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ABSTRACT 

 

This study presents a thermodynamics framework for describing responses of viscoelastic 

materials undergoing microstructural changes when exposed to mechanical loadings. The 

constitutive models are derived based on multiple natural configuration theory, in order to 

accommodate the evolution of the material microstructures in a simplistic way. Within the multiple 

natural configuration theory, the microstructures of such materials are assumed to evolving 

between different stress-free natural configurations. In this study, two natural configurations are 

considered, i.e., the initial natural configuration which is associated with the microstructures at 

original state where no external stimuli are applied, and the final configuration which is associated 

with the microstructures where all possible microstructural changes are completed. Therefore, the 

net effect of any possible microstructural changes, can be incorporated into the constitutive model 

using an internal state variable, which quantifies percent amount of microstructural changes. 

Within the thermodynamics framework, a three-dimensional constitutive model is developed for 

polyoxymethylene (POM) polymer, as an example for viscoelastic homogeneous material. As an 

additional application, with plant tissue as an example, constitutive model is developed to predict 

the responses of general anisotropic and heterogeneous viscoelastic materials. Furthermore, the 

constitutive model is modified to describe responses of POM polymer and glass fiber reinforced 

polyamide (PA6GF40), under different mechanical loading histories and isothermal temperatures. 

Elevated temperatures accelerate the microstructural changes in the viscoelastic polymers, which 

are captured by the model. Mechanical responses of POM polymer, plant tissue and PA6GF40 

composite, such as quasi-static, creep, cyclic, are simulated and validated by comparing the 

simulated responses with experimental data. With a relatively small number of material parameters, 
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the thermodynamically consistent models are capable of predicting the mechanical responses of 

viscoelastic materials undergoing microstructural changes. The multiple natural configurations 

based constitutive models are also computationally efficient, which makes them suitable for 

performing large scale structural analyses. As an application of the multiple natural configuration 

approach, structural analyses within shell finite element method are performed for a bilayer 

polymer comprising of different polymer constituents, e.g., elastic, viscoelastic, electro-active 

polymer, and light activated shape memory polymer (LASMP). 

  



iv 

 

ACKNOWLEDGEMENTS 

 

Upon the completion of my dissertation, I would like to express my deepest gratitude to all 

professors, colleagues, families and friends who guided and supported me through this endeavor. 

First and foremost, I would like to express my sincere gratitude to my advisor Dr. Muliana, 

who guided and encouraged me through seven years of graduate education. Her motivation and 

enthusiasm always encourage me to keep pursuing higher goals, and will keep encourage me in 

life after graduation. Her patience, knowledge and continuous support made every second of my 

graduate study enjoyable. Also, I would like to thank the professors who serves in my dissertation 

committee: Professor Alan Freed, Professor Matt Pharr and Professor Jean-Briac le Graverend, for 

their insightful comments, continuous support and encouragement. 

My sincere thanks also go to my classmates and labmates during my study at Texas A&M 

University. A special thanks to Junwei and Vahid, who help me a lot in the beginning of my study. 

I also would like to thank Yiming, Jian, Omid and Zaryab, who provide encouragement, support 

and friendship during my endeavor, and making my time at Texas A&M a great experience. 

Finally, thanks to my parents, for their selfless and endless support financially and 

emotionally. Without their love I could never accomplish anything I have. I would like to thank 

my husband for his encouragement, patience and love. 

  



v 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a dissertation committee consisting of Professor Anastasia 

Muliana and Professor Alan Freed, Professor Matt Pharr of the Department of Mechanical 

Engineering and Professor Jean-Briac le Graverend of the Department of Aerospace Engineering.  

The experimental tests presented in Chapter IV and Chapter V were provided by Dr. 

Michael Berrer’s group at the Polymer Competence Center Leoben (PCCL) Austria. The 

implementations of co-rotational finite element method in MATLAB in Chapter VI were 

conducted in part by Vahid Tajeddini of the Department of Mechanical Engineering and were 

published in 2017. 

  All other work conducted for the dissertation was completed by the student independently.  

 

Funding Sources 

This work was also made possible in part by the Air Force Office of Scientific Research 

(AFOSR) under Grant Number FA9550-14-1-0234, and the National Science Foundation (NSF) 

under Grant Number CMMI-1437086 and Grant Number CMMI 1761015.  

 

  



vi 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

CONTRIBUTORS AND FUNDING SOURCES .......................................................................... v 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES ....................................................................................................................... xiii 

CHAPTER I  INTRODUCTION .................................................................................................... 1 

1.1. Current Studies on the Modeling of Materials with Hysteresis Behaviors .......................... 3 

1.2. Multiple Natural Configuration Theory ............................................................................... 6 

1.3. Research Objectives and Scope ........................................................................................... 7 

CHAPTER II  A THERMODYNAMICS FRAMEWORK FOR VISCOELASTIC 

ISOTROPIC HOMOGENEOUS MATERIALS .......................................................................... 10 

2.1. Constitutive Model............................................................................................................. 10 

2.2. Implementation of the Constitutive Model ........................................................................ 20 

CHAPTER III  A THERMODYNAMICS FRAMEWORK FOR GENERAL ANISOTROPIC 

AND HETEROGENEOUS MATERIALS................................................................................... 32 

3.1. Constitutive Material Models ............................................................................................ 32 

3.2. An Application of the Model for Nonlinear Hysteretic Responses of Cell Walls ............. 35 

3.2.1 Model Formulation ..................................................................................................... 35 

3.2.2 Material Parameter Characterization from Experimental Data .................................. 39 

3.2.3 Investigation of the Effect of Viscoelasticity on the Hysteretic Response ................. 43 

3.3. Predicting Nonlinear Hysteretic Responses of Plant Stems .............................................. 47 

CHAPTER IV  THE INFLUENCE OF TEMPERATURES ON THE MICROSTRUCTURAL 

CHANGES IN VISCOELASTIC MATERIALS ......................................................................... 53 

4.1. Experimental Tests............................................................................................................. 53 

4.2. Constitutive Model Formulation ........................................................................................ 57 

4.3. Material Parameter Calibrations and Predictions .............................................................. 64 

4.3.1. Material Calibration at Room Temperature ................................................................ 65 

4.3.2. Calibration of Material Parameters at Elevated Temperatures ................................... 68 

4.3.3. Calibration of Material Parameters under Compressive Loading............................... 72 



vii 

 

4.3.4. Calibration of Material Parameters of Delrin 500 and Delrin 900 ............................. 75 

4.3.5. Model Prediction ......................................................................................................... 78 

CHAPTER V  TEMPERATURE-DEPENDENT CONSTITUTIVE MODEL FOR 

GENERAL ANISOTROPIC VISCOELASTIC MATERIALS ................................................... 83 

5.1. Formulation of Constitutive Model for Anisotropic Materials .......................................... 83 

5.2. Material Parameter Calibrations ........................................................................................ 88 

5.2.1. Calibration of Material Parameters Associated with Elastic Network ....................... 91 

5.2.2. Calibration of Material Parameters Associated with Viscoelastic Network ............... 96 

5.3. Prediction of Anisotropic Response under Various Loading Conditions ........................ 101 

CHAPTER VI  STRUCTURAL ANALYSIS OF THIN LAYERED POLYMERS 

UNDERGOING MICROSTRUCTURAL CHANGES FROM NON-MECHANICAL 

STIMULI .................................................................................................................................... 113 

6.1. Mathematical Formulation of Thin-Multi-Layered Composites ..................................... 113 

6.2. Modeling Bilayers with Viscoelastic Layer ..................................................................... 121 

6.3. Modeling Bilayers with Electro-active and Shape Memory Layers ................................ 124 

6.4. Results .............................................................................................................................. 129 

CHAPTER VII  SUMMARY AND CONCLUSIONS .............................................................. 141 

REFERENCES ........................................................................................................................... 145 

 

  



viii 

 

LIST OF FIGURES 

 Page 

Figure 1 Creep-recovery responses of POM polymers and their corresponding hysteretic 

responses ......................................................................................................................... 2 

Figure 2 An illustration of multiple natural configurations ............................................................ 8 

Figure 3 A ramp loading at a constant strain rate, showing axial response (left) and lateral 

response (middle), and Poisson’s ration (right) ............................................................ 21 

Figure 4 Creep-recovery responses under 50 MPa, showing axial response (top) and lateral 

response (bottom) .......................................................................................................... 24 

Figure 5 Creep-recovery responses under axial stresses 20 MPa and 50 MPa ............................. 25 

Figure 6 Creep-recovery responses under 35 MPa ....................................................................... 27 

Figure 7 Creep-recovery responses under 42 MPa ....................................................................... 28 

Figure 8 Creep-recovery responses under 50 MPa ....................................................................... 30 

Figure 9 Creep-recovery responses under 55 MPa ....................................................................... 31 

Figure 10 Calibration of material parameters oE , 
fE and max from experimental data on wet 

wood tissue of spruce [57] ............................................................................................ 39 

Figure 11 Relation between driving force and microstructural change for wet wood tissue of 

spruce during calibration of the Preisach-Krasnoselskii operator ................................. 41 

Figure 12 Modeling result of wet wood tissue of spruce .............................................................. 42 

Figure 13 Simulation results for isolated sclerenchyma tissue of Aristolochia macrophylla. 

Left: cyclic response. Right: Quasi static response. ...................................................... 43 

Figure 14 Quantitative study for the effect of viscoelasticity on hysteresis behavior .................. 46 

Figure 15 Time-dependent hysteresis response at stress rate 
21 10 /MPa s −=   ....................... 46 

Figure 16 Creep responses generated by time-dependent model .................................................. 47 

Figure 17 Structure of plant tissue (stalk) ..................................................................................... 48 

Figure 18 Simulation of strain-stress responses for outer skin and inner core of the 

Aristolochia macrophylla stem. Left: simulation for outer skin tissue. Right: 

simulation for inner core. Experimental data are obtained from Köhler and Spatz 

[60] ................................................................................................................................ 51 



ix 

 

Figure 19 Relation between driving force and microstructural change for Aristolochia 

macrophylla tissue ......................................................................................................... 51 

Figure 20 Response of the Aristolochia macrophylla stem with inner core volume fraction of 

0.6 .................................................................................................................................. 52 

Figure 21 Simulation for the cyclic response of Aristolochia macrophylla stem ......................... 52 

Figure 22 Loading-unloading tensile response of Delrin 100 ...................................................... 56 

Figure 23 Loading-unloading comp response of Delrin 100 ........................................................ 56 

Figure 24 Loading-unloading responses for all polymers under tension (left) and compression 

(right) ............................................................................................................................. 57 

Figure 25 Instantaneous moduli under tension and compression ................................................. 57 

Figure 26 Loading-unloading response of Delrin 100 at room temperature ................................ 66 

Figure 27 Calibration of material parameters of viscoelastic networks ....................................... 66 

Figure 28 Top: calibration of elastic moduli at initial and final configuration; Bottom: 

calibration of ( )iC T  and ( )fC T  by fitting experimental data. .................................... 68 

Figure 29 Relation between elastic moduli and temperature ........................................................ 69 

Figure 30 Relation between normalized parameters i , f  and temperature .............................. 69 

Figure 31 Creep responses at high temperature (80 ℃) of Delrin 100 ......................................... 71 

Figure 32 Adjustment for compressive loading-unloading data ................................................... 73 

Figure 33 Calibration of elastic parameters of compressive responses for Delrin 100 ................ 74 

Figure 34 Calibration of tensile elastic parameters from loading-unloading responses ............... 75 

Figure 35 Calibration of compressive elastic parameters from loading-unloading responses ..... 77 

Figure 36 Creep-recovery responses at room temperature ........................................................... 79 

Figure 37 Creep-recovery responses at high temperature (80℃) ................................................. 80 

Figure 38 Tensile response (time-independent) at different temperatures ................................... 81 

Figure 39 Tensile loading-unloading responses at 80℃. Left: Delrin 500; Right: Delrin 900 .... 82 

Figure 40 Compressive loading-unloading responses at 80℃ for all types of POM ................... 82 



x 

 

Figure 41 Calibration of temperature-dependent elastic moduli in longitudinal (0°) and 

transverse (90°) directions ............................................................................................. 92 

Figure 42 Left: calibration of temperature-dependent parameters   and  ; Right: calibration 

of Poisson’s ratio ........................................................................................................... 93 

Figure 43 Calibration of elastic moduli for viscoelastic components in longitudinal (0°) 

direction ......................................................................................................................... 97 

Figure 44 Calibration of time-temperature shift factor ................................................................. 99 

Figure 45 Calibration of elastic moduli for viscoelastic components in transverse (90°) 

direction ....................................................................................................................... 100 

Figure 46 Prediction of quasi-static response under room temperature, 0° fiber direction ........ 102 

Figure 47 Prediction of quasi-static response under high temperature (80℃), 0° fiber 

direction ....................................................................................................................... 102 

Figure 48 Prediction of quasi-static response under room temperature, 90° fiber direction ...... 103 

Figure 49 Prediction of quasi-static response under high temperature (80℃), 90° fiber 

direction ....................................................................................................................... 104 

Figure 50 Prediction of cyclic response under loadings in 0° fiber direction ............................. 105 

Figure 51 Prediction of cyclic response under loadings in 90° fiber direction ........................... 105 

Figure 52 Prediction of creep-recovery response under loadings in 0° fiber direction .............. 106 

Figure 53 Prediction of creep-recovery response under loadings in 90° fiber direction ............ 110 

Figure 54 Multi-layered active composites of different arrangements: a) sandwich system, b) 

bilayer of active and inactive materials ....................................................................... 114 

Figure 55 Bistable folding of square plate. (a): electric field 9MV/m; (b): electric field 

15MV/m; (c): electric field 18MV/m; (d): electric field 68MV/m; (e): electric field 

86MV/m ...................................................................................................................... 130 

Figure 56 Gaussian curvature of folded square plate. (a): electric field 9MV/m; (b): electric 

field 15MV/m; (c): electric field 18MV/m; (d): electric field 68MV/m; (e): electric 

field 86MV/m .............................................................................................................. 131 

Figure 57 Folding of 50 25 rectangular plate. (a): electric field 25MV/m; (b): electric field 

43MV/m; (c): electric field 68MV/m; (d): electric field 86MV/m ............................. 131 

Figure 58 Folding of 50 5  rectangular plate. (a): electric field 25MV/m; (b): electric field 

43MV/m; (c): electric field 68MV/m; (d): electric field 86MV/m ............................. 131 



xi 

 

Figure 59 Top view of folded shapes of rectangular plates showing corkscrew shapes ............ 132 

Figure 60 Folding of square plate, 0ym = . Top: with Poisson’s effect; Bottom: without 

Poisson’s effect.  (a): electric field 25MV/m; (b): electric field 43MV/m; (c): 

electric field 68MV/m; (d): electric field 86MV/m .................................................... 133 

Figure 61 The corresponding first principal curvature with 0ym = . Top: electric field 

43MV/m; Bottom: electric field 86MV/m. The figures on the left are responses with 

Poisson’s effect and figures on the right are responses without Poisson’s effect ....... 133 

Figure 62 Folding of 50 5  rectangular plate, 0xm =  . Top: with Poisson’s effect; Bottom: 

without Poisson’s effect. (a): electric field 25MV/m; (b): electric field 43MV/m; (c): 

electric field 68MV/m; (d): electric field 86MV/m .................................................... 134 

Figure 63 Folding of 50 5 rectangular plate, 0ym = . Top: with Poisson’s effect; Bottom: 

without Poisson’s effect. (a): electric field 25MV/m; (b): electric field 43MV/m; (c): 

electric field 68MV/m; (d): electric field 86MV/m .................................................... 134 

Figure 64 Folding of equilateral triangle plate. (a): electric field 9MV/m; (b): electric field 

15MV/m; (c): electric field 20MV/m; (d): electric field 68MV/m; (e): electric field 

86MV/m ...................................................................................................................... 135 

Figure 65 Folding of disk shape plate. Left: with large electric field increment; Right: with 

small electric field increment. (a): electric field 11MV/m; (b): electric field 

17MV/m; (c): electric field 19MV/m; (d): Critical electric fields for the snap-

through behavior under different increment. ............................................................... 135 

Figure 66 Gaussian curvature of folded disk shape plate. Left: with large electric field 

increment; Right: with small electric field increment. (a): electric field 11MV/m; 

(b): electric field 17MV/m; (c): electric field 19MV/m .............................................. 136 

Figure 67 Twisting of 50 5  rectangular plate. (a): electric field 25MV/m; (b): electric field 

43MV/m; (c): electric field 68MV/m; (d): electric field 86MV/m; (e): electric field 

105MV/m .................................................................................................................... 136 

Figure 68 Shape reconfiguration of square plate with viscoelastic substrate. Top: deformed 

shape; Bottom: corresponding Gaussian curvature. (a): time t=0.1s; (b): time t=0.5s; 

(c): time t=5s; (d): time t=20s. .................................................................................... 138 

Figure 69 Shape reconfiguration of equilateral triangle plate with viscoelastic substrate. Top: 

deformed shape; Bottom: corresponding Gaussian curvature. (a): time t=0.1s; (b): 

time t=5s; (c): time t=10s; (d): time t=20s. ................................................................. 138 

Figure 70 Shape reconfiguration of disk shape plate with viscoelastic substrate. Top: 

deformed shape; Bottom: corresponding Gaussian curvature. (a): time t=0.1s; (b): 

time t=0.5s; (c): time t=1.5s. ....................................................................................... 139 



xii 

 

Figure 71 Deformed shapes of rectangular (top) and square (bottom) bilayers, comprising of 

LASMP substrate, after removing electric field. (a) * 10 20MPas sE E= = ; (b)
* 50 100MPas sE E= =  ................................................................................................... 139 

 

  



xiii 

 

LIST OF TABLES 

Page 

Table 1 Instantaneous parameters ................................................................................................. 25 

Table 2 Time-dependent parameters ............................................................................................. 27 

Table 3 Material parameters for different tissue ........................................................................... 42 

Table 4 Molecular weight and degree of crystallinity .................................................................. 54 

Table 5 Time-dependent parameters at room temperature ........................................................... 67 

Table 6 Material parameters of elastic network (tensile) .............................................................. 70 

Table 7 Material parameters of elastic network (compressive) .................................................... 74 

Table 8 Material parameters for elastic network .......................................................................... 93 

Table 9 Material parameters for viscoelastic network .................................................................. 97 

Table 10 Time-temperature shift factors of initial and final configurations ................................. 98 

Table 11 Material and Geometrical Properties ........................................................................... 129 

 



1 

 

 CHAPTER I  

INTRODUCTION  

 

The macroscopic response of materials when exposed to external stimuli (mechanical, thermal, 

electrical, etc.) is a manifestation of continuous changes in the microstructures of the materials. 

For example, when exposed to mechanical loadings, the long-chains of polymer networks can 

rearrange, reorient, break, slip, etc., leading to nonlinear and time-dependent mechanical responses. 

Depending on the extent of the prescribed stimuli, the microstructural changes can be permanent, 

i.e., upon removal of the external stimuli the materials do not regain their original microstructures 

and hence at the macroscopic scale permanent sets are observed accompanied by hysteretic 

responses. Figure 1 illustrates examples of mechanical responses of polyoxymethylene (POM) 

polymer under creep-recovery at different stress amplitude and holding time, indicating 

viscoelastic response (Song et al. [1]). At a relatively small stress and short-term loading, the 

polymer shows nearly fully recovery response upon removal of the stress and no apparent residual 

strain is observed. The corresponding hysteretic response is associated with the rearrangement of 

the polymer macromolecular networks, which is a dissipative process. Since POM is a semi-

crystalline polymer, the deformation at this stage is due to straining of molecular chains of the 

interlamellar amorphous phase and rotation of lamellae stacks [2]. At a relatively large stress and 

long-term loading, the polymer undergoes more pronounced creep and hence upon removal of the 

load, residual strain is observed. The permanent deformation is associated with cavitation of the 

amorphous phase and fragmentation of the crystalline phase. As expected more severe loading 

conditions yield to more pronounced hysteretic area, indicating more energy being dissipated. In 

general, microstructural changes in polymers when subjected to a mechanical stimulus can take 
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place due to purely macromolecular reconfiguration without rupturing the molecular networks and 

from a chemorheological aspect, such as scission, crazing, fragmentation, etc. 

 

  

  
Figure 1 Creep-recovery responses of POM polymers and their corresponding hysteretic responses 

 

Having said that deformations in materials generally present new material micro-

mechanisms which affect the mechanical responses of these materials, and hence at the 

macroscopic scale hysteresis responses are observed. Many materials can exhibit significant 

microstructural changes when subjected to external stimuli, such as plastic deformations [3, 4], 

stimulus-responsive polymers [5], ferroelectric and ferromagnetic materials [6, 7], biological 

materials [8, 9], etc.  
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This study presents a thermodynamics framework for viscoelastic materials undergoing 

microstructural changes when exposed to mechanical loadings. The models are derived based on 

a multiple natural configuration theory in order to accommodate the evolution of the material 

microstructures in a simplistic way. In this study, the natural configuration is considered as a stress 

free configuration of the materials. The models are also extended to incorporate the heat generation 

due to energy dissipation from the microstructural changes. The accumulated heat generation can 

yield to significant increases in temperatures of the materials, and thus influence the mechanical 

responses of the materials. In order to demonstrate the ability of the models in describing the 

mechanical responses of materials undergoing microstructural changes, experimental data on 

POM polymers and plant cell walls are used. 

   

1.1. Current Studies on the Modeling of Materials with Hysteresis Behaviors 

Hysteresis behaviors can be widely observed in materials undergoing deformations due to 

mechanical and non-mechanical stimuli. Polymers and metals are common examples of materials 

which exhibit hysteresis behaviors when subjected to mechanical loadings. There have been many 

phenomenological models developed to predict the hysteresis behaviors of materials, such as the 

plastic and/or viscoplastic models for metals [10, 11] and viscoelastic models for polymers [12-

15]. These phenomenological models are often expressed in general differential or integral form, 

and they are generally capable in capturing response of materials under various loading history. 

These types of constitutive models often lead to mathematical complexity, which often require 

numerical methods to determine their responses. Another approach in modeling response of 

materials is by using empirical models, where the mathematical functions and their corresponding 

material parameters are obtained from observing the experimental data. Such constitutive models 
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can also incorporate the effect of microstructural changes (diffusional transport by dislocation, 

dislocation climb and glide, grain boundary sliding, etc.) in order to describe the macroscopic 

constitutive models for materials. Examples of such models can be found in Amin et al. [16], 

Sherby and Weertman [17], Frost et al. [18], Gabb and Welsch [19], Orlova [20], etc. By 

considering dominant mechanism of microstructural changes under different loading conditions, 

deformation-mechanism maps can be constructed [18] [21]. Deformation-mechanism maps are 

very useful for engineering applications, especially for material selection and life prediction, due 

to the simplicity in the implementation of empirical models. However, the accuracy and ability of 

the empirical models are often limited to fixed loading conditions. 

In this research, constitutive material models incorporating microstructural changes are 

formulated for viscoelastic materials. The model is based on a multiple natural configuration 

approach, which is discussed below. As the body undergoes deformations, its natural configuration 

also changes corresponding to the newly formed microstructures. There have been many 

constitutive models formulated for mathematically describing the viscoelastic response of 

polymers, as documented by Green and Rivlin [22], Findley et al. [13], Pipkin [14], Christensen 

[15], Wineman [23], De Pascalis et al. [24], etc. Most of these models assume a viscoelastic body 

to have one natural configuration associated with it and ignore the effect of microstructural changes, 

and these models predict full recovery of the specimens upon unloading and after sufficient 

recovery time. In order to describe the permanent deformations observed in materials, many 

viscoplastic models have been considered (De Souza Neto et al. [25], Lubliner [26], Chaboche 

[27]). These models suggest that the character of the response changes dramatically due to changes 

in the underlying microstructure of the body, after the loading reaches a critical threshold. For 

example, before the threshold is reached the material might behave elastically (does not dissipate 
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any energy), and once the threshold is reached the material behavior changes to that of an inelastic 

body (dissipating energy). Another approach to mathematically describe the hysteretic and 

permanent deformation behaviors in materials is by introducing damage parameters, and the 

material properties change with the damage parameters [28-30]. In both viscoplastic and damage 

motivated models, a variety of damage parameters and criteria based on them are often necessary 

to capture responses of materials at various stages of loading-unloading histories. 

Microstructure-based models which analyze the macromolecular network structure of the 

material have been developed to simulate the time-dependent inelastic responses for polymers. 

Tobolsky et al. [31] modeled the relaxation of rubberlike materials by considering the rupture of 

networks with long-chain molecules. Similar ideas can also be found from Andrews et al. [32], 

Leaderman [33], Wineman and Shaw [34, 35], etc. Arruda and Boyce [36] proposed an eight chain 

model by describing the cooperative nature of polymer network deformation. In their research, the 

deformation of rubber is related to the orientation of molecular chain. The evolution of molecular 

chain is incorporated into the constitutive model through a material parameter which represents 

the limitation of chain extensibility. Similar constitutive models for rubber-like materials can also 

be found from Wu and Van Der Giessen [37], Nguyen et al. [38] and Kuhl et al. [39]. 

Thermodynamically-based constitutive models also have been developed to simulate the hysteresis 

responses of polymers [40, 41]. In the model proposed by Krairi and Doghri, constitutive relations 

are developed from the thermodynamics of irreversible processes. The rate of energy dissipation 

during irreversible processes is expressed as the difference between input power and Helmholtz 

free energy, which accounts for the dissipations due to viscoelasticity, viscoplasticity, and damage. 

In their model, the total strain is decomposed into the viscoelastic and viscoplastic (irreversible) 

parts. The constitutive relation between stress and viscoelastic strain is obtained from the second 
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law of thermodynamics, where the rate of dissipation due to viscoelastic deformation has to be 

nonnegative. The viscoplastic (irreversible) part of strain is calculated from evolution laws in a 

manner similar to the simulation for the plastic deformation.  

 

1.2. Multiple Natural Configuration Theory 

Another approach to model macroscopic responses of materials undergoing microstructural 

changes is based on a multiple natural configuration approach. Within the multiple natural 

configuration approach, the macroscopic response naturally evolves with the continuous changes 

in the microstructures, and therefore it does not require defining different mathematical 

expressions associated with different phenomena (e.g., elastic, plastic, damage, etc.) in order to 

describe different responses at various loading stages. The approach incorporates the net effect of 

various microstructural changes in materials without precisely modeling the detailed 

microstructural changes. Thus, the model can be directly correlated to the macroscopic 

experimental data, which represent the net (overall) response of materials. The idea of multiple 

natural configuration approach was introduced by Rajagopal and coworkers in 1990s [4, 42]. The 

actual microstructural changes in materials when exposed to external stimuli can be very complex, 

and might be impossible to analyze in great detail by incorporating all possible deformation 

mechanisms experienced by the microstructures. Within the multiple natural configuration theory, 

the microstructural changes are incorporated into the constitutive model by using internal state 

variables which indicate the evolution between different configurations. The multiple natural 

configuration approach was initially developed to model twinning of polycrystalline metals [43-

45]. During twinning, the material possesses two stress-free configurations, the original 

configuration which corresponding to untwined material and the final configuration corresponding 
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to fully twinned material. Then at intermediate state, the partially twinned configuration can be 

modeled as the juxtaposition of the original and final natural configurations [45]. Recently, the 

idea of multiple natural configuration has been extended to describe other material behaviors, such 

as viscoelastic fluid [22, 46, 47], shape memory alloys and shape memory polymers [48-50], 

piezoelectric composites [51, 52], Mullins effect in rubberlike materials [53], and even the growth 

of tumor [54]. The multiple natural configuration approach is very promising for simulation 

applications in solid mechanics, fluid mechanics and biomechanics fields.   

 

1.3. Research Objectives and Scope 

The scope of this study is to formulate a thermodynamic framework in order to describe the 

macroscopic responses of viscoelastic materials undergoing microstructural changes when 

subjected to various mechanical loadings. The constitutive models are developed base on the 

theory of multiple natural configuration. In order to recognize that the natural configurations 

associated with a body could evolve due to external stimuli consider a polymer under uniaxial 

tension (Figure 2). The natural configuration of the body is the configuration that the polymeric 

body takes in the absence of any mechanical stimuli. In this study, the natural configuration is 

considered as a stress-free configuration. When the polymer is deformed so that its configuration 

lies outside the domain of elastic response, say the state O’, then upon unloading the polymer will 

display a response that is different from the original elastic response. Thus, when unloaded from 

the states denoted by A’, B’, and C’, the body will tend to the associated with the natural 

configurations corresponding to the body at the states A’, B’, and C’, etc., namely the 

configurations corresponding to the states A, B, and C. The response from these natural 

configurations being different from the original elastic response as well as possibly from each 
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other. As will be discussed later, within the multiple natural configuration approach, the 

macroscopic response naturally evolves with the continuous changes in the microstructures, and 

therefore it does not require defining different mathematical expressions associated with different 

phenomena (e.g., elastic, plastic, damage, etc.) in order to capture the entire loading histories.  

 

 
Figure 2 An illustration of multiple natural configurations 

 

The research objectives are: 

1. Formulate constitutive models for viscoelastic materials undergoing microstructural 

changes when subjected to mechanical loadings. The models will be used to describe the 

macroscopic response of POM polymers (Chapter 2) and plant cell walls, which have 

polymers as building blocks (Chapter 3), under various histories of mechanical loadings. 

In Chapter 2 the formulation and prediction are discussed for a homogenous material, while 

in Chapter 3 the model is extended for heterogeneous material.  

2. Extend the viscoelastic constitutive model to include the temperature effect. The process 

of microstructural changes dissipates energy, which will cause temperature increases in the 

materials, and hence affecting the properties of materials. Once formulated, the framework 
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with thermo-viscoelastic behaviors can be used to study cyclic and fatigue behaviors in 

materials.   

3. Implement the above models within finite element analyses, which will be used to analyze 

responses of structures under various boundary conditions and loading histories. 
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CHAPTER II  

A THERMODYNAMICS FRAMEWORK FOR VISCOELASTIC ISOTROPIC 

HOMOGENEOUS MATERIALS* 

 

A three-dimensional constitutive model is formulated for materials undergoing microstructural 

changes due to prescribed mechanical loading. The model is used to describe responses of POM 

polymers. Under external stimuli, the material deforms, and the microstructure of the material 

evolves from its original natural configuration to a different (new) natural configuration where all 

microstructural change has completed, i.e., all macromolecular chains in polymers are broken. 

Material parameters for the two natural configurations are calibrated from creep responses at 

different stress levels.  The amount of new network being generated, i.e., the amount of broken 

macromolecular chain, is considered as an internal state variable that describes the evolution of 

the natural configurations. The simulation gives reasonable predictions when compared with 

quasi-static and creep test data. The constitutive model, the characterization of material parameters, 

and the simulation results are presented in this chapter. 

  

2.1. Constitutive Model 

In this section, a constitutive model to describe the viscoelastic response of a body that accounts 

for the effect of microstructural changes in the polymer networks on the overall (macroscopic) 

response of polymers is presented. The model is derived within the context of a multiple natural 

configuration approach. It is assumed that due to mechanical loading, the polymer microstructures 

 
* Reprinted with permission from “A thermodynamically consistent model for viscoelastic polymers undergoing 

microstructural changes” by Song, R., Muliana, A., & Rajagopal, K, 2019. International Journal of Engineering 

Science, 142, 106-124, Copyright [2019] by Elsevier. 
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are evolving between two natural configurations, which are stress free. The first (original) 

configuration is associated with the initial microstructures of the polymer, and the second (final) 

configuration is associated with the configuration that corresponds to the situation after complete 

microstructural changes have taken place (no more macromolecular chains are put into place). The 

polymers under consideration are in the glassy state, and thus small deformation gradient problems 

are considered. However, the materials still can exhibit nonlinear viscoelastic responses, which are 

incorporated in the nonlinear constitutive equations. The linearized strain is given by the 

expression 
1

2

T   
= +      

u u
ε

X X
, where = −u x X is the displacement and ( ), t=x X is the motion 

of a particle that is at X in a stress-free reference configuration.  

To recapitulate, the body in question, in general, is assumed to be comprised of two 

components, each with a different microstructure (a two-network polymer each network 

possessing a distinct microstructure). Initially, the body consists in just one network and as the 

deformation proceeds the network junctions of the polymer break and a new network comes into 

being. Each of these networks has its own “natural configuration”. Each of these networks has two 

distinct energy storage mechanisms and also has an energy dissipation mechanism. The purely 

elastic response of the network is denoted with subscript ( E ) and the one that is capable of both 

storing and dissipating energy will be denoted with a subscript ( )VS to express the fact that it is a 

viscoelastic network.   

The Gibbs free energy associated with the body as a whole, consisting in both the networks, 

is of the following form: 

 ( ) 1 ( ) 2( , , ) ( , ) ( , )
E EVS E VS EG G G G  = = +σ σ σ σ  (1) 



12 

 

where  is the stress tensor and  is a scalar parameter that takes the value between 0 and 1, that 

is a measure of the microstructural changes that has been undergone by the original material. While 

it could be thought of as the mass fraction of the new network present it could also be viewed as a 

parameter that is a measure of a type of microstructure1. When =0, the response of the polymer 

is comprised that of only with the original network, and for =1 the response is only due to the 

final (newly formed) network. That is, the Gibbs potential associate with the original network is 

( )( , ,0)
EVS EG σ σ and that of the new network is 

( )( , ,1).
EVS EG σ σ  The function 

( )( , , )
EVS EG σ σ need 

not necessarily be a linear function of  .  

The Helmholtz free energy per unit volume and its rates are: 

 
( )

( )
E E

E

VS

VS E

G G
G

 
= − • − •

 
σ σ

σ σ
 (2) 

 
( )

( )
E E

E E

VS

VS

G d G d G

dt dt
 



     
= − • − •   

        

σ σ
σ σ

 (3) 

As a result of microstructural changes, permanent deformations can occur in the materials upon 

unloading. As we shall be concerned with problems involving small strains, we shall assume an 

additive decomposition of the total strain: 

 ( )VS E P= + +ε ε ε ε  (4) 

where Pε  is the permanent strain that would depend on the microstructural changes ( P =ε 0  when 

=0), and 
E

E

G
= −


ε

σ
. Also, 

( )

( )
E

E

VS

VS

G
= −


ε

σ
. Using the linearized strain as a measure of the 

 
1 The multiple natural configuration approach incorporates the net effect of microstructural changes in polymers, 

which could be associated with various phenomena such as network reconfiguration, scission, fragmentation, etc. 

However, in case a single dominant physical mechanism of polymer macromolecular changes due to mechanical 

loading can be identified, e.g., scission, the internal state variable  can be used to represent a fractional change of 

such specific physical mechanism.    
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deformation and then assuming that such strains are additive needs some justification. The 

classical model for linear viscoelastic response2 uses the linearized strain as a measure and this 

model is often misused in situations wherein the displacement gradients are not small and thus the 

nonlinear part of the strain cannot be ignored. In the problem that we are considering, the error in 

neglecting the nonlinearities in the deformation gradients is approximately 11% for the axial strain 

level of 25%, however as the simplification that such an assumption offers is tremendous we use 

the linearized strain as the measure of deformation in carrying out our analysis. A detailed 

discussion of the nature and consequences of such an approximation is provided in the following 

section concerning the implementation of the constitutive model. 

 With regard to the viscoelastic components, we have the elastic recovery (subscript ( )EVS ) 

and dissipative (subscript ( )DVS ) parts: 

 ( ) ( )E DVS VS VS= =ε ε ε  (5) 

where   

 ( ) ( ) ( )

( )
E E

E E

VS VS VS

VS

G d G

dt

  
= − → − = = 

   

ε ε ε
σ σ

 (6) 

The stress borne by the elastic element is given by: 

 E=σ σ  (7) 

and within the viscoelastic solid component, we have  

 ( ) ( )E DVS VS VS= +σ σ σ  (8) 

Next, we define the rate of mechanical dissipation through: 

 
2 The classical linear viscoelastic model should be rightly referred to as the classical linearized viscoelastic model as 

the strain that is used is the linearized strain. Thus, in keeping with linearized elasticity the linear viscoelastic model 

is not frame indifferent. It is an approximation that only holds for small strains though it is used indiscriminately for 

large strains. 



14 

 

  = −σε  (9) 

As a consequence of Eqs. (3), (4), and (6), Eq. (9) yields: 

 ( )( ) ( ) ( ) ( )E E D DVS VS P VS VS P D P

G G G
    

  

  
= − + − = + − = + −

  
σ σ ε σε σ ε σε σε  (10) 

As mentioned above, the permanent strain Pε  should depend on , and thus, Eq. (10) can be 

rewritten as: 

 P
D D

G
F    

 

  
= + − = + 

  

ε
σ  (11) 

We assume the following function for the Gibbs potential for the problem under consideration: 

 
( ) ( )

( ) ( )

2 21 2
1 ( ) ( ) 1 ( ) ( ) 2 ( )

2 21 2
2 1 2

, 1
2 2

, 1
2 2

E E E E EVS VS VS VS VS

E E E E E

A A
G I B II I B II

C C
G I D II I D II

  

  

    
= − − + + +    

    

    
= − − + + +    

    

σ

σ

 (12) 

where I and II are the first and second invariants associated with the stress of the viscous and 

elastic stress components, i.e.,  

 
( )

( )

2

( ) ( ) ( ) ( )

2

1
tr( );    tr

2

1
tr( );    tr

2

E E E EVS VS VS VS

E E E E

I II

I II

= =

= =

σ σ

σ σ

 (13) 

and the parameters A, B, C, and D are the material parameters associated with the initial (subscript 

‘1’) and final (subscript ‘2’) configurations. In this study, as will be demonstrated later, the 

instantaneous response of the POM polymer cannot be captured by a relation as in Eq. (12), and 

therefore we modify the second form of the Gibbs potential as: 

 

( ) ( )
2

2 1 1

2

2 2

, 1 2

2

ii
EE

ff
EE

III

E E Ei i

III

E Ef f

e e
G C I D II

e e
C I D II





 
 


 

   
 = − − − + − −      

    

   
 − + −      

    

σ

 (14) 
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We further consider the following form for the rate of mechanical dissipation in Eq. (10): 

 ( ) ( ) ( ) ( )(1 ) . .
D D D DD VS VS VS VS  = − +

1 2
K σ σ K σ σ  (15) 

where K is a fourth order tensor associated with the viscosity of the material. Further confining 

our study to isotropic materials, Eq. (15) can be written as: 

 
2 21 2
( ) 1 ( ) ( ) 2 ( )(1 )

2 2D D D DD VS VS VS VSI II I II
 

    
   

= − + + +   
   

 (16) 

where  and  are material parameters associated with the viscosity of the polymer and 

( ) ( ),  
D DVS VSI II are the first and second invariants of ( )DVSσ . 

The elastic strains associated with the two networks can be obtained from either Eq. (12) 

or (14). Eq. (12) gives the following relation for isotropic materials: 

 
( ) 1 ( ) 1 ( ) 2 ( ) 2 ( )

( )

(1 )
VS E E E EE

E

VS VS VS VS

VS

G
A I B A I B 


   = − = − + + +   

ε I σ I σ
σ

 (17) 

    1 1 2 2(1 )E E E E E

E

G
C I D C I D 


= − = − + + +


ε I σ I σ

σ
 (18) 

It is seen from Eq. (18) that for a linear elastic isotropic material, we have the following relations 

1 1 2 2

1 1
, , ,

i i f f
C D C D

E E E E

   + +
= − = = − =  and E and  are the instantaneous elastic modulus and 

Poisson’s ratio, respectively. The above parameters can also vary with . The superscripts ‘i’ and 

‘f’ denote the properties corresponding to the initial and final configurations, respectively. The 

potential in Eq. (14) results in 

 

( )

( )

2

2

1 1

2 2

1
(1 ) 1

2

1
1

2

i IIE

i
E

f IIE

f
E

I

E E

E E

I

E

E

G e
C e D

II

e
C e D

II











   −
  = − = − − + +

     

  −
  − +

    

ε I σ
σ

I σ

 (19) 
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Muliana et al. [55] used a nonlinear constitutive form presented in Eq. (19) for polymers in the 

absence of microstructural changes, i.e., ( )
2

1
1

2

IIE

EI

E E

E

e
C e D

II




 −
 = − +
 
 

ε I σ  , and they showed that 

upon linearization, the model reduces to a linear elastic response, E E EC I D = +ε I σ , where 

1
,  C D

E E

 
 

+
= − =  and E and  are the elastic modulus and Poisson’s ratio, respectively. From 

the first and second terms of the right hand side of the rate of mechanical dissipation in Eq. (16), 

we can obtain the rate of strain associated with the viscoelastic responses: 

 ( ) ( ) 2 ( ) 2 ( ) 1 ( ) 1 ( )(1 )
E D D D DVS VS VS VS VS VSI I        = = + + − +   ε ε I σ I σ  (20) 

When the above relations are considered for the viscoelastic constitutive model for the isotropic 

materials discussed above, we have six material parameters (A, B, C, D, , ) for each 

configuration. It is noted that the above material parameters have physical interpretation, 

corresponding to the compliance and inverse of viscosity of the polymers. This illustrates that the 

macroscopic properties, i.e., moduli and viscosity, of materials are associated with the 

microstructural configuration of the materials. Altering the microstructural configurations in the 

materials, due to either processing or exposure to external stimuli, will result in different 

macroscopic properties, as should be expected.  

In dealing with viscoelastic response, more than one final component is often considered, 

especially when describing the long-term response of materials. In such a situation, the Gibbs 

potential ( )1 ( 1) , ( 2) , ( )...
E E EVS VS VSMG σ σ σ and the rate of dissipation ( )( 1) , ( 2) , ( )...

D D DD VS VS VSM σ σ σ can be 

modified to include additional networks in the viscoelastic components, such as: 

 ( ) ( )
( ) ( ) ( ) ( )

2 21 2
1 ( ) 1 2

1

, 1
2 2E VS VS VS VSE E E E

M
m m

VS m m

m

A A
G I B II I B II  

=

    
= − − + + +    

    
σ  (21) 
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2 22 1
( ) 2 ( ) ( ) 1 ( )

1

( ) ( )
( ) (1 ) ( )

2 2D D D D

M
m m

D VSm m VSm VSm m VSm

m

I II I II
 

    
=

   
= + + − +   

   
  (22) 

Consequently, the strain associated with the viscoelastic component and its rate are: 

 ( ) 1 ( ) 1 ( ) 2 ( ) 2 ( )

1 1( )

(1 )
E E E E E

E

M M

VS m VSm m VSm m VSm m VSm

m mVSm

G
A I B A I B 

= =


   = − = − + + +   

 ε I σ I σ
σ

(23) 

 ( ) 2 ( ) 2 ( ) 1 ( ) 1 ( )

1

( ) ( ) (1 ) ( ) ( )
D D D D D

M

VS m VSm m VSm m VSm m VSm

m

I I     
=

   = + + − +   ε I σ I σ  (24) 

The total strain can then be determined by: 

 ( )

1

M

VSm E P

m=

= + +ε ε ε ε  (25) 

The constitutive relation of the viscoelastic materials undergoing microstructural changes can then 

be determined by substituting Eqs. (17), (18) or (19), and (20) into Eq. (4), which results in 

ordinary differential equations (ODEs). In case multiple final components are considered, the 

relation is formed by substituting Eqs. (23), (18) or (19), and (24) into Eq. (25). 

Finally we also need an activation function and a driving force for the microstructural 

changes. It is natural to assume that microstructural changes in the polymers undergoing creep are 

related to the macroscopic strains in the materials3. Increasing strains would potentially result in 

breaking of the macromolecular networks of the polymers (scission). While healing in polymers 

is possible, in this study we neglect the possibility of healing. It is noted that as the amount of the 

new network (microstructural changes) in the polymer increases, the amount of the original 

network decreases. Formation of the new network and reduction of the original network are 

 
3 Since one can never know if the reference configuration from which strain is measured is free of residual stress or 

permanent set induced by prior deformation using measures based on strain or stress is not philosophically sound (see 

Alagappan et al. (2016) for a discussion concerning the use of strain or stress measures for changes in microstructures.) 



18 

 

assumed to occur at the same rate. The formation of the new network is determined by the 

activation function: 

 ( ) ( ) crA f I= −ε ε  (26) 

where crI is the critical value associated with the total strains that determines the formation of the 

new network. When loading takes place and the corresponding function ( )f ε
 
is less than the 

current value of crI
 
there is no formation of the new network. However, when loading results in 

( )f ε
 
to be greater than the current value of crI , then crI

 
needs to be updated to ( )crI f= ε , and 

the equality condition in Eq. (26) is now satisfied and therefore a new network is  formed. We also 

need to define the amount of new network being formed, which is assumed to depend on the second 

invariant of the total strain: 

 ( ) ( )II = εε  (27) 

The activation function and the function that describes microstructural changes will be discussed 

later during the material calibrations. 

The driving force F for the microstructural changes in Eq. (11) can be obtained once the 

form of the permanent strain evolving with the microstructural changes ( )P ε is defined. When 

the Gibbs potential is expressed as in Eq. (12), the driving force is: 

 ( )

( )

2 2 2 22 1 2 1
( ) 2 ( ) ( ) 1 ( ) 2 1

2 2 22 1 2
( ) 2 ( ) ( ) 1 ( ) ( ) 2 ( )

2 2 2 2

2 2 2
1

1

E E E E

E E E E E E

P
VS VS VS VS E E E E

VS VS VS VS VS VS

A A C C
F I B II I B II I D II I D II

A A C
I B II I B II I D II




  
  



        
= + + − + + + − +       

        

     
 +  +  +     

     + + − +
  

+ −

ε
σ

21
( ) 1 ( )

2 E EVS VS

C
I D II



 
 + 

 



 (28) 
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When the instantaneous part of the Gibbs potential is expressed as in Eq. (14), the driving force in 

Eqs. (28) becomes: 

 
( )

2 22 1
( ) 2 ( ) ( ) 1 ( )

2 22 1
( ) 2 ( ) ( ) 1 ( )

2

2 2 1

2 2

2 2
1

2

E E E E

E E E E

ff i
EE E

P
VS VS VS VS

VS VS VS VS

III I

E E Ef f i

A A
F I B II I B II

A A
I B II I B II

e e e
C I D II C I



 



 
 

  

    
= + + − + +   

    

   
 +  +   

   + −
 

     
 − + − − −        

     

ε
σ

( )

2

1

2 2

2 2 1 1

2

2 2

1

i
E

f if i
E EE E

II

Ei

II III I

E E E Ef f i i

e
D II

e e e e
C I D II C I D II



  



   
 

 

  
 + − 

   
  

         
    − + −  − + −               

         
+ + −

 

 (29) 

It is necessary for the rate of mechanical dissipation in Eq. (11) to be nonnegative. From the 

evolution of the viscoelastic mechanical response, we have 0D  , and thus we need 0F  . 

Since we assume that there is no healing in the materials, during unloading and recovery we have 

0 = and thus 0F = meaning the rate of mechanical dissipation is nonnegative. During loading 

and creep that trigger formation of the new network ( 0  ), it is necessary for 0F  . The form 

for ( )P ε should be chosen so that 0P








ε
σ . When the function in Eq. (28) is considered, the non-

negative dissipative rate leads to the following restriction on the material parameters, i.e., 

;  i f i fE E    , which is naturally obtained when we calibrate the material parameters from the 

experiment. When the function in Eq. (29) is used, it is necessary for 

2 2

2 2 1 12 2

f if i
E EE E

II III I

E E E Ef f i i

e e e e
C I D II C I D II

  

   

         
   − + − − − + −               

         

 to be greater than or equal to 

zero for any stress value. With the parameter values for C  and D  as shown in the material 

parameter characterization section, it is easy to prove that the restriction is satisfied for uniaxial 

loading conditions. 
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The above constitutive relation is solved numerically, by using finite difference method. 

The algorithm to compute the creep strain is summarized as follow: Assume at time t, the creep 

stress tensor σ , creep strain tensor ( )tε , volume fraction of newly formulated network ( )t , and 

stress tensor 
( ) ( )

DVSm tσ within each delayed component are known. In order to calculate the creep 

strain at time t t+  , ( )t  and ( ) ( )
DVSm tσ are substituted into Eq. (20) to calculate the rates of 

dissipative strain ( ) ( )VSm t t+ ε . The instantaneous, elastic strain tensor ( )E t t+ ε  can be 

calculated from Eq. (19) using ( )t  andσ , while viscoelastic strain generated by each delayed 

component can be obtained by equation ( ) ( ) ( )( ) ( ) ( )VSm VSm VSmt t t t t t+  = + +  ε ε ε . The total creep 

strain at time t t+  can be computed by Eq. (25). Finally, volume fraction of newly formulated 

configuration ( )t t +   and stress tensor ( ) ( )
DVSm t t+ σ  for each delayed component are calculated 

from Eq. (27) and Eq. (17), respectively, to apply as inputs for next time step. To ensure the 

accuracy of this differential model, the value for t is set to be a small number. In this research, 

we choose 0.5mint = . 

 

2.2. Implementation of the Constitutive Model 

The above constitutive model is corroborated using experimental data on polyoxymethylene (POM) 

under uniaxial tensile tests. A ramp loading with a constant displacement rate (1 mm/s), 

corresponding to 0.87%/s nominal (engineering) strain rate, creep under constant loads as well as 

recovery tests were performed. The ramp loading was carried out until specimens failed at around 

25% engineering strain. The creep-recovery tests were conducted at different load amplitude and 

duration. It will be seen later that depending on the magnitude of load and duration of loading, the 

POM polymer can experience microstructural changes, which can be associated with the breaking 
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of the polymer networks. When microstructural changes take place, upon unloading and recovery 

the macroscopic response of polymers show permanent set, which is a new stress free natural 

configuration. Both axial and in-plane transverse deformations were measured during the tests. A 

detailed discussion of the experiment can be found in Muliana et al. [55, 56]. 

For the POM polymer under consideration, the failure strain is around 25%. From the 

recorded axial and transverse deformations, we can construct the axial and lateral stretch, and the 

corresponding axial and lateral displacement gradients, i.e., 1

1

u

X





 and 2

2

u

X





. The engineering strains 

are determined as 1 2
11 22 33 12 13 23

1 2

;  ;  0
u u

X X
     

 
= = = = = =

 
. In order to justify the choice of engineering 

strain, instead of using nonlinear strains, we quantify percent errors when neglecting the higher 

order displacement gradients. For the displacement gradient
2

1 1

1 1

1
0.25;   0.03125

2

u u

X X

  
= = 

  

; the 

percent error in neglecting the higher order term when determining the strain is around 11%. As 

most of the data are below the failure strain of 25%, the percent error in considering the engineering 

strain is less than 11% in most of the results. The engineering strain measure is used due to its 

simplicity in formulating the model and obtaining the solutions. 

 

 
Figure 3 A ramp loading at a constant strain rate, showing axial response (left) and lateral 

response (middle), and Poisson’s ration (right) 
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 The axial and lateral responses under ramp loading (Figure 3) are used to calibrate the 

material parameters associated with the elastic response in Eq. (19). Hence, the stress tensor of the 

elastic component
Eσ and invariants ,E EI II  can be written as: 

 2

0 0
1

0 0 0 , ,
2

0 0 0

E

E E E E EI II



 

 
 

= = =
 
  

σ  (30) 

Substituting Eq. (30) into Eq. (19), the elastic strain components are written as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 1 1 2 2

22 33 1 2

12 13 23

1 1 1 1 1

1 1 1

0

i i f f
E E E E

i f
E E

E

E E

E E E

C e D e C e D e

C e C e

       

   

  

   

  

   = − − + − + − + −
   

= = − − + −

= = =

 (31) 

As discussed before, upon linearization, we have
1

,  C D
E E

 
 

+
= − =  and hence: 

 1 1 2 2

1 1
,    ,   ,    i i f f

i i f f

E E E E

C D C D
E E E E

   
   

+ +
= − = = − =  (32) 

where 
EE  and  are the instantaneous elastic modulus and Poisson’s ratio, and superscripts ‘i’ and 

‘f’ denote the properties corresponding to the initial and final configurations, respectively. We also 

plot the ratio of the lateral to axial strains against the axial strain corresponding to the ramp loading 

in Figure 3. It is seen the ‘corresponding Poisson’s ratio’ varies as the polymer is being stretched. 

Thus, we suggest the following form for the Poisson’s function: 

 
( ) ( )1f i    = + −

 (33) 

which also implies: 

 ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 2

1 1 2 2

1 1 1

1 1 1 1 1

i f
E E

i i f f
E E E E

C e C e

C e D e C e D e

   

       

 
 

 

− − + −
= −

   − − + − + − + −
   

 (34) 

Furthermore, we assume that ,i i f f   = = , and from Eqs. (33) and (34) we can show that 
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 ( )1 2

1 1 2 2

C C

C D C D
 − = − =

+ +
 (35) 

Combining Eq. (32) and Eq. (35), and let ( )1 0iC C = = , ( )2 1fC C = = , ( )1 0iD D = = , 

( )1 1fD D = = , we have: 

 

( )
( )

( ) ( )

( )
( )

( )

( ) ( )( )

1

2

1

2

1

1

11
1

1

1 11

1

f
i i

i i i

i

f f

f f f

f

i i

i i i

i

f f

f f f

C C C
E

C C C
E

D D D
E

D D D
E

  


 

   


 

  


 

  


 

= − = + +

−
= − = +

++
= = + +

+

+ ++
= = +

+

 (36) 

The responses near zero stress, i.e., 0  , are used to determine , , ,i i i iC D  (note that i i = ). 

As discussed above, 
1

,  
i i

i i i i

i i
C D

E E

 
 

+
= − = . The remaining information concerning the 

responses are used to calibrate , , ,f f f fC D   (also noted f f = ). The Poisson’s ratio 

associated with the elastic response in the initial configuration is determined by taking the ratio of 

the lateral and axial strains of the ramp loading at a relatively low axial strain (<3%), i.e.,

22

11

0.42i 



= − =  , and the Poisson’s ratio associated with the elastic response in  the final 

configuration is determined at the highest value of axial strain (~25%), i.e., 22

11

0.25f 



= − = . We 

can also determine this value by examining the creep responses at the highest strain (see Figure 4), 

which gives 
7%

0.28
25.5%

f
−

= − = . It is seen that the two values of 
f from the elastic responses in 

the ramp and creep loading are very close. In this study, we take 0.28f = . 
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Simultaneously, we also define the amount of the new network being formed (Eq. (27)) 

during the ramp loading until failure occurs, as given below: 

 ( ) ( )
( )2

max

2

J

J



 
 

=  =  
 

ε
ε  (37) 

where the maximum second strain invariant is at failure strains, i.e., 

max max max

11 22 3325.2%; 7%  = = = − , which gives max

2 0.0367J =  are obtained from the highest creep 

strains under 50 MPa, shown in Figure 4. The calibrated value for  is 0.63. The irrecoverable 

strains are determined from the long-term recovery data 11 22 338.2%; 2.3%ir ir ir  = = = − , shown in 

Figure 4. We consider the following permanent strains: 

 ( ) ( )
( )2

max

2

n

nir ir ir

P

J
h

J



 
 

= =  =    
 

ε
ε ε ε ε  (38) 

The calibrated value for n  is 1.8. Table 1 summarizes the calibrated values.  

 

 
Figure 4 Creep-recovery responses under 50 MPa, showing axial response (top) and lateral 

response (bottom) 
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Table 1 Instantaneous parameters 

Parameter 
Value at initial configuration 

(superscript i ) 

Value at final configuration 

(superscript f ) 

C  34.048 10−−   
36.370 10−−   

 (
1MPa−
) 0.025 0.036 

D  313.615 10−  
329.118 10−  

 (
1MPa−
) 0.025 0.036 

  0.42 0.28 

 

 

 

 

 
Figure 5 Creep-recovery responses under axial stresses 20 MPa and 50 MPa 

 

Next, we determine the dissipative components of the model using the creep responses at 

two stress levels, i.e., 20 MPa and 50 MPa, shown in Figure 5. We have a relatively long-term 

response and therefore the models in Eqs. (23) and (24) are considered. Similar to Eq. (36), from 

Eq. (23) and Eq. (24), for an isotropic material, we have: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

;     

1 1
;    

;    

1 1
;     

m m

m mi f

m m

m m

m mi f

m m

m m

m mi f

m m

m m

m mi f

m m

A A
E E

B B
E E

   

   

   
 

 

   
 

 

= − = −

+ +
= =

= − = −

+ +
= =

 (39) 

The creep response at 20 MPa gives a relatively small strain, i.e., 0  and is used to determine 

the parameters
1 1,m mA B , while the creep response at 50 MPa is used to calibrate

2 2,m mA B . Based on 

the experimental data of the ratio of the lateral and axial strain from the ramp and creep loadings 

in Figure 3 and Figure 4, it is assumed that the ratio of the transverse strain to the axial strain does 

not depend on time, so that ( ) ( )m   =  and hence i i

m = and f f

m = . This assumption will 

be validated by comparing the lateral creep-recovery responses for all stress levels. Furthermore, 

the dissipative part in Eq. (24) leads to 
1 1 1

( ) 1
;   m m mi i

m m

 
  

 
= − + =  and 

2 2 2

( ) 1
;   m m mf f

m m

 
  

 
= − + = , 

where ,i f

m m  are the viscosity parameters. It is often convenient to relate the characteristics of 

creep time to the viscosity of materials. We consider several components of the final network, 

i i

m m mE =  and f f

m m mE = , where 
m  is the characteristic time. In this study, we have 8 

components for the final network and we pick the characteristic time as shown in Table 2. 

Therefore, we only need to calibrate the values for i

mE  and f

mE from the creep responses at 20 MPa 

and 50 MPa, respectively, as shown in Figure 5. From the values in Table 2 and the Poisson’s 

ratios associated with the elastic responses of the initial and final configurations, we can determine 

the values for 
1 1 2 2, , ,m m m m     if needed. 
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Table 2 Time-dependent parameters 

Individual network m m (min) in

mE (GPa) f

mE (GPa) 

1 5 48.80 1.98 

2 10 47.33 2.43 

3 100 20.26 1.44 

4 500 27.02 3.70 

5 1000 16.06 1.61 

6 5000 1318.7 4.00 

7 10000 5.53 0.36 

8 50000 3.84 3.84 

 

 

 

Using the calibrated material parameters in Table 1 and Table 2, we simulate the creep-

recovery responses of POM polymers under different stress levels and holding periods. Figure 6-

Figure 9 summarize the responses comparing experiments and simulation.  

 

 

 
Figure 6 Creep-recovery responses under 35 MPa 
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Figure 6 Continued 

 

 
Figure 7 Creep-recovery responses under 42 MPa 
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Figure 7 Continued 
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Figure 8 Creep-recovery responses under 50 MPa 
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Figure 9 Creep-recovery responses under 55 MPa 
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CHAPTER III  

A THERMODYNAMICS FRAMEWORK FOR GENERAL ANISOTROPIC AND 

HETEROGENEOUS MATERIALS* 

 

As an additional application for the multiple natural configuration theory discussed in Chapter II, 

in this section, a constitutive model is developed to predict the responses of general anisotropic 

and heterogeneous materials. As examples of applications, hysteretic responses of plant cell walls 

are studied and the effect of microstructural changes, i.e., fibril reorientations, viscoelastic 

behaviors of fibers and matrix, possible sliding between fibers and fiber-matrix, etc., is 

incorporated through an internal state variable. Plant tissue experiences viscoelastic behaviors 

because its components, such as cellulose and lignin are polymers with long chain and multiple 

network microstructures. Their macromolecular networks lead to viscoelastic behaviors when they 

are subjected to mechanical loadings. In living tissues, the existence of fluid can also amplify the 

viscoelastic response of the stems. Because of these polymer-like properties, a time-dependent 

constitutive model similar with the model for POM polymer is developed in this section. Plant 

stems also share similar structure with fiber-reinforced composites. Therefore, nonlinear hysteresis 

responses of plant stem are also analyzed by applying multiple configuration theory on composites. 

 

3.1. Constitutive Material Models 

A general multi-axial constitutive model that can be used for describing anisotropic response of 

materials is discussed here. To calibrate the properties in the multi-axial model, experimental tests 

beyond a simple uniaxial test are required. The Gibbs free energy is expressed in terms of stress 

 
* Reprinted with permission from “Modeling mechanical behaviors of plant stems undergoing microstructural changes” 

by Song, R., & Muliana, A., 2019. Mechanics of Materials, 139, 103175, Copyright [2019] by Elsevier. 
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tensor comprising elastic (N) and viscoelastic (V) components, ( , , )V NG G = σ σ and the total 

strain tensor is given as: 

 e p= +ε ε ε  (40) 

where e V N= =ε ε ε , e d

V V V= +ε ε ε and 
pε is the permanent strain tensor. The elastic strains are 

determined from 
N

N

G
= −


ε

σ
 and e

V

V

G
= −


ε

σ
. The total stress is N V= +σ σ σ . The rate of the 

mechanical dissipation is given as: 

 d P
V V p D D

G G
F     

  

  
= + − = + − = + 

   

ε
σ ε σε σ  (41) 

For a general multi-axial response, the Gibbs free energy can be expressed as: 

 ( , , ) . (1 ) . . (1 ) .f i f i

V N V V V V V V N N N N N NG        = − + − − + −   σ σ S σ σ S σ σ S σ σ S σ σ  (42) 

where , , ,f i f i

V V N NS S S S  are fourth order tensors associated with the compliance of the materials. The 

components of the above tensors should be determined from experiments, which will indicate the 

isotropy or anisotropy nature of the materials. The rate of the mechanical dissipation associated 

with the viscoelastic response is given as: 

 . (1 ) .f i

D V V V V  = + −K σ σ K σ σ  (43) 

where 
f

K and 
i

K are fourth order tensors associated with the inverse viscosity of the materials. 

Finally, the elastic and viscoelastic strain tensors can be determined from the Gibbs energy 

in Eq. (42) and the rate of the dissipative strain can be obtained from Eq. (43): 

 2 (1 )2e f i

V V V V V = + −ε S σ S σ  (44) 

 2 (1 )2f i

N N N N N = + −ε S σ S σ  (45) 

 2 (1 )2d f i

V V V = + −ε K σ K σ  (46) 
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The driving force for the microstructural changes is now given as: 

 . . . .
p f i f i

V V V V V V N N N N N NF



= + − + −



ε
σ S σ σ S σ σ S σ σ S σ σ  (47) 

The function for ( )p ε can be formed based on available experimental data, as discussed above. 

 The multi-axial constitutive model can also be modified to simulate the mechanical 

responses for heterogeneous materials, given the volume fractions of each phases. Constitutive 

model for heterogeneous material with two layers is discussed below as an example. Similar with 

Eq. (42), for a general three-dimensional response, the Gibbs free energy for the heterogeneous 

material can be written as: 

 
( )

1 1 2 2 1 2

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

( , , , , , )

. (1 ) . 1 . (1 ) .

V N V N

f i f i

V V V V V V N N N N N N

G

c c

 

      = − − − + − − − −   

σ σ σ σ

S σ σ S σ σ S σ σ S σ σ
 (48) 

where c  is the volume fraction of first layer of the heterogeneous material. Subscript ‘1’ and ‘2’ 

denote properties associated with first layer and second layer, respectively. 

The rate of mechanical dissipation is defined as the difference between mechanical power 

and the rate of internal energy: 

 

( )

( ) ( )( )

( ) ( )

1 1 2 2

1 1 1 1 1 2 2 2 2 2

1 2

1 2

1 1 2 2 1 1 2 2

1 1 2 2

1

1

1 1

d d

V V p V V p

p p

D D

c c u

G G
c c

G G
c c cF c F 



 
 

     
   

= + − −

 
= + − + − + −

 

     
= + − + − − = + + −   

      

σ ε σ ε

σ ε σ ε σ ε σ ε

ε ε
σ σ

 (49) 

where 1F  and 2F  denote the driving forces for microstructural changes in first layer and second 

layer, respectively, while D  represents the rate of mechanical dissipation associated with the 

viscoelastic response: 

 ( )1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2. (1 ) . 1 . (1 ) .f i f i

D V V V V V V V Vc c       = + − + − + −   K σ σ K σ σ K σ σ K σ σ (50) 
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Similar with Eqs. (44)-(46), the delayed and relaxed strain tensors within each layer can be derived 

from Gibbs free energy and the rate of mechanical dissipation: 

 1 1 1 1 1 1 1 2 2 2 2 2 2 22 (1 )2 , 2 (1 )2e f i e f i

V V V V V V V V V V   = + − = + −ε S σ S σ ε S σ S σ  (51) 

 1 1 1 1 1 1 1 2 2 2 2 2 2 22 (1 )2 , 2 (1 )2f i f i

N N N N N N N N N N   = + − = + −ε S σ S σ ε S σ S σ  (52) 

 1 1 1 1 1 1 1 2 2 2 2 2 2 22 (1 )2 , 2 (1 )2d f i d f i

V V V V V V   = + − = + −ε K σ K σ ε K σ K σ  (53) 

For a two-layer heterogeneous material, we have: 

 ( )1 2 1 2, 1c c= = = + −ε ε ε σ σ σ  (54) 

The constitutive relation between ε and σ can be derived by combining Eqs. (51)-(54). 

 

3.2. An Application of the Model for Nonlinear Hysteretic Responses of Cell Walls 

3.2.1 Model Formulation 

In this chapter, we present a one-dimensional reduction of the above models since the currently 

available data in literature for plant tissue mainly report stress-strain along the loading axis. Both 

cellulose fibrils and matrix are polymers with long chain and multiple network microstructures. 

When subjected to mechanical loadings they exhibit pronounced viscoelastic behaviors due to the 

movements of the long macromolecular chains. We present a model for a viscoelastic response, 

which consists of the elastic (N) and viscoelastic (V) components. The Gibbs free energy is of the 

form ( , , )V NG G   = , and the specific Helmholtz free energy and its rates are: 

 
V N

V N

G G
G  

 

 
= − −

 
 (55) 

 
V N

V N

G d G d G

dt dt
   

  

     
= − −   

     

 (56) 
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We assume that the delayed and relaxed components produce the same strain. In this research, a 

solid-like viscoelastic response is assumed. The ‘reversible’ strain is written as e . Hence, we have:

 e V N  = =  (57) 

Within the viscoelastic part, we have the elastic recovery and dissipative parts: 

 e d

V V V  = +  (58) 

where 

 e e d

V V e V

V V

G d G

dt
   

 

  
= − → = − = − 

  

 (59) 

The total strain is assumed to be the superposition of the reversible viscoelastic strain and the 

permanent strain due to the microstructural change: 

 
maxe p e    = + = +  (60) 

where the permanent strain is assumed to be proportional to microstructural change, and 
max is 

the maximum permanent strain. The overdot in Eqs.  (56) and (59) denotes the time 

derivative. It is also noted that the stress is an additive decomposition of the elastic and viscoelastic 

parts: 
N V  = + . 

 Next, we define the rate of mechanical dissipation: 

   = −  (61) 

Substituting Eqs.  (56)-(60) into Eq. (61) gives: 

 ( ) ( ) max

d d

V r V N r V V

G G
            

 

  
= − − + − − = + − 

  
 (62) 

We consider the following form of the Gibbs potential: 

 
( ) ( )

( )
2 22 21 1

( , , )
2 2 2 2

V NV N
V N

Vf Vo Nf No

G f
E E E E

    
   

   − −
= − + − + +      

   

 (63) 
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The above potential gives the following constitutive equations for the elastic and viscoelastic parts: 

 (1 )N N
N

N Nf No

G

E E

  




−
= − = +


 (64) 

 
(1 )e d d dV V

V V V V V

V Vf Vo

G

E E

  
    



−
= + = − + = + +


 (65) 

 1d

V V

f o

 
 

 

 −
= +  

 

 (66) 

From Eqs. (63)-(66) we can see that there are three material parameters involved, which are moduli 

for the elastic and viscoelastic parts and viscosity for the viscoelastic part. They are referred as

, ,N VE E  , respectively. These material parameters evolve with the mechanical loading. Thus, 

with regards to the initial and final microstructural configurations, we have the following material 

parameters: , , , , ,No Vo o Nf Vf fE E E E  . Equation (63) represents the stored energy from the elastic 

and viscoelastic responses. Recall the mechanical dissipation in Eq. (62), and with the Gibbs 

potential in Eq. (63), we have: 

 
2 2 2 2

max max

( )

2 2 2 2

V V N N

Vf Vo Nf No

G f
F

E E E E

    
 

 

    
= − = + − + − −          

 (67) 

Eq. (67) presents the driving force for the microstructural changes. It is noted that it is necessary 

for the rate of mechanical dissipation in Eq. (62) to be non-negative and thus we can pick an 

expression for ( )f   to satisfy the above constraint so that 0F  . In this study, we neglect the 

free energy due to microstructural changes, and hence we take ( ) 0f  = . 

 In many cases, experimental data pertinent to the time-dependent response are not being 

reported. In order to capture nonlinear hysteretic response, in absence of the viscous dissipation, 

we can reduce the above model by eliminating d

V  (letting 1 (1 )
0

i f o

 

  

−
= + = ). Thus, according to 
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Eqs. (57)-(58) and (65)-(66), the reversible part of the model reduced to an elastic response with a 

modulus of elasticity as a material parameter. The only stress involved is  and the elastic moduli 

at the initial and final configurations become o Vo NoE E E= +  and
f Vf NfE E E= + , respectively. It is 

noted that the elastic moduli for the elastic material behavior are associated with the instantaneous 

moduli in viscoelastic materials. Thus, the Gibbs potential in Eq. (63) reduces to: 

 ( ) 22 1
( , )

2 2f o

G
E E

 
 

 −
= − +  

 

 (68) 

The parameters oE and
fE are the material stiffness at the initial configuration ( 0) =  and final 

configuration ( 1) = , respectively. Following a standard procedure in imposing the thermo-

dynamics relations, the rate of the mechanical dissipation is: 

 ( )p e

G G
      

 

 
= − = − −

 
 (69) 

where the reversible strain, defined as the superposition of elastic strains of the two configurations, 

can be derived from Gibbs free energy: 

 
( )1

e

f o

G

E E

 




−
= − = +


 (70) 

The rate of dissipation associated with the microstructural changes are expressed in Eq. Error! 

Reference source not found.. The term ( )e  − is related to the permanent strain due to 

microstructural changes. As discussed above, we need to satisfy the constraint 0  , and we also 

need to define the evolution of the microstructural changes due to the deformation. These will be 

discussed later during the material characterization from available experimental data.Finally, the 

total energy dissipation is defined as: 

 0dW dt=   (71) 
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3.2.2  Material Parameter Characterization from Experimental Data 

In this section we discuss the determination of material parameters in the above model in capturing 

the nonlinear hysteretic response of plant cell wall undergoing microstructural changes. For this 

purpose, we first used data of wet wood tissue of spruce (Picea abies), provided by Burgert [57]. 

The data were discussed for time-independent response, thus we eliminate the viscous dissipation 

part and use the Gibbs potential given in Eq. (63). Before we proceed with the material parameter 

characterization, we need to identify the relation between the evolution of the microstructural 

changes and the deformation. Figure 10 shows the hysteretic response of the tested wet wood tissue 

of spruce. It is seen that multiple loading-unloading cycles lead to a sequence of permanent 

deformations, which are associated with changes in the microstructures of the cell wall. The 

unloading-reloading cycles also show significant hysteretic loops.  

 

 
Figure 10 Calibration of material parameters oE , 

fE and max from experimental data on wet 

wood tissue of spruce [57] 

 

 

 

  The material modulus at the initial configuration, Eo, is calibrated by taking the slope when 

the strain is zero, while the modulus at the final configuration 
fE is calibrated at the maximum 

o 
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unloading strain, where a complete microstructural change has taken place, 1  . It is assumed 

that the permanent strain is proportional to the extent of microstructural change : 

 ( )max maxe e     − = → − =  (72) 

where max  is the maximum remanent strain, as depicted in Figure 10. The value for max  is 

calculated by using the maximum strain minus the reversible part of the strain at the maximum 

load. The calibration results for wet wood tissue of spruce are 1.189oE GPa= , 1.757fE GPa=

and max 13.65% = . From Eqs. Error! Reference source not found. and (72), the strain is given 

as: 

 
( )

max

1

f oE E

 
 

−
= + +  (73) 

The rate of energy dissipation in Eq. Error! Reference source not found. can now be written as: 

 maxp

G G
F      

 

 
= − = − =

 
 (74) 

where F is the driving force for the microstructural changes due to mechanical loading. As stated 

above we ignore the free energy associated with the microstructural changes, and the expression 

of F is: 

 2 1 1

2 2
ax

o

max

f

m

G
F

E E
  



 
= − = + −    

 (75) 

Since at the initial stage ( =0 and  =0), the microstructural changes have not yet taken place 

and F=0. Also from Eq. (73), the microstructural change is explicitly expressed as: 

 o

f

max

o

E

E E





 



−

=

− +

 (76) 
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Now in order to examine the relation between the driving force F and microstructural changes , 

we plot the outer loop of the hysteretic response, shown in Figure 11. Once the parameters 

max, ,o fE E  have been determined, the experimental plot of F- can be constructed from Eqs. (75) 

and (76). We then mathematically describe the F- relationship. This can be done by using a 

weighted superposition of kernels of the Preisach-Krasnoselskii operator, which is described in 

Mayergoyz [58], [59]. The Preisach-Krasnoselskii approach describes a phenomenological 

hysteretic model of any physical behavior. In this study, we consider the Preisach-Krasnoselskii 

operator with the number of hysteron N=5050. The number of hysterons in Preisach-Krasnoselskii 

operator describes the smoothness of the response. The prediction of the minor loops at several 

loading-unloading cycles is also shown in Figure 11. The material parameters are summarized in 

Table 3.  

 

 
Figure 11 Relation between driving force and microstructural change for wet wood tissue of 

spruce during calibration of the Preisach-Krasnoselskii operator 
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Table 3 Material parameters for different tissue 

Tissue type ( )oE GPa  ( )fE GPa  
max (%)  N  

Wet wood tissue of spruce (Picea abies) 1.189 1.757 13.65 5050 

Isolated sclerenchyma tissue of Aristolochia 

macrophylla 
3.542 4.984 4.24 5050 

Outer strengthening tissue of Aristolochia 

macrophylla 
1.552 1.552 2.91 5050 

Inner core tissue of Aristolochia macrophylla 0.262 0.262 8.37 5050 

 

 

 

 The hysteretic response of a plant cell wall with microstructural changes is then determined 

from Eqs. (73), (75), and F- relationship through the use of the Preisach-Krasnoselskii operator. 

Finally we show the prediction of the stress-strain hysteretic response of a wet wood tissue of 

spruce (Picea abies), tested by Burgert [57], in Figure 12 below. Overall the model is capable of 

capturing the entire hysteretic response. 

 

 
Figure 12 Modeling result of wet wood tissue of spruce 

 

 We also test the approach using a hysteretic response of a different plant cell wall. We 

consider an isolated sclerenchyma tissue of Aristolochia macrophylla tested by Köhler and Spatz 

[60]. The same procedure as discussed above is used to calibrate the material parameters in the 

model, which are listed in Table 3. Figure 13 shows the simulation results for isolated 
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sclerenchyma tissue of Aristolochia macrophylla. For both cyclic and quasi static responses, the 

model gives a reasonably good prediction compared to experimental result.  

 

 
Figure 13 Simulation results for isolated sclerenchyma tissue of Aristolochia macrophylla. Left: 

cyclic response. Right: Quasi static response. 

 

 

 

3.2.3 Investigation of the Effect of Viscoelasticity on the Hysteretic Response 

Köhler and Spatz [60] discussed the viscoelastic effect of the overall hysteretic response of the 

isolated sclerenchyma tissue of Aristolochia macrophylla. The time-dependence is shown by the 

variation in the amount of energy dissipation with loading rates. However, they did not provide 

detailed time-dependent responses, e.g., creep, stress relaxation, etc., which makes it difficult, or 

impossible, to calibrate the parameters needed for the viscoelastic response ( , ,N VE E  ). As we 

can see from Eqs. (64) and (65), when 0d

V = , the constitutive relations become: 

 

(1 )

(1 )

N N
N

N Nf No

V V
V

V Vf Vo

G

E E

G

E E

  




  




−
= − = +



−
= − = +



 (77) 
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Together with the kinematic condition shown in Eq. (57) and equilibrium condition N V  = + , 

the reversible strain derived from Eq. (77) can be written as follow: 

 ( )N V eE E  + =  (78) 

where 

 

1 (1 )

1 (1 )

V Vf Vo

N Nf No

E E E

E E E

 

 

−
= +

−
= +

 (79) 

The calibration of elastic moduli at initial and final configuration for time-independent constitutive 

relation shown in Eq. (78) were discussed in previous section. From Eq. (79), the elastic modulus 

at the initial state ( ) 0|N V o No VoE E E E E =+ = = + ; at final state, ( ) 1|N V f Nf VfE E E E E =+ = = + . 

The values for oE  and 
fE  are depicted in Table 3. For the purpose of a qualitative study, we take 

1

2
No Vo oE E E= = and

1

2
Nf Vf fE E E= = . For the viscosity parameter  , we set the characteristic 

time 2000s = , hence we have o VoE =  and
f VfE = . The above material parameters 

, , , , ,No Vo o Nf Vf fE E E E  can be easily determined if we have the experimental data reported in 

time-domain, i.e., stress-strain-time, at the initial and final configurations, see previous work of 

Muliana et al. [56].  

 The relation between the microstructural change  and driving force F for the time-

dependent model is assumed to be the same as the one from the time-independent model, which 

can be determined by examining the outerloop of the time-independent hysteresis loop, as 

discussed in the previous section. 

 A qualitative study for the effect of viscoelasticity on hysteresis behavior is depicted in 

Figure 14. The loading stress cycles between 0MPa and 80MPa, and energy dissipations per cycle 
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are calculated for different loading rates. The left figure in Figure 14 shows the energy dissipation 

for the first three cycles. As we can see from the figure, the energy dissipation of the first cycle is 

significantly larger than the second and third cycle. The reason for a higher energy dissipation for 

the first cycle is because more pronounced microstructural changes and time-dependent effect 

occur during first cycle, therefore more energy are dissipated. As reloading continues, the response 

is closer to the relaxed stage and microstructural changes vary between the reloading-unloading 

strains (1.8-4.8%), and hence smaller energy dissipation is seen. Thus, it can be seen that there are 

two sources of energy dissipation, which are from the microstructural changes and delayed 

response owing to the viscoelastic effect. Figure 15 shows time-dependent hysteresis responses of 

cycles 1-3, respectively, at loading rate
21 10 /MPa s −=  . As we can see from Figure 15(a), more 

deformation occurs during first cycle, which leads to more pronounced energy dissipation, as 

shown in Figure 14(left). From Figure 15(b) and (c), we can see that the shapes of hysteresis loop 

for cycle 2 and cycle 3 are almost the same, which means the response reaches to the steady-state. 

The right figure of Figure 14 shows the ratio between the dissipated energy and stored energy for 

the third cycle. Initially the energy dissipation increases with stress rate, then after reaching to a 

peak, energy dissipation decreases with increasing stress rate. The relation between energy 

dissipation and stress rate depicted in Figure 14 shows that the model can capture the same trend 

as the experimental result reported by Köhler and Spatz [60]. The time-dependent model 

adequately describes the effect of viscoelasticity on the hysteresis response.  
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Figure 14 Quantitative study for the effect of viscoelasticity on hysteresis behavior 

 

 

Figure 15 Time-dependent hysteresis response at stress rate 
21 10 /MPa s −=   

 

 A simulation for creep responses using the time-dependent model is depicted in Figure 16. 

Two stress levels, 40MPa (left) and 80MPa (right), are considered in this analysis. The loading 

stress is held for 1 hour. From Figure 16, we can see that the time-dependent model is capable of 

generating a creep-recovery curve similar to a typical linear viscoelastic material. However, unlike 

a linear viscoelastic material, the instantaneous deformations shown in Figure 16 during loading 

and unloading are not the same. The difference in the instantaneous deformations is attributed to 

the continuous microstructural changes during creep. Comparing the left figure of Figure 16 to the 

right figure, we can see that the difference in the instantaneous deformations during loading and 

a b c 
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unloading is more obvious for the larger stress, indicating more microstructural changes occur at 

80MPa. Figure 16 clearly presents the two sources of an energy dissipation: the dissipation due to 

a microstructural change and the dissipation due to a viscoelastic effect. 

 

 
Figure 16 Creep responses generated by time-dependent model 

 

3.3. Predicting Nonlinear Hysteretic Responses of Plant Stems 

Plant stems comprise of multiple constituents with different microstructural morphologies. In a 

simplistic way, they can be considered as composites having outer strengthening tissue and inner 

core. The outer strengthening tissue consists of collenchyma, parenchyma, and sclerenchyma 

while the inner core comprises of phloem, xylem bundles, interfascicular parenchyma and pith 

[60]. We can predict the overall response of composites by incorporating different responses of 

the constituents and amount of the constituents in the composites, i.e., using a micromechanics 

model. In this study, we attempt to use a simple micromechanics model in order to capture the 

overall nonlinear hysteretic response of plant stems. We assume the stems as composites 

comprising of two different constituents (Figure 17), i.e., outer strengthening tissue and inner core, 

as tested by Köhler and Spatz [60].   
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Figure 17 Structure of plant tissue (stalk) 

 

 Similar to the simulation of individual plant tissues discussed above, we assume both the 

outer ring and inner core experience microstructural changes when subjected to external stimuli. 

For a composite with two constituents, the Gibbs potential of the whole stalk is written as: 

 ( )
( ) ( )2 22 2

1 1 2 21 1 2 2
1 2 1 2

1 1 2 2

1 1
( , , , , ) 1

2 2 2 2f o f o

G c c c
E E E E

      
   

      − −
= − − + + +         

         

 (80) 

where 

:c  Volume fraction for inner core tissue 

1 2, :  Independent variables represent stresses applied on the outer skin and inner core, 

respectively.  

1 1, :o fE E Moduli of the outer strengthening tissue at 1 0 = (initial state) and 1 1 = (complete 

microstructural change), respectively. 

2 2, :in fE E Moduli of the inner core tissue at 2 0 = and 2 1 = , respectively. 

 Following Eq. (74), the rate of energy dissipation for the whole stalk is written as: 

 ( ) ( ) ( )1 1 1 2 2 2 1 2

1 2

1 e e

G G
c c        

 

 
= − − + − − −

 
 (81) 

The elastic strains for the outer skin and inner core tissues are: 
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and we also assumed that 

 
1 1 1 1max 1 1 1 1max

2 2 2 2max 2 2 2 2max

e e
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From Eqs. (82) and (83), the strains for the outer strengthening and inner core are: 
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Substituting Eqs. (82) and (83) into Eq.(81), the rate of energy dissipation for the whole stalk is: 

 ( ) ( )1 1max 1 2 2max 2 1 1 2 2

1 2

1 1
G G
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 (85) 

where 1F  and 2F  are the driving forces for microstructural changes of the outer skin tissue and 

inner core tissue, respectively, which are:  
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The microstructural changes of the outer skin and inner core are: 

 

1 2
1 2

1 2
1

1 2

1 1 2 2

1 2 2
1 2

;           

max max

o o

f o f o

E E

E E E E

 
 

 
   

 

− −

= =

− + − +

 (87) 



50 

 

For stalks with a structure shown in Figure 17, the following kinematic and equilibrium equations 

for the axial loading are: 

 
( )

1 2

1 21 c c

  

  

= =

= − +
 (88) 

From Eqs. (84) and (88) the constitutive equation for the stalk is: 
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 

 (89) 

Figure 18 shows the stress-strain behaviors of the outer strengthening and inner core tissues of 

Aristolochia macrophylla stem. The experimental data are obtained from Köhler and Spatz [60]. 

For each of the outer and inner core tissues, material parameters are determined from the stress-

strain in Figure 18. The corresponding driving force and microstructural changes for the outer 

strengthening and inner core tissues are obtained from Eqs. (86) and (87), as depicted in Figure 

19. The material parameters are listed in Table 3. Figure 20 presents a prediction of a nonlinear 

response of Aristolochia macrophylla stem. The volume content of the inner core is determined 

by varying its value to give the best result of the overall response of the stalk. In this study, the 

volume content of 0.6 is chosen. Figure 21 shows the simulation of cyclic response for Aristolochia 

macrophylla stem, where input stress is varied between 0MPa and 16MPa. For comparison, the 

hysteretic responses of the outer skins and inner core are also shown.  
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Figure 18 Simulation of strain-stress responses for outer skin and inner core of the Aristolochia 

macrophylla stem. Left: simulation for outer skin tissue. Right: simulation for inner core. 

Experimental data are obtained from Köhler and Spatz [60] 

 

 

 

 
Figure 19 Relation between driving force and microstructural change for Aristolochia 

macrophylla tissue 
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Figure 20 Response of the Aristolochia macrophylla stem with inner core volume fraction of 0.6 

 

 
Figure 21 Simulation for the cyclic response of Aristolochia macrophylla stem 
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CHAPTER IV  

THE INFLUENCE OF TEMPERATURES ON THE MICROSTRUCTURAL CHANGES IN 

VISCOELASTIC MATERIALS 

 

In this chapter, multiple natural configuration approach is adopted to describe viscoelastic 

responses of polyoxymethylene (POM) with different molecular weight and degree of crystallinity, 

under different loading conditions (uniaxial tension and uniaxial compression), loading histories 

(loading-unloading, creep-recovery), and temperatures. Similar with the concept discussed in 

chapters II and III, the multiple natural configuration approach incorporates the net effect of 

different microstructural changes in materials, and the macroscopic response of a material is 

predicted by modeling the natural evolution between two configurations. Since the mechanical 

response for thermoplastic semi-crystalline polymers depend on the evolutions of their 

macromolecular networks, which are influenced by ambient temperatures, in this chapter, the 

thermodynamic framework discussed in Chapter II and Chapter III is extended to incorporate the 

temperature effect. 

 

4.1. Experimental Tests 

Three different POM materials with trademark names Delrin 100, Delrin 500, and Delrin 900 were 

processed and tested by Dr. Michael Berrer’s group at the Polymer Competence Center Leoben 

(PCCL) Austria. The granular form of the materials was obtained from DuPont™ (E. I. du Pont 

de Nemours and Company, Wilmington Delaware, United States). The specimens were processed 

by a compression molding process (see a discussion in Usman 2019). The molecular weight and 

degree of crystallinity of the materials are given in Table 4. The glass transition temperature (Tg) 
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of the specimens is ???. Dogbone thin plates were used for uniaxial tensile testing. For uniaxial 

compression testing, the specimens were cut from the tensile bar. The initial cut length for the 

samples was 12 mm. The Milling machine Deckel (Bull & Straunz A-1092 Wien, Austria) in 

combination with a special self-developed clamping rod was used to grind the surfaces in order to 

obtain specimens with a height of 10 mm and precisely parallel surfaces. The tensile and 

compression specimens were loaded along the injection molding direction. 

 

Table 4 Molecular weight and degree of crystallinity 

Polymer type Mw (g/mol) 

Delrin 100 

Delrin 500 

Delrin 900 

145997 

99488 

91690 

 

 

 The uniaxial tensile test was done according to ISO 527-1 standard. The tests were 

performed at different temperatures, ranging from -30oC to 110oC. The tests were conducted on a 

tensile testing machine of the type Zwick Z250 (Zwick GmbH & CO. KG Germany). To achieve 

the different temperatures, a temperature chamber was used together with the machine set up. 

Liquid Nitrogen was used inside the chamber for achieving the lower temperatures 0°C and -30°C. 

Before the start of the test every sample was put inside the chamber for minimum 10 min to attain 

the required temperature. An extensometer was used with the machine setup to record axial 

displacements. A cooling system was also connected to the machine to save the load cell from the 

higher temperatures 80°C and 110°C. The samples were clamped with mechanical clamps which 

were closed with the help of a torque wrench. The torque wrench was used to apply the same 

closing force every time and hence to keep the same conditions in all tests. The following loading 
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histories were considered: a ramp loading with a constant rate 1 mm/min, a loading-unloading at 

a rate 1 mm/min and a peak load around 70% of max load, and a creep-recovery test.   

 The compression tests were conducted by following the standard ISO 604 and the same 

temperatures as for tensile testing were considered. The machine used for uniaxial compression 

tests was universal testing machine of the type Instron 5500 (Instron LTD; High Wycombe, UK). 

The following loading histories were performed: a loading-unloading at a rate 0.085 mm/min and 

a peak load around 70% of max load, and a creep-recovery test. 

 During testing, both tension and compression, axial force and axial displacement were 

recorded and the engineering stress-strain measures were then determined. As expected increasing 

testing temperatures results in more compliant mechanical response of the polymers. Delrin 100, 

which has the highest weight average molecular weight, exhibits significantly larger deformations 

compared to Delrin 500 and Delrin 900, while insignificant differences in the maximum load and 

initial moduli were observed in the polymers with different molecular weight. Loading induces 

microstructural changes in the polymers, which are macroscopically observed by the permanent 

deformation upon removal of the load. The extent of microstructural changes in the polymers 

increases with increasing loading amplitude, as expected, and increasing temperatures accelerates 

the microstructural changes, as depicted in Figure 22 and Figure 23. Higher molecular weight, 

which indicates longer macromolecular chains and higher entanglement results in more compliant 

behaviors and thus slightly accelerating microstructural changes for the tension specimens, as 

shown in Figure 24. From the experiments, we can also conclude that at early loading, the tension 

and compressive responses are similar, which can be seen from the characterized initial slopes of 

the stress-strain responses (instantaneous moduli) in Figure 25. This should be expected as at early 

loading the responses are associated with the initial microstructures of the polymers. However, 
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tension and compressive loads induce different microstructural changes to the polymers, and from 

observing the permanent deformations, tension induces more pronounced microstructural changes 

in the polymers. Our conjecture is that the microstructural changes under tension could be 

associated to both void accumulation in the amorphous phase and slip mechanisms in the 

crystalline phase. Under compression, void formation would be absent, and the microstructural 

changes could be attributed to the slip mechanisms. Less microstructural changes under 

compression are also seen by smaller hysteretic areas compared to the ones under tension.   

 

 
Figure 22 Loading-unloading tensile response of Delrin 100 

 

  
Figure 23 Loading-unloading comp response of Delrin 100 
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Figure 24 Loading-unloading responses for all polymers under tension (left) and compression 

(right) 

 

 

 
Figure 25 Instantaneous moduli under tension and compression 

 

4.2. Constitutive Model Formulation 

This section discusses a constitutive material model for semi-crystalline polymers subjected to 

thermal and mechanical stimuli. The model considers continuous changes in the microstructures 

of polymers with loadings and these microstructural changes depend on the loading rate and 

ambient temperature. It is assumed that the polymer microstructures are evolving between two 

natural configurations, which are stress free. The first configuration is associated with the initial 

microstructures of the polymer, and the second configuration is associated with the final 
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microstructures, where complete changes have taken place. Both initial and final microstructures 

are capable to store and dissipate energy, i.e., viscoelastic bodies.  

In deriving the model, we start by defining the Gibbs free energy:  

 1 2( , , , ) ( , , ) ( , , )E E

V E V EG G T G T G T  = = +σ σ σ σ  (90) 

where 1G  represents the Gibbs free energy of both microstructures which can store and dissipate 

energy (viscoelastic response) and 2G  represents the Gibbs free energy of elastic response. The 

two stresses 
E

Vσ and Eσ represent stress tensors for viscoelastic response and elastic response, 

respectively, and T is the temperature. The evolution from initial configuration to final 

configuration is described with the parameter  , whose value ranges from 0 to 1. The parameter 

  represents the volume fraction of the newly generated (final) microstructure. When =0, the 

response of the polymer is comprised that of only the original microstructure, and for =1 the 

response is only due to the final microstructure.  

 The internal energy of the body can then be derived from the Gibbs free energy: 

 E

V EE

V E

G G
u G T

 
= + −  − 

 
σ σ

σ σ
 (91) 

where 
G

T



= −


 is the specific entropy.  Recall the second law of thermodynamics: 

 0u T =  − + σ ε  (92) 

where   is the rate of mechanical dissipation. 

 Since we consider small deformation gradient responses, the total strain can be 

decomposed into the elastic and viscoelastic parts. Also, microstructural changes result in 

permanent deformations in the material upon unloading. The total strain is given as: 

 E V P= + +ε ε ε ε  (93) 
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The irreversible strain Pε  depends on microstructural change. For the elastic strain, we have: 

 E

E

G
= −


ε

σ
 (94) 

While for the viscoelastic strain, we have both elastic recovery and dissipative parts: 

 E D

V V V E

V

G
= = = −


ε ε ε

σ
 (95) 

The stress in the body is given as: 

 
E D

E V V= = +σ σ σ σ  (96) 

Substituting Eqs (91), (93), (94), and (95) into the rate of into the rate of mechanical dissipation in 

Eq. (92), we have: 

 ( ) ( ) ( )E E

V V P V V P D

G G
    

 

 
= −  +  − =  +  − = +

 
σ σ ε σ ε σ ε σ ε  (97) 

D  and  in Eq. (97) represent the mechanical dissipation due to viscoelastic response and 

dissipation due to microstructural change, respectively. Since irreversible strain Pε depends on  , 

  can be written as: 

 ( ) ( )P
P

G G
F    

  

 
=  − =  − =

  

ε
σ ε σ  (98) 

where F is the driving force conjugate with microstructural change  . 

 Equations (90)-(98) describe a general model formulation for viscoelastic polymers 

undergoing microstructural changes from the initial to final configurations. The next step is to 

choose specific forms for the Gibbs free energy, the rate of mechanical dissipation, and the 

evolution parameters, all of which depend on the specific materials being studied. When linear 

viscoelastic responses are considered for both initial and final microstructures, the following forms 

can be considered for the Gibbs free energy and rate of mechanical dissipation: 
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 ( ) ( ) ( )1

1
( , , ) 1

2

E E E E E

V i V V f V VG T T T   = − −  +  σ C σ σ C σ σ  (99) 

 ( ) ( ) ( )2

1
( , , ) 1

2
E i E E f E EG T T T   = − −  +  σ D σ σ D σ σ  (100) 

 ( ) ( ) ( )1 D D D D

D i V V f V VT T  = −  + K σ σ K σ σ  (101) 

where ( )i TC  and ( )f TC  are the compliance tensors of the viscoelastic component of the initial 

and final microstructures, respectively, ( )i TD  and ( )f TD  are the compliance tensors of the 

instantaneous elastic component of the initial and final microstructures, respectively, and ( )i TK  

and ( )f TK  are the inverse viscosity tensors of the initial and final microstructures, respectively. 

All of these tensors involve material properties that depend on temperatures. In this study, the 

evolution of microstructures is assumed to depend on the total strain in the material, ( ) ε , as 

previously studied by Muliana et al. [56]. When the materials do not exhibit linear responses4, 

different forms can be chosen for the Gibbs free energy and rate of mechanical dissipation, which 

will be discussed later in this manuscript.  

 In this study, we assume that both initial and final microstructures comprise of isotropic 

viscoelastic bodies, the Gibbs free energy and rate of mechanical energy dissipation can be 

simplified as: 

 ( )
( )

( ) ( )( )
( )

( ) ( )( )
2 2

1 1
2 2

fi E E E E

V i V V f V

A TA T
G I B T II I B T II 

   
= − − + + +     

     

 (102) 

 ( )
( )

( ) ( )( )
( )

( ) ( )( )
2 2

2 1
2 2

fi

E i E E f E

C TC T
G I D T II I D T II 

   
= − − + + +     

     

 (103) 

 
4 A linear response of materials is considered whenever the response satisfies the superposition and proportionality of 

the inputs (loads). 
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 ( )
( )

( ) ( )( )
( )

( ) ( )( )
2 2

1
2 2

fi D D D D

D V i V V f V

TT
I T II I T I


    

   
= − + + +     

     

 (104) 

In Eqs. (102)-(104) there are six scalar parameters ( ), ( ), ( ), ( ), ( ), ( )i i i i i iA T B T C T D T T T  that 

belong to the initial configuration, and six scalar parameters 

( ), ( ), ( ), ( ), ( ), ( )f f f f f fA T B T C T D T T T  that belong to the final configuration. All of these 

parameters can vary with temperatures. The scalars I and II are the first and second invariants 

associated with the stress of the viscous and elastic stress components, i.e.,  

 

( )

( )

( )

2

2

2

1
tr( );    tr

2

1
tr( );    tr

2

1
tr( );    tr

2

E E E E

V V V V

E E E E

D D D D

V V V V

I II

I II

I II

= =

= =

= =

σ σ

σ σ

σ σ

 (105) 

The strain components from Eqs. (102)-(104) are then written as: 

 (1 ) ( ) ( ) ( ) ( )E E E E E

V i V i V f V f VE

V

G
A T I B T A T I B T 


   = − = − + + +   

ε I σ I σ
σ

 (106) 

  (1 ) ( ) ( ) ( ) ( )E i E i E f E f E

E

G
C T I D T C T I D T 


 = − = − + + + 

ε I σ I σ
σ

 (107) 

 (1 )
2 2

fD D D D Di
V V V i V V f VI I


   

  
= = + + − +  

   
ε ε I σ I σ  (108) 

where I is the identity matrix of order 3. When the materials only exhibit elastic response, the 

viscous strain and its rate are equal to zero, and 
11

; ; ;
f fi i

i i f f

i i f f

C D C D
E E E E

   − +− +
= = = = ; 

where ,i iE  are the elastic modulus and Poisson’s ratio corresponding to the initial microstructures 

of the polymer, and ,f fE  are the elastic modulus and Poisson’s ratio associated with the final 

microstructures of the polymers. Having said that the different properties attributed to different 
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microstructures of polymers, either from processing or microstructural changes by exposure to 

external stimuli, should be expected. When a relatively low load is prescribed in which the load 

does not induce any microstructural changes, then the material responses are attributed to the 

response of the initial microstructures, i.e., 0 = .  

 In case the responses cannot be described by a linear model, different forms for the Gibbs 

free energy and rate of mechanical dissipation can be considered. In our previous study on POM 

polymers (Muliana et al. [56]), we found that the elastic (instantaneous) behaviors of POM could 

not be adequately capture by a linear model and hence a nonlinear relation was considered. The 

following form can be considered for G2: 

 

( ) ( ) ( )
( ) ( )

( )
( )

( )

( )

( )
( ) ( )

( )
( )

( )

( )

2

2

2

2

2

, , 1 2

2

i E i E

f E f E

T I T II

E
E i E i E

i E i

T I T II

E
f E f E

f E f

Ie e
G T D T I H T II

T I T

Ie e
D T I H T II

T I T

 

 

 
 


 

    
  = − − − + − − 

       

    
  − + − 

   
   

σ

 (109) 

The corresponding elastic strain is: 

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

2

2

2

2

1
(1 ) 1

2

1
1

2

IIE
i

i E

IIE
f

f E

T
T I E

E i i E

E E E

T
T I E

f f E

E E

IG e
D T e H T

I II

I e
D T e H T

I II











   −   = − = − − + + 
    
  

  −   − + 
   

  

ε I σ
σ

I σ

 (110) 

Upon linearization, Eq. (110) reduces to a linear elastic response: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(1 )E i i E i i E f f E f f ED T T I H T T D T T I H T T      = − + + +    ε I σ I σ  (111) 

where 
1

,  HD
E E

 
 

+
= − =  and E and  are the elastic modulus and Poisson’s ratio, respectively. 

Subscripts i and f represent the initial and final configurations, respectively.  
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 To describe long-term response of materials, it is often necessary to include more than one 

viscoelastic component. Additional viscoelastic components can be added to the G1 and D , and 

thus the viscoelastic strain component is written as 
1

N

V Vm

m=

= ε ε . We will discuss this later in the 

model implementation. 

 We also need a driving force for the microstructural changes. It is assumed that 

microstructural changes in the polymers are related to the macroscopic strains in the materials. It 

is noted that as the amount of the new microstructure in the polymer increases, the amount of the 

initial microstructure decreases, which is assumed to occur at the same rate. The amount of 

microstructural change is assumed to depend on the second invariant of the total strain: 

 ( ) ( )II = εε  (112) 

The amount of permanent strain will then depend on the microstructural changes, which is: 

 ( ) ( )( )p f II = εε  (113) 

The function that describes microstructural changes and permanent strain will be discussed later 

during the material calibrations. 

 The driving force F for the microstructural changes in Eq. (98) can be obtained once the 

form of the permanent strain evolving with the microstructural changes ( )P ε is defined. It is 

necessary for the rate of mechanical dissipation in Eq. (97) to be nonnegative. From the evolution 

of the viscoelastic mechanical response, we have 0D  , and thus we need 0F  . Since we 

assume that there is no healing in the materials, during unloading and recovery we have 0 =

and thus 0F = meaning the rate of mechanical dissipation is nonnegative. During loading and 

creep that trigger formation of the new network ( 0  ), it is necessary for 0F  . The form for
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( )P ε should be chosen so that 0P








ε
σ . We will then have restrictions to material parameters 

in order to satisfy the constraint in Eq. (92). We will discuss this later in the model implementation. 

 

4.3. Material Parameter Calibrations and Predictions 

The experimental tests were conducted under uniaxial loading, in tension and compression. The 

nonzero stress component is 
11

E D

V V   = = + . The axial strain components are 

11 11 11; ;E E V V P P     = = =  and the total axial strain is E V P   = + + . As will be shown later, 

when multiple viscoelastic components are considered, the total axial strain is 
1

N

E Vm P

m

   
=

= + + . 

From Eq. (110) the axial elastic strain component reduces to: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

(1 ) 1 1 ( )

1 1 ( )

i E i E

f E f E

T T

E i i E

T T

f f E

D T e H T e sign

D T e H T e sign

   

   

  

 

    
= − − + − +        

    
− + −          (114) 

Considering ( ) ( );  ( ) ( )i i f fT T T T   = = , Eq. (114) reduces to: 

 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

22

22

(1 ) 1 1 ( )

   (1 ) ( ) 1 ( ) 1 ( )

f Ei E

f Ei E

TT

E i i f f E

TT

i f E

D T H T e D T H T e sign

C T e C T e sign

  

  

   

  

     
= − + − + + −           

     
= − − + −             (115) 

From Eq. (115), upon linearization we have 
1 1

( ) ( ) ;   ( ) ( )
( ) ( )

i i f f

i f

C T T C T T
E T E T

 = = , which are 

obtained by taking =0 and =1, respectively. The elastic moduli of the initial and final 

configurations depend on temperatures. Taking the viscoelastic strain and its rate from Eqs. (106) 

and (108) and considering multiple viscoelastic components, the axial viscoelastic strain and its 

rate are rewritten as: 
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 1

1 1
(1 )

( ) ( )

N
E E

V V V

m im fmE T E T
    

=

  
= − +   

    


 (116) 

 1

1 1
(1 )

( ) ( )

N
D D

V V V

m im fmT T
    

 =

  
= − +   

    


 (117) 

where ( ), ( )im fmE T E T  are the elastic constants of each viscoelastic component associated with the 

initial and final microstructures, respectively, and ( ), ( )im fmT T  are the viscosities of each 

viscoelastic component associated with the initial and final microstructures. 

 

4.3.1. Material Calibration at Room Temperature 

From Eqs. (115)-(117) there are four parameters that need to be calibrated for the elastic strain 

component and four parameters for each component in the viscoelastic strain component. The 

material parameters of the elastic strain components were calibrated from the loading and 

unloading region (Figure 26), with an assumption that the time-dependent response was quite 

insignificant due to a relatively fast loading. The material parameters in the viscoelastic strain were 

calibrated from the long-term creep responses (Figure 27). During this process, it is also necessary 

to calibrate the corresponding microstructural evolution ( )   and permanent strain ( )P  . We 

considered the following forms: 

 ( )
2

max




 



 
=  

 
 

 (118) 

 ( )
2

max

n

ir ir

P h




   



 
= =  

 
 

 (119) 

The material parameters for viscoelastic networks and parameters  , n  from Eqs. (118) and (119) 

are calibrated simultaneously from creep-recovery responses shown in Figure 27. The left figure 
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of Figure 27 depicts the creep response at relatively small stress level and short period, where 

microstructural evolution   is taken as zero. For POM, as shown in Figure 27 (right), the 

maximum failure strain in axial and lateral direction can be approximated as: 
max 25.2% = . The 

microstructural evolution  corresponding to maximum strain 
max  is 1 = (final configuration). 

The calibrated value for parameter  is 1.2. The irrecoverable strains are determined from the long-

term recovery experimental data shown in Figure 27 (right) 8.2%ir = . The calibrated value for 

n  is 1.8. The calibrated material parameters for viscoelastic networks are listed in Table 5. 

 

 
Figure 26 Loading-unloading response of Delrin 100 at room temperature 

 

 
Figure 27 Calibration of material parameters of viscoelastic networks 
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Table 5 Time-dependent parameters at room temperature 

Individual network m m (min) 0

1mE (GPa) 
0

2mE (GPa) 

1 5 48.80 1.98 

2 10 47.33 2.43 

3 100 20.26 1.44 

4 500 27.02 3.70 

5 1000 16.06 1.61 

6 5000 1318.7 4.00 

7 10000 5.53 0.36 

8 50000 3.84 3.84 

 

 

The instantaneous responses of the creep-recovery tests are calculated from Eq. (115). The 

instantaneous strain component is generated by elastic network, and the material parameters can 

be calibrated from loading-unloading tests. As shown in Figure 26, At room temperature, The 

values of parameters ( )23o

iE C , ( )23o

fE C , ( )23o

i C  and ( )23o

f C  can be calibrated from 

loading-unloading responses. The left figure of Figure 26 shows the calibration of elastic moduli 

from loading and unloading responses. It is assumed that i loadingE E=  and f unloadingE E= . At room 

temperature, we have 2.558GPaiE = and 1.920GPafE = . After elastic moduli at initial and final 

configurations are found, the values of parameters ( )23o

i C  and ( )23o

f C  can be determined 

by fitting the loading-unloading curve at room temperature, as shown in Figure 26 (right). The 

calibrated values are: ( )23 0.0078o

i C = ; ( )23 0.0461o

f C = . After ( )23o

i C  and ( )23o

f C

are known, the values of parameters ( )23o

iC C  and ( )23o

fC C  can be determined from the 

following relations: 
1 1

( ) ( ) ;   ( ) ( )
( ) ( )

i i f f

i f

C T T C T T
E T E T

 = = . 
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4.3.2.  Calibration of Material Parameters at Elevated Temperatures 

Eq. (115) is used to calibrate the elastic responses at different temperatures ( )iE T , ( )fE T , 

( )i T  and ( )f T , following the same calibration process as in room temperature, as shown in 

Figure 28. The calibrated values are listed in Table 6. As depicted in Table 6, elastic moduli at 

initial and final configuration are temperature-dependent. The elastic moduli under different 

temperatures are plotted in Figure 29. The relations between temperature and elastic moduli at 

initial and final configurations are described with exponential function and linear function, 

respectively, as shown in Eq. (120) below: 

 
( )

( )

3 0.015

3

3.59 10

16.24 2.289 10

T

i

f

E T e

E T T

−= 

= − + 
 (120) 

The temperature-dependent functions ( )i T  and ( )f T  can be calibrated by fitting the loading-

unloading responses at elevated temperatures (Figure 28). The calibrated values at 80℃ and 110℃ 

are listed in Table 6. The normalized expressions of ( )i T  and ( )f T , ( )

( )23

i

o

i

T

C





and ( )

( )23

f

o

f

T

C





 are 

plotted against temperature, as shown in Figure 30.  

 

 
Figure 28 Top: calibration of elastic moduli at initial and final configuration; Bottom: 

calibration of ( )iC T  and ( )fC T  by fitting experimental data. 
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Figure 28 Continued 

 

 
Figure 29 Relation between elastic moduli and temperature 

 

 

 
Figure 30 Relation between normalized parameters i , f  and temperature 
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Table 6 Material parameters of elastic network (tensile) 

Temperature, ℃ Type of POM ( )iE T , MPa ( )fE T , MPa ( )i T  ( )f T  

23 

Derlin 100 32.558 10  31.920 10  0.0078 0.0461 

Derlin 500 32.670 10  31.939 10  0.0051 0.0456 

Derlin 900 32.759 10  32.143 10  0.0071 0.0413 

80 Derlin 100 31.058 10  29.524 10  0.0236 0.0775 

110 

Derlin 100 26.984 10  25.278 10  0.0409 0.1004 

Derlin 500 27.320 10  26.675 10  0.0473 0.1006 

Derlin 900 26.750 10  26.774 10  0.05 0.1005 

 

 

As expected from the calibrated moduli ( )iE T , ( )fE T , and nonlinear parameters ( )i T  

and ( )f T , increasing the ambient temperature soften the polymers and increase the nonlinear 

mechanical response of the polymers. The relations between temperature and normalized 

parameters ( )

( )23

i

o

i

T

C




and ( )

( )23

f

o

f

T

C




 are expressed with linear functions, as shown in Eq. (121) 

below: 

 

( )

( )
( )

( )

0.01869

0.0089

0.6723
23

0.8195
23

i T

o

i

f T

o

f

T
e

C

T
e

C









=

=

 (121) 

For the viscoelastic components, it is assumed that the temperature-dependent parameters 

in Eqs. (116), (117) can be written as the multiplication of a variable ( ( )id T , ( )fd T , etc.) and a 

constant ( 0

imE , 
0

fmE , etc.). Therefore, Eqs. (116), (117) can be rewritten as follow: 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0
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0 0
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1 1
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  
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



 (122) 

From Eq. (122) we have: 

 

( )

( )

( )

( )

0 0

0 0

0 0

0 0

( ) ( ) ( )

( ) ( ) ( )

i im im
im i im
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fm f fm
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d T
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b T E E

d T
T a T T

b T E E

 
 

 
 

= → =

= → =

 (123) 

In Eq. (123), ( )ia T  and ( )fa T  are the time-temperature shift factors for the initial and final 

configurations, respectively. Figure 31 shows the creep response for Derlin100 POM under stress 

9MPa, 20MPa and temperature 80℃. The creep response shown in Figure 31 (left) is used to 

calibrate the values of ( )ia T  at initial configuration, while the creep response under stress 20MPa 

(Figure 31 (right)) with higher strain is used to calibrate ( )fa T at final configuration. The values 

of ( )ia T  and ( )fa T  are adjusted until the prediction fits experimental data. The calibrated values 

are ( ) ( )1 280 6.67; 80 1.82a a= = .  

 

 
Figure 31 Creep responses at high temperature (80 ℃) of Delrin 100 
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4.3.3. Calibration of Material Parameters under Compressive Loading 

Similar with the calibration of tensile elastic material parameters discussed above, material 

parameters governing compressive elastic network are calibrated from compressive loading-

unloading responses. The elastic strain component under uniaxial compressive test can be written 

as: 

 
( ) ( ) ( ) ( )

22

(1 ) ( ) 1 ( ) 1 ( )
comp

Efi E TTcomp comp

E i f EC T e C T e sign
  

   
     

= − − + −           
 (124) 

where: 

 
( )

( )

1
( ) ( )

1
( ) ( )

i i

i

comp comp

f f comp

f

C T T
E T

C T T
E T





=

=

  

As shown in Eq. (124), under compressive loading, the instantaneous elastic responses for both 

initial and final configurations are also described with nonlinear exponential functions. Parameter 

  describes the evolution between initial configuration ( 0 = ) and final configuration ( max = ). 

The relation between parameter  and strain   is assumed the same with the relation for tensile 

responses, as depicted in Eq. (118). Since initial configurations for both tensile and compressive 

responses are defined the same at early loading, elastic material parameters for initial configuration 

in Eq. (124) are assumed the same with initial configuration parameters listed in Table 6 for tensile 

responses. Parameters for final configuration are calibrated from compressive loading-unloading 

responses.  
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Figure 32 Adjustment for compressive loading-unloading data 

 

As shown in the left figure of Figure 32, the initial stage of the compressive test is 

significantly softer compared with the rest of the stress-strain response. This behavior is due to the 

unsmooth top surface of the cylindrical specimen, and could be corrected by ‘shifting’ the stress-

strain curve. It is assumed that the initial strain-stress response follows a linear relation: 

comp

inE = , where 2.558GPacomp ten

in inE E= = . As shown in Figure 32 (left), the amount of strain 

needs to be shifted is: 0.267%shift = . The adjusted data is depicted in the right figure of Figure 

32. 

The calibration of elastic material parameters at final configuration are depicted in Figure 

33. At room temperature and high temperature (110℃), the values of ( )comp

fE T and ( )comp

f T are 

adjusted until the prediction given by Eq. (124) could capture the experimental results reasonably 

well. The calibrated values are listed in Table 7. 
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Figure 33 Calibration of elastic parameters of compressive responses for Delrin 100 

 

Table 7 Material parameters of elastic network (compressive) 

Temperature, ℃ Type of POM ( )comp

f T  ( )comp

fE T , GPa 

23 

Derlin 100 0.02 11 

Derlin 500 0.07 13 

Derlin 900 0.04 15 

110 

Derlin 100 0.05 9 

Derlin 500 0.10 10 

Derlin 900 0.08 10 

 

 

 

 Similar with tensile responses, it is assumed that both ( )comp

f T  and ( )comp

fE T  can be 

written as exponential and linear functions of temperature, respectively. From the calibrated values 

under different temperatures listed in Table 7, the relations between temperature and parameters 

( )comp

f T  and ( )comp

fE T could be expressed as follow: 

 
( )

( )

3 0.0155.244 10

0.023 11.53

comp T

f

comp

f

T e

E T T

 − −= 

= − +
 (125) 
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4.3.4. Calibration of Material Parameters of Delrin 500 and Delrin 900 

Tensile, creep and compressive responses for other types of POM, Delrin 500 and Delrin 900 are 

also simulated. As we can see from the experimental data depicted in Figure 24, the difference 

between different types of POM is minor, and slight changes in the temperature-dependent 

functions are enough to capture the responses for all types of POM. The material parameters of 

viscoelastic networks for Delrin 500 and Delrin 900 are the same with the parameters calibrated 

from creep-recovery responses of Delrin 100, which means that the time-dependent responses for 

all types of POM could be captured with the same set of parameters. On the other hand, material 

parameters of the elastic strain component show slight difference for different types of POM. 

 Similar with Delrin 100, temperature-dependent elastic parameters ( )iE T , ( )fE T , 

( )i T  and ( )f T  of Delrin 500 and Delrin 900 are calibrated from loading-unloading responses 

at room temperature and high temperature (110℃). These parameters are adjusted until the 

response calculated from Eq. (115) fits well with experimental data, as shown in Figure 34. The 

calibrated values are listed and compared with Delrin 100 in Table 6. 

 

  
Figure 34 Calibration of tensile elastic parameters from loading-unloading responses 
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Figure 34 Continued 

 

The format of mathematical expressions of temperature-dependent parameters ( )iE T , 

( )fE T , ( )i T  and ( )f T  are assumed the same with Delrin 100, where ( )iE T , ( )i T  and 

( )f T  can be written as exponentials function of temperature, and ( )fE T  is a linear function of 

temperature. Eq. (126) and Eq. (127) are used to relate the parameters listed in Table 6 with 

temperature for Delrin 500 and Delrin 900, respectively: 
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 (127) 

Compressive responses for Delrin 500 and Delrin 900 are also simulated with Eq. (124), with slight 

modification of the material parameters. Same with compressive response of Delrin 100, material 

parameters relate to initial configuration in Eq. (124) are assumed the same with the tensile initial 

configuration parameters listed in Table 6. The unknown temperature-dependent material 
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parameters in Eq. (124), ( )comp

f T  and ( )comp

fE T , are calibrated from compressive loading-

unloading responses at room temperature and 110℃. The values of these two parameters are 

adjusted simultaneously until the prediction from Eq. (124) fits well with experimental data, as 

shown in Figure 35. The calibrated values are listed and compared with parameters of Delrin 100 

in Table 7.  

 

 

 
Figure 35 Calibration of compressive elastic parameters from loading-unloading responses 

 

Following the conclusion for Delrin 100, it is assumed that ( )comp

f T  and ( )comp

fE T  are 

exponential and linear functions of temperature, respectively. The temperature-dependent 
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functions of ( )comp

f T  and ( )comp

fE T  for Delrin 500 and Delrin 900 are expressed in Eq. (128) and 

Eq. (129), respectively: 

 
( )

( )

0.00910.06154

0.035 13.88

comp T

f

comp

f

T e

E T T

 =

= − +
 (128) 

 
( )

( )

0.00800.0333

0.059 16.47

comp T

f

comp

f

T e

E T T

 =

= − +
 (129) 

 

4.3.5. Model Prediction 

Substituting the material parameters into constitute models discussed in section 4.2, creep 

responses, tensile and compressive loading-unloading responses for all types of POM are predicted 

and compared with experimental data. Figure 36 and Figure 37 depict the simulation of creep-

recovery responses under room temperature and elevated temperature (80℃), respectively. The 

instantaneous responses in Figure 36 and Figure 37 are calcualted with Eq. (115), while the 

viscoelastic strain components are calcualted with Eqs. (116) and (117). The discrepancies in the 

recovery strains under stress 9 MPa in Figure 36 are attributed to experimental errors in obtaining 

strains below 0.2%. Overall, the conctitutive model with the calibrated material parameters could 

reasonably capture the creep response for all types of Delrin under varius temperatures. 
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Figure 36 Creep-recovery responses at room temperature 
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Figure 37 Creep-recovery responses at high temperature (80℃) 

 

Constitutive model introduced in Eq. (115) are also applied to predict the tensile responses 

at different temperatures (Figure 38). The tensile tests depicted in Figure 38 are conducted at 

relatively high strain rates, therefore the time effect is quite negligible for the tensile responses. As 

shown in Figure 38, the temperature-dependent parameters calibrated from the loading-unloading 

responses could reasonably predict the tensile responses under temperatures varies from -30℃ to 

110℃. 
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Figure 38 Tensile response (time-independent) at different temperatures 

 

The loading-unloading responses under both uniaxial tensile and compressive loadings are 

also simulated in this research. Note that the strain rates for loading-unloading tests depicted in 

Figure 39 and Figure 40 are 1%/min for tensile tests and 0.85%/min for compressive tests. For the 

relatively slow strain rates, the time-effect cannot be ignored. Therefore both E  given by Eq. (115) 

and V  calculated from Eq. (116) contribute to the loading-unloading responses. Figure 39 shows 

the prediction of tensile loading-unloading responses of Delrin 500 and Delrin 900, under 

temperature 80℃. Figure 40 depicts the simulation of compressive loading-unloading responses 

for all types of POM, under temperatures 80℃. From Figure 39 and Figure 40, the temperature-
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dependent expressions calibrated from loadings at 23℃ and 110℃ can reasonably predict the 

loading-unloading responses at 80℃. 

 

 
Figure 39 Tensile loading-unloading responses at 80℃. Left: Delrin 500; Right: Delrin 900 

 

  

 
Figure 40 Compressive loading-unloading responses at 80℃ for all types of POM 
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CHAPTER V  

TEMPERATURE-DEPENDENT CONSTITUTIVE MODEL FOR GENERAL ANISOTROPIC 

VISCOELASTIC MATERIALS 

 

In this chapter, a three-dimensional, multiple natural configurations based constitutive model is 

developed to predict the time-dependent deformations of a transversely isotropic viscoelastic 

material. As an example, responses of glass fiber reinforced polyamide 6 with 40% glass fiber 

volume fraction (PA6GF40) along 0o and 90o fiber directions under different loading histories and 

at several isothermal temperatures are analyzed. Similar with the model discussed in Chapter IV, 

the constitutive model is derived from a thermodynamic framework which incorporates the 

temperature effect. Different loading histories, including quasi-static, cyclic and creep-recovery 

under different loading rates, loading amplitudes, and temperatures are predicted with the proposed 

constitutive model.  

 

5.1. Formulation of Constitutive Model for Anisotropic Materials 

The general formulation of temperature-dependent model for anisotropic viscoelastic materials 

undergoing microstructural change follows the same idea as introduced in Eqs. (91)-(101), Chapter 

IV. Recall when linear viscoelastic responses are considered for both initial and final 

microstructures, the following forms are considered for the Gibbs free energy and rate of 

mechanical dissipation: 

 ( ) ( ) ( )1

1
( , , ) 1

2

E E E E E

V i V V f V VG T T T   = − −  +  σ C σ σ C σ σ  (130) 

 ( ) ( ) ( )2

1
( , , ) 1

2
E i E E f E EG T T T   = − −  +  σ D σ σ D σ σ  (131) 
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 ( ) ( ) ( )1 D D D D

D i V V f V VT T  = −  + K σ σ K σ σ  (132) 

In the above equations, ( )i TC  and ( )f TC  are the compliance tensors of the viscoelastic 

component of the initial and final microstructures, respectively, ( )i TD  and ( )f TD  are the 

compliance tensors of the instantaneous elastic component of the initial and final microstructures, 

respectively, and ( )i TK  and ( )f TK  are the inverse viscosity tensors of the initial and final 

microstructures, respectively.  

In this study, for glass fiber reinforced polyamide (PA), we assume that both initial and 

final configurations comprise of transversely isotropic bodies. Spencer [61] discussed the strain 

energy function for a compressible, linear elastic transversely isotropic material. Following a 

similar idea, each of the compliance and inverse viscosity tensors in Eqs. (90)-(132) in each 

configuration is represented with five independent parameters. Therefore, the expressions of Gibbs 

free energy and rate of mechanical energy dissipation in Eqs. (90)-(132) for linear material 

responses can be rewritten as: 
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where 
1I  and 

2I  are the first and second invariants of the stress tensor, and 
4I , 

5I  are functions of 

stress tensor and dyadic product a a . Vector a describes the fiber direction. The expressions of 

1I , 
2I , 

4I  and 
5I  are written as follow: 
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 (136) 

From Eqs. (133)-(135), for each compliance and inverse viscosity tensor in each configuration 

there are five temperature-dependent scalar parameters ( 1 5i iA A , 1 5i iC C , etc.). These 

parameters corresponding to the five independent elastic constants of linear elastic transversely 

isotropic material.  

The strain and strain rate components calculated from Gibbs potential given in Eqs. (133)-

(135) are then written as: 
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In this research, mechanical responses along fiber longitudinal direction (0°) and transverse 

direction (90°) are analyzed and validated with experimental results. Since no tests in directions 

other than 0° and 90° are available in this study, only three out of the five independent parameters 

can be calibrated from the available experimental tests. In this study, the number of independent 

parameters associated with each configuration is reduced to three. Therefore, in order to capture 

the responses under axial loadings in 0° and 90° directions, the Gibbs potential and rate of 

mechanical dissipation reduce to: 
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By observing the experimental results of quasi-static tests, it can be seen that while the initial 

stress-strain relation can be described by a linear model, as strain increases, the stress-strain 

relation begins to show pronounced nonlinearly. Therefore, a different form of Gibbs free energy 

for elastic network is considered to result in a nonlinear model for the instantaneous response of 

final configuration. The relation of initial configuration is kept the same, to capture the linear initial 

response. The following form can be considered for 
2G : 
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 

          − − + − + −              

 (143) 

The corresponding elastic strain can be written as: 

 

( ) ( ) ( ) ( )( )
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I Ie
D T e D T D T e

I II


 





 = − + + 
 

     −  + − + + −    
        

ε I σ a a

I σ a a

 (144) 

Upon linearization, Eq. (144) reduces to a linear elastic response depicted as follow: 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 1 2 4 4

1 1 2 4 4

1 E E

E E

E E

E

C T I C T C T I

D T T I D T T D T T I



   

 = − + + 
 

 + + + 
 

ε I σ a a

I σ a a

 (145) 

In this research, multiple viscoelastic components are added to the Gibbs potential 1G  and 

mechanical energy dissipation 
D  to describe long-term time-dependent response of the material. 

Viscoelastic strain and its rate including multiple viscoelastic components can be written as: 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 2 4 4

1

1 1 2 4 4

1
N

VE E VE

V Vm im m im Vm im m

m

VE E VE

fm m fm Vm fm m

A T I A T A T I

A T I A T A T I





=

 = = − + + 
 

 + + + 
 

ε ε I σ a a

I σ a a

 (146) 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 2 4 4

1
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1
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VD D VD

V Vm im m im Vm im m

m

VD D VD
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T I T T I

   

   

=

 = = − + + 
 

 + + + 
 

ε ε I σ a a

I σ a a

 (147) 

Microstructural change   is related to the macroscopic strain in the material, as shown in Eq. 

(148). The amount of microstructural change is assumed as a power function depend on the second 

invariant of the total strain: 

 
max

( ) ( )

n

II
II

II

 
 

= =  
 

ε
ε

ε  (148) 



88 

 

As the material evolving from initial configuration to final configuration, an irreversible 

deformation generates with the microstructural change. The amount of the generated permanent 

strain is assumed depend on both microstructural change and temperature, which can be expressed 

as follow: 

 ( ) ( ) ( ) max, ( ), ( )
T

p pT f II T II


  = =
ε ε

ε ε  (149) 

  

5.2. Material Parameter Calibrations 

In this study, quasi-static, cyclic and creep-recovery tests were conducted under uniaxial loading, 

in both 0° and 90° fiber directions. For tests along 0° fiber direction, the nonzero stress component 

is 
11 11 11 11

E D

E V V   = = + . With multiple viscoelastic components considered, the total strain tensor 

can be written as: 

 
1

N

E Vm P

m=

= + +ε ε ε ε  (150) 

From Eq. (145), for uniaxial loadings in 0° fiber direction, the axial and lateral elastic strain 

components reduce to: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2
11 11 11

2
11

, ,11 1 2 4 11

1 2 4 11

, ,22 1 11 1 11

1

1 1 1 ( )

1 1 ( )
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T T T

T

E lateral E

C T C T C T

D T e D T e D T e sign

C T D T e sign

     

 

   

 

     

 = = − + + 

      
+ − + − + −            

 
= = − + − 

 

 (151) 

For the nonlinear response of final configuration where stress-strain relation is expressed with an 

exponential function, we consider ( ) ( ) ( )T T T  = = . Therefore, Eq. (151) can be further reduced 

to: 
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 

(152) 

Upon linearization, parameters in Eq. (152), ( )1C T , ( )2C T , ( )4C T , ( )1D T , ( )2D T , ( )4D T and 

( )T  can be related to linear elastic constants as follow. Substrates ‘L’ and ‘T’ in Eq. (153) 

indicate elastic constants in longitudinal (0°) and transverse (90°) direction, respectively.  
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 (153) 

For viscoelastic network, under 0° uniaxial loading, axial and lateral viscoelastic strain and their 

rates can be rewritten as: 
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(154) 

where we have: 
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In Eq. (155), ( )LimE T  and ( )LfmE T  are the elastic moduli corresponding with mth viscoelastic 

component, associated with the initial and final microstructures, while ( ), ( )Lim LfmT T  are the 

viscosities of mth viscoelastic component, associated with the initial and final microstructures, 

respectively. Substrate ‘L’ indicates elastic moduli and viscosities in longitudinal (0°) direction. 

Similarly, for tests under uniaxial loading in 90° fiber direction, the only nonzero stress 

component is 
22 22 22 22

E D

E V V   = = + . Therefore, the axial and lateral elastic strain components 

reduce to: 
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Where 
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 (157) 

Comparing Eq. (157) with Eq. (153), the following relations must be satisfied for the compliance 

tensor to be symmetric: 

 ;    
in in f f

TL LT TL LT

in in f f

T L T LE E E E

   
= =  (158) 

Deriving from Eqs. (153) and (157), parameters ( )1C T , ( )2C T , ( )4C T , ( )1D T , ( )2D T , ( )4D T and 

( )T can be written as functions of elastic constants of transversely isotropic material. 

Under 90° uniaxial loading, axial and lateral viscoelastic strain and their rates can be rewritten as: 
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where we have: 
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In Eq. (160), for each viscoelastic component, it is required that 
in in

TLm LTm

in in

Tm LmE E

 
=  and 

f f

TLm LTm

f f

Tm LmE E

 
= , to make 

sure the compliance tensor of the viscoelastic component is symmetric. Together with Eq. (155), 

parameters ( )1A T , ( )2A T , ( )4A T , ( )1 T , ( )2 T and ( )4 T can be expressed as functions of 

elastic constants and viscosities of transversely isotropic material.  

 

5.2.1. Calibration of Material Parameters Associated with Elastic Network 

As shown in Eqs. (152) and (156), in order to simulate the instantaneous response of anisotropic 

material PA6GF40, three independent parameters need to be calibrated for initial configuration 

and four parameters need to be calibrated for final configuration. These parameters are determined 

from cyclic tests under stress rates 5-7MPa/s and quasi-static tests under displacement rate 1mm/s, 

with an assumption that the time-dependent response under these relatively fast loading rates 

would be quite insignificant. Figure 41 shows the calibration of temperature-dependent elastic 
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moduli in both longitudinal and transverse directions. The maximum axial strain considered in this 

study is 
max 4.2% = . It is assumed that when strain 4.2% = , microstructural change 1 = , i.e. 

the entire body evolved to its final configuration. As depicted in Figure 41, elastic modulus of 

initial configuration is calibrated by taking the slope of stress-strain curve at initial loading where 

0  , while the elastic modulus of final configuration is calibrated from the unloading response 

from 4.2%   where 1 = . The calibrated values are listed in Table 8. Recall that in Chapter IV, 

for thermoplastic polymer POM, the temperature-dependent elastic moduli for initial and final 

configurations are modeled as exponential and linear functions of temperature, respectively. For 

PA6GF40, similar relations between elastic moduli and temperature are assumed. Elastic moduli 

of initial and final configurations are modeled using exponential and linear functions of 

temperature, respectively. Their expressions are depicted as follow: 
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−

−

=

= −

=

= −

 (161) 

 

 
Figure 41 Calibration of temperature-dependent elastic moduli in longitudinal (0°) and 

transverse (90°) directions 
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Figure 41 Continued 

 

 

 

Table 8 Material parameters for elastic network 

Temperature 20 ℃ 80 ℃ 

Elastic modulus in 

longitudinal (0°) direction 

in

LE (GPa) 9.86 7.29 

f

LE (Gpa) 9.29 4.99 

Elastic modulus in 

transverse (90°) direction 

in

TE (Gpa) 6.53 4.25 

f

TE (Gpa) 5.31 2.71 

Poisson’s ratio 

in

TL  0.2 0.2 

f

TL  0.15 0.17 

  0.007 0.016 

  1.8 1.05 

 

 

 

 
Figure 42 Left: calibration of temperature-dependent parameters   and  ; Right: calibration of 

Poisson’s ratio 
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Figure 42 Continued 

 

 

 

Temperature-dependent parameter ( )T  which describes the nonlinearity of the elastic 

response is calibrated from quasi-static tests under uniaxial loading in 90° direction, as shown in 

Figure 42. Since parameter ( )T  governs the nonlinearity of elastic response of final 

configuration, before the calibration of ( )T , it is necessary to define the evolutions of 

microstructural change   and permanent strain P . The amount of the newly generated 

microstructural change   is assumed as a power function depends on the second invariant of the 

total strain. In this study, the relation between   and total strain is determined from axial 

responses, where it is assumed that   increases linearly with axial strain axial . For a three-

dimensional case, microstructural change   is related to the second invariant of the total strain. 

The relation between   and II , which corresponding with a linear relation between   and axial , 

can be written as: 

 

0.505

max
( )

II

II


 

=  
 

εε  (162) 
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As discussed in Eq. (149), the permanent strain can be related to the maximum irreversible 

deformation through microstructural change  . Figure 41 shows the calibration of maximum 

irreversible strain max

p  corresponding with 1 = . As depicted in Figure 41(top), under 

temperature 80℃, when the material is loaded to its final configuration ( 4.2% = ), upon 

unloading, the remaining permanent strain max 1.3%p = . Note that it is assumed no recovery of 

microstructural change occurs during unloading (  remains the same during unloading). For 

quasi-static tests depict in Figure 42, the total strain can be reduced to the summation of elastic 

strain and permanent strain, due to the fast loading rate:  

 
E P= +ε ε ε  (163) 

In Eq. (163), elastic strain tensor Eε  depends on parameter  , while pε  depends on parameter  . 

As shown in Eq. (149), exponent parameter   describes the rate of the generation of permanent 

strain. In this study,   and   are adjusted simultaneously till the prediction fits well with the 

experimental data, as shown in Figure 42. The calibrated values are listed in Table 8. Parameter 

  is modeled with an exponential function of temperature, while  is assumed as a linear function 

of temperature:  

 
( )

( )

0.0140.0053

2.05 0.0125

TT e

T T





=

= −
 (164) 

The calibrations of Poisson’s ratio for both initial and final configurations are depicted in Figure 

42(right). For lateral responses under uniaxial loading in 90° direction, Poisson’s ratio TL of both 

configurations are adjusted until the prediction of lateral response fits well with experimental data. 

From Figure 42(right), it can be seen that Poisson’s ratio of initial configuration is temperature-

independent. We have (20 ) (80 ) 0.2in o in o

TL TLC C = = . Poisson’s ratio of final configuration shows 



96 

 

small increase with increased temperature. By assuming a linear relation with temperature, we 

have: 

 ( ) 40.1433 3.33 10f

TL T T −= −   (165) 

Note that due to the symmetricity of compliance tensor, Poisson’s ratio in longitudinal direction 

LT can be directly calculated from Eq. (158), once elastic moduli in longitudinal and transverse 

directions and Poisson’s ratio 
TL are calibrated. Substitute Eqs. (161)-(165) into Eqs. (152) and 

(156), the anisotropic elastic responses under both 0° and 90° loadings can be determined. 

 

5.2.2. Calibration of Material Parameters Associated with Viscoelastic Network 

Material parameters related to the dissipative components of the model, as shown in Eqs. (154) 

and (159), are determined from creep-recovery tests under uniaxial loading in both 0° and 90° 

directions, at temperature 80℃. In longitudinal direction, elastic moduli of mth viscoelastic 

component associated with the initial and final microstructures, ( ), ( )Lim LfmE T E T , and the 

corresponding viscosities, ( ), ( )Lim LfmT T  , are calibrated from creep responses at stress levels 

10MPa and 50MPa, as depicted in Figure 43. The creep response at 10MPa gives a relatively small 

strain, which is used to calibrate parameters 
LimE and 

Lim , while creep response at 50MPa gives a 

larger strain, which is used to determine parameters at final configuration. Note that the values of 

LimE and
LfmE must be adjusted simultaneously until a completed set of 

LimE and
LfmE which can 

capture both responses at 10MPa and 50MPa are found. The calibrated values of elastic moduli of 

viscoelastic components are listed in Table 9. The viscosities 
Lim and 

Lfm are related to elastic 

moduli through characteristics of creep time m : 

 ;    Lim m Lim Lfm m LfmE E   = =  (166) 
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Table 9 Material parameters for viscoelastic network 

Individual 

network m 
m (s) 

Elastic modulus in 

longitudinal (0°) direction 

Elastic modulus in transverse 

(90°) direction 

LimE (GPa) LfmE (GPa) 
TimE (GPa) TimE (GPa) 

1 10 153.85 16.67 47.62 14.29 

2 100 105.26 20 64.52 17.24 

3 1000 100 23.81 28.57 15.38 

4 10000 50 35.71 16.13 14.29 

5 100000 100 76.92 100 37.04 

6 500000 50 40 50 28.57 

 

 

 

 
Figure 43 Calibration of elastic moduli for viscoelastic components in longitudinal (0°) direction 

 

 

 

For the viscoelastic components, it is assumed that the temperature-dependent parameters 

in Eq. (154) can be written as the multiplication of a variable ( ( )id T , ( )fd T , etc.) and a constant 

( 0

LimE , 
0

LfmE , etc.). Therefore, axial strain in Eq. (154) can be rewritten as follow: 

 
( ) ( ) ( )

( ) ( ) ( )
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 

= =

= =

 
= = = − + 

  

 
= = = − + 

  

 

 

 (167) 
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In Eq. (167), 0

LimE  and 0

LfmE  are elastic moduli of viscoelastic components under temperature 80℃, 

as listed in Table 9. From Eq. (167), we have: 

 

( )

( )

( )

( )

0 0

0 0

0 0

0 0

( ) ( ) ( )

( ) ( ) ( )

i Lim Lim
m i m

i Lim Lim

f Lfm Lfm

m f m

f Lfm Lfm

d T
T a T T

b T E E

d T
T a T T

b T E E

 
 

 
 

= → =

= → =

 (168) 

where ( )ia T  and ( )fa T  are the time-temperature shift factors for initial and final configurations, 

respectively. 

As shown in Figure 44, shift factors ( )ia T  and ( )fa T  are calibrated by fitting the creep 

responses under temperatures ranging from 20℃ to 100℃. The reference temperature is 80℃, 

(i.e., the values 0

LimE , 
0

LfmE , etc. in Eq. (168) are parameters corresponding with temperature 80℃). 

Shift factors ( )ia T  and ( )fa T  describe the change of viscosity from 80℃ to temperature T . The 

calibrated values are listed in Table 10. Shift factors of both configurations are related to 

temperature through exponential functions, as depicted in Eq. (169) below: 

 

5 0.276

9 0.4952

( ) 2.494 10 1

( ) 1.6 10 1

T

i

T

f

a T e

a T e

−

−

=  +

=  +
 (169) 

 

Table 10 Time-temperature shift factors of initial and final configurations 

Temperature, ℃ ia  fa  

20 1000 80000 

40 5 5 

60 1 1 

80 1 1 

100 1 1 
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Figure 44 Calibration of time-temperature shift factor 

 

 

 

The calibration of time-dependent parameters in 90° direction follows the same idea. By 

writing the temperature-dependent parameters in Eq. (159) as the multiplication of a temperature 

dependent variable and a constant, axial strain and its rate in Eq. (159) can be expressed as follow: 

 
( ) ( ) ( )

( ) ( ) ( )
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1 1

, ,22 ,22 ,22 ,220 0
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 (170) 

Note that in Eq. (170), time-temperature shift factors for initial and final configurations, 

( )
( )

( )
i

i

i

b T
a T

d T
=  and ( )

( )

( )
f

f

f

b T
a T

d T
= , are the same with the shift factors in Eqs. (167)-(168) under 

loadings in 0° direction. i.e., the dependency of viscosity on temperature does not change with 
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loading directions. Substitute expressions of shift factors shown in Eq. (169) into Eq. (170), for 

uniaxial loadings in transverse (90°) direction, elastic moduli of mth viscoelastic component 

associated with the initial and final microstructures, ( )TimE T  and ( )TfmE T , can be determined from 

creep responses under temperature 40℃ and stress levels 10MPa and 50MPa, as shown in Figure 

45. Creep response under 10MPa with relatively small strain is used to determine elastic moduli 

and viscosities of initial configuration, while response under 50MPa with larger strain is used to 

calibrate parameters for final configuration. The calibrated values are listed in Table 9. 

 

 
Figure 45 Calibration of elastic moduli for viscoelastic components in transverse (90°) direction 

 

The lateral creep responses can be related to axial responses through Poisson’s ratio, as 

shown in Eqs. (159)-(160). For creep-recovery responses under 90° loading, for all viscoelastic 

components, Poisson’s ratios of initial and final configurations are assumed the same with the 

Poisson’s ratios calibrated from quasi-static tests given in Eq. (165):  

 
( )

( ) 4

0.2

0.1433 3.33 10

in

TLm

f

TLm

T

T T



 −

=

= − 
 (171) 
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For lateral creep-recovery responses under 0° direction loading, Poisson’s ratio of each viscoelastic 

component can be determined from the symmetricity of compliance tensor. For each component, 

we have: 

 ;    

fin
TLm Lfmin fTLm Lim

LTm LTm

Tim Tfm

EE

E E


 = =  (172) 

Substitute the values of 
TimE  and TfmE  listed in Table 9 and Poisson’s ratio given in Eq. (171) into 

Eq. (172), lateral creep responses under loadings in 0° fiber direction can be determined from Eqs. 

(154)-(155). Predictions of creep-recovery responses under various temperatures, stress levels and 

loading directions are presented in the following section. 

 

5.3. Prediction of Anisotropic Response under Various Loading Conditions 

In this section, quasi-static responses, cyclic responses and creep-recovery responses of PA6GF40 

under uniaxial loadings in both 0° and 90° fiber directions are simulated with the constitutive 

model discussed above, and compared with experimental results under various temperatures. 

Figure 46 - Figure 49 depict the quasi-static responses under various loading rates and 

temperatures. For uniaxial loadings in 0° fiber direction, Figure 46 and Figure 47 present the quasi-

static axial and lateral responses under temperature 20℃ and 80℃, respectively. From Figure 46 

- Figure 47, we can see that for tests under higher temperature, the time-dependency is more 

pronounced, i.e., under slower loading rate, the quasi-static response shows significant softening 

compared with response under faster loading rate. Overall, the constitutive model is capable to 

capture the quasi-static responses in both axial and lateral directions, under different temperatures 

and loading rates. Figure 48 and Figure 49 depict the quasi-static responses under uniaxial loadings 

in 90° fiber direction. Similarly with loadings in longitudinal direction, the constitutive model 
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gives reasonable predictions for quasi-static responses under various loading rates and 

temperatures, which indicates that the model can capture the anisotropic responses of PA6GF40 

in both directions.  

 

 

 
Figure 46 Prediction of quasi-static response under room temperature, 0° fiber direction 

 

 

 

 
Figure 47 Prediction of quasi-static response under high temperature (80℃), 0° fiber direction 
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Figure 47 Continued 

 

 

 

 

 
Figure 48 Prediction of quasi-static response under room temperature, 90° fiber direction 
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Figure 49 Prediction of quasi-static response under high temperature (80℃), 90° fiber direction 

 

 

 

Figure 50 and Figure 51 depict the simulation results for cyclic tests, under uniaxial 

loadings in 0° fiber direction and 90° fiber direction, respectively. Note that it is assumed during 

unloading, microstructural change a  remains unaltered (no healing). The area of the hysteresis 

loop of first loading cycle is significantly larger than the area of hysteresis loops after initial 

loading, since the initial loading includes energy dissipation caused by both microstructural change 

and viscosity. It can be seen that the energy dissipated by both viscosity and microstructural change 

could be reasonably captured by the model. From Figure 50 - Figure 51, anisotropic cyclic 

responses in both longitudinal and transverse directions, under both 20℃ and 80℃, can be 

captured by the constitutive model. 
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Figure 50 Prediction of cyclic response under loadings in 0° fiber direction 

 

 

 

 

 
Figure 51 Prediction of cyclic response under loadings in 90° fiber direction 

 

 

 

Figure 52 and Figure 53 depict the predictions of creep-recovery responses under various 

temperatures and stress levels, for 0° fiber direction and 90° fiber direction, respectively. The 
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recovery experimental tests are conducted at room temperature (20℃), therefore, it is assumed 

that during unloading, the temperature drops from maximum temperature to 20℃ in 1.5s. From 

Figure 52 - Figure 53, for temperatures ranging from 20℃ to 100℃ and stress levels ranging from 

10MPa to 50MPa, the anisotropic model can give reasonable predictions for loadings in both 

longitudinal and transverse directions. With relatively small number of material parameters, the 

anisotropic multiple configurations based constitutive model can predict time- and temperature-

dependent responses reasonably well for PA6GF40. 

 

 

 
Figure 52 Prediction of creep-recovery response under loadings in 0° fiber direction 
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Figure 52 Continued 
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Figure 52 Continued 
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Figure 52 Continued 
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Figure 53 Prediction of creep-recovery response under loadings in 90° fiber direction 
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Figure 53 Continued 

 



112 

 

 

 

 

 
Figure 53 Continued 

 

 



113 

 

CHAPTER VI  

STRUCTURAL ANALYSIS OF THIN LAYERED POLYMERS UNDERGOING 

MICROSTRUCTURAL CHANGES FROM NON-MECHANICAL STIMULI* 

 

This chapter presents examples of structural analyses of viscoelastic polymers undergoing 

microstructural changes due to non-mechanical stimuli. As examples of structural analyses, thin 

multi-layers of polymers, each with different physical and mechanical properties, are studied and 

upon prescribing external stimuli (thermal, chemical, electrical, etc.) the layers will experience 

different in-plane stretch and hence inducing shape changes. In this study, we develop numerical 

models to describe shape reconfigurations of thin multi-layered polymers exposed to non-

mechanical stimuli. We investigate the influence of microstructural changes in the polymer layers 

due to prescribing external stimuli and their effects on the shape configurations of the multi-

layered polymers. For this purpose, the constitutive material model derived based on the multiple 

natural configuration approach is integrated within shell finite elements and the co-rotational finite 

element (FE) method is used to solve for the governing differential equation that describe the shape 

reconfiguration of the thin multi-layered polymers. 

 

6.1. Mathematical Formulation of Thin-Multi-Layered Composites 

Typical thin multi-layered active composites comprise of three or two layers, see illustrations in 

Figure 54. In the three-layer system, active materials are usually placed on the top and bottom 

layers while the middle substrate is made of an inactive material. Prescribing a non-mechanical 

stimulus, e.g., electric or magnetic field, to the active layer(s), induces in-plane stretching or 

 
* Reprinted with permission from “Modeling and Simulation of Thin Layered Composites under Non-mechanical 

Stimuli” by Song, R., Tajeddini, V., & Muliana, A., 2020. Front. Mater., 7, 97, Copyright [2020] by Frontiers. 
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contraction. Different in-plane stretching/contraction in these two active layers generates axial 

stretching and curvature in the thin composite. The inactive substrate is added to increase the 

distance between the two active layers, and hence increasing the corresponding moment. However, 

adding an inactive substrate can also increase the overall rigidity of the composite, making the 

composite less compliant. An alternative arrangement is to consider bilayer systems, comprising 

of active and inactive layers or two active layers. This study considers attaining three-dimensional 

shape reconfigurations (or folding) out of a planar system, and hence it is necessary for the 

different layers in the multi-layer systems to have different in-plane stretching/contraction upon 

prescribing external stimuli. As will be discussed later, in a thin composite plate the out of plane 

deformations due to prescribing non-mechanical stimuli are governed by large rotations and the 

magnitude of the axial stretching is usually small (negligible with respect to the overall rotations). 

For this reason, it is convenient to map the neutral surface, which does not experience in-plane 

stretching and contraction, in order achieve shape reconfiguration. Therefore, the shape 

reconfigurations that can be achieved spontaneously by prescribing the non-mechanical stimuli are 

associated with zero Gaussian curvature.  

 
Figure 54 Multi-layered active composites of different arrangements: a) sandwich system, b) 

bilayer of active and inactive materials 

 

 

 

 In this section a spontaneous application of an electric field input in the thin bilayer 

composite is considered. Other types of stimuli, i.e., uniform temperature or moisture change, can 
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also be considered due to the similar shape reconfiguration mechanisms. Prescribing an electric 

potential difference along the thickness of the active layer generates a uniform electric field in the 

active layer and hence a uniform in-plane stretching/contraction along the layer. In principle, out 

of plane deformations by a spontaneous temperature change can be achieved in a bilayer composite. 

Polymers generally have low thermal conductivity; thus, practically it might not be possible to 

achieve spontaneous shape changes by a thermal stimulus. In such situation, a transient diffusion 

process (thermal field various in space and time) is required in simulating shape reconfigurations 

in thin polymer bilayers. The transient process is also applicable for bilayers undergoing diffusion 

of fluid, e.g., experimental studies by Stoychev et al. [62, 63]. Different shape reconfigurations 

can occur in the same polymers bilayers when subjected to spontaneous and transient thermal 

stimuli. Likewise, the transient process can be simulated for the electro-mechanical responses in 

composites by prescribing electric field that varies in time and space; however, this process might 

not be practical. 

 Consider a bilayer thin composite plate comprising of active and inactive layers (Figure 

54b), and the thicknesses of the active and inactive layers are ta and ts, respectively. The surface of 

the composite is described along the plane x1-x2. The out of the plane is described by x3, measured 

from the interface between the active and inactive layers. This study concerns with thin active 

composites, in which the in-plane dimension ( 1 2 x L L ) of the composite is much larger than its 

thickness (t), i.e., 1 2 1~ ;  L L L t . In this situation, the out of plane shape reconfiguration is governed 

by large rotation and the contribution of the in-plane stretch to the overall deformation is small. It 

is also assumed that an application of an external stimulus is considered to induce only free 

expansion/contraction, which is a normal (or axial) component of the deformation. In a thin 

composite, only the in-plane free expansion or contraction strain components, i.e., 11 22,H H , are 
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considered when the non-mechanical stimuli are prescribed. The shape reconfiguration of the 

bilayer composite is defined by the following deformation vector  1 2 3, ,u u u w= , where 1 2,u u  are 

the axial deformations of the interface along the x1 and x2 axes, respectively, and w is the out of 

plane deformation of the interface. The normal strains of the planar surface undergoing out of 

plane deformations are described by the following relations: 

 
11 1 3 11

22 2 3 22

o

o

x

x

  

  

= −

= −
 (173) 

where 11 22,   are the axial strain components along the in-plane directions x1 and x2, respectively, 

1 2,o o   are the axial strains of the interface (at x3=0) in the directions x1 and x2, respectively, and 

11 22,   are the curvatures of the interface about the x1 and x2 axes, respectively.  

 When each layer in the composite plate is modeled as linear elastic and isotropic with 

regards to its mechanical properties, the constitutive relations for the inactive (substrate) and active 

layers are given as: 
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In the above equations ,s aE E  are the elastic moduli of the substrate and active layers, respectively, 

and ,s a  are the Poisson’s ratios of the substrate and active layers, respectively. Prescribing non-
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mechanical stimulus to the active layer induces free expansion/contraction 11 22,a aH H . Finally, 

imposing the following equilibrium equations to the thin bilayer plate (in absence of any 

mechanical stimulus and ignoring twisting and shearing) leads to: 

 

1 2 1 2

11 22 11 3 22 30;   0;   0;   0
A A A A

dA dA x dA x dA   = = = =     (176) 

where A1 and A2 are the transverse cross-sectional areas of the bilayer plate with normal in the x1 

and x2 axes, respectively. 

 Substituting Eqs. (90), (174), and (175) into Eq. (176), results in the following relations: 
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where 
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It can be seen from Eqs. (177) and (178) that prescribing non-mechanical stimulus to the active 

layer is comparable to the composite plate being subjected to the corresponding in-plane normal 

forces and bending moments.  
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 In order to explore the magnitude of the in-plane strains in bilayer thin composites when 

subjected to spontaneous non-mechanical stimuli, a case study utilizing electric field input and 

water diffusion input are presented.  Electric field is generated by prescribing an electric potential 

difference through the thickness of the active layer. Various electro-active materials can be 

considered for the active layer. When a piezoelectric material such as, lead zirconate titanate (PZT), 

polyvinylidene (PVDF), or active fiber composite (AFC), the in-plane deformation due to the 

electric field input (Ee) is obtained using the piezoelectric coupling (d), and thus 
11 22

a a

eH H dE= = . In 

this situation, positive and negative electric field inputs generate expansion and contraction, 

respectively, to the active layer. When an electrostrictive material, such as P(VDF-TrFE-CTFE) 

electrostrictive terpolymer (Celli et al. [64]), is considered, the coupling is obtained using the 

coefficient of electrostriction (), and thus the in-plane strain is ( )
2

11 22

a a

eH H E= = . In this case 

only free expansion is possible, and hence the out of plane shape change can be achieved for the 

composites with arrangements in Figure 54a and Figure 54b. When the sandwich composite in 

Figure 54a is considered, only one of the active layers should be activated to induce out of plane 

shape changes.  

 This study considers a bilayer composite (Figure 54b) comprising of terpolymer active 

layer and PDMS substrate, following a previous study by Celli, Gonella [64]. The mechanical 

properties of the PDMS and terpolymer are 2MPa; 0.5;  200MPa; 0.48s s a sE E = = = = , the 

thickness of the terpolymer is 0.01mm, the coefficient of electrostriction 18 2 23x10 m / V −= , and the 

maximum electric field that can be prescribed is _ max 350MV/meE = . Different thickness of the 

substrate, i.e., 0.05, 0.1, and 0.2mm, and an electric field input 100MV/meE = , which give free 

expansion of ( )
2

11 22 0.0675a a

eH H E= = = , are considered. From Eqs. (177) and (178), the axial 
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strains 1 2

o o =  and curvatures 11 22 =  of the interface of the bilayer can be obtained for the 

composite with different substrate thickness. The corresponding axial strains are 

0.0261;  0.0272;  0.0276  for the substrate thickness 0.05, 0.1, and 0.2mm, respectively. These 

values are relatively small, and the in-plane deformations resulting from the above axial strains are 

rather insignificant compared to the out of plane deformation. The corresponding curvatures for 

the above substrate thickness are -0.6989, -0.4041, -0.2086 mm-1, which can result in large out of 

plane deformations, as will be shown later in the results. This analysis justifies that the large out 

of plane deformations are governed by large rotation and the in-plane stretch contributions are 

negligible. It is noted that the analyses of the active bilayers presented using the piezoelectric 

materials and electrostictive materials are also applicable to magnetostrictive materials.   

 When the deformation of the neutral surface is considered, the strain in Eq. (173) can be 

written as: 
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where x3 is measured from the neutral surface of the plate. The neutral surface of the plate is 

determined by imposing 
1 2

11 22 0
A A

dA dA = =  only for the bending response, which yield to 
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The governing equations in Eq. (178) reduce to: 
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where  
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where ẑ  represents the distance between neutral surface of the plate and the interface of the bilayer. 

The value of ẑ  can be found by solving Eq. (180). 

 In analyzing the deformations of the bilayer due to non-mechanical stimuli, the constitutive 

relation is implemented in shell elements within finite element (FE). For this purpose, a 

homogeneous planar surface out of the inactive layer (substrate) is considered and external 

moments to the planar surface are prescribed. A co-rotational (CR) finite element approach, which 

splits the large rotation from the in-plane deformations, following Felippa and Haugen [65] and 

Tajeddini and Muliana [66], is used in order to determine the shape reconfiguration of the substrate. 

This approach is considered since prescribing non-mechanical stimuli only cause free 

expansion/contraction in the active layer and the substrate does not undergo free 

expansion/contraction due to an application of the non-mechanical stimuli. However, the through 

thickness deformation gradient leads to curvature changes of the systems. The bending moments 

per unit length, m1 and m2 that are prescribed to the substrate surface induce normal stresses: 
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These moments are obtained from prescribing the external electric field to the active layer, which 

are: 
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Upon solving the integral in Eq. (184), the moments are expressed as: 
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where 1M̂ and 2M̂ are given in Eq. (182). In this study, the shell elements are comprised of a 

homogeneous substrate material (inactive layer) and the external stimuli, i.e., electric field input, 

are incorporated as external (prescribed distributed and uniform moments) given in Eq. (185).  

 

6.2. Modeling Bilayers with Viscoelastic Layer 

For multi-layered polymer smart structures, the material properties, geometrical shapes and layer 

arrangements all contribute to the controlling of shape reconfigurations. In this section, different 

polymer properties are considered to model the deformed shapes. For applications that require 

precise time and shape controls, it is important to include the viscoelastic properties of polymers. 

Thus, the time-dependent reconfiguration of the bilayer systems is studied in this section. The 

substrate layer (inactive) is modeled as a linear viscoelastic, isotropic material. The constitutive 

relations for the inactive substrate layer can be written as: 
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In the above equations, ( )sE t − is the relaxation modulus. The constitutive relations for the active 

layer and the equilibrium equations are the same with the relations given in Eqs. (175)-(176). 

Similar with the procedures discussed in section 5.1, substitute constitutive relations shown in Eqs. 

(175), (186) into equilibrium equation Eq. (176) results in the following relation: 
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where 
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In Eq. (187), operator ‘ ’ stands for convolution integral over time [0, t], while operator d denotes 

the time derivative. Eq. (187) can be solved analytically in Laplace domain. The following 

equation depicts the Laplace transformation of Eq. (193) in Laplace domain: 
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In Eq. (189), operator ‘~’ above the time-dependent functions indicate the transformation of the 

function in Laplace domain. By solving Eq. (189), the transformed expressions of 1

od , 2

od , 11d ,

22d can be found; then by taking the inverse of Laplace transformation, the time-dependent 

expressions of in-plane strains at interface and the corresponding curvatures can be determined. 

 Similar with the discussion in section 6.1, an electric field is generated by prescribing an 

electric potential difference through the thickness of the active layer. It is assumed that the electric 

field is spontaneously applied to the active layer, then held constant for a few seconds. To analyze 

the deformation of the bilayer system and the snap-though behavior caused by the viscosity of 

substrate layer, shell elements in a CF-FE formulation is applied to simulate the deformation of 

the neutral surface of the bilayer system. From Eq. (187), the prescribed electrical stimulus can be 

equivalent with an in-plane normal force and bending moments applied to the interface of the two 

layers. The bending moments per unit length prescribed to the neutral surface can be determined 

from the following expression: 
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In Eq. (190), stress 
11

s  and 
22

s can be related to the in-plane strains through constitutive relations 

shown in Eq. (186). ẑ in Eq. (196) indicates the location of neutral axis. The bending moments per 

unit length in Laplace domain can be expressed as: 
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Eq. (191) above gives the time-dependent functions of bending moments applied to the neutral 

surface in Laplace domain. Taking the reverse transformation of Eq. (191), the external moments 

prescribed to the neutral surface can be determined and implemented into the co-rotational finite 

element model. 

 

6.3. Modeling Bilayers with Electro-active and Shape Memory Layers 

This section presents a constitutive model for bilayers comprising of two different active materials, 

i.e., electro-active polymer and shape memory polymer. The shape reconfiguration in the bilayer 

is achieved by prescribing electric fields. The motivation of using shape memory polymer as a 

substrate is that the shape can be partially (or fully) retained upon removal of the electric field. 

This study uses a light activated shape memory polymer (LASMP), whose phase transformation 

is achieved by light irradiation. The discussion of LASMPs can be found in Lendlein, Jiang [67], 

Scott, Schneider [68], and Long, Scott [69]. In this study, the constitutive model for the LASMP 

is based on the work of Yuan et al. [49, 70]. 

 Yuan et al. [49, 70] used a multiple natural configuration approach to describe the 

deformations of LASMPs. In LASMPs, light irradiation induces microstructural changes from the 

original molecular network to a newly formed network due to radiation. In order to describe the 
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deformations of LASMPs comprising of two phases, a model of a constrained mixture is adopted, 

which is given as: 

 (1 ) o n = − +σ σ σ  (192) 

where the subscripts o and n represent the original and newly formed networks, respectively,  is 

the volume fraction of the second network. The stress of the original network is expressed in terms 

of the deformation gradient associated with the original network oF , i.e., ( )o oσ F , and the stress 

associated with the new configuration is expressed in terms of the deformation gradient that maps 

the original network to the newly formed network nF , i.e., ( )n nσ F , where * 1

n a a

−=F F F  and *

aF  is 

the deformation gradient associated with the original network when the radiation starts.  

 For a substrate made of LASMP, the axial stresses upon light irradiation from the multiple 

natural configuration approach are then written as follow: 
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where sE and 
*

sE  are the elastic moduli of the original and newly generated networks, respectively, 

of the LASMP substrate. The stretches and curvatures of the neutral plane are 
0

1 ,
0

2 and 11 , 22 , 

respectively. In this study, the Poisson’s ratios of the original and newly form networks are 

assumed the same, 
*

s s = . The variables 
*

1 ,
*

2 and 
*

11 ,
*

22 are the axial stretches and curvatures 

of the neutral plane, associated with the original network, when the radiation starts, which in this 
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study they are obtained from prescribing an electric field input. Since the stretch of the neutral 

plane is negligible, the axial stretches 
* *

1 2 1 = = . The neutral plane was determined from 

prescribing the electric field input (Eq. (180)). After radiation, the stresses in Eq. (174) is written 

as: 
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where 
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Consider a bilayer comprising of terpolymer electro-active layer and LASMP substrate. The 

thicknesses of the active and substrate layers are ta and ts, respectively. It is noted that the initial 

elastic properties of the active and substrate layers are , , ,  a a s sE E  . Substituting Eq. (194) into 

the equilibrium equations, Eq. (176), the equilibrium equations for the bilayer after the substrate 

irradiation are: 
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where 
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The curvatures and axial strains at the neutral plane can be solved from equilibrium equations Eq. 

(195)-(197). It is noted that in Eqs. (195)-(197), the deformations are obtained for the neutral 

surface, which was determined initially from prescribing the electric field input (Eq. (180)). Due 

to the irradiation of the substrate, the elastic modulus of the LASMP substrate changes, and thus 

the neutral surface also changes with irradiation. As mentioned above, in a thin composite the 

variation in the neutral surface due to irradiation is negligible. This has been shown by determining 

the axial strains 
0 0

1 2,  in Eq. (195), which are small5. As discussed above that the axial strains 

generated by the application of external stimuli are negligible, therefore the equilibrium equation 

can be reduced to: 

 
5 When the elastic modulus of newly generated network is taken as 

* 10s sE E= , the curvatures and axial strains 

corresponding to electric field 100 MV/m are 11 22 0.1392 = = − and 0 0 6

1 2 1.33 10  −= =  , for a LASMP 

substrate with thickness 0.3mm. The variation in neutral plane 42.31 10z − = −   mm, which is negligible compare to 

the thickness of substrate. Increasing 
*

sE will further reduce the values for 0 0

1 2,   and z . 
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Following the discussion in Section 6.1, the shape reconfigurations of the LASMP substrate are 

simulated using shell elements in a CF-FE formulation. For this reason, distributed bending 

moments are prescribed to the substrate, which are: 
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where 11 22,   are determined from solving Eq. (198). Upon removal of the electric field input, the 

corresponding bending moments in Eq. (198) are reduced to the following amounts: 
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Thus, the amount of curvature springs back upon the removal of the electric field are written as: 
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Recall from Eq. (181), the curvature of neutral plane before radiation starts can now be written as: 
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Comparing Eq. (202) with Eq. (201), it can be seen that *    for 0  , which means the 

bilayer with LASMP substrate is still deformed after the removal of electric field input.  

 

6.4. Results 

Shape reconfigurations in the bilayer plane actuated by a uniform application of electric field input 

are first examined. The studied bilayer plates comprise of terpolymer active layer and PDMS 

substrate. The electro-mechanical properties of the terpolymer and PDMS are discussed above, 

which are summarized in Table 11. The nonlinear electro-mechanical constitutive model is defined 

for the free expansion/contraction strains 11 22,a aH H . The planar dimension of the plate is defined 

along the x1-x2 axes, while the out of plane direction is defined along the x3 axis. The thickness of 

the terpolymer and PDMS are 0.01 mm and 0.3 mm, respectively.  

 

Table 11 Material and geometrical properties 

 Terpolymer PDMS 

Modulus E (MPa) 

Poisson’s ratio  
thickness (mm) 

Electrostrictive  (m2/V2) 

200 

0.48 

0.01 

3x10-18 

2 

0.5 

0.3 

- 

 

 First study concerns with the shape reconfigurations of bilayer plates of a rectangular shape. 

Bilayer plates with three different planar dimensions, 50x50 mm2, 50x25 mm2, and 50x5 mm2 are 

subjected to a continuous increase of electric field in the terpolymer layer. Figure 55 illustrates the 

corresponding shape reconfigurations in the square bilayer plate at different electric fields. It is 

noticed that in a square plate at low electric field inputs (Figure 55a and b) the deformations are 

seen by uniform folding of the four corners to achieve a dome-like shape. This is expected as the 

electric field input generates the same axial stretch in the terpolymer layer along the planar axes. 
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The in-plane stretch gradient through the bilayer plate thickness generates the same curvatures 

along both planar axes. It is noted that the folded surface is the neutral surface of the bilayer plate, 

which is determined from Eq. (180), as discussed in Section 6.1. This has a consequence that only 

shapes with zero Gaussian curvature can be attained by prescribing the electric field input to the 

terpolymer layer. This is seen by snap-through shape reconfigurations when the electric field input 

is increased (Figure 55c-e) in order to achieve developable surfaces. The stable configuration with 

zero Gaussian curvature is associated with bending about a single planar axis. After the stable 

shape from the snap-through deformation is achieved, increasing electric field will lead to a rolling 

of the plate about the single planar axis. Figure 56 illustrates the corresponding Gaussian curvature 

of the square bilayer plate. It is seen that close to the snap-through state (Figure 57b-c), the 

Gaussian curvature has nearly zero magnitude. Once the stable configuration is achieved, the 

Gaussian curvature is zero (Figure 57d-e), except near the edges. Unlike the square plate, the 

rectangular plates immediately achieve a stable bending configuration about the axis with shorter 

dimension (Figure 57 and Figure 58). It is noted that the edge warping leads to a corkscrew-like 

shape, which can be clearly seen from a top view angle in all cases (Figure 59).  

 

 

Figure 55 Bistable folding of square plate. (a): electric field 9MV/m; (b): electric field 15MV/m; 

(c): electric field 18MV/m; (d): electric field 68MV/m; (e): electric field 86MV/m 
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Figure 56 Gaussian curvature of folded square plate. (a): electric field 9MV/m; (b): electric field 

15MV/m; (c): electric field 18MV/m; (d): electric field 68MV/m; (e): electric field 86MV/m 

 

 

 

 
Figure 57 Folding of 50 25 rectangular plate. (a): electric field 25MV/m; (b): electric field 

43MV/m; (c): electric field 68MV/m; (d): electric field 86MV/m 

 

 

 

 
Figure 58 Folding of 50 5  rectangular plate. (a): electric field 25MV/m; (b): electric field 

43MV/m; (c): electric field 68MV/m; (d): electric field 86MV/m 

 

 

 



132 

 

 
Figure 59 Top view of folded shapes of rectangular plates showing corkscrew shapes 

 

 To further illustrate the influence of single or double curvature changes of bilayer plates, 

parametric studies on both square and rectangular plates are presented. Figure 60 shows the shape 

reconfigurations of square plates when the through thickness electric field input is assumed to only 

create an in-plane stretching about one planar axis. It is seen that the plate immediately bends about 

a single axis perpendicular to the in-plane stretching axis. The effect of Poisson’s ratio on the shape 

reconfigurations is also examined, as shown in Figure 60. The Poisson’s effect results in a slight 

edge outward bending, perpendicular to the global rotation axis, due to the contraction of the plate 

perpendicular to the stretching direction. Comparing the cases with and without Poisson’s effect, 

the Poisson’s effect results in more pronounced folding, as shown by the first principal curvature 

contours in Figure 61. The second principal curvatures are nearly zero and thus are not reported 

here. Figure 62 illustrates shape changes in a rectangular plate when the electric field input induces 

stretching only along the longitudinal axis of the plate. The influence of the Poisson’s ratio is also 

studied. As expected, a simple bending is seen in all cases. When the influence of the Poisson’s 

ratio is removed, the response reduces to bending of a beam. Comparing the shape changes in 

Figure 57 and Figure 62, it is seen that the beam model can give a reasonable approximation of 

the deformation when the plate has a relatively large in-plane aspect ratio. Ignoring the influence 
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of Poison’s effect shows a negligible effect when the plate is under small curvatures (Figure 62a). 

Figure 63 presents the shape reconfigurations of a rectangular plate when the electric field input 

induces stretching only along the lateral axis of the plate. The influence of Poisson’s ratio is also 

investigated. It is seen that in this example, the longitudinal contraction of the bilayer plate due to 

stretching of the terpolymer layer in the lateral direction induces an anticlastic shape with one axis 

of bending dominates the shape changes.    

 

 
Figure 60 Folding of square plate, 0ym = . Top: with Poisson’s effect; Bottom: without 

Poisson’s effect.  (a): electric field 25MV/m; (b): electric field 43MV/m; (c): electric field 

68MV/m; (d): electric field 86MV/m 

 

 

 

 
Figure 61 The corresponding first principal curvature with 0ym = . Top: electric field 43MV/m; 

Bottom: electric field 86MV/m. The figures on the left are responses with Poisson’s effect and 

figures on the right are responses without Poisson’s effect 
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Figure 62 Folding of 50 5  rectangular plate, 0xm =  . Top: with Poisson’s effect; Bottom: 

without Poisson’s effect. (a): electric field 25MV/m; (b): electric field 43MV/m; (c): electric 

field 68MV/m; (d): electric field 86MV/m 

 

 

 

 
Figure 63 Folding of 50 5 rectangular plate, 0ym = . Top: with Poisson’s effect; Bottom: 

without Poisson’s effect. (a): electric field 25MV/m; (b): electric field 43MV/m; (c): electric 

field 68MV/m; (d): electric field 86MV/m 

 

 

 

 Another case of folding of a triangular plate is shown in Figure 64. A snap-through 

behavior to form a rolling shape is also observed in order to maintain a stable shape with zero (or 

nearly zero) Gaussian curvature. Multi-stable shapes associated with snap-through mechanisms 

can also be achieved by prescribing different amplitude of electric field. For this purpose, a circular 

bilayer disk of a radius 25 mm is studied. Two different histories of prescribed electric field inputs 

are considered, referred as small and large increments. In the small increment input, a first stable 

shape configuration, which is associated with the lowest strain energy, can be achieved (see Figure 

65(a)-(c) right). Once the stable configuration is achieved, increasing an electric field input will 

further fold the disk following this configuration. When a large increment input is considered, a 
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different stable shape configuration is attained as the large increment input missed the electric field 

that drive the first mode, as shown in Figure 65(a)-(c) left. Further increasing the electric field 

yield to further folding of this stable shape. Figure 65(d) summaries the electric field inputs with 

small and large increments, and highlights the critical electric fields that induce snap-through 

mechanisms associated with the first and second stable configurations. The corresponding 

Gaussian curvatures of the disks, which indicate that the stable shapes have to attain zero Gaussian 

curvature, are depicted in Figure 66. 

 

 
Figure 64 Folding of equilateral triangle plate. (a): electric field 9MV/m; (b): electric field 

15MV/m; (c): electric field 20MV/m; (d): electric field 68MV/m; (e): electric field 86MV/m 

 

 

 

 
Figure 65 Folding of disk shape plate. Left: with large electric field increment; Right: with small 

electric field increment. (a): electric field 11MV/m; (b): electric field 17MV/m; (c): electric field 

19MV/m; (d): Critical electric fields for the snap-through behavior under different increment. 
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Figure 66 Gaussian curvature of folded disk shape plate. Left: with large electric field 

increment; Right: with small electric field increment. (a): electric field 11MV/m; (b): electric 

field 17MV/m; (c): electric field 19MV/m 

 

 

 

The proposed approach is also capable in capturing an overall twisting shape 

reconfiguration of an active planar bilayer by arranging the placement of the active components in 

the bilayer. Figure 67 shows an example of a twisting of the active bilayer upon prescribing electric 

field input. It is seen that small magnitude of electric field induces initial bending deformations 

(Figure 67a-c), and increasing the non-uniform bending in the plate by increasing electric field in 

the active layers generates overall twisting shapes (Figure 67d-e). This twisting shape is attributed 

to the bending moments prescribed with off-axis angle from the longitudinal axis of the bilayer, 

which correspond to the placement of the active layer in the composite plate. 

 

 
Figure 67 Twisting of 50 5  rectangular plate. (a): electric field 25MV/m; (b): electric field 

43MV/m; (c): electric field 68MV/m; (d): electric field 86MV/m; (e): electric field 105MV/m 
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The time-dependent shape reconfigurations of the bilayer system are depicted in Figure 68-

Figure 70 below. Three cases with different geometries are studied. The relaxation modulus of the 

viscoelastic substrate is assumed as follow: 

 ( ) ( )expe ve

s s sE t E E t = + −  (203) 

The material properties of the viscoelastic substrate are assumed as: 10e

sE MPa= , 190ve

sE MPa= , 

1s = . Figure 68 shows the time-dependent deformation of a square bilayer plate with length 

50mm. An electric field of 45MV/m is prescribed to active the bilayer system. While the electric 

field remains constant, the shape of the bilayer system continues evolving due to the viscosity of 

the substrate. As shown in Figure 68(a), at very beginning when time t=0.1s, the four corners of 

the plate are deformed uniformly to form a dome-like shape. This is expected since the prescribed 

electric field would generate the same bending moments in the two in-plane axes. Due to the 

viscoelastic nature of the substrate, the deformed shape continues to change with constant electric 

field input. Since only neutral surfaces are mapped in this chapter, where the in-plane stretching is 

absent, a snap-through shape reconfiguration is seen in order to continually achieve developable 

surfaces. As depicted in Figure 68(b)-(c), the dome-like shape snapped to rolling about one axis, 

as time increases. The shape reconfigurations can be seen more clearly from the Gaussian 

curvature plots, as shown in Figure 68(bottom). Figure 69 and Figure 70 depict the shape 

reconfigurations evolving with time for an equilateral triangle plate with length 50mm and a disk 

shape plate with radius 25mm, respectively. The electrical stimuli applied to the triangle plate and 

disk plate are 65MV/m and 50MV/m, respectively. Same with the square plate, the deformed 

shapes of the triangle plate and dish shape plate continue evolving under constant electrical stimuli, 

due to the viscosity of the substrate. Shape reconfiguration can be observed from Figure 69 and 
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Figure 70. In both cases, the plate snapped to form a stable, rolling shape in order to maintain a 

zero Gaussian curvature. 

 

 
Figure 68 Shape reconfiguration of square plate with viscoelastic substrate. Top: deformed 

shape; Bottom: corresponding Gaussian curvature. (a): time t=0.1s; (b): time t=0.5s; (c): time 

t=5s; (d): time t=20s. 

 

 

 
Figure 69 Shape reconfiguration of equilateral triangle plate with viscoelastic substrate. Top: 

deformed shape; Bottom: corresponding Gaussian curvature. (a): time t=0.1s; (b): time t=5s; (c): 

time t=10s; (d): time t=20s. 
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Figure 70 Shape reconfiguration of disk shape plate with viscoelastic substrate. Top: deformed 

shape; Bottom: corresponding Gaussian curvature. (a): time t=0.1s; (b): time t=0.5s; (c): time 

t=1.5s. 
 

 

 

 
Figure 71 Deformed shapes of rectangular (top) and square (bottom) bilayers, comprising of 

LASMP substrate, after removing electric field. (a) * 10 20MPas sE E= = ; (b) * 50 100MPas sE E= =  

 

 

 Finally, shape reconfigurations and retentions of bilayer plates comprising of terpolymer 

and LASMP layers are simulated. An electric field is first prescribed to the terpolymer layer to 

reconfigure the shapes of the bilayer, followed by radiating the LASMP layer. Upon radiation, the 

electric field input is removed and permanent shapes can be achieved. The properties of the 

terpolymer is given in Table 11. For the LASMP layer, the initial elastic properties are considered 

the same as the ones of PDMS layer, shown in Table 11. A parametric study is performed in order 

to investigate the effect of elastic modulus of the radiated LASMP on the overall shape retention 

behaviors. Figure 71 shows shape retentions of a 50x5 mm2 (rectangular) and 50x50 mm2 (square) 
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bilayers from prescribing electric field 86 MV/m and complete irradiation (=1). It is seen that the 

shape retention depends strongly on the modulus of the LASMPs after irradiation. Stiffening the 

LASMPs by radiation will increase shape retention due to a minimal amount of spring back 

deformation. The shape retention can also be achieved in case of snap-through shape 

reconfiguration, as demonstrated for the square plate. 
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CHAPTER VII  

SUMMARY AND CONCLUSIONS 

 

In this study, we have presented a thermodynamic framework for materials undergoing 

microstructural changes, by assuming such material as a body possessing multiple natural 

configurations. When subjected to external stimuli, the material experiences microstructural 

changes and evolves between two natural configurations. Only the net effect of any possible 

microstructural changes is incorporated into the constitutive model using an internal state variable, 

which quantifies percent amount of microstructural changes. The multiple configuration approach 

simplifies the calibration process and reduces the number of material parameters, and are capable 

of predicting the mechanical responses for materials undergo microstructural changes under varies 

loading histories and loading environments.  

In Chapter II, use POM polymer as example, a multiple configuration based constitutive 

model is developed from the thermodynamic framework to simulate the mechanical response of 

isotropic, homogeneous material. Creep-recovery responses of POM polymers under various 

loading amplitudes and creep durations are predicted by the constitutive model and compared with 

experimental tests. The model has a relatively small number of material parameters and these 

material parameters are associated with specific physical mechanisms (material compliance and 

inverse viscosity). This study also assumes that the microstructural changes are governed by the 

magnitude of the deformation in the polymer. The material parameters can be easily calibrated 

from limited experimental tests, as demonstrated in Chapter II. The model and calibrated material 

parameters are in good agreement with experimental data for various loading histories.  
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The nonlinear hysteretic responses of plant tissues and stems subjected to cyclic 

mechanical loadings are modeled in Chapter III. In Chapter III, the thermodynamic framework is 

extended to incorporate general anisotropic and heterogeneous materials. A constitutive model is 

formulated by taking into account the net effect of microstructural changes in describing the 

macroscopic response of the cell wall. The proposed model correlates well with the typical 

experimental tests since the detailed processes or information of the microstructural aspects that 

influence the macroscopic response of plant tissues are often not available, and only the net effect 

is being accounted for. It is also demonstrated that the proposed approach can be extended easily 

to include responses of different tissues in the plant stem in predicting the overall mechanical 

response of the stem, whose mechanical behavior is anisotropic and heterogeneous. This will be 

useful for examining the contributions of different constituents in the plant stem on their 

macroscopic mechanical response, which can shed light into understanding deformation 

mechanisms in plant stem.  

Chapter IV extends the thermodynamic framework to include temperature as a new state 

variable. Same with Chapter II, the temperature-dependent response of thermoplastic polymer 

POM is modeled with a multiple configuration based constitutive model. The evolution of 

microstructural change and permanent deformation are assumed the same with the relations found 

in Chapter II, while in this chapter both natural configurations are assumed temperature-dependent. 

The predictions given by the constitutive model agree well with experimental data under varies 

loading conditions, including quasi-static tests, cyclic tests and creep-recovery tests. Other than 

temperature, the mechanical properties of thermoplastic polymers such as POM vary dramatically 

for different macromolecular characteristics. Three different POM materials with trademark names 

Delrin 100, Delrin 500 and Delrin 900 are studied in this chapter. It is seen that longer 
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macromolecular chains would slightly increases the microstructural changes both for tension and 

compression. 

The Constitutive model discussed in Chapter IV can be extended to simulate mechanical 

responses of general anisotropic materials, as discussed in Chapter V. The compliance tensors and 

inverse viscosity tensors in Gibbs free energy are extended to include five independent parameters, 

in order to capture the mechanical response of transversely isotropic material PA6GF40. Two 

temperature-dependent natural configurations are assumed, and the microstructure evolves from 

initial configuration to final configuration as deformation increases. Also, same with POM 

polymer discussed in Chapter IV, the evolution of microstructural change generates permanent 

deformation. Different loading histories including quasi-static, cyclic, creep-recovery, under 

different loading rates, loading amplitudes, ambient temperatures are predicted by the developed 

constitutive model and compared with experimental results. Both axial and lateral responses under 

uniaxial loadings in 0° fiber direction and 90° fiber direction are analyzed. It can be seen that the 

model could capture the material symmetry of transversely isotropic material, and give reasonable 

prediction under different loading histories and loading conditions.  

From the constitutive models discussed in Chapter II-V, it can be concluded that the 

constitutive model developed in this study can capture mechanical response under varies loading 

conditions with relatively small amount of material parameters, which presents high computation 

efficiency. A structural analysis of thin bilayer composites undergoing shape reconfigurations 

prescribed by an external electric field is discussed in Chapter VI. The thin composites comprise 

of one active and one inactive (substrate) layers and the electric field input causes 

expansion/contraction in the active layer. Three different types of material are considered for the 

inactive substrate layer, including elastic, viscoelastic, and light activated shape memory polymer 
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(LASMP), whose constitutive relation is modeled by multiple configuration approach. Several 

cases involving shape reconfigurations and snap-through behaviors of the neutral surfaces of 

various geometries have been presented. It can be concluded that in all cases the reconfigured 

shapes have zero (or nearly zero) Gaussian curvature. The snap-through behavior could be caused 

by increased electrical stimulus, or by the viscoelastic nature of the substrate. For bilayer system 

with LASMP substrate, it has been demonstrated that the shape retentions in the systems can be 

achieved upon removal of the electric field input. 
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