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ABSTRACT 

The lack of adequate toxicity data for the vast majority of chemicals and complex 

mixtures in the environment has spurred the development of new approach methodologies 

(NAMs) which span a vast array of in vitro and in silico technologies. This study aims to 

develop practical, high-throughput in vitro models to rapidly evaluate potential hazards of 

environmental chemicals and complex mixtures to provide evidence for risk assessment. 

A panel of human induced pluripotent stem cell (iPSC)-derived cells (hepatocytes, 

neurons, cardiomyocytes, and endothelial cells) and primary cells (HUVECs) were used 

to screen environmental chemicals from different classes, “designed” mixtures, and real-

life environmental mixtures. First, we found chemical class-specific similarity and cell 

type-specific patterns among the individual compounds tested, indicating the ability of the 

proposed in vitro model to recognize effects on different cell types. We also observed that 

data from the five cell-type model was as good or even better at assigning compounds to 

chemical classes compared to available NAM datasets such as ToxCast/Tox21 and 

chemical structure-based descriptors. Second, we observed significant bioactivity of some 

“designed” mixtures based on individual chemical concentrations considered to be “low” 

or “safe”. In some cases, the bioactivity of the mixtures appeared to be much greater than 

that of their components under either concentration addition (CA) or independent action 

(IA) dose reconstruction model assumptions. CA was much more accurate as a predictor 

of mixture effects as compared to the IA, suggesting that CA is a preferred first 

approximation to predict the toxicity of a mixture when data for the constituents are 
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available. Third, the same in vitro models were applied to real-life environmental 

mixtures. We found significant evidence of spatial correlation of a subset of polycyclic 

aromatic hydrocarbon (PAH) contaminants and cell-based phenotypes. Furthermore, we 

show that the cell-based bioactivity data can be used to predict environmental 

concentrations for several PAH contaminants, as well as for overall PAH summaries and 

cancer risk. This dissertation thus demonstrates that novel, cell-based in vitro bioassays 

can be used as rapid hazard screening tools for environmental chemicals and mixtures, 

providing a practical solution that yields highly informative data for risk assessment. 
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CHAPTER I  

INTRODUCTION: CURRENT STATUS OF USING IN VITRO SCREENING 

METHODS FOR CHEMICAL/MIXTURE RISK ASSESSMENTS  

1.1 Overview 

Chemicals are essential to modern life and the economy. Nowadays, society 

benefits from the use of different chemicals are associated with potentially inherent 

dangers (Escher et al. 2020b; Kacew et al. 2020). Pesticides, industrial chemicals, 

pharmaceuticals, and other synthetic compounds are vital to agriculture and other 

industries, but can also pose risks to human health through the food chain and other 

environmental matrices (Escher et al. 2020b; Rappaport and Smith 2010). However, a 

knowledge gap of potential risks for chemicals across different classes still exists due to 

inherent limitations of traditional toxicity testing strategies, e.g. high cost and length of 

time required to conduct animal testing in rodents and other species (Judson et al. 2009). 

In addition, very limited information on the mechanism of action can be obtained from 

animal tests, and hence on the cellular pathways that could lead to toxicity in humans 

(Judson et al. 2010b).  

Moreover, most human exposures in either environmental or occupational settings 

are mixtures of different chemicals (Escher et al. 2020b; Kortenkamp 2014; Kortenkamp 

and Faust 2018). Due to the complexity of multiple chemical exposures, an individual, 

chemical-based focus can underestimate or overestimate risk, since additional interaction 

between the components in a mixture can result in complex and substantial changes in the 
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apparent properties of the constituents (Kortenkamp and Faust 2018). In addition, efficient 

identification of potential bioactivities of “real-world” exposures plays an important role 

in emergency environmental contamination events, further providing evidence and 

suggestions for fast response and decision making. Novel testing strategies that can 

provide timely, accurate, and comprehensive evaluations related to human health are thus 

critically needed to overcome the challenges associated with risk assessments of 

environmental chemicals and mixtures.   

1.2 New approach methodologies (NAMs) applications in chemical hazard 

assessments 

Traditional in vivo animal testing strategies are not able to assess all chemicals in 

commerce, and this problem is further amplified by the large backlog of chemicals that 

need to be tested for potential toxicity to human health (Pham et al. 2019a). Consequently, 

new approach methodologies (NAMs) are emerging. A NAM is any methods that yields 

a prediction of the key features that are currently derived mostly from animal studies, such 

as the specific effects that may be caused by a chemical, and a point of departure (POD) 

estimate of potency (Kavlock et al. 2018).  

NAMs include different categories, such as in vitro bioassays, kinetic modeling 

and dose extrapolation, in vitro to in vivo extrapolation (IVIVE), and purely computational 

method, including quantitative structure-activity relationships (QSARs) and read-across 

methods that predict hazards based on chemical structure and computed properties (Pham 

et al. 2019a). These methods have been extensively utilized either individually or in 

combination for chemical hazards prediction, estimation of in vivo adverse effects, and 
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risk-based prioritization. For instance, high-content screening technologies have been 

successfully introduced into in vitro bioassays and further applied in the screening of 

pharmaceutical compounds as well as environmental chemicals in specialized areas of 

toxicology. These include developmental toxicity (Van Vliet et al. 2014), genotoxicity 

(Motoyama et al. 2018; Watson et al. 2014), neurotoxicity (Chin-Chan et al. 2015; Sirenko 

et al. 2014b), hepatotoxicity (Dambach et al. 2005; Donato et al. 2017), cardiotoxicity 

(Onakpoya et al. 2016), and nephrotoxicity (Shaw et al. 2002; Su et al. 2016). In addition, 

novel in vitro models have been applied to risk assessments of various chemical classes, 

such as pesticides (Leung and Meyer 2019), polychlorinated biphenyls (PCBs) and their 

metabolites (Grimm et al. 2020), glycol ethers (Grimm et al. 2019), and substances of 

unknown or variable composition, complex reaction products, and biological materials 

(UVCBs) (Grimm et al. 2016).  

NAMs are also well recognized as potential alternative strategies to traditional 

animal testing by government agencies. Toxicity Forecaster (ToxCast), established by US 

Environmental Protection Agency (US EPA), generates data and predictive models on 

thousands of chemicals of interest using high-throughput screening methods and 

computational approaches to rank and prioritize chemicals (Dix et al. 2007; Judson et al. 

2010b). Screening data is stored and continuously updated in CompTox Chemicals 

Dashboard, a publicly available database that can be used for further comparison (Helman 

et al. 2019; Williams et al. 2017). In addition, the Toxicology in the 21st Century (Tox21) 

program is a federal collaboration between US EPA and the National Institute of Health 

(NIH) that uses a high-throughput robotic screening system to screen 10,000 



4 

environmental chemicals (called the Tox21 10K library) for their potential to disrupt 

biological pathways that may result in toxicity (Huang et al. 2016; Thomas et al. 2018).  

While NAMs are widely applied in chemical risk assessments, concerns may arise 

toward the uncertainties associated with NAM predictions (Pham et al. 2019a). Thus, 

comparisons of NAM results to those from traditional in vivo studies are often included 

in chemical hazard evaluations to indicate the potential utility and robustness of novel 

methods. For instance, ToxCast data collected from rapid, automated screening assays and 

ExpoCastDB is used to evaluate potential toxicity of compounds, and can then be 

compared to in vivo animal data from the Toxicity Reference Database (ToxRefDB) 

(Knudsen et al. 2009; Pham et al. 2019b; Sipes et al. 2011). One  recent  study found that 

in vitro bioactivity dataset can be utilized as a lower bound estimate of in vivo adverse 

effect concentrations and in risk-based prioritization for a large group of chemicals (Paul 

Friedman et al. 2020). Specifically, PODs based on high-throughput predictions of 

bioactivity, exposure predictions, and traditional hazard information for a library of 

chemicals (n=448) were compared. PODs derived from the in vitro NAM results were 

lower than traditional POD values for most of the chemicals, indicating the feasibility of 

in vitro bioactivity as a protective estimate of POD in screening-level chemical 

assessments.      

1.3 High-throughput in vitro screening for individual chemicals from different 

classes 

High-throughput in vitro cell-based bioassays exhibit great potential and feasibility 

to accelerate the pace of risk assessments and reduce animal testing (Kavlock et al. 2018). 
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In general, cell-based bioassays for evaluating potential bioactivity and hazardous effects 

are motivated by the goal to identify specific effects on target cells/tissues/organs caused 

by specific chemical compounds of interest. Therefore, screening assays are usually 

designed to either investigate certain effects by selecting specific cell models or cover a 

broad spectrum of chemical compounds. For instance, in vitro reporter gene assays using 

MCF-7 cells and Chinese hamster ovary (CHO) cells are frequently applied in chemical 

estrogen and androgen receptor activity evaluations (Kojima et al. 2004; Zwart et al. 

2018). Similarly, neural progenitor cells and neurons have been used for developmental 

neurotoxicity screening (Breier et al. 2010; Ryan et al. 2016; Sirenko et al. 2019). The 

development of modern high-throughput robotic techniques such as automated high 

content imaging systems facilitate rapid screening of a large library of chemical 

compounds in different cell models, providing a rich dataset and evidence for risk 

assessment decision making. 

Current in vitro bioassays to test for bioactivity and toxicity screening largely focus 

on endpoints such as cell viability or specific modes of action, including reporter/receptor 

activity (Kojima et al. 2004; Takeuchi et al. 2006; Zhang et al. 2014). Apart from limited 

endpoints, these results can be questionable, since many forms of stress response are 

activated nonspecifically at concentrations nearing cell death, otherwise referred to as 

“cytotoxicity burst”. Here, although cytotoxicity is the endpoint, the mechanism leading 

to cytotoxicity occurs before cell death. (Escher et al. 2020a). As a result, mechanistic 

cytotoxicity point of departure values ignoring cytotoxicity burst may be underestimated. 

To avoid this, functional phenotypes of certain cell types are included in high throughput 
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screening studies along with conventional cytotoxicity endpoints. For example, neurite 

outgrowth of neuron cells, contract beating patterns of cardiomyocytes, and angiogenesis 

of endothelial cells, which are all physiologically-relevant to human health, have been 

extensively reported in studies screening chemicals for potential hazardous effects 

(Burnett et al. 2019; Grimm et al. 2020; Ryan et al. 2016).  

Overall, high throughput in vitro bioassays exhibit great potential in screening 

bioactivities of chemical compounds from different classes. The introduction of functional 

effect phenotypes in certain cell types could be complementary to traditional MOA-

specifc and cytotoxicity endpoints, thus increasing the comprehensiveness and confidence 

of utilizing high throughput in vitro assay data as evidence for chemical risk assessments.     

1.4 Current in vitro screening approaches for “designed” mixtures of chemicals 

In addition to individual compound screening, cell-based in vitro assays are also 

well-developed and broadly applied in evaluating bioactivity/toxicity of chemical 

mixtures (Escher et al. 2020b). Before investigating complex environmental mixtures of 

unknown and variable compositions, it is necessary to first understand in vitro studies of 

“designed”, artificial mixtures prepared with known components at known concentrations. 

These designed mixtures were varied by altering their compositions in terms of both 

chemical categories and their respective concentrations.  

Mixtures containing chemicals from the same chemical class have been 

investigated extensively, since they may follow a similar mode of action (MOA). Previous 

studies have used a uniform design method to rationally arrange concentrations of mixture 

components such as pesticides to minimize experimental runs (Liu et al. 2016; Zhang et 
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al. 2010), and some studies combined pesticides in equimolar concentrations (Ghisari et 

al. 2015) or based on consumer usage patterns (Abdo et al. 2015). Analogous designed 

mixtures covering other chemical classes such as heavy metals (Choi et al. 2018; Karri et 

al. 2018), polycyclic aromatic hydrocarbons (PAHs) (Dreij et al. 2017; McCarrick et al. 

2019), and phthalates (Chen et al. 2014; Ding et al. 2017) have been used for in vitro 

toxicity evaluations.   

Further, the cocktail effects and the synergistic interactions of chemicals in 

mixtures are of great interest to mixture-based toxicology fields. To identify the effects of 

interactions of individual components with each other, comparisons between experimental 

results and mathematical modeling outputs have been performed in most “designed” 

mixture studies (Cedergreen 2014; Hernández et al. 2017). Two mathematical models in 

particular have been widely used to assess mixture toxicity: independent action (IA) and 

concentration addition (CA). IA and CA assume that individual components either have 

dissimilar modes of action thus calling for effect addition, or the same modes of action 

where mixture effects are concentration accumulations from each component, respectively 

(Drescher and Boedeker 1995). It has been also suggested that a cumulative risk 

assessment should be conducted to evaluate the combined effects of exposure to all 

chemicals, suggesting that an approach for such an assessment can serve as a model for 

evaluating the health risks of other types of chemicals (National Research Council 2009). 

Moreover, novel methods such as generalized concentration addition have been developed 

to predict mixture toxicity as improvements upon IA and CA. By comparing experimental 

and computational results, toxicity prediction and chemical interactions can be specified 
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for complex mixtures (Medlock Kakaley et al. 2019; Tanaka and Tada 2017). By 

comparing the experimental and computational results, interactions and toxicity prediction 

can be specified in complex mixtures. 

In summary, concentrations chosen for “designed” mixtures are currently either 

equimolar or various combinations of toxicity values such as EC10 or EC50. Further, 

mixture components are often from the same chemical classes with similar modes of 

action, and their concentrations chosen are thus interrelated (Zhang et al. 2010). For more 

complex mixture combinations, concentrations might be based on in vitro and in vivo 

toxicity test results, or from risk assessment values of exposure concentrations or reference 

doses of each chemical. It is therefore important that more chemical classes be tested in a 

mixture setting to embody realistic exposure scenarios, as this can provide more 

comprehensive and accurate evidence for their hazard assessment. 

1.5 Potential bioactivities screening for complex environmental mixtures 

Compared to individual chemical compounds and “designed” mixtures, 

environmental samples are much more complex because of their intricate matrices, 

inclusion of compounds across chemical classes, and potential interactions between 

chemicals and environmental factors that can alter their final toxicity outputs (Backhaus 

and Faust 2012; Wu et al. 2016). As a result, awareness of the necessity to assess hazards 

of complex chemical mixtures has heightened with the introduction of exposimics, which 

integrates all the exposures of an individual’s lifetime and how those exposures relate to 

the individual’s health status (Rappaport 2011).  Therefore, current studies about 
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environmental mixtures mainly focus on addressing two main questions: what are the 

exposure levels and what their potential effects on human health?  

Cutting-edge analytical techniques such as high-resolution mass spectrometry 

have been applied to fill this knowledge gap and gain insight into the chemical complexity 

of environmental matrices (Hollender et al. 2017). Also, sampling strategies and analysis 

workflows for environmental mixtures have shifted from priority-based, targeted analysis 

to automated, big data nontargeted analysis (Escher et al. 2020b). On the other hand, cell-

based high-throughput in vitro assays have been extensively applied using a top-down 

whole mixture approach, as it has the advantage of assessing the toxicity of mixtures of 

unknown composition (Hernández et al. 2017).  Analytical chemistry techniques have 

even been combined with bioassay methods to better capture mixture effects. One example 

of this is the collection and extraction of polluted water and soil samples for both analytical 

measurements and in vitro assays to identify and correlate exposure levels and their 

potential bioactivities; and by comparing these datasets from chemistry and biology, one 

is able to identify and correlate the exposure levels and potential bioactivities (Leme et al. 

2012; Neale et al. 2015; Wang et al. 2018). At the same time, mathematical modeling can 

be used to identify the interactions, if any, between individual compounds in 

environmental mixtures and the driving force for the overall toxicity (Cedergreen 2014).  

The correlation analysis between chemistry and biology can provide not only 

insights for identifying chemicals causing the toxicity, but also opportunities for prediction 

from biological response of chemical exposure levels. It can also serve as a new approach 

for comprehensive risk assessment of complex environmental mixtures.     
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1.6 Applications of in vitro screening in chemicals/mixtures risk assessment 

High throughput in vitro screening models have been widely applied in risk 

assessments of environmental chemicals and mixtures. Cell-based in vitro models provide 

multiple endpoints of potential bioactivity using different cell models. For instance, a 

battery of in vitro bioassays can cover comprehensive bioactivity of environmental 

chemicals and mixtures, including genotoxicity, mutagenicity, estrogenic activity, aryl 

hydrocarbon receptor activity, oxidative stress response, and cytotoxicity (Jia et al. 2015; 

Wang et al. 2018). Datasets derived from these assays can also serve as supporting 

evidence for risk assessments and even benchmarks environment quality (Escher et al. 

2014). High throughput in vitro bioassays also provide relatively faster and more 

inexpensive evaluation methods for large sets of chemicals compared to traditional animal 

testing.  

Governmental agencies such as US EPA have been developing a bioactivity 

database for a significant number of environmental chemicals using a battery of in vitro 

bioassays. While this database will prove very useful for chemical prioritization, concerns 

have been raised regarding its limits for predicting in vivo chemical hazards using standard 

classification methods. (Thomas et al. 2012). One disadvantage of the contributions of 

high throughput bioassays to predictive resources is the often inverse relationship between 

assay throughput and data quality, where more efficient screening is accompanied by loss 

of data quality and reproducibility. (Thomas et al. 2012). Additionally, most of the cell 

types common in in vitro screenings are tumor cell lines or immortalized cells, which only 



11 

cover receptor activities and other conventional cytotoxicity endpoints, thus failing to fully 

bridge the in vitro toxicity outputs to human health effects.    

Therefore, a critical need exists to use physiologically-relevant in vitro models in 

risk assessment for environmental chemicals and mixtures. Human induced pluripotent 

stem cells (iPSC)-derived cells are highly informative in vitro organotypic models for 

screening the bioactivity of chemical mixtures. These models are promising for improved 

confidence in data-integrative groupings for human health risk assessments. Different 

types of iPSC-derived cells have been applied to screening of chemical toxicity to 

potentially target organs/tissues, with multiple physiologically relevant phenotypes. For 

example, human iPSC-neurons are frequently used in neurotoxicity screening with 

functional endpoints such as neurite outgrowth (Ryan et al. 2016; Schmidt et al. 2017), 

and iPSC-cardiomyocytes are applied to prioritize chemicals by potential cardiotoxicity 

with the endpoint Ca2+ flux mimicking the cardiac beating patterns (Burnett et al. 2019). 

Different clonal selections of iPSC-derived cells can also serve as good models to 

represent different human genetic backgrounds and for investigating population variability 

in the response to chemicals/mixtures (Burnett et al. 2019). Additionally, studies 

combining iPSC-derived cells have been performed to show more evidence in chemical 

toxicity evaluations (Grimm et al. 2019; Grimm et al. 2016; Grimm et al. 2020), so a 

compendium of multiple human iPSC-derived cells models with more physiologically-

relevant phenotypes would be a promising tool for comprehensive risk assessment of 

environmental chemicals and mixtures.      
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1.7 Specific aims 

This research aims to develop a high-throughput testing strategy based on a suite 

of organotypic in vitro models for characterizing the human health risks associated with 

exposure to specific environmental chemicals and complex contaminant mixtures. The 

overall objective is to develop procedures to rapidly evaluate the risks of environmental 

chemicals and mixtures using multiple human organotypic in vitro models.  

Specific Aim 1: To group different classes of chemical contaminants based on 

biological profiling from high-content/-throughput assays using human cell lines. 

This aim characterizes chemical-induced responses in multiple human cell types to group 

test chemicals. We selected prioritized chemicals from the Agency for Toxic Substances 

and Disease Registry (ATSDR) Superfund chemical list and tested the proposed in vitro 

models with human induced pluripotent stem cell-derived cells (iPSCs) and human 

umbilical vein endothelial cells (HUVECs). Effects on multiple phenotypes including 

cytotoxicity and cellular functions were evaluated using high-content imaging. Point-of-

departure (PODs) values derived from concentration-response curves were further used 

for grouping and the results were also compared to other biological and chemistry 

databases.  

Specific Aim 2: To determine the hazardous effects of “designed” mixtures on 

iPSCs and HUVECs. This aim evaluates the effects of “design” mixtures on iPSCs and 

HUVECs to investigate their additive effects. “Designed” mixtures using individual 

chemicals selected from the ATSDR list were generated to closely match environmentally 

relevant proportions of these chemicals at contaminated sites. We conducted 
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“concentration-response” experiments and generated PODs by testing serial dilutions in 

high-throughput in vitro assays with the same conditions as Specific Aim 1, which can 

further be used to perform dose reconstruction using Concentration Addition and 

Independent Action modeling for comparison to modeling results from Specific Aim 1. 

Furthermore, design mixture data would help to distinguish the “additivity of dose” and 

“additivity of the adverse effect” in the response to mixtures.  

Specific Aim 3: To demonstrate the utility of “biological read-across” for 

qualitative estimation of hazard for complex environmental contaminant mixtures. 

This aim tested complex environmental mixtures in iPSCs and HUVECs for qualitative 

estimation of hazards. Environmental mixtures included soil samples collected from a 

Houston residential neighborhood following Hurricane Harvey in 2017, which were 

further extracted for in vitro assays. Responses of iPSCs and HUVECs to environmental 

mixtures were determined with the same conditions as Specific Aims 1&2. Correlations 

are expected between biological profiling and geographical/spatial distribution patterns 

and certain chemical concentrations of environmental mixtures. Furthermore, we tested 

the ability of in vitro bioactivity to predict chemical profiles of the same samples and vice 

versa.  

In summary, this dissertation develops a tiered risk-based strategy for safety 

evaluation utilizing human in vitro cultures to quickly characterize the risks posed by 

exposure to mixtures of hazardous substances. 
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CHAPTER II  

RAPID HAZARD CHARACTERIZATION OF ENVIRONMENTAL CHEMICALS 

USING A COMPENDIUM OF HUMAN CELL LINES FROM DIFFERENT 

ORGANS1 

2.1 Overview 

The lack of adequate toxicity data for the vast majority of chemicals in the 

environment has spurred the development of New Approach Methodologies (NAMs) 

which span a vast array of in vitro and in silico technologies.  This study aimed to develop 

a practical high-throughput in vitro model for rapidly evaluating potential hazards of 

chemicals using a small number of differentiated human cells. Forty-two compounds 

representing a diverse range of chemical classes were tested using human induced 

pluripotent stem cell (iPSC)-derived cells (hepatocytes, neurons, cardiomyocytes and 

endothelial cells) and a primary cell line (human umbilical vein endothelial cells). Both 

functional and cytotoxicity endpoints were evaluated using high-content imaging. 

Concentration-response for each phenotype was used to derive points-of-departure (POD). 

PODs were integrated with the Toxicological Prioritization Index (ToxPi), and used as 

1 The text of this chapter is an Author’s Original Manuscript of an article published by 

Springer Nature in the ALTEX-Alternatives to Animal Experimentation, 2020, 37(4): 623-

638. Available online: https://doi.org/10.14573/altex.2002291

https://doi.org/10.14573/altex.2002291
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surrogate NAM-based PODs for rapid risk characterization in a Margin of Exposure 

approach. We found chemical class-specific similarity among the chemicals tested; 

inorganic substances exhibited the highest overall bioactivity. We also observed cell-type 

specific patterns among classes of chemicals, indicating the ability of the proposed in vitro 

model to recognize effects on different cell types. Compared to available NAM datasets, 

such as ToxCast/Tox21 and chemical structure -based descriptors, we found that the data 

from the 5 cell-type model was as good or even better in assigning compounds to chemical 

classes. Additionally, the PODs from this model performed well as a conservative 

surrogate for regulatory in vivo PODs, and were less likely to underestimate in vivo 

potency and potential risk as compared to other NAM-based PODs. In summary, we 

demonstrate the potential of this in vitro screening model to inform rapid risk-based 

decision making through ranking, clustering, and assessment of both hazard and risks of 

diverse environmental chemicals. 

2.2 Introduction 

Most regulatory frameworks for evaluating safety of drugs and chemicals include 

a requirement for studies in animals; however, because of the low throughput and high 

cost of these studies, considerable toxicological information gaps exist for most chemicals 

in commerce (Kavlock et al. 2018; Locke and Myers 2011; Taylor et al. 2014). The 

development of novel non-animal models, both cell-based and computational approaches, 

to replace animals as the default option in chemical safety evaluation was stimulated by 

the ethical and political pressures (Taylor 2018), advances in biomedical research and 

technology, and the need to address the potential hazards from thousands of chemicals in 
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commerce and the environment (National Research Council 2007). In the United States 

and in the European Union, recent changes to the laws that govern evaluation of 

commodity and environmental chemicals include provisions that encourage use of 

alternative test methods for hazard and risk assessment applications, such as read-across, 

prioritization and screening (European Chemicals Agency 2016; Taylor et al. 2014; US 

EPA 2018). Novel analytical and in vitro data, now commonly referred to as “new 

approach methodologies” (NAMs), are being used in support of regulatory decisions 

(Kavlock et al. 2018; Paul Friedman et al. 2020); however, concerns about the limitations 

of NAMs in decision-making have been also voiced (Berggren et al. 2015; Gocht et al. 

2015). The US Environmental Protection Agency (EPA) is developing a strategic plan to 

reduce the use of vertebrate animals in the testing chemical substances and promote the 

development of alternative test methods; the goal is to eliminate animal testing from 

regulatory requirements for pesticides and industrial chemicals by 2035 (U.S.EPA 2019). 

The efforts to expand the portfolio of NAMs and test their utility in decision-

making are most prominent in the European Union (Berggren et al. 2015; Daston et al. 

2015; Desprez et al. 2018; Escher et al. 2019) and the United States (Judson et al. 2010a; 

Kavlock et al. 2018; Thomas et al. 2018). Data on thousands of chemicals that have been 

tested in hundreds of lower organism, cell- or molecular-based assays (Kleinstreuer et al. 

2014) are publicly available (Williams et al. 2017). These data are used to derive 

quantitative hazard predictions (Bell et al. 2018; Pearce et al. 2017; Wambaugh et al. 2015; 

Wetmore 2015), to address potential data gaps (Chiu et al. 2018; Guyton et al. 2018), and 

to derive estimates of human health risk when combined with human exposure data or 
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estimates (Paul Friedman et al. 2020; Rotroff et al. 2010; Sipes et al. 2017; Sirenko et al. 

2017).  

Notwithstanding recent advances in the development of NAMs and publications 

of a number of case studies on their use for decision-making, many stakeholders, both the 

industry and the regulators, remain unsure as to what assay(s) should be used to gather 

data on chemicals or mixtures not currently in ToxCast/Tox21 programs. A traditional 

approach to development of “animal study replacement” cell-based models is to focus on 

one organ/tissue of concern to the toxicologists, such as the liver (Soldatow et al. 2013), 

central nervous system (Schmidt et al. 2017), kidney (Su et al. 2016), lung (Lee et al. 

2018), or heart (Blanchette et al. 2019) . Examples of a successful effort to create targeted 

sets of in vitro assays for a particular decision context are proposals to replace rat 

uterotrophic (Browne et al. 2015) and Hershberger (Kleinstreuer et al. 2018) assays. In 

addition, some decision contexts require rapid evaluation of the potential chemical hazards 

in a limited number of assays, such as in response to chemical spills (Judson et al. 2010b; 

National Toxicology Program 2016). Still, little consensus exists with respect to what 

assays are readily accessible, whether they are reproducible, and how the data shall be 

analyzed and interpreted. 

It also has been reasoned that the pace of transition from animal data to NAMs will 

depend on the pace at which these new models are optimized to reflect the biology of 

humans, rather than that of animals (Herrmann et al. 2019). Cancer cell lines, primary 

cells isolated from non-transplant grade donor tissues, and induced pluripotent stem cell 

(iPSC)-derived cells are current options for studies of human biology in vitro. Of these 
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choices, iPSC-derived organotypic cells are the most physiological and reproducible cell-

based model for animal replacement (Anson et al. 2011); however, little toxicological data 

are available in iPSCs as they are not part of ToxCast/Tox21 yet. 

In this study, we aimed to perform an initial test of the performance of a 

compendium of human in vitro models that represent a small but diverse array of tissues 

of interest using a representative of set chemicals with known regulatory toxicity values 

that represent major distinct classes of contaminants found on Superfund sites. 

Specifically, we hypothesized that these cell-based assays can be used for rapid hazard 

evaluation and thus represent a sensible targeted set of alternative methods for NAM-

enabled rapid risk assessment where timely decisions are needed, but regulatory toxicity 

values are lacking. We show that the data from the 5 cell-type model was as good or even 

better in assigning compounds to chemical classes, as compared to either data from large-

scale chemical screening programs or chemical structure-based descriptors. In addition, 

the quantitative data from this model can serve as a conservative surrogate for regulatory 

decision-making in rapid hazard evaluation scenarios. 

2.3 Materials and Methods 

2.3.1 Chemicals and biologicals 

For our in vitro models, we selected four organ/tissue types from which iPSC-

derived cells are available from a commercial vendor. iCell hepatocytes 2.0 (Catalogue # 

C1023), neurons (Catalogue # C1008), cardiomyocytes (Catalogue # CMC-100-010-001), 

and endothelial cells (Catalogue # C1023), including cell-specific media and supplements 
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were from Fujifilm Cellular Dynamics (Madison, WI). Pooled human umbilical vein 

endothelial cells (HUVECs) in EGM-2 medium (Catalogue # CC-2519A) and the 

EGMTM-2 BulletKitsTM (Catalogue # CC-3162) were from Lonza (Walkersville, MD). We 

selected these cell types because many of the chemicals have been shown to be associated 

with hepatotoxicity, neurotoxicity, cardiotoxicity, and vascular toxicity. Figure S2.1 

shows the number of published reports for each type of toxicity as identified by the 

literature review (results are available through the Health Assessment Workspace 

Collaborative (Shapiro et al. 2018) web portal (see web links in the legend to Figure 

S2.1)). Rationale for cell line selection, metabolic competency of the iCell hepatocyte 

model, and the justification for selected phenotypes in each cell type are detailed 

elsewhere (Grimm et al. 2015; Iwata et al. 2017b; Sirenko et al. 2014a). 

Additional reagents used were as follows. CellTiter-Glo® reagent was from 

Promega (Madison, WI). EarlyToxTM Cardiotoxicity Kits (Part# R8211) were from 

Molecular Devices (San Jose, CA). RPMI 1640 medium, B-27 medium supplement, 

gentamicin (50 mg/ml), Calcein AM Green, MitoTracker Orange reagent, Hoechst 33342, 

human fibronectin, and GeltrexTM LDEV-Free Reduced Growth Factor Basement 

Membrane were all from Life Technologies (Grand Island, NY). Recombinant human 

VEGF was provided by R&D Systems (Minneapolis, MN). Fetal bovine serum (FBS) and 

Medium 199 were purchased from Fisher Scientific (Waltham, MA). Laminin (from 

Engelbreth-Holm-Swarm murine sarcoma basement membrane). The authors 

acknowledge that FBS-free or synthetic FBS-based culture conditions (van der Valk et al. 
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2018), as well as alternative synthetic basement membrane materials (Nguyen et al. 2017) 

shall be utilized to replace animal-derived products, where appropriate. 

The Agency for Toxic Substances and Disease Registry (ATSDR) maintains a 

priority list of hazardous substances/chemicals (http://www.atsdr.cdc.gov/spl) that are 

frequently detected at the US National Priority List (NPL) sites, also known as 

“Superfund” sites, and are known human health hazards. From the list of over 300 

compounds, we selected 42 chemicals (Table 2.1) based on the review of available 

information. These compounds represent several classes of pollutants which are 

ubiquitous in the environment, including polycyclic aromatic hydrocarbons (PAHs, n=5), 

inorganic substances (n=7), phthalates (n=2), pesticides (n=20), and other industrial 

chemicals (n=8). ATSRD chemical classes are groupings that relate chemicals by similar 

features which are based on their structure, uses, physical properties, or other factors. 

Chemicals were selected for testing based on the following criteria: (i) is listed by ATSDR 

as priory chemical, (ii) has been evaluated by one or more government agencies and “safe 

exposure” levels have been established, (iii) was tested in ToxCast/Tox21, and (iv) reverse 

toxicokinetic and exposure data for a chemical are publicly available through the EPA 

dashboard (Williams et al. 2017).  Most chemicals were purchased from Sigma-Aldrich 

(St. Louis, MO), except for heptachlor, heptachlor epoxide, 2,4,5-trichlorophenol, 

parathion, benzidine and o,p’-DDT, which were from ChemService (West Chester, PA). 

2.3.2 Cell culture and chemical treatments 

All cells were cultured in 384-well plates according to the manufacturer’s (Fujifilm 

Cellular Dynamics or Lonza) recommendations with respect to cell culture media and 

http://www.atsdr.cdc.gov/spl
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supplements. Cell density and other cell culture conditions have been previously published 

for each of these cell types (Grimm et al. 2015; Iwata et al. 2017b; Sirenko et al. 2014a; 

Sirenko et al. 2014b) and details are included in the supporting information (Text S1). 

Cells were exposed to test chemicals in descending logarithmic order of concentrations 

(100, 10, 1, 0.1, and 0.01 μM). Serial dilutions were originally prepared in 100% cell-

culture grade DMSO and then further diluted 100-fold in corresponding cell culture 

medium to yield 4× working solutions in 1% DMSO. The final concentration of DMSO 

in assay wells following addition of test chemicals was 0.25% (v/v), an amount that was 

lower than previous reports which by itself had no effects on each cell type-derived 

phenotypes (Grimm et al. 2015; Iwata et al. 2017b; Sirenko et al. 2014a; Sirenko et al. 

2014b).  

2.3.3 Cytotoxicity assays 

Cytotoxicity related phenotypes in 5 tested cell types were assessed by high-

content live cell imaging after set exposure time (Table 2.2). Cells were stained with 

different fluorescent dyes (Hoechst 33342 for nuclei, Calcein AM Green for cytoplasm, 

and MitoTracker Orange for mitochondria) as detailed in (Grimm et al. 2015; Iwata et al. 

2017b; Sirenko et al. 2014a; Sirenko et al. 2014b). Images of all cell culture plates were 

acquired with ImageXpress Micro Confocal High-Content Imaging System (Molecular 

Devices) using the DAPI (Hoechst 3342), FITC (Calcein AM Green), and TRITC 

(MitoTracker Orange) filters at 10× or 20× magnification. Acquired images were 

processed using the Multi-Wavelength Cell Scoring, Neurite Outgrowth, or Angiogenesis 

Tube Formation application modules in MetaXpress (Molecular Devices) image 
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processing software and quantitative data were extracted for concentration-response 

modeling (see below). In addition, ATP production of iCell neurons and HUVECs was 

evaluated using CellTiter-Glo assay as described in Text S2 of the supporting information.  

2.3.4 Physiologically-relevant phenotype assays 

Physiologically-relevant phenotypes of each cell type were evaluated as detailed 

in Table 2.2 and reported previously (Grimm et al. 2015; Iwata et al. 2017b; Sirenko et al. 

2014a; Sirenko et al. 2014b). Effects on the mitochondrial integrity and intensity of iCell 

hepatocytes, and neurite outgrowth of iCell neurons were measured using high-content 

imaging (ImageXpress Micro Confocal High-Content Imaging System, Molecular 

Devices). Calcium flux reflecting the contract beating of iCell cardiomyocytes was 

determined by FLIPR tetra (Molecular Devices) instrument using EarlyToxTM 

Cardiotoxicity Kit as described in Text S3. Effects on angiogenesis of both iCell 

endothelial cells and HUVECs were measured by 3D cell culture using extracellular gel 

matrix and followed by high content imaging as detailed in Text S4 of the supporting 

information.  

2.3.5 Assay quality controls and concentration-response profiling 

The qualitative integrity of the screening assays in this study was evaluated using 

previously established conditions (Grimm et al. 2015). All responses were normalized to 

the vehicle control (0.25% DMSO-treated wells). Overall, quality control criteria were 

established to evaluate each cell-based assay based on five parameters (see Tables S2.1 

and S2.2): (i) variance in replicate wells for two negative control (vehicle-treated wells 

and cell medium only), (ii) the difference between two negative controls (vehicle vs cell 
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culture media), (iii) intra- and (iv) inter-plate replicate correlation, and (v) EC50 of the 

positive control chemicals/drugs that were specific for each cell type.  

Vehicle control-scaled data for each treatment were fitted to a curve with a 

nonlinear logistic function to determine point-of-departure (POD) values, defined as the 

concentrations at which the fitted curve exceeds one standard deviation above or below 

the mean of vehicle-treated controls, using R software-based script as previously reported 

(Sirenko et al. 2013). The choice of one standard deviation “benchmark response” was 

based on the US EPA guidance for dose-response modeling and determination of the 

point-of-departure values (U.S. EPA 2012), as well as empirical testing of various 

thresholds as detailed in (Sirenko et al. 2013) which showed that a choice of one standard 

deviation generates consistently high classification accuracy. 

2.3.6 Data integration in ToxPi  

For data integration and visualization in Toxicological Priority Index Graphical 

User Interface (ToxPi GUI) (Marvel et al. 2018), we selected 48 phenotypes from all 5 

cell types (Table 2.2). Following the standard ToxPi data protocol, POD values for each 

phenotype were inversely scaled on a 0–1 scale, with 0 representing the highest POD value 

in a given data set (i.e., the lowest observed bioactivity) and 1 representing the lowest 

measured POD value (i.e., the highest observed bioactivity). These scaled POD values 

were then used as quantitative inputs for bioactivity profiling in ToxPi. 

2.3.7 Clustering and classification analyses  

We used two approaches to grouping chemicals based on the biological profiling 

produced in this study, the bioactivity data from ToxCast/Tox21, and chemical structure-
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based Morgan fingerprint data. In an unsupervised analysis, chemicals were grouped 

based on the similarity between the biological/chemical profiling of the chemicals, without 

prior knowledge of chemical categories. To evaluate the outcome of such grouping, we 

include a quantitative metric into the unsupervised analysis workflow to assess the 

correspondence of the outcome to the original categories of each chemical. The details of 

the unsupervised analysis workflow are described elsewhere (Onel et al. 2019). The 

Fowlkes-Mallows (FM) index (Fowlkes and Mallows 1983), a measure of similarity of 

two clusterings, was calculated to enable quantitative comparative assessment between 

groupings achieved using each dataset to the known chemical categories. The higher the 

FM index, the more similar the grouping based on in vitro or chemical descriptor data was 

to the “perfect” grouping as shown in Table 2.1. The FM index ranges from 0.0 (no 

correspondence) to 1.0 (perfect correspondence). One-sided p-values for the FM index 

(using the null hypothesis of random assignment) were obtained using a standard z-

statistic (Fowlkes and Mallows 1983) that compares the observed value to the null 

expectation. 

In the supervised analysis, assignments of chemicals to classes (Table 2.1) were 

used to build classification models, which were then used to predict the class for an 

unknown chemical. The term "supervised" is a statistical term (Kotsiantis 2007) referring 

to models that are trained to perform automatic classification based on the features 

available, and using the classes as pre-defined groupings. In a supervised analysis, the 

intent is to identify the features that are best able to distinguish among the classes. For this 

purpose, the randomForest package in R v3.5 was used for class prediction, with 5-fold 
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cross validation implemented in 50 random training/test data splits.  The overall prediction 

accuracy from each database was calculated from cross-validation confusion matrices and 

the important distinguishing descriptors were further identified. A primary difference 

between unsupervised and supervised analysis is that the latter focuses on features that 

best distinguish among existing chemical categorizations. 

2.3.8 Comparison to in vivo POD data and margin of exposure estimates 

In vivo data are still the most commonly used PODs for use in regulatory decision-

making, but recent analyses have suggested that NAM-based PODs may be useful as 

conservative surrogates for in vivo values (Paul Friedman et al. 2020).  Thus, for the 42 

chemicals in this study, we used the in vivo PODs from which the regulatory References 

Doses (RfDs) were derived (PODRfD values) as a benchmark.  Specifically, we first 

compared the PODRFD values to various NAM-based POD, including the in vitro POD 

derived from this study using iPSC-derived cells and HUVECs, as well as two other in 

vitro data sets: the minimum of the distribution of 50% maximal activity concentration 

(AC50) of high throughput in vitro assays in ToxCast database (i.e., most sensitive assay) 

and conservative PODNAM values reported in Paul Friedman et al. (2020).  In addition, 

using ExpoCast exposure estimates, we compared margin of exposure (MoE) estimates 

based on PODRfD values with those based on NAM data. Oral dose-based PODs or 

exposures were converted to Css (concentration at steady-state)-based values (or vice 

versa) using high throughput toxicokinetic (httk) (Pearce et al. 2017) R package (v 1.10.1) 

at the upper 95th percentile for toxicokinetic variability. Due to the limitation of the 
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availability of each data stream, only the chemicals shared in all the databases were taken 

into consideration for comparison (see details in Table S2.3). 

2.4 Results 

2.4.1 Screening assays and concentration-response profiling 

In vitro effects of the test chemicals were evaluated for a wide range of functional 

and cytotoxicity phenotypes in five human cell types that represent four tissues (Table 

2.2). POD values were derived from the concentration-response relationships for a total 

of 48 phenotypes (see quality control data for each phenotype in Tables S2.1 and S2.2) 

and plotted (Figure 2.1) separately for each cell type. Chemicals are grouped by their 

chemical class and ranked within each class from least to most bioactive based on the 

median response in iCell hepatocytes. Both for the individual chemicals, and within a 

chemical class, there was a wide range of potency across all phenotypes. Each chemical 

had an effect in at least one cell type and no correlation in PODs was evident among cell 

types (Figure S2.2), indicating that the chemicals elicited cell type-specific effects.  

When the PODs are grouped by cell type (Figure 2.2), it is clear that iCell 

cardiomyocytes were the most sensitive to these chemicals, on average. Across 48 

phenotypes included in the analysis, there was a wide range of effects for most of the 

chemicals evaluated. Not only there were chemicals that had effects at low concentrations, 

but there was a pronounced shift in the median and inter-quartile range, and for most of 

the phenotypes that were evaluated (Figure 2.2, right panel). In other cell types, few 

chemicals had pronounced effects while most exhibited effects only at the nominal test 



27 

concentrations above 10 M. It is noteworthy that fewer effects were observed in 

metabolically-active iCell hepatocytes (Sirenko et al. 2014a), as compared to other cell 

types. iCell endothelial cells were most resistant to the effects of chemicals tested in this 

study. In addition, functional effects had significantly lower PODs as compared to 

cytotoxicity phenotypes, indicating higher sensitivity, in all in vitro data combined, and in 

data from iCell hepatocytes, cardiomyocytes and HUVECs (Figure S2.3). 

2.4.2 Ranking and Clustering using ToxPi scores 

To facilitate interpretation of the data from these experiments that involved 5 cell 

types and 48 phenotypes, we aggregated the concentration-response data and PODs 

derived from in vitro screening assays using the Toxicological Priority Index (ToxPi) 

(Marvel et al. 2018). Each cell type was assigned an individual ToxPi “slice” (Figure 

2.3A). Specifically, PODs were converted into ToxPi scores as detailed in Methods and 

in (Marvel et al. 2018). For each slice, the distance that the arc extends from the origin is 

proportional to its relative evidence of concern (e.g., longer = greater hazard because it is 

lower POD), and the radial angle (width) indicates its weight in the overall model (in this 

analysis data from each cell type were weighed equally). ToxPi scores were further 

combined into one pie chart to indicate the overall effect of each chemical on all 5 human 

cell types. ToxPi for three of the 42 tested chemicals are shown as examples in Figure 

2.3B. Cadmium chloride showed the highest bioactivity (lowest PODs) in iCell 

hepatocytes as compared to the other cell types, resulting in a large green slice in the 

ToxPi. Mercuric chloride and methoxychlor showed highest effects on iCell neurons and 

iCell cardiomyocytes, respectively.  
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The overall ToxPi scores for each chemical, reflecting the average of the 

normalized input scores for each slice of the respective bioactivity profile, was then used 

as a score to rank and cluster chemicals according to their overall bioactivity (Figure 

2.4A). ToxPi ranking using quantitative bioactivity data can be used for chemical 

prioritization (Reif et al. 2010) and the 42 tested chemicals were ranked based on the 

summed effects in the 5 human cell lines. The three inorganic substances (mercuric 

chloride, cadmium chloride and potassium chromate) had the highest overall bioactivity 

score (Figure 2.4B). When bioactivity profiles of the individual chemicals were combined 

into their respective classes, inorganic substances were on average most bioactive, 

followed by pesticides, phthalates, other industrial chemicals, and PAHs (Figure 2.4C and 

Table 2.3). Furthermore, specific effects of different classes of chemicals on certain cell 

types were identified. While inorganic substances were bioactive in most cell types, 

pesticides had the highest bioactivity in iCell cardiomyocytes (Table 2.3 and Figure S2.4). 

Chemicals were also clustered using ToxPi scores and bioactivity profiles (Figure 

2.4D). This visualization shows that while some compounds are clustered because of their 

relatively high potency (mercuric chloride, cadmium chloride and potassium chromate), 

other compounds have similar ToxPi profiles indicating similarity in their effects on 

different cell types. For example, DDT-like organochlorine pesticides are clustered closely 

because of the similarity in both potency and effects across all 5 cell types. Similarly, other 

organochlorine pesticides cluster together because they showed the highest relative 

bioactivity in iCell cardiomyocytes. In addition, phenotype-specific effects of each 

chemical on each cell type were further identified by clustering chemicals using data on 
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each cell type (Figure S2.5). Cadmium chloride exhibited most pronounced effects on 

iCell hepatocytes by affecting all phenotypes. Mercuric chloride dominated effects on 

iCell neurons. Pesticide methoxychlor was the most bioactive in iCell cardiomyocytes. 

iCell endothelial cells and HUVECs were most affected by potassium chromate.  

2.4.3 Bioactivity-based class unsupervised grouping 

Next, we tested how well the bioactivity data on the individual cell type, or in 

combination, can be used for grouping of tested chemicals into classes. A quantitative 

comparison of the unsupervised analysis was conducted using the Fowlkes-Mallows (FM) 

index (Fowlkes and Mallows 1983; Onel et al. 2019). The results of the clustering were 

compared to the known chemical groupings (Table 2.1) that were used as a reference. 

Figure 2.5A shows that clustering using the bioactivity profiles of the combination of all 

5 cell types resulted in the highest FM index (FM=0.56) and was highly significant 

compared to that expected under random permutation (p<0.001). Among the individual 

cell types, iCell hepatocytes showed the highest FM index (FM=0.41), albeit it was not 

significant. Data from HUVECs was least informative in this analysis. Because of the 

pronounced heterogeneity in the “value” of information from different cell types, we also 

evaluated whether even smaller sets of cell types may have clustering accuracy 

approaching the data on all 5 cell types. We found that a combination of the data from 

iCell cardiomyocytes and iCell neurons yielded an FM index as high as the data from all 

5 cell types (FM=0.53, Figure S2.6).  

We also compared the ability of the targeted dataset obtained in this study to group 

chemicals into classes to that of a larger ToxCast/Tox21 in vitro dataset, or chemical 
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structure-based descriptors (Morgan chemical fingerprints). Figure 2.5B shows that in 

vitro data on 48 phenotypes from 5 cell types obtained in this study has a higher FM index 

for grouping of 42 chemicals into 5 classes as compared to other information that is 

available on these compounds. Figures 2.5C-E show the individual dendrograms for each 

of the comparisons in Figure 2.5B. 

2.4.4 Bioactivity-based class supervised grouping 

A different type of a question that is often asked when using NAMs data in 

decision-making is whether one can use the data obtained in the same set of assays as 

those for the compounds in a database to classify a new compound into a class. We 

conducted supervised analyses using a cross-validated random forest algorithm where 

every test compound was predicted using a classification model. In contrast to the 

unsupervised analysis, the supervised analysis attempts to train a model to identify the 

features that are most predictive of existing classification. Figure 2.6 shows the outcomes 

of the cross-validated classifications for each data type. Numbers on a top left to bottom 

right diagonals show correct class prediction and the numbers off the diagonal show 

misclassifications and which class the compounds were misclassified into. Overall, the 

Morgan fingerprints-based classification was superior (81% accurate prediction) when 

compared to classifications based on either data from this study or ToxCast/Tox21 data 

(60% and 69%, respectively). It is also noteworthy that the in vitro data generated in this 

study can accurately classify most pesticides into correct chemical class, whereas 

ToxCast/Tox21 data classified all inorganic substances correctly. The combination of the 

in vitro data and Morgan fingerprints, or combination of two in vitro datasets (Figure 
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S2.7A) did not improve prediction accuracy. The accuracy of classification with each type 

of data was significantly better than random assignment into classes (Figure S2.7B).   

The supervised classification analysis, where every test compound was predicted 

using a classification model, can also be examined for the information on the “most 

informative” features (i.e., features that are most predictive of existing classification) on 

which the models were developed. Top 10 most informative features from each dataset, 

phenotypes that, when removed from the data, contributed the most to the accuracy of the 

classification are shown in Figure 2.7. Interestingly, for the in vitro data generated in this 

study, 5 of the top 10 most informative descriptors were functional phenotypes from iCell 

cardiomyocytes, followed by the phenotypes from iCell neurons (Figure 2.7A). For 

ToxCast/Tox21 data, the descriptors in the top 10 included largely disparate data from a 

wide range of models, from zebrafish, to cytotoxicity, to reporter assays (Figure 2.7B). 

While Morgan fingerprints are difficult to interpret directly (Figure 2.7C), a combination 

of bioactivity and chemical structure data showed that chemical descriptors do not 

dominate the list of informative features and that in vitro data may be equally informative 

(Figure 2.7D).   

2.4.5 Comparison to in vivo POD data and margin of exposure estimates  

It has recently been proposed that NAM-based PODs can serve as conservative 

surrogates for traditional in vivo PODs (Paul Friedman et al. 2020).  Thus, we first 

compared various NAM-based PODs, including those based on our five in vitro cell types, 

to the regulatory PODs used as the basis for RfD toxicity values (PODRfD).  For our in 

vitro-based PODs, we used either the most sensitive POD for each cell type, or the most 
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sensitive POD across all cell types combined (Figure 2.8). As shown in Figure 2.8A, only 

when all cell types are combined do our in vitro PODs represent a conservative surrogate 

for the PODRfD, with only 25% of our in vitro PODs being higher than the corresponding 

PODRfD, and those remaining 25% being within 10-fold of the in vivo value.  By contrast, 

as shown in Figure 2.8C, only the approach of using the minimum (most sensitive) 

ToxCast AC50 has similarly conservative results, whereas cardiomyocytes alone and the 

PODNAM from Paul Friedman et al. (2020) (which is a lower 5th percentile), had a 

substantial number of “unconservative” results. Note that these results appear to contrast 

with those reported by (Paul Friedman et al. 2020) because they used in vivo PODs from 

ToxRefDB, whereas we used the in vivo PODs that supported regulatory RfD toxicity 

values (Wignall et al. 2014).    

A related comparison was with respect to the resulting screening-level risk 

characterization using a Margin of Exposure (MoE) approach. Specifically, we used a 

MoE benchmark of <100 as an indication of “potential concern.” As shown in Figure 2.8B, 

more than half of the chemicals have implied MoEs less than a benchmark of 100 when 

using all cell types combined, with similar results for cardiomyocytes, but many fewer 

chemicals of “potential concern” when using other cell types.  In Figure 2.8D, when 

restricting to chemicals common across different NAM-based approaches, we find that the 

PODRfD-based “ground truth” suggests that only 2/16 chemicals are of “potential 

concern.” Using only iCell cardiomyocytes, or using all cell types, results in a more 

conservative estimate of 4 to 5/16 chemicals, with the median MoE being slightly more 

conservative than the in vivo-based MoE.  By contrast, using the POD-NAM from Paul 
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Friedman et al. (2020) results in an “unconservative” estimate of only 1/16 chemicals of 

potential concern, with the median MoE being much higher (implying “safer”) than the in 

vivo-based MoE.   

Overall, for this limited dataset, our PODs derived from high throughput in vitro 

data from 5 human cell types perform well as a conservative surrogate for regulatory in 

vivo PODs and were less likely to underestimate in vivo potency and potential risk as 

compared to other NAM-based PODs. 

2.5 Discussion 

It is widely recognized that the future of regulatory toxicology is in high-

throughput in vitro assays and computational models based on human biology, rather than 

in continued testing in laboratory animals (National Academies of Sciences Engineering 

and Medicine 2017; National Research Council 2007). A wide array of both biological 

and computational tools is available to probe human function and disease at the molecular 

level through the transcriptome, epigenome, proteome, and metabolome (Nielsen 2017). 

There are many thousands of immortalized cell lines collected from various tissues and 

individuals that are now used in toxicological research (Chiu and Rusyn 2018). There are 

large databases of publicly available biological data that can be explored to develop 

hypotheses about how chemicals, genes, and diseases may be connected (Davis et al. 2019; 

Miller 2016; Williams et al. 2017). There are genetically diverse mammalian and non-

mammalian models, in vivo and in vitro, that are used for toxicological research (Zeise et 

al. 2013). Complex human biology is being replicated in multi-cellular perfused 
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microphysiological systems that mimic certain tissue functions (Marx et al. 2020). It 

appears that the field of regulatory science has finally overcome the long-lamented 

challenge of shortage of information for decisions on chemical safety (Lutter et al. 2013). 

Alas, the quantity of the information now available is yet to be translated into the 

actual examples of using these data in various decision contexts beyond now well-

accepted screening-level, risk-based chemical prioritization (Harrill et al. 2019; Paul 

Friedman et al. 2020), or filling the data gaps (Guyton et al. 2018). For new chemicals, 

complex substances, or mixtures, what is a sensible compendium of in vitro and in silico 

models that may satisfy the data requirements for a particular decision context? A number 

of examples have been published recently to address this question, especially in the 

context of grouping and read-across (De Abrew et al. 2019; Escher et al. 2019; Zhu et al. 

2016). Indeed, it is critically important to establish both the strength and limitations of 

cell-based in vitro screening methods, so that promising NAMs can be generated and used 

for decision-making in human and environmental health.  

This study, even though primarily focused on an in vitro model that can be used 

for rapid hazard assessment, adds to the overall body of the recent evidence on the topic 

of the utility of NAMs. We aimed to test performance of a small set of human in vitro 

models that represent a diverse array of tissues of interest to regulatory toxicologists. We 

took advantage of recently developed reproducible and physiologically-relevant human in 

vitro models derived from iPSCs (Anson et al. 2011; Li and Xia 2019), models that are 

excellent replacements for animal tests, and for which detailed methods and metrics of 

reproducibility have been established (Grimm et al. 2018; Iwata et al. 2017b; Klaren and 
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Rusyn 2018; Sirenko et al. 2014a; Sirenko et al. 2014b). We posited that commercially-

available iPSC-derived cells are poised for wider use, replacement of animal studies, and 

inter-comparison of the outcomes in a rigorous and reproducible manner (Anson et al. 

2011). Presence of advanced cellular functions and absence of genetic drift because of 

repeated passaging, both limitations of the cancer cell lines, are advantages of iPSC-

derived differentiated cells in toxicity testing (Kim et al. 2019). Our hypothesis was that 

these cell-based models, when probed for both physiological and toxicological effects of 

chemicals, can be used for rapid hazard evaluation and thus represent a sensible targeted 

set of alternative methods for NAM-enabled decisions, especially under conditions of 

rapid evaluations such as emergency response (Judson et al. 2010b). 

Even though this study is not first to attempt to probe the ability of a small dataset 

to group and classify diverse environmental chemicals, there are a number of important 

learnings that have emerged. First, our comparison of cells representing various tissue 

types showed that iPSC-derived cardiomyocytes may be among the most sensitive cell 

type to the effects across various chemical classes. This is noteworthy because iCell 

cardiomyocytes are a highly reproducible in vitro model that faithfully replicates many in 

vivo cardiotoxic phenotypes (Grimm et al. 2018). Our previous studies did show that 

environmental chemicals have adverse effects on cardiomyocytes, similar to many known 

cardiotoxic drugs (Blanchette et al. 2019; Burnett et al. 2019; Sirenko et al. 2017); 

however, it is noteworthy that this metabolism-limited cell type was most affected by the 

diverse set of Superfund priority chemicals from different classes.  
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Second, the fact that the chemicals tested in this study showed very divergent 

effects across multiple cell types, leading to distinct class-specific bioactivity profiles that 

can be used to group substances, also strongly supports the need for tissue diversity of the 

in vitro models. Moreover, when used for NAM-based risk characterization, multiple cell 

types together performed better than any individual cell type for ensuring that the risk is 

not underestimated. These findings suggest that when testing is not meant to be 

mechanism- or effect-based, inclusion of cells from multiple tissues should be a design 

principle for in vitro test batteries that are to be used as NAMs. Such tissue-diverse data 

should also increase confidence in the “biological coverage” of in vitro NAMs. 

Third, we observed that in vitro bioactivity data may be as good as, or in some 

cases better than chemical descriptors for grouping of chemical substances into classes. In 

addition, important synergies are realized when biological and chemical descriptors are 

combined. These findings are in line with previous observations that chemical-biological 

data are most powerful for grouping (Low et al. 2013; Low et al. 2011; Low et al. 2014), 

as well as they are most interpretable by the decision-makers (Zhu et al. 2016).  

Finally, we found that a limited set of in vitro data may be equally or even more 

informative than the the much larger datasets from large-scale chemical screening 

programs (Thomas et al. 2018). Overabundance of NAMs data is does not necessarily 

provide for more accurate predictions, as has been shown for various types of the 

biological (Kreutz et al. 2013) and chemical (Fourches et al. 2015) data. One approach to 

dealing with such “big data” problems is to apply variable selection (Knudsen et al. 2013) 

or deep learning (Grapov et al. 2018) algorithms to uncover meaningful “signal” in large 
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datasets. Regretfully, seldom have these exercises resulted in a selection of a reasonably 

small set of assays/endpoints that can be reasonably accurate for prediction and not require 

extensive and lengthy experimentation. Only recently influential examples have emerged 

of how a small set of assays can be used to replace a specific animal test (Browne et al. 

2015; Kleinstreuer et al. 2018). On the other hand, the data from our study performed at 

least as well, if not better, than larger NAMs datasets, not only for grouping of chemicals 

into classes, but also in serving as a surrogate, NAM-based PODs for rapid risk 

characterization. Additional confidence in these results could be obtained by evaluating a 

larger set of ToxCast/Tox21 chemicals. 

Notwithstanding the need for diverse high throughput in vitro data streams to 

rapidly inform hazard identification and to fill the knowledge gap for chemicals with 

minimum toxicity data, challenges remain about their use in the prioritization and 

screening level assessment strategies as well as tradeoffs between speed and uncertainty 

(Paul Friedman et al. 2020). For instance, while high throughput screening data could play 

key roles in decision-making for emergency response, there are many limitations with 

respect to predicting chemical fate and effects in the environment, challenges that might 

lead to potentially missed hazards (Ginsberg et al. 2019). Furthermore, there is also 

uncertainty in the extrapolation from in vitro bioactivity to in vivo toxicity (Bell et al. 

2018), and gaps exist in the cell-based in vitro screening and potential effects on human 

health since most cell assay endpoints are still related to cytotoxicity and non-specific 

effects (Judson et al. 2016). Overall, however, our findings support the notion that the 

field of in vitro toxicology and NAM implementation would be well served by agreeing 
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on a reasonably small subset of differentiated, human cell-based models with both 

cytotoxicity-based and functional readouts that can be used in different decision contexts. 
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Table 2.1 Superfund priority chemicals used in this study. 

ATSDR 

Chemical 

class 

Chemical name CAS number 
Chemical 

formula 

ATSDR 

rank 

(2017) 

Inorganic 

Substances 

Lead Nitrate 10099-74-8 PbCl2 2 

Mercuric Chloride 7487-94-7 HgCl2 3 

Cadmium Chloride 10108-64-2 CdCl2 7 

Potassium Chromate (VI) 7789-00-6 K2CrO4 17 

Cobalt Chloride 7646-79-9 CoCl2 51 

Nickel Chloride 7718-54-9 NiCl2 57 

Zinc Chloride 7646-85-7 ZnCl2 75 

Polycyclic 

Aromatic 

Hydrocarbon

s (PAHs) 

Benzo(b)fluoranthene 205-99-2 C20H12 10 

Benzo(a)anthracene 56-55-3 C18H12 38 

Naphthalene 91-20-3 C10H8 81 

Fluoranthene 206-44-0 C16H10 138 

Acenaphthene 83-32-9 C12H10 171 

Pesticides 

p,p’-DDT 50-29-3 C14H9Cl5 13 

Dieldrin 60-57-1 C12H8Cl6O 18 

Aldrin 309-00-2 C12H8Cl6 25 

p,p’-DDD 72-54-8 C14H10Cl4 26 

Heptachlor 76-44-8 C10H5Cl7 28 

Lindane 58-89-9 C6H6Cl6 34 

Disulfoton 298-04-4 C8H19O2PS3 37 

Endrin 72-20-8 C12H8Cl6O 40 

Diazinon 333-41-5 C12H21N2O3PS 41 

Endosulfan 115-29-7 C9H6Cl6O3S 44 

Heptachlor Epoxide 1024-57-3 C10H5Cl7O 47 

o,p’-DDT 789-02-6 C14H9Cl5 53 

Methoxychlor 72-43-5 C16H15Cl3O2 55 

Chlorpyrifos 2921-88-2 C9H11Cl3NO3PS 64 

2,4-dinitrophenol 51-28-5 C6H4N2O5 89 

Ethion 563-12-2 C9H22O4P2S4 99 

Azinphos-methyl 86-50-0 C10H12N3O3PS2 131 

Dicofol 115-32-2 C14H9Cl5O 145 

Parathion 56-38-2 C10H14NO5PS 148 

Trifluralin 1582-09-8 C13H16F3N3O4 157 

Other 

Industrial 

Chemicals 

Benzidine 92-87-5 C12H12N2 30 

Pentachlorophenol 87-86-5 C6Cl5OH 54 

2,4,6-trichlorophenol 88-06-2 C6H2Cl3OH 85 

2,4-dinitrotoluene 121-14-2 C7H6N2O4 98 

2-Methyl-4,6-dinitrophenol 534-52-1 C7H6N2O5 100 

1,2,3-Trichlorobenzene 87-61-6 C6H3Cl3 137 

2,4,5-Trichlorophenol 95-95-4 C6H2Cl3OH 142 

p-Cresol 106-44-5 C7H8O 175 

Phthalates 
Dibutyl phthalate 84-74-2 C16H22O4 58 

Di(2-ethylhexyl) phthalate 117-81-7 C24H38O4 77 
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Table 2.2 In vitro toxicity phenotypes evaluated in this study. See Supplemental Table S2.4 for detailed description of each phenotype 

Cell Type(a) iCell Hepatocytes iCell Neurons iCell Cardiomyocytes(b) iCell Endothelial cells(c) HUVEC(c) 

Catalog# C1023 C1008 CMC-100-010-001 C1114 CC-2519A 

Time Point 24 h 72 h 15 or 90 min 18 or 24 h 18 or 24 h 

Functional 

phenotypes 

• Mitochondrial

Integrity
• Total Outgrowth • Beats Per Minute • Total Tube Length • Total Tube Length

• Mitochondrial

Intensity
• Mean Outgrowth • Peak Amplitude • Mean Tube Length

• Mean Tube

Length

• Total Process • Peak Spacing • Total Tube Area • Total Tube Area

• Total Branches • Peak Width

• Cells with Significant

Growth
• Peak Rise time

• Peak Decay time

• Decay to Rise Ratio

Cytotoxicity 

phenotypes 

• Cell Number • Cell Number • Cell Number • Cell Number • Cell Number

• Nuclei Intensity
• Mitochondrial

Integrity
• Mitochondrial Integrity • Mitochondrial Integrity

• Mitochondrial

Integrity

• All Cell Mean Area • Cytoplasmic Integrity
• Mitochondrial

Intensity

• Mitochondrial

Intensity

• Total Cells Body

Area
• Cytoplasmic Integrity

• Cytoplasmic

Integrity

• ATP(d) • Nuclei Mean Area • Nuclei Mean Area

• ATP(d)
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Table 2.3 Ranges in ToxPi scores for each chemical class and cell type. 

Cell type PAHs Pesticides 
Inorganic 

Substances 

Other 

Industrial 

Chemicals 

Phthalate

s 

iCell Hepatocytes 0-0.14 0-0.32 0-0.88 0-0.45 
0.026-

0.03 

iCell Neurons 0-0.11 0-0.37 0.01-1 0-0.47 0-0.46 

iCell Cardiomyocytes 0.10-0.55 0.18-0.78 0-0.50 0.01-0.34 0.37-0.42 

iCell Endothelial cells 0.02-0.27 0-0.38 0.04-0.72 0-0.49 
0.005-

0.009 

HUVECs 0-0.41 0-0.38 0.10-0.75 0-0.36 0.13-0.18 

Overall (combination 

of all phenotypes) 
0.08-0.32 0.10-0.39 0.18-0.63 0.04-0.38 0.14-0.25 
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Figure 2.1 Quantitative analysis of chemical-specific effects in five cell types.

Box (inter-quartile range and median) and whiskers (min to max) plots show the range 

of PODs (one standard deviation of vehicle-treated wells) across 48 phenotypes in five 

cell types (Table 2.2) for each of the 42 Superfund priority list chemicals (Table 2.1). 

Chemicals were grouped into classes (Table 2.1) and then sorted within a class based on 

the mean POD values of the phenotypes in iCell hepatocytes. 
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Figure 2.2 Quantitative analysis of cell-specific effects of the 42 Superfund priority list 

chemicals.

 Left panel shows box (inter-quartile range and median) and whiskers (min to max) plot 

of PODs (one standard deviation of vehicle-treated wells) for all 42 tested chemicals 

(Table 2.1) in each cell type. The size of each box and whiskers plot is proportional to the 

number of phenotypes evaluated in each cell type (Table 2.2). Right panel shows box 

(inter-quartile range and median) and whiskers (Tukey) plot of PODs (one standard 

deviation of vehicle-treated wells) for all 42 tested chemicals (Table 2.1) in each 

phenotype. Phenotypes are grouped based on the cell type (Table 2.2). Outlier chemicals 

are shown as circles. 
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Figure 2.3 Data integration from concentration-response modeling for each chemical and 

phenotype using Toxicological Prioritization Index (ToxPi) approach.

(A) Representative examples of concentration-response fits (lines) to the data (dots) are

shown for three chemicals (rows) and five cell-specific phenotypes (columns). Pie chart

slices are colored to distinguish effects in each cell type. (B) Examples of ToxPi images

for three selected chemicals.
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Figure 2.4 ToxPi analysis-based ranking and clustering of 42 Superfund priority list 

chemicals based on the effects in five cell types.

(A) Legend to the ToxPi visualization of the effects on five cell types. (B) Ranking of the

tested chemicals based on the overall ToxPi scores. Chemicals are colored based on

chemical class. Table S5contains the data from the ToxPi analysis. (C) Box (inter-quartile

range and median) and whiskers (min to max) plots show the range of ToxPi scores for

each chemical (dots) for each class. Chemical classes (Table 2.1) were ranked based on

the median value. (D) Clustering (Ward’s D method) of 42 Superfund priority list

chemicals using ToxPi scores. Chemical names are colored based on chemical class as in

panel C.
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Figure 2.5 Quantitative analysis of the grouping of 42 Superfund priority list chemicals 

with various data streams.

(A) Fowlkes-Mallows (FM) index for clustering of chemicals into five classes (Table 2.1)

using in vitro data from each cell type, or all data combined. (B) FM index for clustering

of chemicals using data in this study (black bar), or other publicly available in vitro,

chemical descriptor (e.g., Morgan fingerprints [FP], or combination thereof). Asterisks (*)

indicate that one-sided p-values were <0.05 for the observed FM index value as compared

to the null expectation. (C-F) Clustering dendrograms (average Pearson correlation

method) for each data stream shown in (B). FM index and the number of variables

included in each comparison are shown below each plot. (C) In vitro data from this study,

all endpoints combined. (D) ToxCast/Tox21 data (as of November 2019). (E) Morgan

fingerprints. (F) Morgan fingerprints combined with in vitro data from this study. Identity

of each chemical in each clustering diagram is listed in Table S2.6.
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Figure 2.6 Confusion matrices for chemical classification into five classes using in vitro, 

and/or chemical descriptors.

Known (columns) chemical assignment into each of five classes (Table 2.1) is compared 

to predicted (rows) class assignment using random forest algorithm with 5-fold cross 

validation as detailed in Methods. Classification outcomes for the analyses using data from 

all phenotypes in this study (top left), ToxCast/Tox21 data (top right), Morgan fingerprints 

[FP] (bottom left), or data from this study and Morgan FP combined (bottom right) are 

shown. Accuracy of classification for each dataset is shown in the top left corner of each 

matrix. Numbers in the cells filled with green (on diagonal) and light pink color (off 

diagonal) indicate the number of chemicals that were classified correctly or misclassified, 

respectively.    
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Figure 2.7 Classification accuracy-contributing phenotypes.

Importance of the in vitro or chemical structure descriptors contributing to the 

classification accuracy from different data streams (Figure 2.6) was analyzed as detailed 

in Methods. Top 10 features are listed. (A) In vitro data from this study. (B) 

ToxCast/Tox21 data. (C) Morgan fingerprints. (D) Morgan fingerprint combined with in 

vitro data from this study.    
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Figure 2.8 POD data comparison across different in vitro and in vivo datasets and margin 

of exposure estimates.

Minimum of in vitro PODs generated from each cell type and all cell types combined in 

this study were compared to in vivo POD derived from Reference dose (A). Margins of 

exposure were calculated based on in vitro PODs from this study and the estimated 

exposure levels (B). The ratio between in vivo and in vitro (C) and the margins of exposure 

(D) were further compared across different datasets. All of the ratio outputs were log

transformed for comparison, and n represents the number of chemicals from 42 Superfund

priority list chemicals covered by different datasets for comparison and detailed in Table

S2.3.
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CHAPTER III  

RISK CHARACTERIZATION AND PROBABILISTIC CONCENTRATION-

RESPONSE MODELING OF COMPLEX ENVIRONMENTAL MIXTURES USING 

NOVEL APPROACH METHODOLOGIES (NAMS) DATA FROM THE 

ORGANOTYPIC IN VITRO HUMAN STEM CELL ASSAYS 

3.1 Overview 

Risk assessment of chemical mixtures or complex substances remains a major 

methodological challenge due to lack of available hazard or exposure data. Therefore, risk 

assessors usually infer hazard or risk from data on the subset of constituents with available 

toxicity values. We evaluated the validity of the widely-used traditional mixtures risk 

assessment paradigms, Independent Action (IA) and Concentration Addition (CA), with 

new approach methodologies (NAMs) data from human cell-based in vitro assays. A 

diverse set of 42 chemicals were tested both individually and as mixtures for functional 

and cytotoxic effects in vitro. A panel of induced pluripotent stem cell (iPSCs)-derived 

models (hepatocytes, cardiomyocytes, endothelial, and neurons) and one primary cell type 

(HUVEC) were used. Bayesian concentration-response modeling of individual chemicals 

or their mixtures was performed for a total of 47 phenotypes to derive point-of-departure 

(POD) values. Probabilistic IA or CA was conducted to estimate the mixture effects based 

on the bioactivity profiles from the individual chemicals and compared with mixture 

bioactivity. All mixtures showed significant bioactivity, even though some were 

constructed using individual chemical concentrations considered “low” or “safe.”  Even 
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though CA is much more accurate as a predictor of mixture effects as compared to IA, 

with CA-based POD typically within an order of magnitude of the actual mixture, in some 

cases, the bioactivity of the mixtures appeared to be much greater than that of their 

components under either additivity assumption. These results suggest that CA is a 

preferred first approximation for predicting mixture toxicity when data for all constituents 

are available. However, because the accuracy of additivity assumptions varies greatly 

across phenotypes, we posit that mixtures and complex substances need to be directly 

tested for their hazard potential. NAMs provide a practical solution that rapidly yields 

highly informative data for mixtures risk assessment. 

3.2 Introduction 

Current risk assessment frameworks are designed primarily for the evaluation of 

one chemical at a time (Clahsen et al. 2019; Lebret 2015), even though most human 

exposures, especially in the environmental or occupational setting, occur in the context of 

mixtures (Carpenter et al. 2002; Martin et al. 2013). It is well recognized that an individual 

chemical-based focus can underestimate risks because interaction among the components 

in a mixture can result in complex and substantial changes in the apparent properties of 

the constituents (Kortenkamp and Faust 2018). Furthermore, most mixture exposure-

effect studies focus on the adverse effects of mixtures consisting of chemicals from the 

same category (Zhang et al. 2010). This approach does not reflect “real-world” exposures 

from dozens or hundreds of pollutants that may have complex additive or 
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synergistic/antagonistic health effects. While several regulatory authorities are developing 

approaches to extend traditional risk characterization frameworks to mixtures (Bopp et al. 

2019; European Chemicals Agency 2017; More et al. 2019), the knowledge gap in 

quantitative characterization of the effects by individual chemicals and their mixtures is a 

major challenge in regulatory science. 

A most common approach to evaluate the adverse health effects of a mixture 

makes use of the available toxicological data on the known constituents. Two classical 

approaches are Concentration Addition (CA) and Independent Action (IA); they are 

widely used in risk assessment of mixtures (Backhaus and Faust 2012; Cedergreen et al. 

2008; Spiess and Neumeyer 2010; Zhu and Chen 2016). These approaches estimate the 

toxic potential of a mixture based on the individual chemical’s concentration-response 

curves, either through adding concentrations in a “relative potency”-type approach 

(concentration addition, CA), or by adding responses assuming independence 

(independent action, IA). Some studies had developed more sophisticated approaches and 

tools for the environmental mixture toxicity assessment. Li et al. (2012) proposed a 

gradient Markov Chain Monte Carlo algorithm to find Bayesian posterior mode estimates 

in mixture dose-response assessment. Ritz et al. (2015) developed an R package drc for 

curve-fitting and analyzing the mixture concentration-response. However, these studies 

have focused on binary mixtures and have not yet been extended to reflect “real-world” 

scenarios; more complex datasets are needed to test these modeling approaches. 

Novel exposure and in vitro data, now commonly referred to as “New Approach 

Methodologies” (NAMs) (Kavlock et al. 2018), may assist in providing empirical data for 
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mixtures risk assessment. Among NAMs, in vitro human cell-based models are well-

recognized as useful tools for characterizing chemical hazards and as alternative methods 

to traditional animal testing strategies (Rotroff et al. 2010; Shukla et al. 2010), and their 

high-throughput format allows for rapid testing of mixtures, albeit experiments with 

individual chemicals dominate NAMs data available to date. It has been suggested that 

integrating mixture risk assessment with NAMs testing may hold promise in reducing 

uncertainties in the health effects of mixture exposures (Drakvik et al. 2020). 

The purpose of this study was to use NAMs data from targeted testing of dozens 

of diverse individual chemicals and their designed mixtures in a suite of human cell-based 

in vitro organotypic assays followed by data-driven characterization of concentration-

response relationships. We combined high-content experimental data and Bayesian 

concentration-response modeling in order to estimate mixture effects and compare those 

with actual data from the mixtures. Specifically, we tested the hypothesis, commonly 

assumed in current mixtures risk assessment, that complex mixture effects can be 

predicted based on additivity of individual chemical concentrations or effects. The results 

of this analysis could have broad implications for cumulative risk assessment of real-world 

exposures. 

3.2 Materials and Methods 

Figure 3.1 illustrates the overall workflow of the experiments, data analysis, and 

modeling in this study. First, we collected new data from in vitro testing in human induced 

pluripotent stem cell (iPSC)-derived models for a dilution-series of 8 “designed” mixtures 
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(Supplemental Tables S3.1-S3.4) of 42 Superfund Priority chemicals (Supplemental Table 

S3.5). Next, we applied Bayesian concentration-response modeling to fit the experimental 

data for the designed mixtures, as well as for their individual chemical constituents (data 

previously reported in Chen et al. (2020). The fitted concentration-response relationships 

for the designed mixtures were compared to the concentration-response predicted from 

the individual chemical data assuming either CA or IA. Finally, we illustrated mixtures 

risk characterization by calculating a cumulative margin of exposure (MOE) for the whole 

mixture and comparing it with the predictions from CA or IA. 

3.2.1 Biologicals and chemicals 

Five human cell types were used in these studies. iCell hepatocytes 2.0 

(Catalogue# C1023), neurons (Catalogue# C1008), cardiomyocytes (Catalogue# CMC-

100-010-001), and endothelial cells (Catalogue# C1023), as well as cell-type-specific

media and supplements as defined by the manufacturer, were from FujiFilm Cellular 

Dynamics (Madison, WI). Pooled human umbilical vein endothelial cells (HUVECs) in 

EGMTM-2 medium (Catalogue# CC-2519A), and the EGMTM-2 BulletKitsTM 

(Catalogue# CC-3162) were from Lonza (Walkersville, MD). 

Additional reagents used were as follows. CellTiter-Glo reagent was from 

Promega (Madison, WI). EarlyToxTM Cardiotoxicity Kit (Catalogue# R8211) was from 

Molecular Devices (San Jose, CA). RPMI 1640 medium, B-27 medium supplement, 

gentamicin (50 mg/ml), Calcein AM Green, MitoTracker Orange reagent, Hoechst 33342, 

fibronectin, and GeltrexTM LDEV-Free Reduced Growth Factor Basement Membrane 

were from Life Technologies (Grand Island, NY). Recombinant human VEGF was 
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provided by R&D Systems (Minneapolis, MN). Fetal bovine serum and Medium 199 were 

purchased from Fisher Scientific (Waltham, MA). Laminin (from Engelbreth-Holm-

Swarm murine sarcoma basement membrane) was from Sigma-Aldrich (St. Louis, MO). 

Cell culture grade dimethyl sulfoxide (DMSO) was from Santa Cruz Biotechnology (Santa 

Cruz, CA). 

The individual chemicals (Supplemental Table S3.5) used in this study to prepare 

the mixtures and for comparisons to mixtures were from the priority list of hazardous 

substances from the Agency for Toxic Substances and Disease Registry (ATSDR) 

(http://www.atsdr.cdc.gov/spl). From the list of over 300 chemicals on the ATSDR list, 

compounds that are frequently detected at the US National Priority List sites, also known 

as “Superfund” sites, we selected 42 chemicals based on the following criteria. These 

chemicals represent diverse classes of environmental pollutants, including polycyclic 

aromatic hydrocarbons (PAHs, n=5), inorganic substances (n=7), phthalates (n=2), 

pesticides (n=20), and other industrial chemicals (n=8). They have been evaluated by one 

or more government agencies, and human “safe exposure” levels have been established. 

These chemicals were also tested in ToxCast/Tox21. Also, their reverse toxicokinetic and 

exposure data are publicly available through the EPA dashboard (Williams et al. 2017), 

thus allowing for in vitro to in vivo extrapolation and risk characterization. Chemicals 

were from Sigma-Aldrich, except for heptachlor, heptachlor epoxide, 2,4,5-

trichlorophenol, parathion, benzidine and o,p’-DDT, which were from ChemService 

(West Chester, PA). 

http://www.atsdr.cdc.gov/spl
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3.2.2 Preparation of chemical mixtures 

Chemical mixtures evaluated in this study were designed based on the following 

considerations. First, we aimed to create mixtures of a large number of chemicals, 

covering multiple classes of environmental contaminants. Second, as summarized in Table 

3.1, the concentration of each mixture component was determined through several 

alternative assumptions: (i) active concentration 50% (AC50) values from in vitro assays 

in the ToxCast database (Williams et al. 2017), (ii) the estimated general population 

exposure levels derived from ExpoCast estimates (Wambaugh et al. 2013), (iii) point-of-

departure (POD) values from in vivo studies in experimental animals used for determining 

regulatory oral non-cancer reference doses (RfDs) (Wignall et al. 2014), or (iv) RfDs 

themselves (Wignall et al. 2014). For criteria (ii)-(iv), oral doses were converted to the 

steady-state of chemical concentration at steady state (Css)-based values using the httk R 

package (v1.10.1) (Pearce et al. 2017). The median or upper 95th percentile was used to 

represent different assumptions for the toxicokinetic variability (Table 3.1). Individual 

chemicals (Supplemental Table S3.5) were dissolved in 100% cell culture-grade DMSO 

at a concentration of 20 mM. Then, chemicals were mixed at different proportions to 

address the considerations listed above and as detailed in Supplemental Tables S3.1-S3.4. 

All mixtures were then tested using 10× serial dilutions to generate concentration-

response data at five serial dilutions. 

As shown in Figure 3.2, relative proportions of the individual chemicals and the 

overall cumulative concentrations varied across mixtures. Both groups of mixtures from 

in vitro (AC50) and in vivo values (POD) were relatively evenly distributed by the 
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proportion of individual chemicals compared to the other groups, and were mostly 

dominated by the metal zinc chloride due to the much lower concentrations of other 

chemicals. The concentrations for metals were based on an in vitro study (Table 3.1) 

because metals are not included in the httk package (Figure 3.2A). There are also 

differences in the cumulative concentration for the mixtures generated based on exposure 

levels and RfD (Figure 3.2B). 

Due to the limitation of each database, some values for certain chemicals were not 

available. To keep the integrity of each mixture containing all 42 chemicals, different 

criteria, such as read-across from chemicals with similar structures, based on common 

occurrence in the environment, were applied for chemicals without available data (see 

details notes in Table 3.1, with concentrations listed in Supplemental Tables S3.1-S3.4). 

3.2.3 Cell culture and exposure 

Cells were cultured in tissue culture-grade 384-microwell plates according to the 

cell supplier’s (Fujifilm Cellular Dynamics and Lonza) recommendations with respect to 

cell culture medium and supplements for each cell type. Cell density and experimental 

protocols for chemical treatments and phenotyping have been previously described for 

each of these cell types (Grimm et al. 2015; Iwata et al. 2017b; Sirenko et al. 2014b). 

Designed mixture stocks in 100% DMSO were further diluted 100-fold in corresponding 

cell culture medium to yield 4× working solutions in 1% DMSO. The final concentration 

of DMSO in assay wells to following addition of test mixtures was 0.25% (v/v), an amount 

which by itself has no effects on each of the tested cell types (Grimm et al. 2015; Iwata et 

al. 2017b; Sirenko et al. 2014b). 
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Data processing and phenotype derivation were as detailed in Chen et al. (2020). 

Supplemental Table S3.6 lists the phenotypes for each cell type. Effects on the 

mitochondrial integrity and intensity of iCell hepatocytes and neurite outgrowth of iCell 

neurons were measured using high-content fluorescence imaging (ImageXpress Micro 

Confocal High-Content Imaging System, Molecular Devices). Calcium flux, a surrogate 

for beating and ion channel activity in iCell cardiomyocytes, was determined by FLIPR 

tetra (Molecular Devices) high-content kinetic imaging instrument using EarlyToxTM 

Cardiotoxicity Kit (Molecular Devices) as detailed in (Grimm et al. 2015). Effects on 

angiogenesis in both iCell endothelial cells and HUVECs was measured by 3D cell culture 

using extracellular gel matrix and followed by high-content fluorescence imaging as 

detailed in Iwata et al. (2017b). 

3.2.4 Concentration-response modeling 

A total of 47 phenotypes (Supplemental Table S3.6) were assessed across 5 cell 

types, including cytotoxicity and cell function effects. First, raw data for each phenotype 

were normalized to the average of the vehicle (0.25% DMSO)-treated wells. Next, the 

effective concentration for a 10% relative change from controls (EC10) was chosen as the 

representative point of departure (POD) for both cytotoxicity and functional responses as 

a representative benchmark dose used commonly in dose-response assessments for 

quantitative phenotypes (Chiu et al. 2017; Sirenko et al. 2017). 
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3.2.5 Bayesian concentration-response modeling 

We used a Bayesian approach for the analysis in order to quantify the uncertainty 

in our PODs and concentration-response relationships (Figure 3.1A). The Bayes’ rule can 

be simply expressed as Gelman et al. (2013), 

p(θ, E) ∝ p(θ)p(E|θ) 

where  is the parameters in the concentration-response model, E is the observed 

response from the given dose. The p() is the prior distributions of model parameters, and 

p(E|) are the observed data from individual chemicals and mixture in this study. We 

adopted the Hill model from the BMD model suite (Davis et al. 2011; Shao and Shapiro 

2018) that parameterized the concentration-response profile as, 

E(Ci θ) =
θ0

1 + (
C
θ1

)θ2

+ ϵi

where Ci is the ith-experimental concentration for the individual chemical (M) or 

dilution factor (unitless) for the mixture. 0 is the baseline response and was assigned a 

fixed value of 1 due to the re-normalization with the control (0.25% DMSO vehicle) 

group. 1 is the concentration at half of the maximal response (also known as EC50), 2 is 

the Hill coefficient that determines the slope of the simulated curve, and i is residual error. 

The settings of prior parameters were based on the Bayesian BMD platform (Shao and 

Shapiro 2018). For , instead of a normal distribution, the error estimation between the 

data and model was assumed to follow a Student’s t distribution with the degrees of 

freedom equal to 5 with scale parameter 𝜎 to recognize the outlier issue (Blanchette et al. 
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2019; Chiu et al. 2017). The likelihood of response data Ei for concentration Ci was 

assumed to be, 

Ei ∼ T5(f(Ci,  θ1,  θ2),  σ) 

where f(.) is the Hill concentration-response model that is the function of 2 Hill 

parameters (1, 2) and the designed concentration Ci. The prior of  was assumed to be a 

half-normal distribution with standard deviation 0.1 and therefore can be written as, 

σ ∼ N(0, 0.1), σ ≥ 0 

We used log-uniform distribution for the given parameter 1 due to the parameter 

range being over one order of magnitude, with a range from 1 order of magnitude below 

the lowest experimental concentration to 2 orders of magnitude above the highest 

experimental concentration. Thus, the prior for 1 was assigned to be 

log(θ1) ∼ Uniform(log(θ1,min),  log(θ1,max)) 

The Hill coefficient (a power parameter) was set to the range 0.1 to 15 for the 

mixtures but assumed the positive cooperativity that ranged between 1 to 15 for the 

individual chemicals. This lower boundary aimed to avoid a shallow concentration-

response that causes unstable estimates of the POD, particularly when combining into a 

mixture using IA or CA. Thus, the prior for 2 was assigned to be 

θ2 ∼ Uniform(θ1,min,  θ1,max) 

The final Bayesian concentration-response model can be therefore written as, 

p(θ1,  θ2|Ei) ∝ p(θ1) ⋅ p(θ2) ⋅ p(Ei|θ1,  θ2) 
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Posterior distribution sampling was conducted using the Hamiltonian Markov 

Chain Monte Carlo algorithm. For each chemical or mixture, the simulations consisted of 

three chains with the first half treated as a warm-up and hence discarded. 

To obtain the robust and consistent sampling result, the convergence was assessed 

using the potential scale reduction factor 𝑅̂ (Gelman and Rubin 1992), which compares 

between- and within-chain variability. 𝑅̂ ≫ 1 indicate poor convergence, and 

asymptotically approach 1 as the chain converges. Parameters with values of 𝑅̂  1.05 

were considered to be converged in our simulation. 

The posterior prediction was made using the estimated parameters to predict the 

probability distributions of EC10, defined as a 10% relative change from controls, for each 

chemical and mixture. Specifically, the EC10 each concentration-response is given by 

EC10 = θ1 ⋅ [(1/0.9)θ2 − 1]

3.2.6 Mixture dose-response reconstruction 

The concepts of CA and IA are routinely used in risk assessment practice to predict 

the cumulative effect of a mixture (Backhaus et al. 2000; Hadrup et al. 2013; Zhu and 

Chen 2016). These models are based on the assumption that chemicals in a mixture do not 

interact with each other, and therefore their activity can be predicted through additivity 

approaches. The CA assumption posits that there is a shared pathway from the joint action 

of substances in the mixture. For instance, the chemicals in the mixture may be acting on 

the same molecular target sites but with different potency (Cedergreen et al. 2008). On the 

other hand, IA (also known as response additivity) assumes that all substances in a mixture 
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have pathways and act independently without interfering with each other so that they can 

exert their effects completely independently. 

CA can be mathematically formulated for the mixture that comprises n-compounds 

as, 

∑
𝑓𝑗

𝐸𝐶𝑥𝑗

𝑛

𝑗=1

=
1

𝐸𝐶𝑥,𝑚𝑖𝑥

where ECxj is the effective concentration of the jth compound that can provoke x% 

effect, fj is the fraction of jth compound in a mixture, and ECxmix is the effective 

concentration of the designed mixtures that have the same x% toxicity effect. Therefore, 

the formula to predict the EC10 of the mixture can be derived as follows, 

𝐸𝐶10,𝑚𝑖𝑥 = (∑
𝑓𝑗

𝐸𝐶10,𝑖

𝑛

𝑖=1

)

−1

= (∑
𝑓𝑗

𝜃1,𝑗 ⋅ [(1/0.9)𝜃2,𝑗 − 1]−1

𝑛

𝑖=1

)

−1

The mathematical formula of IA can be written as, 

𝐸(𝐶𝑚𝑖𝑥) = ∏ 𝐸

𝑛

𝑗=1

(𝐶𝑖) = ∏ (
1

1 + (
𝐶

𝜃1,𝑖
)𝜃2,𝑗

)

𝑛

𝑗=1

 

where Cmix and Cj are concentration for mixture and the jth compound, 

respectively. The EC10 would, therefore, need to be obtained by inverting this formula to 

solve for Cmix. 

To summarize, CA uses the effective concentration from individual chemicals 

(ECxj) to predict the corresponding effective concentration for the designed mixture 

(ECxmix), whereas IA uses the concentration of each individual chemical (𝐶𝑗) in the 

designed mixture to predict the corresponding response (E(Cxmix)) to the whole mixture. 
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3.2.7 Risk Characterization 

We used the concept of the margin of exposure (MOE) to characterize the 

cumulative risk associated with each mixture (Figure 3.1D). The MOE is defined as the 

ratio of the effect threshold (we used EC10,j for each phenotype in this study) to the 

exposure concentration (World Health Organization 2009), which is defined here as the 

undiluted concentration in each mixture. The calculated MOEs were used to characterize 

chemical exposure risks for the individual chemicals j (MOEj = EC10,j / Cj), the cumulative 

risks derived for each designed mixture under IA or CA (MOEmix,IA or CA = EC10,mix, IA or CA 

/ Cmix), and the cumulative risk as estimated from testing the designed mixtures directly 

(MOEmix = EC10 / Cmix).  An estimated MOE=1 indicated that the exposure and threshold 

concentrations are the same, and thus a higher MOE (usually MOE 100) represents a 

“safer” characterization of risk. 

3.2.8 Data processing and reproducibility 

All data analysis and graphics are conducted using R v3.6.2 (R Core Team 2020). 

The rstan package v2.18.2 (Carpenter et al. 2017) was used for Hamiltonian MCMC 

simulations for the concentration-response fitting. All model codes and raw data are 

provided in the Supplemental Materials to allow other researchers to reproduce our results 

and will be available in GitHub upon publication. All MCMC simulations were performed 

and tested under the different operating systems of Windows 10 x64 (build 17763), Linux 

(elementary OS 5.1.2 Hera), and macOS (Catalina 10.15.3). RStudio v1.2.5019 was used 

as an integrated development environment for modeling, post-processing, and 
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documentation (RStudio Team 2019). More details can be found in the Supplemental 

Materials. 

3.3 Results 

3.3.1 Cell culture and chemical treatments 

Representative images (Figure 3.3) of the data from untreated iCell neurons, iCell 

cardiomyocytes, and HUVECs, cells exposed to DMSO (0.25%) vehicle, or exposed to 

two designed mixtures are shown to illustrate the effects. Mixture AC50-H at the lowest 

tested concentration (diluted by 10,000 from stock concentration) was without effect on 

neurite outgrowth, but affected beating rate in cardiomyocytes and tube formation in 

HUVECs. Similarly, mixture POD-H at an intermediate tested concentration (diluted by 

100) effected tube formation in HUVECs without cytotoxicity, but it was overtly 

cytotoxic to both neurons and cardiomyocytes. 

For the data on the individual chemicals (Chen et al. 2020), convergence for 

Bayesian concentration-response modeling was reached for all parameters with a chain 

length of 4,000, where the first 2,000 “warm-up” samples of each chain were discarded. 

Across the three chains, the 6,000 available samples were further down-sampled to 500 

samples for evaluation of model fit and for inference. The example concentration-response 

profiles are shown in Figure 3.4. The most toxic response observed was for the total 

outgrowth data in iCell Neurons and mercuric chloride, with estimated median EC10 of 
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0.02 M [90% Credible Interval (CI): 0.01-0.05]. Complete fitting results for the 

individual chemicals are provided in Supplemental Figures S3.1-S3.47. 

For each mixture, convergence was reached with the chain length set to 8,000, with 

4,000 warm-up samples discarded. Again, further, down-sampling was performed with 

500 samples saved for analysis. The example mixture concentration-response profile is 

shown in Figure 3.4 for the AC50-H mixture. The estimated EC10 is below the lowest tested 

concentration with a value of 0.29 (90% CI: 0.25-0.36). Complete fitting results for the 

designed mixtures are provided in Supplemental Figures S3.48-S3.94). 

Figure 3.5 summarizes the fitted distribution of EC10 for each mixture across all 

phenotypes. If we consider “active” as those phenotypes with an estimated EC10 lower 

than the undiluted designed concentration, the mixture POD-H shows the highest 

“activity” rate of nearly 100%, with Expo-L having the least activity with a value of less 

than 40% (Figure 3.5A, Table 3.2). However, activity (fraction of phenotypes showing 

effects) and potency (low versus high EC10 values) are not completely correlated. For 

instance, the AC50-H, POD-L, and POD-H mixtures have similar activity, but the 

distribution of EC10 values is much lower for the AC50-H mixture (Figure 3.5B, Table 

3.2). Thus, although they may be similar from a hazard identification point of view, they 

would clearly differ in terms of risk. 

3.3.2 Mixture response reconstruction 

Based on its higher activity and potency, we use the mixture of AC50-H as a 

representative mixture to illustrate the impact of the conventional additivity assumptions 

for mixtures. Figure 3.6A shows the concentration-response profiles for total outgrowth 
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in iCell neurons, beats per minute for iCell cardiomyocytes, and mean tube length in 

HUVECs, respectively (see Supplemental Figures S3.95-S3.99 for other phenotypes). 

Although the CA-based predictions are closer to the true mixture concentration-response 

than the IA-based predictions, the CA-based predicted EC10s are nonetheless higher (i.e., 

lower potency) than the actual mixture estimates by up to an order of magnitude. The 

results across all phenotypes are shown in Figure 3.6B. As with the examples in Figure 

3.6A, overall, EC10s derived from CA are closer to the actual mixture EC10s. For a few 

phenotypes, such as total outgrowth, ATP, and total branch in iCell neurons and results 

for iCell cardiomyocytes, the differences between central estimates of CA and the actual 

mixture dose-response were less than 10-fold; however, most phenotypes had high 

uncertainty. The IA predictions were even less accurate, with estimated EC10s far from the 

actual mixture estimates, especially for the more sensitive phenotypes with lower actual 

EC10s. Figure 3.6C shows a summary comparison among EC10s from CA, IA, and the 

actual mixture. The mixture-based estimated EC10s had the lowest median concentration 

(0.45 M), with the CA- and IA-based predictions being substantially higher (4.7 M and 

886 M, respectively). 

A summary of the results for the accuracy of CA and IA across all mixtures are 

presented in Table 3.2. The CA assumption-based results showed an overall higher 

performance in predicting both activity (the percent of phenotypes with EC10s < highest 

designed mixture concentrations) and potency (EC10s). For activity, the sensitivity of CA 

was found to be at least 0.79, while in some cases, IA had 0 sensitivity.  Specificity was 

poorer for CA, with values no more than 0.52.  The estimated ratio between the designed 
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mixture EC10s and the EC10s estimated from dose reconstruction showed that CA also has 

better predictivity as compared to IA.  Median EC10 values across phenotypes based on 

CA were within an order of magnitude of those for the actual mixture, whereas IA 

predicted median potency to be at least an order of magnitude less that the actual mixture.  

In all cases, however, there was a lot of variation in predictive power across phenotypes.   

3.3.3 Risk Characterization 

To illustrate how these NAMs data can be used in risk characterization, we used 

the AC50-H mixture as an example and examined the margin of exposure (MOE) for three 

selected phenotypes (Figure 3.7). Almost all estimated MOEs for the AC50-H mixture 

were inadequate to be considered “safe,” represented by a MOE>100.  

Under CA assumptions, the “dominant” chemical(s) with respect to the potency of 

the mixture can be identified as the one(s) that have the largest values of fj/EC10,j For 

instance, in iCell neurons, mercuric chloride is the most potent chemical, with the lowest 

individual chemical MOE. This compound also dominates the overall response predicted 

in other phenotypes in the iCell neurons (Supplemental Figure S3.100). In iCell 

cardiomyocytes, the CA predictions suggest that endosulfan is the principal chemical that 

contributes to the cardiotoxicity effect, along with mercuric chloride, albeit with wider 

estimated uncertainty. All predicted results of MOE estimation for other phenotypes for 

the AC50-H mixture can be found in Supplemental Materials (Supplemental Figures 

S3.100-S3.104). These results are summarized in Figure 3.8, which shows the distribution 

of MOEs across phenotypes for each specific cell type (Figure 3.8A) and all cell types 

together (Figure 3.8B). As with the EC10s, the MOE based on the assumption of CA is 
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closer to the MOE for the actual mixture than the use of IA, but CA may still underestimate 

risk 1-2 orders of magnitude, with the greatest errors observed in the HUVECs and iCell 

hepatocytes. 

More generally, as shown in Table 3.3, for all mixtures except Expo-L, more than 

half of the phenotypes had MOE < 1, and across all mixtures, almost all the phenotypes 

had MOE < 100.  MOEs based on CA tended to be a bit more conservative except for the 

AC50-H mixture, for which the CA-based MOE was about 10-folder higher.  However, 

IA-based MOEs were substantially larger, with a much smaller fraction of MOEs < 1, 

though most were still < 100. 

3.4 Discussion 

Large-scale biomonitoring programs have convincingly demonstrated that all 

humans are concurrently exposed to multiple chemicals (Calafat et al. 2017; Dixon et al. 

2019; Rosofsky et al. 2017), yet human health risk assessments are still largely based on 

one-chemical-at-a-time analyses. Indeed, mixtures risk assessment, as currently practiced, 

relies heavily on adding up the risks of individual chemicals assuming either dose-

/concentration-addition or independent action. Even the application of these additivity 

assumptions is inconsistent across the field. For instance, recommendations as to when to 

apply dose-or concentration-addition range from the very narrow (e.g., only for the same 

mode of action) to the relatively broad (e.g., same target organ). Moreover, the conflicting 

underlying additivity assumptions are difficult to verify empirically, as only a few studies 

have collected data on the effects of the individual chemicals and their mixtures in the 
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same model system (Backhaus and Faust 2012; Hadrup et al. 2013; Howard et al. 2010). 

Thus, it is widely acknowledged that many challenges exist in the field of mixtures risk 

assessment that need to be overcome in order to move the field forward and inform 

decision-makers (Bopp et al. 2019). 

Due to their lower cost and higher throughput, NAMs and alternative animal 

models have emerged as a potential approach to substantially advance mixture risk 

assessment (Blackwell et al. 2019; Geier et al. 2018; Hayes et al. 2020; Hoover et al. 2019; 

Incardona et al. 2006; Ruiz et al. 2019; Seeger et al. 2019). This study adds to the body of 

the recent advances on using NAMs to characterize the toxicity of mixtures, having 

applied a novel high throughput in vitro models based on a diverse array of human cells. 

We took advantage of recently developed reproducible and physiologically-relevant 

human in vitro models derived from iPSCs (Li and Xia 2019), models that have been 

successfully applied for screened for diverse chemicals (Chen et al. 2020). Human iPSC-

derived cell models have not been used to characterize the hazards of complex mixtures 

comprising a large number of diverse environmental chemicals. We observed differing 

effects of mixtures on different cell types/phenotypes, suggesting that this multi-tissue 

approach may aid in identifying the potential targets of certain mixtures. Another 

advantage of the in vitro testing system used in this study is that in addition to traditional 

cytotoxicity endpoints, functional effects of different cell types were also measured, 

proving that data on physiologically-relevant phenotypes can better reflect the effects on 

human health. Furthermore, a large number of endpoints collected from in-vitro testing 
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would contribute to increasing the confidence of the modeling procedures for predicting 

the effects of mixtures from individual components. 

Several important conclusions can be drawn from our data and analysis.  First, it 

is clear that cumulative effects from complex mixtures are important, even when 

individual chemical exposures levels may be considered “low” or “safe.”  For both our 

exposure- and RfD-based mixtures, which mimic either current actual exposure levels or 

levels currently presumed to be “safe,” we found that a substantial fraction of phenotypes 

showed activity (Table 3.2).  Second, the assumption that chemicals behave independently 

leads to a severe under-estimation of their cumulative effects.  Specifically, across all of 

the mixtures, the assumption of IA performed very poorly in predicting either activity or 

potency of the mixtures (Table 3.2).  Third, on average, POD predictions based on CA are 

within about an order of magnitude of the POD for the full mixture, consistent with 

previous studies predictions (Backhaus et al. 2004; Faust et al. 2003).  Moreover, given 

the diverse modes and mechanisms of action across the individuals chemicals composing 

the mixtures used in this study, our results argue strongly against the requirement of a 

common mode of mechanism of action in order to apply CA to address cumulative risks.  

Fourth, in a number of cases, bioactivity of the mixture appears to be greater than the sum 

of the effects of individual chemical components. For instance, although in some cases, 

such as mercuric chloride effects in neuronal cells, one chemical clearly dominated the 

bioactivity, in many other cases, the mixtures proved to be clearly more active than any of 

the individual chemicals, suggesting a synergistic effect.  An important strength of our 

study is its use of many more and diverse chemicals, cell types, and endpoints than any 
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previously published work that we know of, hence providing important new information 

about the considerations for mixture dose reconstruction. 

Our study has a number of important limitations.  First, our CA approach does not 

address the possibility of a saturation effect due to the presence of “partial agonists” 

(compounds with smaller maximal effects levels) that are influencing the efficacy of the 

whole mixture (Howard et al. 2010; Silva et al. 2002).  However, we consider the impact 

of partial agonists to be unlikely because our analyses focused on the lower part of the 

concentration-response curve. Another issue, that may partially explain the apparent 

“synergy” in the AC50-H mixture, has to do with bioavailability, as it is possible that there 

is a greater freely available fraction of each chemical in a mixture as compared to single 

chemical experiments. This phenomenon has been recently demonstrated for complex 

mixtures and petroleum substances (Luo et al. 2020), it is thought to be due to saturation 

of binding sites in the presence of multiple compounds. The likely differences in free 

fraction in vitro and in vivo (e.g., protein content in plasma in vivo is usually greater than 

that in media in vitro), thus present a challenge for the extrapolation of these results to the 

in vivo setting. Furthermore, our studies did not have a specific “positive control” for 

different mechanisms of synergy and, therefore, do not have a mechanistic basis or model 

(Lasch et al. 2020) for our observations. Additional experiments with known mechanisms 

for synergism and the development of theoretical models for synergistic effects will be 

needed in the future.  Finally, our study does not address the additional challenge of 

understanding population variability under the exposure to complex mixtures. Previously, 

we demonstrated that the population-based iPSC-derived cardiomyocyte model and 
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Bayesian concentration-QTc modeling approach had the ability to accurately predict the 

in-vivo of concentration range for regulatory concern (Blanchette et al. 2019). Our current 

approach only quantifies the uncertainty in a single individual, but as population-based, 

iPSC-derived models become available, it can be extended to the population level to obtain 

complete information for use in mixtures risk assessment. 

3.5 Conclusion 

This study applied NAMs to determine the bioactivity of mixtures of 42 Superfund 

priority chemicals in comparison with predictions from two classic mixture toxicity 

models, IA and CA. Although CA is generally much more accurate that IA in predicting 

mixture effects, in some cases, the mixture effect is underestimated substantially: i.e., the 

bioactivity of the mixture may be greater than the sum of its parts. Our findings support 

the concern that mixtures can result in a greater effect than adding up the effects of a single 

compound and suggest that testing of actual environmental samples (e.g., real-life 

mixtures) is desirable, rather than simply assuming that the effects of individual analytes 

from an environmental sample can be added together. Such whole-mixture testing is likely 

only to be possible on a routine basis with in vitro models. Our approach to using a small 

panel of iPSC-derived tissues in a high throughput format thus provides a key component 

to a practical solution for the design of future risk assessments of complex environmental 

samples. However, challenges remain in addressing both population variability as well as 

in-vitro to in-vivo extrapolation in the context of a mixture. 
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Table 3.1 Mixtures of the 42 Superfund priority chemicals from Chen et al. (2020) used 

in this study. 

a For metals, values were set based on previous literatures as shown below.  

Cd (II), Cr (VI) and Co (II): Free Radical Biology and Medicine 65(2013)262–269; 

Hg (II): Toxicological Sciences 125(1), 56–68 (2012); 

Zn (II): Toxicological Sciences 136(1), 120-130(2013); 

Ni (II): Toxicology 124(1997)21-26;  

Pb (II): Molecular and Cellular Biochemistry 255: 161-170,2004.   
b Css = Steady state plasma concentration, calculated using httk R package. 
c For heptachlor epoxide, value for heptachlor was used; for DEHP, value for DBP was used. 
d For benzo(a)anthracene and gamma-hexachlorocyclohexane, the concentration range was set 

between 1 and 100 µM; for endrin, value for dieldrin was used; for benzo(b)fluoranthene, value 

for fluoranthene was used; for p,p’-DDD and o-p’-DDT, value for p,p’-DDT was used;  
e For 4,6-dinitro-o-cresol, 2,4-dinitrotoluene was used; for 1,2,3-trichlorobenzene, value for 

2,4,6-trichlorophenol was used. 
f For para-cresol, value was converted from Risk Specific Dose (RSD, mg/kg/day) for a 10-6 

cancer risk. 

Mixture Description Notes 

AC50-L Lowest AC50s from ToxCast a 

AC50-H Highest AC50s from ToxCast a 

Expo-L Median Expocast oral exposure, converted to median Css  a, b, c 

Expo-H 95th percentile Expocast oral exposure, converted to 95th 

percentile Css  

a, b, c 

POD-L Point of departure used for oral RfD, converted to median 

Css  

a, b, c, d, e 

POD-H Point of departure used for oral RfD, converted to 95th 

percentile Css  

a, b, c, d, e 

RfD-L Oral RfD, converted to median Css  a, b, c, d, f 

RfD-H Oral RfD, converted to 95th percentile Css  a, b, c, d, f 
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Table 3.2 Comparison of the designed mixture effects to dose reconstruction from the data on the mixture components through 

concentration addition (CA) or independent action (IA). 

a Percent Active is the percent of phenotypes with posterior median EC10 < highest tested concentration.  Sensitivity is the true positive rate, 

and specificity is the true negative rate. 
b EC10CA or IA / EC10mix is the distribution across phenotypes (median [90% CI]) for the ratio between the “reconstructed” CA- or IA-based 

mixture EC10 and the EC10 of the effects of the designed mixture (all based on posterior medians).  A ratio < 1 overestimates potency while 

a ratio > 1 underestimates potency.  The same ratio applies to the CA- or IA-based MOEs.

Mixture 

Total 

Conc. 

Percent Activea 

[Sensitivity, Specificity] 

EC10mix 

[90% CI] 

EC10CA or IA / EC10mix
b

[90% CI] 

MOEmix 

[90% CI] 

M 
Designed 

mixture 
CA IA M CA IA M 

AC50-L 48.3 70% 85% 

[0.94, 0.36] 

4.3% 

[0.06, 1.0] 

27 

[1.7–340] 

0.44 

[0.095–3.0] 

61 

[9.3–320] 

0.55 

[0.036–7.1] 

AC50-H 6236.3 96% 100% 

[1.0, 0.0] 

89% 

[0.91, 0.5] 

0.45 

[0.12–5,600] 

7.6 

[0.0085–99] 

1,200 

[0.90–17,000] 

0.000072 

[0.00002–

0.90] 

Expo-L 79.4 36% 64% 

[0.82, 0.47] 

0% 

[0.0, 1.0] 

100 

[10–850] 

0.39 

[0.082–2.8] 

22 

[3.9–120] 

1.3 

[0.13–11] 

Expo-H 79.9 51% 64% 

[0.79, 0.52] 

0% 

[0.0, 1.0] 

79 

[5.4–930] 

0.49 

[0.067–2.8] 

37 

[4.4–150] 

0.99 

[0.067–12] 

POD-L 2767.1 94% 100% 

[1.0, 0.0] 

51% 

[0.55, 1.0] 

140 

[760–2,900] 

0.11 

[0.030–0.4] 

12 

[2.2–35] 

0.05 

[0.028–1.1] 

POD-H 21348.4 98% 100% 

[1.0, 0.0] 

100% 

[1.0, 0.0] 

14 

[3.7–10,000] 

0.48 

[0.0053–2.5] 

54 

[0.31–270] 

0.00066 

[0.00017–

0.48] 

RfD-L 83.8 51% 83% 

[0.92, 0.26] 

0% 

[0.0, 1.0] 

78 

[7.9–770] 

0.28 

[0.070–1.6] 

22 

[4.6–140] 

0.93 

[0.095–9.2] 

RfD-H 115.7 77% 92% 

[0.94, 0.18] 

0% 

[0.0, 1.0] 

39 

[5.1–760] 

0.43 

[0.075–1.5] 

49 

[6.6–120] 

0.33 

[0.044–6.6] 
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Table 3.3 Comparison of the designed mixture margins of exposure (MOEs) from the data 

on the mixture components through concentration addition (CA) or independent action 

(IA). 

Mixture 

MOEmix
a 

[90% CI] 

Mixture CA IA 

AC50-L 0.55 

[0.036–7.1] 

0.19 

[0.021–2.3] 

42 

[2.8–120] 

AC50-H 0.000072 

[0.00002–0.90] 

0.00075 

[0.000071–0.015] 

0.13 

[0.0054–1.1] 

Expo-L 1.3 

[0.13–11] 

0.77 

[0.050–2.3] 

43 

[5.1–56] 

Expo-H 0.99 

[0.067–12] 

0.77 

[0.050–2.3] 

43 

[5.1–55] 

POD-L 0.05 

[0.028–1.1] 

0.0077 

[0.0016–0.039] 

0.95 

[0.23–2.3] 

POD-H 0.00066 

[0.00017–0.48] 

0.00069 

[0.00011–0.0047] 

0.092 

[0.012–0.29] 

RfD-L 0.93 

[0.095–9.2] 

0.46 

[0.0045–2.0] 

37 

[5.0–53] 

RfD-H 0.33 

[0.044–6.6] 

0.20 

[0.0018–1.1] 

22 

[2.1–46] 

a Each MOE is the distribution across phenotypes (median [90% CI]) for the ratio between the 

actual mixture or “reconstructed” CA- or IA-based EC10, and fixed undiluted mixture 

concentration. 
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Figure 3.1 Schematic diagram of the overall study design. 

(A) The in-vitro cell assay was conducted to construct the concentration-response

relationship for human stem cells under the exposure of individual chemicals and

designed mixture. (B) The Bayesian probabilistic approach was further applied to

simulate the likelihood of the exposure-effect pattern. (C) Two additive reference

models, Independent action (based on the conditional effect) and Concentration addition

(based on the conditional concentration), were adopted to assume the combined toxicity.

(D) The contributed effect and margin of exposure were calculated to characterize the

individual and combined risk.
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Figure 3.2 Summary of the properties of the designed mixtures used in this study.

(A) Treemap of the chemical proportions contained in each of the designed mixtures. The

color represents the classes of environmental contaminants that were selected in the study.

(B) Cumulative (maximum) concentration of the chemicals in each designed mixture. See

acronym explanations and description of the designed mixtures in Table 3.1.
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Figure 3.3 Representative examples of bioactivity in different cell types.

Top, fluorescent (calcein) staining of untreated (control) iCell neurons or cell treated with 

vehicle, or two designed mixtures (AC50-H and POD-H). See acronym explanations and 

description of the designed mixtures in Table 3.1. Characteristic images of neuronal bodies 

with multiple neurites is evident in each case except for POD-H mixture where remnants 

of cells and no neurites indicate severe cytotoxicity. Middle, characteristic kinetic 

imaging-derived fluorescence intensity traces indicative of the Ca2+ fluxes across cell 

membranes of iCell cardiomyocytes that spontaneously contract in cell culture. Treatment 

effects are evident for both mixtures. Bottom, fluorescent (calcein) staining of untreated 

(control) HUVECs or cell treated with vehicle, or two designed mixtures. Characteristic 

images of the vascular networks formed by HUVECs in culture is evident in control and 

vehicle-treated cells. Both mixtures lead to a disruption in tubule formation. 
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Figure 3.4 Representative Bayesian curve-fitting examples of concentration-response 

profiles for individual chemicals (insets) and a representative designed mixture (AC50-H) 

for total outgrowth in iCell neurons.

Results for all other phenotypes can be found in Supplemental Materials Figures S3.1-

S3.94. See acronym explanations and description of the designed mixtures in Table 3.1. 

Dots represent experimental data points. Grey lines represent individual simulated curves 

from the last 100 iterations. The vertical dashed red lines represent the 90% credible 

interval on the point of departure (EC10).  
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Figure 3.5 The Bayesian modeling-estimated (effective concentration, EC10) (median 

with 90% credible interval) of the designed mixtures.

The dashed vertical line is the total chemical concentration for each designed mixture. The 

different phenotypes in each cell type (see color legend on top of the figure) are displayed 

by the same color. Cyan is HUVECs, dark magenta is iCell cardiomyocytes, green is iCell 

endothelial cells, dark orange is iCell hepatocytes and dark blue is iCell neurons. The 

percent of phenotypes active was based on the posterior median EC10 values compared to 

the undiluted designed concentration. (B) The probability density plot shows the 

distribution of all estimated EC10 for each mixture. See acronym explanations and 

description of the designed mixtures in Table 3.1. 
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Figure 3.6 Comparison of curve-fitting, independent action (IA), and concentration 

addition (CA) estimated median effective concentration (EC10) with 95% confidence 

limits.

(A) The representative examples to compare the concentration-response-profile for fitting

and IA/CA predicted result. Box and whisker plot represents the distribution of the

estimated EC10. (B) The comparison of estimated EC10 across all phenotypes. The color

of each dot represents the cell types that were used in the study (see color legend on top

of the figure). Cyan is HUVECs, dark magenta is iCell cardiomyocytes, green is iCell

endothelial cells, dark orange is iCell hepatocytes and dark blue is iCell neurons. (C) Box

and whisker plots summary of the estimated EC10.



83 

Figure 3.7 The estimation of the margin of exposure (MOE) for cytotoxicity phenotypes 

in the representative cell.

Box and whiskers plots show the distribution of MOE that was derived by the curve-fitting 

and independent action (IA)/concentration addition (CA)-predicted EC10 with the 

designed concentration in the AC50-H designed mixture. See acronym explanations and 

description of the designed mixtures in Table 3.1. 
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Figure 3.8 Ridgeline plots show the margin of exposure for the (A) organ-specific human 

stem cell and (B) all combined summarization under the exposure of AC50-H designed 

mixture. See acronym explanations and description of the designed mixtures in Table 3.1. 



85 

CHAPTER IV  

RISK CHARACTERIZATION OF ENVIRONMENTAL SAMPLES USING IN VITRO 

BIOACTIVITY AND POLYCYCLIC AROMATIC HYDROCARBON (PAH) 

CONCENTRATIONS DATA 

4.1 Overview 

Methods to assess environmental exposure to hazardous chemicals have primarily 

focused on quantification of individual chemicals, although chemicals often occur in 

mixtures, presenting challenges to the traditional risk characterization framework. 

Sampling sites in a defined geographic region provide an opportunity to characterize 

chemical contaminants, with spatial interpolation as a tool to provide estimates for non-

sampled sites. At the same time, the use of in vitro bioactivity measurements has been 

shown to be informative for rapid risk-based decisions. In this study we measured in vitro 

bioactivity in 39 surface soil samples collected immediately after flooding associated with 

Hurricane Harvey in Texas in a residential area known to be inundated with polycyclic 

aromatic hydrocarbon (PAH) contaminants. Bioactivity data were from a number of 

functional and toxicity assays in five human cell types (induced pluripotent stem cell 

(iPSC)-derived hepatocytes, cardiomyocytes, neurons and endothelial cells, as well as 

human umbilical vein endothelial cells (HUVEC). Data on concentrations of PAH in these 

samples was also available and the combination of data sources offered a unique 

opportunity to assess the joint spatial variation of PAH components and bioactivity. We 

found significant evidence of spatial correlation of a subset of PAH contaminants and of 
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cell- based phenotypes. In addition, we show that the cell-based bioactivity data can be 

used to predict environmental concentrations for several PAH contaminants, as well as 

overall PAH summaries and cancer risk. This study’s impact lies in its demonstration that 

cell-based profiling can be used as a rapid hazard screening tool for environmental 

samples by anchoring the bioassays to concentrations of PAH. This work sets the stage 

for identification of the areas of concern and direct quantitative risk characterization based 

on bioactivity data, thereby providing an important supplement to traditional invidual 

chemical analyses by shedding light on constituents that may be missed from targeted 

chemical monitoring.  

 

4.2 Introduction 

Environmental samples from contaminated sites contain complex mixtures of 

chemicals and may pose concern to both human health and the environment (Escher et al. 

2020b; Stehle and Schulz 2015). The regulatory authorities in the United States (U.S. EPA 

1986) and Europe (Backhaus et al. 2010; Brack et al. 2019; Kortenkamp and Faust 2018) 

are tasked with the evaluation of the mixtures; however, multiple challenges with the 

current approaches they rely upon have been widely acknowledged. Traditional methods 

for assessment of environmental exposures focus on the few individual chemicals that 

were detected in environmental samples, an approach that can underestimate the risks 

because interactions among the components in a mixture may complicate attempts at dose 

reconstruction (Kortenkamp and Faust 2018). Several regulatory agencies are considering 

amendments to the traditional risk characterization frameworks to mixtures (Bopp et al. 
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2019; European Chemicals Agency 2017; More et al. 2019) to address the knowledge gaps 

in regulatory science with respect to quantitative characterization of the effects by the 

mixtures of unknown, or yet to be characterized, chemical composition.  

To better characterize potential hazards of complex environmental mixtures, novel 

approaches based on chemical analysis methods (Hollender et al. 2017) and biological 

assays (Fang et al. 2020; Judson et al. 2010b) have been proposed. Recent advances in 

analytical chemistry assays and their application to the analysis of environmental samples 

contribute greatly to the opportunities to reconstruct exposure to complex mixtures (Patel 

2017; Rager et al. 2016). Both targeted and untargeted approaches have demonstrated that 

environmental and human samples may contain hundreds to thousands of chemicals 

(Rappaport 2018; Sille et al. 2020); however, this complexity presents a formidable 

challenge to confident identification and quantitation of the constituent chemicals. Even 

with the most contemporary high-resolution analytical techniques, only partial 

characterization of the chemicals in complex environmental samples is attainable.  

A complementary approach for hazard characterization of complex substances or 

mixtures is the use of in vitro methods that can evaluate the effects of the whole substance, 

rather than its individual constituents (Escher et al. 2020b). Recent examples include 

applications to hazard identification of oil dispersant formulations (Judson et al. 2010b), 

environmental samples (Escher et al. 2018; Horzmann et al. 2017), petroleum substances 

(Grimm et al. 2016; Kamelia et al. 2019), and botanicals (Catlin et al. 2018). The high-

throughput format of in vitro assays allows for rapid testing of mixtures, and it has been 

suggested that integrating mixture risk assessment with in vitro bioactivity data may hold 
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promise in reducing uncertainties in the health effects of mixture exposures (Drakvik et 

al. 2020; Ginsberg et al. 2019). It has also been posited that cell-based bioassays can be 

used in support of environmental quality standards (Escher et al. 2018).  

Most studies that used cell-based bioassays to evaluate the effects of 

environmental mixtures take advantage of readily-available immortalized cancer cell lines 

and rely on cell viability or reporter assays (Alimba et al. 2016; Fang et al. 2020; Neale et 

al. 2017). Seldom are primary or iPSC-derived human cell types and functional 

phenotypes used for environmental sample screening. Therefore, this study used a 

compendium of human cell lines from different organs to test bioactivity of a set of 

environmental soil samples collected from a residential area in Texas with reported 

contamination from polycyclic aromatic hydrocarbon (PAH)-containing substances 

during Hurricane Harvey-associated flooding (Horney et al. 2018; Stone et al. 2019). The 

potential for a small set of in vitro models to inform rapid risk-based decision making for 

environmental chemicals was recently demonstrated (Chen et al. 2020). Here, we show 

that PAH concentrations and in vitro bioactivity in environmental samples were spatially 

correlated for only a subset of cell-based phenotypes; however, in vitro bioactivity data 

can be used to predict environmental concentrations and cancer risk from PAH 

contaminants. 
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4.3 Materials and Methods 

4.3.1 Chemicals and biologicals 

Dimethyl sulfoxide (DMSO, cell-culture grade, ≥99%) was purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA). Cyclohexane (HPLC grade) was obtained from 

Fisher Scientific (Waltham, MA). Reference compounds that served as positive controls 

for each cell type (Supplemental Table 1) were purchased from Sigma-Aldrich (St. Louis, 

MO). Hoechst 33342, MitoTracker Orange CMTMRos, and Calcein Green AM were 

obtained from Life Technologies (Grand Island, NY). Four types of human iPSC-derived 

cells (iCell hepatocytes 2.0, catalogue #C1023; iCell neurons, catalogue #C1008; iCell 

cardiomyocytes, catalogue #CMC-100-010-001; and iCell endothelial cells, catalogue 

#C1023) used in these studies were from Fujifilm Cellular Dynamics (Madison, WI). 

Pooled human umbilical vein endothelial cells (HUVEC, catalogue #CC-2519A) were 

from Lonza (Walkersville, MD). Cell-specific media and supplements were purchased 

from the same vendor as the cells. Rationale for cell selection, metabolic competency of 

the iCell hepatocyte model, and the justification for selected phenotypes in each cell type 

are detailed elsewhere (Chen et al. 2020; Grimm et al. 2015; Iwata et al. 2017b; Sirenko 

et al. 2014b).     

4.3.2 Environmental sample collection and extraction 

 Surface soil samples were collected from a residential area in Manchester, TX, 

which is a neighborhood in the greater Houston region (Figure 4.1). This area was selected 

for sampling because it is known to be contaminated with polycyclic aromatic 

hydrocarbons (PAHs) (Sansom et al. 2018). Samples were collected on September 1st, 
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2017, immediately after the area became accessible following Hurricane Harvey landfall. 

Soil was taken from the top 2-3 cm depth using a metal shovel and deposited into 

Fisherbrand™ Certified Clean Clear Glass Straight-Sided Jars (250 mL, catalogue # 

11704299; Fisher Scientific, Waltham, MA). The longitude and latitude of each sample 

location were recorded and all samples were transported to the laboratory in an ice-filled 

chest and stored at -80°C until extractions. 

Prior to extraction, soil samples were freeze-dried (Malcolm 1968). The extraction 

procedure was designed to concentrate the ‘biologically active’ fraction (polycyclic 

aromatics, but also other polar constituents) of each environmental sample. Samples were 

extracted (Figure 4.2A) with cyclohexane and DMSO using a procedure based on the 

IP346 method (CONCAWE 1994). Specifically, 1 gram of each sample was decanted into 

a 15 mL conical-bottom disposable plastic tube (Corning, Vernon Hills, IL) and mixed 

with 2 mL of cyclohexane and 2 mL of DMSO pre-equilibrated with cyclohexane at 10:1 

ratio. Tubes were vortexed for 1 minute and centrifuged for 5 min at 4700 rpm. A 2 mL 

of DMSO layer was removed and placed into a clean 5 mL glass vial (Lab Products, 

Houston, TX). Additional amount of 2 mL of pre-equilibrated DMSO was added to the 

tube with the sample and the sample was vortexed and centrifuged as detailed above. The 

DMSO layer (2 mL) was removed and combined with the first DMSO fraction. This 

sample was used as a stock solution of each sample for subsequent in vitro experiments. 

In addition, we prepared a “method blank” sample using the procedure detailed above but 

without addition of a soil sample. This sample contained 100% DMSO with trace amounts 

of cyclohexane and was used as a “vehicle” sample throughout all in vitro experiments. 
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4.3.3 Cell culture experiments 

 All cell types (Figure 4.2B) were cultured in 384-well flat bottom plates (iCell 

Hepatocytes, catalogue# 356667, Corning; iCell Neurons, catalogue# 781946, Greiner 

Bio-One, Monroe, NC; iCell Cardiomyocytes, catalogue# 3764, Corning; iCell 

Endothelial cells and HUVECs, catalogue# 353962, Corning) in the media as 

recommended by the manufacturers (Fujifilm Cellular Dynamics or Lonza). Cells were 

cultured without treatment for a period of time required to achieve functional capacity. 

Cell plating density and other culture conditions for each of these cell types have been 

previously detailed (Grimm et al. 2015; Iwata et al. 2017b; Sirenko et al. 2014b). Each 

environmental sample’s stock extract in 100% DMSO was used to prepare 10× serial 

dilutions with cell culture grade DMSO. A master test plate was prepared to contain 308 

experimental wells. All outer wells of the 384-well plate were filled with 200 L of sterile 

distilled water to enhance temperature balance for the entire plate and were not used in the 

experiments. In the master plate, experimental wells were filled with one serial dilution 

(four 10× dilutions) of each of environmental sample extracts, “method blanks”, or pure 

DMSO. Three environmental extracts were placed on the master plate twice to enable 

examination of intra-plate reproducibility. Remaining wells were kept unfilled for cell-

specific positive control chemicals and media-only wells. The master plate was sealed 

with aluminum film and stored at -80ºC until used. Copies of a master plate were prepared 

for use in each in vitro experiment to avoid freeze-thawing.  

On the day of an experiment for a specific cell type, the master plate was removed 

from the freezer and placed at room temperature. Content of each well was diluted 100-
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fold with warm cell culture medium corresponding to the cell type under investigation to 

yield 4× working solution in 1% DMSO. Positive control chemicals (in 4× concentrations) 

and cell culture medium were added to the designated empty wells. Next, 12.5 L (for 

cardiomyocytes) or 25 L (for all other cell types) of each well on the working plate was 

transferred to the plates with cells using 384-well automatic dispenser. The final 

concentration of DMSO in all assay wells (except for media-only wells) following 

addition of the test substances was 0.25% (v/v). This amount of DMSO was without 

effects in all cell types used in these studies (Grimm et al. 2015; Iwata et al. 2017b; Sirenko 

et al. 2014b). The environmental sample extracts were assayed in the final dilution of 200-

200,000× from the stock solution. All experiments included inter-plate replicates because 

two identical plates were screened for each cell type. 

4.3.4 Cytotoxicity and functional phenotype assays 

 For each cell line, a number of phenotypes (Supplemental Table S4.2) were 

evaluated using high-content or kinetic imaging. A total of 38 phenotypes from 5 tested 

cell types, including cytotoxicity and functional readouts, were used in subsequent 

analyses. At the end of the exposure period, cells were stained with different fluorescent 

dyes and imaged as detailed in previous studies (Grimm et al. 2015; Iwata et al. 2017b; 

Sirenko et al. 2014b). Images were processed using the Multi-Wavelength Cell Scorning, 

Neurite Outgrowth, or Angiogenesis Tube Formation application modules in MetaXpress 

(Molecular Devices, San Jose, CA) software and quantitative data were extracted for 

concentration-response modeling. Briefly, effects on the mitochondrial integrity and 

intensity of iCell hepatocytes, and neurite outgrowth of iCell neurons were measured using 
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high-content imaging (ImageXpress Micro Confocal, Molecular Devices). Calcium flux 

reflecting the contract beating of iCell cardiomyocytes was determined by FLIPR tetra 

(Molecular Devices) instrument using EarlyTox Cardiotoxicity Kit (Molecular Devices). 

Effects on angiogenesis of both iCell endothelial cells and HUVECs were measured by 

3D cell culture using extracellular gel matrix followed by high-content imaging 

(ImageXpress Micro Confocal, Molecular Devices). 

4.3.5 Assay quality controls 

 The overall workflow of data processing and analysis is detailed in Figure 4.2C. 

Data quality in this study was evaluated using previously established protocols (Grimm et 

al. 2015). All cell responses were normalized to the vehicle control (0.25% “method 

blank”-treated wells). Overall quality control criteria were established to evaluate each 

cell-based assay based on three parameters (Supplemental Tables S4.3 and S4.4): (i) lack 

of a statistically significant difference between negative controls, (ii) lower than 20% 

coefficient of variation (% CV) for the negative controls, and (iii) confidence that positive 

control chemicals displayed expected effects in each cell type (expected direction of the 

effect and comparison of the EC50 of the positive controls to those in previously published 

methods).  

4.3.6 Concentration-response modeling 

 Vehicle control-scaled data for each treatment were fitted to a curve with a 

nonlinear logistic function to determine point-of-departure (POD) values, defined as the 

dilutions at which the fitted curve exceeded one standard deviation above or below the 

mean of vehicle-treated controls, using R software-based script as previously reported 
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(Sirenko et al. 2017). The choice of one standard deviation “benchmark response” was 

based on the US EPA guidance for dose-response modeling and determination of the 

point-of-departure (U.S. EPA 2012), as well as empirical testing of various thresholds as 

detailed in (Sirenko et al. 2017) which showed that a choice of one standard deviation 

generates consistently high classification accuracy.  

4.3.7 Data integration in ToxPi and clustering analyses 

 POD values generated from concentration-response modeling of each phenotype 

in tested cell types (Supplemental Table S4.5) were converted into toxicological priority 

index (ToxPi) scores (Reif et al. 2013), which were inversely scaled from 0 to 1, with 0 

representing the highest POD value in a given data set (i.e., the lowest observed 

bioactivity) and 1 representing the lowest POD value (i.e., the highest observed 

bioactivity). The scaled POD values were then used as quantitative inputs in ToxPi 

Graphical User Interface (Marvel et al. 2018) for data integration and visualization of 

bioactivity profiling. For the clustering, tested environmental samples were grouped based 

on the similarity between the biological profiling from each cell type in an unsupervised 

analysis, without prior knowledge of sample categories.    

4.3.8 Spatial association of the bioactivity and PAH concentration data 

 For each sampling location, geographic distances were calculated from GPS 

coordinates using the geosphere package in R.  Spatial interpolation was performed using 

inverse distance weighting in using the gstat package in R with idp=3. Test of spatial 

association for bioactivity or PAH data used the standard Mantel (1967) approach for 

space-time association, with values for the biological and chemical features taking the 



95 

place of the “time” dimension, and geographical distances calculated using 

latitude/longitude coordinates. This approach compares matrices of geographical 

distances to squared feature differences for all pairs of sampling sites normalized 

according to the methods in Zhou et al. (2013). For global tests using all biological or 

chemical features, distance matrices using all paired samples (i,j) were calculated using 1-

ij, where ij is the Spearman correlation of all features. The test statistic is the summed 

element-wise product of the two distance matrices, and rejects the null hypothesis for large 

values, corresponding to evidence of spatial correlation. Each test was implemented in R 

v.3.6.1 and p-values were obtained using 10,000 permutations, and padj were derived from

multiple testing correction using Benjamini-Hochberg computation (Benjamini and 

Hochberg 1995) using the p.adjust function in R. 

Both bioactivity data (ToxPi scores for each cell type) and chemical concentrations 

of PAHs in these samples (data from Sansom et al 2020) were used for these analyses 

(Supplemental Table S4.6). Concentration of polycyclic aromatic hydrocarbons (PAHs) 

in these environmental samples were measured by Geochemical and Environmental 

Research Groups at Texas A&M University. The priority 16 PAHs, which have been 

designated high priority pollutants by the US EPA (Keith 2015), as well as the total PAH 

concentrations were analyzed by gas chromatography (HP5890, Hewlett Packard, 

Wilmington, DE) with mass spectrometry detection (Agilent 5972, Agilent Technologies, 

Santa Clara, CA) in selected ion monitoring mode.  
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4.3.9 Hazard index calculation and cancer risk assessment based on PAHs 

concentrations 

 We characterized the non-cancer and cancer risk (Supplemental Table S4.7) 

associated with each sample as follows using the U.S. EPA Regional Screening Level Soil 

Screening Levels (SSL) for residential soil. For non-cancer, for each sample, we 

calculated (Supplemental Table S4.8) the hazard index (HI) by summing the ratios 

between the measured soil concentration Ck for PAH k (converted to mg/kg) and the 

corresponding non-cancer SSLnc,k:  

HI = ∑ C𝑘/SSLnc,𝑘

𝑛

𝑘=1

 

This calculation is based on the individual PAH non-cancer SSLnc,k corresponding to a 

hazard quotient of 1. Several PAHs did not have SSLs, so they were not included in the 

calculation.  For cancer, we converted each PAH concentration to benzo[a]pyrene (BaP)-

equivalents using the Toxic Equivalency Factors (TEFs) from (Nisbet and LaGoy 1992), 

CBaPeq,k = Ck TEFk, and then calculated the cancer risk using the cancer SSLc,BaP for BaP 

(Supplemental Table S4.8): 

Cancer Risk = 10−6 ∑ CBaPeq,𝑘/SSLc,BaP

𝑛

𝑘=1

This calculation is based on the individual PAH cancer SSLnc,k corresponding to a cancer 

risk of 10-6.  Similar results were obtained when using alternative TEFs (U.S. EPA 1993; 

U.S. EPA 2010) (Supplemental Table S4.8). 
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4.3.10 Prediction between chemical and biological profiling 

 For prediction of individual chemical features from the collection of biological 

features, and individual biological features from the collection of chemical features, 

ordinary linear regression performs extremely poorly due to the large number of prediction 

features compared to the sample size. Penalized ridge regression is a useful alternative, 

and we used the multivariate nature of the prediction (e.g., multiple chemicals 

simultaneously) to offer further improvements in a unified model. Briefly, one can 

envision the chemical concentration data as a multi-dimensional readout Y with n=39 rows 

and 19 columns for cancer risk and chemicals (include PAH aggregate values) and a 

predictor matrix X with 39 rows and 39 columns (including the intercept unit column) for 

biological features. Prior to fitting, all data columns were centered and scaled to unit 

variance for comparability and to ensure no predictor dominated simply due to scale 

differences. For tuning parameter , 𝐵̂ = (𝑋𝑇𝑋 + 𝜆𝐼)−1(𝑋𝑇𝑌) is a 39 × 19  coefficient

matrix, with final prediction 𝑌̂ = 𝑋𝐵̂.  was evaluated on a grid such that log10() varied 

uniformly from -1.0 to 6.0 in increments of 0.1. Evaluations were performed using leave-

one-out cross validation, i.e. prediction for elements of Y from the ith sample used 

coefficients obtained after removing the ith sample, to avoid overfitting. Selection of the 

tuning parameter was performed to give minimum mean squared prediction error. Final 

predictions were returned to the original Y scale by multiplying each column by the 

original standard deviation and adding the original mean. The entire procedure was then 

run again to predict biological features by reversing the assignment of X and Y matrices. 
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4.4 Results 

A recent longitudinal study that assessed exposure to PAHs among residents of 

Manchester, an environmental justice neighborhood located in the East End of Houston, 

TX (Figure 4.1), showed evidence of redistribution of PAHs due to extreme flooding 

associated with Hurricane Harvey in 2017 (Horney et al. 2018; Stone et al. 2019). We 

sampled a total of 39 locations across the whole neighborhood; surface soil samples were 

collected immediately after the flooding receded. Because of the large number of potential 

sources of PAH in and around Manchester, and previous reports of considerable gradients 

of PAH concentrations among these samples, we processed (Figure 4.2A) the soils using 

a procedure that is designed to extract carcinogenic PAHs (ASTM International 2014; 

CONCAWE 1994). Specifically, this method preferentially extracts PAH that are 

toxicologically relevant, those with >3 rings, without or partially alkylated (Carrillo et al. 

2019). 

To profile the bioactivity of the environmental samples, we used a targeted set of 

human cell-based models and phenotypes (Figure 4.2B) that can be used to assign 

compounds to chemical classes. The quantitative estimates of in vitro effects from these 

cells/phenotypes can serve as a conservative surrogate for regulatory in vivo points of 

departure (Chen et al. 2020). The data were analyzed using a multi-stage workflow (Figure 

4.2C) that included quality assurance, concentration-response analysis, integration of the 

data from multiple cell types/phenotypes, spatial and correlation analyses of both 

bioactivity and PAH data, and supervised feature prediction between bioactivity and PAH 

datasets.  
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4.4.1 ToxPi and clustering analyses of bioactivity in environmental soil samples 

We used dilution series-derived point-of-departure data from 38 phenotypes in 5 

cell types (Supplemental Table S4.5) to compute an overall bioactivity for each of the 39 

tested environmental samples (Figure 4.3A). Most of the samples exhibited little to no 

bioactivity in most phenotypes, as can be seen from low ToxPi values for about 75% of 

all samples analyzed. Only a handful of samples were bioactive, as signified by a sharp 

increase in the ToxPi scores. Interestingly, the sensitivity analysis, showed by the 

confidence interval (95%) whiskers for each red dot, demonstrated that high ToxPi 

samples’ rank was largely invariable, while the low-ranked samples’ confidence intervals 

were wide and largely overlapping. Figure 4.3B shows the ToxPi profiles and their 

clustering for each sample. The bioactive samples showed effects in several cell types, 

primarily in endothelial cells and iCell cardiomyocytes. Clustering of the ToxPi profiles 

for each sample showed that several clusters of very similar bioactivity were present. 

4.4.2 Spatial association of bioactivity, PAH concentration data, and risk 

characterization 

Next, we tested if spatial association was significant for bioactivity profiles. First, 

we mapped the overall bioactivity ToxPi scores, or scores for each cell type separately, 

for each location (Figure 4.4). Clusters of bioactivity were evident; however, the 

signatures of the individual cell types were quite distinct, similarly to our previous finding 

that each of tested cell types contributed independently to the utility of this overall in vitro 

model (Chen et al. 2020). While a number of tested locations had consistently low 

bioactivity across the whole panel, several locations appeared to be obvious hot spots 
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identified by this analysis. Next, we used a statistical test of spatial association (a modified 

version of Mantel (1967)) to determine whether physical proximity among sampling sites 

was associated with the similarity of the bioactivity. Upon stringent false discovery rate 

correction procedures, no bioactivity phenotype individually, or in aggregate, reached 

significance (Supplemental Table S4.6). Similar analyses were performed using PAH 

concentrations in the same samples (Figure 4.5). Several clear “hot spots” were apparent 

for both total PAH (Figure 4.5A) and the individual PAHs (data not shown).  

As shown in Figure 4.5B and Supplemental Table 4.8, the non-cancer risks 

associated with these measured PAH concentrations are well below the levels of concern 

denoted by HI<1. For cancer, however, the calculated cancer risks for many samples are 

above the commonly-used screening level threshold of 1×10-6, though still within EPA’s 

generally acceptable risk range of 10-4 to 10-6 (U.S. 2011).  In addition, a statistical test of 

spatial association for PAH data (Figure 4.5C, Supplemental Table S4.6) showed that most 

of the substances, as well as their cumulative values and PAH-derived cancer risk factor, 

were highly significantly co-located, even when stringent false discovery rate correction 

procedures were applied. 

4.4.3 Prediction between chemical and biological profiling 

Next, we tested if overall in vitro bioactivity correlated with PAH-derived non-

cancer (i.e., HI) or cancer risk values for each sampling locations. Highly significant 

positive correlation was observed for both HI (r=0.45, p<0.01) and cancer risk (r=0.48, 

p<0.005) when samples 102 and 49 were removed as these had the highest HI and cancer 

risk values. Next, we sought to determine what individual in vitro bioactivity phenotypes 
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and soil PAH concentrations correlated (Figure 4.6). Most of the phenotypes (all of the 

phenotypes in iCell endothelial cells and iCell cardiomyocytes) did not correlate 

significantly with PAH values after adjustment for multiple comparisons (Figure 4.6A); 

however, several in vitro phenotypes showed strong negative correlations – most of the 

phenotypes in HUVECs and total branch phenotype in iCell neurons. Negative correlation 

for the individual phenotypes is expected as it indicates that higher PAH concentration 

indicate higher potency (i.e., lower POD). Interestingly, in iCell hepatocytes, several 

PAHs were positively associated with cell viability and mitochondrial integrity, also 

concordant with the expected relationship between PAHs and these effects in hepatocytes. 

Figure 4.6B shows examples of two PAHs, anthracene and benzo[a]anthracene, which 

showed somewhat different geographical distribution of the “hot spots”; however, their 

concentrations were highly correlated with the environmental sample-induced effects 

HUVEC nuclei area phenotype (Figure 4.6C, top). We also show a geographical 

distribution of bioactivity in iCell neurons ATP phenotype (Figure 4.6C, bottom), as an 

example of a phenotype that did no correlate with PAH concentrations in environmental 

samples.  

Because of the strong correlation among the PAH concentrations and some 

bioactivity phenotypes (Figure 4.6, Supplemental Table S4.6), we tested whether in vitro 

bioactivity data can be used collectively to infer PAH concentrations in these 

environmental samples, or vice versa. This question is relevant because both in vitro 

analyses and analytical chemistry assays are time consuming and if these data streams are 



102 

predictive of each other, considerable time and resource savings can be achieved by 

prioritizing sample analyses.  

Using a regression model with rigorous cross-validation, we found that bioactivity 

data were highly predictive of the PAH concentrations, both for many individual priority 

PAHs, their summary measures, and the cancer risk (Table 4.1). Figure 4.7 shows 

representative examples of the relationships between observed and predicted values. 

Because the individual PAHs, their sum and the cancer risk values are highly correlated, 

it is not surprising that similar patterns exist between observed and predicted values 

(Figures 4.7A-C). It is noteworthy, however, that due to the nature of regression-based 

predictions, predicted values are “shrunken” estimates (toward a common mean) with less 

variation than the actual data. For predictions of cancer risk and PAH content, the most 

informative in vitro phenotypes were HUVEC nuclei area and mitochondria intensity, and 

total branch length in iCell neurons, see Supplemental Table S4.9 for all the predictor 

coefficients for all summary and individual priority PAHs, and their relative ranks. For 

HUVEC nuclei area and iCell neurons total branch length, the result may not be 

unexpected, as the pairwise correlations of these quantities with total PAH and cancer risk 

as observed in Figure 4.6A were of high significance. However, the high rank of iCell 

hepatocyte nuclei area as a highly informative predictor was not apparent from the 

pairwise correlations, and points to the advantage of using a multivariate regression 

prediction model in this context. 

Predictions of in vitro bioactivity from PAH concentrations were less informative, 

with only 4 of 38 phenotypes having multiple testing-corrected significant correlations 
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(Table 4.1) between observed and predicted values. Even though the correlations were 

significant for at least some phenotypes, the ranges of predicted bioactivity values was far 

narrower than those of the actual effects (Figure 4.7D), indicating that such predictions 

are difficult to interpret with respect to the potential range of hazards among real 

environmental samples. Supplemental Table S4.10 shows all of the regression predictor 

coefficients for various PAHs, and their relative ranks in predicting the bioactivity 

measures. Overall, the predictor coefficients were far smaller than those in case of 

predicting PAH concentrations from bioactivity. 

4.5 Discussion 

Many have suggested the potential utility of cell-based in vitro bioassays for 

addressing the potential human and ecological health hazard of complex mixtures 

(Drakvik et al. 2020; Escher et al. 2020b; Hayes et al. 2020; Kassotis et al. 2016). Large-

scale in vitro toxicity screening programs such as Tox21 or ToxCast focus largely on the 

first-pass testing for individual chemical compounds and some complex substance 

formulations (Catlin et al. 2018; Judson et al. 2010b), they are yet to be widely applied in 

the evaluation of complex environmental mixtures (Kassotis et al. 2016). In the past two 

decades, dozens of studies used various cell types, derived from both mammalian and 

aquatic species and prokaryotes, have been used to study sediment, soil and water samples 

(Supplemental Table S4.11). Most often these studies examined general cytotoxicity, 

effects on the DNA (various genotoxicity and mutagenicity endpoints), as well as 

activation of various hormone and metabolism-related receptors. Concentration-response 
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relationships were routinely evaluated and it was demonstrated that bioactivity can be used 

not only in comparative analysis of the relative potency among samples, but also to derive 

quantitative estimates of hazard (Escher et al. 2018; Escher et al. 2015; Jia et al. 2015). 

Overall, these studies established a body of evidence that a battery of bioassays can be 

used to support decision-making based on the bioactivity of the actual environmental 

samples.  

 Our work builds on this empirical foundation and shows that human iPSC-derived 

cells may not only be used to rank environmental samples with respect to potential human 

health concerns, but they also introduce additional valuable information through 

functional phenotypes. We found that among a large number of samples collected in a 

relatively confined geographical area with equal potential of PAH contamination 

associated with the proximity of numerous point sources (Stone et al. 2019), only some 

locations indicated a potential concern, information that could serve as a rationale for 

follow up analyses with additional assays and models. Interestingly, we found that 

depending on the cell type, the “hot spots” varied. This finding is commensurate with 

evidence that certain cell types and phenotypes are differentially affected by various 

chemicals. Although a screening-level risk characterization based on PAH concentrations 

indicated little concern for non-cancer effects, a possible concern was identified for some 

samples for PAH-related cancer risks, which in many cases exceed the screening level risk 

of 10-6.  Similarly, while the calculated risk levels were still within the “generally 

acceptable” range used by EPA, because only PAHs were measured, the cumulative 

effects of other, unmeasured toxicants (which are surely present in this neighborhood) are 
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not accounted for.  In such a situation, it is common under EPA guidelines to strive for the 

“lower end” of the risk range and the bioactivity data may provide important clues on the 

types of hazards that may be present and also the level of concern for follow up analyses. 

A number of previous studies examined spatial relationships in bioactivity 

between sampling locations, or tested for the strength of association between bioactivity 

and chemical contamination in a spatial dimension. A study of 41 surface soil samples 

from Tianjin, China used a suite of in vitro cell bioassays focused on nuclear receptors 

and genotoxicity endpoints to examine the spatial clustering of the bioassay data (Xiao et 

al. 2006). This study found that the geographic distribution of aryl hydrocarbon receptor 

(AhR)-agonism and genotoxic bioactivity exhibited strong positive spatial correlation; 

however, the geographic distribution of pro-estrogenic bioactivity was markedly different 

from that of AhR-agonists effects. An example of a study that correlated in vitro and 

analytical data from environmental samples is a publication by Leusch et al (Leusch et al. 

2010) who compared the responses of five bioassays designed to measure estrogenic 

activity and chemical analysis on water samples (ground and river water, and raw and 

treated sewage). The authors showed that the bioassays that were robust in terms of assay 

sensitivity and reproducibility were well-correlated with the data from chemical assays. 

An example of a study that looked at both spatial and bioactivity-chemical analysis 

correlations is the work of Jung et al (Jung et al. 2012) who used 21 sediment samples 

from Masan Bay, Korea, to identify several ‘hot spots’ of bioactivity (estrogen- and 

dioxin-responsive receptor assays). The authors also used spatial correlation analysis 

between organochlorine pesticides, polychlorinated biphenyls, dioxins and alkylphenols 
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and their biological effects to pinpoint the sources, such as sewage treatment and industrial 

outfall, of environmental hazards. Recent examples of studies in the United States and 

Europe demonstrate that bioassay-based analysis of environmental mixtures for detecting 

biological effects should be combined with the analysis of a wide range of chemical 

contaminants to ascertain additional risks that may not be evident from the chemical 

analyses alone (Blackwell et al. 2019; Blackwell et al. 2017; Konig et al. 2017; Neale et 

al. 2020). 

These studies established important foundation for examining the relationships 

between exposure and bioactivity-derived hazard and for quantifying these relationships 

bioanalytical equivalent concentrations (Jahnke et al. 2018) and exposure-activity ratios 

(Blackwell et al. 2017). Our study provides strong additional evidence of such 

relationships. It is noteworthy that our study showed that while there was an overall 

significant positive correlation between bioactivity and PAH-associated HI and cancer 

risk, the the correlation coefficients were only about 0.5. A similar finding was reported 

in a study of rain events impact on the chemical pollution in river water where the 

measured chemicals explained only a small fraction (<8%) of the in vitro biological effects 

(Neale et al. 2020). These data indicate that bioactivity, while valuable information, may 

not be sufficient for evaluating certain chemical-specific risks. These results are not 

altogether surprising, as certain endpoints, such as cancer and immunotoxicity, are known 

to be poorly covered by currently available in vitro assays. Thus, we reason that for 

environmental monitoring, high bioactivity scores may be able to identify “hot spots” or 
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areas of concern for the follow-up investigation, but that low bioactivity scores are not 

sufficient to rule out potential risk.  

Another interesting corollary to the datasets that combine measurements of 

chemical contamination and bioactivity on the same samples is the possibility of using 

one or the other as predictors. Previously, (Leusch et al. 2010) calculated a predicted 

estrogenicity for environmental water samples by multiplying the concentration of each 

chemical as determined by standard chemical methods with the relative potency for each 

individual compound. This report concluded, based on dose reconstruction from the 

individual chemical concentrations, that there was a good agreement between the 

predicted and measured estrogenicity; however, this study used only attempted prediction 

of hazard for one type of hazard (i.e., estrogenicity) and only through dose reconstruction. 

In this respect our study offers several additional advances. The correlations between PAH 

measurements and bioactivity levels show that a relatively small proportion of bioactivity 

measurements are substantially correlated with PAH levels in environmental samples. 

However, these correlations are sufficiently large (correlation >0.5) such that summary 

PAH levels and cancer risk values can be predicted with reasonable accuracy from 

bioactivity measurements. Interestingly, we found that a reverse prediction, from PAH 

concentrations to bioactivity, was not as informative. This finding reflects the potential 

indication that other compounds in the samples may have contributed to the overall 

bioactivity. It is also possible that poorer prediction of bioactivity may simply be due to 

an imbalance in the number of PAHs vs. the number of bioactivity phenotypes. Ideally, it 

would be possible to obtain quantitative understanding of the contributions of individual 
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measured substances to overall bioactivity, such as utilizing exposure-activity ratios based 

on bioactivity data on individual substances.  While some success in this regard have been 

made for water contamination (Blackwell et al. 2019; Blackwell et al. 2017; Neale et al. 

2020), such efforts are more challenging in the case of soil contamination due to 

differences in extraction and bioavailability when comparing soil concentrations with 

concentrations in vitro media (Luo et al. 2020). Future studies are needed to better 

understand differential extraction efficiency and bioavailability of compounds of interest 

in order to make more confident comparisons across matrices. Overall, these findings 

provide additional important evidence as a proof of concept for the use of bioactivity as 

an approximate chemical concentration surrogate, although additional data should be 

generated to refine these findings. In addition, the ability to generalize beyond the range 

of concentrations observed is unknown, and we emphasize that aspects of our data 

structure and PAH content may be specific to the Manchester neighborhood sampled here. 

This study has important limitations. First, the chemical comparisons and 

environmental sample extraction methods were focused on PAH contamination and as 

such provide an over-simplified representation of the chemical complexity of the 

environmental samples, especially after a major natural disaster. While this chemical class 

was the most natural choice because of previous reports of PAH contamination in this area 

(Horney et al. 2018; Stone et al. 2019) and geographical proximity of the relevant point 

sources, additional chemicals need to be considered in future studies. For example, we 

found that bioactivity “hot spots” varied among cell types indicating that other 

contaminants may also be present and additional chemical analyses need to be performed. 
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Second, our risk characterization and comparisons to HI and cancer slope factors were 

equally restricted to PAH-derived values which may have reduced our ability to observe 

true relationships between chemical concentrations and bioactivity. Third, we emphasize 

that, by focusing on a single neighborhood, the range of variation in PAH may have been 

limited in comparison to other areas. Thus, under a wider sampling regime it is likely that 

the observed spatial relationships would have been significant for a larger number of 

individual chemical and/or bioactivity components. Finally, we note that the large number 

of cell-based phenotypes and measured contaminants relative to the sample size 

necessitated the use of penalized regression as a prediction tool, which can provide biased 

estimation in order to achieve higher prediction accuracy. Follow-up studies focusing on 

only a select few cell-based assays, informed by this and previous studies, as well as a 

larger pool of assays from ToxCast/Tox21 (Paul Friedman et al. 2020) might be required 

in order to provide unbiased estimation of the precise relationships between bioactivity 

and PAH contaminant concentrations. 

In summary, this study explored the use of a small compendium of human cell 

lines representing multiple potential target tissues for bioactivity-based prioritization in 

the context of environmental monitoring. Using samples with suspected PAH 

contamination in a community in a greater Houston area that experienced massive 

flooding associated with Hurricane Harvey, we found joint spatial variation of PAH 

components and bioactivity, with different cell-types exhibiting largely distinct spatial 

patterns of activity. In addition, we found that the cell-based bioactivity data correlate 

with, and can be used to predict environmental concentrations for several PAH 
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contaminants, as well as overall PAH summaries and cancer risk. However, several high 

concentration outliers in terms of PAH contamination were not well predicted by 

bioactivity, possibly due to the need for broader coverage of biological space in the cell-

based assays. Overall, these results suggest that human cell-based assays, data that can be 

procured within weeks after a contamination event, can provide useful information for 

rapid decision-making in emergency situations, supplementing traditional targeted 

chemical monitoring with human effects-based monitoring so as to identify possible “hot 

spots” that warrant additional investigation for their potential to increase human health 

risk. 
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Table 4.1 Cross-validated prediction of PAH concentrations from all in vitro bioactivity 

data, and of bioactivity quantification from all PAH levels. 

Parameter r* padj
† rho* padj

† 

Predicting PAH concentrations from in vitro bioactivity data* 

Cancer Risk 0.47 <0.01 0.46 <0.01 

Total PAHs 0.44 <0.01 0.48 <0.01 

Priority 16 PAHs 0.42 <0.01 0.43 <0.05 

Benzo(k)fluoranthene 0.48 <0.01 0.42 <0.05 

Benzo(b)fluoranthene 0.48 <0.01 0.41 <0.05 

Indeno(1,2,3,-c,d)pyrene 0.45 <0.01 0.48 <0.01 

Chrysene 0.45 <0.01 0.46 <0.01 

Dibenzo(a,h)anthracene 0.45 <0.01 0.42 <0.05 

Benzo(g,h,i)perylene 0.42 <0.01 0.46 <0.01 

Benzo(a)pyrene 0.40 <0.05 0.37 <0.05 

Pyrene 0.36 <0.05 0.41 <0.05 

Fluoranthene 0.34 <0.05 0.37 <0.05 

Benzo(a)anthracene 0.27 n.s. 0.36 <0.05 

Fluorene 0.17 n.s. 0.30 <0.05 

Predicting in vitro bioactivity data from PAH levels 

HUVEC nuclei area 0.65 <0.001 0.54 <0.01 

iCell Neurons mean outgrowth 0.44 <0.05 0.12 n.s.

HUVEC mitochondria intensity 0.39 n.s. 0.47 <0.05 

iCell Neurons total branch 0.31 n.s. 0.49 <0.05 

*correlation (Pearson r or Spearman rho) of predicted response values using multivariate ridge

regression prediction compared to actual response values, and †associated padj-values expressed

as false discovery-adjusted using the Benjamini-Hochberg method applied to all responses (only

significant results using padj<0.05 shown).
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Figure 4.1 Geographical map of the study area of Manchester neighborhood in Houston, 

Texas.

A map of South-East section of the greater Houston area showing both downtown (top 

left) and Manchester (red box, bottom right) areas. Inset is a zoom-in of the Manchester 

neighborhood (blue outline) and surroundings that include a major petrochemical refinery 

(North-East), an inter-state highway (West), and a rail yard (South). Background and inset 

maps are from ESRI/OpenStreetMap. Map resolutions are indicated in the bottom left 

corners. 
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Figure 4.2 Overall experimental design of the study.

(A) A schematic diagram of the extraction procedure for environmental soil samples. (B)

Bioactivity data collection overview. In vitro experiments were performed in 384-well

plates using 5 human cell types. (C) Data analysis workflow. Quality control (QC) was

used to filter assay/cell line combinations to ensure high concordance among controls and

high intra- and inter-plate reproducibility. For the assays passing QC, points of departure

were estimated using logistic (Hill) function curve fitting, and overall and cell-type-

specific measures of bioactivity computed across the assays. Analysis of bioactivity was

further grounded in comparisons to polycyclic aromatic hydrocarbon (PAH) data on the

same samples. Data was integrated using ToxPi approach. Spatial association and

correlations between biological and PAH data were evaluated. Finally, trained

(supervised) models to “predict” the PAH data from bioactivity or vice versa were

constructed.
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Figure 4.3 Bioactivity-based ranking of the sampling locations based on the data from 5 

human cell types.

(A) The Toxicological Priority Index (ToxPi) approach was used to combine data across 

cell types (pie chart inset) and rank them based on the combined ToxPi score. Horizontal 

whisker represents a resampling-based confidence interval (95%) on the rank of each 

sampling location (red dots). (B) Clustering (Ward’s D method) of the sampling locations 

using ToxPi scores. ToxPi radial plots were the same as those shown in panel A. 
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Figure 4.4 Interpolation of the spatial patterns in bioactivity of the samples.

Sampling locations are identified as black dots and the ToxPi integrated bioactivity (on a 

scale from 0=lowest effect (dark blue), to 1=highest effect (orange)) was used to create 

the maps (see Methods) that visualize ToxPi values as a color gradient (see the legends in 

each graph). The maps show overall bioactivity based on all 5 cell types (top left), or 

bioactivity in each of the cell types individually (see labels for each map for cell identifier). 
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Figure 4.5 Polycyclic aromatic hydrocarbons (PAH) levels in the studied sample 

locations.

(A) Interpolation of the spatial patterns in total concentration of PAH (ng/g soil). Sampling

locations are identified as black dots and the cumulative PAH concentrations were used

to create the maps (see Methods) that visualize PAH levels as a color gradient (see the

legend inset for concentration/color). (B) Screening-level risk characterization for non-

cancer (upper panel) and cancer (lower panel) risks, based on EPA Soil Screening Levels.

Horizontal dashed lines denote screening levels of potential concern, based on a non-

cancer Hazard Index=1 and a cancer risk of 10-6. (C) P-values (log10 scale) for spatial

correlation/persistence for cancer risks (based on PAH TEF), individual, or cumulative

concentrations of 16 priority PAH, or total PAH. These P-values were derived using a

modification of a standard space-time correlation method as described in text. Shown are

adjusted p-values for each parameter and a vertical dotted line represents padj=0.05 (false

discovery rate) threshold.



117 

Figure 4.6 Correlation analysis between PAH content and bioactivity of the soil 

samples.

(A) Spearman correlation of all bioactivity phenotypes with cancer risk, total, 16 priority

or individual PAH concentrations. Significant (padj<0.05) correlations are shown as dots

that are colored based on the  value as indicated in the color bar. (B) Interpolation of the

spatial patterns in concentrations of anthracene and benzo[a]anthracene (ng/g soil) as

representative PAH. Sampling locations are identified as black dots and the cumulative

PAH concentrations were used to create the maps (see Methods) that visualize PAH levels

as a color gradient (see the legend inset for concentration/color). (C) Interpolation of the

spatial patterns in bioactivity of soil samples for the HUVEC (nuclei area) and iCell

Neurons (ATP) as representative phenotypes. Sampling locations are identified as black

dots and the effective concentrations (as % dilution of the soil extract) were used to create

the maps (see Methods) that visualize bioactivity as a color gradient (see the legend inset

for effective concentration/color).
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Figure 4.7 Illustrative cross-validated regression predicted values vs. actual values, for 

predicting (A) total PAH concentrations (B) Cancer Risk and (C) Benzo(b)fluranthene 

from bioactivity measurements, and (D) HUVEC nuclei areas from the measured PAH 

concentrations.

See correlation coefficients and p-values for the correlations shown here listed in Table 

4.1. 
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CHAPTER V 

CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS 

5.1 Conclusions 

New approach methodologies (NAMs) are well developed and widely used in 

chemical and mixture risk assessment (Escher et al. 2019; Parish et al. 2020). Among these 

methods, high throughput in vitro screening models have shown great potential to identify 

the bioactivity and toxicity mechanisms of various chemical compounds (Sirenko et al. 

2014b). Large in vitro databases created by governmental agencies are continuously 

updated and provide evidence and novel strategies for chemical risk assessment (Judson 

et al. 2014). Additionally, in vitro bioassays have been established to evaluate the toxicity 

of designed mixtures as well as environmental samples (Escher et al. 2020b; Kunz et al. 

2017). Because phenotypes included in current in vitro screenings are mainly based on 

cytotoxicity and receptor activity, a knowledge gap still exists in the relevance of these 

endpoints to human health effects. Therefore, it is essential to develop in vitro models that 

have multiple physiologically relevant phenotypes related to human health, for which with 

high throughput methods are available to enable fast response, as well as satisfactory 

reproducibility to ensure precise prediction for chemical/mixture toxicity. The overall 

hypothesis of this research is that a tiered, risk-based strategy for safety evaluation 

consisting of human organotypic in vitro cultures is a sensible “fit-for-purpose” approach 

to characterize hazards of different environmental chemicals and complex mixtures.  

In Specific Aim 1, we utilized a combination of multiple iPSC-derived cell types 

(hepatocytes, neurons, cardiomyocytes, and endothelial cells) and primary human 
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umbilical vein endothelial cells (HUVECs) to evaluate the bioactivity of multiple classes 

of chemicals (pesticides, polycyclic aromatic hydrocarbons, high production volume 

industrial chemicals, phthalates, and heavy metals). Measurements of multiple endpoints 

for each cell line including cytotoxicity and functional effect phenotypes were 

successfully developed and applied in evaluating the bioactivity of chemicals. We were 

able to prioritize tested chemicals and group them into clusters based on their biological 

profiling. In vitro results from this study were shown to be as comparable as previous 

datasets such as ToxCast/Tox21 and chemical structure/property-based descriptors in 

assigning compounds into chemical classes. In addition, PODs derived using this model 

performed well as a conservative surrogate for regulatory in vivo PODs and were less 

likely to underestimate in vivo potency and potential risk as compared to other NAM-

based PODs.  

In Specific Aim 2, we tested “designed” mixtures in the in vitro models developed 

in Specific Aim 1 under the same conditions. Bayesian concentration-response modeling 

of chemicals or their mixtures was performed to derive PODs. Probabilistic cumulative 

dose-response models including independent action (IA) and concentration addition (CA) 

were conducted to estimate the mixture effects. By comparing the modeling results to 

experimental readouts, we observed that CA is a more accurate predictor of mixture effects 

based on PODs compared to IA, suggesting that CA is a preferred first approximation to 

predict the toxicity of a mixture when data for the constituents are available.  

In Specific Aim 3, we evaluated the responses of the human in vitro models 

developed in previous aims to complex environmental mixtures collected from the 
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Houston residential area known to be contaminated with PAHs. We found significant 

evidence of spatial correlation of a subset of PAH contaminants and cell-based endpoints. 

Additionally, we show that cell-based bioactivity can be used to predict environmental 

concentrations for several PAHs, as well as overall PAH levels and cancer risk.  

Overall, this dissertation demonstrates the utility of a compendium of human cell 

in vitro models to screen diverse environmental chemicals and complex mixtures, 

including iPSC-derived cells and a primary cell line. The innovative strengths of this 

research are that it connects multiple branches of toxicological science, including in vitro 

toxixology, computational toxicology, and environmental chemistry, to answer the overall 

question of how to improve the application of in vitro methodologies in chemical and 

mixture toxicity evaluation. Federal government agencies such as US EPA have 

announced a prioritized effort to reduce animal testing and to advance the research and 

development of NAMs for evaluating the safety of chemicals (Craig et al. 2019). Thus, 

one novelty of this study is the selection of high-throughput in vitro models for testing. 

Although in vitro cell models have long been applied in toxicity testing, we selected a 

compendium of human iPSC-derived cells from different organs, which possess 

traditional cytotoxicity endpoints as well as physiologically relevant phenotypes that are 

closely related to human health effects. More functional endpoints also increase the 

confidence in using in vitro dataset for chemical toxicity evaluation. Also, for the first 

time, this study combined multiple cell types in test the same set of chemicals/mixtures, 

allowing us to identify different potential effects to target tissues/organs and to more 

comprehensively evaluate chemical/mixture toxicity.   
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Another contribution from this study is that the novel methods established based 

on the in vitro dataset can serve as a screening tool with rapid response for chemical risk 

assessment and decision making, which can be important in emergency-related 

environmental contamination. In vitro data for individual environmental chemicals 

(Specific Aim 1) can further be used to group compounds and mixtures, thereby showing 

the utility of biological profiles in read-across, a crucial strategy in the mission to adopt 

New Approach Methodologies in place of traditional animal toxicity testing. Also, our in 

vitro database is as reliable and comprehensive as previous datasets like ToxCast/Tox21, 

while requiring fewer assays and less time. By testing mixtures in the same panel of in 

vitro models, we also found that the concentration addition model is useful in predicting 

the toxicity of a mixture when the constituents are available (Specific Aim 2), indicating 

that mathematical modeling facilitates the toxicity evaluation process. In vitro data can 

even be used when mixture components are unknown to quickly identify hot spots at risk 

by predicting chemical concentrations and potential hazards. (Specific Aim 3).      

Together, each specific aim in this dissertation contributed to a better 

understanding of how high throughput in vitro models can be used for toxicity screening 

of individual chemicals, “designed” mixtures, and real-life environmental mixtures. Each 

specific aim added a level of complexity to our analysis to successfully couple high 

throughput in vitro screening methods with novel analysis approaches in other realms of 

toxicology. This included grouping and comparing our experimental results to current 

chemical risk assessment databases (Specific Aim 1), using mathematical models to 

identify interactions of mixture constituents (Specific Aim 2), and employing analytical 
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chemistry for spatial correlation and toxicity predictions (Specific Aim 3). The successful 

accomplishments of this research will advance in vitro toxicity testing methods and 

contribute to the paradigm shift from traditional animal models to high throughput in vitro 

methods of hazard assessment. This new testing strategy provides insight to identify areas 

of concern and their direct quantitative risk characterizations based on bioactivity 

profiling, which is useful to guide risk assessments of regulatory agencies.     

5.2 Limitations 

Studies within this dissertation have successfully evaluated the bioactivities of 

diverse environmental chemicals and complex mixtures using novel, cell-based in vitro 

models. Looking forward, several experimental limitations can be further improved. In 

Chapter II, we selected 42 priority compounds to represent ubiquitous environmental 

contaminants. Considering the diversity of chemicals present in the environment, 

chemicals screened in this study were limited by both the number of classes and the 

chemicals within certain classes (phthalate n=2, PAHs n=5). Furthermore, this study did 

not include other, more traditional contaminant classes such as polychlorinated biphenyls 

(PCBs) or per- and polyfluoroalkyl substances (PFAS) in screening, and thus cannot 

directly address legacy environmental issues or more recent contamination problems. To 

fill these knowledge gaps, our experimental design can be expanded by introducing more 

environmental chemicals of concern to public health. Assay throughput can also be 

improved to accomplish this, although in doing so, there should be minimal compromise 

for data quality in order to gain the most accurate results.   



124 

In Chapter III, “designed” mixtures were prepared based on other in vitro datasets 

as well as regulatory values, trying to mimic the real-life exposure with different scenarios. 

However, the two probabilistic models (independent action, IA; and concentration 

addition, CA) applied to compare the computational modeling results and experimental 

outputs have their own limitations. The concept of IA was introduced by the assumption 

that the components of a mixture act upon different biological subsystems and with 

different modes of action, and the CA model assumes each component acts upon a 

common molecular target that contributes to a joint effect in proportion to their individual 

potencies. Considering the different environmental chemicals in “designed” mixtures, 

both models cannot fit the exact mode of actions for each component. Furthermore, both 

IA and CA are established based on the same assumption that there is no interaction 

between individuals in a mixture, which, alternatively, was found to be the case for some 

mixtures in this study. Therefore, more complex modeling with parameters to adjust the 

contribution of components to include interactions is needed. Additional modeling 

analysis will also help identify chemicals and chemical groups that drive certain toxicities, 

as well as their interactions (additive, synergistic, antagonistic, or potentiating). 

In Chapter IV, limited analytical chemistry data was available for the 

environmental soil samples collected and screened for bioactivity in this study, making it 

difficult to identify which classes of chemicals are driving certain bioactivities in target 

organs/tissues. Limited information about chemical concentrations in environmental 

mixtures also reduces the strength of spatial correlation and hazard predictions. To address 

these issues, future studies might measure the concentrations of more chemicals in such 
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environmental mixtures. Considering that different classes of a chemical may need 

different analytical instruments with different extraction methods, it would be of great 

benefit to introduce non-targeted analysis such as ion mobility-mass spectrometry. 

Analyzing the concentrations of more chemicals in complex mixtures would improve the 

identification of correlations among bioactivity, spatial distribution, and chemistry 

profiles, which would further help to validate the predictions between chemical 

concentrations and hazards. 

5.3 Future directions 

We have shown the utility of in vitro models using a compendium of human iPSC-

derived cells and primary cell line in environmental chemical and mixture bioactivity 

evaluations. The studies in this dissertation are derived from previously published 

literature about each cell type and further expand these ideas to test environmental 

chemicals and more complex environmental mixtures. Our studies have also shed light on 

future directions and potential improvements needed to advance the use of in vitro 

screenings for chemical risk assessments. 

5.3.1 Introduce novel cell culture technology in chemical toxicity evaluation 

In the studies from this dissertation, cell-based assays were performed in two-

dimensional (2D) monolayer cell culture platforms. The advantages of these platforms are 

that they facilitate culturing to obtain high-quality, informative images. However, 2D cell-

culture models still fall short of comprehensively reconstructing the in vivo cellular 

microenvironment. As a result, these cultures commonly lack accurate recapitulation of 
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chemical effects on the structure, function, or physiology of living tissues (Derda et al. 

2009; Huh et al. 2011). Efforts to address these limitations led to the development of 3D 

cell-culture models where the cells are grown within extracellular matrix gel to form 3D 

structures. Three-dimensional cell culture techniques including spheroid culture and 

microfluidic systems have been successfully applied in drug safety screening and chemical 

toxicity evaluations. For instance, functional and mechanistic neurotoxicity of a library of 

compounds including pharmaceutical drugs and environmental chemicals such as 

pesticides and flame retardants have been evaluated using human iPSC-derived neural 3D 

cultures (Sirenko et al. 2019). In addition, organ/body-on-a-chip models based on 

microfluidic technology have also been well-developed to mimic the microenvironment 

in the human body and characterize the effects of compounds (Kimura et al. 2018; 

Sakolish et al. 2019).  

Overall, the rapid development of 3D cell culture techniques offers unique toxicity 

screening strategies that can unveil the interactions of compounds with target tissues and 

within multi-dimensional microenvironments. As previously mentioned, higher 

throughput can limit the quality of data recovered; one solution for this involves coupling 

these techniques with efficient bioprinting that can expand their applicability to 

environmental chemicals and mixture screening (Mazzocchi et al. 2019; Tseng et al. 

2016).       

5.3.2 Advance the dosing of compounds in high throughput in vitro cell assays 

An important precondition of using in vitro datasets for chemical risk and hazard 

assessment is controlling exposure concentrations of chemicals in different in vitro assays 
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(Fischer et al. 2019). First, the observed effects are commonly associated with the 

administered dose, and for in vitro bioassays, the nominal concentration, or the amount of 

chemical per volume bioassay, is typically used as the exposure metric (Huang et al. 2011; 

Shukla et al. 2012). However, exact exposure levels vary across compounds due to their 

differential physiochemical properties and in vitro testing methods. As a result, reduced 

sensitivity, low inter-assay comparability, and limited suitability to predict effects on the 

in vivo levels commonly occur in in vitro assays.  

To overcome this challenge, a direct solution can be to measure the concentration 

of chemicals in cell culture medium in parallel with in vitro assays. Subsequent use of 

these measured concentrations for POD calculations and dose-response evaluations would 

further broaden the scope of their applicability (Escher and Hermens 2004). Coupling high 

throughput in vitro assays with analytical methods to measure the free concentration of 

chemicals would also improve the efficiency of analysis. RapidFire® high-throughput 

mass spectrometry platform (Agilent Technologies, Woburn, MA) offers rapid “trap-and-

elute” cleanup of samples and presents analytes into the spectrometry every 6 to 10 

seconds, showing great potential to analyze free chemical concentrations in in vitro cell-

based assays (Gordon et al. 2016; Wu et al. 2012). Alternatively, protein-rich supplements 

in the cell culture medium can be utilized to adjust constant and quantifiable exposure 

concentrations (Fischer et al. 2019). Therefore, combining chemistry analysis with in vitro 

bioassays can be a good strategy to eliminate bias and uncertainty in dosing tested 

compounds. Measurements of chemical free concentrations in an in vitro system could 

also lead to more accurate estimations of chemical potencies.  
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5.3.3 Application of in vitro-to-in vivo extrapolation (IVIVE) in environmental 

chemicals and mixtures 

Computational in vitro-to-in-vivo extrapolation (IVIVE) methods are frequently 

used to estimate human oral equivalent doses (OED) for chemicals, which can be further 

compared to exposure levels to measure the margin of exposure (Rotroff et al. 2010). 

Chemical free concentrations are important toxicokinetic parameters in in vitro testing 

systems, and are useful for calculating plasma protein binding and metabolic stability for 

IVIVE. Studies in this dissertation have performed necessary in vitro bioassays, which 

now facilitate the calculation of OEDs for screened chemicals using acquired bioactivity 

data and toxicokinetic parameters (Rotroff et al. 2010). The OED can further be compared 

to the human exposure levels for each chemical. Furthermore, coupling our in vitro models 

to other cell-based assay databases would prove informative for further evaluations of 

chemical safety.  

Similarly, measurements of the chemical concentrations in mixtures provide 

opportunities to determine the margin of exposure for complex mixtures. However, IVIVE 

is rarely applied to mixtures because of the difficulty of measuring individual chemical 

concentrations in complex mixtures and quantifying the bioactivity from each component. 

One solution might be to introduce computational models to identify component 

interactions in terms of their contribution to overall mixture bioactivity. This can then be 

combined with high-throughput analytical chemistry techniques to measure individual 

component concentrations of a given mixture. It is also important to compare IVIVE 
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results for exposure scenarios involving both individual chemicals and mixtures to provide 

a more realistic assessment of chemical risks.  

5.3.4 Explore the role of population variability in risk assessment using in vitro testing 

When conducting a risk assessment of chemicals, Population variability is an 

especially important factor of uncertainty to consider when conducting chemical risk 

assessments (Chiu and Rusyn 2018; Wetmore et al. 2014). Toxicity data generated from 

studies on a single cell line or individual rodent strain cannot be used to represent genetic 

variation within the human population and how this might affect toxicity outcomes (Rusyn 

et al. 2010). This means that risk assessment decisions that don’t account for uncertainty 

due to inter-individual variability may be biased. The routine use of traditional animal 

models is also unfeasible and inefficient for testing large numbers of compounds. In vitro 

models capable of representing various genetic backgrounds and population variability 

can be an informative way to fill this data gap.  

Human iPSC-derived cells from different donors serve as a useful tool to evaluate 

the effects of different genetic backgrounds on the susceptibility to different 

environmental chemicals and mixtures. For instance, a panel of iPSC-cardiomyocytes 

have been successfully applied in screening potential cardiotoxicity of chemicals 

(Blanchette et al. 2019; Burnett et al. 2019). Novel cell differentiation techniques 

incorporating the same cell types from several genetically different donors can be used to 

represent diverse populations in chemical toxicity screening. These data would prove 

useful in risk assessment to provide hazard and risk data specific to several populations. 

Meanwhile, genetic background analysis to determine the role of population variability in 
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the response to chemicals can further unveil their mechanisms of toxicity, and whether 

these are consistent within and between demographics. Overall, the application of the 

same cell types with different genetic backgrounds in chemical toxicity evaluation allows 

us to mimic the role of population variability in response to environmental chemicals and 

mixtures, which can further provide comprehensive evidence for hazard and risk 

assessment. 
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APPENDIX A 

TEXTS 

Text S2.1 Detailed cell culture procedures 

iCell hepatocytes 2.0 (Grimm et al. 2016): vials of hepatocytes were thawed for 3 

min at 37℃ in a water bath and subsequently resuspended in RPMI medium containing 

2% (v/v) iCell hepatocyte medium supplement, 0.1 μM dexamethasone, 2% (v/v) B27 

supplement, 25 μg/ml Gentamicin, and 20 ng/ml Oncostatin-M. Following microscopic 

evaluation of the cell density, the suspension was further diluted to a final concentration 

of 6.72 × 105 cells/ml. 25 μl of this suspension was then added to each well on collagen I 

coated 384-well plates (Corning, Product# 354664), yielding a final cell density of 16,800 

cells per well. Plates were initially kept at room temperature for 30 min and then 

transferred to an incubator set at 37°C and 5% CO2. After four hours of incubation, the 

plating medium was replaced with 25 μl fresh medium, a step that was repeated daily for 

four days. On day five, the plating medium was exchanged with 25 μl per well 

maintenance medium, consisting of RPMI containing 2% (v/v) iCell hepatocyte medium 

supplement, 0.1 μM dexamethasone, 2% (v/v) B27 supplement, and 25 μg/ml gentamicin. 

Maintenance medium was exchanged daily for the duration of the experiment. 

iCell Neurons (Sirenko et al. 2014b): cryopreserved cells were thawed and plated 

according to the protocol provided by the Cellular Dynamics International. Briefly, cells 

were plated on poly-d-lysine precoated 384-well plates (Greiner-Bio, Ref#: 781946) with 

iCell Neural Base Medium (Catelog#: M1010) added with iCell Neural Supplement A 
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(Catalog#: M1032) and 3.3 mg/mL of laminin. Cells were plated at densities of 7,500 

cells/well. Plates were initially kept at room temperature for 30 min before transferring to 

an incubator set at 37°C and 5% CO2 for 48 hours until assay day.  

iCell Cardiomyocytes (Grimm et al. 2016): 384-well microplates were precoated 

with 25 μL 0.1% (w/v) gelatin solution per well for 2 h at 37°C and 5% CO2. 

Cryopreserved cells were thawed according to manufacturer’s instruction using iCell 

cardiomyocytes plating medium with 1:500 (v/v) penicillin/streptomycin. Cell suspension 

was diluted in plate medium to provide a final cell concentration of 2 × 105 cells/mL. 

Subsequently, the gelatin solution was aspirated from the plates and 25 μL cell suspension 

was added to each well, making the final cell plating density at 5000 viable cells/well. 

Plates were kept at room temperature for 30 min before they were incubated at 37°C and 

5% CO2. 48 h following cell seeding, the plating medium was exchanged with 40 μL of 

maintenance medium containing 1:500 penicillin/streptomycin. Maintenance medium was 

subsequently changed every other day for another 12 days until assay day.  

iCell Endothelial cells (Iwata et al. 2017a):  Endothelial cells were plated and 

expanded on T-75 tissue culture flasks coated with human fibronectin solution at 3 μg/cm2. 

Cells were cultured with maintenance medium containing the VascuLife VEGF Medium 

Complete Kit (SKU: LL-0003), with FBS, and iCell Endothelial cells medium 

supplement.  Cell density was determined using Trypan Blue exclusion test and a cell 

suspension was prepared that results in 1.0 × 104 cells/cm2. The fibronectin solution was 

aspirated and cells were seeded in a T-75 flask. Cells were incubated at 37°C and 5% CO2 

with media changes every 2 days and passaged every 3–4 days by TrypLE Express. 
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Experiments were conducted with cells between passages 1 and 5. Cells were transferred 

into 384-well plates with 50 μL maintenance medium with density at 750 cells/well for 

cytotoxicity assay and 7,500 cells for angiogenesis assay. Cells were kept in microplates 

for 2-3 days until monolayer formed before adding chemicals for cytotoxicity assays.  

Human Umbilical Vein Endothelial Cells (Iwata et al. 2017a): HUVECs were 

plated and expanded on T-75 tissue culture flasks coated with 0.1% (w/v) gelatin solution. 

The culture medium contains Medium 199 with the EGM-2 BulletKit (Lonza, Catalog#: 

CC-3162). HUVECs were incubated at 37°C and 5% CO2 and passaged every 2–3 days

using TrypLE Express. Cell density was determined by cell counting with Trypan Blue. 

Experiments were performed with cells between passages 1 and 5. Cells were transferred 

into 384-well plates with 50 μL maintenance medium with density at 750 cells/well for 

cytotoxicity assay and 3,500 cells for angiogenesis assay. Cells were kept in microplates 

for 2-3 days until monolayer formed before adding chemicals for cytotoxicity assays.   



156 

Text S2.2 ATP production of iCell Neurons and HUVECs.  

Production of ATP in iCell neurons and HUVECs were measured using CellTiter-

Glo® Luminescent Cell Viability Assay according to manufacturer’s introduction. In 

detail, after high content imaging process, equal volume of pre-equilibrate CellTiter-Glo 

reagent were added into each well in assay plates. Then mixing contents for 2 min on an 

orbital shaker to induce cell lysis and allow the plates to incubate at room temperature for 

10 min to stabilize luminescent signal. Luminescence was read using FLIPR tetra 

(Molecular Devices) instrument, with a read time interval of 1 second per well. 

Quantitative data was exported for concentration-response profiling. 
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Text S2.3 Calcium flux assay of iCell Cardiomyocytes.  

Intracellular calcium flux in iCell cardiomyocytes exposed to the test solutions for 

15 and 90 min was measured using FLIPR tetra (Molecular Devices) instrument using 

EarlyToxTM Cardiotoxicity Kit as described in previous study (Grimm et al. 2016). 

Cardiomyocytes were incubated for 2 hours at 37 °C after the addition of one volume of 

pre-equilibrated calcium-dye reagent. Prior to exposure to test solutions, baseline calcium 

flux measurements were recorded at 515-575 nm following excitation at 470-495 nm and 

at a frequency of 8 Hz for 100 seconds. The internal instrument temperature was regulated 

at 37°C. Cells were then simultaneously exposed to test solutions using the internal 

fluidics handling system. 15- and 90-min post-exposure, the beating of cardiomyocytes 

was monitored as described above. Between measurements, cells were incubated under 

cell culture conditions at 37°C and 5% CO2. Recorded data were further analyzed in 

Screenworks 4.0 software (Molecular Devices LLC., Sunnyvale, CA) for peak processing 

and statistical parameters were exported as Microsoft Excel files for concentration-

response assessment. 
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Text S2.4 Angiogenesis of iCell Endothelial cells and HUVECs. 

Angiogenic assays were performed using Geltrex LDEV-Free Reduced Growth 

Factor Basement Membrane for both iCell endothelial cells and HUVECs in 384-well 

format according to previous study (Iwata et al. 2017a). iCell endothelial cells were 

incubated with VascuLife® Basal Medium containing 4 nM L-glutamine LifeFactor and 

0.1% iCell Endothelial Cells Medium Supplement. HUVECs were incubated with 

Medium 199 containing the EGM-2 BulletKits at 2X concentration, also the VEGF 

component was replaced with 12.5 ng/mL VEGF, and this was referred to as “2 X Assay 

Medium.” Geltrex was thawed at 4°C and dispensed to coat the plates (10 μL/well) on the 

ice. The plates were incubated for 1 h at 37°C. Following the incubation, a 2X chemical 

working solution (25 μL/well), prepared in basal medium, was added to the plate and cells 

resuspended in 2X assay medium (25 μL/well) were seeded at the density of 7,500 (iCell-

ECs) or 3,500 (HUVECs) cells/well. Cells were exposed to chemicals overnight at 37°C 

at 5% CO2 and stained with Calcein AM (25 μL/well, 6 μmol/L) for 15min and processed 

to live cell high-content imaging. 
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APPENDIX B 

TABLES 

Table S2.1. Summary of the quality control parameters evaluated for each cell type and phenotype. 

Cell Type Phenotype 

CV% 

Mediu

m 

CV% 

DMS

O 

t-

test 

p-

valu

e 

Intra-plate replicates (n=60) Inter-plate replicates (n=210) 

Pearso

n (r) 

p-

value 

Spearma

n (ρ) 

p-

value 

Pearso

n (r) 
p-value

Spearma

n (ρ) 
p-value

iCell 

Hepatocyte

s 

Cell Number 5.15 4.34 0.70 0.84 <0.000

1 

0.52 <0.000

1 

0.84 <0.0001 0.36 <0.0001 

Nuclei Intensity 2.77 2.07 0.05 0.84 <0.000

1 

0.30 0.02 0.69 <0.0001 0.37 <0.0001 

All Cell Mean Area 8.86 11.58 0.22 0.27 0.03 0.01 0.94 0.42 <0.0001 0.34 <0.0001 

Mitochondrial 

Intensity 

10.32 13.31 0.33 0.40 0.00 -0.01 0.94 0.46 <0.0001 0.31 <0.0001 

Mitochondrial 

Integrity 

4.64 4.18 0.32 0.79 <0.000

1 

0.10 0.43 0.83 <0.0001 0.36 <0.0001 

iCell 

Neurons 

Cell Number 8.68 12.42 0.34 -0.15 0.25 -0.33 0.01 0.77 <0.0001 0.44 <0.0001 

Total Outgrowth 12.50 17.93 0.80 0.35 0.01 0.20 0.13 0.75 <0.0001 0.52 <0.0001 

Mean Outgrowth 12.26 12.33 0.10 0.32 0.01 0.19 0.14 0.73 <0.0001 0.43 <0.0001 

Total Process 11.15 12.82 0.78 -0.07 0.60 -0.30 0.02 0.75 <0.0001 0.38 <0.0001 

Total Branches 27.44 26.82 0.93 0.18 0.17 0.17 0.20 0.60 <0.0001 0.47 <0.0001 

Total Cell Body Area 8.63 9.46 0.02 -0.08 0.55 -0.21 0.11 0.78 <0.0001 0.37 <0.0001 

Cell with Significant 

Growth 

8.67 12.64 0.33 -0.15 0.24 -0.34 0.01 0.77 <0.0001 0.44 <0.0001 

Cytoplasmic Integrity 11.15 14.59 0.61 -0.08 0.55 -0.32 0.01 0.75 <0.0001 0.42 <0.0001 

Mitochondrial 

Integrity 

10.78 15.25 0.22 -0.03 0.84 -0.31 0.02 0.71 <0.0001 0.41 <0.0001 

ATP 15.09 10.75 0.88 0.50 <0.000

1 

0.14 0.28 0.85 <0.0001 0.68 <0.0001 
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Table S2.1. (Continued) Summary of the quality control parameters evaluated for each cell type and phenotype. 

Cell Type Phenotype 

CV% 

Mediu

m 

CV% 

DMS

O 

t-test

p-

value

Intra-plate replicates (n=60) Inter-plate replicates (n=210) 

Pears

on (r) 

p-value Spearma

n (ρ) 

p-value Pearso

n (r) 
p-value

Spearma

n (ρ) 
p-value

iCell 

Cardio-

myocytes 

Beats per 

minute_15min 

18.11 14.44 <0.01 0.75 <0.0001 0.54 <0.0001 0.88 <0.0001 0.67 <0.0001 

Beats per 

minute_90min 

14.68 14.40 0.48 0.83 <0.0001 0.65 <0.0001 0.86 <0.0001 0.70 <0.0001 

Cell Number 9.45 8.05 0.05 0.59 <0.0001 0.15 0.25 0.71 <0.0001 0.54 <0.0001 

Mitochondrial 

Integrity 

11.36 10.46 0.03 0.57 <0.0001 0.16 0.22 0.71 <0.0001 0.58 <0.0001 

Peak 

Amplitute_15min 

17.56 17.05 0.25 0.82 <0.0001 0.31 0.01 0.89 <0.0001 0.67 <0.0001 

Peak 

Amplitute_90min 

16.38 15.12 0.29 0.80 <0.0001 0.33 0.01 0.87 <0.0001 0.65 <0.0001 

Peak 

Spacing_15min 

13.03 16.37 <0.01 0.76 <0.0001 0.40 0.00 0.86 <0.0001 0.64 <0.0001 

Peak 

Spacing_90min 

13.28 11.98 0.68 0.86 <0.0001 0.55 <0.0001 0.60 <0.0001 0.67 <0.0001 

Peak 

Width_15min 

15.56 18.51 <0.01 0.70 <0.0001 0.40 0.00 0.82 <0.0001 0.65 <0.0001 

Peak 

Width_90min 

16.58 15.80 0.47 0.72 <0.0001 0.53 <0.0001 0.82 <0.0001 0.68 <0.0001 

Peak Rise 

time_15min 

8.84 9.16 0.01 0.90 <0.0001 0.23 0.07 0.88 <0.0001 0.51 <0.0001 

Peak Rise 

time_90min 

8.57 8.07 0.18 0.85 <0.0001 0.42 0.00 0.88 <0.0001 0.54 <0.0001 

Peak Decay 

time_15min 

16.77 19.81 <0.01 0.68 <0.0001 0.40 0.00 0.81 <0.0001 0.66 <0.0001 

Peak Decay 

time_90min 

18.66 17.70 0.42 0.68 <0.0001 0.53 <0.0001 0.80 <0.0001 0.69 <0.0001 

Decay to Rise 

Ratio_15min 

18.61 16.73 <0.01 0.67 <0.0001 0.32 0.01 0.83 <0.0001 0.69 <0.0001 

Decay to Rise 

Ratio_90min 

19.38 16.74 0.14 0.65 <0.0001 0.45 0.00 0.80 <0.0001 0.71 <0.0001 
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Table S2.1. (Continued) Summary of the quality control parameters evaluated for each cell type and phenotype. 

Cell Type Phenotype 

CV% 

Mediu

m 

CV% 

DMS

O 

t-test

p-

value

Intra-plate replicates (n=60) Inter-plate replicates (n=210) 

Pears

on (r) 

p-value Spearma

n (ρ) 

p-value Pears

on (r) 
p-value

Spearm

an (ρ) 
p-value

iCell 

Endothelial 

Cells  

Cell Number 8.24 8.67 0.20 0.58 <0.0001 0.29 0.02 0.79 <0.0001 0.34 <0.0001 

Mitochondrial 

Integrity 

8.02 8.72 0.34 0.77 <0.0001 0.28 0.03 0.86 <0.0001 0.33 <0.0001 

Nuclei Mean Area 2.72 3.03 0.16 0.07 0.59 0.13 0.31 0.62 <0.0001 0.18 0.01 

Mitochondrial 

Intensity 

13.12 8.03 <0.01 0.70 <0.0001 0.37 0.00 0.62 <0.0001 0.36 <0.0001 

Cytoplasmic 

Integrity 

11.81 9.76 0.06 0.53 <0.0001 0.33 0.01 0.71 <0.0001 0.30 <0.0001 

Total Tube Length 19.55 13.51 <0.01 0.63 <0.0001 0.37 0.00 0.60 <0.0001 0.57 <0.0001 

Mean Tube Length 6.81 5.36 0.42 0.63 <0.0001 0.39 0.00 0.26 0.00 0.32 <0.0001 

Total Tube Area 20.85 14.06 <0.01 0.62 <0.0001 0.41 0.00 0.61 <0.0001 0.61 <0.0001 

HUVECs 

Cell Number 7.05 6.27 0.19 0.61 <0.0001 0.37 0.00 0.79 <0.0001 0.33 <0.0001 

Mitochondrial 

Integrity 

6.95 6.06 0.11 0.66 <0.0001 0.37 0.00 0.82 <0.0001 0.36 <0.0001 

Nuclei Mean Area 3.15 2.80 <0.01 0.95 <0.0001 0.49 <0.0001 0.98 <0.0001 0.36 <0.0001 

Mitochondrial 

Intensity 

12.57 6.38 <0.01 0.83 <0.0001 0.29 0.02 0.78 <0.0001 0.31 <0.0001 

Cytoplasmic 

Integrity 

7.04 6.24 0.18 0.63 <0.0001 0.37 0.00 0.85 <0.0001 0.38 <0.0001 

Total Tube Length 13.36 8.77 0.28 0.63 <0.0001 0.27 0.04 0.61 <0.0001 0.61 <0.0001 

Mean Tube Length 6.62 5.90 <0.01 0.77 <0.0001 0.10 0.43 0.76 <0.0001 0.39 <0.0001 

Total Tube Area 10.90 8.51 0.63 0.74 <0.0001 0.29 0.02 0.62 <0.0001 0.56 <0.0001 

ATP 2.88 5.20 0.82 0.88 <0.0001 0.07 0.61 1.00 <0.0001 0.99 <0.0001 
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Table S2.2. EC50 values (M) of positive controls in five tested cell types. 
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h
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0
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H
is
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0

0
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iC
el

l 

H
ep

a
to

cy
t

es
 

Cell Number 1.58 0.29 

Nuclei Intensity 77.53 2.34 

All Cell Mean Area 85.13 0.62 

Mitochondrial Intensity 58.40 0.32 

Mitochondrial Integrity 1.67 0.31 

iC
el

l 
N

eu
ro

n
s 

Cell Number 0.00 NA(c) 4.36 NA 8.50 

Total Outgrowth 0.00 0.22 1.93 NA 2.60 

Mean Outgrowth 0.00 0.22 6.50 NA 7.39 

Total Process 0.00 NA 3.57 NA 6.48 

Total Branches 0.00 0.06 1.66 221.30 2.40 

Total Cell Body Area 0.00 NA 5.31 NA 8.84 

Cell with Significant Growth 0.00 NA 3.64 NA 7.86 

Cytoplasmic Integrity 0.00 NA 3.61 NA 6.02 

Mitochondrial Integrity 1.79 NA 6.23 NA 6.01 

ATP 1.57 NA 0.73 241.80 0.82 

iC
el

l 
C

a
rd

io
m

y
o

cy
te

s 

Beats per minute_15min 0.00 0.01 1.29 0.08 

Beats per minute_90min 0.00 0.73 1.95 0.13 

Cell Number 5.83 NA NA NA 

Mitochondrial Integrity 4.48 NA NA NA 

Peak amplitute_15min 0.00 0.00 1.81 0.02 

Peak Amplitute_90min 0.00 0.05 6.56 0.06 

Peak Spacing_15min 0.00 0.00 1.27 0.03 

Peak Spacing_90min 0.00 8.73 2.14 0.55 

Peak Width_15min 0.00 0.00 0.33 0.03 

Peak Width_90min 0.00 NA 43.29 0.69 
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Table S2.2. (Continued)EC50 values (M) of positive controls in five tested cell types. 
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iC
el

l 

C
a

rd
io

m
y

o
cy

te
s 

Peak Rise time_15min 0.00 0.01 3.02 NA 

Peak Rise time_90min 0.00 1.00 25.25 NA 

Peak Decay time_15min 0.00 NA 0.17 0.03 

Peak Decay time_90min 0.00 NA 44.63 0.47 

Decay to Rise Ratio_15min 0.00 0.01 11.56 0.07 

Decay to Rise Ratio_90min 0.00 1.26 6.43 0.12 

iC
el

l 
E

n
d

o
th

el
ia

l 

C
el

ls
 

Cell Number 54.44 0.43 NA 68.96 NA 

Mitochondrial Integrity 0.41 0.26 NA 59.39 NA 

Nuclei Mean Area 66.77 NA NA NA NA 

Mitochondrial Intensity 68.61 0.12 NA 83.49 NA 

Cytoplasmic Integrity 39.17 NA NA NA NA 

Total Tube Length 0.00 0.00 NA 5.93 0.20 

Mean Tube Length 0.00 2.03 NA NA 86.04 

Total Tube Area 0.00 0.00 NA 43.33 0.25 

H
U

V
E

C
s 

Cell Number 84.79 5.26 NA 76.52 NA 

Mitochondrial Integrity 37.14 4.70 NA 70.35 NA 

Nuclei Mean Area 44.70 NA NA NA NA 

Mitochondrial Intensity 44.38 5.01 NA 61.31 NA 

Cytoplasmic Integrity 0.02 NA NA NA NA 

Total Tube Length 0.00 0.10 4.73 395.90 365.00 

Mean Tube Length 0.00 0.29 23.20 665.30 67.85 

Total Tube Area 0.00 0.08 5.28 172.60 187.80 

ATP 8.27 NA NA NA NA 

(a) TAB=Tetra-octyl ammonium bromide (50 M), cytotoxicity control, values are response (%) normalized to vehicle control.

(b) Highest concentrations tested in the experiments (μM).

(c) EC50 value could not be derived.
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Table S2.3. Overlap in the chemicals tested in different in vivo and in vitro datasets. “1” 

indicates the chemical was present in the dataset. “0” indicated it was not included in the 

dataset. 

Chemical 
This 

study 
ToxCast PODRfD 

Paul Friedman et al. 

(2020) 

Dibutyl phthalate 1 1 1 1 

Di(2-ethylhexyl) phthalate 1 1 1 0 

2-Methyl-4,6-dinitrophenol 1 1 0 0 

1,2,3-Trichlorobenzene 1 1 0 0 

Pentachlorophenol 1 1 0 0 

p-Cresol 1 1 1 1 

Benzidine 1 1 0 0 

2,4,5-Trichlorophenol 1 1 1 1 

2,4,6-Trichlorophenol 1 1 0 0 

2,4-Dinitrotoluene 1 1 1 1 

Methoxychlor 1 1 1 0 

Endosulfan 1 1 1 0 

Dieldrin 1 1 1 1 

Dicofol 1 1 1 0 

Heptachlor 1 1 1 1 

Aldrin 1 1 1 1 

p,p'-DDD 1 1 1 1 

Chlorpyrifos 1 1 1 1 

o,p'-DDT 1 1 0 0 

Azinphos-methyl 1 1 1 1 

Dichlorodiphenyltrichloroethane 1 1 1 1 

Trifluralin 1 1 0 0 

2,4-Dinitrophenol 1 1 1 1 

Diazinon 1 1 0 0 

Lindane 1 1 1 0 

Parathion 1 1 1 0 

Endrin 1 1 1 1 

Ethion 1 1 1 1 

Disulfoton 1 1 0 0 

Heptachlor epoxide 1 1 1 0 

Fluoranthene 1 1 1 1 

Benzo(b)fluoranthene 1 1 1 0 

Acenaphthene 1 1 1 1 

Naphthalene 1 1 0 0 

Benzo(a)anthracene 1 1 0 0 

Cadmium chloride 1 1 0 0 

Nickel(II) chloride 1 1 0 0 

Cobalt chloride 1 1 0 0 

Mercuric chloride 1 1 0 0 

Zinc chloride 1 1 0 0 

Lead nitrate 1 1 0 0 

Potassium chromate(VI) 1 1 0 0 
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Table S2.4. Detailed descriptions of each phenotype evaluated in each tested cell type. 

Cell Type Phenotype Description 

iCell 

Hepatocytes 

Cell Number Number of cell bodies in the image 

Nuclei Intensity 
Average area of nucleus for all cells found in the 

image 

All Cell Mean Area 
Average area of the cell (nucleus + cytoplasm) for all 

cells found in the image 

Mitochondrial Intensity 

Total pixel intensity of MitoTracker stain over the 

stained area in positive cells, divided by the number 

of cells positive for MitoTracker stain 

Mitochondrial Integrity 
Total number of cells positive for MitoTracker 

staining 

iCell Neurons 

Cell Number Number of cell bodies in the image 

Total Outgrowth Total length of skeletonized outgrowth 

Mean Outgrowth 
Average skeletonized outgrowth divided by the 

number of cells 

Total Process 
Number of outgrowths in the image that are 

connected to cell bodies 

Total Branches Total number of branching junctions in the image 

Total Cell Body Area 
Total area of the cell bodies in the image (excluding 

outgrowths) 

Cell with Significant 

Growth 

Number of cells in the image with outgrowth greater 

than the threshold length specified in the settings 

Cytoplasmic Integrity 
Total number of cells positive for Calcein AM 

staining 

Mitochondria Integrity 
Total number of cells positive for MitoTracker 

staining 

ATP Luminescence readouts from CellTiterGlo assay 

iCell 

Cardiomyocytes 

Cell Number Number of cell bodies in the image 

Mitochondrial Integrity 
Total number of cells positive for MitoTracker 

staining 

Beats per minute Beats per minute after exposure 

Peak Amplitude Average amplitude of peaks after exposure 

Peak Spacing Average spacing between each peak after exposure 

Peak Width Average width between each peak after exposure 

Peak Rise time Average rise time of each peak after exposure 

Peak Decay time Average decay time of each peak after exposure 

Decay to Rise Ratio 
Average ratio of decay to rise time of each peak after 

exposure 
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Table S2.4. (Continued) Detailed descriptions of each phenotype evaluated in each 

tested cell type.  

Cell Type Phenotype Description 

iCell 

Endothelial 

Cells and 

HUVECs 

Cell Number Number of cell bodies in the image 

Mitochondrial Integrity 
Total number of cells positive for MitoTracker 

staining 

Nuclei Mean Area 
The average area of nucleus for all cells found in the 

image 

Mitochondrial Intensity 

Total pixel intensity of MitoTracker stain over the 

stained area in positive cells, divided by the number 

of cells positive for MitoTracker stain 

Cytoplasmic Integrity 
Total number of cells positive e for Calcein AM 

staining 

Total Tube Length Total microns of the tube length (excluding nodes) 

Mean Tube Length Total tube length divided by the number of segments 

Total Tube Area Total square microns of tube area (excluding nodes) 

ATP Luminescence readouts from CellTiterGlo assay 
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Table S2.5. ToxPi score for 42 Superfund priority list chemicals in each cell type. 

 Cell Types 
iCell 

Hepatocytes 
iCell Neurons 

iCell 

Cardio. 
iCell Endo. HUVECs 

Chemicals Min Max Min Max Min Max Min Max Min Max 

Benzo(a)anthracene 0.00 0.00 0.00 0.60 0.00 0.98 0.00 1.00 0.00 1.00 

Naphthalene 0.00 0.00 0.00 0.42 0.00 0.88 0.00 0.16 0.00 0.00 

Fluoranthene 0.00 0.30 0.00 0.40 0.00 0.93 0.00 0.14 0.00 0.77 

Dichlorodiphenyltri

chloroethane 0.00 0.24 0.09 0.44 0.09 0.97 0.00 0.44 0.00 0.49 

Dieldrin 0.04 0.25 0.06 0.30 0.00 1.00 0.00 0.74 0.00 0.53 

Aldrin 0.09 0.22 0.11 0.46 0.24 1.00 0.00 0.49 0.05 0.73 

Heptachlor 0.08 0.29 0.11 0.37 0.32 0.98 0.00 0.54 0.09 0.64 

Lindane 0.00 0.78 0.00 0.47 0.00 0.59 0.00 0.73 0.00 0.00 

Disulfoton 0.00 0.02 0.00 0.00 0.10 0.51 0.00 0.16 0.00 0.48 

Endrin 0.00 0.08 0.00 0.00 0.00 0.97 0.00 0.52 0.00 0.59 

Diazinon 0.00 0.19 0.00 0.38 0.36 0.78 0.00 0.63 0.00 0.69 

Heptachlor epoxide 0.00 0.00 0.00 0.22 0.00 1.00 0.00 0.00 0.00 0.93 

Pentachlorophenol 0.00 0.21 0.04 0.50 0.09 0.49 0.14 0.80 0.22 0.78 

Dibutyl phthalate 0.00 0.22 0.00 0.00 0.11 0.97 0.00 0.03 0.00 0.58 

Chlorpyrifos 0.00 0.75 0.08 0.30 0.00 0.77 0.00 0.24 0.00 0.81 

Di(2-ethylhexyl) 

phthalate 0.00 0.10 0.28 0.61 0.00 1.00 0.00 0.07 0.00 0.62 

2,4,6-

Trichlorophenol 0.00 0.06 0.00 0.32 0.00 1.00 0.00 0.40 0.00 0.36 

Ethion 0.00 0.03 0.00 0.49 0.00 1.00 0.00 0.36 0.00 0.90 

Azinphos-methyl 0.00 1.00 0.00 0.97 0.00 0.95 0.00 0.97 0.00 0.50 

2,4,5-

Trichlorophenol 0.00 0.10 0.28 0.79 0.00 0.59 0.00 0.40 0.05 0.59 

Parathion 0.00 0.49 0.00 0.67 0.09 0.62 0.00 0.16 0.00 0.88 

Benzo(b)fluoranthen

e 0.00 0.25 0.00 0.10 0.00 0.69 0.00 1.00 0.00 0.55 

Trifluralin 0.00 0.29 0.06 0.39 0.00 0.84 0.00 0.63 0.00 0.42 

Acenaphthene 0.00 0.06 0.00 0.00 0.00 0.30 0.00 1.00 0.00 0.65 

p,p'-DDD 0.10 0.17 0.08 0.31 0.09 0.94 0.09 0.24 0.05 0.39 

Benzidine 0.00 0.19 0.00 0.00 0.00 0.47 0.00 0.36 0.00 0.56 

Endosulfan 0.11 0.38 0.08 0.22 0.31 0.84 0.00 0.56 0.00 0.68 

Methoxychlor 0.25 0.28 0.10 0.19 0.00 1.00 0.06 0.44 0.00 0.18 

2,4-Dinitrophenol 0.00 0.18 0.00 0.00 0.10 0.35 0.00 1.00 0.00 0.40 

2,4-Dinitrotoluene 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.11 

Dicofol 0.11 0.25 0.07 0.30 0.09 0.65 0.03 0.49 0.07 0.29 

p-Cresol 0.00 0.36 0.00 0.04 0.00 0.05 0.00 1.00 0.00 0.19 

o,p'-DDT 0.00 0.24 0.09 0.19 0.08 0.72 0.00 0.32 0.00 0.71 
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Table S2.5. (Continued) ToxPi score for 42 Superfund priority list chemicals in each 

cell type. 

Cell Types 
iCell 

Hepatocytes 
iCell Neurons 

iCell 

Cardio. 
iCell Endo. HUVECs 

Chemicals Min Max Min Max Min Max Min Max Min Max 

2-Methyl-4,6-

dinitrophenol 0.05 0.89 0.00 0.33 0.00 0.42 0.00 0.23 0.00 0.58 

1,2,3-

Trichlorobenzene 0.00 1.00 0.00 0.00 0.00 0.75 0.00 0.11 0.00 0.00 

Lead nitrate 0.00 0.09 0.32 0.64 0.00 0.60 0.00 0.90 0.00 0.72 

Cadmium chloride 0.60 1.00 0.08 0.29 0.00 0.89 0.05 0.25 0.00 1.00 

Zinc chloride 0.00 0.25 0.00 0.11 0.00 0.81 0.00 0.44 0.00 1.00 

Mercuric chloride 0.00 0.84 1.00 1.00 0.00 1.00 0.12 1.00 0.19 1.00 

Potassium

chromate(VI) 0.00 0.00 0.31 0.87 0.00 0.87 0.42 1.00 0.30 1.00 

Cobalt chloride 0.00 0.30 0.00 0.36 0.00 0.37 0.00 0.97 0.00 1.00 

Nickel(II) chloride 0.00 0.26 0.00 0.60 0.00 0.00 0.00 0.19 0.00 0.77 
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Table S2.6. Detailed list of the chemicals shown in the clustering diagrams (Figure 2.5). 

All Cell Combined ToxCast/Tox21 Morgan FP 
All Cell Combined 

+ Morgan FP

Mercuric chloride Lindane 2,4−Dinitrotoluene Azinphos−methyl 

2,4,5−Trichlorophen

ol 

Azinphos−methyl 2,4−Dinitrophenol 2,4,5−Trichlorophen

ol 

Lead nitrate Parathion 2−Methyl−4,6−dinitrophe

nol 

Nickel (II) chloride 

Potassium chromate 

(VI) 

Diazinon Trifluralin Lead nitrate 

Chlorpyrifos Disulfoton Lead nitrate Chlorpyrifos 

Azinphos−methyl Trifluralin Potassium chromate (VI) Di(2−ethylhexyl) 

phthalate 

Di(2−ethylhexyl) 

phthalate 

Methoxychlor Diazinon Cadmium chloride 

2,4,6−Trichlorophen

ol 

Dibutyl phthalate Chlorpyrifos Methoxychlor 

Nickel (II) chloride Di(2−ethylhexyl) 

phthalate 

Parathion Heptachlor 

Endrin Endosulfan Ethion Fluoranthene 

Disulfoton Dicofol Disulfoton Lindane 

Acenaphthene Potassium chromate (VI) Dibutyl phthalate Diazinon 

Lindane Cadmium chloride Di(2−ethylhexyl) 

phthalate 

Endrin 

Diazinon Lead nitrate Azinphos−methyl Heptachlor epoxide 

Methoxychlor Cobalt chloride Fluoranthene Aldrin 

Dieldrin Zinc chloride Benzo(b)fluoranthene Dicofol 

Heptachlor Nickel (II) chloride Naphthalene 1,2,3−Trichlorobenze

ne 

Fluoranthene Heptachlor epoxide Acenaphthene p,p'−DDD 

Endosulfan Dieldrin Benz(a)anthracene Naphthalene 

Trifluralin 2−Methyl−4,6−dinitrophe

nol 

p−Cresol Disulfoton 

Ethion Chlorpyrifos Benzidine Acenaphthene 

Heptachlor epoxide 2,4,5−Trichlorophenol 2,4,6−Trichlorophenol 2,4−Dinitrotoluene 

Aldrin Heptachlor 2,4,5−Trichlorophenol Parathion 

Naphthalene Aldrin Pentachlorophenol Dibutyl phthalate 

Parathion p,p'−DDD 1,2,3−Trichlorobenzene 2,4−Dinitrophenol 

Dibutyl phthalate o,p'−DDT o,p'−DDT Trifluralin 

2,4−Dinitrophenol p,p'−DDT p,p'−DDT Cobalt chloride 

2,4−Dinitrotoluene Pentachlorophenol p,p'−DDD o,p'−DDT 

o,p'−DDT Mercuric chloride Dicofol p,p'-DDT 



170 

Table S2.6. (Continued) Detailed list of the chemicals shown in the clustering diagrams 

(Figure 2.5). 

All Cell Combined ToxCast/Tox21 Morgan FP 
All Cell Combined + 

Morgan FP 

p,p'-DDT Fluoranthene Methoxychlor Ethion 

p,p'−DDD Endrin Nickel (II) chloride Benz(a)anthracene 

Dicofol 2,4−Dinitrotoluene Lindane Endosulfan 

Benz(a)anthracene 1,2,3−Trichlorobenze

ne 

Endrin Dieldrin 

Cobalt chloride p−Cresol Dieldrin Benzo(b)fluoranthene 

Cadmium chloride Naphthalene Heptachlor epoxide 2−Methyl−4,6−dinitrophe

nol 

Zinc chloride Acenaphthene Heptachlor p−Cresol 

Pentachlorophenol 2,4,6−Trichloropheno

l 

Aldrin Benzidine 

2−Methyl−4,6−dinitrophe

nol 

Benzidine Endosulfan 2,4,6−Trichlorophenol 

1,2,3−Trichlorobenzene Ethion Zinc chloride Zinc chloride 

Benzo(b)fluoranthene Benzo(b)fluoranthene Cobalt chloride Pentachlorophenol 

p−Cresol Benz(a)anthracene Mercuric chloride Potassium chromate (VI) 

Benzidine 2,4−Dinitrophenol Cadmium chloride Mercuric chloride 
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Table S3.1. The list of chemicals that used in this study. 

Chemical name 
CAS 

number 

Chemical 

formula 
Class 

1 Lead Nitrate 10099-74-8 PbCl2 

Heavy 

metals 

2 Mercuric Chloride 7487-94-7 HgCl2 

3 Cadmium Chloride 10108-64-2 CdCl2 

4 Potassium Chromate (VI) 7789-00-6 K2CrO4 

5 Cobalt Chloride 7646-79-9 CoCl2 

6 Nickel Chloride 7718-54-9 NiCl2 

7 Zinc Chloride 7646-85-7 ZnCl2 

8 Benzo(b)fluoranthene 205-99-2 C20H12 

PAHs 

9 Benzo(a)anthracene 56-55-3 C18H12 

10 Naphthalene 91-20-3 C10H8 

11 Fluoranthene 206-44-0 C16H10 

12 Acenaphthene 83-32-9 C12H10 

13 p,p’-DDT 50-29-3 C14H9Cl5 

Pesticides 

14 Dieldrin 60-57-1 C12H8Cl6O 

15 Aldrin 309-00-2 C12H8Cl6 

16 p,p’-DDD 72-54-8 C14H10Cl4 

17 Heptachlor 76-44-8 C10H5Cl7 

18 Lindane 58-89-9 C6H6Cl6 

19 Disulfoton 298-04-4 C8H19O2PS3 

20 Endrin 72-20-8 C12H8Cl6O 

21 Diazinon 333-41-5 C12H21N2O3PS 

22 Endosulfan 115-29-7 C9H6Cl6O3S 

23 Heptachlor Epoxide 1024-57-3 C10H5Cl7O 

24 o,p’-DDT 789-02-6 C14H9Cl5 

25 Methoxychlor 72-43-5 C16H15Cl3O2 

26 Chlorpyrifos 2921-88-2 C9H11Cl3NO3PS 

27 2,4-dinitrophenol 51-28-5 C6H4N2O5 

28 Ethion 563-12-2 C9H22O4P2S4 

29 Azinphos-methyl 86-50-0 C10H12N3O3PS2 

30 Dicofol 115-32-2 C14H9Cl5O 

31 Parathion 56-38-2 C10H14NO5PS 

32 Trifluralin 1582-09-8 C13H16F3N3O4 

33 Benzidine 92-87-5 C12H12N2 

High 

Production 

Volume 

Chemicals 

34 Pentachlorophenol 87-86-5 C6Cl5OH 

35 2,4,6-trichlorophenol 88-06-2 C6H2Cl3OH 

36 2,4-dinitrotoluene 121-14-2 C7H6N2O4 

37 2-Methyl-4,6-dinitrophenol 534-52-1 C7H6N2O5 

38 1,2,3-Trichlorobenzene 87-61-6 C6H3Cl3 

39 2,4,5-Trichlorophenol 95-95-4 C6H2Cl3OH 

40 p-Cresol 106-44-5 C7H8O 

41 Dibutyl phthalate 84-74-2 C16H22O4 
Phthalates 

42 Di(2-ethylhexyl) phthalate 117-81-7 C24H38O4 
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Table S3.2. Summary of the AC50-based designed mixture 

Chemical 
AC50-L (M/L) AC50-H 

(M/L) 

AC50-L (%) AC50-H 

(%) 

1 Benz(a)anthracene 0.0181 112 0.04 1.8 

2 Naphthalene 0.00233 144 0 2.31 

3 Fluoranthene 0.0779 164 0.16 2.63 

4 p,p'-DDT 0.000479 253 0 4.06 

5 Dieldrin 0.0406 169 0.08 2.71 

6 Aldrin 0.912 253 1.89 4.06 

7 Heptachlor 5.05 164 10.46 2.63 

8 Lindane 5.68 116 11.76 1.86 

9 Disulfoton 5.87 81.8 12.16 1.31 

10 Endrin 0.219 64.9 0.45 1.04 

11 Diazinon 0.0616 118 0.13 1.89 

12 Heptachlor epoxide 1.67 107 3.46 1.72 

13 Pentachlorophenol 0.993 164 2.06 2.63 

14 Dibutyl phthalate 0.0102 72.4 0.02 1.16 

15 Chlorpyrifos 2.35 164 4.87 2.63 

16 Di(2-ethylhexyl) phthalate 0.37 67.2 0.77 1.08 

17 2,4,6-Trichlorophenol 0.808 316 1.67 5.07 

18 Ethion 0.163 285 0.34 4.57 

19 Azinphos-methyl 0.0942 253 0.2 4.06 

20 2,4,5-Trichlorophenol 0.552 133 1.14 2.13 

21 Parathion 0.1 81.8 0.21 1.31 

22 Benzo(b)fluoranthene 0.004 253 0.01 4.06 

23 Trifluralin 0.0946 113 0.2 1.81 

24 Acenaphthene 2.45 78.1 5.07 1.25 

25 p,p'-DDD 0.981 133 2.03 2.13 

26 Benzidine 3.11 632 6.44 10.13 

27 Endosulfan 0.164 253 0.34 4.06 

28 Methoxychlor 0.476 181 0.99 2.9 

29 2,4-Dinitrophenol 0.0944 122 0.2 1.96 

30 2,4-Dinitrotoluene 4.85 28.3 10.04 0.45 

31 Dicofol 0.634 117 1.31 1.88 

32 p-Cresol 0.156 25.3 0.32 0.41 

33 o,p'-DDT 0.105 112 0.22 1.8 

34 2-Methyl-4,6-

dinitrophenol 

0.00223 164 0 2.63 

35 1,2,3-Trichlorobenzene 0.00215 15.5 0 0.25 

36 Lead nitrate 1 100 2.07 1.6 

37 Cadmium chloride 5 100 10.35 1.6 

38 Zinc chloride 1 100 2.07 1.6 

39 Mercuric chloride 0.126 126 0.26 2.02 

40 Potassium chromate (VI) 1 100 2.07 1.6 

41 Cobalt chloride 1 100 2.07 1.6 

42 Nickel chloride 1 100 2.07 1.6 
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Table S3.3. Summary of the exposure-based designed mixture 

Chemical Expo-L (M/L) Expo-H (M/L) Expo-L (%) Expo-H (%) 

1 Benz(a)anthracene 3.61E-07 0.00011424 0.00 0.00 

2 Naphthalene 0.00058572 0.15780789 0.00 0.20 

3 Fluoranthene 1.21E-06 0.00035467 0.00 0.00 

4 p,p'-DDT 1.77E-08 4.73E-06 0.00 0.00 

5 Dieldrin 1.40E-05 0.00471558 0.00 0.01 

6 Aldrin 1.01E-05 0.00363803 0.00 0.00 

7 Heptachlor 1.75E-08 2.11E-06 0.00 0.00 

8 Lindane 6.32E-06 0.00519592 0.00 0.01 

9 Disulfoton 1.22E-07 8.46E-05 0.00 0.00 

10 Endrin 2.05E-05 0.01109737 0.00 0.01 

11 Diazinon 1.73E-07 0.00016082 0.00 0.00 

12 Heptachlor epoxide 1.75E-08 2.11E-06 0.00 0.00 

13 Pentachlorophenol 1.72E-06 5.16E-06 0.00 0.00 

14 Dibutyl phthalate 2.56E-05 0.0044487 0.00 0.01 

15 Chlorpyrifos 1.58E-07 9.50E-05 0.00 0.00 

16 Di(2-ethylhexyl) phthalate 2.56E-05 0.0044487 0.00 0.01 

17 2,4,6-Trichlorophenol 3.60E-08 1.73E-05 0.00 0.00 

18 Ethion 1.84E-07 0.00013694 0.00 0.00 

19 Azinphos-methyl 3.85E-09 7.07E-07 0.00 0.00 

20 2,4,5-Trichlorophenol 8.18E-08 9.54E-05 0.00 0.00 

21 Parathion 1.10E-06 0.00067198 0.00 0.00 

22 Benzo(b)fluoranthene 8.30E-07 0.00040475 0.00 0.00 

23 Trifluralin 0.00036421 0.19464228 0.00 0.24 

24 Acenaphthene 1.81E-07 3.42E-05 0.00 0.00 

25 p,p'-DDD 4.33E-06 0.00053376 0.00 0.00 

26 Benzidine 1.44E-06 0.00039531 0.00 0.00 

27 Endosulfan 2.60E-05 0.01677589 0.00 0.02 

28 Methoxychlor 2.10E-08 1.02E-05 0.00 0.00 

29 2,4-Dinitrophenol 4.80E-06 0.00070318 0.00 0.00 

30 2,4-Dinitrotoluene 8.07E-07 0.00018444 0.00 0.00 

31 Dicofol 4.14E-07 0.00022335 0.00 0.00 

32 p-Cresol 1.78E-06 0.00022917 0.00 0.00 

33 o,p'-DDT 1.48E-08 4.96E-06 0.00 0.00 

34 2-Methyl-4,6-dinitrophenol 5.35E-05 0.04469513 0.00 0.06 

35 1,2,3-Trichlorobenzene 1.16E-06 0.0004521 0.00 0.00 

36 Lead nitrate 0.07239382 0.07239382 0.09 0.09 

37 Cadmium chloride 0.04448003 0.04448003 0.06 0.06 

38 Zinc chloride 76.9230769 76.9230769 96.84 96.29 

39 Mercuric chloride 0.00997009 0.00997009 0.01 0.01 

40 Potassium chromate (VI) 1.92322486 1.92322486 2.42 2.41 

41 Cobalt chloride 0.03393857 0.03393857 0.04 0.04 

42 Nickel chloride 0.42594517 0.42594517 0.54 0.53 
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Table S3.4. Summary of the POD-based designed mixture 

Chemical POD-L (M/L) POD-H (M/L) POD-L (%) 
POD-H 

(%) 

1 Benz(a)anthracene 1 100 0.04 0.47 

2 Naphthalene 564.259254 2739.45263 20.39 12.83 

3 Fluoranthene 157.413519 1015.67311 5.69 4.76 

4 p,p'-DDT 0.00725045 0.03215684 0.00 0.00 

5 Dieldrin 0.54444961 5.26290698 0.02 0.02 

6 Aldrin 9.60125938 299.56814 0.35 1.40 

7 Heptachlor 0.02188813 0.04927075 0.00 0.00 

8 Lindane 1 100 0.04 0.47 

9 Disulfoton 0.05902651 0.54953735 0.00 0.00 

10 Endrin 9.60125938 299.56814 0.35 1.40 

11 Diazinon 0.03389294 0.50573529 0.00 0.00 

12 Heptachlor epoxide 0.02188813 0.04927075 0.00 0.00 

13 Pentachlorophenol 0.30425237 7.03311818 0.01 0.03 

14 Dibutyl phthalate 34.8952467 351.882526 1.26 1.65 

15 Chlorpyrifos 0.20629826 2.04966522 0.01 0.01 

16 Di(2-ethylhexyl) phthalate 34.8952467 351.882526 1.26 1.65 

17 2,4,6-Trichlorophenol 11.5355283 64.6773746 0.42 0.30 

18 Ethion 0.07811949 0.88008051 0.00 0.00 

19 Azinphos-methyl 0.02825473 0.06381648 0.00 0.00 

20 2,4,5-Trichlorophenol 665.126829 7335.13821 24.04 34.36 

21 Parathion 0.12442889 1.28978555 0.00 0.01 

22 Benzo(b)fluoranthene 157.413519 1015.67311 5.69 4.76 

23 Trifluralin 173.984236 1486.57548 6.29 6.96 

24 Acenaphthene 534.117774 2973.78806 19.30 13.93 

25 p,p'-DDD 0.00725045 0.03215684 0.00 0.00 

26 Benzidine 2.6654363 8.1475274 0.10 0.04 

27 Endosulfan 83.3342176 1791.46339 3.01 8.39 

28 Methoxychlor 0.98351451 6.43789682 0.04 0.03 

29 2,4-Dinitrophenol 155.168336 439.489499 5.61 2.06 

30 2,4-Dinitrotoluene 13.9218878 96.1295837 0.50 0.45 

31 Dicofol 0.42810828 5.11480345 0.02 0.02 

32 p-Cresol 49.3945062 609.660795 1.79 2.86 

33 o,p'-DDT 0.00725045 0.03215684 0.00 0.00 

34 2-Methyl-4,6-dinitrophenol 13.9218878 96.1295837 0.50 0.45 

35 1,2,3-Trichlorobenzene 11.5355283 64.6773746 0.42 0.30 

36 Lead nitrate 0.07239382 0.07239382 0.00 0.00 

37 Cadmium chloride 0.04448003 0.04448003 0.00 0.00 

38 Zinc chloride 76.9230769 76.9230769 2.78 0.36 

39 Mercuric chloride 0.00997009 0.00997009 0.00 0.00 

40 Potassium chromate (VI) 1.92322486 1.92322486 0.07 0.01 

41 Cobalt chloride 0.03393857 0.03393857 0.00 0.00 

42 Nickel chloride 0.42594517 0.42594517 0.02 0.00 
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Table S3.5. Summary of the RfD-based designed mixture 

Chemical RfD-L (M/L) 
RfD-H 

(M/L) 

RfD-L 

(%) 

RfD-

H 

(%) 

1 Benz(a)anthracene 2.89E-06 0.00327436 0.00 0.00 

2 Naphthalene 0.15894627 0.7716768 0.19 0.67 

3 Fluoranthene 0.05085319 0.24759079 0.06 0.21 

4 p,p'-DDT 7.25E-05 0.00032157 0.00 0.00 

5 Dieldrin 0.0054445 0.05262907 0.01 0.05 

6 Aldrin 0.00238628 0.01697369 0.00 0.01 

7 Heptachlor 7.30E-05 0.00016424 0.00 0.00 

8 Lindane 5.24E-06 0.0089029 0.00 0.01 

9 Disulfoton 5.90E-05 0.00054954 0.00 0.00 

10 Endrin 0.0054445 0.05262907 0.01 0.05 

11 Diazinon 0.00033893 0.00505735 0.00 0.00 

12 Heptachlor epoxide 7.30E-05 0.00016424 0.00 0.00 

13 Pentachlorophenol 0.00779786 0.02344373 0.01 0.02 

14 Dibutyl phthalate 0.03194863 0.08330888 0.04 0.07 

15 Chlorpyrifos 0.00206298 0.02049665 0.00 0.02 

16 Di(2-ethylhexyl) phthalate 0.03194863 0.08330888 0.04 0.07 

17 2,4,6-Trichlorophenol 0.00384518 0.02155913 0.00 0.02 

18 Ethion 0.0007812 0.00880081 0.00 0.01 

19 Azinphos-methyl 0.00028444 0.00064245 0.00 0.00 

20 2,4,5-Trichlorophenol 0.66512683 7.33513821 0.79 6.34 

21 Parathion 0.00041062 0.00425629 0.00 0.00 

22 Benzo(b)fluoranthene 8.90E-06 0.01293015 0.00 0.01 

23 Trifluralin 1.73984236 14.8657548 2.08 12.84 

24 Acenaphthene 0.20715488 0.64651549 0.25 0.56 

25 p,p'-DDD 0.0001958 0.05040648 0.00 0.04 

26 Benzidine 0.0029616 0.00905281 0.00 0.01 

27 Endosulfan 1.14679853 10.6739559 1.37 9.22 

28 Methoxychlor 0.00098155 0.00642505 0.00 0.01 

29 2,4-Dinitrophenol 0.15516834 0.4394895 0.19 0.38 

30 2,4-Dinitrotoluene 0.04447333 0.12015372 0.05 0.10 

31 Dicofol 0.00428108 0.05114803 0.01 0.04 

32 p-Cresol 1.02E-05 0.00677401 0.00 0.01 

33 o,p'-DDT 7.25E-05 0.00032157 0.00 0.00 

34 2-Methyl-4,6-dinitrophenol 0.05954548 0.65970626 0.07 0.57 

35 1,2,3-Trichlorobenzene 0.00423474 0.02427372 0.01 0.02 

36 Lead nitrate 0.07239382 0.07239382 0.09 0.06 

37 Cadmium chloride 0.04448003 0.04448003 0.05 0.04 

38 Zinc chloride 76.9230769 76.9230769 91.83 66.46 

39 Mercuric chloride 0.00997009 0.00997009 0.01 0.01 

40 Potassium chromate (VI) 1.92322486 1.92322486 2.30 1.66 

41 Cobalt chloride 0.03393857 0.03393857 0.04 0.03 

42 Nickel chloride 0.42594517 0.42594517 0.51 0.37 
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Table S4.1. Reference compounds that served as positive controls for each cell type. 
Cell type Compound name CAS# Mechanism of action 

iCell Hepatocytes Doxorubicin 23214-92-8 

Interacts with DNA by 

intercalation and inhibition of 

macromolecular biosynthesis. 

iCell Neurons 

Brefeldin A 20350-15-6 

Inhibition of protein 

translocation from the 

endoplasmic reticulum to the 

Golgi apparatus. 

Mitomycin C 50-07-7 Alkylation of DNA. 

Retinoic acid 302-79-4
Binding to the retinoic acid 

receptor. 

Rotenone 83-79-4
Interfering with the electron 

transport chain in mitochondria. 

iCell Cardiomyocytes 

Propranolol 525-66-6
Non-selective beta receptor 

antagonist. 

Isoproterenol 7683-59-2 
Stimulates both beta 1 and 2 

adrenergic receptors. 

Sotalol 3930-20-9 

Non-selectively binds to both 

beta 1 and 2 adrenergic 

receptors. 

Cisapride 81098-60-4 
Selective serotonin agonist of 

the 5-HT4 receptor. 

iCell Endothelial cells 

and HUVECs 

Nocodazole 31430-18-9 
Interfering with the 

polymerization of microtubules. 

Suramin 145-63-1

Inhibition of enzymes involved 

with the oxidation of reduced 

nicotinamide-adenine 

dinucleotide. 

Chloroquine 54-05-7
Increasing late endosomal and 

lysosomal pH. 

Histamine 51-45-6
Binds to G protein-coupled 

histamine receptors. 
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Table S4.2. Descriptions of the phenotypes in each tested cell type. 
Cell Type Phenotype Description 

iCell Hepatocytes 

Total cell Number of cell bodies in the image 

All cell mean area 
Average area of the cell (nucleus + 

cytoplasm) for all cells found in the image 

Mitochondrial integrity 
Total number of cells positive for 

MitoTracker staining 

Mitochondrial intensity 

Total pixel intensity of MitoTracker stain 

over the stained area in positive cells, divided 

by the number of cells positive for 

MitoTracker stain 

Nuclei area 
Average area of nucleus for all cells found in 

the image 

iCell Neurons 

Cell number Number of cell bodies in the image 

Total outgrowth Total length of skeletonized outgrowth 

Mean outgrowth 
Average skeletonized outgrowth divided by 

the number of cells 

Total process 
Number of outgrowths in the image that are 

connected to cell bodies 

Total branches 
Total number of branching junctions in the 

image 

Total cell body area 
Total area of the cell bodies in the image 

(excluding outgrowths) 

Cell with significant growth 

Number of cells in the image with outgrowth 

greater than the threshold length specified in 

the settings 

Mitochondria integrity 
Total number of cells positive for 

MitoTracker staining 

Cytoplasmic integrity 
Total number of cells positive for Calcein 

AM staining 

ATP 
Luminescence readouts from CellTiterGlo 

assay 

iCell 

Cardiomyocytes 

Beats per minute Beats per minute after exposure 

Peak amplitude Average amplitude of peaks after exposure 

Peak spacing 
Average spacing between each peak after 

exposure 

Peak width 
Average width between each peak after 

exposure 

Peak rise time Average rise time of each peak after exposure 

Peak decay time 
Average decay time of each peak after 

exposure 

Decay to rise ratio 
Average ratio of decay to rise time of each 

peak after exposure 
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Table S4.2. (Continued) Descriptions of the phenotypes in each tested cell type. 

Cell Type Phenotype Description 

iCell 

Endothelial 

cells and 

HUVECs 

Total cell 
Number of cell bodies in the 

image 

Cytoplasmic integrity 
Total number of cells positive e 

for Calcein AM staining 

Mitochondrial integrity 
Total number of cells positive for 

MitoTracker staining 

Mitochondrial intensity 

Total pixel intensity of 

MitoTracker stain over the stained 

area in positive cells, divided by 

the number of cells positive for 

MitoTracker stain 

Nuclei area 
The area of nucleus for all cells 

found in the image 

Total tube length 
Total microns of the tube length 

(excluding nodes) 

Mean tube length 
Total tube length divided by the 

number of segments 

Total tube area 
Total square microns of tube area 

(excluding nodes) 
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 Table S4.3. Negative controls for the phenotypes in five tested cell types. 

Cell Type Phenotype 

padj-value of t-

test (Media vs 

Vehicle) 

CV(%) of 

Media Wells 

CV(%) of Vehicle 

(Method Blank) 

iCell 

Hepatocytes 

Total cell 0.012* 11.77 11.59 

Nuclei area 0.114 3.84 2.74 

All cell mean area 0.183 8.69 4.19 

Mitochondrial intensity 0.137 8.82 6.74 

Mitochondrial integrity 0.001*# 12.74 5.63 

iCell Neurons 

Cell number 0.034* 15.08 11.94 

Total outgrowth 0.128 7.06 10.16 

Mean outgrowth 0.402 11.88 5.94 

Total process 0.054 12.68 7.96 

Total branches 0.219 9.55 13.06 

Total cell body area 0.046* 11.80 6.41 

Cell with significant 

growth 
0.036* 11.04 12.05 

Cytoplasmic integrity 0.037* 9.35 10.42 

Mitochondrial integrity 0.297 11.40 10.78 

ATP 0.387 6.75 4.24 

iCell 

Cardiomyocyt

es 

Beats per minute 0.201 5.41 4.34 

Peak amplitude 0.807 15.10 7.84 

Peak spacing 0.358 5.68 3.96 

Peak width 0.254 7.00 5.61 

Peak rise time 0.051 13.55 7.71 

Peak decay time 0.157 6.22 4.50 

Decay to rise ratio 0.348 7.46 6.55 

iCell 

Endothelial 

Cells  

Total cell 0.111 9.28 7.92 

Mitochondrial integrity 0.062 11.70 7.81 

Nuclei area 0.077 3.32 3.22 

Mitochondrial intensity 0.863 7.24 5.30 

Cytoplasmic integrity 0.370 8.33 7.92 

Total tube length 0.203 10.87 11.87 

Mean tube length 0.124 8.02 4.94 

Total tube area 0.142 11.22 10.90 

HUVECs 

Total cell 0.542 8.42 7.47 

Mitochondrial integrity 0.021* 18.51 8.30 

Nuclei area 0.136 3.74 3.22 

Mitochondrial intensity 0.561 11.21 11.38 

Cytoplasmic integrity 0.479 9.63 9.43 

Total tube length 0.065 14.58 11.43 

Mean tube length 0.058 10.95 6.74 

Total tube area 0.631 11.28 11.27 

*, denotes statistically significant (padj<0.05) difference between media and vehicle-

treated wells. 

#, denotes statistically significant (padj<0.05/38) difference between media and vehicle-

treated wells after Bonferroni correction. 
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Table S4.4. EC50 values (M) of positive controls in five tested cell types. 

Cell 

Type 
Phenotype 
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0
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iC
el

l 

H
ep

a
to

cy
te

s Total cell NAb 

Nuclei area NA 

All cell mean area NA 

Mitochondrial intensity NA 

Mitochondrial integrity NA 

iC
el

l 
N

eu
ro

n
s 

Cell number NA 1.05 44.18 4.39 

Total outgrowth 0.79 1.25 26.61 1.93 

Mean outgrowth 6.97 53.01 47.19 9.32 

Total process NA 1.37 39.54 4.90 

Total branches 0.24 1.15 23.96 1.60 

Total cell body area NA 2.19 34.19 4.64 

Cell with signif. growth NA 1.05 43.35 4.38 

Cytoplasmic integrity NA 1.73 111.9 4.74 

Mitochondrial integrity NA 0.68 69.91 3.25 

ATP NA NA NA NA 

iC
el

l 

C
a

rd
io

m
y

o
cy

te
s Beats per minute 0.30 NA 60.23 0.02 

Peak amplitude 0.49 NA NA 0.09 

Peak spacing 0.34 19.56 7.89 0.01 

Peak width 0.36 NA 5.64 0.01 

Peak rise time 0.42 NA NA 0.72 

Peak decay time 0.33 NA 4.94 0.01 

Decay to rise ratio 0.21 NA 61.28 0.006 

(a). Highest concentrations tested in the experiments (μM).  

(b). EC50 values were not available due to the low concentration. 
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Table S4.4. (Continued) EC50 values (M) of positive controls in five tested cell types. 

Cell 

Type 
Phenotype 
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C
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Total cell 

 

3.71 NA 610.2 NA 

Mitochondrial integrity 3.54 NA 498.7 NA 

Nuclei area NA NA NA NA 

Mitochondrial intensity NA NA NA NA 

Cytoplasmic integrity 3.68 NA 462.8 NA 

Total tube length 0.13 5.64 NA 2.14 

Mean tube length 18.86 28.23 NA NA 

Total tube area 0.15 6.23 NA 1.93 

H
U

V
E

C
s 

Total cell 

 

0.70 NA 954.4 NA 

Mitochondrial integrity 0.27 NA 855.6 NA 

Nuclei area NA NA NA NA 

Mitochondrial intensity NA NA NA NA 

Cytoplasmic integrity 1.06 NA NA NA 

Total tube length 0.06 3.21 0.48 10.75 

Mean tube length 0.32 9.78 NA 153.4 

Total tube area 0.07 4.18 5.35 12.05 
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Table S4.5A. Point-of-departure (POD) values for the phenotypes in iCell hepatocytes 

2.0. 
Sample ID Total 

cell 

All cell 

mean 

area 

Mitochondri

a integrity 

Mitochondri

a intensity 

Nuclei 

area 

49 Manchester 100.00 25.20 100.00 34.13 100.00 

50 Manchester 20.70 100.00 70.78 8.85 100.00 

51 Manchester 100.00 100.00 100.00 100.00 100.00 

52 Manchester 3.21 100.00 0.38 33.88 100.00 

53 Manchester 100.00 100.00 100.00 100.00 6.18 

54 Manchester 100.00 100.00 100.00 100.00 82.09 

55 Manchester 100.00 100.00 100.00 5.78 100.00 

56 Manchester 100.00 100.00 100.00 100.00 100.00 

57 Manchester 2.04 14.25 1.82 100.00 100.00 

58 Manchester 100.00 55.93 100.00 10.39 100.00 

60 Manchester 100.00 100.00 100.00 100.00 100.00 

62 Manchester 100.00 100.00 100.00 100.00 100.00 

63 Manchester 100.00 100.00 100.00 100.00 100.00 

64 Manchester 3.78 100.00 1.65 64.13 100.00 

65 Manchester 100.00 89.83 100.00 100.00 100.00 

66 Manchester 5.71 1.77 2.35 100.00 100.00 

67 Manchester 100.00 98.66 100.00 32.22 100.00 

68 Manchester 100.00 100.00 100.00 100.00 83.56 

85 Manchester 100.00 100.00 100.00 100.00 100.00 

87 Manchester 100.00 100.00 100.00 100.00 100.00 

88 Manchester 100.00 1.54 100.00 100.00 100.00 

89 Manchester 100.00 51.10 100.00 100.00 100.00 

91 Manchester 15.37 0.16 2.56 100.00 100.00 

93 Manchester 100.00 100.00 0.01 0.03 100.00 

94 Manchester 100.00 100.00 100.00 100.00 100.00 

95 Manchester 100.00 100.00 100.00 33.29 100.00 

96 Manchester 100.00 5.04 100.00 100.00 100.00 

97 Manchester 100.00 11.35 30.33 13.75 37.09 

98 Manchester 100.00 76.33 100.00 100.00 100.00 

99 Manchester 0.09 7.59 0.05 70.45 0.08 

100 Manchester 100.00 100.00 100.00 100.00 100.00 

101 Manchester 100.00 100.00 100.00 100.00 100.00 

102 Manchester 100.00 100.00 100.00 100.00 19.31 

103 Manchester 29.96 100.00 21.08 0.28 100.00 

104 Manchester 100.00 100.00 100.00 100.00 100.00 

105 Manchester 29.87 100.00 19.56 100.00 100.00 

106 Manchester 100.00 72.10 100.00 100.00 100.00 

107 Manchester 100.00 100.00 100.00 100.00 100.00 

108 Manchester 100.00 100.00 100.00 100.00 100.00 
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Table S4.5B. Point-of-departure (POD) values for the phenotypes in iCell neurons. 
Sample ID Cell number Total out-

growth 

Mean 

out-

growth 

Total 

process 

Total 

branch 

Cell 

body 

area 

Cell sig 

growth 

Mito-chondria 

integrity 

Cyto-

plasmic 

integ-rity 

ATP 

49 Manchester 49.44 60.55 3.37 46.74 63.01 17.62 56.92 27.28 38.51 100.00 

50 Manchester 100.00 100.00 100.00 87.52 100.00 100.00 100.00 100.00 43.68 100.00 

51 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

52 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

53 Manchester 55.31 100.00 69.34 100.00 100.00 30.53 50.59 100.00 100.00 100.00 

54 Manchester 100.00 14.85 100.00 31.41 100.00 2.28 100.00 83.76 3.15 100.00 

55 Manchester 100.00 0.03 100.00 0.04 0.05 0.04 0.08 0.13 0.10 100.00 

56 Manchester 0.21 0.21 51.47 14.21 0.33 10.33 0.19 24.41 26.15 100.00 

57 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

58 Manchester 100.00 100.00 0.27 0.02 100.00 8.26 0.03 0.02 100.00 100.00 

60 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

62 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

63 Manchester 100.00 100.00 100.00 100.00 100.00 24.97 100.00 100.00 100.00 100.00 

64 Manchester 100.00 100.00 94.40 100.00 100.00 100.00 100.00 100.00 100.00 83.16 

65 Manchester 0.59 100.00 18.38 100.00 100.00 100.00 0.59 1.12 100.00 100.00 

66 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 76.76 

67 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

68 Manchester 52.71 60.03 76.78 57.24 68.57 60.87 64.57 60.82 62.31 2.50 

85 Manchester 100.00 3.44 100.00 100.00 10.74 1.24 100.00 100.00 100.00 100.00 

87 Manchester 100.00 100.00 2.83 34.58 100.00 100.00 100.00 100.00 100.00 9.69 

88 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

89 Manchester 100.00 0.01 100.00 0.01 0.01 0.01 0.01 0.01 0.02 100.00 

91 Manchester 100.00 100.00 100.00 100.00 100.00 45.46 100.00 100.00 100.00 100.00 

93 Manchester 100.00 35.21 100.00 100.00 100.00 17.34 100.00 100.00 100.00 81.93 

94 Manchester 2.04 1.45 44.38 3.84 100.00 100.00 1.00 9.32 1.90 100.00 

95 Manchestesr 100.00 1.77 100.00 24.03 23.46 100.00 100.00 100.00 100.00 53.87 
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Table S4.5B. (Continued) Point-of-departure (POD) values for the phenotypes in iCell neurons. 
Sample ID Cell number Total out-

growth 

Mean 

out-

growth 

Total 

process 

Total 

branch 

Cell 

body 

area 

Cell sig 

growth 

Mito-chondria 

integrity 

Cyto-

plasmic 

integ-rity 

ATP 

96 Manchester 100.00 100.00 100.00 100.00 100.00 0.39 100.00 100.00 100.00 100.00 

97 Manchester 56.65 31.49 15.05 46.28 50.83 16.01 54.69 38.49 57.03 31.83 

98 Manchester 49.74 100.00 100.00 100.00 100.00 100.00 60.72 60.16 100.00 100.00 

99 Manchester 1.03 2.46 100.00 100.00 100.00 100.00 3.01 100.00 100.00 100.00 

100 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 72.47 

101 Manchester 100.00 100.00 100.00 100.00 100.00 56.23 100.00 100.00 100.00 100.00 

102 Manchester 100.00 11.81 1.59 100.00 39.23 100.00 100.00 63.05 100.00 100.00 

103 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 72.95 

104 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

105 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

106 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

107 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

108 Manchester 100.00 46.74 100.00 100.00 55.26 100.00 100.00 100.00 41.21 74.78 
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Table S4.5C. Point-of-departure (POD) values for the phenotypes in iCell cardiomyocytes. 
Sample ID Beats per 

minute 

Peak 

amplitude 

Peak spacing Peak width Peak rise time Peak decay 

time 

Decay to rise 

ratio 

49 Manchester 100.00 100.00 100.00 100.00 29.23 100.00 82.52 

50 Manchester 38.49 100.00 38.19 27.96 100.00 47.73 100.00 

51 Manchester 32.73 100.00 29.71 100.00 100.00 77.14 74.65 

52 Manchester 55.01 100.00 57.36 23.58 5.32 29.26 100.00 

53 Manchester 48.74 100.00 73.60 100.00 100.00 100.00 4.12 

54 Manchester 82.00 100.00 77.98 100.00 100.00 100.00 100.00 

55 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

56 Manchester 9.07 63.87 38.24 49.29 52.53 47.72 18.97 

57 Manchester 58.22 100.00 57.64 65.95 100.00 58.18 59.77 

58 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

60 Manchester 47.06 100.00 62.36 100.00 100.00 100.00 100.00 

62 Manchester 100.00 100.00 100.00 100.00 41.83 100.00 100.00 

63 Manchester 100.00 100.00 100.00 100.00 2.55 35.56 14.39 

64 Manchester 100.00 67.66 82.94 78.99 58.36 80.29 20.67 

65 Manchester 62.19 100.00 54.27 100.00 100.00 76.59 24.33 

66 Manchester 46.32 33.55 33.39 35.37 65.76 34.49 100.00 

67 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

68 Manchester 61.03 100.00 64.91 100.00 100.00 75.82 100.00 

85 Manchester 65.22 100.00 71.77 100.00 100.00 82.11 100.00 

87 Manchester 61.46 100.00 63.66 100.00 100.00 100.00 9.97 

88 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

89 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

91 Manchester 56.91 70.69 60.05 62.41 58.84 50.64 100.00 

93 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 67.59 

94 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

95 Manchester 57.16 59.18 62.39 66.44 61.36 72.09 16.23 
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Table S4.5C. (Continued) Point-of-departure (POD) values for the phenotypes in iCell cardiomyocytes. 
Sample ID Beats per 

minute 

Peak 

amplitude 

Peak spacing Peak width Peak rise time Peak decay 

time 

Decay to rise 

ratio 

96 Manchester 26.05 21.00 20.75 35.61 9.69 69.69 1.71 

97 Manchester 36.20 19.01 6.85 2.26 3.71 1.64 11.15 

98 Manchester 17.11 19.18 22.94 29.91 100.00 22.30 100.00 

99 Manchester 100.00 0.51 100.00 100.00 100.00 100.00 100.00 

100 Manchester 78.21 100.00 79.48 100.00 100.00 100.00 100.00 

101 Manchester 67.17 100.00 70.61 100.00 100.00 100.00 100.00 

102 Manchester 44.80 100.00 35.69 100.00 100.00 100.00 100.00 

103 Manchester 31.88 100.00 30.56 74.96 63.53 68.65 49.71 

104 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

105 Manchester 11.01 40.49 13.54 11.01 20.00 11.72 100.00 

106 Manchester 70.72 37.65 70.05 77.66 17.14 100.00 7.33 

107 Manchester 9.90 65.45 45.39 29.50 51.89 47.88 17.87 

108 Manchester 49.89 12.35 8.76 11.27 6.29 16.31 55.49 
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Table S4.5D. Point-of-departure (POD) values for the phenotypes in iCell endothelial cells. 
Sample ID Total cell Cytoplasmi

c integrity 

Mitochondri

a integrity 

Mitochondr

ia intensity 

Nuclei 

area 

Total tube 

length 

Mean tube 

length 

Total tube 

area 

49 Manchester 100.00 100.00 100.00 100.00 100.00 3.26 100.00 100.00 

50 Manchester 17.28 15.15 16.32 100.00 7.57 0.19 0.76 0.10 

51 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

52 Manchester 34.45 35.83 43.77 3.65 10.46 100.00 100.00 100.00 

53 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

54 Manchester 100.00 100.00 100.00 6.61 31.52 14.47 100.00 0.60 

55 Manchester 100.00 100.00 100.00 0.08 100.00 0.33 100.00 0.32 

56 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

57 Manchester 100.00 100.00 100.00 100.00 1.25 100.00 100.00 100.00 

58 Manchester 72.86 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

60 Manchester 19.86 20.34 27.71 88.62 20.01 100.00 100.00 100.00 

62 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

63 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

64 Manchester 41.03 30.30 35.57 100.00 100.00 5.36 9.75 4.10 

65 Manchester 68.96 16.38 79.18 100.00 100.00 100.00 100.00 100.00 

66 Manchester 11.07 11.66 10.68 100.00 4.48 100.00 100.00 100.00 

67 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

68 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

85 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

87 Manchester 100.00 56.47 100.00 39.59 100.00 100.00 100.00 100.00 

88 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 84.72 100.00 

89 Manchester 100.00 0.06 100.00 0.04 100.00 100.00 100.00 100.00 

91 Manchester 100.00 100.00 100.00 100.00 100.00 17.02 100.00 10.61 

93 Manchester 20.39 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

94 Manchester 100.00 100.00 100.00 100.00 100.00 20.83 100.00 30.05 

95 Manchester 5.67 6.42 7.61 100.00 63.16 100.00 100.00 100.00 
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Table S4.5D. (Continued) Point-of-departure (POD) values for the phenotypes in iCell endothelial cells. 
Sample ID Total cell Cytoplasmi

c integrity 

Mitochondri

a integrity 

Mitochondr

ia intensity 

Nuclei 

area 

Total tube 

length 

Mean tube 

length 

Total tube 

area 

96 Manchester 25.26 19.08 24.60 100.00 100.00 15.55 100.00 9.41 

97 Manchester 4.15 5.40 9.44 38.11 100.00 11.90 100.00 4.81 

98 Manchester 19.63 20.61 21.86 24.21 26.72 74.01 100.00 8.61 

99 Manchester 21.70 0.80 4.36 0.05 100.00 0.06 74.13 0.05 

100 Manchester 100.00 100.00 100.00 100.00 66.31 100.00 100.00 100.00 

101 Manchester 100.00 100.00 100.00 100.00 23.85 10.17 100.00 55.41 

102 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

103 Manchester 32.09 43.15 29.00 100.00 100.00 18.72 100.00 11.87 

104 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 27.23 25.11 

105 Manchester 36.43 20.48 11.74 3.49 100.00 28.31 47.90 20.95 

106 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 59.18 

107 Manchester 100.00 100.00 100.00 100.00 100.00 0.46 100.00 0.45 

108 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table S4.5E. Point-of-departure (POD) values for the phenotypes in human umbilical vein endothelial cells (HUVECs). 
Sample ID Total cell Cytoplasmic 

integrity 

Mitochondria 

integrity 

Mitochondri

a intensity 

Nuclei 

area 

Total tube 

length 

Mean tube 

length 

Total 

tube area 

49 Manchester 100.00 100.00 74.86 3.46 17.98 23.98 100.00 100.00 

50 Manchester 68.71 100.00 100.00 0.69 16.95 100.00 100.00 100.00 

51 Manchester 100.00 100.00 82.70 9.40 100.00 100.00 100.00 100.00 

52 Manchester 100.00 23.91 100.00 100.00 100.00 100.00 100.00 100.00 

53 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

54 Manchester 100.00 100.00 100.00 19.76 100.00 100.00 100.00 100.00 

55 Manchester 100.00 100.00 17.15 100.00 100.00 0.02 0.02 0.02 

56 Manchester 100.00 100.00 100.00 12.16 100.00 0.05 100.00 0.07 

57 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

58 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 18.71 100.00 

60 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

62 Manchester 100.00 100.00 100.00 0.73 100.00 100.00 53.36 100.00 

63 Manchester 100.00 100.00 28.74 0.12 15.96 100.00 23.84 100.00 

64 Manchester 71.48 59.20 67.42 21.95 100.00 4.60 100.00 100.00 

65 Manchester 100.00 100.00 100.00 0.55 60.51 0.01 1.41 0.01 

66 Manchester 100.00 100.00 100.00 1.11 100.00 100.00 100.00 100.00 

67 Manchester 100.00 100.00 100.00 100.00 100.00 0.02 100.00 0.21 

68 Manchester 100.00 100.00 100.00 52.32 100.00 100.00 100.00 100.00 

85 Manchester 100.00 100.00 100.00 1.31 100.00 3.05 100.00 100.00 

87 Manchester 100.00 100.00 78.26 0.73 100.00 100.00 100.00 100.00 

88 Manchester 100.00 100.00 100.00 1.02 94.36 0.02 16.08 0.17 

89 Manchester 100.00 100.00 100.00 16.05 100.00 0.01 0.01 0.01 

91 Manchester 100.00 95.86 100.00 56.72 100.00 100.00 100.00 100.00 

93 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

94 Manchester 100.00 100.00 92.26 26.76 27.74 0.01 0.01 0.01 

95 Manchester 100.00 100.00 100.00 1.07 100.00 3.27 5.95 100.00 
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Table S4.5E. (Continued) Point-of-departure (POD) values for the phenotypes in human umbilical vein endothelial cells 

(HUVECs). 
Sample ID Total cell Cytoplasmic 

integrity 

Mitochondria 

integrity 

Mitochondri

a intensity 

Nuclei 

area 

Total tube 

length 

Mean tube 

length 

Total 

tube 

area 

96 Manchester 100.00 0.28 100.00 0.92 100.00 100.00 67.90 100.00 

97 Manchester 31.87 32.91 0.87 0.55 0.71 0.01 0.01 0.01 

98 Manchester 94.57 100.00 100.00 0.54 6.32 100.00 100.00 100.00 

99 Manchester 100.00 14.27 100.00 22.46 100.00 100.00 100.00 100.00 

100 Manchester 100.00 100.00 72.32 100.00 62.22 100.00 26.92 100.00 

101 Manchester 100.00 100.00 100.00 42.66 100.00 0.21 100.00 0.09 

102 Manchester 100.00 100.00 100.00 8.78 6.73 100.00 100.00 100.00 

103 Manchester 100.00 57.56 100.00 100.00 100.00 100.00 100.00 100.00 

104 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.02 

105 Manchester 100.00 6.22 100.00 100.00 100.00 100.00 100.00 100.00 

106 Manchester 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

107 Manchester 100.00 100.00 0.08 0.67 14.54 0.02 0.04 0.02 

108 Manchester 100.00 100.00 100.00 42.07 72.59 33.48 100.00 5.51 
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Table S4.6A. Spatial correlation among PAH concentrations. P-value matrix is shown 

for both p-values obtained using 10,000 permutations (p_permutation), or derived from 

multiple testing correction using Benjamini-Hochberg (Benjamini and Hochberg 1995) 

computation (p_adjusted).  

Feature p_permutation p_adjusted 

Benzo(g,h,i)perylene 0.008 0.046 

Indeno(1,2,3-c,d)pyrene 0.012 0.046 

Chrysene 0.014 0.046 

Benzo(a)anthracene 0.018 0.046 

Benzo(b)fluoranthene 0.018 0.046 

Total PAHs 0.019 0.046 

Priority 16 PAHs 0.019 0.046 

Fluoranthene 0.022 0.046 

Pyrene 0.025 0.046 

Overall 0.026 0.046 

Benzo(k)fluoranthene 0.026 0.046 

Benzo(a)pyrene 0.039 0.061 

Anthracene 0.042 0.061 

Acenaphthylene 0.054 0.073 

Dibenzo(a,h)anthracene 0.060 0.075 

Phenanthrene 0.074 0.088 

Acenaphthene 0.219 0.245 

Fluorene 0.352 0.371 

Naphthalene 0.410 0.410 
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Table S4.6B. Spatial correlation among in vitro bioactivity phenotypes. P-value matrix 

is shown for both p-values obtained using 10,000 permutations (p_permutation), or 

derived from multiple testing correction using Benjamini-Hochberg (Benjamini and 

Hochberg 1995) computation (p_adjusted).  

Feature p_permutation p_adjusted 

iCell_Endothelial cells_nucleiarea 0.033 0.899 

overall 0.151 0.899 

iCell_Neurons_totalbranch 0.155 0.899 

HUVEC_mitointens 0.155 0.899 

iCell_Neurons_totalprocess 0.158 0.899 

iCell_Neurons_cellsiggrowth 0.183 0.899 

iCell_Neurons_meanoutgrowth 0.199 0.899 

iCell_Hepatocytes_Tot_cell 0.225 0.899 

iCell_Endothelial cells_mitointens 0.225 0.899 

iCell_Neurons_mitointegr 0.237 0.899 

iCell_Neurons_cytointegr 0.254 0.899 

iCell_Endothelial cells_totaltubearea 0.296 0.947 

iCell_Neurons_total outgrowth 0.316 0.947 

iCell_Neurons_cellbodyarea 0.356 0.947 

iCell_Hepatocytes_mitointegr 0.388 0.947 

iCell_Cardiomyocytes_rise 0.402 0.947 

iCell_Neurons_ATP 0.424 0.947 

iCell_Hepatocytes_nucleiarea 0.473 0.947 

iCell_Endothelial cells_meantubelength 0.477 0.947 

iCell_Neurons_cell num 0.520 0.947 

HUVEC_totaltubelength 0.607 0.947 

iCell_Cardiomyocytes_decay to rise 0.634 0.947 

iCell_Endothelial cells_Tot_cell 0.669 0.947 

iCell_Endothelial cells_totaltubelength 0.673 0.947 

iCell_Cardiomyocytes_BPM 0.679 0.947 

HUVEC_nucleiarea 0.722 0.947 

iCell_Hepatocytes_allcellmeanA 0.738 0.947 

HUVEC_Tot_cell 0.738 0.947 

iCell_Endothelial cells_mitointegr 0.763 0.947 

iCell_Cardiomyocytes_AMP 0.784 0.947 

iCell_Cardiomyocytes_Width 0.819 0.947 

iCell_Cardiomyocytes_decay 0.828 0.947 

iCell_Endothelial cells_cytointegr 0.841 0.947 

HUVEC_cytointegr 0.891 0.947 

HUVEC_mitointegr 0.897 0.947 

HUVEC_totaltubearea 0.905 0.947 

HUVEC_meantubelength 0.906 0.947 

iCell_Cardiomyocytes_Spc 0.929 0.947 

iCell_Hepatocytes_mitointens 0.947 0.947 
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Table S4.7. Toxic equivalent factors (TEF) and other for priority PAH used in this 

study. 

PAH 
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Acenaphthene 0.001 0.06 3600 

Acenaphthylene 0.001 

Anthracene 0.01 0.3 18000 

Benzo(a)anthracene 0.1 0.1 0.2 0.1 1.1 

Benzo(a)pyrene 1 1 1 0.0003 1 18 0.11 

Benzo(b)fluoranthene 0.1 0.1 0.8 0.1 1.1 

Benzo(g,h,i)perylene 0.01 0.009 

Benzo(k)fluoranthene 0.1 0.01 0.03 0.01 11 

Chrysene 0.01 0.001 0.1 0.001 1.10E+02 

Dibenzo(a,h)anthracene 5 1 10 1 1.10E-01 

Fluoranthene 0.001 0.08 0.04 2400 

Fluorene 0.001 0.04 2400 

Indeno(1,2,3-c,d)pyrene 0.1 0.1 0.07 0.1 1.1 

Naphthalene 0.001 0.02 0.12 1200 2 

Phenanthrene 0.001 

Pyrene 0.001 0.03 1800 

TEF References:  

EPA2010 https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=194584 

Nisbet1992 Nisbet, ICT; LaGoy, PK. (1992) Toxic equivalency factors (TEFs) for polycyclic 

aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300. 

EPA1993 U.S. EPA (U.S. Environmental Protection Agency). (1993) Provisional guidance for 

quantitative risk assessment of polycyclic aromatic hydrocarbons. Cincinnati, OH: Office of Health and 

Environmental Assessment, Environmental Criteria and Assessment Office. 
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Table S4.8. Toxic equivalent factors (TEF), hazard index regional screening level (HI.RSL), and cancer risk (CRisk) were 

calculated for each environmental sample. TEFs were calculated using three different assumptions, see Table S4.7 for details. 
Sample.ID BaPeq.TEF.Nisbet1992 BaPeq.TEF.EPA1993 BaPeq.TEF.EPA2010 HI.RSL CRisk.per1e6 

49 Manchester 2259.01 1576.08 4585.04 0.06 21.0 

50 Manchester 1397.56 1004.07 2922.01 0.04 13.0 

51 Manchester 474.4 359.28 863.52 0.01 4.0 

52 Manchester 305.77 212.02 642.62 0.01 3.0 

53 Manchester 111.53 82.96 216.5 0 1.0 

54 Manchester 23.09 16.13 41.65 0 0.0 

55 Manchester 577.6 449.25 1046.74 0.02 5.0 

56 Manchester 201.72 147.27 395.41 0.01 2.0 

57 Manchester 20.85 13.56 39.42 0 0.0 

58 Manchester 190.55 128.84 402.05 0 2.0 

60 Manchester 316.02 238.53 592.8 0.01 3.0 

62 Manchester 193.65 147.5 358.1 0.01 2.0 

63 Manchester 478.44 339.31 923.84 0.01 4.0 

64 Manchester 91.61 68.8 174.9 0 1.0 

65 Manchester 898.08 710.19 1616.61 0.03 8.0 

66 Manchester 275.56 208.75 532.03 0.01 3.0 

67 Manchester 144.64 108.66 276.67 0 1.0 

68 Manchester 253.44 174.81 527.66 0.01 2.0 

85 Manchester 393.76 254.32 806.89 0.01 4.0 

87 Manchester 393.12 299.3 740.03 0.01 4.0 

88 Manchester 243.84 160.58 535.85 0.01 2.0 

89 Manchester 779.45 498.85 1507.32 0.02 7.0 

91 Manchester 260.55 177.19 540.95 0.01 2.0 

93 Manchester 103.53 78.19 198.71 0 1.0 

94 Manchester 115.18 67.05 241.65 0 1.0 

95 Manchester 647.69 541.83 1366.38 0.02 6.0 
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Table S4.8. (Continued) Toxic equivalent factors (TEF), hazard index regional screening level (HI.RSL), and cancer risk 

(CRisk) were calculated for each environmental sample. TEFs were calculated using three different assumptions, see Table 

S4.7 for details. 
Sample.ID BaPeq.TEF.Nisbet1992 BaPeq.TEF.EPA1993 BaPeq.TEF.EPA2010 HI.RSL CRisk.per1e6 

96 Manchester 213.17 151.63 428.98 0.01 2.0 

97 Manchester 1455.57 953.34 3051.3 0.04 13.0 

98 Manchester 273.22 177.81 572.82 0.01 2.0 

99 Manchester 119.03 73.91 240.92 0 1.0 

100 Manchester 382.42 241.85 796.76 0.01 3.0 

101 Manchester 221.67 148.67 476.05 0.01 2.0 

102 Manchester 2451.98 1386.41 5002.02 0.05 22.0 

103 Manchester 76.28 57.38 143.95 0 1.0 

104 Manchester 232.63 155.6 471.23 0.01 2.0 

105 Manchester 160.1 106.77 325.84 0 1.0 

106 Manchester 121.04 90.73 250.88 0 1.0 

107 Manchester 446.79 343.68 890.11 0.01 4.0 

108 Manchester 598.05 424.57 1336.89 0.02 5.0 
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Table S4.9A. Prediction analysis of PAH concentrations from bioactivity. B-coefficient for each in vitro bioactivity phenotype (rows) 

used for prediction of PAH concentrations (columns). 
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Table S4.9A. (Continued) Prediction analysis of PAH concentrations from bioactivity. B-coefficient for each in vitro bioactivity 

phenotype (rows) used for prediction of PAH concentrations (columns). 
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Table S4.9A. (Continued) Prediction analysis of PAH concentrations from bioactivity. B-coefficient for each in vitro bioactivity 

phenotype (rows) used for prediction of PAH concentrations (columns). 

T
o

ta
l.

P
A

H
s 

P
ri

o
ri

ty
.1

6
.P

A
H

s 

A
ce

n
a

p
h

th
en

e
 

N
a

p
h

th
a

le
n

e
 

A
ce

n
a

p
h

th
y

le
n

e
 

F
lu

o
re

n
e
 

P
h

en
a

n
th

re
n

e
 

A
n

th
ra

ce
n

e
 

F
lu

o
ra

n
th

en
e
 

P
y

re
n

e
 

B
en

zo
.a

.

a
n

th
ra

ce
n

e
C

h
ry

se
n

e
 

B
en

zo
.b

. 

fl
u

o
ra

n
th

en
e

B
en

zo
.k

. 

fl
u

o
ra

n
th

en
e

B
en

zo
.a

.p
y

re
n

e
 

In
d

en
o

.1
.2

.3
. 

c.
d

.p
y

re
n

e
D

ib
en

zo
.a

.h
. 

a
n

th
ra

ce
n

e
B

en
zo

.g
.h

.i
.

p
er

y
le

n
e

C
a

n
ce

r
 

iC
el

l_
N

e

u
ro

n
s_

ce

ll
b

o
d

y
ar

e

a 

0
.0

2
6
9
 

0
.0

1
9
7
 

0
.0

4
3
5
 

-0
.0

0
7

2

0
.0

5
1
3

0
.0

1
9
4

0
.0

0
3
9

0
.0

5
1
3

0
.0

0
0
9

0
.0

0
3
6

0
.0

1
9
8

0
.0

2
8
1

0
.0

2
0
1

0
.0

1
7
8

0
.0

1
4
8

0
.0

2
7
4

0
.0

1
6
0

0
.0

3
3
4

0
.0

1
4
8

iC
el

l_
N

eu
ro

n
s_

ce
ll

si
g

g

ro
w

th
 

0
.0

3
4
3
 

0
.0

3
1
3
 

-0
.0

2
8

4

0
.0

1
9
2

0
.0

4
4
4

-0
.0

0
3

4

0
.0

0
7
4

0
.0

4
0
0

0
.0

2
4
9

0
.0

2
8
1

0
.0

1
9
3

0
.0

3
6
1

0
.0

3
8
4

0
.0

3
7
4

0
.0

1
7
4

0
.0

3
0
9

0
.0

3
5
1

0
.0

3
6
2

0
.0

2
7
9

iC
el

l_
N

eu
ro

n
s_

m
it

o
in

te

g
r -0
.0

3
6

5

-0
.0

4
1

5

-0
.0

6
1

3

-0
.0

4
2

8

-0
.0

2
7

5

-0
.0

5
8

2

-0
.0

3
3

7

-0
.0

3
5

6

-0
.0

2
8

5

-0
.0

3
0

0

-0
.0

4
8

1

-0
.0

3
3

7

-0
.0

3
9

2

-0
.0

3
9

2

-0
.0

5
5

9

-0
.0

5
1

6

-0
.0

5
2

1

-0
.0

4
6

4

-0
.0

5
3

0

iC
el

l_
N

eu
ro

n
s_

cy
to

in
te

g
r -0
.0

3
6

9

-0
.0

3
7

2

-0
.0

3
8

0

-0
.0

3
9

6

0
.0

3
9
4

-0
.0

4
9

8

-0
.0

6
8

2

0
.0

2
6
4

-0
.0

5
9

4

-0
.0

5
5

0

-0
.0

4
2

5

-0
.0

4
5

6

-0
.0

2
7

0

-0
.0

2
7

2

-0
.0

3
5

2

-0
.0

0
1

0

-0
.0

1
5

7

0
.0

0
5
5

-0
.0

2
5

6

iC
el

l_
N

eu
ro

n
s_

A
T

P
 

0
.0

0
5
8

 

0
.0

1
1
9

 

0
.0

3
4
2

 

0
.0

2
1
3

 

0
.0

4
5
5

 

0
.0

2
8
4

 

0
.0

1
1
4

 

0
.0

5
1
5

 

-0
.0

0
4

8

-0
.0

0
4

5

0
.0

1
9
5

 

-0
.0

0
8

5

0
.0

0
2
7

 

0
.0

0
0
4

 

0
.0

1
0
6

 

0
.0

2
2
4

 

0
.0

2
5
9

 

0
.0

2
3
8

 

0
.0

1
7
0

 

iC
el

l_
C

ar
d

io
m

y
o

cy
te

s_
B

P
M

 

-0
.0

0
3

6

-0
.0

0
4

3

-0
.0

1
2

1

0
.0

3
1
6

-0
.0

3
5

3

0
.0

0
6
4

0
.0

0
2
0

-0
.0

3
4

4

0
.0

0
7
7

0
.0

0
9
2

-0
.0

0
2

0

0
.0

0
0
1

-0
.0

0
7

2

-0
.0

0
7

1

-0
.0

0
3

3

-0
.0

1
4

7

-0
.0

0
7

3

-0
.0

1
7

9

-0
.0

0
5

7



199 

Table S4.9A. (Continued) Prediction analysis of PAH concentrations from bioactivity. B-coefficient for each in vitro bioactivity 

phenotype (rows) used for prediction of PAH concentrations (columns). 
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Table S4.9A. (Continued) Prediction analysis of PAH concentrations from bioactivity. B-coefficient for each in vitro bioactivity 

phenotype (rows) used for prediction of PAH concentrations (columns). 
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Table S4.9A. (Continued) Prediction analysis of PAH concentrations from bioactivity. B-coefficient for each in vitro bioactivity 

phenotype (rows) used for prediction of PAH concentrations (columns). 
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Table S4.9A. (Continued) Prediction analysis of PAH concentrations from bioactivity. B-coefficient for each in vitro bioactivity 

phenotype (rows) used for prediction of PAH concentrations (columns). 
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Table S4.9B. Prediction analysis of PAH concentrations from bioactivity. Rank (based on the absolute value of B-coefficient) for 

each in vitro bioactivity phenotype (rows) used for prediction of PAH concentrations (columns). The highest number indicates top 

rank (i.e., the variable was most informative for prediction). 

T
o

ta
l.

P
A

H
s 

P
ri

o
ri

ty
.1

6
.P

A
H

s 

A
ce

n
a

p
h

th
en

e 

N
a

p
h

th
a

le
n

e 

A
ce

n
a

p
h

th
y
le

n
e
 

F
lu

o
re

n
e 

P
h

en
a

n
th

re
n

e
 

A
n

th
ra

ce
n

e 

F
lu

o
ra

n
th

en
e 

P
y

re
n

e 

B
en

zo
.a

.

a
n

th
ra

ce
n

e 

C
h

ry
se

n
e 

B
en

zo
.b

.

fl
u

o
ra

n
th

en
e
 

B
en

zo
.k

.

fl
u

o
ra

n
th

en
e
 

B
en

zo
.a

. 
p

y
re

n
e 

In
d

en
o

.1
.2

.3
. 

c.
d

.p
y

re
n

e

D
ib

en
zo

.a
.h

.

a
n

th
ra

ce
n

e 

B
en

zo
.g

.h
.i

.

p
er

y
le

n
e
 

C
a

n
ce

r 

Intercept 3 1 3 2 3 5 3 2 2 2 3 3 4 2 4 5 3 5 4 

iCell_Hepatocytes_Tot_cell 9 5 10 17 4 6 4 8 11 9 5 15 12 13 12 13 8 11 8 

iCell_Hepatocytes_allcellmeanA 21 26 13 36 11 22 24 10 28 29 21 24 26 30 24 10 28 7 27 

iCell_Hepatocytes_mitointegr 30 30 30 23 1 31 30 12 29 28 32 30 27 28 29 23 16 18 23 

iCell_Hepatocytes_mitointens 35 35 37 34 7 37 38 6 38 37 37 36 34 34 35 26 24 16 34 

iCell_Hepatocytes_nucleiarea 34 34 2 8 39 2 9 39 9 13 19 31 36 36 32 36 37 37 35 

iCell_Neurons_cell.num 8 9 28 29 33 25 17 31 5 1 1 11 20 20 7 27 27 31 16 

iCell_Neurons_total.outgrowth 27 21 7 9 35 8 11 35 7 11 15 25 31 31 19 33 33 34 30 

iCell_Neurons_meanoutgrowth 38 38 36 39 38 38 36 38 37 38 38 38 38 38 38 38 38 38 38 

iCell_Neurons_totalprocess 10 14 26 6 22 15 8 26 8 6 8 12 11 7 15 25 26 28 15 

iCell_Neurons_totalbranch 37 37 19 22 36 26 26 36 34 35 35 37 37 37 36 37 36 36 37 

iCell_Neurons_cellbodyarea 16 13 27 7 31 14 5 29 1 4 13 16 13 11 10 21 12 25 9 

iCell_Neurons_cellsiggrowth 20 17 17 18 29 4 6 27 16 19 11 23 24 23 13 22 25 27 18 

iCell_Neurons_mitointegr 22 27 32 28 21 33 23 25 19 20 30 21 25 24 33 31 31 30 32 

iCell_Neurons_cytointegr 23 25 22 27 26 30 33 17 31 32 27 28 18 19 21 2 10 6 17 

iCell_Neurons_ATP 4 8 20 19 30 19 12 30 3 5 12 6 2 1 9 16 21 20 10 

iCell_Cardiomyocytes_BPM 2 2 8 21 23 7 2 24 6 7 2 1 6 4 3 12 4 13 5 

iCell_Cardiomyocytes_AMP 14 20 33 13 15 32 28 23 18 17 29 5 17 18 25 29 23 26 26 

iCell_Cardiomyocytes_Spc 25 23 23 20 34 9 10 34 13 12 18 29 30 29 22 32 30 33 28 

iCell_Cardiomyocytes_Width 11 7 1 15 17 1 16 15 20 18 4 17 7 9 1 15 6 17 2 

iCell_Cardiomyocytes_rise 31 28 18 37 10 18 20 11 32 33 24 34 29 26 28 19 18 15 24 

iCell_Cardiomyocytes_decay 1 4 6 25 27 13 1 28 4 3 10 7 3 5 8 11 17 12 11 

iCell_Cardiomyocytes_decay.to.rise 17 19 4 11 32 11 13 32 14 14 22 13 28 27 18 20 34 23 29 



204 

 Table S4.9B. (Continued) Prediction analysis of PAH concentrations from bioactivity. Rank (based on the absolute value of B-

coefficient) for each in vitro bioactivity phenotype (rows) used for prediction of PAH concentrations (columns). The highest number 

indicates top rank (i.e., the variable was most informative for prediction). 

T
o

ta
l.

P
A

H
s 

P
ri

o
ri

ty
.1

6
.P

A
H

s 

A
ce

n
a

p
h

th
en

e 

N
a

p
h

th
a

le
n

e 

A
ce

n
a

p
h

th
y
le

n
e
 

F
lu

o
re

n
e 

P
h

en
a

n
th

re
n

e 

A
n

th
ra

ce
n

e 

F
lu

o
ra

n
th

en
e 

P
y

re
n

e 

B
en

zo
.a

.

a
n

th
ra

ce
n

e 

C
h

ry
se

n
e 

B
en

zo
.b

.

fl
u

o
ra

n
th

en
e
 

B
en

zo
.k

.

fl
u

o
ra

n
th

en
e
 

B
en

zo
.a

. 
p

y
re

n
e 

In
d

en
o

.1
.2

.3
. 

c.
d

.p
y

re
n

e

D
ib

en
zo

.a
.h

.

a
n

th
ra

ce
n

e 

B
en

zo
.g

.h
.i

.

p
er

y
le

n
e
 

C
a

n
ce

r 

iCell_Endothelial.cells_Tot_cell 6 3 15 5 13 12 15 14 12 8 6 2 5 6 6 6 9 8 1 

iCell_Endothelial.cells_cytointegr 19 16 35 1 18 29 29 9 22 21 26 14 21 21 31 28 11 22 25 

iCell_Endothelial.cells_mitointegr 12 10 14 10 9 17 19 7 15 15 14 8 9 12 11 4 2 1 7 

iCell_Endothelial.cells_mitointens 24 22 29 24 16 27 27 20 25 25 23 19 19 17 14 9 5 10 12 

iCell_Endothelial.cells_nucleiarea 7 6 25 4 12 21 25 5 17 16 9 4 1 3 2 14 14 21 3 

iCell_Endothelial.cells_totaltubelength 29 32 24 35 8 35 34 1 35 34 33 26 22 22 27 7 15 4 21 

iCell_Endothelial.cells_meantubelength 28 29 38 3 2 34 37 13 30 27 34 20 23 25 23 8 19 2 22 

iCell_Endothelial.cells_totaltubearea 33 33 11 31 19 24 21 18 27 30 31 33 32 32 34 34 29 32 33 

HUVEC_Tot_cell 32 31 16 14 6 16 32 3 33 31 16 32 33 33 30 24 32 24 31 

HUVEC_cytointegr 26 24 31 16 5 28 31 4 26 26 28 27 16 14 20 17 1 14 13 

HUVEC_mitointegr 15 15 12 12 14 3 14 16 24 23 17 22 14 16 26 30 13 29 20 

HUVEC_mitointens 36 36 34 30 28 36 35 33 36 36 36 35 35 35 37 35 35 35 36 

HUVEC_nucleiarea 39 39 39 38 37 39 39 37 39 39 39 39 39 39 39 39 39 39 39 

HUVEC_totaltubelength 13 12 9 26 25 20 18 22 23 24 20 18 8 10 17 1 7 9 6 

HUVEC_meantubelength 5 11 21 33 24 10 7 21 10 10 7 9 10 8 5 3 22 3 14 

HUVEC_totaltubearea 18 18 5 32 20 23 22 19 21 22 25 10 15 15 16 18 20 19 19 



205 

Table S4.10A. Prediction analysis of bioactivity from PAH concentrations. B-coefficient for each PAH (rows) used in prediction of in 

vitro bioactivity (columns).  
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Table S4.10A. (Continued) Prediction analysis of bioactivity from PAH concentrations. B-coefficient for each PAH (rows) used in 

prediction of in vitro bioactivity (columns)  
iC

el
l_

H
ep

a
to

cy
te

s_
T

o
t_

ce
ll

 

iC
el

l_
H

ep
a

to
cy

te
s_

a
ll

ce
ll

m
ea

n
A

 

iC
el

l_
H

ep
a

to
cy

te
s_

m
it

o
in

te
g
r
 

iC
el

l_
H

ep
a

to
cy

te
s_

m
it

o
in

te
n

s 

iC
el

l_
H

ep
a

to
c
y

te
s_

n
u

cl
ei

a
re

a
 

iC
el

l_
N

eu
ro

n
s_

ce
ll

.n
u

m
 

iC
el

l_
N

eu
ro

n
s_

to
ta

l.
o

u
tg

ro
w

th
 

iC
el

l_
N

eu
ro

n
s_

m
ea

n
o

u
tg

ro
w

th
 

iC
el

l_
N

eu
ro

n
s_

to
ta

lp
ro

ce
ss

 

iC
el

l_
N

eu
ro

n
s_

to
ta

lb
ra

n
ch

 

iC
el

l_
N

eu
ro

n
s_

ce
ll

b
o

d
y

a
re

a
 

iC
el

l_
N

eu
ro

n
s_

ce
ll

si
g

g
ro

w
th

 

iC
el

l_
N

eu
ro

n
s_

m
it

o
in

te
g

r
 

iC
el

l_
N

eu
ro

n
s_

cy
to

in
te

g
r
 

iC
el

l_
N

eu
ro

n
s_

A
T

P
 

iC
el

l_
C

a
rd

io
m

y
o

cy
te

s_
B

P
M

 

iC
el

l_
C

a
rd

io
m

y
o

cy
te

s_
A

M
P

 

iC
el

l_
C

a
rd

io
m

y
o

cy
te

s_
S

p
c
 

iC
el

l_
C

a
rd

io
m

y
o

cy
te

s_
W

id
th

 

iC
el

l_
C

a
rd

io
m

y
o

cy
te

s_
ri

se
 

iC
el

l_
C

a
rd

io
m

y
o

cy
te

s_
d

ec
a

y
 

iC
el

l_
C

a
rd

io
m

y
o

cy
te

s_
d

ec
a

y
.t

o
.r

is
e
 

iC
el

l_
E

n
d

o
th

el
ia

l.
c
el

ls
_

T
o

t_
ce

ll
 

iC
el

l_
E

n
d

o
th

el
ia

l.
c
el

ls
_

cy
to

in
te

g
r
 

iC
el

l_
E

n
d

o
th

el
ia

l.
c
el

ls
_

m
it

o
in

te
g

r
 

iC
el

l_
E

n
d

o
th

el
ia

l.
c
el

ls
_

m
it

o
in

te
n

s 

iC
el

l_
E

n
d

o
th

el
ia

l.
c
el

ls
_

n
u

c
le

ia
re

a
 

iC
el

l_
E

n
d

o
th

el
ia

l.
c
el

ls
_

to
ta

lt
u

b
el

en

g
th

iC
el

l_
E

n
d

o
th

el
ia

l.
c
el

ls
_

m
ea

n
tu

b
el

e

n
g

th
iC

el
l_

E
n

d
o

th
el

ia
l.

c
el

ls
_

to
ta

lt
u

b
ea

re

a H
U

V
E

C
_

T
o

t_
ce

ll
 

H
U

V
E

C
_

cy
to

in
te

g
r
 

H
U

V
E

C
_

m
it

o
in

te
g

r
 

H
U

V
E

C
_

m
it

o
in

te
n

s 

H
U

V
E

C
_

n
u

cl
e
ia

re
a

 

H
U

V
E

C
_

to
ta

lt
u

b
el

en
g

th
 

H
U

V
E

C
_

m
ea

n
tu

b
el

en
g

th
 

H
U

V
E

C
_

to
ta

lt
u

b
ea

re
a

 

F
lu

o
re

n
e 

0
.0

0
0
1

2
 

-0
.0

0
2

0
0

0
.0

0
3
0

7
 

-0
.0

0
7

6
8

-0
.0

0
0

3
5

-0
.0

0
6

2
4

-0
.0

0
1

5
0

-0
.0

0
9

5
0

-0
.0

0
2

6
2

-0
.0

0
3

0
2

-0
.0

0
0

2
7

-0
.0

0
4

3
3

-0
.0

0
7

4
8

-0
.0

0
5

5
2

0
.0

0
1
2

8
 

0
.0

0
0
7

6
 

0
.0

0
2
7

4
 

-0
.0

0
0

2
2

-0
.0

0
0

4
6

-0
.0

0
0

5
8

0
.0

0
0
2

7
 

0
.0

0
0
0

4
 

-0
.0

0
2

6
4

-0
.0

0
4

1
5

-0
.0

0
2

8
3

0
.0

0
2
3

0
 

-0
.0

0
1

5
7

-0
.0

0
6

3
7

-0
.0

0
4

7
0

0
.0

0
0
1

4
 

-0
.0

0
4

8
6

0
.0

0
2
7

2
 

-0
.0

0
2

0
8

-0
.0

0
7

2
6

-0
.0

1
1

2
4

-0
.0

0
4

4
9

-0
.0

0
2

3
3

0
.0

0
0
0

5
 

P
h

en
an

th
re

n
e

-0
.0

0
1

0
2

-0
.0

0
2

6
9

0
.0

0
1
9

2
 

-0
.0

0
9

3
9

0
.0

0
0
4

4
 

-0
.0

0
3

9
8

-0
.0

0
1

1
4

-0
.0

0
6

3
6

-0
.0

0
2

8
4

-0
.0

0
3

0
7

-0
.0

0
1

0
1

-0
.0

0
2

5
0

-0
.0

0
5

0
9

-0
.0

0
6

8
3

-0
.0

0
0

2
8

-0
.0

0
0

5
2

0
.0

0
0
7

5
 

-0
.0

0
1

6
5

-0
.0

0
4

1
1

-0
.0

0
2

2
0

-0
.0

0
2

7
3

-0
.0

0
0

1
3

-0
.0

0
4

6
4

-0
.0

0
5

6
3

-0
.0

0
5

0
3

0
.0

0
1
3

7
 

-0
.0

0
3

1
2

-0
.0

0
8

4
3

-0
.0

0
7

1
2

-0
.0

0
2

5
5

-0
.0

0
9

1
5

0
.0

0
1
7

0
 

-0
.0

0
4

4
7

-0
.0

0
7

6
5

-0
.0

1
2

0
6

-0
.0

0
4

3
8

-0
.0

0
2

4
7

-0
.0

0
0

1
2

A
n

th
ra

ce

n
e

0
.0

0
1
4

6
 

0
.0

0
2
1

6
 

0
.0

0
2
6

7
 

0
.0

0
1
4

8
 

-0
.0

1
1

1
2

0
.0

0
1
0

9
 

-0
.0

0
5

5
9

-0
.0

1
0

4
8

0
.0

0
2
1

3
 

-0
.0

0
5

4
5

0
.0

0
2
8

4
 

0
.0

0
1
7

0
 

-0
.0

0
2

3
1

0
.0

0
1
8

6
 

0
.0

0
2
6

2
 

-0
.0

0
2

9
3

0
.0

0
3
0

1
 

-0
.0

0
3

9
2

0
.0

0
2
7

6
 

0
.0

0
3
1

9
 

0
.0

0
3
3

5
 

0
.0

0
3
4

8
 

0
.0

0
2
6

4
 

0
.0

0
2
7

0
 

0
.0

0
2
2

7
 

0
.0

0
3
0

1
 

0
.0

0
1
1

6
 

0
.0

0
1
8

9
 

0
.0

0
0
5

2
 

0
.0

0
3
2

7
 

0
.0

0
0
7

4
 

0
.0

0
2
4

5
 

0
.0

0
2
3

3
 

-0
.0

0
4

0
6

-0
.0

0
9

2
7

0
.0

0
2
7

8
 

0
.0

0
3
0

2
 

0
.0

0
2
7

9
 

F
lu

o
ra

n
th

en
e 

0
.0

0
0
9

3
 

-0
.0

0
3

9
4

0
.0

0
2
2

0
 

-0
.0

0
8

7
2

-0
.0

0
1

3
9

-0
.0

0
3

3
2

-0
.0

0
3

2
0

-0
.0

0
8

1
3

-0
.0

0
3

3
8

-0
.0

0
5

3
8

-0
.0

0
2

1
9

-0
.0

0
1

7
1

-0
.0

0
5

1
2

-0
.0

0
6

6
0

-0
.0

0
2

2
0

-0
.0

0
0

6
1

-0
.0

0
1

4
8

-0
.0

0
2

4
8

-0
.0

0
5

0
6

-0
.0

0
5

2
8

-0
.0

0
3

9
1

-0
.0

0
1

3
6

-0
.0

0
3

6
6

-0
.0

0
4

3
7

-0
.0

0
4

1
6

0
.0

0
0
9

4
 

-0
.0

0
0

8
6

-0
.0

0
7

7
6

-0
.0

0
3

9
3

-0
.0

0
1

2
8

-0
.0

0
9

6
2

0
.0

0
0
8

1
 

-0
.0

0
6

9
2

-0
.0

0
8

6
6

-0
.0

1
3

5
5

-0
.0

0
5

6
7

-0
.0

0
3

1
8

-0
.0

0
0

8
5



207 

Table S4.10A. (Continued) Prediction analysis of bioactivity from PAH concentrations. B-coefficient for each PAH (rows) used in 

prediction of in vitro bioactivity (columns)  
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Table S4.10A. (Continued) Prediction analysis of bioactivity from PAH concentrations. B-coefficient for each PAH (rows) used in 

prediction of in vitro bioactivity (columns).  
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Table S4.10A. (Continued) Prediction analysis of bioactivity from PAH concentrations. B-coefficient for each PAH (rows) used in 

prediction of in vitro bioactivity (columns). 
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Table S4.10B. Prediction analysis of bioactivity from PAH concentrations. Rank (based on the absolute value of B-coefficient) for each 

PAH (rows) used in prediction of in vitro bioactivity (columns). The highest number indicates top rank (i.e., the variable was most 

informative for prediction). 
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Benzo.a.anthracen
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Benzo.b.fluoranth

ene 
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Benzo.k.fluoranth

ene 
10 15 7 13 12 6 15 12 15 16 9 5 10 11 17 12 5 16 13 12 10 1 13 11 14 1 5 11 8 3 17 1 12 15 16 11 9 10 
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Table S4.10B. (Continued) Prediction analysis of bioactivity from PAH concentrations. Rank (based on the absolute value of B-

coefficient) for each PAH (rows) used in prediction of in vitro bioactivity (columns). The highest number indicates top rank (i.e., the 

variable was most informative for prediction). 
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Benzo.g.h.i.perylen

e 
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Table S4.11. Studies that examined effects of environmental mixtures using various in vitro assays. 

Yea

r 

Environment

al sample type 

In vitro 

model type 

Cell 

source 

Endpoint/bioassay 

type 

Concentratio

n response 

(Yes/No) 

Spatial 

analysis 

(Yes/No

) 

Bio vs 

Chem 

correlatio

n 

(Yes/No) 

doi link 

2001 sediment H4IIE rat 

hepatoma 

cells 

Rat AhR-mediated potency 

ER 

Yes No No 10.1007/s002440010158

2006 soil H4IIE rat 

hepatoma 

cells 

Rat AhR-mediated activity 

genotoxicity and 

estrogenic effects 

Yes Yes No 10.1016/j.chemosphere.2005.11.0

48 

2008 soil H4IIE rat 

hepatoma 

cells 

Rat genotoxicity/AhR/ER Yes No No 10.1080/10934520802329901

2009 sediment fish cell line 

RTL-W1 

Ecologica

l 

genotoxicity/comet 

assay/micronucleus 

assay 

Yes No No 10.1016/j.ecoenv.2009.04.013

2010 water MCF-

7/juvenile 

oreochromis 

mossambicus 

Human ER No No No 10.1016/j.ecoenv.2010.09.006

2010 water Various not cell-

based 

ER Yes No Yes 10.1021/es903899d

2011 soil Jurkat and 

CHO-K1 

Various cytotoxicity/genotoxicit

y 

Yes No No 10.1016/j.jhazmat.2011.11.026

2011 sediment Various not cell-

based 

mutagenic effects, AhR, 

ER, TTR binding 

acitivities 

No No No 10.1021/es103381y

https://doi.org/10.1007/s002440010158
https://doi.org/10.1016/j.chemosphere.2005.11.048
https://doi.org/10.1016/j.chemosphere.2005.11.048
https://doi.org/10.1080/10934520802329901
https://doi.org/10.1016/j.ecoenv.2009.04.013
https://doi.org/10.1016/j.ecoenv.2010.09.006
https://doi.org/10.1021/es903899d
https://doi.org/10.1016/j.jhazmat.2011.11.026
https://doi.org/10.1021/es103381y
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Table S4.11. (Continued) Studies that examined effects of environmental mixtures using various in vitro assays. 

Yea

r 

Environmen

tal sample 

type 

In vitro model 

type 

Cell 

source 
Endpoint/bioassay type 

Concentrati

on response 

(Yes/No) 

Spatial 

analysi

s 

(Yes/N

o) 

Bio vs 

Chem 

correlati

on 

(Yes/No) 

doi link 

201

2 

sediment H1L6.1c3 Mouse DR-CALUX bioassays Yes Yes Yes 10.1007/s00128-012-0656-1 

201

3 

sediment HepG2 Human cytotoxicity/mutagenicity Yes No No 10.1016/j.envpol.2013.10.034

201

3 

sediment PLHC-1 Ecologic

al 

Cytotoxicity, oxidative stress, 

and estrogenicity 

Yes No No 10.1016/j.marpolbul.2013.09.0

47 

201

4 

water Various Various Cytotoxicity/genotoxicity/oxi

dative stress/ER/AR/etc 

Yes No No 10.1021/es403899t

201

4 

sediment HepG2 Human cytotoxicity/oxidative 

stress/genotoxicity 

Yes No No 10.1016/j.scitotenv.2014.01.08

4

201

5 

water Various Various genotoxicity, mutagenicity, 

estrogenic activity AhR 

activity, oxidative stress, 

cytotoxicity 

Yes No No 10.1016/j.watres.2015.05.020

201

5 

soil Arthrobacter 

globiformis and 

fish embryo 

Ecologic

al 

cytotoxicity and AhR-

mediated activity 

Yes No No 10.1007/s11356-014-3707-9 

201

6 

soil and ash channel fish 

ovary cell line 

Ecologic

al 

genotoxicity Yes No No 10.1016/j.scitotenv.2016.05.09

6

201

6 

landfill 

leachate 

HepG2/Jurkat/H

OS 

Human cytotoxicity/DNA damage Yes No No 10.1016/j.chemosphere.2016.0

8.093 

https://doi.org/10.1007/s00128-012-0656-1
https://doi.org/10.1016/j.envpol.2013.10.034
https://doi.org/10.1016/j.marpolbul.2013.09.047
https://doi.org/10.1016/j.marpolbul.2013.09.047
https://doi.org/10.1021/es403899t
https://doi.org/10.1016/j.scitotenv.2014.01.084
https://doi.org/10.1016/j.scitotenv.2014.01.084
https://doi.org/10.1016/j.watres.2015.05.020
https://doi.org/10.1007/s11356-014-3707-9
https://doi.org/10.1016/j.scitotenv.2016.05.096
https://doi.org/10.1016/j.scitotenv.2016.05.096
https://doi.org/10.1016/j.chemosphere.2016.08.093
https://doi.org/10.1016/j.chemosphere.2016.08.093
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Table S4.11. (Continued) Studies that examined effects of environmental mixtures using various in vitro assays. 

Yea

r 

Environme

ntal 

sample 

type 

In vitro model 

type 

Cell 

source 
Endpoint/bioassay type 

Concentratio

n response 

(Yes/No) 

Spatial 

analysis 

(Yes/No

) 

Bio vs 

Chem 

correlatio

n 

(Yes/No) 

doi link 

201

6 

sediment Various not 

cell-

based 

DR-Luc, ER- Luc, AR-

EcoScreen, transthyretin (TTR) 

binding assay, and Vibrio 

fischeri bioluminescence 

bioassay  

Yes No No 10.1016/j.marenvres.2016.03.

002 

201

6 

Artificial 

mixtures 

NA not 

cell-

based 

ER Yes No No 10.1016/j.watres.2016.10.062

201

7 

water HepG2 and 

MCF-7 

Human Transcriptomics No No No 10.1021/acs.est.7b02648

201

7 

water Human/fish cell 

lines, and whole 

organism assays 

Variou

s 

AR/ER/AhR/mutagenicity/viabi

lity 

No No No 10.1016/j.watres.2017.07.016

201

8 

water MCF-7 Human Cytotoxicity/ER Yes No No 10.1021/acs.est.8b01696

201

9 

House dust 3T3-L1 Mouse Adipogenesis Yes No Yes 10.1016/j.scitotenv.2019.02.2

73 

202

0 

sediment Caco2 and 

HepaRG 

Human Cytotoxicity/oxidative stress Yes No No 10.1007/s00244-019-00695-w 

202

0 

sediment H4IIE-luc and 

vibrio fischeri 

assays 

Rat AhR Yes No Yes 10.1021/acs.est.9b07390

202

0 

water MCF-7/HepG2 Human Transcriptomics/receptor assays No No No 10.1021/acs.est.0c00662

https://doi.org/10.1016/j.marenvres.2016.03.002
https://doi.org/10.1016/j.marenvres.2016.03.002
https://doi.org/10.1016/j.watres.2016.10.062
https://doi.org/10.1021/acs.est.7b02648
https://doi.org/10.1016/j.watres.2017.07.016
https://doi.org/10.1021/acs.est.8b01696
https://doi.org/10.1016/j.scitotenv.2019.02.273
https://doi.org/10.1016/j.scitotenv.2019.02.273
https://doi.org/10.1007/s00244-019-00695-w
https://doi.org/10.1021/acs.est.9b07390
https://doi.org/10.1021/acs.est.0c00662


215 

APPENDIX C 

FIGURES 

Figure S2.1.  Summary of the literature review of the published evidence for the effects 

of the 42 Superfund priority list chemicals on various organs. The literature review is 

available on the Health Assessment Workspace Collaborative (Shapiro et al. 2018) web 

portal (https://hawcproject.org/assessment/783; https://hawcproject.org/assessment/784; 

https://hawcproject.org/assessment/785; https://hawcproject.org/assessment/786). 

https://hawcproject.org/assessment/783
https://hawcproject.org/assessment/784
https://hawcproject.org/assessment/785
https://hawcproject.org/assessment/786
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Figure S2.2. Correlation of the PODs in different cell types. Pearson (A) and Spearman 

(B) correlation of the POD median from each cell type are shown. Pearson (C) and

Spearman (D) correlation of all PODs generated from all phenotypes of five tested cell

types are shown. The color key indicates positive (red) and negative (blue) correlation

values.
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Figure S2.3. Statistical comparison of PODs generated from cytotoxicity and functional 

endpoints in each tested cell type. PODs for chemical/phenotype combinations that were 

less than the top concentration tested (100 M) were included in the analysis. P-values 

shown are from unpaired t-test with Welch’s correction. 
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Figure S2.4. ToxPi scores of 42 Superfund priority chemicals calculated from each cell 

type. Each chemical (left panel) and for all chemical classes (right panel) were ranked 

based on each cell type. Each dot represents one chemical and the box (inter-quantile 

range and median) and whiskers (min to max) plots show the range of ToxPi scores.   



219 

Figure S2.5. Clustering (Ward’s D method) of 42 Superfund priority list chemicals using 

ToxPi scores calculated from iCell hepatocytes (A), iCell neurons (B), iCell 

cardiomyocytes (C), iCell endothelial cells (D), and HUVECs (E). Color of each slice in 

ToxPi represents different phenotypes in each cell type (F). 
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Figure S2.6. The Fowlkes-Mallows (FM) index for clustering of chemicals into 5 classes 

based on different combinations of cell types used in this study. (A) Box (inter-quantile 

range and median) and whiskers (min to max) plots indicated the overall FM indexes 

from the combination of 2, 3, and 4 cell types, each dot represents one specific 

combination, which is detailed in (B), where different combinations are ranked based on 

the FM index.   
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Figure S2.7. Accuracy of predicting 42 Superfund priority list chemicals into classes 

using the combination of in vitro datasets from this study and the ToxCast (A) and the 

comparison of prediction accuracy between biological/chemical database and 

permutation-based class assignment (B).  
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Figure S3.1. Curve-fitting of single chemical concentration and observed response (ATP) 

in iCell Neurons 
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Figure S3.2. Curve-fitting of single chemical concentration and observed response (Cell 

Number) in iCell Neurons.  
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Figure S3.3. Curve-fitting of single chemical concentration and observed response (Cell 

with Significant Growth) in iCell Neurons 
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Figure S3.4. Curve-fitting of single chemical concentration and observed response 

(Cytoplasmic Integrity) in iCell Neurons.  



226 

Figure S3.5. Curve-fitting of single chemical concentration and observed response (Mean 

Out- growth) in iCell Neurons.  
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Figure S3.6. Curve-fitting of single chemical concentration and observed response 

(Mitochon- drialIntegrity) in iCell Neurons.  
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Figure S3.7. Curve-fitting of single chemical concentration and observed response (Total 

Branches) in iCell Neurons.  
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Figure S3.8. Curve-fitting of single chemical concentration and observed response (Total 

Cells Body Area) in iCell Neurons.  
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Figure S3.9. Curve-fitting of single chemical concentration and observed response (Total 

Out- growth) in iCell Neurons.  
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Figure S3.10. Curve-fitting of single chemical concentration and observed response 

(Total Pro cess) in iCell Neurons.  



232 

Figure S3.11. Curve-fitting of single chemical concentration and observed response (Cell 

Num- ber) in HUVECs. 
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Figure S3.12. Curve-fitting of single chemical concentration and observed response 

(Cytoplasmic Integrity) in HUVECs. 
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Figure S3.13. Curve-fitting of single chemical concentration and observed response 

(Mean Tube Length) in HUVECs. 
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Figure S3.14. Curve-fitting of single chemical concentration and observed response 

(Mitochon drial Intensity) in HUVECs. 
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Figure S3.15. Curve-fitting of single chemical concentration and observed response 

(Mitochon drial Integrity) in HUVECs. 
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Figure S3.16. Curve-fitting of single chemical concentration and observed response 

(Nuclei Mean Area) in HUVECs.  
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Figure S3.17. Curve-fitting of single chemical concentration and observed response 

(Total Tube Area) in HUVECs. 



239 

Figure S3.18. Curve-fitting of single chemical concentration and observed response 

(Total Tube Length) in HUVECs. 
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Figure S3.19. Curve-fitting of single chemical concentration and observed response (All 

Cell Mean Area) in iCell Hepatocytes. 
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Figure S3.20. Curve-fitting of single chemical concentration and observed response (Cell 

Num ber) in iCell Hepatocytes. 
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Figure S3.21. Curve-fitting of single chemical concentration and observed response 

(Mitochon drial Intensity) in iCell Hepatocytes.  
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Figure S3.22. Curve-fitting of single chemical concentration and observed response 

(Mitochon drial Integrity) in iCell Hepatocytes.  
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Figure S3.23. Curve-fitting of single chemical concentration and observed response 

(Nuclei Mean Area) in iCell Hepatocytes. 
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Figure S3.24. Curve-fitting of single chemical concentration and observed response (Cell 

Num ber) in iCell Endothelial cells. 
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Figure S3.25. Curve-fitting of single chemical concentration and observed response 

(Cytoplasmic Integrity) in iCell Endothelial cells. 



247 

Figure S3.26. Curve-fitting of single chemical concentration and observed response 

(Mean Tube Length) in iCell Endothelial cells. 
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Figure S3.27. Curve-fitting of single chemical concentration and observed response 

(Mitochon drial Intensity) in iCell Endothelial cells. 
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Figure S3.28. Curve-fitting of single chemical concentration and observed response 

(Mitochon drial Integrity) in iCell Endothelial cells. 
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Figure S3.29. Curve-fitting of single chemical concentration and observed response 

(Nuclei Mean Area) in iCell Endothelial cells.  



251 

Figure S3.30. Curve-fitting of single chemical concentration and observed response 

(Total Tube Area) in iCell Endothelial cells. 
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Figure S3.31. Curve-fitting of single chemical concentration and observed response 

(Total Tube Length) in iCell Endothelial cells. 
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Figure S3.32. Curve-fitting of single chemical concentration and observed response 

(Beats Per Minute-15min) in iCell Cardiomyocytes. 
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Figure S3.33. Curve-fitting of single chemical concentration and observed response 

(Beats Per Minute-90min) in iCell Cardiomyocytes. 
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Figure S3.34. Curve-fitting of single chemical concentration and observed response (Cell 

Num ber) in iCell Cardiomyocytes.  
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Figure S3.35. Curve-fitting of single chemical concentration and observed response (Peak 

Decay time-15min) in iCell Cardiomyocytes.  
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Figure S3.36. Curve-fitting of single chemical concentration and observed response (Peak 

Decay time-90min) in iCell Cardiomyocytes.  
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Figure S3.37. Curve-fitting of single chemical concentration and observed response 

(Decay to RiseRatio-15min) in iCell Cardiomyocytes. 
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Figure S3.38. Curve-fitting of single chemical concentration and observed response 

(Decay to RiseRatio-90min) in iCell Cardiomyocytes. 
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Figure S3.39. Curve-fitting of single chemical concentration and observed response 

(Mitochon drial Integrity) in iCell Cardiomyocytes.  
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Figure S3.40. Curve-fitting of single chemical concentration and observed response (Peak 

Am plitude-15min) in iCell Cardiomyocytes. 
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Figure S3.41. Curve-fitting of single chemical concentration and observed response (Peak 

Am plitude-90min) in iCell Cardiomyocytes. 
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Figure S3.42. Curve-fitting of single chemical concentration and observed response (Peak 

Spac ing-15min) in iCell Cardiomyocytes.  
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Figure S3.43. Curve-fitting of single chemical concentration and observed response (Peak 

Spacing-90min) in iCell Cardiomyocytes.  
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Figure S3.44. Curve-fitting of single chemical concentration and observed response (Peak 

Width -15min) in iCell Cardiomyocytes.  
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Figure S3.45. Curve-fitting of single chemical concentration and observed response (Peak 

Width -90min) in iCell Cardiomyocytes.  
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Figure S3.46. Curve-fitting of single chemical concentration and observed response (Peak 

Rise time-15min) in iCell Cardiomyocytes.  
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Figure S3.47. Curve-fitting of single chemical concentration and observed response (Peak 

Rise time-90min) in iCell Cardiomyocytes.  
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Figure S3.48. Curve-fitting of mixture concentration and observed response (ATP) in 

iCell Neurons. 

Figure S3.49. Curve-fitting of mixture concentration and observed response (Cell 

Number) in iCell Neurons. 
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Figure S3.50. Curve-fitting of mixture concentration and observed response (Cell with 

Significant Growth) in iCell Neurons.  

Figure S3.51. Curve-fitting of mixture concentration and observed response (Cytoplasmic 

Integrity) in iCell Neurons.  
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Figure S3.52. Curve-fitting of mixture concentration and observed response (Mean 

Outgrowth) in iCell Neurons.  

Figure S3.53. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Integrity) in iCell Neurons.  
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Figure S3.54. Curve-fitting of mixture concentration and observed response (Total 

Branches) in iCell Neurons.  

Figure S3.55. Curve-fitting of mixture concentration and observed response (Total Cells 

Body Area) in iCell Neurons. 
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Figure S3.56. Curve-fitting of mixture concentration and observed response (Total 

Outgrowth) in iCell Neurons.  

Figure S3.57. Curve-fitting of mixture concentration and observed response (Total 

Process) in iCell Neurons. 
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Figure S3.58. Curve-fitting of mixture concentration and observed response (Cell 

Number) in HUVECs. 

Figure S3.59. Curve-fitting of mixture concentration and observed response (Cytoplasmic 

Integrity) in HUVECs 
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Figure S3.60. Curve-fitting of mixture concentration and observed response (Mean Tube 

Length) in HUVECs. 

Figure S3.61. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Intensity) in HUVECs. 
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Figure S3.62. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Integrity) in HUVECs. 

Figure S3.63. Curve-fitting of mixture concentration and observed response (Nuclei Mean 

Area) in HUVECs. 
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Figure S3.64. Curve-fitting of mixture concentration and observed response (Total Tube 

Area) in HUVECs. 

Figure S3.65. Curve-fitting of mixture concentration and observed response (Total Tube 

Length) in HUVECs. 
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Figure S3.66. Curve-fitting of mixture concentration and observed response (All Cell 

Mean Area) in iCell Hepatocytes.  

Figure S3.67. Curve-fitting of mixture concentration and observed response (Cell 

Number) in iCell Hepatocytes.  
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Figure S3.68. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Intensity) in iCell Hepatocytes.  

Figure S3.69. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Integrity) in iCell Hepatocytes.  
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Figure S3.70. Curve-fitting of mixture concentration and observed response (Nuclei Mean 

Area) in iCell Hepatocytes. 

Figure S3.71. Curve-fitting of mixture concentration and observed response (Cell 

Number) in iCell Endothelial cells.  
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Figure S3.72. Curve-fitting of mixture concentration and observed response (Cytoplasmic 

Integrity) in iCell Endothelial cells. 

Figure S3.73. Curve-fitting of mixture concentration and observed response (Mean Tube 

Length) in iCell Endothelial cells. 
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Figure S3.74. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Intensity) in iCell Endothelial cells. 

Figure S3.75. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Integrity) in iCell Endothelial cells. 



283 

Figure S3.76. Curve-fitting of mixture concentration and observed response (Nuclei Mean 

Area) in iCell Endothelial cells. 

Figure S3.77. Curve-fitting of mixture concentration and observed response (Total Tube 

Area) in iCell Endothelial cells. 
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Figure S3.78. Curve-fitting of mixture concentration and observed response (Total Tube 

Length) in iCell Endothelial cells. 

Figure S3.79. Curve-fitting of mixture concentration and observed response (Beats Per 

Minute -15min) in iCell Cardiomyocytes.  
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Figure S3.80. Curve-fitting of mixture concentration and observed response (Beats Per 

Minute -90min) in iCell Cardiomyocytes.  

Figure S3.81. Curve-fitting of mixture concentration and observed response (Cell 

Number) in iCell Cardiomyocytes.  
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Figure S3.82. Curve-fitting of mixture concentration and observed response (Peak Decay 

time -15min) in iCell Cardiomyocytes.  

Figure S3.83. Curve-fitting of mixture concentration and observed response (Peak Decay 

time -90min) in iCell Cardiomyocytes.  



287 

Figure S3.84. Curve-fitting of mixture concentration and observed response (Decay to 

Rise Ratio-15min) in iCell Cardiomyocytes. 

Figure S3.85. Curve-fitting of mixture concentration and observed response (Decay to 

Rise Ratio-90min) in iCell Cardiomyocytes. 
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Figure S3.86. Curve-fitting of mixture concentration and observed response 

(Mitochondrial Integrity) in iCell Cardiomyocytes.  

Figure S3.87. Curve-fitting of mixture concentration and observed response (Peak 

Amplitude - 15min) in iCell Cardiomyocytes.  



289 

Figure S3.88. Curve-fitting of mixture concentration and observed response (Peak 

Amplitude - 90min) in iCell Cardiomyocytes.  

Figure S3.89. Curve-fitting of mixture concentration and observed response (Peak 

Spacing - 15 min) in iCell Cardiomyocytes. 
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Figure S3.90. Curve-fitting of mixture concentration and observed response (Peak 

Spacing - 90 min) in iCell Cardiomyocytes. 

Figure S3.91. Curve-fitting of mixture concentration and observed response (Peak Width 

- 15 min) in iCell Cardiomyocytes.
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Figure S3.92. Curve-fitting of mixture concentration and observed response (Peak Width 

- 90 min) in iCell Cardiomyocytes.

Figure S3.93. Curve-fitting of mixture concentration and observed response (Peak Rise 

time - 15min) in iCell Cardiomyocytes.  
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Figure S3.94. Curve-fitting of mixture concentration and observed response (Peak Rise 

time - 90min) in iCell Cardiomyocytes.  



293 

Figure S3.95. Comparison of curve-fitting and predicted concentration-response profile 

for iCell Neurons under AC50-H exposure. 
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Figure S3.96. Comparison of curve-fitting and predicted concentration-response profile 

for HU- VECs under AC50-H exposure.  

Figure S3.97. Comparison of curve-fitting and predicted concentration-response profile 

for iCell Hepatocytes under AC50-H exposure.  
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Figure S3.98. Comparison of curve-fitting and predicted concentration-response profile 

for iCell Endothelial cells under AC50-H exposure.  
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Figure S3.99. Comparison of curve-fitting and predicted concentration-response profile 

for iCell Cardiomyocytes under AC50-H exposure.  
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Figure S3.100. The estimation of the margin of exposure for phenotypes in the 

iCell Neurons under AC50-H exposure.  
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Figure S3.101. The estimation of the margin of exposure for phenotypes in the HUVECs 

under AC50-H exposure.  
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Figure S3.102. The estimation of the margin of exposure for phenotypes in the iCell 

Hepatocytes under AC50-H exposure.  
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Figure S3.103. The estimation of the margin of exposure for phenotypes in the iCell 

Endothelial cells under AC50-H exposure.  
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Figure S3.104. The estimation of the margin of exposure for phenotypes in the iCell 

Cardiomyocytes under AC50-H exposure.  




