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ABSTRACT 

 

Machine Learning (ML) approaches like Deep Neural Networks (DNNs) have 

emerged as a powerful tool for big data classification and prediction problems. While feed-

forward neural networks are good for non-temporal tasks, a lot of real-world problems 

like time series prediction (e.g. weather forecasting) and classification problems are 

temporal in nature. For such problems, Recurrent Neural Networks (RNNs) have been 

developed. However, the presence of recurrent connections coupled with iterative nature 

of training algorithms make RNN training extremely hard. Recently, it has been 

discovered that temporal problems can be solved by network of random recurrent 

connections coupled with a single trainable readout layer. This is called Reservoir 

Computing (RC).  RC has emerged as a promising area but its implementation is 

challenging. In Software, RC provides limited performance, whereas hardware 

implementations have proved to be challenging due to many non-linear nodes present. To 

solve this problem, we propose to look towards the field of photonic computing to come 

up with high performance, power efficient photonic hardware accelerators for RC. We 

integrate ideas from ML, analog photonic computing, photonic device physics and 

hardware design to build architectures for photonic RC. We design a multi-layer photonic 

RC architecture to improve the performance of RC. We then integrate Time Division 

Multiplexing to exploit the inherent parallelism in reservoir layer and design a photonic 

architecture that is capable of running multiple tasks in parallel. To make photonic RC 

accelerators scalable, we design a first of its kind architecture that is completely on-chip. 
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Lastly, we study the limitations of the architectures design thus far and design a new kind 

of reconfigurable architecture that optimizes performance vs power consumption for any 

given task. 
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1. INTRODUCTION  

 

1.1. The Reservoir Computing Model 

In the advent of big data, Machine Learning (ML) has emerged as a promising area 

to solve prediction and classification problems. Loosely speaking, ML “gives the 

computer’s ability to learn without being explicitly programmed” (Arthur Samuel, 1959). 

More formally, ML can be defined as computational learning using algorithms to learn 

from and make predictions on data. ML is different from traditional programming as no 

explicit programming related to data is required. Figure 1.1 depicts this difference between 

traditional learning and Machine Learning.  

 

Figure 1-1 Traditional Programming Versus Machine Learning 

  

 While many different ML methods exist, Artificial Neural networks (ANN) are 

extremely popular [1, 2, 3, 4, 5, 6, 7]. Given data, these networks compute transformations 

of features or representation to make a final decision on it as represented in Figure 1.2. 

Feed forward networks comprising of multiple layers (DNNs) have been used extensively 
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in literature to study non-temporal problems. These networks are also well understood due 

to their non-dynamic nature. DNNs comprise of several layers, with each layer containing 

many neurons as shown in Figure 1.3. Mathematically, these networks are trained by 

solving an optimization problem to compute the appropriate weights [8]. The training 

process is computationally very expensive and requires a lot of computational power. 

However, many real-world problems are temporal in nature. For example, 

prediction problems like financial data forecasting or weather forecasting and 

classification problems like speech recognition [9]. The feedforward networks have been 

Figure 1-3 Deep Neural Network For Digit 

Classification 

Figure 1-2 Deep Neural Network Architecture Comprising Of Multiple Neural Layers 
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used to solve these temporal problems by means of converting temporal problems to 

spatial problems by delayed embeddings. However, this is not a natural way of 

representing time [10]. Furthermore, such methods give rise to problems like artificially 

introduced time horizons [11]. To solve temporal problems Recurrent Neural Networks 

(RNNs) have been proposed. The networks consist of many recurrent connections as 

shown in Figure 1.4. The recurrent connections give rise to even larger number of 

parameters to be trained and hence training an RNN is even more compute intensive.  

1.2. Reservoir Computing 

Recently, it has been discovered that temporal problems can also be solved by a 

random network of recurrent connections coupled with a single trainable readout layer. 

This idea was proposed by Rosenblatt in 1962[12]. Fairly recent works have explored this 

paradigm and have independently come up with two main models, the echo state networks 

(ESNs) and the liquid state machines (LSMs)[13, 14]. The ESNs are based on non-spiking 

artificial neural networks whereas the LSMs were proposed in the context of spiking 

neural networks. The two concepts combined together have been named as Reservoir 

Computing (RC)[15]. Reservoir Computing (RC) is a subset of RNN and is a promising 

Figure 1-4 An Unrolled Recurrent Neural Network 
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approach to solve large scale classification and prediction problems[16, 17, 18, 19, 20]. In 

an RC system, there are three main layers: input layer, reservoir layer and output layer. 

The basic idea behind RC can be summed up as follows: 

1. The reservoir layer is used for feature extraction and comprises of several hidden 

layers. The readout layer is trained for prediction or classification problem. 

2. Contrary to RNN, the weights of input layer, 𝑊𝑖𝑛, as well as the hidden layers 

inside the reservoir layer,  𝑊𝑟𝑎𝑛𝑑𝑜𝑚, are not trained but are randomly initialized.  

3. Only the weights of the output layer,  𝑊𝑜𝑢𝑡, are trained. This allows for a far 

reduced training time compared to RNN. Figure 1.5 shows a representation of a 

RC network.  

 

RC has emerged as a promising field, with various benefits. The reduced training 

time makes the RC network very attractive. As with most neural networks this concept is 

inspired by the workings of biological brain. Several studies have argued that RC concept 

is similar to the workings of a brain, where an external stimulus excites the internal states 

Figure 1-5 Reservoir Computing Architecture 
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of network and processes information[21, 22, 14, 23, 24, 25]. Furthermore, the reservoir 

section of RC is independent of task being performed. This means that multiple tasks can 

use the same reservoir with a different readout layer for each task. A reservoir can be 

considered as a generic computation tool that is task independent. As a result, several tasks 

can be performed in parallel. As an example, recently, it has been shown that the same 

reservoir can be used for speech recognition as well as speaker recognition [26].     

While RC is a promising approach, there are still many open research questions. 

These questions can be categorized into three main research areas in the field: 

1. Computational Aspect 

2. Design of Reservoir  

3. Implementation of RC  

In our work, we focus on implementation of RC with the goals of improving accuracy 

as well as making the implementation high performing and energy efficient. While RC 

can be implemented on software using conventional processors, some applications require 

hardware accelerators. In an era where Internet of Things (IoT) and edge computing ideas 

are fast taking shape, compact, fast and energy efficient devices are required for 

computation and data processing. A hardware accelerator is designed with these needs in 

mind. 

1.3. Hardware Implementations Of Reservoir Computing 

While RC has performance comparable to RNNs [27], its implementation has been 

challenging. In the literature, software implementations of RC provide limited 

performance [10] while hardware implementations of RC prove to be difficult due to many 
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non-linear nodes that exist in reservoir layer [28]. To solve this challenge, we first study 

the different topologies of RC that have been proposed. RC networks have three stages: 

Input layer, Reservoir and Output layer, as shown in Figure 1.6.  

The input layer and output layer are consistent in all topologies. However, due to 

the random nature of reservoir layer, we can arrange the connections in several ways [29]. 

Researchers in [29] have investigated various reservoir topologies and have come up with 

three main topologies: Delay Line, Delay line with feedback and Single Cycle Reservoir 

(SCR). The topologies differ in the way feedback connections are arranged in the 

reservoir, as shown in figure 1.7. 

The delayed feedback reservoir (DFR) model of RC[30, 31, 32], inspired by SCR 

has emerged as a very attractive model to implement Reservoir Computing. It uses only 

one single neuron along with a delay line in a ring topology to create the reservoir. 

 

Figure 1-6 Three Stages Of The Reservoir Computing 

 



 

7 

 

Furthermore, this model has become even more attractive as many analog components, 

 

(a) 

 

(b) 

 

(c) 

Figure 1-7 (A) Delay Line Reservoir Topology (B) Delay Line Feedback 

Topology (C) Single Cycle Reservoir Topology 
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especially in the photonics domain can be used for its implementation. Following this 

model, several silicon photonics based single layer RC implementations have been 

presented in the literature [33, 34, 35]. These single-layer photonic implementations 

demonstrate 100x improvements in speedup compared to previous RC implementations. 

However, the accuracy of these implementations is lower than software RNN 

implementations. Recently, authors in [36, 37] have demonstrated software 

implementation of multi-layer RC to be of identical accuracy as compared to RNN 

implementations at the expense of large execution time.  These systems also employ fiber 

optics as delay line and contain off-chip elements. While the proposed architectures are 

very promising, they still lack performance, use only one layer of reservoir and employ 

off chip components. Therefore, there is a need for more accurate, high performing 

accelerators for RC that addresses these issues.  

1.4. The Emergence Of Silicon Photonic 

Silicon photonics has emerged not only as an exciting prospect for on chip 

interconnects but also for computation in the analog domain. The computation and 

communication in silicon photonics domain has proved to be high speed, high bandwidth 

and less power hungry compared to traditional electronic counterparts.  Moreover, several 

commercial photonics CAD tool like IPKISS [38] are available now that enables working 

with photonic components easier. All of this serves as a motivation to design high speed 

and high bandwidth computing systems that can process large scale data, while consuming 

less power than their electronic counterparts. 
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1.4.1. Basics Of Silicon Photonics 

Silicon photonics-based computing systems employ several optoelectronic 

components. Before discussing photonic architectures for RC, it is important to review 

these components.  

1.4.1.1. Waveguides And Fiber Spools 

Silicon photonic waveguide is one of the building blocks for not only photonic 

components but also many photonic computing and communication systems. Waveguides 

are used as building blocks for Micro Ring Resonators, Mach Zehnder Modulators, 

Couplers as well as feedback mechanisms in photonic components. A silicon core with 

cladding is used to make a waveguide. Using the principle of total internal reflection and 

difference in refractive index of core and cladding, light is contained inside the waveguide 

and travels through it. 

A fiber spool is a fiber optic cable, that again uses the principle of total internal 

reflection to transmit light from one point to the other. These are often employed to 

provide a delay in photonic computing systems as well as communication over large 

distances. 

1.4.1.2. Mach Zehnder Modulator 

A Mach Zehnder Modulator (MZM) or Mach Zehnder Interferometer (MZI) is 

another important photonic component. This component is used to modulate data over 

laser light. A MZM is basically two waveguides connected at either end by a Y junction. 

The length of the waveguides is normally unequal which causes light traveling through 

both arms to have different phase. The constructive and destructive interference helps 
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create an output. Researchers have also come up with clever methods to use electrical field 

to control light speed in one of the arms. This enables modulation of electrical data over 

the laser light. Figure 1.8 below shows the basic working of MZM.  

Laser light enter the modulator from one end and is split into the two arms. In one 

arm light propagates without any change. However, on the other arm, an electric field is 

applied which changes the refractive index of that arm and slows down the propagation of 

light in this arm. Due to the applied electric field, light in lower arm goes out of phase 

with light in upper arm. At the output, constructive and destructive interference cause a 

modulated version of laser light. This phenomenon can be used as the activation function 

of a neuron.  

1.4.1.3. Micro Ring Resonators 

Optical Ring Resonators have been extensively discussed in literature [39, 40]. 

They are essential for the success of silicon photonics. Using resonance, they can enable 

 

Figure 1-8 MZI Structure With Laser Light As Input And Electric Field On 

One Arm To Modulate Data 
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the control of photonic path. In literature several MRR designs have been proposed [41, 

42]. The main focus of these design is speed, application and size. Recently a 2x2 MRR 

was proposed which can be employed as reconfigurable DEMUX/MUX[43]. Such a 

component is ideally suited for selection of a delay line in a multi delay line-based 

architecture.  

1.4.1.4. Photodiodes 

Photodiodes are used for detection of light traveling through a component or 

system. It is also used for optical to electrical conversion of data. Photodiodes are often 

designed for a specific band and a rise/fall time. 

1.5. Research Focus 

This dissertation focuses on design of high speed and power efficient photonic 

Reservoir Computing hardware accelerators. We first review the working of a single node 

photonic computing model that is based on delayed feedback reservoir (DFR) computing 

model. We begin by extending the single node computing model, to incorporate multiple 

layers for Reservoir for Deep RC. Deep RC improves the performance of the system. We 

then study the ability of a reservoir to process multiple tasks in parallel and propose an 

improvement in our architecture to exploit parallel processing. To make the systems 

compact and on chip, we also make an effort to design a completely on chip system. 

Furthermore, we study the performance and power consumption of a system with different 

reservoir configurations and investigate reconfigurable photonic RC accelerators.   

1.6. Contributions 

The contributions of this dissertation are as follows: 
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MReC- A Multilayer Photonic Reservoir Computing Architecture: We propose 

MReC, a novel scalable and energy-efficient multilayer photonic reservoir computing 

architecture for large-scale classification and prediction. To the best of our knowledge, the 

proposed work is first of its kind using photonic components for multilayer reservoir 

computing. We introduce a multi-layer pipeline approach to enhance MReC’s overall 

throughput by introducing multiple delay lines in series in the microarchitecture. We 

synthesized the proposed MReC architecture using commercial photonic CAD tools and 

ran system-level simulation on the architecture using four well-known classification and 

prediction benchmarks. The results demonstrate: (1) up to 26.8% reduction in prediction 

error rate in 1-layer MReC and up to 50% reduction in prediction error in 4-layer MReC 

compared to state-of-the-art design; (2) at least 132x improvement in speedup compared 

to best reported result; and (3) up to 34.21% improvement in power consumption 

compared to the best hardware implementation in literature. These improvements come at 

a cost of 12% area overhead. 

Multilayer Photonic Reservoir Computing Architecture using Time Division 

Multiplexing for Parallel Computation: We review the RC computing principles and 

explain the single node photonic computing paradigm. We propose a new time-shared 

multi-layer photonic architecture for RC to perform tasks in parallel. Through experiments 

we show that our architecture can outperform some of the leading single layer 

architectures by up to 90% for NARMA task while performing analog speech recognition 

in parallel. We also show that our proposed architecture closely matches the performance 

of leading multi-layer photonic RC architecture with an increased error of 8% only due to 
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parallel processing. It is also shown that the proposed high-speed architecture has a power 

consumption of ~50W for a 4-layer network. 

On-Chip Parallel Photonic Reservoir Computing using Multiple Delay lines: We 

propose a new architecture for on-chip parallel photonic reservoir computing employing 

multiple electronically tunable delay lines along with an MRR switch for delay line 

selection. Through simulations we show that the proposed architecture is up to 84% more 

accurate compared to a leading architecture while executing NARMA task alone and 80% 

more accurate when executing two tasks in parallel. It outperforms other architectures 

presented in literature. We also show that the proposed architecture performs 46% more 

accurate compared to an RC architecture employing Time Division Multiplexing (TDM) 

at input layer to execute tasks in parallel. It is shown that the architecture removes the off-

chip fiber optics-based delay line at the cost of 0.0184 mm2 of on chip area. The power 

overhead is just 26mW. 

Towards reconfigurable optoelectronic hardware accelerator for reservoir 

computing: we propose a new reconfigurable optoelectronic architecture for multi-layer 

RC. Our proposed architecture, is based on DFR model implemented by the use of Mach 

Zehnder Modulator (MZM) and on chip low loss delay lines for improved performance. 

It integrates photonic switches based on Micro Ring Resonators (MRR) to enable 

reconfigurability. The architecture enables layer selection and layer gating to select the 

number of layers required for a task. Selection of number of layers can optimize the 

architecture for a specific application, resulting in huge power savings, while maintaining 

the overall accuracy. Our experiments with NARMA task and analog speech recognition 
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task show that by optimally configuring an up-to 4-layer architecture, power savings up 

to 40% can be achieved compared to state-of-the-art architectures while gaining up to 80% 

more accuracy. Our scalable architecture has an on-chip area overhead of 0.0184mm2 for 

a single delay line and MRR switch. 

Each chapter of the dissertation focuses on key elements to improve for design. 

The contribution of each of the works can be summed in Table 1-1 

 

  

Table 1-1 Summary Of Design Features Of Each Of The Proposed Photonic 

Architectures 

 

 

 Scalability Performance Parallelism Energy Efficiency 

Chapter 2   ✔  ✔ 

Chapter 3   ✔ ✔  

Chapter 4  ✔ ✔ ✔  

Chapter 5  ✔ ✔  ✔ 
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1.7. Organization 

The rest of the dissertation is organized as follows: Chapter 2 discusses the design 

of a proposed multilayer photonic reservoir computing architecture. This is followed by 

Chapter 3 which discusses a modified multilayer photonic computing architecture that 

integrates time division multiplexing in its reservoir layer to enable parallel processing. 

Chapter 4 investigates the use of multiple on chip delay lines and proposes an architecture 

for completely on chip parallel reservoir computing system. Chapter 5 investigates the 

effect of reservoir configuration on performance and power, and proposes an architecture 

for reconfigurable reservoir computing system. This is followed by Chapter 6 which 

discusses some of the potential applications in which RC and our proposed hardware 

accelerators can be employed.  Chapter 7 concludes this dissertation. 

  



 

16 

 

2. A MULTILAYER PHOTONIC RESERVOIR COMPUTING SYSTEM1 

 

 Photonic reservoir computing is a promising paradigm for large-scale 

classification and prediction problems. However, its single-layer nature is a bottleneck for 

higher performance and accuracy. Therefore, in this chapter we investigate the design of 

a multilayer RC system that can outperform other state of the art architectures.  

2.1. Motivation 

Recurrent Neural Networks (RNN) are often used in sequential classification and 

prediction problems. Deep RNN is a promising approach to enhance the accuracy of large-

scale machine learning applications [44, 45, 46] . However, training a deep RNN is very 

compute intensive as weights of all the layers are determined in a sequential fashion. A 

subset of RNN is Reservoir computing (RC). It has emerged as a promising candidate to 

provide reduced training time with similar accuracy[27]. RNN and RC both consist of two 

stages: feature extractor and feature classifier. Feature extractor in RNN comprises of 

several hidden layers with weights that are trained extensively using available datasets to 

fine tune desired features. However, in RC, randomly generated fixed weights are used in 

the hidden layers to generate such features. For the feature classification, weights are used 

both in RNN and RC to fine tune the output. It may be noted that the training of weights 

in RC takes place only in the classifier stage. This makes the training and 

1adapted with permission from Copyright © 2019, IEEE Dhang, D., Hasnain, S. A., & Mahapatra, R. 

(2019, March). MReC: A multilayer photonic reservoir computing architecture. In 20th International 

Symposium on Quality Electronic Design (ISQED) (pp. 170-175). IEEE. 
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classification/prediction of an RC less time consuming compared to RNN. The feature 

extractor and the feature classifier of an RC are otherwise known as reservoir layer and 

output layer respectively as shown in Figure 2.1. While RC is a promising solution to 

reduced training time, its implementation has been a challenge. 

In the literature, software implementations of RC provide limited performance [27, 

10] while hardware implementations of RC prove to be cumbersome due to many non-

linear nodes that exist in reservoir layer [28]. The delayed feedback reservoir (DFR) model 

of RC has emerged as a potential solution to this problem. It uses only one single neuron 

in a ring topology to create the reservoir. Following this model, several silicon photonics 

based single layer RC implementations have been presented in the literature [35, 34, 33]. 

These single-layer photonic implementations demonstrate 100x improvements in speedup 

 

Figure 2-1 Single Node Photonic Computing Model 
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compared to previous RC implementations. However, the accuracy of these 

implementations is lower than software RNN implementations. Intuitively, a multi-layer 

RC approach would improve the accuracy of RC system similar to deep neural network. 

Recently, authors in [37, 36] have demonstrated software implementation of multi-layer 

RC to be of identical accuracy as compared to RNN implementations at the expense of 

large execution time.  

 Therefore, in this chapter we propose a hardware implementation of multi-layer 

Reservoir computing using photonic components. Our proposed architecture improves the 

overall performance of such system. A hardware based multi- layer RC not only increases 

the accuracy of such systems but is also going to be faster than software-based 

implementations. 

2.2. Related Works 

In literature, multiple single layer photonic RC architectures have been 

proposed[33, 34, 35]. These architectures are based on DFR model and employ fiber optics 

and Mach Zehnder Interferometer as the non-linear node. The delay line length varies 

from 20m to 1.7Km. However, the use of fiber optics of large lengths makes these 

architectures non-scalable. These implementations have power consumption ranging from 

76W to 200W. Alternative to optoelectronic architectures for RC, memristor based models 

have also been proposed in literature [47]. These architectures employ memristor meshes 

to implement neurons[48, 49]. While they also show promising results for specific 

applications, the use of memristors raises reliability issues. The designs are also less fault 

tolerant.  
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SW based implementations of RC have also been presented which demonstrate 

performance at par with RNNs [36, 37]. However, the increased performance comes at the 

expense of a larger execution time.  Another proposed model that employs multiple 

reservoirs was proposed in [50]. However, there are no implementation details.  

2.3. Contribution 

In this chapter the following contributions are made: 

1. We propose MReC, a novel scalable and energy-efficient multilayer photonic 

reservoir computing architecture for large-scale classification and prediction. 

To the best of our knowledge, the proposed work is first of its kind using 

photonic components for multilayer reservoir computing. 

2. We introduce a multi-layer pipeline approach to enhance MReC’s overall 

throughput by introducing multiple delay lines in series in the 

microarchitecture. 

3. We synthesized the proposed MReC architecture using commercial photonic 

CAD tools and ran system-level simulation on the architecture using four well-

known classification and prediction benchmarks. The results demonstrate: (1) 

up to 26.8% reduction in prediction error rate in 1-layer MReC and up to 50% 

reduction in prediction error in 4-layer MReC compared to state-of-the-art 

design [34]; (2) at least 132x improvement in speedup compared to best 

reported result [34]; and (3) up to   34.21% improvement in power consumption 

compared to the best hardware implementation in [33].  

4. These improvements come at a cost of 12% area overhead. 
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2.4. Overview Of Photonic Reservoir Computing 

RC’s popularity is growing rapidly in the field of data science due to its high-

speed prediction mechanism. The working principle of RC is as follows. 

2.4.1. Principle Of Reservoir Computing 

A RC comprises of an input layer, a reservoir layer, and an output layer as shown 

in Figure 2-1. The input layer of a RC distributes input data to its reservoir layer in discrete 

time through fixed connection weights. The reservoir layer is a dynamical system whose 

state at discrete time step n can be described as a set of N scalar variables 𝑆𝑖(𝑛) (𝑖 =

1,2, … 𝑁) called neurons. All the neurons in a reservoir layer are randomly interconnected 

with fixed random weights, constituting a recurrent network (i.e. a network of neurons 

having feedback loops). Under the influence of input data, the reservoir layer exhibits 

transient responses. The transient behavior of a reservoir is governed by an evolution 

equation as depicted in Equation 1: 

 
𝑆𝑖(𝑛) = 𝑓[∝ 𝐶𝑖𝑥(𝑛) +  𝛽 ∑ 𝑤𝑖𝑗𝑠𝑗(𝑛 − 1)]

𝑁

1
 

(2.1) 

   

Here, 𝑆𝑖(𝑛) is the state of 𝑖𝑡ℎ neuron at discrete time 𝑛, 𝑓 is a non-linear function, 

𝑥(𝑛) is input to RC at discrete time 𝑛, 𝐶𝑖 &  𝑤𝑖𝑗 are the connection coefficients that define 

the topology of a reservoir layer, and ∝ & 𝛽 are tuning parameters to regulate the dynamics 

of a reservoir. The transient states 𝑆𝑖(𝑛) are fed to the output layer through readout weights 

𝑊𝑖 to determine the output 𝑂(𝑛). 

  𝑂(𝑛) = ∑ 𝑊𝑖𝑠𝑖(𝑛) +  𝑊𝑏𝑖𝑎𝑠
𝑁
1                                                   (2.2) 
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Here, 𝑊𝑏𝑖𝑎𝑠 is the bias value required for the training of RC. During the training 

phase, the readout-layer weights 𝑊𝑖 and bias weight 𝑊𝑏𝑖𝑎𝑠 are optimized to minimize error 

between the expected output 𝑂′(𝑛) and the actual output 𝑂(𝑛).  

The performance of a RC is directly proportional to the number of neurons in its 

reservoir layer [44]. There are several attempts to design hardware implementation of RC 

which involves multiple photonic neurons [45]. However, such an approach is not feasible 

for designing RCs with thousands of neurons as it would cost significant power and area 

overhead [46]. A solution to this problem is a single node photonic RC with delay 

dynamics, which is explained in the following section. 

2.4.2. Single Node Photonic RC 

A photonic implementation of RC fully exploits the advantages of optical 

properties of photonic hardware (low-power, high-bandwidth, and inherent parallelism). 

Figure 2-1 shows a conceptual diagram of a single node photonic RC. A single node 

photonic RC can be treated as a single-layer photonic RC architecture. It comprises of an 

input layer, a reservoir layer, and an output layer. In the input layer, input signal multiplied 

with a masking function is fed to an optical coupler. The random masking input serves the 

same purpose in this system, as weights of interconnects do in a standard electrical or 

software-based RC system. The reservoir layer comprises of a Mach Zehnder 

interferometer based non-linear node (NL node) and optical fiber spool-based delay loop. 

MZI along with the optical fiber spool is considered as neurons in RC system. In the output 

layer, data from the reservoir layer are trained offline. The details of each layer are 

presented in next section. The working principle of a single-layer RC is as follows. 
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The coupler receives discrete masked input 𝑥𝑖(𝑛) from the input layer and 

feedback signal from the O/E converter. The O/E converter converts analog optical data 

of duration T to N discrete electrical samples 𝑠𝑖(𝑛) which is fed to the coupler one by one. 

Each 𝑠𝑖(𝑛) represents the state of a neuron in the reservoir layer at time step n. At time 

step n+1, The NL node receives sum of 𝑠𝑖(𝑛) and masked input 𝑥𝑖(𝑛 + 1) and then 

transforms it to 𝑠𝑖(𝑛 + 1) as depicted in Equation.1. After that, the state value 𝑠𝑖(𝑛 + 1) 

is stored in the delay loop to be used in the next time step, i.e. 𝑛 + 2. The ratio of delay 𝜏 

to the O/E conversion time 𝑡 determines the number of neurons N in this kind of design. 

2.5. MReC Architecture 

A multilayer RC is realized by simply including multiple reservoir layers (NL + 

delay) in between architecture output of optical couplers and input of output layer as 

shown in Figure 2-2. Each reservoir layer stores multiple reservoir states. As shown, the 

output from 1st layer enters the NL Node of 2nd layer as input and so on. Each reservoir 

state from the last layer (Mth layer) is fed to the readout layer for training. The 

classification/prediction of output follows Equation.2. The weights and bias value are 

trained using a linear regression technique in an offline computer to determine the final 

output. 

 

Figure 2-2 Logical Schematic Of MReC Architecture 
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Figure 2-3 presents the microarchitecture of proposed MReC architecture. The 

entire microarchitecture can be divided into three parts: input layer, reservoir layer, and 

readout layer. These layers work in a pipeline fashion to process an input. The details are 

as follows: 

2.5.1.1. Input Layer 

As shown in Figure 2-3, the input electronic signal, x(t) is sampled with a period 

of 𝑇𝑆 using a ‘sample & hold’ circuit. This in turn converts each continuous-time task x(t) 

to a discretized piecewise constant function p(n) where 𝑝(𝑡) = 𝑝(𝑛), 𝑛𝑇𝑆≤𝑡 <(𝑛+1) 𝑇𝑆, 𝑛 is 

a time step. Each discrete input 𝑝(𝑛) is multiplied with a periodic mask input 𝑚(𝑛) of 

period 𝑇𝑆. Here 𝑚(𝑛)= 𝑚𝑖(𝑛) for (𝑖−1) (
𝑇𝑆

𝑁
)<𝑛≤(𝑖+1) ( 

𝑇𝑆

𝑁
); 𝑖=1, 2…𝑁; 𝑚𝑖(𝑛) is randomly 

 

Figure 2-3 MReC Microarchitecture 
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chosen from [−1, +1]. The result of this multiplication is a masked input 𝑝𝑖(𝑛) which 

drives the 1st reservoir layer in the ‘reservoir computing segment’. 

2.5.1.2. Reservoir Layer 

Reservoir computing segment is the heart of our proposed MReC architecture. It 

comprises of ‘M’ reservoir layer as shown in Figure 2-3. We consider up to four reservoir 

layers as an example for this work. Each reservoir layer consists of LiNbO3 Mach Zehnder 

Interferometer (MZI) as NL node and an optical fiber spool to     provide delay. We 

consider sinusoidal nonlinearity in our design. The laser source provides optical carrier to 

the MZI of each reservoir layer. The output from the coupler is fed to the MZI of first 

reservoir layer through an electronic amplifier. For a timestep ‘n’, masked input  𝑝𝑖(𝑛) 

from the coupler is fed to the MZI of first reservoir layer. The MZI converts 𝑝𝑖(𝑛) into a 

reservoir state 𝑆𝑖
1 where 1 stands for 1st reservoir layer and i =1, 2…N (as we consider N 

reservoir states). The optical fiber spool provides a delay of 𝑇𝑆 which is same as the sample 

time of ‘sample & hold’ circuit. For each time step 𝑛, the photodiode in the reservoir layer 

converts each reservoir state 𝑆𝑖
1 from optical form to electronic form. The photodiode of 

each reservoir layer has an operating period of h second. Analytically, we can write 𝑁 =

𝑇𝑆

ℎ
. The state of reservoir i in the first layer can be written as, 

 𝑆𝑖
1(𝑛) = 𝑆𝑖𝑛(𝛼𝑆𝑖

1(𝑛 − 1) + 𝛽𝑚𝑖(𝑛)𝑥(𝑛) + ∅) (2.3) 

The electronic output from the photodiode of one reservoir layer becomes an input to the 

next reservoir layer. This way, at any timestep n, ith reservoir state of jth reservoir layer 

can be written as, 
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 𝑆𝑖
𝑗(𝑛) = 𝑆𝑖𝑛(𝛼𝑆𝑖

𝑗(𝑛 − 1) + 𝛽𝑚𝑖(𝑛)𝑥(𝑛) + ∅) (2.4) 

Here ∝ and 𝛽 are feedback gains; ∅ is a bias value; and 𝑚𝑖(𝑛) represents the mask 

input. ∝, 𝛽, and ∅ are adjustable parameters. The MZI used in our design has sinusoidal 

non-linearity; hence the above equation is based on a sin function. One cycle of MReC 

architecture is defined as the time taken by a masked input 𝑝𝑖(𝑛) to travel from the 1st 

reservoir layer until the readout layer. 

2.5.1.3. Output Layer 

Using the photodiode from the last reservoir layer (here the Mth layer), all the N 

reservoir states 𝑆𝑖
𝑀(𝑛) are fed to an offline computer. The predicted output is determined 

using the following equation.  

 

𝑂(𝑛) = ∑ 𝑊𝑖𝑆𝑖
𝑀(𝑛) + 𝑊𝑏𝑖𝑎𝑠

𝑁

𝑖=1

 

(2.5) 

Here 𝑊𝑖 is calculated using linear regression training by comparing 𝑂(𝑛) with 

target output 𝑂′(𝑛). 

2.5.1.4. Pipeline Operation In MReC 

Each reservoir layer in MReC amounts to a processing time of 𝑇𝑠 . One masked 

input 𝑝(𝑛) can be processed by one reservoir layer at a time, keeping the rest of the 

reservoir layers idle. This leads to underutilization of MReC architecture. We introduce a 

pipeline approach to fully utilize all the reservoir layers in MReC. 𝑇𝑑 unit of time after 

feeding 𝑝(𝑛) (𝑇𝑑 ≪ 𝑇𝑆), MReC’s 1st layer is fed with a masked input q(𝑛) from another 

task. This will keep two reservoir layers busy at a time. We can process M number of tasks 

in MReC at a time where M is the total number of reservoir layers. As the time interval 𝑇𝑑 
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between two signals is negligible, one can assume that the overall throughput of MReC is 

Mx compared to single-layer photonic RC if M tasks are processed in a pipeline. 

2.6. Experimental Methodology 

We designed and synthesized optoelectronic components such as optical fiber 

spool, photodiode, coupler, MZI, and sampler using a commercial photonic design tool 

called IPKISS [38]. The synthesized components are used to design and simulate the 

proposed MReC microarchitecture using a CAD tool called Caphe. We integrate Caphe 

with Caffe [51], a C++ & Python based deep learning toolbox to rapidly build, train and 

evaluate machine learning models. Table 2-1 illustrates details of components used in our 

design. For power and area models, we use DSENT [52]. 

 

Table 2-1 Parametric Details Of Components Used In The Proposed Architecture 

COMPONENTS PARAMETERS VALUES 

LASER Wavelength 1550nm 

 Power 10W 

MZI Power 5W 

FIBER SPOOL Length 20m 

 Delay 0.1us 

 Power Negligible 

PHOTODIODE Power 5watt 

 Rise Time 15ps 
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Four widely used machine learning benchmark tasks namely, spoken digit 

recognition, Santa Fe time series prediction, non-linear channel equalization, and 

NARMA task are run on MReC using Caffe. For the purpose of simulation, we modify 

the Caffe toolbox to integrate the errors introduced due to photonic components. The 

system is then tested with the benchmarks mentioned. The details of the benchmarks are 

as follows. 

2.6.1.  Spoken Digit Recognition  

Spoken digit recognition task is a widely-used classification task. The objective of 

the task is to classify ten spoken digits (0-9), each recorded ten times by five different 

persons. The dataset is obtained from [53]. The input 𝑝𝑖(𝑛) to the reservoir comprises of 

an 86-dimensional (i = 1, 2, ... 86) state vector with up to 130 time-steps. The number of 

variables N <= 350. This requires an input mask 𝑚𝑖𝑗 of   matrix size 𝑁 × 86, where each 

element is chosen randomly from {-1, +1} with equal probabilities. ∑ 𝑚𝑗𝑖𝑝𝑖(𝑛)86
𝑖=1  

(product of input and mask) is used to drive the reservoir. The metric to measure the 

performance of a system executing spoken digit recognition task is word-error-rate 

(WER). WER is the fraction of misclassified digits resulting from this task. 

2.6.2.  Santa Fe Time Series  

A time-series is a sequence of periodic data points over a continuous time interval. 

In our experiment, we use Santa Fe financial time-series recorded from a far-infrared laser 

operating in chaotic state [54]. The goal of this experiment is to predict a data point one 

time-step ahead in the future. The dataset contains 10000 points and we use 4000 points 
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out of it. Prediction performance is evaluated based on the normalized mean square error 

(NMSE) defined as: 

 
𝑁𝑀𝑆𝐸 =

1

𝑛
∑

(𝑂𝑖
′ − 𝑂𝑖)

𝜎𝑂𝑖
2

𝑛

𝑖=1

 
(2.6) 

where 𝑂𝑖
′ and 𝑂𝑖 are predicted and expected values at time step i, n is total number of time 

step, and 𝜎 is the standard deviation. Here, NMSE = 0 implies perfect prediction and 

NMSE = 1 indicates no prediction. 

2.6.3.  Non-Linear Channel Equalization 

Equalization of communication channel is a way to facilitate reliable wireless 

communication. Whenever a signal is transmitted across a wireless communication 

channel, it encounters noise, channel effects (e.g. distortion, dispersion), and inter-symbol 

interference. Equalization of a wireless communication channel has been widely used as 

a benchmark task for RC simulation. The following two equations represent the 

relationship of the output s(n) a non-linear wireless channel to its input g(n).  

𝑧(𝑛) = 0.08𝑔(𝑛 + 2) − 0.12𝑔(𝑛 + 1) + 𝑔(𝑛) + 0.18𝑔(𝑛 − 1) − 0.1𝑔(𝑛 − 2) + 0.091𝑔(𝑛 −

3) − 0.05𝑔(𝑛 − 4) + 0.04𝑔𝑛(𝑛 − 5) + 0.03𝑔(𝑛 − 6) + 0.01𝑔(𝑛 − 7)     (2.7) 

 𝑠(𝑛) = 𝑧(𝑛) + 0.36𝑧(𝑛)2 − 0.011𝑧(𝑛)3 + 𝑑(𝑛) (2.8) 

 

As depicted in Equation 2.7 and 2.8, s(n) encounters second-order 𝑧(𝑛)2 and the 

third-order 𝑧(𝑛)3 nonlinear distortions, and also additive Gaussian white noise d(n), which 

may result from the channel. s(n) is used as the final input to reservoir system. 
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2.6.4. NARMA Task  

The NARMA task is one of the most widely used benchmarks in RC[55]. The 

input u(k) for this task consists of scalar random numbers, drawn from a uniform 

distribution in the interval [0, 0.5] and the target y(k + 1) is given by the following 

recursive formula: 

 

𝑦𝑘+1 = 0.3𝑦𝑘 + 0.05𝑦𝑘 [∑ 𝑦𝑘−𝑖

9

𝑖=0

] + 1.5𝑢𝑘𝑢𝑘−9 + 0.1 

(2.9) 

2.7. Results And Analysis 

Using Caphe, we simulate the proposed design to perform photonic feature 

extraction of above-mentioned benchmarks. These benchmarks are input for the proposed 

MReC architecture. The output from photonic simulation is fed to Caffe [51] which acts 

as the readout layer. In the readout layer, feature classification/prediction takes place. We 

determine classification/prediction error rate, power consumption, area overhead, and 

throughput for all the tasks. Since this is the first attempt to a multilayer RC system, we 

compare our proposed multilayer system with our single layer system first. We then 

compare our single layer results with three state-of-the-art single layer photonic RC 

systems [35, 34, 33] to show that our system performs better. 

2.7.1. Prediction Error Rate Comparison 

2.7.1.1. Single Layer Vs Multilayer Proposed Architecture 

We first evaluate prediction error rate for four benchmarks such as NARMA task, 

non-linear channel equalization task, isolated spoken-digit recognition task, and Santa Fe 

time series prediction task using a single-layer proposed RC as well as multilayer proposed 
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RC. The metric to determine prediction error rate differs from one task to other. For 

NARMA task, we consider normalized mean square error (NMSE) whereas for non-linear 

channel equalization task, we consider symbol error rate (SER) which is the fraction of 

misclassified symbols. For isolated spoken- digit recognition task, we determine word 

error rate (WER) which is the percentage of misclassified digits and for Santa Fe time 

series prediction, we evaluate NMSE which is the percentage of prediction error. For 

multilayer photonic RC, we consider 2-layer, 3-layer, and 4-layer of the proposed MReC 

architecture. Each layer of the multilayer RCs comprises of same number of reservoir 

nodes as that of a single-layer proposed RC. We consider number of reservoir nodes/layer, 

N=50 as most of the single-layer RC in literature use 50 nodes per layer for comparison. 

Table 2-2 presents prediction error rate of 2-layer, 3-layer, and 4-layer proposed RC 

normalized to a single-layer proposed RC for NARMA task, non-linear channel 

equalization task, isolated spoken-digit recognition task, and Santa Fe time series 

prediction task. For NARMA task, as we move from 1-layer to 4-layer, there is gradual 

reduction in the NMSE value from 0.082±0.0075 to 0.052±0.0045. 

It is evident from the table that all the tasks show gradual reduction in prediction 

error rate with the rise in number layer of the proposed RC. NCQ task has a very small 

change in SER from 1-layer photonic RC to 4-layer photonic RC. This is due to the fact 

that NCQ task is prone to the noise introduced by a RC layer. This affects the overall 

reduction in SER value by the multilayer approach. In all the four cases, the prediction 

error rate saturates beyond the 3-layer architecture. 
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Table 2-2 Prediction Error Rate Comparison Of 1-Layer, 2-Layer, 3-Layer, And 4-

Layer Proposed RC 

 1-Layer 2-Layer 3-Layer 4-Layer 

NARMA NMSE= 0.082± 

0.0075 

NMSE= 0.071± 

0.0075 

NMSE= 0.058± 

0.0065 

NMSE= 0.052± 

0.0045 

NCQ SER=0.002 SER=0.0019 SER=0.0017 SER=0.0015 

ISDR WER=0.9 WER=0.75 WER=0.62 WER=0.55 

Santa Fe NMSE= 0.092 ± 

0.0075 

NMSE= 0.08 ± 

0.0065 

NMSE= 0.067 ± 

0.0045 

NMSE=0.06 ±   

0.0075 

 

 

2.7.2. MReC Vs State Of The Art Architectures 

As multilayer RC architecture is yet to be demonstrated in literature, we compare 

single-layer MReC with state-of-the-art architectures in [35, 34, 33]. The metric to 

compare prediction error rate differs from one benchmark task to another. For NARMA 
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task, we compare normalized mean square error (NMSE) of the MReC architecture with 

[35, 34, 33]. Figure 2-4a illustrates comparison of NMSE of single-layer MReC 

architecture with [35, 34, 33]. For a fair comparison, the number of nodes in all the cases 

are chosen to be 50 (N=50). State-of-the-art photonic RC [4] performs with NMSE = 

0.104±0.012. The proposed MReC architecture with a single-layer shows improved 

performance with an NMSE = 0.082±0.0075.   

For “Non-linear channel equalization task”, we determine symbol-error rate (SER) 

which is the percentage of misclassified symbols. As non-linear channel task is prone to 

channel noise, we also study the effect of a Gaussian noise (with zero mean) ranging from 

Signal-to-Noise (SNR) of 12 to 28dB. Figure 2-4b illustrates comparison of SER of single-

layer MReC architectures with single-layer photonic RC in [35, 34, 33]. As evident from 

Figure 2-4b, MReC architecture with a single layer outperforms other photonic RC 

architectures irrespective of noise. With the rise in noise level in the reservoir layers, 

performances of photonic RCs in [35, 34, 33] degrade. When the noise is low (i.e. SNR is 

high) single-layer MReC demonstrates a low SER=7x10-5 as opposed to a SER=8x10-5 in 

[33] , a SER=9x10-5 in [35] and a SER=5x10-4 in [34] . When the noise is high (SNR=12 

dB), proposed RC shows a SER = SER=1x10-1, which is still better than SER=1.5x10-1 in 

[33] , and SER=2x10-1 in [35] and [34]. We evaluate word-error-rate (WER) which is the 
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fraction of misclassified digits when executing the isolated spoken-digit recognition task.  

 

 

(a) 

 

(b) 

Figure 2-4 (A) NMSE Comparison For NARMA Task When N=50 In All Rcs, 

(B) SER Comparison For NCQ For Photonic Rcs With N=50 When SNR Is 

Varied From 12 To 28 Db 
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Figure 2-5a illustrates WER of single-layer MReC architecture as compared to 

[35] and [33]  when number of reservoir nodes in each RC, N=50 while SNR = 3 dB and 

SNR = 6 dB. Photonic RC in  [34]  does not demonstrate results for isolated spoken digit 

recognition task. Therefore, we do not compare with [34]  in this case. 1-layer MReC 

architecture shows lower WER compared to [35]  and [33]  . When SNR = 3 dB, proposed 

MReC with 1-layer has WER = 0.45% while [33]   has WER = 0.52% and [35]  has WER 

= 0.6%. 

For Santa Fe task, we compared the NMSE result of MReC with that of in [33] as 

shown in Figure 2-5b. In Santa Fe task, a single data point needs to be predicted and hence, 

feedback from photodiode has a profound effect on photonic RC’s accuracy. Therefore, 

we show NMSE results for a varying feedback parameter in terms of attenuation of 

photodiode. It is clearly evident that the MReC with one-layer outperforms the state-of-

the-art design in [33]. Also, we obtain the best results for a feedback value of -10dB. The 

state-of-the-art silicon photonic diode does not produce an attenuation below -10dB. With 

the advancements in silicon photonic technology, if the attenuation is reduced, one may 

be able to predict task like Santa Fe with much better accuracy. From the above 

comparisons, we can conclude that MReC architecture with 1-layer outperforms other 

photonic RC architectures. 
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(a) 

 

(B) 

Figure 2-5 (A) WER Comparison Of 1-Layer MReC With [8] And [10] 

For Isolated Spoken-Digit Recognition Task (ISDR), (B) NMSE 

Comparison Of 1-Layer MReC With [10] For Santa Fe Task, W.R.T. 

Photodiode Attenuation As Feedback. 
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2.7.3. Energy Consumption Comparison 

Table 2-1 illustrates all the optoelectronic components used in the proposed MReC 

architecture along with their parametric details. We use a standard optoelectronic power 

model called DSENT [52] to obtain the total power consumption in the MReC 

architecture. The total power consumption for a single-layer MReC architecture is 

approximately 50W (conservative estimate). This is lower than the state-of-the-art 

photonic RC architectures demonstrated in [35]  which consumes 76W, in [34]   which 

consumes 90W, and in [33] which consumes 200W. The higher power consumption in 

[35, 34, 33]  is due to extra hardware usage e.g. more AWG in [35] and [33] , and analog 

readout in [34]. The total power consumption of MReC architecture is a function of laser 

power and MZI power consumption. Note that there is only one MZI per reservoir layer. 

The number of states or nodes in each layer i.e. N depends on the sampling of input and 

the length of delay line. A multilayer photonic RC requires slightly higher optical signal 

strength compared to single-layer to sustain a longer optical transmission time. A 

multilayer approach also requires extra number of MZIs which results in additional MZI 

driver power. Figure 2-6 depicts   variation in power consumption from 1-layer to 4-layer 

photonic RC. A 4-layer MReC consumes 72W which is lower than the best reported result 

(76W) by a single-layer state-of-the-art system in [35]. We can conclude that the 

multilayer photonic RC design is scalable in terms of power consumption. 
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2.8. Summary 

In this chapter, we demonstrate MReC, novel multilayer photonic RC architecture 

for large-scale classification and prediction tasks. Each layer of the proposed architecture 

comprises of an MZI based nonlinearity and fiber optic delay line to emulate reservoir 

computing. We synthesize the proposed multilayer design using a standard photonic CAD 

tool called IPKISS [38] and execute three well-known classification benchmarks and one 

widely used prediction benchmark to demonstrate: (1) up to 26.8% reduction in prediction 

error rate when single-layer MReC is compared with state-of-the-art single-layer photonic 

RC architecture [34]; (2) up to 50% reduction in prediction error rate when 4-layer MReC 

is compared with state-of-the-art design and (4) up to   34.21% improvement in power 

 

Figure 2-6  Power Consumption For MReC Architecture Variations. 
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consumption compared to best reported result [33]. These improvements in MReC come 

at a cost of 12% area overhead. 

The use of passive components in MReC allow it for a low power approach in 

photonic paradigm in addition to bandwidth advantages [56].  
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3. MULTILAYER PHOTONIC RESERVOIR COMPUTING USING TIME DIVISION 

MULTIPLEXING FOR PARALLEL COMPUTATION 2 

 

In the era of big data, large scale classification and prediction problems pose new 

challenges that the traditional Von-Neumann architecture struggles to address. This calls 

for implementation of new computational paradigms. Photonic reservoir computing is a 

promising paradigm for large-scale classification and prediction problems. Reservoir 

Computing (RC) has three layers: the input layer, reservoir layer and output layer. The 

reservoir layer is a random interconnected network of neurons that is independent of the 

task being performed using RC. This enables a particular reservoir to be used for multiple 

tasks, as only the output layer needs to be trained. The independent nature of reservoir 

layer provides an opportunity for parallel processing of multiple tasks at the same time. 

Unfortunately, the optoelectronic architectures for RC in literature do not exploit this 

capability. Therefore, in this chapter, we propose a multi-layer opto-electronic hardware 

architecture for parallel RC. Our architecture employs time division multiplexing to 

perform jobs in parallel. 

3.1. Motivation 

Reservoir Computing (RC) has emerged as a promising candidate to provide 

reduced training time with similar accuracy as that of deep RNN [57]. RC is a subset of 

2 adapted with permission from Hasnain, Syed Ali, Dharanidhar Dang, and Rabi Mahapatra. "Multilayer 

photonic reservoir computing architecture using time division multiplexing for parallel 

computation." Optoelectronic Devices and Integration IX. Vol. 11547. International Society for Optics 

and Photonics, 2020. 
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RNN. Like RNN, it also has two stages: feature extractor and feature classifier. However, 

unlike RNN, in RC the weights of feature extractor stage are randomly generated and 

remain fixed. Only the weights of feature classifier stage are trained to fine tune the output. 

As we know, RC has an input layer, a reservoir layer and an output layer. The reservoir 

layer comprises of hidden layers of artificial neurons whose weights were randomly 

generated. This makes the reservoir layer a generic computing tool, which is independent 

of the task being performed using RC. In theory, a single reservoir can therefore be used 

to perform multiple tasks[ 58].  

3.2. Related Work 

Several studies have argued that RC concept is similar to the workings of a brain, 

where an external stimulus excites the internal states of network and processes 

information[59, 25, 60]. Furthermore, the reservoir section of RC is independent of task 

being performed. This means that multiple tasks can use the same reservoir with a different 

readout layer for each task. A reservoir can be considered as a generic computation tool 

that is task independent. As a result, several tasks can be performed in parallel. As an 

example, recently, it has been shown that the same reservoir can be used for speech 

recognition as well as speaker recognition[26]. 

However, RC uses many non-linear nodes in its reservoir layer, hence the hardware 

implementation of RC using traditional approach has proved to be challenging[28]. To 

solve this challenge, the delayed feedback reservoir (DFR) model has emerged has a 

potential solution. In this model, only one non-linear node is employed along with a delay 

line[60, 61]. The non-linear node coupled with a delay line forms the reservoir. In this 
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approach there are many virtual neurons, and the single non-linear element is referred to 

as a node. An implementation based on optoelectronic components is ideally suited for 

RC as photonic components like Mach Zehnder Interferometer (MZI) have a nonlinear 

response and a delay line can provide delayed feedback. Following the DFR model, 

several silicon photonics based single layer RC implementations have been presented in 

the literature[33, 34, 35]. These single layer silicon photonic implementations have shown 

promising results with improvements in speed of up to 100x. However, the accuracy of 

these implementations is lower compared to RNN approaches. Intuitively, a multi-layer 

RC approach would improve the accuracy of RC system similar to deep neural network. 

Software implementation of multi-layer RC has indeed demonstrated that it can achieve 

identical accuracy as compared to RNN implementations at the expense of large execution 

time[37, 36]. Encouraged by these results, researchers have also proposed a hardware 

implementation of multi-layer RC that has shown superior performance to single layer 

systems[62]. However, none of these architectures demonstrate parallel processing of 

independent tasks. The reservoir layer has the capability to process multiple tasks in 

parallel and therefore an architecture for parallel RC can be designed. 

3.3. Contribution 

The major contributions of this chapter are as follows: 

1. We propose a new time-shared multi-layer photonic architecture for RC to perform 

tasks in parallel. 
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2. Through experiments we show that our architecture can outperform some of the 

leading single layer architectures by up to 90% for NARMA task while performing 

analog speech recognition in parallel. 

3. We also show that our proposed architecture closely matches the performance of 

leading multi-layer photonic RC architecture14 with an increased error of 8% only 

due to parallel processing.  

4. It is also shown that the proposed high-speed architecture has a power consumption 

of ~50W for a 4-layer network. 

3.4. Time Shared Multilayer Photonic Architecture 

The RC designs execute one input data stream per system. However, parallel 

computation with different data streams or tasks would be extremely beneficial when 

considering big data computing. One can argue that several independent tasks can be 

simultaneously executed using separate similar RC systems in parallel. However, such a 

system will have high power and area overhead. Any attempt to run multiple tasks in 

parallel on a single RC system has its own challenges as well. It is obvious that parallel 

computation of multiple photonic data streams on a single RC system will result in 

crosstalk and hence performance degradation. This is obviously not desirable. 
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On the other hand, if we carefully study the single node photonic computing 

model, such as the one shown in figure 3-1, we notice that the internal states that 

correspond to virtual neurons can be related to different tasks. The reservoir will simply 

process them and provide excited states as input to read out layers. 

Therefore, we investigate the design for a new photonic RC system that overcomes 

the multitasking demands of big data applications and also satisfies the aforementioned 

technological needs (power, area, and crosstalk). This chapter introduces a time-

multiplexed RC system based on a multilayer RC system in which time-division-

multiplexing (TDM) is integrated with the input layer to execute multiple tasks in 

parallel[63, 64]. Fig 3-2. , reprinted with permission from [65], shows the proposed 

architecture. The details of the architecture are as follows. 

 

 

Figure 3-1 Single Node Photonic Model With Internal States Corresponding To 

Virtual Neurons 
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3.4.1. TDM Integrated Input Layer 

In the input layer of proposed architecture, multiple inputs are first sampled using 

a a sample & hold (S/H) circuit. The S/H circuit is controlled using an electronic control 

block that runs a round robin algorithm giving each input a sampling time. The sampling 

converts a continuous signal x(t) to a discrete time signal p(n).  

Let 𝑝𝑙(𝑛) represent the N input signal, where 1 ≤ 𝑙 ≤ 𝑃. The input layer obtains a masked 

version of input signals by multiplying the signals with a random masking signal 𝑚(𝑛). 

The masking signal is randomly chosen from [-1,+1]. The result of this multiplication is a 

masked input 𝑝𝑙
, (𝑛) which drives the reservoir layer in the ‘reservoir computing segment’. 

The random masking function is analogous of the random weights that are applied 

in the hidden layers. They help in generating the randomness and a dynamical response of 

the reservoir. The coupler unit, combines any past state with our current state and serves 

 

Figure 3-2 Time Shared Multi-Layer Photonic Reservoir Computing 

Architecture 
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as a feedback mechanism. This is analogous to the internal memory of an RNN. The S/H 

circuit runs a round robin algorithm, sampling each task for a certain period of time, before 

moving on to sample the next task. 

3.4.2. Reservoir Layer 

Our proposed architecture uses multiple reservoir layers. Each layer has one MZI 

and a single delay line[66]. The masked discrete time inputs are fed into the MZI to pass 

virtual states into the delay line[67, 68, 69]. Since the input layer uses a round robin 

algorithm to sample each of the input signals, it divides the virtual states inside a reservoir 

layer among different tasks. The electronic block can be programmed such that at discrete 

time n, input signal of task one (l=1) is sample and passed to reservoir layer and at discrete 

time n+1, input signal of task 2 (l=2) is passed to reservoir layer. The system cycles 

between the tasks in a round robin method distributing the resources in an equal manner. 

The resource distribution can be unequal if desired. For each reservoir we select the virtual 

neurons states to be 𝑁 = 50. The selection is made based on the response time of the 

slowest component. For an electronically tunable delay line, made of a waveguide of 

length 2cm, a delay of 660ps is achieved through electronic tuning[70]. Each sampled 

input is of length 13.2ps. 

The reservoir layer in our architecture consists of LiNbO3 Mach Zehnder 

Interferometer (MZI). The non-linearity considered in the design is sinusoidal. For a 

timestep n and task l, masked input  𝑝𝑙(𝑛) from the coupler is fed to the MZI. The MZI 

converts 𝑝𝑙(𝑛) into a reservoir state 𝑆𝑖
𝑙 where l stands for task being processed and i =1, 

2…N (as we consider N reservoir states). At the end of each delay line is a photodiode. It 



 

46 

 

converts each state back to electrical form and feeds it to the coupler. The photodiode of 

each reservoir layer has an operating period of h second. The state of reservoir in any 

sublayer can be written as: 

𝑆𝑖
𝑙(𝑛) = 𝑆𝑖𝑛(𝛼𝑆𝑖

𝑙(𝑛 − 1) + 𝛽𝑚𝑖(𝑛)𝑝𝑙(𝑛) + ∅) (3.1) 

Here ∝ and 𝛽 are feedback gains; ∅ is a bias value; and 𝑚𝑖(𝑛) represents the mask input. 

∝, 𝛽, and ∅ are adjustable parameters. The MZI used in our design has sinusoidal non-

linearity; hence the above equation is based on a sin function. 

3.4.3. Output Layer 

The output of the reservoir layer is fed to an offline computer. The final output of 

a task l is given by the following equation: 

𝑓(𝑛)𝑙 = ∑ 𝑊𝑖𝑆𝑖
𝑙(𝑛) + 𝑊𝑏𝑖𝑎𝑠

𝑁

𝑖=1

 (3.2) 

Where 𝑊𝑖 and 𝑊𝑏𝑖𝑎𝑠 are trainable parameters that can be trained using linear regression.  

3.5. Experimental Methodology 

To Evaluate the architecture, we used synthesized components from the MReC 

Architecture [62], except for the delay line. Table 3-1 illustrates details of components 

used in our design. To simulate the Time-Shared reservoir model, we modified the Oger 

toolbox such that the nodes within the reservoir layer are divided among tasks. An 

electronically tunable delay line of length 2cm and delay 660ps was modeled in the 

architecture. The proposed architecture is evaluated for four layers of Reservoir with each 

layer containing N=50 nodes. We ran experiments using two benchmarks popular in the 
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area of Reservoir Computing: NARMA task and Speech Recognition. The details of the 

benchmarks are as follows 

 

Table 3-1 Parametric Detail Of Components For Time Division Multiplexing 

Integrated RC Architecture 

Components Parameters Values 

Laser Wavelength 1550nm 

 Power 10W 

MZI Power 5W 

Photodiode Power 5watt 

 Rise Time 15ps 

 

3.5.1. NARMA Task 

The Nonlinear Autoregressive Moving-average (NARMA) task is one of the most 

widely used benchmarks in RC[55]. The input u(k) for this task consists of scalar random 

numbers, drawn from a uniform distribution in the interval [0, 0.5] and the target y(k + 1) 

is given by the following recursive formula: 

 

𝑦𝑘+1 = 0.3𝑦𝑘 + 0.05𝑦𝑘 [∑ 𝑦𝑘−𝑖

9

𝑖=0

] + 1.5𝑢𝑘𝑢𝑘−9 + 0.1  (3.3) 

Prediction performance for this benchmark is evaluated based on the normalized 

mean square error (NMSE) defined as: 

 
𝑁𝑀𝑆𝐸 =

1

𝑛
∑

(𝑂𝑖
′ − 𝑂𝑖)

𝜎𝑂𝑖
2

𝑛

𝑖=1

 (3.4) 
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where 𝑂𝑖
′ and 𝑂𝑖 are predicted and expected values at time step i, n is total number 

of time step, and 𝜎 is the standard deviation. Here, NMSE = 0 implies perfect prediction 

and NMSE = 1 indicates no prediction. 

3.5.2. Analog Speech Recognition 

While studying the performance of proposed architecture we also employ an open 

source analog speech recognition dataset available on GitHub[71]. The data set is 

quantized first and then feed to the network. The performance metric for this task is BER 

which is the bit errors per unit time. 

3.6. Results 

To test the system, we designed a set of three experiments: 

1. To get a base case, we first measure the standalone performance of the system. 

This is the configuration in only one task is run on the proposed architecture.  

2. To evaluate performance during parallel processing of the proposed architecture, 

we run both the tasks in parallel, with sampling time divided equally among the 

tasks. The results of this experiment are reported as T-1 

3. A third experiment was conducted with one of the tasks given a longer sampling 

time using the round robin algorithm. The results of this experiment are reported 

as T-2  

3.6.1. Comparison Using NARMA Task 

Figure 3-3 shows the results for NARMA task. The standalone configuration 

performs the best. However, experiment T-1 shows that the system performs NARMA 

task in parallel with speech recognition with a minor performance degradation. In 
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experiment T-1 the system assigns 50% of states to each task.  Experiment T-2 shows the 

result for the case when NARMA task is given less priority compared to analog speech 

recognition task. In case of T-2 the number of states assigned to NARMA are 20% less 

than that for analog speech recognition task. 

3.6.2. Comparison Using Speech Recognition 

Figure 3-4 shows the performance results of speech recognition task in similar 

scenarios. The standalone performance again serves as the base case. In case of experiment 

T-1, we again see an increased error, however this is because of the smaller number of 

states that are assigned to the task.  In fact, in T-1 the number of states for each task are 

50% less compared to standalone scenario. In case of experiment T-2, analog speech is 

given a priority and we see a jump in performance.  

 

 

Figure 3-3 Performance Results For NARMA-10 Task While Using Time 

Shared Multi-Layer Reservoir System 
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3.6.3. Comparison With Other Architectures 

Table 3-2 shows the performance of the proposed architecture in comparison with 

other state of the art architectures in standalone configuration and has only a ~8% loss of 

accuracy while performing two tasks in parallel with equal priority. We notice that it 

outperforms other architectures. This is due to the use of low loss and short delay lines in 

our architecture. An analysis of the propagation loss in delay lines shows that propagation 

loss affects the accuracy of the system, hence by using state of the art, compact and low 

loss delay line of just length 2cm, we can make the propagation loss negligible and gain 

higher performance. This is shown in Figure 3-5. The proposed high-speed architecture 

has a power consumption of ~50W for a 4-layer network.  

 

 

Figure 3-4 Performance Results For Analog Speech Recognition For Different 

Configurations 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Standalone T-1 T-2

B
ER

Analog Speech 

Standalone T-1 T-2



 

51 

 

Table 3-2 Comparison Of Results For Different Photonic RC Architectures For 

The Common NARMA Benchmark 

 

Architectures NARMA (NMSE) 

Standalone 0.013 

T-1 0.0141 

T-2 0.0177 

MReC [62] 0.05 

Brunner[33] 0.16 

Vinker[35] 0.104 

Duport [34] 0.24 

 

Figure 3-5 Analysis Of Propagation Loss In A Delay Line 
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3.7. Summary 

Reservoir Computing systems have a reservoir layer that is made up of neurons 

with random connections and random weights that do not need training. The random 

weights and connections are independent of the task being performed using RC. The 

reservoir can therefore perform several tasks in parallel. In this paper we proposed a new 

architecture for photonic Reservoir Computing that uses Time Division Multiplexing 

(TDM) in its input layer to exploit the opportunity to perform multiple jobs in parallel 

using the same RC system. Our proposed system uses multiple reservoirs made up of MZI 

and low loss delay lines.  Through simulations on NARMA and speech recognition, we 

show that our architecture can outperform some of the leading single layer architectures 

by up to 90% for NARMA task while performing analog speech recognition in parallel 

and closely matches the performance of leading multi-layer photonic RC architectures 

with an increased error of 8% due to parallel processing. The proposed high-speed 

architecture has a power consumption of ~50W for a 4-layer network. 
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4. ON-CHIP PARALLEL PHOTONIC RESERVOIR COMPUTING USING 

MULTIPLE DELAY LINES3 

 

Silicon-Photonics architectures have enabled high speed hardware 

implementations of Reservoir Computing (RC). With a delayed feedback reservoir (DFR) 

model, only one non-linear node can be used to perform RC. However, the delay is often 

provided by using off-chip fiber optics which is not only space inconvenient but it also 

becomes architectural bottleneck and hinders to scalability. In this chapter, we propose a 

completely on-chip photonic RC architecture for high performance computing, employing 

multiple electronically tunable delay lines and micro-ring resonator (MRR) switch for 

multi-tasking. 

4.1. Motivation 

The hardware implementations for Reservoir Computing have proved to be 

difficult due to many non-linear nodes involved in the system. A potential solution for the 

hardware architectures of RC is the delayed feedback reservoir (DFR) model[60, 72, 30]. 

In this model, the reservoir is implemented using a single non-linear node and a delay line. 

This model can be implemented in optoelectronic architectures with relative ease, and 

provides high speed and high bandwidth of photonics systems. Therefore, employing this 

3adapted with permission from Copyright © 2020, Hasnain, Syed Ali, and Rabi Mahapatra. "On-chip 

Parallel Photonic Reservoir Computing using Multiple Delay Lines." 2020 IEEE 32nd International 

Symposium on Computer Architecture and High-Performance Computing (SBAC-PAD). IEEE, 2020.  
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model, several architectures of RC have been proposed using silicon photonics [33, 62, 

34, 35]. These architectures employ a fiber optic delay line and a non-linear photonic 

component to perform RC.  Due to the use of fiber optics, these cannot be classified as 

completely on chip architectures.  

Furthermore, these architectures do not exploit the in-built opportunity for 

parallelism in RC systems. In a reservoir computer, the reservoir provides a dynamic 

random projection of input which is then used in classification and prediction tasks. Since 

a reservoir is a network of random inter connections and weights, multiple tasks can be 

executed using the same reservoir. The randomness of a reservoir is further discussed in 

Section III. 

Therefore, we propose a DFR based photonic architecture for reservoir computing, 

while carefully addressing these problems. Our proposed architecture employs multiple 

waveguide-based on chip electronically tunable delay lines. The on-chip delay lines 

reduce the size of the system while also providing high performance parallel processing. 

4.2. Related Work 

4.2.1. Photonic RC Architectures  

In literature, multiple single layer photonic RC architectures have been proposed 

[33, 34, 35]. These architectures are based on DFR model and employ fiber optics and 

Mach Zehnder Interferometer as the non-linear node. The delay line length varies from 

20m to 1.7Km. These architectures employ a fiber spool and are only for single layer 

reservoir. Since they have off chip components, they cannot be classified as completely 
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on-chip architectures. The off-chip components also pose a challenge to scalability of such 

systems, especially when multi-layer architectures are considered. 

4.2.2. Delay Lines 

On chip optical delay lines have been an area of research for device level 

researchers. In literature, several optical delay lines have been proposed. The delay lines 

can be in form of guided resonant buffers [73], couple resonator waveguide based [74, 75, 

76]or photonic crystal line defect waveguides[77]. However, in these approaches the loss 

can be very high compared to a spiral waveguide. The delay can be up to 100ps. As a 

compromise between area and loss a new class was proposed in [78]. The core concept 

behind this class is based on time delay spectrum of grating waveguides by apodizing the 

gratings’ profile. Another low loss, compact and fast, wavelength independent and 

electronically tunable delay line was proposed in [70]. The delay can be as high as 660ps. 

While these advances in optical delay line are still an ongoing effort, they provide an 

opportunity for replacing the large fiber spools that are employed in photonic architectures 

based on delayed feedback. 

4.2.3. Photodiodes 

Photodiodes are designed for specific band as well as a rise/fall time. Multiple new 

types of photodiodes have been proposed in literature [79, 80] using different materials.  

For example, [80] uses InGaAs with nitrogen ion planted and operate in 1-67GHz band 

with a rise time of just 2ps. A graphene-based chip integrated photodetector was proposed 

with operating speed higher than 20GHz[81]. Further advances in the field were made by 

proposing a 100GHz plasmonic photodetector [82]. Plasmonic devices are based on 
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interaction of optical frequency electromagnetic field oscillations interacting with free 

electrons.  The response time of the device is less than ~5ps. In our proposed architecture 

we conservatively design our system employing multiple photodiodes. Any photodiode 

with rise time less than 15ps and capable of operating in infrared band can be used. 

4.3. Contribution 

The contributions of this chapter are as follows: 

1. We propose a new architecture for on-chip parallel photonic reservoir computing 

employing multiple electronically tunable delay lines along with an MRR switch 

for delay line selection. 

2. Through simulations we show that the proposed architecture is up to 84% more 

accurate compared to a leading architecture in [62] while executing NARMA task 

alone and 80% more accurate when executing two tasks in parallel. It outperforms 

other architectures presented in literature. 

3. We also show that the proposed architecture performs 46% more accurate 

compared to an RC architecture employing Time Division Multiplexing (TDM) at 

input layer to execute tasks in parallel[83]. 

4. It is shown that the architecture removes the off-chip fiber optics-based delay line 

at the cost of 0.0184 mm2 of on chip area. The power overhead is just 26mW. 

4.4. Multiple Delay Line Based Photonic Rc 

In our proposed architecture, we use an additional MRR switch to route the output 

of the non-linear node to one of the many delay lines. Such switches have been presented 

in literature[41]. This enables the parallel processing of different tasks. We also employ 
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an electronically tunable delay line [70] and an additional electronic control module. The 

proposed architectural schematic is shown in Fig 4-1, which has been reprinted with 

permission from [84]. 

4.4.1. Input Layer 

The input electronic signal, x(t) is sampled with a period of 𝑇𝑆 using a ‘sample & 

hold’ circuit. The S/H circuit is controlled using the electronic control block. This in turn 

converts each continuous-time task x(t) to a discretized piecewise constant function p(n) 

where 𝑝(𝑡) = 𝑝(𝑛), 𝑛𝑇𝑆≤𝑡 <(𝑛+1) 𝑇𝑆, 𝑛 is a time step. Each discrete input 𝑝(𝑛) is multiplied 

with a random mask input 𝑚(𝑛) of period 𝑇𝑆. Here 𝑚(𝑛)= 𝑚𝑖(𝑛) for (𝑖−1) (
𝑇𝑆

𝑁
)<𝑛≤(𝑖+1) 

( 
𝑇𝑆

𝑁
); 𝑖=1, 2…𝑁; 𝑚𝑖(𝑛) is randomly chosen from [−1, +1]. The result of this multiplication 

is a masked input 𝑝𝑖(𝑛) which drives the reservoir layer in the ‘reservoir computing 

 

Figure 4-1 Schematic Of Proposed Architecture 
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segment’. The random masking function is analogous of the random weights that are 

applied in the hidden layers. They help in generating the randomness and a dynamical 

response of the reservoir. The coupler unit, combines any past state with our current state 

and serves as a feedback mechanism. This is analogous to the internal memory of an RNN.  

The S/H circuit runs a round robin algorithm, sampling each task for a certain period of 

time, before moving on to sample the next task. 

4.4.2. Reservoir Layer 

Proposed architecture divides the reservoir layer into sublayers: one for each task 

that is being performed. Each sublayer consists of a delay line of its own which serves as 

the reservoir. An MRR based switch is used to select the delay line as shown in Fig 4-2. 

The MRR is electronically tunable such that when it is in OFF state its resonance 

frequency is different as compared to ON state. A single laser source of wavelength 

1550nm is used. The delay line for different tasks is selected by means of an electronic 

block. The electronic block can be programmed such that for task 𝑖, the MRR is set OFF 

and delay line 𝑑𝑖 is selected. At 𝑡0, the system samples the input of task 𝑖 = 1 and sends 

it to delay line 𝑑1. At 𝑡1,, it switches to task 𝑖 = 2 and turns the MRR ON and selects delay 

line 𝑑2. The system cycles between the tasks in a round robin method distributing the 

resources in an equal manner. The resource distribution can be unequal if desired. For 

each reservoir we select the virtual neurons states to be 𝑁 = 200. The selection is made 

based on the response time of the slowest component. For an electronically tunable delay 

line, made of a waveguide of length 2cm, a delay of 660ps is achieved through electronic 

tuning[70].  
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The reservoir layer consists of LiNbO3 Mach Zehnder Interferometer (MZI)[85]. 

The non-linearity considered in the design is sinusoidal. For a timestep ‘n’ and task ‘n+1’, 

masked input  𝑝𝑖(𝑛) from the coupler is fed to the MZI. The MZI converts 𝑝𝑖(𝑛) into a 

reservoir state 𝑆𝑖
𝑛+1 where n+1 stands for task being processed and i =1, 2…N (as we 

consider N reservoir states). At the end of each delay line is a photodiode. It converts each 

state back to electrical form and feeds it to the coupler. The photodiode of each reservoir 

layer has an operating period of h second. The state of reservoir in any sublayer can be 

written as: 

𝑆𝑖
𝑛+1(𝑛) = 𝑆𝑖𝑛(𝛼𝑆𝑖

𝑛+1(𝑛 − 1) + 𝛽𝑚𝑖(𝑛)𝑥(𝑛) + ∅) (4.1) 

 

Figure 4-2 An Electronically Tuned MRR Switch To Direct Light Based On 

ON/OFF State 
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Here ∝ and 𝛽 are feedback gains; ∅ is a bias value; and 𝑚𝑖(𝑛) represents the mask 

input. ∝, 𝛽, and ∅ are adjustable parameters. The MZI used in our design has sinusoidal 

non-linearity; hence the above equation is based on a sin function. 

4.4.3. Output Layer 

All the states from each of the delay lines, can be converted to electrical form using 

the photodiode. They are then fed to an offline computer. The predicted output is 

determined using the following equation.  

 

𝑂(𝑛) = ∑ 𝑊𝑖𝑆𝑖
𝑛+1(𝑛) + 𝑊𝑏𝑖𝑎𝑠

𝑁

𝑖=1

 (4.2) 

Here 𝑊𝑖 is calculated using linear regression training by comparing 𝑂(𝑛) with target 

output O′(n). 

4.5. Evaluation Of Architecture 

To evaluate our architecture thoroughly, we run multiple sets of experiments. In 

the first set we run different configurations of our architecture. A configuration is defined 

by length of delay in delay lines, which is electronically tunable and the number of tasks 

being run. For the scope of this work, we consider standalone systems which use only one 

delay line and run one task at a time and systems with two delay lines capable of running 

two tasks at a time. While our design is scalable for more delay lines and more tasks, this 

requires design of a multi-stage multiplexer based on MRR switches, which is out of the 

scope of this work and is an ongoing effort. We also vary delay lengths between tasks to 

analyze the effect on different tasks. In a second set of experiments, we compare our 

architecture to other single layer state of the architectures. In particular we compare our 
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work to a single layer photonic architecture based on TDM approach [83].  The details of 

our experimental methodology and benchmarks is discussed first, before discussing the 

results. 

4.5.1. Experimental Methodology 

We designed and synthesized optoelectronic components such as photodiode, 

coupler, MZI, and sampler using a commercial photonic design tool called IPKISS[38]. 

The synthesized components are used to design and simulate the proposed 

microarchitecture model. Python based deep learning toolbox, Oger and Keras[86, 87], 

were used to rapidly build, train and evaluate reservoir computing models. 

4.5.2. Benchmarks 

4.5.2.1. NARMA Task  

The Nonlinear Autoregressive Moving-average (NARMA) task is one of the 

most widely used benchmarks in RC. The input u(k) for this task consists of scalar 

random numbers, drawn from a uniform distribution in the interval [0, 0.5] and the target 

y(k + 1) is given by the following recursive formula: 

 

𝑦𝑘+1 = 0.3𝑦𝑘 + 0.05𝑦𝑘 [∑ 𝑦𝑘−𝑖

9

𝑖=0

] + 1.5𝑢𝑘𝑢𝑘−9 + 0.1 (4.3) 

 

Prediction performance for this benchmark is evaluated based on the normalized 

mean square error (NMSE) defined as: 

 
𝑁𝑀𝑆𝐸 =

1

𝑛
∑

(𝑂𝑖
′ − 𝑂𝑖)

𝜎𝑂𝑖
2

𝑛

𝑖=1

 (4.4) 
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where 𝑂𝑖
′ and 𝑂𝑖 are predicted and expected values at time step i, n is total number 

of time step, and 𝜎 is the standard deviation. Here, NMSE = 0 implies perfect prediction 

and NMSE = 1 indicates no prediction. 

4.5.2.2. Analog Speech Recognition 

While studying the performance of proposed architecture we also employ an open 

source analog speech recognition dataset available on GitHub [71]. The performance 

metric for this task is BER which is the bit errors per unit time.  

4.6. Results 

4.6.1. Different Configurations Of The Proposed Architecture 

In this set of experiments, we simulated the system first in a standalone 

configuration for one task. A single task is used as input and only one delay line is 

employed. This serves as our base case, and is reported as the ‘standalone’ case. Multiple 

tasks in parallel with varying lengths of delay line serve as other configurations. In first 

scenario two tasks were run with delay lines of equal delay and in second scenario the 

delays of the delay lines were unequal i.e. one delay line had a longer delay than the other 

one. The delay can be tuned electronically. In such a scenario we also employed a TDM 

based approach and divided the time to sample unequally among tasks. The results of first 

configuration are reported as E-1 while configuration 2 are reported as E-2. 

Figure 4-3 shows the results for NARMA task. The standalone paradigm allows 

for a larger delay line and hence more states inside delay line. It performs the best. 

However, with only a slight change in performance we can run two tasks in parallel by 

using two delay lines based on proposed architecture. The length of each delay line in 
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experiment E-1 was half that of standalone case. A system with unequal delay lengths can 

prioritize a task execution when multi-tasking. This is achieved by electronically tuning 

the delay line for smaller or longer delay and giving the task more time in round robin 

sampling. Experiment E-2 shows the result for the case when NARMA task is given less 

priority compared to analog speech recognition task. In case of E-2 the delay for NARMA 

is 20% less than the delay for analog speech recognition task. 

Figure 4-4 shows the performance results of speech recognition task in similar 

scenarios. The standalone performance is better than both other cases. In the case of 

experiment E-1 when two tasks are run on a system with equal delay lines, we see a drop 

 

Figure 4-3 NARMA Results For Different Configurations 
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in performance. This is because of the smaller number of states that are assigned to the 

task, due to shorter delay line in this configuration.  In fact, in E-1 the number of states for 

each task are 50% less compared to standalone scenario. In case of experiment E-2, analog 

speech is given a priority and larger delay line. It was observed that performance came 

close to stand alone system with only 20% longer delay line. 

4.6.2. Comparison With Other State-Of-The-Art System 

In this experiment we compare our results with other proposed architectures for 

photonic RC. Table 4-1 compares our results with other state of the art architectures for 

photonic RC. Each of these architectures uses single layer to execute a single task. We 

 

Figure 4-4 Analog Speech Recognition For Different Configurations 
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notice that even in E-1 and E-2 configuration, our proposed architecture performs better.  

The gain in performance in the proposed architecture is due to use of low loss delay lines. 

The system is 84% more accurate than leading architecture in [62] when in standalone 

configuration, while it is up-to 80% more accurate while performing two tasks in parallel. 

Dang et al [83] proposed an architecture using TDM. While they use only one 

delay line, the virtual nodes inside delay line are divided among different tasks based on 

sampling time. The reader must note that the performance of architecture in [83] is only 

better than that of leading architecture in [62] because [83] is using virtual nodes N=200 

while [62] uses N=50. With N=200, architecture in [62] will outperform [83]. Our 

 

Table 4-1 Results For Proposed Architecture vs Different Photonic RC 

Architectures For The Common NARMA Benchmark 

ARCHITECTURES NARMA (NMSE) 

STANDALONE 0.013 

E-1 0.015 

E-2 0.016 

MReC[62] 0.05 

Brunner[33] 0.16 

Vinker [35] 0.104 

Duport[34] 0.24 
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approach is different from their approach in the following ways: a) To avoid cross talk 

and noise induced performance degradation, we use multiple on chip delay lines for 

parallel processing instead of a single fiber spool. b) Only TDM is employed in [83], where 

as our architecture uses an MRR switch for delay line selection. Figure 4-5. shows a 

comparison between our proposed architecture and the TDM based architecture for 

NARMA under same conditions. The architecture proposed here, outperforms the 

architecture in [83].  

The proposed architecture has less overall area compared to any single node 

computer for RC. This is because all other systems proposed in literature employ an off-

chip fiber spool. Table 4-2 compares the dimensions of delay line in different 

 

Figure 4-5 Comparison Between Proposed Architecture And TDM Based 

Approach Presented In [83] 
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architectures. All other architectures employ delay lines within the range of 20m-1.7km. 

Our architecture uses on-chip delay line which results in on-chip 0.0184 mm2 area 

overhead for two delay lines. 

4.6.3. Speed And Power Comparison  

In photonic RC architecture the slowest component is the delay line. Based on the 

delay line used in our architecture, the architecture is capable of operating at speed of up 

to 20Gb/s with a propagation loss as low as 2.2dB. The speed is similar to the architecture 

proposed in [83]. In our architecture, the power overhead is minimal due to control 

circuitry and additional MRR switch (~26mW). Hence based on power consumption of 

all other components: laser (10W), photodiode (5W), MZI (7W) and other components 

 

Table 4-2 Comparison Of Size Of Delay Lines In State-Of-The-Art Photonic RC 

Architectures 

Architecture Technology Delay Line Length 

Proposed 

Architecture 

Silicon on Insulator 

waveguide 

L=2cm, W=460nm, 

H=0.9𝑢m 

MReC[62] Fiber Spool 20m 

Dang[83] Fiber Spool 20m 

Brunner[33] Fiber Spool ~30m 

Vinker[35] Fiber Spool 230m 

Duport[34] Fiber Spool 1.7Km 
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(10W), our architecture can consume up to ~35W, which is less but similar to other 

architectures.  

4.7. Summary 

In this chapter, we propose a new on-chip architecture for parallel high-

performance photonic RC. The architecture employs multiple electronically tunable delay 

lines with an electronically tuned MRR switch. It is 84 % more accurate for performing 

NARMA in standalone configuration and up to 80% more accurate while executing it in 

parallel with analog speech recognition task, as compared to [62]. The architecture is 46% 

more accurate compared to parallel processing photonic RC architecture employing TDM 

for inputs [83]. The area overhead is just 0.0184 mm2 while power overhead is 26mW and 

operating speeds of 20Gb/s. 
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5. RECONFIGURABLE OPTOELECTRONIC HARDWARE ACCELERATOR FOR 

RESERVOIR COMPUTING4 

 

Reservoir Computing (RC) is a subset of Recurrent Neural Networks (RNN) and 

has emerged as a powerful method for large scale classification and prediction of temporal 

problems with a reduced training time. Silicon-Photonics architectures have enabled high 

speed hardware implementations of Reservoir Computing (RC). With a Delayed Feedback 

Reservoir (DFR) model, only one non-linear node can be used to perform RC. Our 

proposed architecture in Chapter 2 has shown promising results for multi-layer or deep 

RC. However, in the subsequent proposed architectures we observed that as the 

architecture is modified and a task is assigned different resources, the performance of RC 

for that task changes. This motivates us to do an analysis of performance of multilayer RC 

system with varying parameters for different tasks. Our hypothesis is that the performance 

of RC architectures will saturate for a given task at different points. This hypothesis can 

lead to the need for a reconfigurable RC architecture. 

5.1. Motivation 

The multi-layer architecture is very promising and has enabled deep RC. However, 

the hardware architectures that have been proposed so far have all focused on 

implementation and improving performance. The philosophy followed in the design 

process has mainly been that bigger and deeper networks can perform better. While 

4adapted with permission from Hasnain, Syed Ali, and Rabi Mahapatra. "Towards reconfigurable 

optoelectronic hardware accelerator for reservoir computing." Optoelectronic Devices and Integration 

IX. Vol. 11547. International Society for Optics and Photonics, 2020.  
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generally true, each task that needs to be performed can have different demands. The 

architectures have not been designed keeping this in mind. Hence, the lack the 

optimization of performance versus power motivates us for a new kind of architecture.  

Therefore, in this chapter we study the multi-layer RC architecture in detail, while 

keeping performance and power in mind. We analyze through various experiments that 

high performance can be achieved by carefully optimizing and configuring the network 

parameters. Motivated by this we also propose a reconfigurable photonic RC architecture 

that can be configured to optimally perform classification and prediction problems. This 

has chapter has partially been reprinted with permission from [88] 

5.2. Contributions 

The contribution of this chapter are as follows: 

1. We review the RC computing principles and explain the multi-layer photonic 

Reservoir computing paradigm. 

2. We study the multi-layer photonic RC architecture in detail for performance vs 

different configurations. 

3. We propose a new reconfigurable architecture for photonic RC and study it’s 

performance. 

4. Through experiments with NARMA task and analog speech recognition task show 

that by optimally configuring an up-to 4-layer architecture, power savings up to 

40% can be achieved compared to state-of-the-art architectures while gaining up 

to 80% more accuracy. This is achieved at an on-chip area overhead of 0.0184mm2 

for a single delay line and MRR switch. 
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5.3. Review Of Multi-Layer Reservoir Computing Architecture 

Before discussing the performance of multi-layer architecture, we first review the 

basics of multi-layer photonic RC architecture for the ease of reader. For an in-depth 

review, the reader can refer to Chapter 2. 

A multilayer RC is realized by simply including multiple reservoir layers (NL + 

delay) in between output of optical couplers and input of output layer as shown in Figure 

5-1. Each reservoir layer stores multiple reservoir states. As shown, the output from 1st 

layer enters the NL Node of 2nd layer as input and so on. Each reservoir state from the 

last layer (Mth layer) is fed to the readout layer for training. The weights and bias value 

are trained using a linear regression technique in an offline computer to determine the final 

output. 

The entire architecture can be divided into three parts: input layer, reservoir layer, 

and readout layer. These layers work in a pipeline fashion to process an input. The details 

are as follows. 

 

Figure 5-1 Review Of The Multi-Layer Photonic RC Architecture 
 

 



 

72 

 

5.3.1. Input Layer 

The input electronic signal, x(t) is sampled with a period of 𝑇𝑆 using a ‘sample & 

hold’ circuit. This in turn converts each continuous-time task x(t) to a discretized 

piecewise constant function p(n) where 𝑝(𝑡) = 𝑝(𝑛), 𝑛𝑇𝑆≤𝑡 <(𝑛+1) 𝑇𝑆, 𝑛 is a time step. 

Each discrete input 𝑝(𝑛) is multiplied with a periodic mask input 𝑚(𝑛) of period 𝑇𝑆. Here 

𝑚(𝑛)= 𝑚𝑖(𝑛) for (𝑖−1) (
𝑇𝑆

𝑁
)<𝑛≤(𝑖+1) ( 

𝑇𝑆

𝑁
); 𝑖=1, 2,…𝑁; 𝑚𝑖(𝑛) is randomly chosen from 

[−1, +1]. The result of this multiplication is a masked input 𝑝𝑖(𝑛) which drives the 1st 

reservoir layer in the ‘reservoir computing segment’. 

5.3.2. Reservoir Layer 

Reservoir computing segment is the heart of multi-layer architecture. It comprises 

of ‘M’ reservoir layer as shown in Figure 5-1. Each reservoir layer consists of LiNbO3 

Mach Zehnder Interferometer (MZI) as NL node and an optical fiber spool to     provide 

delay. We consider sinusoidal nonlinearity in our design. The laser source provides optical 

carrier to the MZI of each reservoir layer. The output from the coupler is fed to the MZI 

of first reservoir layer through an electronic amplifier. For a timestep ‘n’, masked input  

𝑝𝑖(𝑛) from the coupler is fed to the MZI of first reservoir layer. The MZI converts 𝑝𝑖(𝑛) 

into a reservoir state 𝑆𝑖
1 where 1 stands for 1st reservoir layer and i =1, 2…N (as we 

consider N reservoir states). The optical fiber spool provides a delay of 𝑇𝑆 which is same 

as the sample time of ‘sample & hold’ circuit. For each time step 𝑛, the photodiode in the 

reservoir layer converts each reservoir state 𝑆𝑖
1 from optical form to electronic form. The 
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photodiode of each reservoir layer has an operating period of h second. Analytically, we 

can write 𝑁 =
𝑇𝑆

ℎ
. The state of reservoir i in the first layer can be written as,  

 𝑆𝑖
1(𝑛) = 𝑆𝑖𝑛(𝛼𝑆𝑖

1(𝑛 − 1) + 𝛽𝑚𝑖(𝑛)𝑥(𝑛) + ∅)             (5.1) 

The electronic output from the photodiode of one reservoir layer becomes an input to the 

next reservoir layer. This way, at any timestep n, ith reservoir state of jth reservoir layer 

can be written as, 

 𝑆𝑖
𝑗(𝑛) = 𝑆𝑖𝑛(𝛼𝑆𝑖

𝑗(𝑛 − 1) + 𝛽𝑚𝑖(𝑛)𝑥(𝑛) + ∅) (5.2) 

Here ∝ and 𝛽 are feedback gains; ∅ is a bias value; and 𝑚𝑖(𝑛) represents the mask 

input. ∝, 𝛽, and ∅ are adjustable parameters. The MZI used in this particular design has 

sinusoidal non-linearity; hence the above equation is based on a sin function. One cycle 

of the architecture is defined as the time taken by a masked input 𝑝𝑖(𝑛) to travel from the 

1st reservoir layer until the readout layer. This architecture has been referred to as the 

MReC architecture[62].  

5.3.3. Readout Layer 

Using the photodiode from the last reservoir layer (here the Mth layer), all the N 

reservoir states 𝑆𝑖
𝑀(𝑛) are fed to an offline computer. The predicted output is determined 

using the following equation.  

 

𝑂(𝑛) = ∑ 𝑊𝑖𝑆𝑖
𝑀(𝑛) + 𝑊𝑏𝑖𝑎𝑠

𝑁

𝑖=1

 

(5.3) 

Here 𝑊𝑖 is calculated using linear regression training by comparing 𝑂(𝑛) with 

target output 𝑂′(𝑛). 
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5.4. Performance Of Multi-Layer Photonic RC Architectures 

We study the performance of different configurations of multi-layer RC to 

understand the need for Reconfigurable RC architecture. To study this we use the 

following methodology.  

To Evaluate the architecture, we used synthesized components from the MReC 

Architecture14, except for the delay line. Table 5-1 illustrates details of components used 

in our design. We modified the Oger toolbox[86] to incorporate multiple reservoir layers 

and different number of nodes. An electronically tunable delay line of length 2cm and 

delay 660ps was modeled in the architecture. The proposed architecture is evaluated for 

four layers of Reservoir. We ran experiments using two benchmarks popular in the area 

of Reservoir Computing: NARMA task and Speech Recognition.  

 

 

 

 

Table 5-1 Parametric Details Of Opto-Electronic Components 

COMPONENTS PARAMETERS VALUES 

LASER Wavelength 1550nm 

 Power 10W 

MZI Power 5W 

PHOTODIODE Power 5W 

 Rise Time 15ps 
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5.4.1. Performance Of Multi-Layer RC With Different Configurations 

It is interesting to study how increasing the number of nodes in reservoir layer 

effects the performance of the system. Hence, we try different configurations of the 

architecture i.e. different number of layers and different sizes of each reservoir layer. For 

the purpose of this analysis, we decided to vary the number of layers from 1 to 4, while 

varying the number of nodes from 50 to 300 with a step of 50.  As shown in Fig 5-2, for 

the NARMA task, the performance of the system improved significantly as we moved to 

higher number of nodes in a single layer configuration. The performance also improved 

as we moved from single layer to double layer configuration. For a two layer and three-

layer system we noticed that while the error rate decreased as we increased the number of 

 

Figure 5-2 Effect Of Number Of Nodes And Reservoir Layers On NARMA Task 
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nodes, there is no significant gain as we move from two to three layers. The performance 

of the three-layer and four-layer configuration matched that of the two-layer configuration. 

Hence, for this task in particular, we observed that an optimal point does exist over which 

the performance more or less saturates.  

For the Analog Speech Recognition task, as shown in Fig 5-3, increasing the 

number of layers and nodes resulted in significant improvements. In our tests, we observed 

that in almost all cases, increasing the number of nodes and then layers helped improve 

 

 

Figure 5-3 Effect Of Number Of Nodes And Reservoir Layers On Analog 

Speech Recognition Task 

 

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 50 100 150 200 250 300 350

B
ER

Number of Nodes

Analog Speech Task

1-Layer 2-Layer

3-Layer 4-layer



 

77 

 

the performance of the system. Note that adding number of nodes in reservoirs vs 

increasing the number of reservoir layers is not the same. For instance, for a two-layer 

configuration, setting N=250 still performs worse than a three-layer configuration with 

N=150. In terms of total number of nodes, the former has 500 nodes whereas the later has 

450 nodes. We found that performance of 4-layer configuration matched that of 3-layer 

when considering 200 and more nodes. Hence, we can say that for this task, the 

performance measure saturates at a point. 

 In a separate test, Fig 5-4, a system with 3 reservoir layers with N=300, performed 

the speech recognition task to give a BER= 0.01158. A single layer configuration with 

 

Figure 5-4 Performance Comparison Between Two Systems Configurations 

With Increasing Nodes And Increasing Layers 

 

0.01158

0.0246

0

0.005

0.01

0.015

0.02

0.025

0.03

1

B
ER

Configuration 3-Layer (N=300)

1-Layer(N=900)



 

78 

 

N=900 performed the same task to give a BER=0.0246. Hence, while increasing the 

number of nodes in a reservoir layer helps improve the performance, we notice that the 

gain in performance is not due to increased nodes but rather how they are connected. 

Dividing nodes in reservoir layers, and connecting them, may result in better performance 

than having more nodes in a single layer configuration. For the task at hand, different 

configurations may perform differently. This may encourage the research community to 

look into reconfigurable architectures in photonic RCs. 

5.4.2. Power Consumption Of Multi-Layer RC 

The power consumption of the architecture is independent of the number of nodes 

in the reservoir layer. This is because the number of nodes can be determined based on 

size of delay line and sampling time of the input. The power consumption depends on the 

 

Figure 5-5 Power Consumption In Watt For 1-Layer, 2-Layer, 3-Layer, And 4-

Layer MReC Architecture. 
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number of layers being used. MReC architecture has reported power of 50W for single 

layer to 72W for 4 layers, as shown in Fig. 5-5. 

5.5. Reconfigurable Architecture For Photonic Reservoir Computing 

From the study in section 5.4 we notice that performance of a RC architecture that 

has multiple reservoir layers saturates for each task at some point. We also observe that 

similar performance can be achieved by lowering number of layers used and increasing 

the virtual nodes in the reservoir. Motivated by this we propose that a reconfigurable RC 

hardware accelerator architecture is required that can be configured based on task at hand 

and is best suited to solve classification and predication problems. The proposed 

architecture, uses layer gating to reconfigure the number of layers being used and 

adjustment to sampling time to increase or decrease number of nodes in reservoir. While 

selecting number of nodes can be done through electronic control block, layer gating 

requires hardware modifications to the multi-layer architecture as this would require re-

routing the laser light in the network. 

A micro-ring resonator can be used to route laser light. Micro-ring Resonators 

(MRR) have been extensively discussed in literature[40, 39]. MRR uses resonances 

concept to couple light in waveguides to select a path for light. By means of an electric 

field the refractive index of a waveguide and hence the resonance frequency can be 

changed enabling selection of multiple paths. They are essential for the success of silicon 

photonics. Using resonance, they can enable the control of photonic path. In literature 

several MRR designs have been proposed[41, 42]. The main focus of these designs is 

speed, application and size. Recently a 2x2 MRR was proposed which can be employed 
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as reconfigurable DEMUX/MUX[43]. Such a component is ideally suited for selection of 

a delay line in a multi delay line-based architecture. In our proposed architecture we use a 

switching element that is made up of micro-ring resonator. Fig 5-6. Shows the switching 

element. The switching element is electronically tunable. Switching Element 

characteristics are: 

1. Power: 0.5mW when on 

2. Insertion loss: 1.5dB 

3. Speed: >10Gb/s 

 

 

 

Figure 5-6 (Top) 2x2 MRR Based Switch (Bottom) Block Diagram For An 

Electronically Controlled Switching Element With MRR Switch Being Controlled 

By Electronic Router. 
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By introducing the switching element (SE), we propose an approach towards 

reconfigurable photonic RC. We divide the RC architecture into three vertical levels. The 

first is a layer of reservoirs whereas the second consists of all the elements required for 

coupling, masking and O/E conversions. In the third level we have all the SEs. The SEs 

can be controlled using an electronic block to select a layer and create a route for the data 

through the network. If a layer is selected, it is employed in the RC architecture. If its s 

not selected, we call that layer as gated layer and our system bypasses it. The power can 

be cut off to the elements of gated layer. 

Fig. 5-7 shows the symbols used to define our architecture, whereas Fig. 5-8 

presents the proposed reconfigurable architecture for RC. Our proposed architecture is 

similar to a circuit switch network approach. First a path is created from input to the 

output. In case, only one layer is required, the first layer is used. More layers can be added 

by selecting that layer by turning the SEs on.  

 

 

 

 

Figure 5-7 Symbols Used In The Reconfigurable Photonic RC Architecture 
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5.6. Results 

We perform the NARMA and analog speech recognition task, based on optimized 

configurations of the proposed architecture and compare them to NARMA task. Table 5-

2 shows the performance vs power consumption of MReC vs the proposed architecture. 

The power consumption is calculated by using the parameters in Table 5-1. The SE has a 

power consumption of just 0.5mW. We introduce a photodiode and a MZI per layer where 

as there is only one laser source in the architecture. 

 

Figure 5-8 Propose Reconfigurable Architecture For Photonic Reservoir 

Computing 
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Our experiments with NARMA task and analog speech recognition task show that 

by optimally configuring an up-to 4-layer architecture, power savings up to 40% can be 

achieved compared to state-of-the-art architectures while gaining up to 80% more 

accuracy. 

We also study the performance versus power consumption directly. Fig 5-9. Shows 

the performance of the system as we increase number of layers to gain more performance 

and as a result consume more power. We notice that although performance improves as 

more power is consumed but as we increase the number of nodes in the reservoir of the 

Table 5-2 Performance Vs Power Of MReC Vs Reconfigurable RC 

Task Architecture 

 
MReC (4-layer, N=50) Reconfigurable Photonic 

RC 

Power Accuracy Power Accuracy 

NARMA 72W NMSE=0.052 

± 0.0045 

30W with 

2 layers 

NMSE=0.02, 

N=250 

Analog Speech 

Recognition @ 0.02 BER 

72W BER=0.05 40W with 

3 layers 

 

BER=0.02, 

N=150 
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architecture, the performance increase gained by increasing number of layers is very less. 

In fact, at N=250 and N=300 the performance matches after 30W. Hence one can argue 

that there is an optimal point of the system to operate which in this case would be N=250 

and 2 layers.  

5.7. Summary 

In this chapter, we propose a new reconfigurable optoelectronic architecture for 

multi-layer RC motivated by studying a multilayer RC architecture in detail. Our proposed 

architecture, is based on DFR model implemented by the use of Mach Zehnder Modulator 

 

Figure 5-9 Performance Of The Architecture For NARMA Task Vs Power 

Consumed 
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(MZM) [89, 90, 91] and on chip low loss delay lines for improved performance. The 

hardware implementation is inspired by MReC architecture; however, it integrates 

photonic switches based on Micro Ring Resonators (MRR) to enable reconfigurability[92, 

93, 94, 95]. The architecture enables layer selection and layer gating to select the number 

of layers required for a task. Selection of number of layers can optimize the architecture 

for a specific application, resulting in huge power savings, while maintaining the overall 

accuracy. Our experiments with NARMA task and analog speech recognition task show 

that by optimally configuring an up-to 4-layer architecture, power savings up to 40% can 

be achieved compared to state-of-the-art architectures while gaining up to 80% more 

accuracy. Our scalable architecture has an on-chip area overhead of 0.0184mm2 for a 

single delay line and MRR switch. 

  



 

86 

 

6. CONCLUSION AND FUTURE DIRECTIONS 

 

6.1. Conclusion 

The dissertation focuses on design of high performance, scalable and energy 

efficient photonic hardware architectures. It begins with the study of single node photonic 

computing model, which is inspired by the delayed feedback reservoir model. Based on 

this study, a multi-layer photonic hardware accelerator for multi-layer reservoir computing 

is proposed. The dissertation further investigates and designs new architectures for 

photonic RC that are capable of parallel processing and bring the whole architecture on-

chip. Lastly, the dissertation investigates the limitations of current photonic architectures 

for RC to operate at a power vs performance optimal point and designs a reconfigurable 

architecture for photonic reservoir computing.  

In Chapter 2, we demonstrate MReC, novel multilayer photonic RC architecture 

for large-scale classification and prediction tasks. Each layer of the proposed architecture 

comprises of an MZI based nonlinearity and fiber optic delay line to emulate reservoir 

computing. We synthesize the proposed multilayer design using a standard photonic CAD 

tool called IPKISS [38] and execute three well-known classification benchmarks and one 

widely used prediction benchmark to demonstrate: (1) up to 26.8% reduction in prediction 

error rate when single-layer MReC is compared with state-of-the-art single-layer photonic 

RC architecture [8]; (2) up to 50% reduction in prediction error rate when 4-layer MReC 

is compared with state-of-the-art design and (4) up to   34.21% improvement in power 
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consumption compared to best reported result [9]. These improvements in MReC come at 

a cost of 12% area overhead. 

In Chapter 3, we show that Reservoir Computing systems have a reservoir layer 

that is made up of neurons with random connections and random weights that do not need 

training. The random weights and connections are independent of the task being 

performed using RC. The reservoir can therefore perform several tasks in parallel. In this 

paper we proposed a new architecture for photonic Reservoir Computing that uses Time 

Division Multiplexing (TDM) in its input layer to exploit the opportunity to perform 

multiple jobs in parallel using the same RC system. Our proposed system uses multiple 

reservoirs made up of MZI and low loss delay lines.  Through simulations on NARMA 

and speech recognition, we show that our architecture can outperform some of the leading 

single layer architectures by up to 90% for NARMA task while performing analog speech 

recognition in parallel and closely matches the performance of leading multi-layer 

photonic RC architectures with an increased error of 8% due to parallel processing. The 

proposed high-speed architecture has a power consumption of ~50W for a 4-layer 

network. 

In Chapter 4, we propose a new on-chip architecture for parallel high-performance 

photonic RC. The architecture employs multiple electronically tunable delay lines with an 

electronically tuned MRR switch. It is 84 % more accurate for performing NARMA in 

standalone configuration and up to 80% more accurate while executing it in parallel with 

analog speech recognition task, as compared to [8]. The architecture is 46% more accurate 

compared to parallel processing photonic RC architecture employing TDM for inputs [21]. 
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The area overhead is just 0.0184 mm2 while power overhead is 26mW and operating 

speeds of 20Gb/s. 

Lastly, in Chapter 5, we propose a new reconfigurable optoelectronic architecture 

for multi-layer RC motivated by studying a multilayer RC architecture in detail. Our 

proposed architecture, is based on DFR model implemented by the use of Mach Zehnder 

Modulator (MZM) and on chip low loss delay lines for improved performance. The 

hardware implementation is inspired by MReC architecture; however, it integrates 

photonic switches based on Micro Ring Resonators (MRR) to enable reconfigurability. 

The architecture enables layer selection and layer gating to select the number of layers 

required for a task. Selection of number of layers can optimize the architecture for a 

specific application, resulting in huge power savings, while maintaining the overall 

accuracy. Our experiments with NARMA task and analog speech recognition task show 

that by optimally configuring an up-to 4-layer architecture, power savings up to 40% can 

be achieved compared to state-of-the-art architectures while gaining up to 80% more 

accuracy. Our scalable architecture has an on-chip area overhead of 0.0184mm2 for a 

single delay line and MRR switch. 

6.2. Future Directions 

Photonic Deep Reservoir Computing has emerged as a promising candidate. The 

architectures that have been proposed in this dissertation contribute mainly towards the 

implementation of input layer and reservoir layer. This means that once the data has been 

processed, it needs to be taken to an offline computer to train the classifier stage. Hence, 

the architectures proposed here are in hybrid in nature as they use photonic reservoir layers 
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but offline traditional computers for training purposes. The training of even a single layer 

with many neurons is computationally expensive. Therefore, in future, investigations can 

be carried out in order to have a fully integrated photonic end to end reservoir computing 

system. Such a system will not only have a on chip readout layer but also photonic memory 

integrated to store the trained weights. In literature, several preliminary studies have been 

made in this regards. For example, [96] proposes an online training method that if 

implemented in hardware can have performance equal to digital output layer. Similarly, 

on chip photonic memories have been proposed [97, 98]. These memories have the 

capability to be designed into the hardware accelerators. The complete on chip operation 

would result in a lot of performance gains and power savings. 

In future, to further optimize the power consumption, new designs can be 

investigated that use less number of non linear nodes per layer. As we noticed in Chapter 

5, most of the power consumption is a result of dynamic operations of the system. Each 

layer in the architecture has power consuming components. By moving towards a design, 

where a non-linear computational component can be used for more than one layers, we 

can further optimize the power consumptions while gaining performance. This can be 

achieved by separating the linear and non-linear parts of computation. Firstly, all linear 

computation can be performed and the non-linearity can be introduced just before the 

readout layer. If such an architecture is viable, it would result in huge power savings. 

Another direction to investigate would be hybrid deep learning photonic 

architectures that combine RC, RNN and CNN to perform a job. Since one architecture 

may not be suitable for al tasks, a hybrid architecture can allow to extract temporal and 



 

90 

 

non-temporal features and by means of RC reduced training time. In such an architecture, 

RC can be one of the feature extractors where as classifiers can be more specific 

architectures for the job being performed.  

Lastly, while architectures for photonic RC can be proposed, their usefulness 

should also be demonstrated through real world applications. In this direction, system 

leveraging RC for human activity recognition can be designed [99]. RC architectures can 

also be demonstrated as light weight time series predictors in robotics [100, 101], data 

interpreters in IoTs [102] and medical applications like fall detection or prevention, 

seizure prediction and detection[103, 104]. While preliminary studies have shown that RC 

is well suited for these applications, the demonstration of these applications on low power, 

highly efficient photonic RC architectures can result in hand held and even wearable 

devices for these applications.  
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