fully investigate this theory.

84

Figure 6.6: The creep compliance over 10,000 d modeled with 3D periodic, cast, and cored bound-
ary conditions, plotted with experimental data extended using the TTS principle. Each curve is
generated from the average of three simulations for each microstructure category, where the peri-
odic and cored microstructures have an edge length of 90mm and the cast microstructures have an
edge length of 105mm.

6.3.2 Influence of Periodic Boundary Condition Constraint Equations

Initially discussed in Chapter 5, the software used to generate the finite element mesh, OOF3D

doesn’t have the capability to generate a periodic mesh, therefore even though the microstructure is

perfectly periodic, variations and differences between the meshes on opposing boundaries exists.

A MATLAB script was written to automatically find node pairings on opposing boundaries and

write constraint equations into the Abaqus input file. This code can be found in Appendix B.1.

In order to asses the influence of these periodic boundary condition constraint equations imposed

on the periodic microstructures, a 90mm periodic cubic microstructure was simulated with and

without the constraint equations. The resulting creep compliance data is shown in Figure 6.7.

The differences between the simulations with and without periodic constraint equations can be

seen more visibly on a log time scale, shown in Figure 6.8.

85

Figure 6.7: The creep compliance over 10,000 days simulated from a 90mm cubic periodic mi-
crostructure with and without periodicity constraint equations, plotted alongside experimental data
extended using the TTS principle.

Figure 6.8: The creep compliance over 10,000 days simulated from a 90mm cubic periodic mi-
crostructure with and without periodicity constraint equations, plotted alongside experimental data
extended using the TTS principle on a logarithmic time scale.

86

Figure 6.9: The creep compliance over 10,000 days simulated from a 90mm cubic periodic mi-
crostructure with and without perioidicity constraint equations, plotted alongside experimental data
extended using the TTS principle.

The Young’s modulus is found to be 33.5 GPa and 30.8 GPa for the simulation with and without the

periodicity constraint equations, respectively. Figure 6.9 shows the percentage difference between

the two periodic simulations, with and without constraint equations, and the extended experimental

data over 10,000 days. Interestingly, the periodic simulation without constraint equations shows

closer agreement with the extended experimental data in the first 3,000 days. This is believed

to be the result of the imposed periodicity constraints equations constraining the microstructure’s

relaxation, as the un-constrained simulation immediately has a higher level of creep. This higher

level of creep in the first 3,000 days matches the experimentally measured behavior closely. Be-

yond 3,000 days, agreement switches, where the simulation with constraint equation shows closer

agreement to the extended experimental data. Ultimately the two data sets converge to nearly the

same value, with the difference in the creep compliance between the simulations with and without

the constraint equations being 0.2% at 10,000 days.

These results indicate that the inclusion of the periodicity constraint equations improves the accu-

87

racy of the Young’s modulus prediction, however it doesn’t play a significant role in the long-term

prediction of creep behavior. For modeling situations where periodic boundary condition con-

straint equations are difficult to implement, this data indicates the constraints may be neglected,

especially if the simulation is long-term.

6.4 Summary

In this chapter, cast and cored cubic microstructures were assessed through RVE size and mesh

density convergence studies. The simulated creep compliance was subsequently compared to the

results of periodic microstructure simulations from Chapter 5 and extended experimental data. Ad-

ditionally, the periodic microstructures were simulated both with and without the periodic bound-

ary condition constraints written in to the Abaqus input file. The following conclusions can be

drawn from the data presented in this chapter:

• The mesh density convergence studies revealed that the cast microstructures converge at

a slightly lower value, 0.5 elements/mm3, than periodic microstructures, while the cored

microstructures converge at a value closer to 0.75 elements/mm3.

• The cored microstructures over predict creep by about 13-14%. The cast microstructures

also over predict, albeit a lower value of 5-6%.

• More study is need to understand the underlying mechanisms that prevent a clear RVE con-

vergence trend in cored and cast cubic microstructures

• The periodic constraint equations play a notable role in constraining the early creep/relaxation

of the concrete, resulting in a 3 GPa difference in the prediction of Young’s modulus. How-

ever this difference decreases with time, to a point where the creep compliance at 10,000

days is 0.2% different between the simulations with and without the constraint equations.

This suggests that for shorter term simulations, the constraint equations are important to

implement, but they could potentially be neglected in long term creep modeling.

88

• Future work should include the simulation of cylindrical microstructures to further the un-

derstanding of geometry and boundary conditions in this context. At the time of this dis-

sertation, a suitable finite element meshing approach for the cylindrical microstructures has

not been found, however performing both cylindrical and cubic simulations would provide

insight into the comparison of different experimental sample geometries.

89

7. SHORT-TERM RELAXATION MODELING OF MORTAR

Given the success of upscaling mortar experimental data to concrete data through computational

approaches, described in Chapters 5 and 6, these concepts were applied to upscaling cement paste

data to mortar level data. In this approach, mortar microstructures are generated by randomly

placing virtual fine aggregates into a continuous cement past matrix. These microstructures are

subsequently subjected to a FEA stress relaxation simulation, where experimental cement paste

data is used as input. The results of these simulations are then used to describe the mortar material

behavior in a concrete microstructure simulation, which is carried out in a similar manner to the

simulations described in Chapter 5.

7.1 Mortar Microstructure Generation

As the convergence studies performed in Chapters 5 and 6 showed convergence of an RVE size

of approximately 3x the largest aggregate, this rule of thumb is used in this section. A set of fine

aggregates were reconstructed for use in generating mortar microstructures, with the largest aggre-

gate measuring about 0.65mm, thus a 2mm domain was chosen for this work. The reconstructed

sand grains are then used to generate a mortar microstructure by randomly placing them into a pe-

riodic, cubic domain until the desired volume fraction is reached, using the same approach outlined

in Chapter 3.

In this work, two different mortars are simulated - one with a w/c ratio of 0.4 and volume fraction

of 47% fine aggregates, loaded 3 days after mixing and the other with a w/c ratio of 0.5 and

a volume fraction of 50% fine aggregates, loaded 28 days after mixing. Corresponding cement

paste experimental data is used as input to describe the microstructure matrix [46]. Assessing two

different kinds of mortars will improve the understanding of how this model and approach can be

applied to modeling mortar viscoelasticity at both early and mature ages of mortar. A completed

mortar microstructure of 47% volume fraction is seen in Figure 7.1.

90

Figure 7.1: A mortar microstructure.

91

7.2 Description of Viscoelastic Cement Paste

Cement paste creep data from experimental work described in the previous section is used to

calculate the cement paste’s stress relaxation function, and the associated bulk and shear relaxation

functions. This data originates in Tavares and Grasley (2020), where further details regarding the

sample preparation and experimental procedure are described. [46]. The experimental procedures

are briefly described here for context.

7.2.1 Experimental Sample Preparation

Cement pastes and mortars with w/c equal to 0.40 and 0.50, respectively, were batched in a 6-Quart

stand mixer with a stainless-steel container, using Portland Cement Type I/II and tap water [130].

The mortar mixes included a river sand sieved to the #16 sieve with a sand to cement mass ratio

(s/c) of 2.0.

Mortar samples were cast in 76 x 156 mm cylinders to be tested for Young’s modulus and com-

pressive strength. Samples for stress relaxation tests were cast in plastic tubes with 11 x 203 mm

dimensions, from which 22 mm long segments were cut. Three replicate samples were tested for

each experiment at each age. Once filled with fresh material (and before being cut) the top ends of

the tubes were sealed with aluminum foil and electric tape as the tubes were placed horizontally in

a roller and subjected to a slow rotation, promoting a curing process that enables a homogeneous

w/c ratio distribution throughout the tube. Sealing the tubes ensures that fresh material stays inside

the mold during rotation while simultaneously preventing moisture loss during hydration.

All samples were cured at room temperature for 24 hours. The exposed surfaces of the 76 x 152

mm cylinder molds were wrapped with plastic to prevent moisture loss. After the first 24 hours, all

specimens were moved to an environmental chamber with 98% relative humidity at a temperature

of 23oC for a controlled curing process. All specimens were soaked in water for 24 hours prior to

testing. The cylinders made for the stress relaxation tests were sealed along their lateral surface

with aluminum foil, prior to loading, to prevent moisture loss during the tests. Furthermore, the

92

top end of each specimen received a very thin layer of heavy-duty epoxy to account for the surface

imperfections.

The stress relaxation experimental setup consists of multiple steel frames equipped with load cells

at the base that are connected to a single sensor/modular device that collects the data from all load

cells and transfers it to a computer, in which the data is converted to load units and stored. The

conversion of the signals to load units occurs through the LabView software, following a script

written on the background of the program interface. Each specimen is placed between two steel

plates located in the body of the frame. These plates have free vertical movement, while being

constrained from horizontal motion. The load is slowly applied by manually tightening a small

screw positioned at the top of each frame. The element containing the screw is constrained by two

leveled bolts. The rotation of the screw results in a vertical pressure that forces the upper plate to

move downwards, applying a displacement to the specimen.

Upon testing, the applied force is monitored in real time at the program interface, and slowly in-

creased until reaching the desired stress level. As mentioned previously, the caliper was used to

measure the vertical displacement between the steel plates located at the ends of the specimen.

In order to account for any free deformation of the samples as a function of time, the deforma-

tion of untested companion specimens, identical to the relaxation specimens, was measured. The

free strains were subtracted from the strains measured in the relaxation tests in order to isolate

mechanically induced strains.

7.3 Mortar Simulation

The periodic, cubic mortar microstructures are sliced into a stack of images in the Z-direction,

where each image represents a 6.6 micrometer thickness. These images are stacked meshed using

OOF3D in the same manner as the concrete microstructures using the process described in Chapter

5. In consistency with the periodic concrete simulations, periodic boundary condition constraint

equations are applied to the mortar microstructures. A constant, uniaxial compressive strain of

0.02% is applied to the microstructures for 14 simulated days. The sand grains are considered

93

to be linear elastic and are assigned a Young’s modulus value of 30 GPa. The cement paste is

assigned a Young’s modulus of 13.02 GPa and viscoelastic material properties, described in the

next section.

7.3.1 Description of Viscoelastic Cement Paste

The cement paste stress data and strain data from Tavares and Grasley (2020) is processed in the

same manner that the stress relaxation simulation data is, as described in Chapter 5. Two cement

pastes are assessed in this work, one with a w/c ratio of 0.4 loaded 3 days after mixing, and the

other with a w/c ratio of 0.5 loaded 28 days after mixing.

Stress relaxation tests are performed by subjecting a sample to a constant strain, maintaining a

perfectly constant strain is difficult to do in laboratory conditions, so to account for changes in the

applied strain, the strain history is accounted for through ε(t), which is the strain as a function of

time, t. Measured relaxation data over time is represented by σ(t). The constitutive relationship

between the strain history, ε(t), the stress, σ(t), and relaxation modulus, E(t) is

σ(t) =

∫ t

0

E(t− t′) δε(t
′)

δt′
dt, (7.1)

where t is time in d and t′ is the dummy time variable. E(t) is assumed to be of the form

E(t) = E0 + E1 · e
−t
τ1 + E2 · e

−t
τ2 + E3 · e

−t
τ3 + E4 · e

−t
τ4 + E5 · e

−t
τ5 + E6 · e

−t
τ6 GPa, (7.2)

where E0, E1, E2, E3, E4, E5, and E6 are coefficients with units GPa. The relaxation times τ0,

τ1, τ2, τ3, τ4, τ5 and τ6 are in units of days. To determine the coefficients in the E(t) equation,

Equation (7.1) is integrated and fit to the σ(t) data. The values of the fitted coefficients are then

plugged into Equation (7.2) to obtain E(t). The E(t) function calculated for the cement paste with

94

a w/c ratio of 0.4 loaded at 3 days is

E(t) = 0.898 + 2.910 · e
−t
0.05 + 7.269 · e

−t
0.25 + 5.262 · e

−t
1.25 − 7.585 · e

−t
2.5

+10.375 · e
−t
5 − 5.472 · e

−t
10 GPa,

(7.3)

where the τ0, τ1, τ2, τ3, τ4, τ5 and τ6 values are chosen to be 0.05, 0.25, 1.25, 2.5, 5, and 10

respectively. The E(t) function calculated for the cement paste with a w/c ratio of 0.5 loaded at 28

days is

E(t) = 1.01 + 2.568 · e
−t
0.05 − 0.208 · e

−t
0.25 + 12.306 · e

−t
1.25 − 6.109 · e

−t
2.5

+8.069 · e
−t
5 − 4.037 · e

−t
10 GPa,

(7.4)

where the τ0, τ1, τ2, τ3, τ4, τ5 and τ6 values are also chosen to be 0.05, 0.25, 1.25, 2.5, 5, and

10 respectively. Both Equations (7.3) and (7.4) are the average E(t) from three experiments,

respectively.

7.3.2 Mesh Density Convergence Study

Following the same procedures as the mesh density convergence study in Chapter 5, a single mi-

crostructure was meshed mutliple times at varying mesh densities. Each finite element mesh was

subjected to identical stress relaxation simulations. Two time points, t = 0 days and t = 14 days, are

used to assess the resulting relaxation modulus, where the relaxation modulus at t = 0 is equivalent

to the Young’s modulus. Given that the mortar microstructures are very similar, only set apart by

their volume fraction, only one mesh density convergence study was conducted. The 50% volume

fraction microstructure were selected for the study because they contain a higher number of ag-

gregates and, therefore, a suitable mesh density for the higher volume fraction set will be suitable

for the 47% volume fraction set as well. Figure 7.2 shows the corresponding data for the mortar

simulated with a 50% volume fraction and a w/c ratio of 0.4. In 7.2, the convergence is most pro-

nounced at t = 14 days, matching the findings in Chapters 5 and 6 that the mesh density becomes

more impactful on the results at later time steps. Clear convergence at a value around 0.000075

95

elements/micrometer3 can be seen in Figure 7.2.

Figure 7.2: The Young’s modulus a) and relaxation modulus at 14 days b) of a three-dimensional
cubic mortar microstructure with an edge length of 2 mm plotted against the density of finite
elements to determine convergence at a 50% fine aggregate volume fraction with a w/c ratio of 0.4

7.3.3 Results

Figure 7.3 shows the relaxation modulus E(t) of mortar with a w/c of 0.50 loaded age 28 days. The

Poisson’s ratio for cement paste in this simulation was assumed to be constant and equal to 0.235

based on the results from a study by Li et al [21]. Although that study showed that the Poisson’s

ratio is not constant during relaxation tests, the change with time is typically minor.

The instantaneous Young’s modulus obtained for this mortar following ASTM E111-17 [135] and

testing three replicate samples is 28.8 ± 0.53 GPa, while simulation results showed an instanta-

neous Young’s modulus of 24.7 GPa.

Figure 7.4 shows the relaxation modulus of mortar with a w/c of 0.40 loaded 3 days after mixing.

The Young’s modulus obtained for this mortar is 26.6 ± 0.45 GPa and 22.9 GPa for the experi-

mental and simulated data, respectively. Similar to the first simulation, the assumed Poisson’s ratio

is also equal to a constant value of 0.235.

As seen in Figures 7.4 and 7.3, the simulation results show the same relaxation trends, however

96

Figure 7.3: Experimental and simulated mortar stress relaxation data, loaded 28 days after mixing
with a w/c of 0.50. The gray band around each curve represnts ± the standard error.

Figure 7.4: Experimental and simulated mortar stress relaxation data, loaded 3 days after mixing
with a w/c of 0.40. The gray band around each curve represnts ± the standard error.

97

the agreement is not outstanding. This is hypothesized to be the result of the following potential

factors:

• Influence of ITZ on creep

• Aging behavior of cement paste at early ages

• Difficulty obtaining detailed strain history data in cement paste experiments

A publication by Lavergne et. al (2015) indicated that the ITZ impacts the creep of mortars, provid-

ing one potential explanation for the differences between the experimental and simulation results.

As the ITZ is a porous region with a lower stiffness that the surrounding cement and aggregates, it

is theorized that the ITZ has a lower resistance to creep and stress relaxation, thus increasing the

level of creep/relaxation in mortars and concrete. The microstructures in this dissertation doesn’t

include an ITZ region. In Chapter 5, it was shown that neglecting the ITZ in these microstructures

was a valid assumption, as the simulation and experimental concrete creep data showed excellent

agreement. However, the important difference between the work presented in Chapter 5 and this

chapter is that the mortar experimental data used to describe the viscoelastic behavior of the matrix

included the impact of the ITZ region surrounding the sand grains in the mortar. In the mortar

models presented in this chapter, the matrix is described by cement paste experimental data that

does not have any aggregates, and thus doesn’t include ITZ effects.

The viscoelastic behavior of the cement paste has been described by linear viscoelasticity in this

work, however since linear viscoelasticity does not include the aging behavior of early-age cement

paste and mortar, the FEA model does not include the aging behavior either. Differences in the

experimental and simulated data are believed to be the result of neglecting the aging component in

the viscoelastic model. This idea is supported by the closer agreement between the experimental

and simulation data for the mortar loaded at age 28 days compared to the results for the mortar

loaded at age 3 days. The cement paste sample loaded at age 3 days is not as far along in the

hydration process as the 28 days sample, making it more susceptible to the influence of aging.

98

Furthermore, Poisson’s ratio of the cement paste is assumed to be constant in the FEA simulations,

however literature has shown this assumption is not always valid [21]. Finally, the accuracy of

the strain history can also influence the shape and magnitude of the simulated E(t), as shown by

C. Tavares et. al [22]. Cement paste relaxation data has only been collected for 14 days, limiting

the length of time that of the simulations. Collection of longer-term cement paste creep data was

planned; however, this effort was interrupted due to COVID-19 and data beyond 14 days are not

available at this time.

The third and final hypothesis for the differences between the simulation and experimental relax-

ation data is the measurement of the strain in the cement paste experiments. In a stress relaxation

experiment, the ideal goal is to maintain a perfectly constant strain, however this is difficult to

obtain in real life. Thus, the strain history is accounted for by considering the strain to be a func-

tion of time. Strain measurements were taken by hand with a caliper, and due to the strains being

small, error in measurement could have a notable impact. These strains were fit to an equation that

was then used to calculate the relaxation modulus, E(t), therefore error in the measurements is

propagated into the simulation by way of the E(t) equation.

7.4 Summary

The research presented in this chapter investigates a method of upscaling cement paste creep data

to mortar creep behavior in an effort to further upscale these simulations to the concrete level in

future works, alleviating the challenges involving concrete creep measurements. Mortar simula-

tions were shown in this paper with reasonable agreement to experimental data. At the time of this

dissertation, suitable concrete data was unavailable for comparison, therefore the mortar results

were not upscaled to concrete as planned. The following conclusions can be drawn from the work

presented in this chapter:

• Convergence of the finite element mesh density was determined to be approximately 0.000075

elements/micrometer3 for the 3D mortar microstructures Simulations performed with lower

mesh densities showed up to 35 % difference from the converged results, showing the im-

99

portance of using a proper finite element mesh.

• The simulation of 14 days of mortar relaxation was performed with good agreement using

two different cement pastes - one with a w/c ratio of 0.4 loaded at 3 days, and the second

with a w/c ratio of 0.5 loaded at 28 days.

• Small differences between the simulation and experimental mortar relaxation data are thought

to be due to the lack of ITZ. In Chapter 5, the mortar experimental data included any influ-

ence that the ITZ region around the sand particles had on the creep behavior, whereas the

cement paste samples don’t contain any aggregates and thus, no ITZ regions.

• The upscaling approach presented here and in Chapter 5 shows the ability to upscale both

cement paste and mortar experimental data

100

8. SUMMARY AND CONCLUSIONS

8.1 Dissertation Summary

In this dissertation, a microstructure generation code was developed and presented. Real aggregate

shapes were reconstructed from XCT data analyzed with spherical harmonics. This code has the

ability to model a variety of boundary conditions in both 2D and 3D, as well as generate cubic

and cylindrical microstructures. A wide range of microstructures have been generated using these

codes, the details of which can be found in the Appendices. Great attention was paid to improving

the efficiency of the microstructure generation. Notable approaches include the pre-rotation of

aggregates and the asperity based overlap detection algorithm.

Asperities on an aggregate’s surface were identified through the first and second derivatives of the

radius equation in spherical coordinates. These locations were stored and used in a novel overlap

detection algorithm that compares the distance from an aggregate’s center to an asperity on another

aggregate with the radius of the aggregate in the same direction. Substantial time savings of over

85% for realist volume fractions resulted from this algorithm.

The virtual concrete samples were simulated and compared to experimental data that has been

extended using the TTS principle to create a long-term master creep compliance curve. Simulation

results using a periodic cubic microstructure showed excellent agreeement with the master curve.

On the other hand, it was shown that 2D periodic simulations greatly overpredict the creep of

concrete by 50% after 27 years of creep. Mortar microstructures were also assessed using two

cement pastes, one loaded at 3 days of age and the other loaded at 28 days old. The mortar

simulations showed good agreement with the general trend of the experimetnal stress relaxation

data, however the simulations underpredict the magnitude of relaxation, likely due to the lack of

an ItZ phase in the model.

101

8.2 Primary Conclusions

Simulation tools can be very useful in the world of concrete, and composites in general, to obtain

information on viscoelastic behavior. As lab tests on materials with long-term viscoelasticity,

such as concrete, are very slow to generate data, the methods presented in this paper offer a good

alternative to experiments by demonstrating the process to generate morphologically representative

microstructures and using FEM to predict long-term viscoelastic behavior.

The following conclusions can be drawn from this dissertation work:

• This work utilizes an efficient microstructure generation code that can be adapted to follow

different aggregate sieve gradations, utilize different aggregate shapes, etc. to allow for the

creation of a highly realistic microstructure.

• The improvements in efficiency resulting from the use of the novel asperity based overlap de-

tection algorithm were above 85% for microstructures containing greater than 30% volume

fraction coarse aggregates.

• The asperity check detected between an average of 85% and 90 % of all aggregate-aggregate

overlap in 40% volume fraction microstructures of each of the four gradations tested

• Periodic boundary conditions were successfully applied both the aggregate geometry and

mathematically. The geometrical periodicity was exact, while the stress and strain along

opposite edge elements on 2D and 3D microstructures were compared and found to have

good, but not perfect, agreement, indicating approximate periodicity. Small differences in

the stresses and strains resulted from the differences in size and shape of the edge elements

between the opposite edges.

• Convergence of the RVE size was found to be at approximately 60 mm for 2D and 90 mm 3D

periodic microstructures, corresponding to an edge length approximately 2x and 3x longer

than the largest aggregate’s length for the 2D and 3D microstructures, respectively.

102

• Both the convergence of the RVE size and the finite element mesh density show a time-

dependence of the value of convergence, indicating the need for convergence studies of time

dependent properties to assess multiple time points. Additionally, the convergence of the

Young’s modulus does not represent the convergence of the creep/relaxation behavior, fur-

ther reinforcing the need to assess the convergence over time.

• Both 2D and 3D simulations accurately predict Young’s modulus within 7 % and 3 %, re-

spectively. However, the 2D simulations greatly overpredict creep, with the overprediction

of the creep compliance increasing over time to about 50 % after 10,000 days. Therefore,

2D models may be sufficient to predict Young’s modulus in some applications, they are not

recommended for use in modeling viscoelasticity.

• Two types of cement paste, one loaded at an early age and one loaded at maturity, were up-

scaled to mortar using the same framework but adapted to simulate a mortar microstructure.

• The treatment of coarse aggregates as linear elastic and the decision to neglect the ITZ re-

gions around the coarse aggregates in concrete microstructures appears to be valid simplifi-

cations given the close agreement between the 3D simulation results and experimental data.

Any significant effect of the ITZ regions around sand grains were not studied but were swept

into the mortar matrix creep data.

• On the other hand, the lack of an ITZ region in the mortar microstructures is believed to be

the primary cause of underpredicion of stress relaxation in the simulation of mortars.

• Due to the time-dependent nature of concrete creep, it is challenging to collect creep behavior

data in a timely fashion. This dissertation work has successfully upscaled experimental

mortar creep data to predict concrete creep behavior.

103

8.3 Implications & Applications

Presented in this dissertation is an efficient microstructure generation code capable of producing

both 2D and 3D microstructures with a variety of boundary conditions and sample geometries. This

code can adapt to variety of aggregate gradations, aggregate shapes, and volume fractions. From

this, future researchers can generate virtual microstructures that closely resemble any concrete in

question. These codes have attracted interest and collaboration with national laboratories that are

researching concrete mechanical behavior and fracture, where a highly realistic virtual morphology

is useful.

This work has developed a complete framework to predict long-term concrete creep behavior by

using virtual concrete microstructures and FEA simulations to upscale experimental mortar creep

data. From the start of microstructure generation to the processing of the FEA simulation results,

decades of data can now be generated in 1-2 days. This opens the door to much future work and

assessment of the influence of a variety of parameters on the mechanical behavior of concrete and

mortar, as data can be gathered rapidly and simultaneously.

Applications of this work are numerous and varied. The initial target application was assessment

of aging nuclear power plants’ concrete containment structures and the assessment of the ongoing

viability of those structures. As it is not possible to take a concrete core from a nuclear power plant,

this research has demonstrated a method of assessing the level of concrete creep. From this, the

concrete creep behavior at nearly any NPP can be evaluated if the concrete mix design is known.

This data can be used as input into larger-scale simulation codes or models.

Furthermore, the homogenized concrete creep constitutive relationship was used in a collaboration

with Idaho National Lab to describe the concrete viscoelastic behavior in a large-scale simulation

in the FEA software Grizzly. This collaboration produced simulations of 40 years of concrete creep

in large, reinforced concrete walls - providing a method of using the data collected in this research

to make predictions on the structural scale. Use of structural simulation codes presents one method

104

of upscaling the data generated in the framework presented here, as it can be used to describe the

material behavior of the concrete in situations with reinforcement, prestress or post-tensioning, and

other structural design scenarios.

8.4 Future Work & Next Steps

Many avenues of study may branch off from the research presented in this dissertation. The mi-

crostructure generation code paired with the asperity-based overlap detection method opens the

door to much research into microstructural factors and their relationship to mechanical behavior.

Additionally, with the successful upscaling of both cement paste and mortar experimental data, a

number of possibilities for future areas of research have been brainstormed. The following ques-

tions, among many others, can be posed:

• What is the impact of aggregate gradation on creep?

• What is the impact of aggregate shape on creep?

• How does the morphological boundary conditions of a cylinder microstructure impact creep

behavior? Is it the same relationship as cubic microstructures?

• How does the ratio of diameter to height of cylinders impact simulated Young’s modulus and

creep?

• How can an ITZ be incorporated into the microstructures and FEA models to better predict

creep of mortar?

• Can cement paste data be upscaled all the way to concrete?

• Can this framework incorporate steel reinforcement on a small scale?

105

REFERENCES

[1] “Will Nuclear Power Plants in the United States Experience Life beyond 60?.”

https://www.scottmadden.com/insight/will-nuclear-power-plants-in-the-united-states-

experience-life-beyond-60/.

[2] A. Baranikmuar, C. E. Torrence, and Z. Grasley, “Using Time-Temperature Superposition

to Preduct Long-Term Creep of Nuclear Concrete,” in Transactions of 25th Conference on

Structural Mechanics in Reactor Technology, 2019.

[3] X. Yang, Z. You, Z. Wang, and Q. Dai, “Review on heterogeneous model reconstruction

of stone-based composites in numerical simulation,” Construction and Building Materials,

vol. 117, pp. 229–243, 2016.

[4] F. Bernachy-Barbe and B. Bary, “Effect of aggregate shapes on local fields in 3D mesoscale

simulations of the concrete creep behavior,” Finite Elements in Analysis and Design,

vol. 156, no. September 2018, pp. 13–23, 2019.

[5] N. Chawla, R. S. Sidhu, and V. V. Ganesh, “Three-dimensional visualization and

microstructure-based modeling of deformation in particle-reinforced composites,” Acta Ma-

terialia, 2006.

[6] Y. Fu, L. Wang, and C. Zhou, “3D clustering DEM simulation and non-invasive experimen-

tal verification of shear localisation in irregular particle assemblies,” International Journal

of Pavement Engineering, vol. 11, pp. 355–365, Oct. 2010.

[7] E. J. Garboczi, “Three-dimensional mathematical analysis of particle shape using X-ray

tomography and spherical harmonics: Application to aggregates used in concrete,” Cement

and Concrete Research, vol. 32, pp. 1621–1638, Oct. 2002.

106

[8] Y. Huang, D. Yan, Z. Yang, and G. Liu, “2D and 3D homogenization and fracture anal-

ysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo

simulations,” Engineering Fracture Mechanics, vol. 163, pp. 37–54, Sept. 2016.

[9] W. P. Y. Smith, Relating concrete cube, core and cylinder compressive strengths that are

cast, cured, prepared and tested in laboratory conditions. PhD thesis, University of Cape

Town, 2017.

[10] A. M. Neville, Properties of Concrete. New York: Pearson, 5 ed., 2015.

[11] “U.S. Nuclear Regulatory Commission – NRC Datasets.” https://www.nrc.gov/reading-

rm/doc-collections/datasets/, 2019.

[12] “Duke Energy shuts down Crystal River nuclear plant permanently,” Central Florida 13

News, Feb. 2013.

[13] “Crystal River nuclear plant to be retired; company evaluating sites for potential new gas-

fueled generation,” Feb. 2013.

[14] S. Mindess, F. J. Young, and D. Darwin, Concrete 2nd Edition. 2003.

[15] L. G. Tulin, Creep of a Portland cement mortar as a function of stress-level and time. PhD

thesis, Iowa State University, Digital Repository, Ames, Jan. 1965.

[16] I. J. Jordaan, “A note on concrete creep analysis under static temperature fields,” Matériaux

et Constructions, vol. 7, pp. 329–333, Sept. 1974.

[17] Z. P. Bazant and L. Panula, “Practical prediction of time-dependent deformations of con-

crete,” tech. rep., 1978.

[18] S. Scheiner, C. Hellmich, and A. M. Asce, “Continuum Microviscoelasticity Model for

Aging Basic Creep of Early-Age Concrete,” Journal of Engineering Mechanics, 2009.

107

[19] Y. J. Huang, Z. J. Yang, X. W. Chen, and G. H. Liu, “Monte Carlo simulations of meso-scale

dynamic compressive behavior of concrete based on X-ray computed tomography images,”

International Journal of Impact Engineering, vol. 97, pp. 102–115, Nov. 2016.

[20] L.-O. Nilsson, “Present limitations of models for predicting chloride ingress into reinforced

concrete structures,” Journal de Physique IV (Proceedings), vol. 136, pp. 123–130, Nov.

2006.

[21] A. Baranikmuar, C. E. Torrence, and Z. Grasley, “3D Creep Response of Concrete,” in Pro-

ceedings of The 19th International Conference on Environmental Degradation of Materials

in Nuclear Power Systems- Water Reactors, 2019.

[22] C. Argento and D. Bouvard, “Modeling the effective thermal conductivity of random pack-

ing of spheres through densification,” International Journal of Heat and Mass Transfer,

vol. 39, pp. 1343–1350, May 1996.

[23] A. Jagota and C. Y. Hui, “The effective thermal conductivity of a packing of spheres,” Jour-

nal of Applied Mechanics, Transactions ASME, vol. 57, no. 3, pp. 789–791, 1990.

[24] L. Y. Yi, K. J. Dong, R. P. Zou, and A. B. Yu, “Coordination number of the packing of ternary

mixtures of spheres: Dem simulations versus measurements,” Industrial and Engineering

Chemistry Research, vol. 50, pp. 8773–8785, July 2011.

[25] L. Y. Yi, K. J. Dong, R. P. Zou, and A. B. Yu, “Radical tessellation of the packing of spheres

with a log-normal size distribution,” Physical Review E - Statistical, Nonlinear, and Soft

Matter Physics, vol. 92, Sept. 2015.

[26] K. Han, Y. T. Feng, and D. R. Owen, “Sphere packing with a geometric based compression

algorithm,” Powder Technology, vol. 155, pp. 33–41, July 2005.

108

[27] A. Z. Zinchenko, “Algorithm for Random Close Packing of Spheres with Periodic Boundary

Conditions,” tech. rep., 1994.

[28] Z. Y. Zhou, R. P. Zou, D. Pinson, and A. B. Yu, “Dynamic simulation of the packing of

ellipsoidal particles,” Industrial and Engineering Chemistry Research, vol. 50, pp. 9787–

9798, Aug. 2011.

[29] W. Man, A. Donev, F. H. Stillinger, M. T. Sullivan, W. B. Russel, D. Heeger, S. Inati,

S. Torquato, and P. M. Chaikin, “Experiments on random packings of ellipsoids,” Physical

Review Letters, vol. 94, p. 198001, May 2005.

[30] X. Lin and T.-T. Ng, “Contact detection algorithms for three-dimensional ellipsoids in dis-

crete element modelling,” International Journal for Numerical and Analytical Methods in

Geomechanics, vol. 19, pp. 653–659, Sept. 1995.

[31] X. Lin and T. T. Ng, “A three-dimensional discrete element model using arrays of ellip-

soids,” Geotechnique, vol. 47, no. 2, pp. 319–329, 1997.

[32] F. Dorai, C. Moura Teixeira, M. Rolland, E. Climent, M. Marcoux, and A. Wachs, “Fully

resolved simulations of the flow through a packed bed of cylinders: Effect of size distribu-

tion,” Chemical Engineering Science, vol. 129, pp. 180–192, June 2015.

[33] W. Zhang, K. E. Thompson, A. H. Reed, and L. Beenken, “Relationship between packing

structure and porosity in fixed beds of equilateral cylindrical particles,” Chemical Engineer-

ing Science, vol. 61, pp. 8060–8074, Dec. 2006.

[34] A. B. Y. R. P. Zou, “Wall effect on the packing of cylindrical particles,” 1996.

[35] H.-K. Man and J. G. M van Mier, “Size effect on strength and fracture energy for numerical

concrete with realistic aggregate shapes,” vol. 154, pp. 61–72, 2008.

109

[36] E. Piotrowska, Y. Malecot, and Y. Ke, “Experimental investigation of the effect of coarse

aggregate shape and composition on concrete triaxial behavior,” Mechanics of Materials,

2014.

[37] G. Giaccio and R. Zerbino, “Failure mechanism of concrete: combined effects of coarse

aggregates and strength level,” Advanced Cement Based Materials, 1998.

[38] A. C. Aydin, A. Arslan, and R. Gül, “Mesoscale simulation of cement based materials’

time-dependent behavior,” Computational Materials Science, 2007.

[39] J. J. Zheng, X. Z. Zhou, Y. F. Wu, and X. Y. Jin, “A numerical method for the chloride

diffusivity in concrete with aggregate shape effect,” Construction and Building Materials,

2012.

[40] S. Dehghanpoor Abyaneh, H. S. Wong, and N. R. Buenfeld, “Modelling the diffusivity

of mortar and concrete using a three-dimensional mesostructure with several aggregate

shapes,” Computational Materials Science, 2013.

[41] J. J. Brooks, “30-year creep and shrinkage of concrete,” Magazine of Concrete Research,

vol. 57, pp. 545–556, Nov. 2005.

[42] Z. Qian, E. J. Garboczi, G. Ye, and E. Schlangen, “Anm: a geometrical model for the

composite structure of mortar and concrete using real-shape particles,” Materials and Struc-

tures/Materiaux et Constructions, vol. 49, pp. 149–158, Jan. 2016.

[43] S. Thomas, Y. Lu, and E. J. Garboczi, “Improved Model for Three-Dimensional Virtual Con-

crete: Anm Model,” Journal of Computing in Civil Engineering, vol. 30, no. 2, p. 4015027,

2015.

[44] “OOF: Finite Element Analysis of Microstructures.”

https://www.ctcms.nist.gov/oof/oof3d/index.html.

110

[45] A. Baranikumar, C. E. Torrence, and Z. Grasley, “Thermo-Rheological Approach to Predict

Long-Term Creep of Cement Mortar from Short-Term Tests,” Mechanics of Time-Dependent

Materials.

[46] C. Tavares and Z. Grasley, “Effect of Strain History and Mixture Proportions on Early Age

Cement Paste Mortar and Stress Relaxation,” Journal of Materials in Civil Engineering.

[47] J. W. Bullard and E. J. Garboczi, “A model investigation of the influence of particle shape on

portland cement hydration,” Cement and Concrete Research, vol. 36, no. 6, pp. 1007–1015,

2006.

[48] D. P. Bentz, E. J. Garboczi, C. J. Haecker, and O. M. Jensen, “Effects of cement particle

size distribution on performance properties of Portland cement-based materials,” Cement

and Concrete Research, vol. 29, pp. 1663–1671, Oct. 1999.

[49] L. W. Rong, Z. Y. Zhou, and A. B. Yu, “Lattice-Boltzmann simulation of fluid flow through

packed beds of uniform ellipsoids,” Powder Technology, vol. 285, pp. 146–156, Nov. 2015.

[50] B. Osbaeck and V. Johansen, “Particle Size Distribution and Rate of Strength Development

of Portland Cement,” Journal of the American Ceramic Society, vol. 72, pp. 197–201, Feb.

1989.

[51] J. Gan, Z. Zhou, and A. Yu, “Effect of particle shape and size on effective thermal conduc-

tivity of packed beds,” Powder Technology, vol. 311, pp. 157–166, Apr. 2017.

[52] F. Y. Fraige, P. A. Langston, and G. Z. Chen, “Distinct element modelling of cubic particle

packing and flow,” Powder Technology, vol. 186, pp. 224–240, Sept. 2008.

[53] M. J. Vold, “THE SEDIMENT VOLUME IN DILUTE DISPERSIONS OF SPHERICAL

PARTICLES,” The Journal of Physical Chemistry, vol. 64, no. 11, pp. 1616–1619, 1960.

111

[54] M. D. Webb and I. L. Davis, “Random particle packing with large particle size variations

using reduced-dimension algorithms,” Powder Technology, 2006.

[55] T. Atmakidis and E. Y. Kenig, “CFD-based analysis of the wall effect on the pressure drop

in packed beds with moderate tube/particle diameter ratios in the laminar flow regime,”

Chemical Engineering Journal, 2009.

[56] C. E. Torrence, A. Baranikumar, Z. Grasley, and E. J. Garboczi, “Homogenization of Con-

crete Microstructures in Nuclear Power Plants,” tech. rep.

[57] Z. Qian, E. J. Garboczi, G. Ye, and E. Schlangen, “Anm: a geometrical model for the

composite structure of mortar and concrete using real-shape particles,” Materials and Struc-

tures/Materiaux et Constructions, vol. 49, no. 1-2, pp. 149–158, 2014.

[58] M. Salemi and H. Wang, “Image-aided random aggregate packing for computational mod-

eling of asphalt concrete microstructure,” Construction and Building Materials, vol. 177,

pp. 467–476, 2018.

[59] Y. Wang and J. G. Zhu, “Simulation of realistic particle packing and impact on high-density

tape recording,” in IEEE Transactions on Magnetics, vol. 45, pp. 3737–3740, Oct. 2009.

[60] H. Zhang, P. Sheng, J. Zhang, and Z. Ji, “Realistic 3D modeling of concrete composites

with randomly distributed aggregates by using aggregate expansion method,” Construction

and Building Materials, vol. 225, pp. 927–940, Nov. 2019.

[61] N. Chernov, Y. Stoyan, and T. Romanova, “Mathematical model and efficient algorithms

for object packing problem,” Computational Geometry: Theory and Applications, vol. 43,

pp. 535–553, July 2010.

[62] C. Recarey, I. Pérez, R. Roselló, M. Muniz, E. Hernández, R. Giraldo, and E. Oñate, “Ad-

vances in particle packing algorithms for generating the medium in the Discrete Element

112

Method,” Computer Methods in Applied Mechanics and Engineering, 2019.

[63] X. Y. Li, S. H. Teng, and A. Üngör, “Biting: Advancing front meets sphere packing,” Inter-

national Journal for Numerical Methods in Engineering, vol. 49, pp. 61–81, Sept. 2000.

[64] Y. T. Feng, K. Han, and D. R. J. Owen, “Filling domains with disks: an advancing front

approach,” International Journal for Numerical Methods in Engineering, vol. 56, pp. 699–

713, Feb. 2003.

[65] I. P. Morales, M. M. de Farias, R. R. Valera, C. R. Morfa, and H. E. Martínez Carvajal,

“Contributions to the generalization of advancing front particle packing algorithms,” In-

ternational Journal for Numerical Methods in Engineering, vol. 107, pp. 993–1008, Sept.

2016.

[66] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies,”

vol. 29, pp. 47–65, Mar. 1979.

[67] M. Lu and ·. R. Mcdowell, “The importance of modelling ballast particle shape in the dis-

crete element method,” vol. 9, pp. 69–80, 2007.

[68] S. Abedi and A. A. Mirghasemi, “Particle shape consideration in numerical simulation of

assemblies of irregularly shaped particles,” Particuology, vol. 9, pp. 387–397, Aug. 2011.

[69] K. Kildashti, K. Dong, and B. Samali, “An accurate geometric contact force model

for super-quadric particles,” Computer Methods in Applied Mechanics and Engineering,

vol. 360, p. 112774, Mar. 2020.

[70] M. Kodam, R. Bharadwaj, J. Curtis, B. Hancock, and C. Wassgren, “Cylindrical object

contact detection for use in discrete element method simulations. Part I - Contact detection

algorithms,” Chemical Engineering Science, vol. 65, pp. 5852–5862, Nov. 2010.

113

[71] J. S. Ketchel and P. M. Larochelle, “Collision detection of cylindrical rigid bodies using line

geometry,” tech. rep.

[72] J. M. Ting, “A robust algorithm for ellipse-based discrete element modelling of granular

materials,” Computers and Geotechnics, vol. 13, pp. 175–186, Jan. 1992.

[73] A. Džiugys and B. Peters, “An approach to simulate the motion of spherical and non-

spherical fuel particles in combustion chambers,” Granular Matter, vol. 3, pp. 231–265,

Dec. 2001.

[74] X. Jia, Y. K. Choi, B. Mourrain, and W. Wang, “An algebraic approach to continuous col-

lision detection for ellipsoids,” Computer Aided Geometric Design, vol. 28, pp. 164–176,

Mar. 2011.

[75] J. W. Perram and M. S. Wertheim, “Statistical mechanics of hard ellipsoids. I. Overlap

algorithm and the contact function,” Journal of Computational Physics, vol. 58, pp. 409–

416, May 1985.

[76] J. M. Ting, M. Khwaja, L. R. Meachum, and J. D. Rowell, “An ellipse-based discrete el-

ement model for granular materials,” International Journal for Numerical and Analytical

Methods in Geomechanics, vol. 17, pp. 603–623, Sept. 1993.

[77] Y. Song, R. Turton, and F. Kayihan, “Contact detection algorithms for DEM simulations of

tablet-shaped particles,” Powder Technology, vol. 161, pp. 32–40, Jan. 2006.

[78] M. Kodam, J. Curtis, B. Hancock, and C. Wassgren, “Discrete element method modeling of

bi-convex pharmaceutical tablets: Contact detection algorithms and validation,” Chemical

Engineering Science, vol. 69, pp. 587–601, Feb. 2012.

[79] Y. Zhou, H. Jin, and B. Wang, “Modeling and mechanical influence of meso-scale concrete

considering actual aggregate shapes,” Construction and Building Materials, 2019.

114

[80] K. Dong, C. Wang, and A. Yu, “Voronoi analysis of the packings of non-spherical particles,”

Chemical Engineering Science, vol. 153, pp. 330–343, Oct. 2016.

[81] F. M. Schallerab, S. C. Kapferac, M. E. Evansa, M. J. Hoffmanna, T. Asted, M. Saadatfare,

K. Meckea, G. W. Delaney, and G. E. Schröder-Turka, “Set Voronoi diagrams of 3D assem-

blies of aspherical particles,” Philosophical Magazine, vol. 93, no. 31-33, pp. 3993–4017,

2013.

[82] G. Mollon and J. Zhao, “3D generation of realistic granular samples based on random fields

theory and Fourier shape descriptors,” Computer Methods in Applied Mechanics and Engi-

neering, vol. 279, pp. 46–65, Sept. 2014.

[83] B. Zhou Ã, J. Wang, and H. Wang, “Three-dimensional sphericity, roundness and fractal

dimension of sand particles,”

[84] A. Bertei, C. C. Chueh, J. G. Pharoah, and C. Nicolella, “Modified collective rearrange-

ment sphere-assembly algorithm for random packings of nonspherical particles: Towards

engineering applications,” Powder Technology, vol. 253, pp. 311–324, 2014.

[85] G. Liu and K. E. Thompson, “Influence of computational domain boundaries on internal

structure in low-porosity sphere packings,” Powder Technology, vol. 113, no. 1, pp. 185–

196, 2000.

[86] R. Zhou, Z. Song, and Y. Lu, “3D mesoscale finite element modelling of concrete,” Com-

puters and Structures, vol. 192, pp. 96–113, Nov. 2017.

[87] T. Byholm, M. Toivakka, and J. Westerholm, “Effective packing of 3-dimensional voxel-

based arbitrarily shaped particles,” Powder Technology, vol. 196, pp. 139–146, Dec. 2009.

[88] C. W. Boon, G. T. Houlsby, and S. Utili, “A new contact detection algorithm for three-

dimensional non-spherical particles,” Powder Technology, vol. 248, pp. 94–102, Nov. 2013.

115

[89] E. J. Garboczi and J. W. Bullard, “Contact function, uniform-thickness shell volume, and

convexity measure for 3D star-shaped random particles,” Powder Technology, vol. 237,

pp. 191–201, 2013.

[90] T. Tong, COMPUTATIONAL MODELLING OF CONCRETE TIME-DEPENDENT ME-

CHANICS AND ITS APPLICATION TO LARGE-SCALE STRUCTURE ANALYSIS. PhD

thesis, University of Pittsburgh Swanson School of Engineering, Pittsburgh, 2016.

[91] M. Sharma and S. Bishnoi, “Influence of properties of interfacial transition zone on elas-

tic modulus of concrete: Evidence from micromechanical modelling,” Construction and

Building Materials, vol. 246, June 2020.

[92] H. Schorn and U. Rode, “Numerical simulation of crack propagation from microcracking to

fracture,” Cement and Concrete Composites, vol. 13, no. 2, pp. 87–94, 1991.

[93] Y. Yin, Q. Ren, and L. Shen, “Study on the effect of aggregate distribution on mechanical

properties and damage cracks of concrete based on multifractal theory,” Construction and

Building Materials, vol. 262, Nov. 2020.

[94] M. Q. Thai, B. Bary, and Q. C. He, “A homogenization-enriched viscodamage model for

cement-based material creep,” Engineering Fracture Mechanics, vol. 126, pp. 54–72, 2014.

[95] S. M. Kim and R. K. Abu Al-Rub, “Meso-scale computational modeling of the plastic-

damage response of cementitious composites,” Cement and Concrete Research, vol. 41,

pp. 339–358, Mar. 2011.

[96] G. Ye, K. Van Breugel, and A. L. Fraaij, “Three-dimensional microstructure analysis of

numerically simulated cementitious materials,” in Cement and Concrete Research, vol. 33,

pp. 215–222, Feb. 2003.

[97] G. Sherzer, P. Gao, E. Schlangen, G. Ye, and E. Gal, “Upscaling cement paste microstructure

116

to obtain the fracture, shear, and elastic concrete mechanical LDPM parameters,” Materials,

vol. 10, no. 3, 2017.

[98] L. Contrafatto, M. Cuomo, and S. Gazzo, “A concrete homogenisation technique at meso-

scale level accounting for damaging behaviour of cement paste and aggregates,” Computers

and Structures, vol. 173, pp. 1–18, Sept. 2016.

[99] T. De Larrard, B. Bary, E. Adam, and F. Kloss, “Influence of aggregate shapes on drying

and carbonation phenomena in 3D concrete numerical samples,” Computational Materials

Science, 2013.

[100] T. Honorio, B. Bary, and F. Benboudjema, “Multiscale estimation of ageing viscoelastic

properties of cement-based materials: A combined analytical and numerical approach to

estimate the behaviour at early age,” Cement and Concrete Research, vol. 85, pp. 137–155,

July 2016.

[101] P. Wriggers and S. O. Moftah, “Mesoscale models for concrete: Homogenisation and dam-

age behaviour,” Finite Elements in Analysis and Design, vol. 42, no. 7 SPEC. ISS., pp. 623–

636, 2006.

[102] F. Xu, Z. Wu, J. Zheng, Y. Hu, and Q. Li, “Experimnetal study on the bond behavior of

reinforcing bars embedded in concrete subjected to lateral pressure,” Journal of Materials

in Civil Engineering, vol. 24, no. 1, pp. 125–133, 2012.

[103] Q. Dai and Z. You, “Prediction of creep stiffness of asphalt mixture with micromechanical

finite-element and discrete-element models,” Journal of Engineering Mechanics, vol. 133,

pp. 163–173, Feb. 2007.

[104] A. K. Kwan, Z. M. Wang, and H. C. Chan, “Mesoscopic study of concrete II: Nonlinear

finite element analysis,” Computers and Structures, vol. 70, no. 5, pp. 545–556, 1999.

117

[105] B. Bary, C. Bourcier, T. Helfer, B. Bary, C. Bourcier, and T. Helfer, “Thermoviscoelastic

analysis of concrete creep at mesoscale,” tech. rep.

[106] Q. X. Meng, D. Lv, and Y. Liu, “Mesoscale computational modeling of concrete-like

particle-reinforced composites with non-convex aggregates,” Computers and Structures,

vol. 240, Nov. 2020.

[107] Z. Wu, J. Zhang, H. Yu, and H. Ma, “3D mesoscopic investigation of the specimen aspect-

ratio effect on the compressive behavior of coral aggregate concrete,” Composites Part B:

Engineering, vol. 198, Oct. 2020.

[108] K. Hbaieb, Q. X. Wang, Y. H. J. Chia, and B. Cotterell, “Modelling stiffness of polymer/clay

nanocomposites,” Polymer, 2007.

[109] A. Yin, X. Yang, and Z. Yang, “2D and 3D fracture modeling of asphalt mixture with ran-

domly distributed aggregates and embedded cohesive cracks,” in Procedia IUTAM, vol. 6,

pp. 114–122, Elsevier B.V., 2013.

[110] T. Liu, S. Qin, D. Zou, W. Song, and J. Teng, “Mesoscopic modeling method of concrete

based on statistical analysis of CT images,” Construction and Building Materials, vol. 192,

pp. 429–441, Dec. 2018.

[111] H. Shen and L. C. Brinson, “Finite element modeling of porous titanium,” International

Journal of Solids and Structures, 2007.

[112] S. Meille and E. J. Garboczi, “Linear elastic properties of 2D and 3D models of porous

materials made from elongated objects Related content Modelling drying shrinkage in re-

constructed porous materials: application to porous Vycor glass Simulations of glass-estane

mock PBXs Linear elas,” Modelling and Simulation in Materials Science and Engineering,

no. 9, pp. 371–390, 2001.

118

[113] M. Krishnapillai, R. Jones, I. H. Marshall, M. Bannister, and N. Rajic, “NDTE using pulse

thermography: Numerical modeling of composite subsurface defects,” Composite Struc-

tures, 2006.

[114] L. Boltzmann, “On the theory of the elastic aftereffect,” Poggendorff’s Ann. Phys. Chem,

vol. 7, pp. 624–645, 1876.

[115] G. Pickett, “THE EFFECT OF CHANGE IN MOISTURE-CONTENT ON THE CREEP

OF CONCRETE UNDER A SUSTAINED LOAD,” Portland Cement Assoc R & D Lab

Bull, no. 0, 1970.

[116] F. Lavergne, K. Sab, J. Sanahuja, M. Bornert, and C. Toulemonde, “Investigation of the

effect of aggregates’ morphology on concrete creep properties by numerical simulations,”

Cement and Concrete Research, vol. 71, pp. 14–28, 2015.

[117] Y. Wang, Q. Xu, and S. Chen, “Approaches of concrete creep using mesomechanics: Nu-

merical simulation and predictive model,” Modelling and Simulation in Materials Science

and Engineering, vol. 27, no. 5, 2019.

[118] B. R. H. Campbell and R. E. Tobin, “Core and Cylinder Strengths of Natural and

Lightweight Concrete,” ACI Journal Proceedings, vol. 4, no. 64, pp. 190–195, 1967.

[119] A. Ergün and G. Kürklü, “x,” Tech. Rep. 3, 2012.

[120] D. J. Elwell and G. Fu, “Compression Testing of Concrete: Cylinders versus Cubes,” tech.

rep., United States Department of Transportation, Mar. 1995.

[121] J. R. Del Viso, J. R. Carmona, and G. Ruiz, “Size and Shape Effects on the Compressive

Strength of High Strength Concrete,” in International Association of Fracture Mechanics

for Concrete and Concrete Structures, 2007.

119

[122] M. K. Abd and Z. D. Habeeb, “EFFECT OF SPECIMEN SIZE AND SHAPE ON COM-

PRESSIVE STRENGTH OF SELF-COMPACTING CONCRETE,” Diyala Journal of En-

gineering Sciences, vol. 7, no. 2, pp. 16–29, 2014.

[123] Y. Kusumawardaningsih, E. Fehling, and M. Ismail, “ScienceDirect UHPC compressive

strength test specimens: Cylinder or cube?,” Procedia Engineering, vol. 125, pp. 1076–

1080, 2015.

[124] S. Reddy, S. Rao, and S. Shrihari, “Strength Conversion Factors for Concrete Based On

Specimen Geometry, Aggregate Size and Direction of Loading,” International Journal of

Recent Technology and Engineering, no. 2, pp. 2277–3878, 2019.

[125] J. N. Pacheco, J. de Brito, C. Chastre, and L. Evangelista, “Probabilistic conversion of

the compressive strength of cubes to cylinders of natural and recycled aggregate concrete

specimens,” Materials, vol. 12, Jan. 2019.

[126] ASTM, “ASTM D4791 - Standard Test Method for Flat Particles, Elongated Particles, or

Flat and Elongated Particles in Coarse Aggregate,” tech. rep., American Sociey for Testing

and Materials, 2019.

[127] C. T. Sun and R. S. Vaidya, “Prediction of composite properties from a representative vol-

ume element,” Composites Science and Technology, vol. 56, pp. 171–179, Jan. 1996.

[128] H. Wadell, “Volume, Shape, and Roundness of Rock Particles,” The Journal of Geology,

vol. 40, no. 5, pp. 443–451, 1932.

[129] F. W.B. and T. S.E., “THE LAWS OF PROPORTIONING CONCRETE,” Jan. 1907.

[130] ASTM C150/C150M, “Standard Specification for Portland Cement,” Tech. Rep. April,

2020.

120

[131] ASTM C192, “Standard Practice for Sampling Freshly Mixed Concrete,” ASTM Interna-

tional, West Conshohocken, PA, vol. 04, pp. 8–10, 2007.

[132] Z. P. Bažant and A. Steffens, “Mathematical model for kinetics of alkali-silica reaction in

concrete,” Cement and Concrete Research, vol. 30, pp. 419–428, Mar. 2000.

[133] B. Bary, C. Bourcier, and T. Helfer, “Numerical Analysis of Concrete Creep on Mesoscopic

3D Specimens,” Concreep 10, 2015.

[134] Y. J. Huang, Z. J. Yang, X. W. Chen, and G. H. Liu, “Monte Carlo simulations of meso-scale

dynamic compressive behavior of concrete based on X-ray computed tomography images,”

International Journal of Impact Engineering, vol. 97, pp. 102–115, Nov. 2016.

[135] A. International, “ASTM E111 - 17: Standard Test Method for Young’s Modulus, Tangent

Modulus, and Chord Modulus,” tech. rep., American Society of Testing and Materials, 2017.

121

APPENDIX A

MICROSTRUCTURE GENERATION CODE

A.1 Aggregate Reconstruction and Pre-Rotation

addpath(’C:\Users\ctorrence\Documents\Plot_PBC’)

cd ’D:\Christa\aggregate\MA108BD-6-coarse’

data = readtable(’MA108BD-6-coarse-geom.dat’,’ReadVariableNames’, false);

nlim = data:,13; %’nlim’ is the optimal nmax value indicated in the dataset

temp = data(:,1);

s = char(table2cell(temp(:,1)));

volumes = data:,7;

vol = zeros(length(nlim)*10,1);

parfor e=1:1950 %195 aggregates in original file

valu = round((e-5)/10)+1; %Need 10 copies of original aggregate

%’valu’ linkes ’e’ to original aggregate number

a = dlmread(string(s(valu,:))); %Read anm coefficient file

b = zeros(length(a(:,1)),4); %’b’ will hold the new, rotated coefficients

alpha = rand*2*pi; %Random rotation about the X-axis

122

beta = rand*2*pi; %Random rotation about the Y-axis

gamma =rand*2*pi; %Random rotation about the Z-axis

cosbeta = cos(beta2);

sinbeta = sin(beta2);

for h=1:((nlim(valu,1)+1)2̂) %’nlim’ is the n_max value suggested in the orignal dataset

n=a(h,1); %Column 1 is n value

m=a(h,2); %Column 2 is m value

for mp=n:-1:-n

ddd=sqrt(factorial(n+mp)*factorial(n-mp)/factorial(n+m)/factori al(n-m));

klow=max(0,m-mp);

khigh=min(n-mp,n+m);

total=0.0;

for k=klow:khigh

abc=((-1)(̂k+mp-m))*(factorial(n+m)/factorial(k)/factorial(n+m-k))*

(factorial(n-m)/factorial(n-mp-k)/factorial(-m+mp+k)); total=total+

abc*(cosbeta(̂2*n+m-mp-2*k))*(sinbeta(̂2*k+mp-m));

end

ddd=ddd*total*(cos(mp*alpha)-1i*sin(mp*alpha))* (cos(m*gamma) + -1i*sin(m*gamma));

123

row = (n*n) + n - m + 1;

row_mp = (n*n) + n - mp + 1;

t = (a(row_mp,3) + 1i*a(row_mp,4))*ddd;

b(row,3) = b(row,3) +real(t);

b(row,4) = b(row,4) + imag(t);

b(row,1) = round(n);

b(row,2) = round(m);

end

end

anm(e).a = b; %Store rotated anm coefficients

anm(e).rot = [alpha, beta, gamma]; %Store random rotation values

end

parfor e=1:1950

j=0;

i=0;

valu = round(e-5/10)+1;

a = anm(e).a; %a is the set of pre-rotated anm coefficients

R=zeros(120,240); % R will store the radius

124

Aggtemp = zeros(28800,3); %Aggtemp will store the Cartesian coordinates

AggtempS=zeros(120,240); %AggtempS will store the Spherical coordinates

counter=1;

for t=1:120 %Theta (t is a counter, represents the number of increments of theta)

%If t or p incriments are changed - remember to update pi incriments below

for p=1:240 %Phi (p is a counter, represents the number of increments of phi)

for h=1:((nlim(valu)+1)2̂) %Reads anm file from n=0 n=nlim which includes m=-n to m=n for

each n

n=a(counter,1); %Column 1 is n value

m=a(counter,2); %Column 2 is m value %Columns 3 and 4 are real and imaginary anm coefficients

R(t,p)= (R(t,p)+((a(counter,3)+1i*a(counter,4))*ytotfun(n,m,cos(j),i)));

counter=counter+1;

end

k = (t-1)*240 + p;

j = t*(pi/120);

i = p* (pi/120);

AggtempS(t,p)=R(t,p);

Aggtemp(k,1)=real(R(t,p)*sin(j)*cos(i)); %X value in Cartesian

Aggtemp(k,2)=real(R(t,p)*sin(j)*sin(i)); %Y value in Cartesian

125

Aggtemp(k,3)=real(R(t,p)*cos(j)); %Z value in Cartesian

k=k+1;

counter=1;

%i=i+(pi/120); %Incriment for i and j should be the same %Bc i needs to go to 2pi, and j to 1pi

end

%i=0; %Set phi back to zero to sample all the phi’s again for each theta

%j=(j+(pi/120));

end

AggregateR(e).C=Aggtemp; %Stores aggregate in a structure array

rmax(e) = real(max(max(AggtempS)));

rmin(e) = real(min(min(AggtempS)));

AggregateR(e).rot = anm(e).rot;

vol(e) = volumes(valu);

end

A.2 Asperity Identification

SetDirectory["D:\\asperities\ma108_rot_anm"];

fileNames = FileNames[];

NNmax = 12;

(*Can use a reduced NNmax than that listed on the data sheet because we’re looking for major

126

asperities, not concerned with the surface detailing provided by NN > 10 Garboczi’s paper gives

the details about the equations used here *)

kappa[m_, n_] = Sqrt[((2 n + 1) (n - m)!)/(4 Pi (n + m)!)];

Y[Theta_, Phi_, m_, n_] =

Piecewise[(kappa[m, n])* LegendreP[n, m, Cos[Theta]*Exp[I*m*Phi], m >= 0, (n - Abs[m])!/ (n

+ Abs[m])!*(-1)Âbs[m] *(kappa[m, n])* LegendreP[n,Abs[m], Cos[Theta]* Exp[I*m*Phi], m <

0];

rowl[m_, n_] = (n*n) + n - m + 1;

ParallelDo[

a = Import[fileNames[[i]], "Table"];

r[Theta_, Phi_] = (

Sum,[n = 0, NNmax] (Sum [m = -n, n]((a[rowl[m, n], 3] + I*a[rowl[m, n], 4])* Y[Theta, Phi, m,

n]);

rprimeTheta[Theta_, Phi_] =

Re[D[r[Theta, Phi], Theta]];

rprimePhi[Theta_, Phi_] = Re[D[r[Theta, Phi], Phi]];

rdoubleprimeTheta[Theta_, Phi_] =

Re[D[r[Theta, Phi], Theta, 2]];

rdoubleprimePhi[Theta_, Phi_] = Re[D[r[Theta, Phi], Phi, 2]];

h = ;

127

t1 = 0.5;

t2 = 0;

For[p = Pi/180 ,

p < (2 Pi - ((Pi*5)/180)), (p = p + Pi/180),

For[t = (Pi*5)/90 ,

t < (Pi - ((Pi*5)/90)), (t = t + Pi/90),

If[rprimePhi[t, p] < t1 rprimePhi[t, p] > -t1

rprimeTheta[t, p] < t1 rprimeTheta[t, p] > - t1

rdoubleprimeTheta[t, p] < t2 rdoubleprimePhi[t, p] < t2,

AppendTo[

h, r[t, p], t, p, rdoubleprimeTheta[t, p],

rdoubleprimePhi[t, p]];

]

]

];

Export["D:\Christa\asperities\ma108_rot_asp2\" <> fileNames[[i]],

N[Re[h]]],

i, 1, Length[fileNames]]

128

(*Adjust the i, start number, end number above to sweep the range

of files desired *)

A.3 Microstructure Generation Main File

clear

clc

cd ’C:\Users\ctorrence\Documents\Plot_Pre_Rotated’

domain = 75; %Box edge length in mm

vf = 0.38; %Target volume fraction in decimal form

set_name =’1_38_75’; %Name for the current plot

%open output files, one for data, one for counters [outfile,message] = fopen(strcat(set_name,’.txt’),’wt’);

[counterfile,message2] = fopen(strcat(set_name,’_counter.txt’),’wt’);

%Load data

load(’Aggregate_MA108_Rotated_Asp.mat’)

voldata=dlmread(’MA108BD-6-coarse-data.dat’); %Another data file

xrot=0;

yrot=0;

zrot=0;

rng(’shuffle’); %Shuffle the random number generator seed %This is very important when plotting

multiple microstructures simultaneously

129

%The variable ’box’ is a structure variable used to store all the info %about each aggregate that is

placed in the domain

box = struct(’coords’, cell(1, 2120),’center’, cell(1, 2120),’asp’, cell(1, 2120),’radius’, cell(1, 2120),’info’,

cell(1, 2120)); box(1).coords = zeros(28800,3); %Stores the point cloud that represents each ag-

gregate

box(1).center = [0,0,0];

box(1).radius = 0; %Maximum radius of the aggregate

box(1).info = [0,0,0,0,0]; %Aggregate number, counter, phi rot, theta rot

box(1).asp = [0,0,0];

box_position = 1;

indiv_counter = 0;

indiv_counter_max = 25; %Max tries for individual aggregate before the code moves on

boxtemp(1).C=zeros(28800,3);

volumesum = 0; %Keeps track of the volume of aggregates already placed

counter = 1; %Keeps track of the number of aggregates placed

rotcounter = 0; %Tallies the number of rotations an aggregate is subjected to

volumes = voldata(:,7);

rsort=voldata(:,15); %Gets the largest width of each aggregate, used to sate

group1 = (find(rsort<15.0rsort>=12.5));

130

group2 = (find(rsort<12.5rsort>=9.5));

group3 = (find(rsort<9.5rsort>=4.75));

group4 = (find(rsort<6.75));

total = tic; %Used to time the plotting process

for j=1:15000 % j is max number of aggregate plotting attempts

% j is used to cut off the plotting process if the volume fraction

% can’t be reached

aggtime = tic;

asp_counter=0;

bf_counter = 0;

total_counter = 0;

asp_flag = 0;

bf_flag = 0;

diamin_flag_counter = 0;

asp_flag_counter = 0;

bf_flag_counter = 0;

dia_counter = 0;

%s is a scaling variable, not used

131

s = 1;

clear boxtemp %Make sure temporary box is empty

boxtemp(1).C = zeros(28800,3); %Set all coordinates to zero to initialize

if (volumesum/domain3̂) > vf %Break j loop if volume fraction is reached

break;

end

%Below is selecting which sieve to grab an aggregate from

%This can be chosen multiple ways, but we use volume fraction as our guide

%Aggregates plotted from largest sieve to smallest

if (volumesum/domain3) < 0.4 ∗ vf

sieve_level = 1;

select = randi([1,length(group1)]);

num = group1(select);

elseif (volumesum/domain3) < 0.65 ∗ vf

sieve_level = 2;

select = randi([1,length(group2)]);

num = group2(select);

elseif (volumesum/domain3) < 0.8 ∗ vf

132

sieve_level = 3;

select = randi([1,length(group3)]);

num = group3(select);

elseif (volumesum/domain3) < vf

sieve_level = 4;

select = randi([1,length(group4)]);

num = group4(select);

R = round(real(AggregateR(num).C),2); %Get cartesian coordinates for aggregate

asp = AggregateR(num).m;

x = rand*domain; %x-offset

y = rand*domain; %y-offset

z = rand*domain; %z-offset

rot_counter = 0;

%Place the aggregate in the domain using center and rotation

[boxtemp,pbc_counter] = PBC_Placement_PreRotated(domain,x,y,z,boxtemp,R,s,asp);

indiv_counter = 0;

if counter > 1 %If more than one aggregate is in the domain, overlap check needed

rotcounter = 0;

133

[truefalse,diaminflag,asp_counter,bf_counter,total_counter, asp_flag,bf_flag, dia_counter]=

OverlapCheckPreRotated(box,boxtemp,rmax,rmin,num,box_position,

asp_counter,bf_counter,total_counter, dia_counter);

while truefalse==1 %Overlap detected

indiv_counter = indiv_counter+1;

%If max number of tries exceeded, the aggregate will be discarded

if indiv_counter > indiv_counter_max

break

end

rng(’shuffle’); %Shuffle the random number generator seed

x = rand*domain; %x-offset

y = rand*domain; %y-offset

z = rand*domain; %z-offset

clear boxtemp

boxtemp(1).C = zeros(length(R(:,1)),6);

[boxtemp,pbc_counter] = PBC_Placement_PreRotated(domain,x,y,z,boxtemp,R,s,asp);

[truefalse,diaminflag,asp_counter,bf_counter,total_counter, asp_flag,bf_flag, dia_counter]

=OverlapCheckPreRotated(box,boxtemp,rmax,rmin,num,box_position,

134

asp_counter,bf_counter,total_counter, dia_counter);

if asp_flag ==1

asp_flag_counter = asp_flag_counter + 1;

elseif bf_flag == 1

bf_flag_counter = bf_flag_counter + 1;

end

if diaminflag == 1

diamin_flag_counter = diamin_flag_counter + 1;

end

end

end

if indiv_counter < indiv_counter_max

for box_count=1:length(boxtemp)

box(box_position).coords = boxtemp(box_count).C;

box(box_position).asp = boxtemp(box_count).asp;

box(box_position).radius = s*rsort(num);

box(box_position).center = boxtemp(box_count).cent;

box(box_position).info = [counter,num,xrot,yrot,zrot];

135

box_position = box_position+1;

fprintf(outfile,’%d’,num,boxtemp(box_count).cent(1),boxtemp(box_count).cent(2),boxtemp(box_count).cent(3),xrot,yr

ot,zrot,pbc_counter);

end

volumesum = volumesum+(volumes(num)*(s3));

fprintf(counterfile,’1, %f, %d, %d, %d, %d, %d, %d, %d, %f, %d, %d’,toc(aggtime), indiv_counter,

total_counter,asp_counter, asp_flag_counter,

bf_counter, bf_flag_counter, (volumesum/domain3), sieve_level, dia_counter, diamin_flag_counter);

fprintf(’END OF PLACEMENT LOOP for aggregate number %d, volume fraction is %f and j is

%d’,counter,(volumesum/domain3), j)

rotcounter=0;

counter = counter+1;

else

fprintf(counterfile,’0, %f, %d, %d, %d, %d, %d, %d, %d, %f, %d, %d’,toc(aggtime), indiv_counter,

total_counter,asp_counter, asp_flag_counter,

bf_counter, bf_flag_counter, (volumesum/domain3), sieve_level, dia_counter, diamin_flag_counter);

end

end

fclose(outfile);

fclose(counterfile);

136

total_end = toc(total);

fprintf("total runtime = %f seconds",total_end)

A.4 Particle Placement

A.4.1 Periodic Placement

function [boxtemp,pbc_pass]=PBC_Placement(domain,x,y,z,xrot,yrot,zrot,boxtemp,R)

pbc_counter=0;

pos_x=0;

neg_x=0;

pos_y=0;

neg_y=0;

pos_z=0;

neg_z=0;

boxtemp(1).C=zeros(legnth(R(:,1)),3);

boxtemp(1).rot=[xrot,yrot,zrot];

rotmatrix_x = [1,0,0; 0, cosd(xrot), -sind(xrot); 0 sind(xrot), cosd(xrot)];

rotmatrix_y = [cosd(yrot), 0, sind(yrot); 0 ,1 , 0; -sind(yrot), 0, cosd(yrot)];

rotmatrix_z = [cosd(zrot), -sind(zrot), 0; sind(zrot), cosd(zrot), 0; 0, 0, 1];

for q=1:length(R(:,1)) coords=[R(q,1),R(q,2),R(q,3)];

boxtemp(1).C(q,1:3) = ((coords*rotmatrix_z)*rotmatrix_x)*rotmatrix_y + [x,y,z];

137

end

for i=1:length(R(:,1))

if boxtemp(1).C(i,1) < 0

neg_x=1;

elseif boxtemp(1).C(i,1) > domain

pos_x=1;

end

if boxtemp(1).C(i,2) < 0

neg_y=1;

elseif boxtemp(1).C(i,2) > domain

pos_y=1;

end

if boxtemp(1).C(i,3) < 0

neg_z=1;

elseif boxtemp(1).C(i,3) > domain

pos_z=1;

end

end

138

boxtemp(1).cent=[x,y,z];

box_storage_counter=2;

if (pos_x==1)

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).cent=[x-domain,y,z];

box_storage_counter=box_storage_counter+1;

elseif(neg_x==1)

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).cent=[domain+x,y,z];

box_storage_counter = box_storage_counter+1;

end

if (pos_y==1)

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

139

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).cent=[x,y-domain,z];

box_storage_counter = box_storage_counter+1;

elseif(neg_y==1)

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).cent=[x,domain+y,z];

box_storage_counter = box_storage_counter+1;

end

if (pos_z==1)

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[x,y,z-domain];

box_storage_counter = box_storage_counter+1;

elseif(neg_z==1)

pbc_counter=pbc_counter+1;

140

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[x,y,domain+z];

box_storage_counter = box_storage_counter+1;

end

if pbc_counter>1

if neg_x =0 || pos_x =0

if neg_y =0 || pos_y =0

if neg_x =0

if neg_y =0 %-,-

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).cent=[domain+x,domain+y,z]; box_storage_counter = box_storage_counter+1;

elseif pos_y =0 %-,+ pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

141

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).cent=[domain+x,y-domain,z];

box_storage_counter = box_storage_counter+1;

end

else if neg_y =0 %+,-

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).cent=[x-domain,domain+y,z];

box_storage_counter = box_storage_counter+1;

elseif pos_y =0 %+,+ pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).cent=[x-domain,y-domain,z];

box_storage_counter = box_storage_counter+1;

end

142

end

end

if neg_z =0 || pos_z =0

if neg_x =0

if neg_z =0 %-,- pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[domain+x,y,domain+z];

box_storage_counter = box_storage_counter+1;

elseif pos_z =0 %-,+ pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[domain+x,y,z-domain];

box_storage_counter = box_storage_counter+1;

end

else

143

if neg_z =0 %+,- pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[x-domain,y,domain+z];

box_storage_counter = box_storage_counter+1;

elseif pos_z =0 %+,+

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[x-domain,y,z-domain];

box_storage_counter = box_storage_counter+1;

end

end

end

end

if neg_y =0 || pos_y =0

144

if neg_y =0

if neg_z =0 %-,- pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[x,domain+y,domain+z];

box_storage_counter = box_storage_counter+1;

elseif pos_z =0 %-,+

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[x,domain+y,z-domain];

box_storage_counter = box_storage_counter+1;

end

elseif pos_y =0

if neg_z =0

%+,-

145

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[x,y-domain,domain+z];

box_storage_counter = box_storage_counter+1;

elseif pos_z =0 %+,+

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C = boxtemp(1).C;

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[x,y-domain,z-domain];

box_storage_counter = box_storage_counter+1;

end

end end

end

if ((neg_x =0 || pos_x =0) (neg_y =0 || pos_y =0) (neg_z =0 || pos_z =0))

if neg_x =0

146

if neg_y =0

if neg_z =0 %-,-,-

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[domain+x,domain+y,domain+z];

elseif pos_z =0 %-,-,+

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[domain+x,domain+y,z-domain]; %fprintf(’+x +y -z’)

end

elseif pos_y =0

if neg_z =0 %-,+,-

147

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[domain+x,y-domain,domain+z];

%fprintf(’+x -y -z’) elseif pos_z =0

%-,+,+

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) + domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[domain+x,y-domain,z-domain]; %fprintf(’+x -y -z’)

end

end

elseif pos_x =0

if neg_y =0

148

if neg_z =0 %+,-,-

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[x-domain,domain+y,domain+z]; %fprintf(’-x +y +z’)

elseif pos_z =0 %+,-,+

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) + domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[x-domain,domain+y,z-domain]; %fprintf(’-x +y -z’)

end

else

if neg_z =0 %+,+,-

pbc_counter=pbc_counter+1;

149

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) + domain);

boxtemp(box_storage_counter).cent=[x-domain,y-domain,domain+z];

%fprintf(’-x -y +z’) elseif pos_z =0 %+,+,+

pbc_counter=pbc_counter+1;

boxtemp(box_storage_counter).C=boxtemp(1).C;

boxtemp(box_storage_counter).C(:,1) = (boxtemp(box_storage_counter).C(:,1) - domain);

boxtemp(box_storage_counter).C(:,2) = (boxtemp(box_storage_counter).C(:,2) - domain);

boxtemp(box_storage_counter).C(:,3) = (boxtemp(box_storage_counter).C(:,3) - domain);

boxtemp(box_storage_counter).cent=[x-domain,y-domain,z-domain]; %fprintf(’-x -y -z’)

end

end

end

end %pbc==3

pbc_pass=pbc_counter;

A.4.2 Intersecting/Cored Placement

function [boxtemp]=Intersecting_Placement(x,y,z,xrot,yrot,zrot,boxtemp,R,s,asp)

150

boxtemp(1).C=zeros(length(R(:,1)),3);

boxtemp(1).asp = zeros(length(asp(:,1)),3);

boxtemp(1).rot = [xrot, yrot, zrot];

rotmatrix_x = [1,0,0; 0, cosd(xrot), -sind(xrot); 0 sind(xrot), cosd(xrot)];

rotmatrix_y = [cosd(yrot), 0, sind(yrot); 0 ,1 , 0; -sind(yrot), 0, cosd(yrot)];

rotmatrix_z = [cosd(zrot), -sind(zrot), 0; sind(zrot), cosd(zrot), 0; 0, 0, 1];

for q=1:length(R(:,1))

coords=[R(q,1),R(q,2),R(q,3)];

boxtemp(1).C(q,1:3) = ((coords*rotmatrix_z)*rotmatrix_x)*rotmatrix_y + [x,y,z];

end

for q=1:length(asp(:,1)) coords=[asp(q,1);asp(q,2);asp(q,3)];

boxtemp(1).asp(q,1:3) = ((coords*rotmatrix_z)*rotmatrix_x)*rotmatrix_y + [x,y,z];

end

boxtemp(1).cent=[x,y,z];

A.4.3 Cast Placement

function [boxtemp,pbc_flag]=CastP lacement(domain, x, y, z, xrot, yrot, zrot, boxtemp,R, s, Agg)

pbc_flag=0;

boxtemp(1).C=zeros(length(R(:,1)),3);

151

rotmatrix_x = [1,0,0; 0, cosd(xrot), -sind(xrot); 0 sind(xrot), cosd(xrot)];

rotmatrix_y = [cosd(yrot), 0, sind(yrot); 0 ,1 , 0; -sind(yrot), 0, cosd(yrot)];

rotmatrix_z = [cosd(zrot), -sind(zrot), 0; sind(zrot), cosd(zrot), 0; 0, 0, 1];

for q=1:length(R(:,1))

coords=[R(q,1),R(q,2),R(q,3)];

coords3 = ((coords*rotmatrix_z)*rotmatrix_x)*rotmatrix_y;

if (s*coords3(1) + x)<=0

pbc_flag = 1;

break;

end

if (s*coords3(1) + x)>domain

pbc_flag = 1;

break;

end

if (s*coords3(2) + y)<=0

pbc_flag = 1;

break;

end

152

if (s*coords3(2) + y)>domain

pbc_flag = 1;

break;

end

if (s*coords3(3) + z)<=0

pbc_flag = 1;

break;

end

if (s*coords3(3) + z)>domain

pbc_flag = 1;

break;

end

boxtemp(1).C(q,1) = real(s*coords3(1) + x);

boxtemp(1).C(q,2) = real(s*coords3(2) + y);

boxtemp(1).C(q,3) = real(s*coords3(3) + z);

end

boxtemp(1).cent=[x,y,z];

A.5 Overlap Detection with Asperity Check

function [truefalse,diaminflag,asp_counter,bf_counter,total_counter, asp_flag,bf_flag, dia_counter]

153

=OverlapCheckPreRotatedAsperity(box,boxtemp,rmax,rmin,num,box_position,asp_counter

,bf_counter,total_counter, dia_counter)

truefalse=0;

diaminflag=0;

asp_flag = 0;

bf_flag = 0;

to_check = zeros(box_position,8);

to_check_counter = [0,0,0,0,0,0,0,0];

for u=1:length(boxtemp)%Accounts for PBC aggregates having multiple pieces

x=boxtemp(u).cent(1);

y=boxtemp(u).cent(2);

z=boxtemp(u).cent(3);

for i=1:(box_position-1) %Checks against all previously placed aggregates and their PBC pieces

x0=box(i).center(1);

y0=box(i).center(2);

z0=box(i).center(3);

d1=sqrt((x0-x)2 + (y0− y)2 + (z0− z)2);

%Calculate the distance between the centers of the two aggregates

154

diamax=box(i).radius + rmax(num);

diamin=(rmin(num)+rmin(box(i).info(2)));

dia_counter = dia_counter + 1;

%Diamax is sum of maximum radii (which is the radius of the enclosing sphere)

%Diamin is sum of the minimum radii

%If the distance is less than diamin, there is no way the aggregates do not overlap

%Diamin flag tells the main code to forgo trying to rotate the aggregate and it simply translate it

if d1<(diamax)

if d1<(diamin)

truefalse=1;

diaminflag=1;

break

end

if truefalse==1

break

end

to_check_counter(u) = to_check_counter(u) + 1;

to_check(to_check_counter(u),u) = i;

155

% If overlap is not detected by the asperities, "to_check" will store the aggregate number to assess

in the brute force check

old_num=box(i).info(2);

asp_counter = asp_counter + 1;

total_counter = total_counter + 1;

%——————————–Loop 1——————————-

asp_to_check = boxtemp(u).asp(:,:) - [x0, y0,z0];

%Filter the asperity list to remove asperities that do not fall into the overlap lens

asp_to_check(sqrt(asp_to_check(:,1).2̂ + asp_to_check(:,2).2̂+ asp_to_check(:,3).2̂) > rmax(old_num),:)

= [];

if isempty(asp_to_check)

dist_to_check = sqrt(sum(asp_to_check.2̂,2));

g = asp_to_check;

gx = g(:,1)./sqrt(g(:,1).2̂ + g(:,2).2̂);

gy = g(:,2)./sqrt(g(:,1).2̂ + g(:,2).2̂);

gz = g(:,3)./sqrt(g(:,1).2̂ + g(:,2).2̂+ g(:,3).2̂);

phi = rad2deg(acos(gx));

for p=1:length(gy)

if gy(p) >= 0

156

phi(p) = rad2deg(acos(gx(p)));

else

phi(p) = rad2deg(2*pi - acos(gx(p)));

end

end

theta = rad2deg(acos(gz));

row=(round((12/18)*theta) - 1)*240 + round((24/36)*phi);

rad = sqrt(sum((box(i).coords(row,:) - [x0, y0, z0]).2̂,2));

tester = rad - dist_to_check;

if length(tester(tester>-0.5))>0

truefalse=1;

asp_flag=1;

break;

end

end

if truefalse==1

break

end

157

%———————–Loop 2————————————————————–

asp_to_check2 = box(i).asp(:,:) - [x,y,z];

asp_to_check2(sqrt(asp_to_check2(:,1).2̂ + asp_to_check2(:,2).2̂+ asp_to_check2(:,3).2̂) > rmax(num),:)

= [];

if isempty(asp_to_check2)

dist_to_check = sqrt(sum(asp_to_check2.2̂,2));

g = asp_to_check2;

gx = g(:,1)./sqrt(g(:,1).2̂ + g(:,2).2̂);

gy = g(:,2)./sqrt(g(:,1).2̂ + g(:,2).2̂);

gz = g(:,3)./sqrt(g(:,1).2̂ + g(:,2).2̂+ g(:,3).2̂);

phi = rad2deg(acos(gx));

for p=1:length(gy)

if gy(p) >= 0

phi(p) = rad2deg(acos(gx(p)));

else

phi(p) = rad2deg(2*pi - acos(gx(p)));

end

end

theta = rad2deg(acos(gz));

158

row=(round((12/18)*theta) - 1)*240 + round((24/36)*phi);

rad = sqrt(sum((boxtemp(u).C(row,:) - [x, y, z]).2̂,2));

tester = rad - dist_to_check;

if length(tester(tester>-0.5))>0

truefalse=1;

asp_flag=1;

break;

end

end

if truefalse==1

break

end

end

if truefalse==1

break

end

end

if truefalse==1

159

break

end

end

if truefalse==0

for u = 1:length(boxtemp)

x = boxtemp(u).cent(1);

y = boxtemp(u).cent(2);

z = boxtemp(u).cent(3);

tempx = boxtemp(u).C(:,1);

tempy = boxtemp(u).C(:,2);

tempz = boxtemp(u).C(:,3);

shp = alphaShape(tempx, tempy, tempz);

for j=1:to_check_counter(u)

%Checks against all previously placed aggregates and their PBC pieces

i = to_check(j,u);

if truefalse==1

break

end

160

x0=box(i).center(1);

y0=box(i).center(2);

z0=box(i).center(3);

d1=sqrt((x0-x)2̂ + (y0-y)2̂ + (z0-z)2̂);

%Calculate the distance between the centers of the two aggregates

diamax=box(i).radius + rmax(num);

if d1<(diamax)

bf_counter = bf_counter + 1;

total_counter = total_counter + 1;

%If the asperity check passes, use the build in function inShape

%The function ’in’ checks if a point is within the alphaShape

temp = boxtemp(u).C;

if length(temp((sqrt((temp(:,1) - x0).2̂ + (temp(:,2) - y0).2̂ + (temp(:,3) - z0).) < rmin(old_num)), :

)) > 0

truefalse=1;

bf_flag=1;

break

end

temp = box(i).coords;

161

temp((sqrt((temp(:,1) - x).2̂ + (temp(:,2) - y).2̂ + (temp(:,3) - z).2̂) > rmax(num)),:) = [];

in = inShape(shp,temp(:,1),temp(:,2),temp(:,3));

if length(in(in>0))>0

truefalse=1;

bf_flag = 1;

break

end

if truefalse==1

break

end

end

if truefalse==1

break

end

end

end

end %Ends u loop

A.6 Generation of Image Stack

% List of microstructures to be imaged

162

to_image = ["1_40_b";"1_38_75cast”; ”1_38_90cast”; ”1_3890_cored”];

addpath(’/scratch/user/ctorrence/plotting/prerot’);

%List domain sizes of the microstructures to be imaged

domainlist = [75,75,75,75,90,90];

%Load appropriate aggregate set load(’Aggregate_Rotated_N10.mat’)

for k=1:length(to_image)

%Set domain to proper value

domain = domainlist(k);

%Read microstructure data file

plotdata = dlmread(strcat([to_image(k)],’.txt’));

%Create directory to store images

mkdir([char(to_image(k))]);

% Enter the directory cd ([char(to_image(k))]);

% Recreate microstructure for j=1:length(plotdata)

num = plotdata(j,1);

R=real(AggregateR(plotdata(j,1)).C);

x = plotdata(j,2); %x-offset

y = plotdata(j,3); %y-offset

163

z = plotdata(j,4); %z-offset

xrot = plotdata(j,5);

yrot = plotdata(j,6);

zrot = plotdata(j,7);

%If using pre-rotated aggregates - xrot, yrot, and zrot will be 0

rotmatrix_x = [1,0,0; 0, cosd(xrot), -sind(xrot); 0 sind(xrot), cosd(xrot)];

rotmatrix_y = [cosd(yrot), 0, sind(yrot); 0 ,1 , 0; -sind(yrot), 0, cosd(yrot)];

rotmatrix_z = [cosd(zrot), -sind(zrot), 0; sind(zrot), cosd(zrot), 0; 0, 0, 1];

boxtemp(1).C=zeros(28800,3);

R=real(AggregateR(num).C);

for q=1:length(R(:,1))

coords=[R(q,1),R(q,2),R(q,3)];

coords3 = ((coords*rotmatrix_z)*rotmatrix_x)*rotmatrix_y;

boxtemp(1).C(q,1) = (coords3(1) + x);

boxtemp(1).C(q,2) = (coords3(2) + y);

boxtemp(1).C(q,3) = (coords3(3) + z);

end

box(j).coords=boxtemp(1).C;

164

box(j).center=[plotdata(j,2),plotdata(j,3),plotdata(j,4)];

end

corners=ones(2,2);

corners(1,1)=-25;

corners(1,2)=-25;

corners(2,1)=domain+25;

corners(2,2)=domain+25;

for b=1:(domainlist(k)/0.3) %Each image represents a 0.3mm thickness

f = (domain/(domainlist(k)/0.3))*b; %determine the z value of the image to be plotted

for i=1:length(plotdata)

slice2=zeros(100000,2); %Will store the points that fall into the z-slice

count=1;

%For each aggregate, check if it’s possible to have points in the z-slice

if abs(box(i).center(3) - f) < max(rmax)

%If it is possible, find the points that fall in the z-slice

for j=1:length(box(i).coords(:,1))

if box(i).coords(j,3)<=(f+(domain/round(domainlist(k)/0.3))) box(i).coords(j,3)>=(f-(domain/round(domainlist(k)/0.3)))

%Store said points in a temporary variable

165

slice2(count,1)=box(i).coords(j,1);

slice2(count,2)=box(i).coords(j,2);

count=count+1; end end

if count > 4

%Plot the points in a cumulative plot

r = boundary(slice2(1:count-1,1),slice2(1:count-1,2));

x = slice2(1:count,1);

y = slice2(1:count,2);

plot(x(r),y(r),’k-’)

drawnow

hold on; end

end

%Plot the control points

hold on;

daspect([1 1 1]);

hold on;

drawnow;

end

166

%Add buffer points to standardize the image plot size

plot(-2*max(rmax),-2*max(rmax),’.’);

plot(domain+2*max(rmax),domain+2*max(rmax),’.’);

fig = gcf;

fig.PaperUnits = ’inches’;

fig.PaperPosition = [0 0 15 15];

filename = char(strcat(num2str(b+100),’.png’));

print(filename,’-dpng’,’-r0’);

%Close the cumulative image to start fresh for the next z-slice

close all; end

cd ..

end

167

APPENDIX B

ABAQUS INPUT FILE GENERATION CODE

B.1 Matlab Code to Generate Abaqus Input File and Apply Periodic Boundary Condition

Constraint Equations

filename = ’5_38_90.inp’;

disp = 0.03; % Amount of strain to apply

fid = fopen(strcat(filename,’.inp’),’rt’) ;

S = textscan(fid,’%s’,’Delimiter’,’\n’);

S = S{1} ;

[outfile,message]= fopen(strcat(filename,’.inp’),’wt’);

% The idx variables are Get the line numbers that mark the beginning and end of sections, such as

the node list, element list, surface node sets, etc

idxS = strfind(S, ’*NODE’);

idx1 = find(not(cellfun(’isempty’, idxS)));

%idx1 = start of node list;

idxS = strfind(S, ’** The OOF3D element type is TET4_4. The ABAQUS element type will’);

idx2 = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’** Point boundaries in OOF3D’);

168

idx3 = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=XminYmin’);

idx_xminymin = find(not(cellfun(’isempty’, idxS)));

idx_xminymin = idx_xminymin(3);

idxS = strfind(S, ’*NSET, NSET=YminZmin’);

idx_yminzmin = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=YmaxZmax’);

idx_ymaxzmax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=YminZmax’);

idx_yminzmax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=XminZmax’);

idx_xminzmax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=XminYmax’);

idx_xminymax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=XmaxZmin’);

idx_xminymax = idx_xminymax(3);

idx_xmaxzmin = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=XminZmin’);

169

idx_xminzmin = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=XmaxYmax’);

idx_xmaxymax = find(not(cellfun(’isempty’, idxS)));

idx_xmaxymax = idx_xmaxymax(3);

idxS = strfind(S, ’*NSET, NSET=YmaxZmin’);

idx_ymaxzmin = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=XmaxYmin’);

idx_xmaxymin = find(not(cellfun(’isempty’, idxS)));

idx_xmaxymin = idx_xmaxymin(3);

idxS = strfind(S, ’*NSET, NSET=XmaxZmax’);

idx_xmaxzmax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=Zmax’);

idx_zmax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=Ymax’);

idx_ymax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=Xmax’);

idx_xmax = find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*NSET, NSET=Xmin’);

170

idx_xmin = find(not(cellfun(’isempty’, idxS)));

idx_xmin = idx_xmin(length(idx_xmin));

idxS = strfind(S, ’*NSET, NSET=Ymin’);

idx_ymin = find(not(cellfun(’isempty’, idxS)));

idx_ymin = idx_ymin(length(idx_ymin));

idxS = strfind(S, ’*NSET, NSET=Zmin’);

idx_zmin= find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*ELSET, ELSET=Aggregate’);

idx_aggstart= find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*SOLID SECTION, ELSET=Aggregate, MATERIAL=Aggregate’);

idx_aggend= find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*ELSET, ELSET=Mortar’);

idx_mortarstart= find(not(cellfun(’isempty’, idxS)));

idxS = strfind(S, ’*SOLID SECTION, ELSET=Mortar, MATERIAL=Mortar’);

idx_mortarend= find(not(cellfun(’isempty’, idxS)));

nodes = S(idx1+1:idx2-1) ;

nodes = cell2mat(cellfun(@str2num,nodes,’UniformOutput’,false));

elements = S(idx2+3:idx3-1) ;

171

elements = cell2mat(cellfun(@str2num,elements,’UniformOutput’,false));

xminymin_nodelines = S(idx_xminymin+1:idx_yminzmin-1) ;

xminymin_nodelines = cell2mat(cellfun(@str2num,xminymin_nodelines’,’UniformOutput’,false));

yminzmin_nodelines = S(idx_yminzmin+1:idx_ymaxzmax-1) ;

yminzmin_nodelines = cell2mat(cellfun(@str2num,yminzmin_nodelines’,’UniformOutput’,false));

ymaxzmax_nodelines = S(idx_ymaxzmax+1:idx_yminzmax-1) ;

ymaxzmax_nodelines = cell2mat(cellfun(@str2num,ymaxzmax_nodelines’,’UniformOutput’,false));

yminzmax_nodelines = S(idx_yminzmax+1:idx_xminzmax-1) ;

yminzmax_nodelines = cell2mat(cellfun(@str2num,yminzmax_nodelines’,’UniformOutput’,false));

xminzmax_nodelines = S(idx_xminzmax+1:idx_xminymax-1) ;

xminzmax_nodelines = cell2mat(cellfun(@str2num,xminzmax_nodelines’,’UniformOutput’,false));

xminymax_nodelines = S(idx_xminymax+1:idx_xmaxzmin-1) ;

xminymax_nodelines = cell2mat(cellfun(@str2num,xminymax_nodelines’,’UniformOutput’,false));

xmaxzmin_nodelines = S(idx_xmaxzmin+1:idx_xminzmin-1) ;

xmaxzmin_nodelines = cell2mat(cellfun(@str2num,xmaxzmin_nodelines’,’UniformOutput’,false));

xminzmin_nodelines = S(idx_xminzmin+1:idx_xmaxymax-1) ;

xminzmin_nodelines = cell2mat(cellfun(@str2num,xminzmin_nodelines’,’UniformOutput’,false));

xmaxymax_nodelines = S(idx_xmaxymax+1:idx_ymaxzmin-1) ;

172

xmaxymax_nodelines = cell2mat(cellfun(@str2num,xmaxymax_nodelines’,’UniformOutput’,false));

ymaxzmin_nodelines = S(idx_ymaxzmin+1:idx_xmaxymin-1) ;

ymaxzmin_nodelines = cell2mat(cellfun(@str2num,ymaxzmin_nodelines’,’UniformOutput’,false));

xmaxymin_nodelines = S(idx_xmaxymin+1:idx_xmaxzmax-1) ;

xmaxymin_nodelines = cell2mat(cellfun(@str2num,xmaxymin_nodelines’,’UniformOutput’,false));

xmaxzmax_nodelines = S(idx_xmaxzmax+1:idx_zmax-2) ;

xmaxzmax_nodelines = cell2mat(cellfun(@str2num,xmaxzmax_nodelines’,’UniformOutput’,false));

zmax_nodelines = S(idx_zmax+1:idx_ymax-1) ;

zmax_nodelines = cell2mat(cellfun(@str2num,zmax_nodelines’,’UniformOutput’,false));

ymax_nodelines = S(idx_ymax+1:idx_zmin-1) ;

ymax_nodelines = cell2mat(cellfun(@str2num,ymax_nodelines’,’UniformOutput’,false));

zmin_nodelines = S(idx_zmin+1:idx_xmax-1) ;

zmin_nodelines = cell2mat(cellfun(@str2num,zmin_nodelines’,’UniformOutput’,false));

xmax_nodelines = S(idx_xmax+1:idx_xmin-1) ;

xmax_nodelines = cell2mat(cellfun(@str2num,xmax_nodelines’,’UniformOutput’,false));

xmin_nodelines = S(idx_xmin+1:idx_ymin-1) ;

xmin_nodelines = cell2mat(cellfun(@str2num,xmin_nodelines’,’UniformOutput’,false));

ymin_nodelines = S(idx_ymin+1:idx_aggstart-1) ;

173

ymin_nodelines = cell2mat(cellfun(@str2num,ymin_nodelines’,’UniformOutput’,false));

agg_elements = S(idx_aggstart+1:idx_aggend-1) ;

agg_elements = cell2mat(cellfun(@str2num,agg_elements’,’UniformOutput’,false));

mortar_elements = S(idx_mortarstart+1:idx_mortarend-1) ;

mortar_elements = cell2mat(cellfun(@str2num,mortar_elements’,’UniformOutput’,false));

% Remove nodes common to multiple opposing boundaries - Abaqus will exit if a node is con-

strained to more than one other node in the same degree of freedom

remove_zmax = unique(horzcat(ymaxzmax_nodelines,yminzmax_nodelines,xminzmax_nodelines,xmaxzmax_nodelines));

remove_zmin = unique(horzcat(yminzmin_nodelines, xmaxzmin_nodelines, xminzmin_nodelines,

ymaxzmin_nodelines));

remove_ymax = unique(horzcat(xminymax_nodelines, xmaxymax_nodelines));

remove_ymin = unique(horzcat(xminymin_nodelines, xmaxymin_nodelines));

zmax_nodes = zeros(length(zmax_nodelines) - length(remove_zmax),4);

counter = 1;

for i=1:length(zmax_nodelines)

if ismember(zmax_nodelines(i), remove_zmax) == 0

zmax_nodes(counter,:) = nodes(zmax_nodelines(i),:);

counter = counter + 1;

end

174

end

ymax_nodes = zeros(length(ymax_nodelines) - length(remove_ymax),4);

counter = 1;

for i=1:length(ymax_nodelines)

if ismember(ymax_nodelines(i), remove_ymax) == 0

ymax_nodes(counter,:) = nodes(ymax_nodelines(i),:);

counter = counter + 1;

end

end

xmax_nodes = zeros(length(xmax_nodelines),4);

for i=1:length(xmax_nodelines)

xmax_nodes(i,:) = nodes(xmax_nodelines(i),:);

end

zmin_nodes = zeros(length(zmin_nodelines) - length(remove_zmin),4);

counter = 1;

for i=1:length(zmin_nodelines)

if ismember(zmin_nodelines(i), removezmin) == 0

zmin_nodes(counter,:) = nodes(zmin_nodelines(i),:);

175

counter = counter + 1;

end 0 . end

ymin_nodes = zeros(length(ymin_nodelines) - length(remove_ymin),4);

counter = 1;

for i=1:length(ymin_nodelines)

if ismember(ymin_nodelines(i), removeymin) == 0

ymin_nodes(counter,:) = nodes(ymin_nodelines(i),:);

counter = counter + 1;

end

end

xmin_nodes = zeros(length(xmin_nodelines),4);

for i=1:length(xmin_nodelines)

xmin_nodes(i,:) = nodes(xmin_nodelines(i),:);

end

y_pairs = zeros(length(ymax_nodes(:,1)),2);

z_pairs = zeros(length(zmax_nodes(:,1)),2);

for i=1:length(ymax_nodes(:,1))

min_distance = 50;

176

j=1;

for j=1:length(ymin_nodes(:,1))

distance = sqrt((ymax_nodes(i,2) - ymin_nodes(j,2))2̂ + (ymax_nodes(i,4) - ymin_nodes(j,4))2̂);

if distance < min_distance

min_distance = distance;

number = ymin_nodes(j,1);

end

end

y_pairs(i,1) = ymax_nodes(i,1);

y_pairs(i,2) = number;

end

for i=1:length(zmax_nodes(:,1))

min_distance = 50;

j=1;

for j=1:length(zmin_nodes(:,1))

distance = sqrt((zmax_nodes(i,3) - zmin_nodes(j,3))2̂ + (zmax_nodes(i,2) - zmin_nodes(j,2))2̂);

if distance < min_distance

min_distance = distance;

177

number = zmin_nodes(j,1);

end end

z_pairs(i,1) = zmax_nodes(i,1);

z_pairs(i,2) = number; end

fprintf(outfile,"*Heading\n**\n*Preprint, echo=NO, model=NO, history=NO, contact=NO\n");

fprintf(outfile,"**PARTS\n*Part, name=Microstructure\n*Node\n");

for i=1:length(nodes)

fprintf(outfile,"%d, %f, %f, %f \n",nodes(i,1),nodes(i,2),nodes(i,3),nodes(i,4));

end

fprintf(outfile,"*Element, type=C3D4\n");

for i=1:length(elements)

fprintf(outfile,"%d, %d, %d, %d, %d \n",elements(i,1),elements(i,2),elements(i,3),elements(i,4),elements(i,5));

end

fprintf(outfile,"*Elset, elset=AGGREGATE\n");

for i=1:length(agg_elements)

fprintf(outfile,"%d,\n", agg_elements(i)) ;

end

fprintf(outfile,"*Elset, elset=Mortar\n");

178

for i=1:length(mortar_elements)

fprintf(outfile,"%d,\n", mortar_elements(i)) ;

end

fprintf(outfile,"** Section: Section-1-MORTAR\n*Solid Section, elset=MORTAR, material=MORTAR\n,\n");

fprintf(outfile,"** Section: Section-2-AGGREGATE\n*Solid Section, elset=AGGREGATE,

material=AGGREGATE\n,\n");

fprintf(outfile,"**\n*End Part\n**\n**\n** ASSEMBLY\n**\n*Assembly, name=Assembly\n**

\n");

fprintf(outfile,"*Instance, name=PART-1-1, part=Microstructure\n*End Instance\n");

fprintf(outfile,"*Nset, nset=Xmin, instance=PART-1-1\n");

for i=1:length(xmin_nodes(:,1))

fprintf(outfile,"%d,\n", xmin_nodes(i,1)) ;

end

fprintf(outfile,"*Nset, nset=Ymin, instance=PART-1-1\n");

for i=1:length(ymin_nodes)

fprintf(outfile,"%d,\n", ymin_nodes(i,1)) ;

end

fprintf(outfile,"*Nset, nset=Zmin, instance=PART-1-1\n");

for i=1:length(zmin_nodes)

179

fprintf(outfile,"%d,\n", zmin_nodes(i,1)) ;

end

fprintf(outfile,"*Nset, nset=Xmax, instance=PART-1-1\n");

for i=1:length(xmax_nodes)

fprintf(outfile,"%d,\n", xmax_nodes(i,1)) ;

end

fprintf(outfile,"*Nset, nset=Ymax, instance=PART-1-1\n");

for i=1:length(ymax_nodes)

fprintf(outfile,"%d,\n", ymax_nodes(i,1)) ;

end

fprintf(outfile,"*Nset, nset=Zmax, instance=PART-1-1\n");

for i=1:length(zmax_nodes)

fprintf(outfile,"%d,\n", zmax_nodes(i,1)) ;

end

for i=1:length(x_pairs)

fprintf(outfile,"*Nset, nset=X%d, instance=PART-1-1\n %d\n", x_pairs(i,1), x_pairs(i,1));

fprintf(outfile,"*Nset, nset=XC%d, instance=PART-1-1\n %d\n", x_pairs(i,2), x_pairs(i,2));

end

180

for i=1:length(y_pairs)

fprintf(outfile,"*Nset, nset=Y%d, instance=PART-1-1\n %d\n", y_pairs(i,1), y_pairs(i,1));

fprintf(outfile,"*Nset, nset=YC%d, instance=PART-1-1\n %d\n", y_pairs(i,2), y_pairs(i,2));

end

for i=1:length(z_pairs)

fprintf(outfile,"*Nset, nset=Z%d, instance=PART-1-1\n %d\n", z_pairs(i,1), z_pairs(i,1));

fprintf(outfile,"*Nset, nset=ZC%d, instance=PART-1-1\n %d\n", z_pairs(i,2), z_pairs(i,2));

end

for i=1:length(y_pairs)

fprintf(outfile,"*Equation\n");

fprintf(outfile,"2\nY%d, 1, 1.0\n YC%d, 1, -1.0\n**\n",y_pairs(i,1),y_pairs(i,2));

fprintf(outfile,"*Equation\n");

fprintf(outfile,"2\n Y %d, 2, 1.0\n YC %d, 2, -1.0\n**\n",y_pairs(i,1),y_pairs(i,2));

fprintf(outfile,"*Equation\n");

fprintf(outfile,"2\n Y %d, 3, 1.0\n YC %d, 3, -1.0\n**\n",y_pairs(i,1),y_pairs(i,2));

end

for i=1:length(z_pairs)

fprintf(outfile,"*Equation\n");

181

fprintf(outfile,"2\n Z %d, 1, 1.0\n ZC %d, 1, -1.0\n**\n",z_pairs(i,1),z_pairs(i,2));

fprintf(outfile,"*Equation\n");

fprintf(outfile,"2\n Z%d, 2, 1.0\nZC %d, 2, -1.0\n**\n",z_pairs(i,1),z_pairs(i,2));

fprintf(outfile,"*Equation\n");

fprintf(outfile,"2\n Z %d, 3, 1.0\n ZC %d, 3, -1.0\n**\n",z_pairs(i,1),z_pairs(i,2));

end

fprintf(outfile,"*End Assembly\n");

fprintf(outfile,"** MATERIALS\n**\n*Material, name=AGGREGATE\n*Elastic\n3.6e+10, 0.22\n");

fprintf(outfile,"*Material, name=MORTAR\n*Elastic, moduli=INSTANTANEOUS\n 2.559e+10,

0.15\n");

fprintf(outfile,"*Viscoelastic, time=CREEP TEST DATA\n*Combined Test Data \n");

visco = dlmread(’basic_creep.txt’);

for i=1:length(visco(:,1))

fprintf(outfile,"%f, %f, %f \n",visco(i,1),visco(i,2),visco(i,3)) ;

end

fprintf(outfile,"** —————————————————————-\n");

fprintf(outfile,"** \n** STEP: Loading\n** \n*Step, name=Loading, nlgeom=NO, amplitude=STEP\n");

fprintf(outfile,"*Static\n0.0001, 0.0001, 1e-07, 0.0001\n**\n** BOUNDARY CONDITIONS\n**\n");

fprintf(outfile,"** Name: Disp-BC-1 Type: Displacement/Rotation\n*Boundary\n");

182

fprintf(outfile,"XMAX, 1, 1, -% disp\nXMAX, 2, 2\nXMAX, 3, 3\n",disp);

fprintf(outfile,"XMAX, 4, 4\nXMAX, 5, 5\nXMAX, 6, 6\n");

fprintf(outfile,"** Name: Disp-BC-2 Type: Displacement/Rotation\n*Boundary\n");

fprintf(outfile,"XMIN, 1, 1, % disp \nXMIN, 2, 2\nXMIN, 3, 3\n", disp);

fprintf(outfile,"XMIN, 4, 4\nXMIN, 5, 5\nXMIN, 6, 6\n");

fprintf(outfile,"**\n** OUTPUT REQUESTS\n**\n*Restart, write, frequency=0\n");

fprintf(outfile,"**\n** FIELD OUTPUT: F-Output-1\n**\n*Output, field, variable=PRESELECT\n");

fprintf(outfile,"**\n** HISTORY OUTPUT: H-Output-1\n**\n*Output, history, variable=PRESELECT\n");

fprintf(outfile,"*End Step\n");

fprintf(outfile,"** —————————————————————-\n");

fprintf(outfile,"**\n** STEP: Relaxation\n**\n*Step, name=Relaxation, nlgeom=NO, inc=100000\n");

fprintf(outfile,"*Visco, cetol=0.00001\n0.01, 17000., 0.00175, 125.\n**\n");

fprintf(outfile,"** OUTPUT REQUESTS\n**\n*Restart, write, frequency=0\n**\n");

fprintf(outfile,"** FIELD OUTPUT: F-Output-2\n**\n*Output, field, variable=PRESELECT\n");

fprintf(outfile,"**\n** HISTORY OUTPUT: H-Output-2\n**\n");

fprintf(outfile,"*Output, history, variable=PRESELECT\n*End Step\n");

fclose(outfile);

183

APPENDIX C

DATA ANALYSIS CODE

C.1 ODB File Reader

The following is a Python script that reads the ODB file generated by Abaqus. It calculates the

spatially averaged stress and strain in the XX-direction for each time step and outputs the data to

two text files, one for the strain data and one for the stress. The files are named "filename_E11.txt"

and "filename_S11.txt" for the strain and stress data, respectively.

import sys

from odbAccess import *

from abaqusConstants import*

from types import IntType

import numpy as np

odb_names = [’odb_file_1’,’odb_file_2’]

for i in range(0,len(odb_names)):

desired name for the results file

results_name=odb_names[i]

#Initializing Arrays

DAT = []

184

DAT2 = []

#Opening the odb

odb = openOdb(odb_names[i]+’.odb’, readOnly=True)

assembly = odb.rootAssembly

instance = assembly.instances.keys()[0]

Extracting Step

step1 = odb.steps.values()[1]

print(step1)

#Creating a for loop to iterate through all frames in the step

for x in odb.steps[step1.name].frames:

####Setting temporary array to empty

temp = []

temp2 = []

####Progress report

print(’Extracting from Frame:�’+str(x))

####Reading stress and strain data from the model

odbSelectResults = x.fieldOutputs[’S’]

odbSelectResults2 = x.fieldOutputs[’E’]

185

field1 = odbSelectResults

field2 = odbSelectResults2

####Reading COORDS data from the top node set

####Storing Stress and strain values for the current frame

stress values

stress_temp = []

for s in field1.values:

stress_temp.append(s.data[0]) the values in s.data are organized as follows:

[S11,S22,S33,S12,S13,S23]

temp.append(x.frameValue)

temp.append(sum(stress_temp)/ len(stress_temp))

strain values

strain_temp = []

for e in field2.values:

strain_temp.append(e.data[0]) the values here are organized similarly to the stress values. This

grabs E33

temp2.append(x.frameValue)

temp2.append(sum(strain_temp)/ len(strain_temp))

DAT.append(temp)

186

DAT2.append(temp2)

####Writing to a .csv file

with open(results_name+’_S11.txt’, ’w’) as f:

np.savetxt(f,DAT,delimiter=’ ’)

with open(results_name+’_E11.txt’, ’w’) as f:

np.savetxt(f,DAT2,delimiter=’ ’)

#Close the odb

odb.close()

C.2 Constituitive Viscoelastic Equation Calculation

The following is a script, written in Mathematica that is used to analyze the output data from the

ODB file reader, given in the previous section. Both the relaxation modulus and creep compliance

equations are calculated.

SetDirectory[thisDir];

Strain = Import["C:/Users/Christa/Google Drive/TAMU/Data/1_38_105_cast_E11.txt,"Table""];

Stress = Import["C:/Users/Christa/Google Drive/TAMU/Data/1_38_105_cast_S11.txt,"Table""];

ε[t_, a_, b_, c_, d_] = a*Exp[-t/1] + b*Exp[-t/10] + c*Exp[-t/1000] + d

nlm = FindFit[Strain, {[t, a, b, c, d], {-10 < a < 10}, {-10 < b < 10} , {-10 < c < 10}, {-10 < d < 10}},

{a, b, c, d}, t]

ε_fitted[t_] = epsilon[t, a, b, c, d]*(1 - E(̂-t/.001)) /. nlm

187

Show[Plot[ε_fitted[t], t, 0, 17000, PlotRange -> 0, 17000, 0, -0.0005], ListPlot[Strain]]

H[t_] = E0 + E1*Exp[-(t)/1] + E2*Exp[-(t)/10] + E3*Exp[-(t)/100] + E4*Exp[-(t)/1000] + E5*Exp[-

(t)/10000] + E6*Exp[-(t)/100000]

$Assumptions -> t ∈ Reals, t > tp, tp >= 0.01;

σ=[t_, E0_, E1_, E2_, E3_, E4_, E5_, E6_] = Integrate[H[t - tp]*D[ε_fitted[tp], tp], {tp, 0, t}]

nlm2 = FindFit[Stress, σ[t, E0, E1, E2, E3, E4, E5, E6], { E0, E1, E2, E3,E4, E5, E6}, t]

Efitted[t_] = H[t] /. nlm2

Plot[Efitted[t]/109̂, {t, 0.01, 17000}, PlotRange -> {{0, 17000}, {40, 0}}, Frame -> True, Frame-

Label -> {"Time (d)", "E (GPa)"}]

Relax[t_] = Efitted[t]*(1/109̂);

poisson = 0.2;

ELaplace[s_] = LaplaceTransform[Relax[t], t, s];

JLaplace[s_] = 1/(s*s*ELaplace[s]);

CreepCompliance[t_] = Simplify[InverseLaplaceTransform[JLaplace[s], s, t]]

188

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation and Problem Statement
	Research Scope and Objectives
	Research Outline

	Literature Review
	Generation of Random Concrete Microstructures
	Particle Packing Algorithms
	Overlap Detection

	Computational Modeling of Concrete Mechanical Behavior
	Impact of Aggregate Shapes
	Two-Dimensional vs Three-Dimensional Modeling
	Viscoelasticity
	Influence of Boundary Conditions on Mechanical Properties
	Representative Volume Element (RVE) Size
	Mechanical Properties

	Gaps in the Current Literature

	Generation of Random, Virtual Concrete Microstructures
	Reconstruction of Aggregates
	Pre-Rotation of Aggregates

	Particle Placement Algorithm
	Periodic Boundary Conditions
	Cored Boundary Conditions
	Cast Boundary Conditions
	Cylindrical Microstructures

	Summary

	Asperity-Based Virtual Particle-Particle Overlap Detection Algorithm
	Asperity Detection
	Overlap Check
	Radii Comparison
	Asperity Check
	Brute Force Check

	Aggregate Shape Analysis
	Results
	Aggregate Size Gradations
	Influence of nmax Value
	Efficiency Improvements
	Proportion of Overlap Detection Methods

	Summary

	Long-Term Creep and Relaxation Modeling of Concrete
	Finite Element Mesh Generation
	Implementation of Periodic Boundary Conditions
	Description of Viscoelastic Mortar
	Experimental Sample Preparation
	Experimental Data Analysis

	Simulation Data Analysis
	Convergence Studies
	Finite Element Mesh Density
	RVE Size

	Results
	Comparison to Experimental Data
	Influence of Dimensionality
	Influence of the Mortar's Poisson's Ratio

	Summary

	Influence of Boundary Conditions on Modeling of Concrete Creep and Relaxation
	Microstructure Generation
	Convergence Studies
	Finite Element Mesh Density
	RVE Size

	Results
	Influence of Morphological Boundary Conditions
	Influence of Periodic Boundary Condition Constraint Equations

	Summary

	Short-Term Relaxation Modeling of Mortar
	Mortar Microstructure Generation
	Description of Viscoelastic Cement Paste
	Experimental Sample Preparation

	Mortar Simulation
	Description of Viscoelastic Cement Paste
	Mesh Density Convergence Study
	Results

	Summary

	SUMMARY AND CONCLUSIONS
	Dissertation Summary
	Primary Conclusions
	Implications & Applications
	Future Work & Next Steps

	REFERENCES
	APPENDIX Microstructure Generation Code
	Aggregate Reconstruction and Pre-Rotation
	Asperity Identification
	Microstructure Generation Main File
	Particle Placement
	Periodic Placement
	Intersecting/Cored Placement
	Cast Placement

	Overlap Detection with Asperity Check
	Generation of Image Stack

	APPENDIX Abaqus Input File Generation Code
	Matlab Code to Generate Abaqus Input File and Apply Periodic Boundary Condition Constraint Equations

	APPENDIX Data Analysis Code
	ODB File Reader
	Constituitive Viscoelastic Equation Calculation

