
PHYLOGENETICS IN SPACE  
AND  

THE EVOLUTION OF THE HAUSTORIIDAE 

 
A Dissertation 

 
By  

 
ZACHARY BROCK HANCOCK 

 
 

 
Submitted to the Office of Graduate and Professional Studies of Texas A&M University in 

partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

 
 

Chair of Committee,  Mary K. Wicksten 
Committee Members,  Jessica E. Light 

    Anja Schulze 
    Gregory A. Sword 

Head of Department,  Thomas McKnight 
 

 
December 2020 

 
Major Subject: Ecology & Evolutionary Biology 

 
Copyright 2020 Zachary Brock Hancock  



 ii 

ABSTRACT 

 

The tendency to discretize biology permeates taxonomy and systematics, leading to models that 

simplify the often continuous nature of populations. Even when the assumption of panmixia is 

relaxed, most models still assume some degree of discrete structure. In this dissertation, I review 

the many lines of evidence for how continuous spatial structure can impact phylogenetic 

inference. I illustrate and expand on these by using a combination of stepping-stone models and 

complex continuous-space demographic models that include distinct modes of speciation, as well 

as empirical datasets. I find that the impact of spatial structure permeates all aspects of 

phylogenetic inference, including gene tree stoichiometry, topological and branch-length 

variance, network estimation, divergence-time estimation, and species delimitation. Furthermore, 

I uncover dramatic genome size variation and possible historic drivers of divergence in a family 

of sand-burrowing crustaceans (Haustoriidae: Amphipoda). I conclude by utilizing my results to 

suggest how researchers can identify spatial structure in phylogenetic datasets. 
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CHAPTER I 

INTRODUCTION 

PHYLOGEOGRAPHY OF THE HAUSTORIIDAE IN THE GULF OF MEXICO1 

 

Introduction 

 

 Suture zones in the Gulf of Mexico have been studied since at least the early 1900s (e.g., 

Simpson, 1900; Bert, 1986; Avise, 1992; Portnoy & Gold, 2012). These suture zones (or 

vicariant zones) are regions in the Gulf basin that severed population connectivity in the past, 

leading to divergence in genetic and/or morphological characters between the divided 

populations. Recent divergences along an east-west gradient within the Gulf of Mexico have 

been noted for a diverse range of taxa (reviewed by Portnoy & Gold, 2012), including stone 

crabs (Menippe spp.; Bert 1986, but see Schneider-Broussard et al., 1998), sea robins (Prionatus 

spp.; McClure & McEachran, 1992), snapping shrimp (Alpheus spp.; McClure & Greenbaum, 

1999; Matthews et al., 2002), and sheepshead (Archosargus spp.; Anderson et al., 2007). The 

exact location of species divergence appears to shift depending on the life-history of the species 

involved. For example, a hybrid zone suspected to reflect secondary contact between species of 

Menippe crabs lies along northern Florida and into Mobile Bay, Alabama (Bert, 1986). Other 

sister species or populations appear divided on either side of the Mississippi River, such as the 

lane snapper (Lutjanus synagris; Portnoy & Gold, 2012), Gulf squid (Loligo plei; Herke & Foltz, 

 
1 Hancock ZB, Hardin FO, Light JE (2019). Phylogeography of sand-burrowing amphipods (Haustoriidae) supports 
an ancient suture zone in the Gulf of Mexico. Journal of Biogeography, 46(11): 2532–2547. 
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2002), and the dusky pipefish (Syngnathus scovelli; Flanagan et al., 2016). A second issue arises 

in that the timing of divergence is not the same across these sister groups, indicating there were 

likely multiple vicariant events in the Gulf of Mexico periodically throughout the history of the 

basin (Avise, 1992). However, generally low genetic distances between sister taxa indicate that 

these splits are all less than 5 million years old (Bert, 1986; Avise, 1992; Portnoy & Gold, 2012).  

 

Figure 1.1. Biogeographic hypotheses in the Gulf of Mexico: a) Tennessee River drainage system which 
split sister taxa on either side of Mobile Bay, Alabama, approximately 2-4 Mya; b) Okeefenokee Trough, 

which separated taxa along the Florida panhandle 1.8 Mya; c) recent cold-water pulses down the 
Mississippi River 9-16 Kya, which isolated taxa on either side of the Louisiana coastline; d) ancient 
Miocene sedimentation 5-10 Mya, which isolated taxa on either side of the Louisiana coastline; M 

(Mississippi River), R (Red River), T (Tennessee River). Map created with ESRI 2011. ArcGIS Desktop: 
Release 10. Redlands, CA: Environmental Systems Research Institute. Adapted from Hancock et al. 

(2019). 
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 Apart from the Mississippi River, there appears to be no obvious geological or 

hydrological barriers today within the Gulf basin. However, major suture zones have been 

identified in the Gulf by past research. These are not visible today, but include: 1) the 

“Tennessee River drainage system” that increased the freshwater outflow into Mobile Bay, 

Alabama, around 2.4 million years ago (Mya) (Fig. 1.1a; Simpson, 1900); 2) the Okeefenokee 

Trough, a deep channel that separated a partially submerged Florida peninsula from the mainland 

during the Miocene (>5.33 Mya), and was closed by 1.75 Mya (Fig. 1.1b; Bert, 1986; McClure 

& Greenbaum 1999); and 3) cold-water pulses down the Mississippi River following the retreat 

of the Laurentide ice sheet, approximately 9–16 Kya (Fig. 1.1c; Aharon, 2003; Portnoy & Gold, 

2012). Furthermore, prior to the formation of these suture zones the Gulf of Mexico had an 

ancient and complex geological history that may have affected species distributions in the distant 

past. For example, Galloway et al. (2011) examined a series of fluvial systems with major 

depositional impact on the Gulf across the Cenozoic (66 Mya–Present). During the Middle-Late 

Miocene, levels of sedimentation into the Gulf increased twofold due in part to the combined 

depositional contributions of an ancient Red River, the Mississippi River, and the Tennessee 

River, which may have resulted in a fourth ancient suture zone (Fig. 1.1d). This major 

sedimentation event would have created a coastal environment unsuitable for many nearshore 

marine organisms due both to lower salinities and heavier silt loads and would also create a 

pattern of east-west divergence comparable to suture zones described above. Each of these suture 

zones creates predictable patterns of species distributions and degrees of genetic divergence (Fig. 

1). For example, sister taxa divided by the Tennessee drainage system are expected to be 

distributed on either side of Mobile Bay, Alabama, and divergence-time estimation should 

converge on ages of ~2 Mya (Fig. 1.1a). Similarly, for an ancient sedimentation event 
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concentrated at the Mississippi River, sister taxa should be distributed on opposite sides of the 

river and divergence dating would indicate an older split during the Miocene (5–10 Mya; Fig. 

1.1d). However, highly mobile organisms or those with planktonic larvae may obscure patterns 

of historical vicariance by high rates of gene flow, modern hybridization, and introgression (e.g., 

Avise, 1992; Drovetski et al., 2015; Cahill et al., 2017). Examination of less mobile organisms 

may provide better insights into a potential ancient suture zone due to Miocene sedimentation 

down the Mississippi (Fig. 1.1d). 

 Amphipods (Crustacea: Amphipoda) are brooding crustaceans, a life-history strategy that 

has been proposed to limit their dispersal ability (Kinlan et al., 2005). Due to their limited 

mobility, amphipods have been used extensively to study biogeographic hypotheses, including 

inferring ancient glacial refugia (Witt & Herbert, 1999), land-mass uplift in the Carpathian 

paleo-archipelago (Copilaş-Ciocianu & Petrusek, 2017), and the impact of the Tsushima Straits 

in the Sea of Japan on population continuity (Takada et al., 2018). Haustoriidae, a family of 

burrowing amphipods that are morphologically specialized to a fossorial, filter-feeding lifestyle, 

live on fine sand beaches across the Gulf of Mexico. Haustoriids lack eye pigmentation and are 

poor swimmers that are believed to mate in the sediment, which may explain their rarity in the 

water column (Sameoto, 1969; Conlan, 1991; Hancock & Wicksten, 2018; but see Croker, 

1967). Bousfield (1970) hypothesized that this family represented a recent rapid radiation into 

sandy-beach habitats, and that the group was likely evolutionarily young. Within the haustoriid 

genus Haustorius, there appears to be considerable species divergence across the Gulf of 

Mexico. Using morphological traits, Hancock & Wicksten (2018) reported an east-west 

divergence pattern of Haustorius species in the Gulf of Mexico. In the western Gulf, Haustorius 

galvezi Hancock & Wicksten, 2018 is the dominant intertidal amphipod and appears to range 
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from southern Mexico to approximately Galveston Island, Texas, and has been reported as far 

north as Sea Rim State Park, Texas (Witmer, 2014; Fig. 1.2). In the eastern Gulf, H. jayneae 

Foster & LeCroy, 1991 ranges from Mississippi Sound to Carrabelle Beach, Florida (Fig. 1.2), 

and is hypothesized to be the sister species to H. galvezi (Hancock & Wicksten, 2018). These 

species differ in overall body length, with H. jayneae being generally larger than H. galvezi. A 

larger body size may explain differences related to an inflated number of antenna articles,  

 

Figure 1.2. Distribution of amphipod species in the Gulf of Mexico including sampling sites for this 
study. 1) Tabasco-Campeche border (Mexico); 2) Antón Lizardo, Veracruz (Mexico); 3) Tamiahua, 
Veracruz (Mexico); 4) South Padre Island, Texas (U.S.A.); 5) Matagorda Island, Texas (U.S.A.); 6) 
Jamaica Beach, Texas (U.S.A.); 7) Galveston Island, Texas (U.S.A.); 8) Sea Rim State Park, Texas 

(U.S.A.); 9) Holly Beach, Louisiana (U.S.A.); 10) Grand Isle, Louisiana (U.S.A.); 11) Pass Christian, 
Mississippi (U.S.A.); 12) Dauphin Island, Alabama (U.S.A.); 13) Pensacola Bay, Florida (U.S.A.); 14) 

Grayton Beach State Park, Florida (U.S.A.); 15) St. Andrew’s State Park, Florida (U.S.A.); 16) Carrabelle 
Beach, Florida (U.S.A.). Map created with ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: 

Environmental Systems Research Institute. Adapted from Hancock et al. (2019). 
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mandibular palp combs, and mandible accessory blades in H. jayneae compared to H. galvezi.  

Morphological differences not related to size include the telson cleft and the shape and 

spination of pereopod 7 article 4 (or merus; convention in Haustoriidae is to refer to article 

segments by number instead of name; see Bousfield, 1962; LeCroy, 2002; Hancock & Wicksten, 

2018). A third species of Haustorius, H. allardi Hancock & Wicksten, 2018, is endemic to the 

Louisiana coastline where it occurs intertidally on muddy beaches. 

A second genus of haustoriid amphipod, Lepidactylus, also occurs in the Gulf of Mexico. 

Despite co-occurring with Haustorius species on many beaches, the two genera are not known to 

hybridize and tend to vertically partition the beach (LeCroy, 2002; Shelton & Roberston, 1981) 

with Haustorius found in the lower intertidal and Lepidactylus in the high intertidal. Lepidactylus 

can be distinguished from Haustorius by epimeron 3 that is continuous with the urosome (it 

forms a shelf in Haustorius), as well as by the distinct pereopod 7 article 4 (merus) setation and 

shape (Roberston & Shelton, 1980). In the Gulf of Mexico, this genus is represented by a single 

species, L. triarticulatus Robertson & Shelton, 1980, which is known to range throughout the 

entire northern Gulf (Hancock & Wicksten, 2018; LeCroy, 2002). The only morphological 

differences in L. triarticulatus across the Gulf appear to be related to increased body size 

(number of spines and setae) in individuals sampled in the eastern Gulf, resulting in the 

recognition of a single, widely distributed species (Hancock & Wicksten, 2018; LeCroy, 2002). 

These morphological data indicate that despite occupying the same niche and having similar life-

histories, the two amphipod genera may not share the same biogeographic history in the Gulf of 

Mexico. Alternatively, L. triarticulatus may represent a cryptic species complex, a common 

finding in amphipods (e.g., Vergilino et al., 2012; Fišer et al., 2015; Fišer et al., 2017). 
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 This study expands on previous morphological work by analyzing four genes (two 

mitochondrial and two nuclear) to examine population divergence of Haustorius and 

Lepidactylus across the Gulf of Mexico, and to determine if relatively contemporaneous or more 

ancient suture zones best explain modern species distributions. Since sister species of Haustorius 

are distributed on opposite sides of the Mississippi River and are suspected poor dispersers, I 

hypothesize that their genetic divergence would correspond with an ancient sedimentation event 

during the Miocene (5–10 Mya; Fig. 1.1d; Galloway et al., 2011) and thus an ancient suture zone 

in the Gulf of Mexico. Alternatively, these species may have been separated much more recently 

by cold-water pulses at the end of the last ice age (Fig. 1.1c; Portnoy & Gold, 2012), which 

would be supported by low levels of genetic divergence. Additionally, I hypothesize that 

Lepidactlyus triarticulatus is composed of at least two cryptic lineages, with sister lineages 

minimally separated by the Mississippi River. Using genetic data to examine divergence patterns 

and timing of these two amphipod genera will allow us to determine if an ancient suture zone 

affects the distribution of dispersal-limited species in the Gulf of Mexico. 

  

Methods 

Field collections 

 

 Sixteen sites across the Gulf of Mexico were sampled, ranging from the border of 

Tabasco-Campeche in southern Mexico to Carrabelle Beach, Florida (Fig. 1.2, Table S1.1). 

Individual amphipods were collected with a shovel and 435μm sieve plate, removed with 

forceps, and preserved in 95% EtOH. Individuals were morphologically identified in the lab 

under a dissecting microscope and stored at -20°C prior to DNA extraction. Using the same 
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methodologies, Haustorius canadensis Bousfield, 1962 was also collected from Cape May, New 

Jersey, to serve as an outgroup taxon for phylogenetic analyses of Haustorius. Representatives of 

each identified lineage have been deposited at the Biodiversity Research and Teaching 

Collections (BRTC) at Texas A&M University, with additional specimens deposited at the 

Smithsonian Museum of Natural History (USNM; Table S1.1). Additionally, H. arenarius 

Slabber, 1769 specimens were loaned from the Royal Belgian Institute of Natural Sciences to 

serve as an additional outgroup (catalog #INV.138073).  

 

DNA extraction and alignment 

 

 Whole genomic DNA was extracted from 1–2 pereopods from larger individuals or the 

entire organism for smaller individuals using an EZNA Tissue DNA Kit (Omega Bio-tek Inc., 

Norcross, Georgia) following the manufacturer’s protocol. Two mitochondrial genes, 

cytochrome oxidase I (COI) and 16S ribosomal RNA (16S), and two nuclear genes, 18S 

ribosomal RNA (18S) and 28S ribosomal RNA (28S), were amplified via polymerase chain 

reaction (PCR) using primer sets and conditions in Table S1.2. Amplicons were verified using 

gel electrophoresis and ExoSAP-IT (Affymetrix, Inc., Santa Clara, CA, U.S.A.) was used to 

purify positive PCR products. Forward and reverse strand sequencing was performed at DNA 

Analysis Facility on Science Hill at Yale University. Sequences were manually edited in 

Sequencher v.4.10.1 (Gene Codes Corp., Ann Arbor, MI, U.S.A.) and alignments were 

performed in MAFFT v.7 (Katoh & Standley, 2013). For COI (the only protein-coding gene used 

in this study), alignments were translated into amino acids in Mesquite v.3.5 (Maddison & 

Maddison, 2018) to check for premature stop codons.  
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Phylogenetic methods 

 

 Phylogenetic inference was first conducted for each gene separately, each of which was 

collapsed into unique haplotypes using FaBox v.1.41 (Villesen, 2007). Additional outgroup taxa 

were identified using a BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi; Table S1.2). 

PartitionFinder2 (Lanfear et al., 2016) was used to identify the best partitioning scheme and 

substitution model by codon position for the protein-coding gene (COI) using Bayesian 

Information Criterion (BIC). For RNA genes, jModelTest2 (Darriba, 2012) was used to find the 

best model of DNA evolution using a sample-size corrected Akaike Information Criterion 

(AICc). Models not implemented in MrBayes were replaced with the next most 

overparameterized model (Lecocq et al., 2013; Huelsenbeck & Rannala, 2004). Maximum-

likelihood (ML) inference was conducted in RAxML v.8.2.10 (Stamatakis, 2014) with 1,000 

multiparametric bootstrap replicates in the CIPRES portal (Miller et al., 2010). Bayesian 

inference was performed using MrBayes v.3.2.6 (Huelsenbeck & Ronquist, 2001) with four 

independent Markov chain Monte Carlo (MCMC) chains of 100 million generations sampling 

every 5,000. Convergence was checked in TRACER v.1.7 (Rambaut et al., 2018) by visually 

examining trace graphs and estimated sample sizes (ESS), which was assumed if all parameter 

estimates were >200. All trees produced were summarized in Dendropy (Sukumaran & Holder, 

2010) using the command sumtrees to produce a 50% majority-rule consensus tree. Consensus 

trees were visualized in FigTree v.1.4.3 (Rambaut, 2012). If no significant conflict was observed 
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among the individual gene trees, a total evidence tree was inferred by concatenation with each 

gene as an independent partition in MrBayes as described above.  

 

Species delimitation methods 

 

 To identify operational taxonomic units (OTUs), interpreted as putative species, four 

separate delimitation methods were used, and all were applied solely to the COI gene except for 

the Bayesian implementation of the Poisson tree processes method (bPTP), which also used the 

total evidence tree. The first method was the general mixed Yule coalescent (GMYC) model, 

which identifies the threshold between lineages following a Yule process with log-normal 

distributed lineages through time and those lineages that follow an intrapopulation coalescent 

model (Fujisawa et al., 2016). GMYC was implemented in the R platform using the package 

SPLITS from the CRAN repository and was performed on the ultrametric tree produced from 

BEAST2 as described above. A second delimitation model, bPTP, was implemented on the web-

server species.h-its.org (Zhang et al., 2013). Since this method does not require an ultrametric 

tree, it was performed on both COI and the total evidence tree produced in MrBayes. Lastly, two 

distance-based approaches were used: 1) Lefébure et al. (2006) a priori designations of 0.16 

substitutions per site (subs./site) as a universal threshold for delimiting crustacean species for 

COI, and 2) the Automatic Barcode Gap Discovery (ABGD; Puillandre et al., 2011) 

implemented on the web server http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html. In the 

ABGD, Pmin was set to 0.001, Pmax to 0.1, X = 1.0, and the distance matrix was estimated 

using the Kimura-2 parameter (K2P) model (Kimura 1980; following Hurtado et al., 2010 and 

Copilaş-Ciocianu & Petrusek, 2017). 
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Divergence-time and species-tree estimation 

 

 Divergence-time estimation was performed on COI using the widely-used molecular 

clock of 1.4–2.6% divergence per My, or 0.007–0.013 subs./site per My (Knowlton & Weigt, 

1998; Takada et al., 2018). This molecular clock was used because there are no known 

noncontentious amphipod fossils by which to calibrate the tree. Divergence-time estimation was 

conducted in BEAST2 using a Birth-Death prior and a relaxed log-normal clock rate with a mean 

rate of 0.01 and variance of 0.006 sites/My following Takada et al. (2018), and an MCMC chain 

of 10 million sampling every 1,000. A shared GTR + G model was used instead of a partitioned 

approach because the latter analysis struggled to reach convergence, and the topology was not 

different between runs or from the partitioned MrBayes COI tree (Fig. S1.1) Convergence was 

verified in Tracer by visually inspecting trace graphs and ESS values. Sampled trees were 

summarized in TreeAnnotator and visualized in FigTree. 

 To account for possible gene tree incongruence, ancestral polymorphism, and to jointly 

estimate ancestral population sizes using all four genes, I inferred a species-tree using *BEAST 

(Heled & Drummond, 2010). I applied a strict molecular clock to COI with a mean rate of 0.01 

(0.007–0.024); for the other three loci, relaxed log-normal clocks were applied. The population 

function parameter in the multispecies coalescent was set to “linear_with_constant_root” to 

allow population sizes to fluctuate across branches. Since this analysis required an a priori 

designation of individuals to “species”, I grouped individuals into OTUs identified using the 

tree-based methods described above to avoid biases in population size inference due to 

significant population structure. I performed four independent MCMC runs of 100 million steps 

sampling every 5,000, which provided ESS values of >700 for all estimated parameters.  
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Population genetic methods 

 

 Population genetic analyses were estimated on all OTUs identified using the tree-based 

delimitation methods described above. Distance-based delimitation methods result in significant 

population structure within OTUs (see Results), which can bias methods for estimating effective 

population sizes (Ne) (Heller et al., 2013); thus, OTUs determined using these methods were not 

assessed at the population level. All population genetic analyses were conducted on the COI 

gene as that marker had the greatest sampling (Table S1.1) and variation. Population parameters 

including number of segregating sites (S), nucleotide diversity (π), and haplotype diversity (h) 

were estimated in DnaSP v.6 (Rosas et al., 2018).  

 Additional analyses were conducted only on Haustorius OTUs due to low numbers of 

sampled Lepidactylus OTUs (Table S1.1). The probability of including the most recent common 

ancestor (MRCA) in a sample of n individuals is (n – 1) / (n + 1), which is derived from 

Kingman’s coalescent (Kingman, 1982) by Saunders et al. (1984). The Haustorius OTUs all had 

at least 19 individuals, which provides a 90% probability of including the MRCA. Pairwise 

Slatkin’s linearized FST (Slatkin, 1991; 1995) was estimated in Arleqiun v.3.5 (Excoffier & 

Lischer, 2010), which calculates FST  as (t1 – t0) / t1, where t1 is the mean coalescence time 

between two genes from different populations, and t0 is the mean coalescence time between two 

genes drawn from the same population. FST significance was determined by a permutation test 

with 110 replicates. A pairwise distance matrix was generated in MEGA7 (Kumar et al., 2016) 

using a K2P model. TCS haplotype networks for COI were constructed in PopART (Leigh & 

Bryant, 2015). Isolation-by-distance (IBD) was tested in FSTAT v.1.2 (Goudet, 1995) using a 

Mantel test conducted by comparing a pairwise matrix of FST / (1 – FST) (after Rousset, 1997) 
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against a pairwise geographical distance matrix. Significance of the β coefficient was determined 

by 2,000 randomizations. To visualize population structure, a TCS COI haplotype network was 

constructed using PopART (Leigh & Bryant, 2015). 

 To estimate changes in effective population sizes (Ne) over time, three separate methods 

were used: 1) Bayesian coalescent skylines were constructed for each identified OTU using 

BEAST2 (Bouckaert et al., 2014) with a Bayesian coalescent skyline tree prior and an MCMC 

chain of 10 million. This was performed under a strict molecular clock rate of 0.01 subs./My. 

Preliminary work indicated that these analyses struggled to reach convergence (even after 

increasing the MCMC chain to >500 million), so a simpler substitution model was specified 

(TN93; Tamura & Nei, 1993). ESS values >1,000 for all parameters were then obtained for all 

runs. 2) Mismatch distribution plots were generated in Arleqiun, and Harpending’s raggedness 

index (HRI; Harpending, 1994), which measures the “smoothness" of the distribution, was 

calculated with 100 bootstrap replicates under a sudden population expansion model. The fit of 

the sudden expansion model was tested by the sum of squared deviations (SSD). 3) Neutrality 

tests were performed in Arlequin, including Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997) 

with significance determined by 1,000 simulations. 

 

Results 

Field work 

 

 All sites from Galveston Island, Texas, U.S.A., to Tabasco, Mexico were dominated 

intertidally by Haustorius galvezi, often in numbers >100 per sample. Similar abundances were 

seen at Sea Rim State Park, Texas, and Holly Beach and Grand Isle in Louisiana, with H. allardi 
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collected at Holly Beach. Haustorius jayneae was sampled from Dauphin Island, Alabama, and 

Grayton Beach, St. Andrews State Park, and Carrabelle Beach, all in Florida. Lepidactylus 

triarticulatus was sampled at Sea Rim and Grand Isle and was the only intertidal haustoriid 

found at Pass Christian, Mississippi, and Pensacola Bay, Florida. Only Carrabelle Beach had 

population abundances comparable to the western Gulf populations for both species. The other 

locations presented difficulties collecting enough specimens; most of these locations were 

represented by five or fewer individuals (Table S1.1). 

 

 

 

Figure 1.3. Total evidence tree produced in MrBayes with each gene independently partitioned. Asterisks 
on nodes represent >0.95 posterior support. Distributions are indicated to the right of each lineage. 

Outgroups only selected for individual genes were removed from the concatenated dataset and genera 
were rooted by one another. Bar color for each clade represent OTU location in Fig 1.8. Adapted from 

Hancock et al. (2019). 
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Phylogenetic results 

 

 After trimming and alignment, the two mitochondrial genes, 16S and COI, were 458 bp 

and 392 bp, respectively; the nuclear genes produced alignments of 2,050 bp for 18S and 1,143 

bp for 28S. Thus, the concatenated dataset consisted of 4,043 bp. Details on the number of 

individuals sequenced for each gene can be found in Table S1.1.  

 All phylogenetic inference methods of all molecular markers revealed the nominal Gulf 

Haustorius species and Lepidactylus triarticulatus to be monophyletic (Fig. 1.3–1.4; Fig. S1.1–

S1.4). Within Haustorius, H. galvezi and H. jayneae were supported as sibling species with H. 

allardi sister to them. The Atlantic haustoriids (H. arenarius and H. canadensis) grouped 

together outside the Gulf-specific taxa according to 18S (Fig. S1.4) causing Haustorius to be 

paraphyletic, albeit with low support (bootstrap support = 0.60), but showed monophyly at all 

other markers and in the concatenated tree (Fig. 1.3, Fig. S1.1–S1.3). Relationships and support 

for within-species Gulf clades sometimes differed with genetic marker and inference methods. 

For COI, Bayesian and Maximum Likelihood methods found differing and generally weak levels 

of support for reciprocal monophyly between a northern Texas H. galvezi clade and southern 

Texas and Mexico H. galvezi clade (Fig. S1.1). In contrast, Bayesian and Maximum Likelihood 

inference found strong (MrBayes PP = 0.98; Fig. S1.2) and moderate (RAxML bootstrap = 0.64; 

Fig. S1.2) support for these clades using the 28S marker. Analyses using 18S failed to distinguish 

these subgroups (likely as a result of low variation: Fig. S1.4) and this subdivision was not tested 

with 16S due to failure of H. galvezi (Texas) specimens to amplify (Fig. S1.3; Table S1.1). The 

concatenation approach found high support (PP = 0.99) for monophyly between H. galvezi 

(Texas) and H. galvezi (Mexico) (Fig. 1.3). 
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For Lepidactylus triarticulatus sample sites, high divergence and monophyly were 

recovered across most sites, genes, and methods (Fig. 1.4, Fig. S1.1). Two distinct clades were 

recovered that were diverged by >0.16 subs./site at COI, and these can superficially be separated 

into a western (Sea Rim State Park, Texas, and Grand Isle, Louisiana) and eastern (Pass 

Christian, Mississippi, and Pensacola Bay, Florida) clade (Figs. 1.4–1.5). Notably, two distantly 

Figure 1.4. Divergence-time tree using the mitochondrial COI gene produced in BEAST2 with Birth-
Death prior and relaxed log-normal molecular clock. Blue bars at nodes represented 95% HPD; numbers 
under nodes are posterior support (only values > 0.95 are shown). Clades are colored by OTUs from Fig 
1.2. Colored boxes on the right are inferred species from each delimitation method, with a comparison to 
morphologically defined lineages (Morph) as determined by Hancock & Wicksten (2018). Tree-based: 
GMYC = General mixed Yule coalescent; bPTP = Bayesian Poisson tree processes. Distance-based: 

ABGD = Automatic Barcode Gap Discovery; PTD = Patristic distance (defined by Lefébure et al., 2006). 
Solid gray line is H. canadensis, which was not considered in the delimitation analysis. Symbols at nodes 
indicate major splits and specific geographic breaks, and ancient suture zones are indicated in yellow and 

tan shading. Adapted from Hancock et al. (2019). 
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related lineages were recovered at Pass Christian, Mississippi (Fig. 1.4; Table S1.1). These 

lineages were separated by 0.1858 subs./site, and lineage 1 (L. triarticulatus, Pass Christian[1]) 

grouped with, yet was highly diverged from (>0.15 subs./site), the western clade of L. 

triarticulatus. Gene trees for 16S, 28S, and 18S all found high support for an L. triarticulatus 

(Sea Rim) and L. triarticulatus (Grand Isle) clade, L. triarticulatus (Pensacola Bay) and L. 

triarticulatus (Pass Christian[2]) clade, and an L. triarticulatus (Pass Christian[1]) clade, but 

lacked variation to distinguish site-specific lineages as COI did (Fig. S1.1–S1.3). The 

concatenation approach largely agreed with the individual gene trees except for the placement of 

the L. triarticulatus (Sea Rim) and L. triarticulatus (Grand Isle) clade, which was not found to be 

monophyletic with high support (Figs. 1.9, S1.1–S1.4). 

 

Species delimitation results 

 

 Species delimitation methods supported a minimum of five OTUs across both amphipod 

genera. Both the GMYC and bPTP methodologies identified nine OTUs using COI only, 

corresponding to each monophyletic clade produced by the ultrametric BEAST tree: four species 

within Haustorius (two clades within H. galvezi corresponding to Texas and Mexico, H. jayneae, 

and H. allardi) and five species within Lepidactylus corresponding to each collecting locality and 

the two lineages at Pass Christian (Sea Rim, Grand Isle, Pass Christian[1], Pass Christian[2], and 

Pensacola Bay; Fig. 1.4). However, the bPTP delimitation method differed when using the total 

evidence tree as input. Since the total evidence tree (Fig. 1.3) did not find support for monophyly 

of Lepidactylus from Grand Isle, the bPTP analysis supported each individual as independent 

species (PP = 0.71, 0.75, respectively) resulting in a total of eight putative species as opposed to 
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seven. However, I adopted a conservative approach and collapsed the two inferred species from 

Grand Isle into one as supported by the species-tree analysis (Fig. 1.5). Gaps were found in the 

ABGD at COI in both Haustorius and among Lepidactylus sites, corresponding to a maximal 

intraspecific distance for both genera of 3.6%. At this threshold, three distinct groups were 

identified in each genus; for Haustorius, this corresponded to the three nominal species, H. 

allardi, H. galvezi, and H. jayneae; for L. triarticulatus, this corresponded to lineage 1 from Pass 

Christian, specimens from Sea Rim and Grand Isle, and specimens from Pensacola Bay and 

lineage 2 from Pass Christian (Fig. 1.4). Using the distance threshold suggested by Lefébure et 

al. (2006), five putative species corresponding to H. jayneae and H. galvezi, H. allardi, and the 

same three Lepidactylus lineages identified by the ABGD method were delimited (Fig. 1.4). 

 

Divergence-time and species-tree estimation results 

 

 For divergence-time estimation, the coefficient of rate variation was checked first to 

determine if the tree followed clock-like evolution. The coefficient was 0.077, indicating little 

rate variation across the tree, justifying the use of a strict clock for all subsequent analyses (a 

coefficient of rate variation <0.1 has been considered low enough to justify a strict molecular 

clock; Drummond & Bouckaert, 2015; Verheye et al., 2017). Within Haustorius, the Gulf clade 

diverged from the Atlantic species around 14.2 Mya (95% HPD 11.5–16.8 Mya; Fig. 1.3–1.4). 

The divergence between the northern Texas and southern Texas and Mexico H. galvezi clades 

was estimated between 2.2–4 Mya (mean of 3.1 Mya), and the split between these H. galvezi 

clades and H. jayneae occurred ca. 6.2 Mya (4.6–7.8 Mya; Fig. 1.3–1.4). Haustorius allardi 

diverged from the other Haustorius Gulf taxa between 8.6–13.4 Mya (mean of 11 Mya). Within 
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Lepidactylus, a clade consisting of L. triarticulatus (Sea Rim) and L. triarticulatus (Grand Isle) 

were estimated to have diverged from L. triarticulatus (Pass Christian[1]) around 8.9 Mya (6.6–

11.2 Mya), and the divergence between the western and eastern clades was estimated at 9.2–14.5 

Mya (mean of 11.9 Mya).  

 

 

 The species-tree analysis largely supported the divergence-time estimation above for the 

deepest divergences but lowered the most recent divergences by as much as 50% at the lower 

end of the 95% HPD (Fig. 1.5). The mean of the split between H. jayneae and H. galvezi was 

reduced to 4.6 Mya and the west-east split in the L. triarticulatus species complex was 5.4–13.2 

Mya. The estimated divergence time for the western clades of H. galvezi was 1.7 Mya (0.79–2.9 

Figure 1.5. Dated species-tree inferred using *BEAST with a strict molecular clock for COI and a 
relaxed log-normal clock for the other three loci. Each of the three overlain trees represents the three most 

common topologies in descending order from blue, green, and red. Width of the branches represents 
inferred effective population sizes. Clear bars on the nodes are 95% HPD and filled circles are posterior 

probabilities. Adapted from Hancock et al. (2019). 
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Mya, 95% HPD). For L. triarticulatus, the sister group from Grand Isle and Sea Rim was 

estimated to have diverged 1.4 Mya (0.25–2.6 Mya) whereas the sister group from Pensacola 

Bay and Pass Christian[2] diverged 1.3 Mya (0.5–2.2 Mya). The coefficient of rate variation for 

16S, 18S, and 28S all exceeded 0.3, indicating a relaxed clock is the most appropriate for these 

loci. Most ancestral branches were inferred to have relatively constant population sizes with most 

expansions (H. galvezi, Mexico) or contractions (H. jayneae) occurring within the last 5 My. The 

three most common branching orders are displayed in Fig. 1.5, with the blue tree being the most 

common followed by green and red. The only clade with major incongruence is the Atlantic 

Haustorius group—85% of trees find Haustorius to be monophyletic, while the remaining trees 

are split between Atlantic Haustorius grouping with Gulf Lepidactlyus or with Gulf Haustorius 

and Lepidactylus as sister clades with the Atlantic Haustorius as an outgroup (green and red 

trees, respectively; Fig. 1.5).  

 

Population genetic results 

 

 Population genetic summary statistics of COI revealed high haplotype diversity within 

each OTU identified using the tree-based species delimitation methods except L. triarticulatus 

(Pass Christian[1]) where all sequences were identical (Table 1.1). Nucleotide diversity (π) was 

highest in H. galvezi (Texas) and H. galvezi (Mexico) among the Haustorius lineages, and 

comparable to Lepidactylus from Pensacola Bay; H. jayneae and the other Lepidactylus lineages 

had an order of magnitude less nucleotide diversity (Table 1.1). Pairwise FST revealed significant 

population structure among most sampled sites, including within identified OTUs (Fig. 1.4). FST 

was much higher between the H. galvezi OTUs than within, consistent with the phylogenetic 
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results and despite the close proximity of sampled sites along the Texas coastline. However, the 

Mantel test revealed that distance is a significant explanatory variable (P = 0.0160; r2 = 0.6149; 

β = 0.0012) of FST. The COI haplotype network revealed no shared haplotypes between H. 

galvezi in northern Texas and H. galvezi from southern Texas and Mexico, and the closest 

haplotypes were separated by no less than five inferred mutations (Fig. S1.5).  

 

OTU # 
Individuals 

S π (SD) h (SD) Tajima’
s D 

Fu’s Fs SSD HRI 

H. galvezi 
(Texas) 

20 22 0.0116 
(0.003) 

0.9842 
(0.000) 

–1.2807 –19.6246*** 0.0257**
* 

0.0443 

H. galvezi 
(Mexico) 

21 33 0.0160 
(0.003) 

1.0000 
(0.000) 

–1.4055 –22.4360*** 0.0045 0.0107 

H. jayneae 19 6 0.0040 
(0.002) 

0.7836 
(0.004) 

–0.3038 –4.4631** 0.0047 0.0387 

LT (Sea 
Rim) 

5 4 0.0046 
(0.002) 

0.9000 
(0.026) 

- - - - 

LT (Grand 
Isle) 

5 5 0.0057 
(0.003) 

0.9000 
(0.026) 

- - - - 

LT (Pass 
Christian[1]) 

4 0 0 0 - - - - 

LT (Pass 
Christian[2]) 

6 5 0.0057 
(0.003) 

0.8667 
(0.017) 

- - - - 

LT 
(Pensacola 
Bay) 

5 11 0.0152 
(0.005) 

1.0000 
(0.016) 

- - - - 

 

Table 1.1. Summary statistics. OTUs are pooled individuals from different sites identified via tree-based 
delimitation methods. S is the number of segregating sites, π is nucleotide diversity, h is haplotype 

diversity, SSD is the sum of squared deviations from the sudden expansion model, and HRI is 
Harpending’s raggedness index. Significance is determined by bolded numbers; * = P < 0.01, ** = P < 

0.001, *** = P < 0.0001. LT = Lepidactylus triarticulatus. Adapted from Hancock et al. (2019). 
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 Both H. jayneae and H. galvezi (Mexico) showed evidence of a recent population 

expansion (unimodal mismatch distribution, significant Fu’s Fs, and the Bayesian skyline 

reconstruction; Table 1.1; Fig. 1.6). However, in H. jayneae the Bayesian skyline plot indicated 

a shallow coalescent tree, which is consistent with a population bottleneck, as was inferred from 

the species-tree analysis above (Fig. 1.6–1.7). For H. galvezi from northern Texas, both the 

Bayesian skyline and mismatch distributions supported a population expansion; however, a 

significant deviation from the sudden expansion model was detected by SSD (P < 0.0001), but 

not Harpending’s raggedness index (HRI). Additionally, Tajima’s D was not significant (P = 

0.096). 

  

 

 

Figure 1.6. Pairwise FST matrix. Numbers under localities refer to sample sites in Fig. 1.2. Adapted from 
Hancock et al. (2019). 
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Discussion 

 

 Analyses performed in this study suggest the presence of multiple cryptic lineages of 

Haustorius and Lepidactylus amphipods in the Gulf of Mexico. The Mississippi River is the 

major dividing feature of modern species distributions, creating eastern and western clades 

within both genera. All of the observed divergences between eastern and western clades of 

Haustorius and Lepidactylus are >4.5 My (Fig. 1.3–1.4), much too early to reflect the impact of 

glacial cooling during the Pleistocene (Portnoy & Gold, 2012), supporting an ancient suture zone 

in the Gulf of Mexico. 

 

How many species? 

 

 Haustoriid amphipods have highly divergent body plans compared to other amphipods 

consisting of broadly expanded pereopods 5–7, fossorial gnathopods 1–2, powerful pleopods for 

creating a ventral food current, and spiny uropods modified for digging, all specializations for a 

burrowing lifestyle in sandy substrate. In addition, Bousfield (1970) proposed that the family 

represented a recent adaptive radiation, indicating that the group may be evolutionarily young. 

These two factors coupled together may explain the limited morphological divergence observed 

in the Gulf haustoriids, and therefore the widespread occurrence of cryptic diversity. A similar 

pattern has been seen in another amphipod group (the Hyaellela azteca species complex) where 

strong ecological constraints have been implicated as drivers of morphological stasis (Wellborn 

& Cothran, 2003; Witt et al., 2003). However, there remains the possibility of fine-scale 

microstructural, hormonal, or behavioral differences that could be used to delineate apparently 
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morphologically cryptic species. Additional research would be necessary to determine if these or 

other traits may result in differentiation among haustoriid lineages. 

 A minimum of five and a maximum of nine “species” were identified with molecular 

species delimitation analyses. Incongruence among these methods on the number of OTUs likely 

is the result of differing underlying assumptions of each model. The tree-based methods found 

sufficient support in the ultrametric tree to identify a threshold that encompassed each unique 

clade (Fig. 1.4). However, since the total evidence tree did not support a monophyletic 

Lepidactylus from Grand Isle, the bPTP approach on this tree was skewed in favor of inferring 

more species (individuals from the same locality were determined as putative species). The 

topology of the total evidence tree may be driven by the two nuclear loci (18S and 28S) that do 

not have sufficient variation to differentiate Lepidactylus from Grand Isle and Sea Rim 

overpowering the information at the mitochondrial loci (Figs. S1.1–S1.4). Thus, I collapsed 

these two inferred Lepidactylus species into one, resulting in a total of seven putative species. 

The distance-based methods found contradicting results depending on the a priori interspecific 

divergence ranges (six lineages for ABGD and five lineages for the distance method of Lefébure 

et al. 2006). The distance method of Lefébure et al. (2006) uses a COI substitution rate of 0.16 

subs./site to delineate crustacean species, but this designation is likely overly conservative for 

amphipods. For example, Lagrue et al. (2014) examined mate discrimination in the freshwater 

amphipods Gammarus pulex and G. fossarum and found that individuals diverged by >0.04 

subs./site at COI no longer mated randomly, indicating that mate discrimination occurs around 

that distance in at least this particular amphipod genus. If I were to use this substitution rate of a 

maximum intraspecific distance of 0.04 subs./site, the distance method of Lefébure et al. (2006) 

would produce six OTUs, which is in agreement with the ABGD method. Overall, the number of 
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Gulf of Mexico Haustorius and Lepidactylus OTUs ranges from 6–8, which is 2–4 more species 

than are morphologically recognized in the Gulf of Mexico. Future work on haustoriid 

amphipods will require a more integrative taxonomic approach (e.g., Padial et al., 2010; Pavón-

Vázquez et al., 2018) including genetic data, environmental and ecological variables, fine-scale 

microstructural differences, and mate preference to adequately designate cryptic lineages (or 

OTUs) as species.  

 

Figure 1.7. Effective population sizes (Ne) over time inferred from COI. (Left) Bayesian coalescent 
skyline plots produced in BEAST2; filled blue boundaries are the 95% CI. (Right) Mismatch distributions 
produced in Arlequin. The black line is observed mismatches, blue line is simulated expectation based on 
a population expansion model, and shaded red area is the 95% CI. a) Haustorius jayneae, eastern Gulf of 
Mexico; b) H. galvezi, northern Texas, western Gulf; c) H. galvezi, southern Texas and Mexico, western 

Gulf. Adapted from Hancock et al. (2019). 



 26 

 

 

Miocene sedimentation and divergence-dating 

 

 The distribution of sister species of Haustorius and Lepidactylus on either side of the 

Mississippi River indicates that this fluvial axis likely played a major role in vicariant speciation 

within these genera. While the modern Louisiana coastline is relatively young (~7 Kya; Roberts, 

1997), the Mississippi River became the dominant supplier of sediment into the Gulf of Mexico 

by the Late Miocene (~20 Mya; Galloway et al., 2011). By the Middle Miocene (~12.5 Mya), 

sedimentation levels had increased by twofold from levels on the Oligocene-Miocene boundary. 

This dramatic increase may have caused the coastline straddling the river’s mouth to accumulate 

silt and mud, creating an inhospitable habitat for haustoriids (Fig. 1.1d). Given the deep 

divergences of sister clades of both Haustorius (2.9–6.2 Mya) and Lepidactylus (5.4–13.2 Mya), 

these splits were likely not caused by cold-water pulses down the Mississippi at the end of the 

last ice age (Portnoy & Gold, 2012), but rather increased sedimentation during the Middle and 

Late Miocene. Two additional fluvial systems likely contributed to this: 1) an ancient Red River, 

which flowed into the Gulf of Mexico directly, unlike its modern counterpart that has been 

captured by the Mississippi, and 2) the Tennessee River. Each of these fluvial axes was acting 

during the Miocene and into the Pliocene, and much of the sedimentation was concentrated along 

the Louisiana coastline (Fig. 1.1d; Galloway et al., 2011). A portion of the drainage system of 

the Tennessee River would eventually break-off and flow into Mobile Bay, but this deviation did 

not occur until the Pliocene (Fig. 1.1a; Galloway et al., 2011).  
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 Discrepancy between the two dating methods demonstrates the importance of considering 

the impacts of ancestral population structure and deep coalescence. The molecular clock method 

applied to COI is strictly dating gene divergence and likely inflates population divergence times 

as it fails to account for ancestral polymorphism (Edwards & Beerli, 2000). This is particularly 

striking in the most recently diverged clades, in which the median divergence time is between 

25–50% lower in the multispecies coalescent (MSC) method compared to the molecular clock-

only method. Despite this, the medians of both methods overlap in the 95% HPD, albeit in the 

lower bounds for the MSC. The MSC method pushes the east-west divergence closer to the Late 

Miocene–Pliocene boundary, but still within the hypothesized period of impact.  

 Miocene sedimentation would likely have little impact on highly mobile organisms not 

dependent on substrate type and capable of avoiding brackish water by swimming farther from 

the coast. This may explain why it has not been previously explored as a hypothesis causing 

suture zones in the Gulf of Mexico in the literature. However, this proposed ancient suture zone 

may be especially important for other organisms dependent on sandy substrate such as some 

polychaete worms (for example, Scolelepis squamata), mole crabs (Emerita spp.), and surf clams 

(Donax spp.), although pelagic larvae in these organisms may obscure more ancient vicariant 

patterns (Adamkewicz & Harasewych, 1996; Goulding & Cohen, 2014). Other organisms closely 

related to amphipods, such as other brooding crustaceans (e.g., Hurtado et al., 2016; Sutherland 

et al., 2010; Takada et al., 2018), may be best suited to evaluating the Miocene sedimentation 

hypothesis. 

 A major suture zone is not the only factor that may have contributed to present species 

distributions. Differences in physiological tolerance across OTUs may also explain the persistent 

distinction of clades even after the sedimentation subsided. In the western Gulf, the sand is rich 
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with silt which limits the ability for water to percolate to deeper interstitial spaces causing the 

redox layer to be shallow (Revsbech et al, 1980). To the east of the Mississippi, the sand is 

coarser allowing water to drain deeper and thereby increasing the habitable zone of burrowing 

amphipods. These differences in depth of the redox layer may impact which species can occupy 

the beach. For example, sympatric amphipods in South Carolina were found to partition the 

beach vertically by tolerance to anoxia (Grant, 1981). Variation in sand grain size has also been 

proposed to explain the over two-fold increase in body size in the eastern Gulf amphipods 

compared to those collected in the west (Hancock & Wicksten, 2018; LeCroy, 2002). 

 

Population connectivity and dispersal 

 

 Significant population structure was found between almost all site comparisons (Fig. 

1.6), which supports the hypothesis that haustoriid amphipods have limited dispersal abilities. 

However, dramatic differences in geographic range exist between the two genera. Haustorius 

galvezi (Mexico) ranges from at least South Padre Island, Texas, to southern Tabasco, Mexico 

(~1,200 km), whereas Lepidactylus triarticulatus contained entirely site-specific lineages. This 

could indicate behavioral differences associated with entering the water column and vertical 

beach migration. On beaches where L. triarticulatus and H. galvezi are found in sympatry, the 

former tends to occupy the high intertidal with the latter at the mid-to-low intertidal zones 

(Shelton & Robertson, 1981). In the eastern Gulf, LeCroy (2002) noted that L. triarticulatus is 

most dominant on protected beaches and is replaced by H. jayneae on open, wave-swept 

beaches. These differences in ecology likely expose Haustorius spp. to wave action that may 

dislodge them from the sediment, allowing for passive dispersal by the currents. Lepidactylus 
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triarticulatus, alternatively, is largely protected from this in the higher intertidal and in calm, 

sandy bays.  

 Despite morphologically identifying all specimens from sites south of Sea Rim State Park 

in the western Gulf as H. galvezi, strong genetic divergence was uncovered along the southern 

Texas coastline. The northern and southern clades shared no haplotypes and were ~3% diverged 

at COI despite being separated by less than 200 km. These clades roughly correspond with 

defined ecoregions along the Texas coast, which may indicate a role of hydrological or 

geochemical differences on speciation (Mendelssohn et al., 2017). For example, the northern 

Texas coast has lower annual salinity than the south due to the high concentration of rivers 

flowing into the ocean (Zavala-Hidalgo et al., 2003). In addition, since haustoriid amphipods are 

passive dispersers, the current regime along the Texas coast may not favor migration northward 

from South Padre or southward from Port Aransas due to a counterclockwise flowing gyre 

between these sites (Mendelssohn et al., 2017; Zavala-Hidalgo, 2003). This gyre varies in 

intensity seasonally, but it may be prominent enough to act as a barrier to gene flow.  

 

Conclusions 

 

The Gulf of Mexico has a complex geological history of episodic sedimentation, 

freshwater inflow, and sea level alterations that each may have impacted the distributions of 

coastal marine organisms in the past. Previous biogeographic work in the Gulf of Mexico 

focused on organisms with planktonic larvae or those that are highly mobile, which limited the 

ability of these studies to detect ancient divergences. By using a fossorial, filter-feeding 

organism without planktonic larvae, I was able to detect deep divergences between sister clades 

of haustoriid amphipods isolated on opposite sides of the Mississippi River. Divergence-time 
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dating indicated that these splits occurred during the Miocene, and due to the distribution of 

sister taxa I inferred massive sedimentation event along the Louisiana coastline was the most 

likely explanation. 

Massive freshwater outflows have been shown to act as barriers to gene flow in coastal 

organisms in other systems; for example, the Orinoco River and the Amazon River freshwater 

plumes act as population breaks in the coastal sea urchin, Tripneustes (Lessios et al., 2003). 

Evaluating how widespread the impact of the Miocene sedimentation event was will require 

additional genetic analysis of coastal organisms, and I propose that other peracarids (isopods, 

mysids, and tanaids) will be most suited as, like amphipods, they are brooding crustaceans 

without pelagic larvae (e.g., Hurtado et al., 2016; Takada et al., 2018; Drumm & Kreiser, 2012). 

Notably, Haustoriidae is a relatively species-poor family in comparison with other amphipod 

families. However, this study has demonstrated widespread cryptic diversity exists in this group 

(possibly indicating the family as a whole has considerably more species than what are 

morphologically recognized), likely due, at least in part, to an ancient suture zone in the Gulf of 

Mexico. 
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CHAPTER II 

RAPID GENOMIC EXPANSION AND PURGING ASSOCIATED WITH 

HABITAT TRANSITIONS 

 

Introduction 

 

Genome sizes vary by several orders of magnitude across the Tree of Life and lack any 

correlation to organismal complexity (known as the C-value paradox; Gregory 2005; Lynch 

2007). For example, the fern Tmesipteris obliqua has a genome 50 times larger than ours 

(Hidalgo et al 2017). Several hypotheses have been proposed to explain this variation. The 

mutational-hazard hypothesis posits that genome size expansion is largely the result of the 

proliferation of parasitic DNA such as transposable elements (TEs), which is made possible by 

relaxed selection on genomes (Lynch & Conery 2003; Lynch 2007; Lefébure et al. 2017). 

Therefore, in organisms with low effective population sizes (Ne), we would expect a general 

increase in genome size due to weakened selection against these mildly deleterious expansions. 

In addition, selection may act against large genomes as they are metabolically costly to replicate, 

slow the rate of replication and cell division (Kozlowski et al 2003; Gregory 2005) and increase 

cell size (Cavalier-Smith 1978). Genome size expansion may also reduce developmental rates 

and therefore expand generation times (Gregory & Johnston 2008), which may lead to an 

increase in body size. For example, in Manduca sexta (Sphingidae) faster developmental rates at 

higher temperatures led to a shortened interval of cessation of growth (ICG), which limited the 

amount of mass that could be accumulated and therefore decreased body size (Davidowitz & 

Nijhout 2004). 
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While genome size variation exists at deep macroevolutionary scales, in animals (but not 

plants, e.g. Hloušková et al 2019) it is largely constrained at smaller scales with closely related 

organisms having similar genome sizes (e.g., Tiersch & Wachtel 1991; Sessegolo et al 2016;  

Roebuck 2017; but see Lower et al 2017). Covariance between relatedness and genome size has 

been used as evidence against the mutational-hazard hypothesis (Whitney & Garland 2010; but 

see Lynch 2011). Alternatively, congruence between genome size and phylogenetic relatedness 

could be a product of the lag in evolutionary timescales over which TEs noticeably proliferate 

compared to reductions in long-term Ne. Therefore, a step toward disentangling the evolutionary 

rate of TEs and long-term Ne variation on phylogenetic genome size congruence would be to 

identify young clades of organisms with dramatic differences in genome size that may represent 

a kind of “upper-bound” to TE expansion rates in nature.   

Spatial heterogeneity in selection may also explain genome size differences across a 

clade. Since genome sizes impact metabolic rates, environmental gradients that directly impact 

physiology, such as temperature or precipitation, may influence genome size variation. Alfsnes 

et al. (2017), in a study across Arthropoda, found that for Hexapoda there was a strong 

phylogenetic signal in genome size that appeared to be related to developmental strategies, 

whereas in crustaceans the relationship was less reliant on phylogeny and more a product of 

maximum latitude and water depth. Hultgren et al. (2018) found correlations between genome 

size and latitude in Amphipoda, and Jeffrey et al. (2016) found that genome sizes of Lake Baikal 

amphipods were correlated with water depth, body size, and diversification rates.  

Crustaceans, and many ectotherms in general, often follow a “temperature-size rule” 

(Walters & Hassell 2005) in which body size increases with decreasing temperature, whether at 

deeper waters or higher latitudes. Given that previous work has found an association between 
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genome size, body size, and latitude in some crustacean groups (e.g., Hultgren et al 2018; Jeffrey 

et al. 2016; Alfsnes et al. 2017), it is conceivable that there may be a general “genome-

temperature-size rule”. Specifically, when body size is dictated by temperature, genome size 

should also be driven by temperature. This line of reasoning originates from the fact that at lower 

temperatures selection on metabolic rates is weaker, and therefore genome sizes are free to 

expand (Gregory 2005).  

 

 

 

Haustoriid amphipods are a family of beach-dwelling crustaceans that are widely 

distributed across the northern hemisphere. These amphipods are morphologically specialized to 

Figure 2.1. Map of sample sites. 
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a fossorial lifestyle and display dramatic body size variation across their range (LeCroy 2002; 

Hancock & Wicksten 2018). In the Gulf of Mexico (GoM), haustoriids show an increase in body 

size west-to-east, with the largest in Florida and the smallest in Texas and Louisiana. A similar 

pattern of body size variation is seen in the Atlantic; however, body sizes increase south-to-

north, with the smallest in Florida relative to the largest in Massachusetts. Therefore, haustoriid 

amphipods represent a natural system to test a possible “genome-temperature-size rule”. Since 

mean annual temperatures do not vary across the GoM but body sizes do, we do not expect to see 

a change in genome sizes if temperature is the constraining factor. Alternatively, in the Atlantic 

where mean annual temperatures vary dramatically from the southern to northernmost latitudes, 

we expect genome sizes to increase with increasing latitude. In this way, we can tease apart the 

correlation between body size and temperature seen in most amphipods (and ectotherms in 

general), and isolate the causal factor influencing genome size in this clade.   

Previous work on this family has found strong population structure and widespread 

cryptic diversity (Hancock et al. 2019). In the GoM there are at least 6 species of haustoriids: 

Haustorius galvezi, H. jayneae, and a species complex of four distinct lineages of Lepidactylus 

triarticulatus. In the Atlantic, there exists only one “species” of Haustorius, H. canadensis, 

which ranges from at least Melbourne, Florida to Cape Cod, Massachusetts. This species shows 

incredible body size variation – at its lower range it is 4–5 mm in length, whereas at its 

northernmost range it can be as large as 18 mm (LeCroy 2002). Given the extent of cryptic 

diversity in this group already identified in the GoM (Hancock et al 2019), I expect that similar 

diversity exists in the Atlantic and that H. canadensis likely represents a cryptic species complex.   

In this study, I evaluate genome size variation within haustoriid amphipods and test for 

correlations between environmental and phenotypic variables such as latitude, temperature, 
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salinity, and body size to evaluate the existence of a general “genome-temperature-size rule”. I 

provide a time-calibrated phylogeny of the Haustoriidae to determine the timescale over which 

genome size variation occurs, and use this phylogeny to reconstruct ancestral environments, 

body sizes, and genome sizes. Finally, I perform low-coverage next-generation sequencing to 

characterize repetitive content across the genome to identify which families of repeat elements 

might be driving genome expansion.     

 

Methods 

Specimen collections and measurements 

 

 Amphipods were collected across 9 sites in the GoM covering roughly 20° longitude and 

6 sites in the Atlantic spanning 20° latitude (Fig. 2.1). Specimens were collected in the swash 

zone using a hand-shovel and 435𝜇m sieve plate. Individuals targeted for genome size estimation 

were removed from the sieve plate with forceps and either kept alive in sand and seawater from 

their local environment or were fresh frozen on dry ice. For specimens in which genome 

sequencing was to be performed, they were removed from the plate and placed immediately into 

95% EtOH. Specimens were identified to species in the lab using a Leica M205 FA dissecting 

scope, and I recorded body length for each specimen as distance (in mm) from rostrum to 

epimeron 3. At each site, I recorded both water temperature and salinity (using a refractometer). 

In addition, I categorized sand grain size at each location as “fine”, “medium”, and “course” 

based on how freely it passed through sieve plates of 1.18mm, 0.6mm, and 0.3mm. Sand denoted 

“fine” passed through all plates without retaining any shells or rocks; “medium” sand passed 
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through the first two without retaining shells or rocks but not the final; “coarse” sand passed 

through the first and second, but large amounts of rocks and shell hash were retained.  

 

Genome size estimation 

 

 Genome size estimation via flow cytometry was performed on fresh frozen or live 

samples as described in Johnston et al. (2019), Arnqvist et al. (2015), and Harahan & Johnston 

(2011). In brief, the anterior portion (excluding reproductive tissues) of each amphipod was 

placed into 1ml of Galbraith buffer in a 2ml Dounce tube (Kontes) along with the brain tissue 

from two standards, a female cowpea weevil (Callosobrucus maculatus; 1C = 1,233 Mbp) and a 

male American cockroach (Periplaneta americana; 1C = 3,338 Mbp). Nuclei from the sample 

and standard were released with 15 strokes of the loose (B) pestle. Debris was reduced by 

filtering the ground solution through a 40U nylon filter. DNA was stained for 2 hours in the cold 

and dark with prodidium iodide (25 ppm). Mean stain uptake in the 2C nuclei of the standards 

and the sample were determined using a CytoFlex Flow Cytometer (Beckman Dickenson). The 

genome size of each sample was calculated as the ratio of the mean fluorescence (output as a 

channel number) of the sample and the standard times the amount of DNA in the standard.  

Preliminary estimates found no sex-specific differences in genome size, and thus I pooled males 

and females. Unfortunately, sample degradation reduced our sample size to 1 for many sites, 

precluding us from evaluating within-site variation (Table 2.1).   
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Species Location Sample size* Genome size (Mb) Coverage Mean 
body 

length 
(mm) 

Sand 
grain size 

N. schmitzi Tybee Island, GA n = 1 7500 0.0221 2.0 Fine 

H. canadensis Melbourne, FL n = 1 11050 0.0213 6.25 Middle 

H. canadensis Jacksonville, FL n = 1 11690 0.0247 6.17 Fine 

H. canadensis Tybee Island, GA n = 1 13080 0.0164 5.64 Fine 

H. canadensis Hatteras, NC n = 1 12830 0.0193 6.42 Middle 

H. canadensis Long Island, NY n = 1 11990 0.0216 9.0 Coarse 

H. canadensis Cape Cod, MA n = 1 11390 0.016 13.78 Coarse 

H. galvezi Port Mansfield, 
TX 

n = 5 7350 0.034 4.0 
 

Fine 

L. 
triarticulatus 

Sea Rim, TX n = 5 2200 0.036 3.2 Fine 

L. 
triarticulatus 

Grand Isle, LA n = 1 2380 0.027 3.26 Fine 

H. allardi Holly Beach, LA n = 5 2130 0.053 2.4 Fine 

L. 
triarticulatus  

Pass Christian, 
MS 

n = 1 3000 0.011 3.6 Middle 

L. 
triarticulatus 

Pensacola Bay, 
FL 

n = 1 2900 0.009 5.74 Middle 

L.dysticus North Carolina 
Sound 

n = 1 7520 0.025 5.0 Middle 

 

DNA extraction and sequencing 

 

 Whole genomic DNA was extracted from either the whole specimen or pereopods 6–7 

depending on the size of the amphipod using an EZNA Tissue DNA kit (Omega Bio-tek Inc.) 

following manufacturer’s protocols. Mitochondrial cytochrome oxidase I (COI) was amplified 

Table 2.1. Summary of samples and their genome sizes. *Sample sizes specifically for genome size estimates. 
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using forward and reverse primers from Folmer et al. (1994), and nuclear 28S ribosomal RNA 

(28S) was amplified using primers from Hancock et al. (2019). Polymerase chain reaction (PCR) 

conditions followed Hancock et al. (2019) for both mitochondrial and nuclear loci. Amplicons 

were verified using gel electrophoresis and purified with ExoSAP-IT (Affymetrix Inc.). Sanger 

sequencing on forward and reverse strands was performed at the DNA Analysis Facility on 

Science Hill at Yale University. Sequences were cleaned and manually edited using Sequencher 

v4.10.1 (Gene Codes Corp.), and alignments were performed in MAFFT 7 (Katoh & Standley 

2013). The COI sequence was visually checked in Mesquite v3.5 (Maddison & Maddison 2018) 

to ensure there were no premature stop codons.  

 To generate repeat profiles, I performed low-coverage Illumina sequencing on 85 

individuals from 15 locations across the GoM and North Atlantic (Table 2.1; Fig. 2.1). DNA 

was quantified with the dsDNA high sensitivity Qubit Assay (ThermoFisher) and checked for 

quality with an Agilent TapeStation genomic DNA tape (Agilent Technologies). Sequencing 

libraries were generated using the Swift 2S Turbo DNA Library preparation kit with enzymatic 

fragmentation and combinatorial dual indexing following the manufacturer's instructions (Swift 

Biosciences). Libraries were pooled in equimolar ratios and sequenced in a single lane of 2 x150 

paired-end sequencing on an Illumina NovaSeq 6000 (Illumina).  

 

Characterization of repeat elements 

 

 Quality control was performed on FASTQ files in the RepeatExplorer Galaxy platform 

(https://repeatexplorer-elixir.cerit-sc.cz/). For each population, individual left-hand and right-

hand sequences of all individuals were first concatenated to increase coverage. I designated an 
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acceptable Phred-score of 20 and a 95% cutoff on reads with bases less than this score. This was 

followed by trimming reads to a uniform 100 bp to allow straightforward calculation of coverage 

percent downstream. Reads shorter than 100 bp were discarded. Left- and right-hand reads were 

then interlaced and scanned for overlap. Next, I used RepeatExplorer v2.3.8, which uses a 

graphical clustering approach to identify repeat profiles using sequencing reads and has been 

shown to perform well with low-coverage sequencing (Novák et al 2010; Lower et al 2017; 

Hloušková et al 2019). I specified the Metazoa 3.0 protein database for repeat annotation. For 

each population, I ran RepeatExplorer for the maximum number of processible reads, which 

ensured coverage was ≥ 1% for all populations (Table 2.1). Only clusters that occurred in > 

0.01% of the sampled reads were annotated, the remaining fell into a “bottom clusters” category.   

 

Phylogenetic inference and comparative methods 

 

 To determine whether populations of the same “species” could be considered as 

independent evolutionary lineages (i.e., represented cryptic diversity), I performed pairwise 

genetic differentiation tests in DnaSP v6 (Rosas et al 2017) with 5–10 individuals per population 

using the mitochondrial locus. I performed the three measures of differentiation from Hudson et 

al (1992), namely HST, KST, and KST*. The first, HST, is measured as 1 – (HS / HT), where HS is 

the weighted average of haplotype diversity within the subpopulation and HT is the total 

population haplotype diversity. KST is measured as 1 – (π12 / π), where π12 is the weighted 

average of nucleotide differences between site 1 and 2, and π is the average number of 

differences irrespective of locality. Finally, KST* is identical to KST except π12 is changed to log(1 

+ π12), which acts to downweight π12 when it becomes high (Hudson et al 1992). Significance 
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was determined using a permutation test with 1000 replicates. Populations with significant 

differentiation values (ɑ = 0.05) in at least two of the three tests were retained as “independent”; 

otherwise, one sample site was randomly discarded.  

To estimate the age of the clade and to perform phylogenetic comparative methods, I first 

constructed a time-calibrated tree using BEAST2 (Bouckaert et al 2019). I specified a GTR 

model of substitution for COI and an HKY model for 28S, as these were the indicated best 

models in PartitionFinder2 (Lanfear et al. 2017). I applied a molecular clock to COI as an 

exponential prior with a mean of 0.01 substitutions per site per Myr (Hancock et al 2019; Takada 

et al 2018; Knowlton & Weigt 1998). I applied a relaxed lognormal clock to 28S following 

Hancock et al (2019). I then applied two calibration points based on known vicariant events: 1) 

the closure of the Okefenokee Trough ~1.75 Myr separating Atlantic and Gulf taxa (Bert 1986; 

McClure & Greenbaum 1999); and 2) the proposed interglacial Pleistocene colonization of H. 

arenarius to Europe (Bousfield 1970). For the first calibration, I applied an exponential prior 

offset to 1.5 Myr (a conservative lower bound for the closure of the trough) to the 

Acanthohaustorius sp. and A. millsi clade, GoM and Atlantic endemics, respectively. For the 

second calibration I applied a gamma distributed prior with ɑ = 1.5 and 𝛽 = 1.0, which has a 

mean of ~1.18 Myr, roughly in the middle of the Pleistocene. The MCMC was run for 50 million 

generations ensuring ESS values > 200. I generated a consensus tree using TreeAnnotator 

(Bouckaert et al 2019), which was visualized in FigTree v1.4.3 (Rambaut 2011).  

 The resulting tree was imported into the R platform and pruned down to only the taxa in 

which genome size data was available using the package ape v5.3 (Paradis & Schliep 2019). I 

next used the package caper v1.0.1 (Orme et al 2018) to perform phylogenetic generalized least 

squares (PGLS) on associations between genome size and environmental variables, body size, 
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and repeat element profiles. This allowed me to estimate Pagel’s λ, which ranges from 0.0–1.0 

and indicates how much phylogenetic signal is present in the data (Pagel 1999). I performed a 

combination of two-variable linear regressions (e.g., between body length and genome size) as 

well as models that included interactions between predictor variables. I performed the latter 

because there is expected to be more than one variable influencing body size. For example, body 

size may be a function of an interaction between temperature and genome size. In addition, I 

performed ancestral state reconstructions on both the continuous and discrete variables using the 

package phytools (Revell 2012). These included genome size, repeat content (specifically 

LINEs), body size, sand grain size, and habitat (“open” versus “brackish”).  

 

Results 

Genome size variation and age of the clade 

 

 Estimates from flow cytometry indicated genome sizes ranged from 2,130 Mb to 13,080 

Mb (Table 1). The amphipods with the smallest genomes were all restricted to warm, brackish 

water – namely, H. allardi and the L. triarticulatus species complex. The largest genomes 

belonged to the H. canadensis complex, with the largest (13,080 Mb) found at Tybee Island, 

Georgia.  

All pairwise differentiation comparisons were significant for at least two measures except 

for between H. jayneae sampled at Carrabelle Beach, FL and Grayton Beach, FL / Dauphin 

Island, AL (Table S2.1). Carrabelle Beach was thus dropped from subsequent analyses.  

 The calibrated phylogenetic tree indicated that the entire haustoriid clade is less than 12 

Myr old, and that the clade in which I performed genome size estimates is only ~3.5 Myr old 



 42 

(Fig. 2.2c); however, the range of the 95% highest posterior density (HPD) for the clade was 

large indicating wide uncertainty in the age estimates (1.67–6.25 Myr).  

 

 

 

 

 

Repeat profiles 

 

 The most abundant annotated repeat elements were Class I repeats, the genomic 

proportion of which ranged from 3.9% (L. triarticulatus, Pensacola Bay, FL) to 48.6% 

(Neohaustorius schmitzi). Of the Class I elements, LINEs were the most abundant, accounting 

for as much as 29% of the genome (H. jayneae, Dauphin Island, AL). LTRs were less prevalent, 

normally less than 6% (see Table S2.2), but two taxa showed dramatic LTR expansions: N. 

Figure 2.2. Calibrated phylogeny of the Haustoriidae. a) L. triarticulatus from Pensacola Bay, FL; b) 
haustoriids on a sieve plate; c) time-calibrated phylogeny. Red circles are samples with genome size 
estimates; blue stars are calibration points; node bars represent 95% HPD. All nodes have PP > 0.95 unless 
specified.  
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schmitzi (18.9%) and L. dysticus (17.7%). The only Class II repetitive element identified was the 

large transposon Maverick, which made up at most 1.5% of the genome (L. dysticus). Large 

satellite repeats were identified in all species, which ranged from 1.5% (H. canadensis, 

Melbourne, FL) to 28.5% (L. triarticulatus, Pensacola Bay, FL) of the genome. Unlike the 

previous repeat elements, satellite repeats appeared to be the most prevalent in the smallest 

genomes (Fig. 2.3a; Table S2.2).  

 

 

 

 

 

 

 

Figure 2.3. Repetitive content. a) Barplot of repeat content proportion per sample, colored by repeat element family, 
every other species name bolded to aid in visualization; b) correlation between log(genome size) and total repetitive 
content; c) correlation between log(genome size) and LINE proportion.  
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Genome size correlates and ancestral state reconstructions 

 

 I found no correlation between latitude and genome size with either the raw data (p = 

0.08, r2 = 0.19) or incorporating phylogeny (p = 0.20, r2 = 0.11). I also found no correlation 

between genome size and salinity (p = 0.67, r2 = 0.01, 𝜆 = 1.0) when accounting for phylogeny, 

although a significant relationship was found in the raw data (p = 0.0004, r2 = 0.56). However, I 

found a strong correlation between body length and genome size in both the raw (p = 0.01, r2 = 

0.33) and the PGLS comparisons (p = 0.01, r2 = 0.33, 𝜆 = 0.0). For the body length mixture 

models, I found the model with the lowest AIC score (60.18) was one that included genome size 

(p = 0.01), temperature (p = 0.04), and an interaction between genome size and temperature (p = 

0.02; see Table 2.2). In addition, I found a strong positive correlation between latitude and body 

size (p = 0.0007, r2 = 0.57, 𝜆 = 0.0).  

I found a positive relationship between genome size and total repetitive content (p = 

0.000047, r2 = 0.71), and a ML estimate of Pagel’s 𝜆 = 0.82, indicating that there was strong 

phylogenetic signal in total repeat content (Fig. 2.3b). Of the different identified repeat families, 

Class I repeats had the strongest correlation with genome size (p = 0.004, r2 = 0.44, 𝜆 = 0.87), 

with this pattern being driven by LINEs (p = 0.001, r2 = 0.53, 𝜆 = 0.49; Fig. 2.3c). An opposite 

relationship was found with satellite repeats due to the preponderance of these in the smallest 

genomes (p = 0.04, r2 = 0.26, 𝜆 = 0.91). There was no relationship between percent coverage and 

total genomic repeat content (p = 0.34, r2 = 0.06).  

 The ancestral state reconstruction analysis revealed a general correlation between 

increases in genome size and body length, with the latter lagging behind the former (Fig. 2.4). In 

addition, I found that the ancestral environment was most likely an open coast with high salinity, 



 45 

and that there have been at least four independent transitions into brackish, protected beaches: 1) 

Eohaustorius on the Pacific coast; 2) the L. triarticulatus species complex in the GoM; 3) L. 

dysticus in the North Atlantic; 4) and H. allardi along the Texas and Louisiana coastline (Fig. 

2.5).  Finally, I found a weak relationship between sand grain size and body length (Fig. 2.4b): 

the smallest haustoriids occur in fine sand and the largest in coarse, though there is considerable 

overlap in body sizes between fine and medium.  

 

 

Model df P value r2 Pagel’s 𝜆 𝜆 95% CI AIC 

TR ~ log(GS) 14 4.713e-05 0.7052 0.824 0.127–0.961 - 

C1 ~ log(GS) 14 0.004834 0.4439 0.872 0.481–0.970 - 

C2 ~ log(GS) 14 0.1064 0.1754 0.000 0.000–0.813 - 

RE ~ log(GS) 14 0.04179 0.2639 0.907 0.000–0.994 - 

LTR ~ log(GS) 14 0.194 0.1174 0.995 0.938–1.000 - 

LI ~ log(GS) 14 0.001314 0.5334 0.491 0.000–0.856 - 

BO ~ log(GS)  14 0.1513 0.1413 0.514 0.000–0.914 - 

log(GS) ~ log(Lat) 14 0.2013 0.1138 1.000 0.981–1.000 - 

BL ~ Lat 14 0.0007267 0.5696 0.000 0.000–0.827 - 

log(GS) ~ SA 14 0.6787 0.01262 1.000 0.958–1.000 - 

BL ~ T + log(GS) + 
T*log(GS) 

12 0.0001575 0.8027 0.000 0.000–0.870 60.17677 

BL ~ T + log(GS) 13 0.0004119 0.6986 0.000 0.000–0.824 64.96170 

BL ~ T 14 0.0007938 0.5644 0.490 0.000–0.945 67.21072 

BL ~ log(GS) 14 0.01929 0.3329 0.000 0.000–0.744 75.67192 

 

  

 

Table 2.2. Summary of genomic correlation models. Abbreviations: TR (total repeat %), GS (genome size), C1 
(Class I repeats), C2 (Class II repeats), RE (satellite repeats), LTR (LTR-retrotransposons), LI (LINEs), BO 
(bottom clusters), Lat (latitude), BL (body length), SA (salinity), T (temperature). 
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Discussion 

 

Is there a general “genome-temperature-size-rule” that explains haustoriid genome 

evolution? I found mixed evidence for this, indicating that the factors that influence genome size 

are complex and multifaceted. While I found evidence from mixed models of an interaction 

between genome size and temperature on body length, there was not a significant relationship 

between latitude and genome size (p = 0.08). Instead, genome size variation in haustoriid 

amphipods may be the result of differing environments, with amphipods living on surf-swept, 

high salinity beaches having increased body length and genome size compared to those living in 

warm, brackish bays (Fig. 2.5). Further, I found that genome size and repeat element prevalence 

have strong phylogenetic signal (Table 2.2).  

 

The drivers of genome size evolution in Haustoriidae 

 

 Haustoriid amphipods display incredible genome size variation across relatively recent 

evolutionary time (Fig. 2.4a). Most haustoriid genomes are large (>7000 Mb), but this may be an 

ancestral condition. The most closely related amphipod in the Animal Genome Size Database 

(http://www.genomesize.com/; Gregory 2020) are the pontopoeriids Monoporeia affinis and 

Pontoporeia femorata, each of which have genome sizes of 8242 Mb. Therefore, N. schmitzi, L. 

dysticus, H. galvezi, and H. jayneae may represent cases of relative genomic stasis (± 1000 Mb). 

Alternatively, the H. canadensis clade has experienced rapid genomic expansions within the last 

3 Myr.  It should be noted that H. canadensis and its sister species, H. arenarius, are some of the 

largest fossorial amphipods and are the most abundant at higher latitudes.  
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 In stark contrast, the predominantly warm, brackish water clades of L. triarticulatus and 

H. allardi show evidence of massive genomic purging. If the ancestral genome size was ~8000 

Mb, these clades have lost on average 5500 Mb. These genomes are largely devoid of LINEs, 

which occupy up to 30% of the genomes of their relatives. This may indicate that genomic 

purging has targeted transposable elements specifically, which has been found in other taxa 

(Kelley et al 2014; Barrón et al 2014; Lyu et al 2018; Misof 2019). Notably, I also found that 

these genomes have a much higher percentage of satellite repeats than their relatives, especially 

the L. triarticulatus species complex. Since these repeats are distributed throughout this 

complex, it likely represents an ancestral expansion.  

 Brackish bays present unique physiological stresses not present on the open coast. Bays 

tend to be on average warmer than the open ocean, and in the GoM can reach 34℃ in the 

summer months (Ross & Behringer 2019; Holmquist et al 1989; Table 2.1). These higher 

temperatures reduce the capacity of water to retain dissolved oxygen, which may increase 

respiratory stress in some organisms compared to the highly oxygenated sands of the open coast 

(Bousfield 1970). Bays also have shallow anoxic layers due to densely packed organic matter 

(Revsbech et al 1980). Finally, due to freshwater runoff and poor mixing, bays are typically 

brackish and may have salinities as low as 5‰ (this study), which increases osmotic stress on 

cells. Haustoriid amphipods are in general tolerant of wide salinity fluctuations, but only a few 

clades (Eohaustorius estuarius; the L. triarticulatus species complex; L. dysticus; and H. allardi) 

have specialized to live in bays and freshwater inlets, possibly due to the reasons above. These 

species may also be found on the open coasts, but they tend to be less numerous and relegated to 

the subtidal zone (LeCroy 2002; Hancock & Wicksten 2018).     
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 Temperature and salinity have been shown to have synergistic impacts on oxidative 

stress, such that some species may tolerate high temperatures or low salinity, but not in 

conjunction (Takolander et al 2017). This may explain why the two observed GoM shifts to 

brackish environments are accompanied by body size and genome size reductions, but not the 

Atlantic shift (i.e., L. dysticus; Fig. 2.5c). The North Atlantic consistently has lower sea surface 

temperatures (SST) than the GoM, and therefore, for much of its range, L. dysticus may be 

exposed to low salinity but not high temperature.  

 

  

Given the increased metabolic stress associated with transitioning to warm brackish bays, 

I hypothesize that strong selection on faster metabolism led to rapid genomic purging in L. 

Figure 2.4. Ancestral state reconstructions. a) genome size reconstruction (left) and percent LINE content (right); b) 
phenogram of body length and genome size, node labels represent posterior state probabilities; c) body size 
comparison of a large haustoriid (H. arenarius) and a small one (H. allardi). Abbreviations: NC (Hatteras, North 
Carolina); Ty (Tybee Island, Georgia); Me (Melbourne, Florida); Ja (Jacksonville, Florida); Lo (Long Island, New 
York); Ca (Cape Cod, Massachusetts); PC2 (Pass Christian, Mississippi); PB (Pensacola Bay, Florida); SR (Sea Rim, 
Texas); GI (Grand Isle, Louisiana); Gr (Grayton, Florida); DI (Dauphin Island, Alabama). 
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triarticulatus and H. allardi. In contrast, reduced metabolic stress at higher latitudes in H. 

canadensis may have provided a selectively permissive environment for transposable elements to 

proliferate.  

 

Body size evolution in Haustoriidae 

 

  Haustoriid amphipods range from 2–18 mm in length from rostrum to telson, and even 

within a single species complex may range from 4–18 mm (i.e., H. canadensis). Three major 

trends of body size evolution emerged from this study: 1) influence of temperature and latitude; 

2) influence of sand grain size; and 3) influence of genome size.  

 Previous work has established a relationship between body length and latitude in 

haustoriid amphipods (e.g., LeCroy 2002; Hancock & Wicksten 2018). I recapitulate these 

results, finding a strong correlation between body length and latitude (Table 2.1). Despite this 

correlation and the support from the mixed model of an interaction between genome size and 

temperature on body length, genome size is not correlated with latitude (p = 0.08). This 

discrepancy may be the result of temperature variation at individual sites irrespective of latitude. 

This is related to the “bay versus open ocean” discussion above, in which the topography of a 

given sample site may influence its temperature profile. This influence helps to explain why 

there is a similar disparity in body length across the GoM, despite little differences in overall 

SST averages. However, the higher summer temperatures undoubtedly constrain body sizes in 

the GoM, as not even the largest sampled haustoriid approaches the size sampled at the 

northernmost latitudes (9 mm versus 18 mm).  
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Crustacean body sizes are highly plastic and often environmentally determined (Cheng & 

Chang 1994; Atkinson & Sibly 1997; Twombly & Tisch 2000). Hancock & Wicksten (2018) 

posited that variation in sand grain size at different sites may help explain body size differences 

within a single species range. Fine sand predominates in the western GoM and tends to be more 

compact, which would be difficult to move through for a large amphipod (Table 2.1; Fig. 2.5b). 

Alternatively, in the eastern GoM and Atlantic, coarse and medium sand is the most common. 

Coarse sand is loose and characterizes beaches with steep berms and strong surf. These factors 

together may promote larger body size to traverse the heavy quartz sand and reduce the chance 

of being dislodged from the sediment by wave action.  

 Outside of latitude, genome size was the strongest predictor of body size. Genome sizes 

are known to increase cell size (Gregory 2005), but this does not necessarily lead to a 

proportional increase in body size. Instead, the relationship between body size and genome size 

may be an emergent property of the previous two factors impacting body size, as well as a 

possible influence of selection on metabolism. 
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Conclusions 

 

Genome size variation is likely the result of a complex network of interactions that 

include cellular and metabolic processes, life-history, and the population genetic environment 

(Gregory 2005; Lynch 2007). I have shown that that variation can arise rapidly following shifts 

to new environments, whether to a more selectively permissive or constraining one. Future work 

on haustoriid amphipods should include more comprehensive genome size sampling across the 

Figure 2.5. Transitions to brackish water. a) transition densities between brackish and open waters; b) ML 
estimate of ancestral sand grain size (“fine”, “medium”, “course”); c) ML estimate of ancestral habitat type 
(“brackish”, “open”). Green diamonds represent hypothesized transitions to warm brackish bays and lineages 
with genome size reductions; diamond marked with a “?” is a possible transition, though less parsimonious. 
Purple stars denote samples with genome-size estimates. Abbreviations follow Figure 2.4.  
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phylogenetic tree, especially in other species that have made the transition to brackish waters 

(such as E. estuarius). In addition, laboratory studies examining the physiological tolerances of 

different haustoriids would be valuable to test the hypotheses proposed here.   

  



 53 

CHAPTER III 

IMPACTS OF ANCESTRAL ISOLATION-BY-DISTANCE ON DIVERGENCE-

TIME ESTIMATION2 

 

Introduction 

 

A major goal in phylogenetic and phylogeographic studies is the estimation of species 

divergence times. The topic has a long and contentious history largely centered around questions 

of how to appropriately apply fossil calibrations (e.g., Heath et al. 2014; Brown and Smith 2018), 

rate heterogeneity (Pond and Muse 2005), rate of morphological evolution (Lynch 1990), and 

selecting an adequate clock model (Douzery et al. 2004; Lepage et al. 2007).  

Beyond methodological concerns are those that emerge from the nature of the data itself. 

Most phylogenetic models assume that fixed differences between species are the result of genetic 

drift, and under the neutral theory of molecular evolution (Kimura 1968; King and Jukes 1969) 

the rate of evolution (or substitution rate) is equal to the per generation neutral mutation rate, 𝜇 

(Kimura 1983). For well-calibrated molecular clocks (e.g., Knowlton and Weigt 1998; Weir and 

Schluter 2008; Herman et al. 2018), we can estimate the time of divergence (usually in years) as 

π12 / 2𝜇, where π12 is the pairwise sequence divergence between species 1 and 2. However, in 

general researchers are not interested in estimating the divergence time of specific genetic 

variants, but rather the time of population divergence (TD). For example, we might be interested 

 
2 Hancock, ZB & Blackmon, H. (2020) Ghosts of a structured past: Impacts of ancestral patterns of isolation-by-
distance on divergence-time estimation. Journal of Heredity, in press.  
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in estimating the timing of a vicariant event that we suspect corresponds to a past geological 

upheaval.  

There is a known discrepancy between the coalescent time of neutral genetic variants 

(TMRCA) and TD (Nei and Li 1979; Nei and Takahata 1993). The degree of this discrepancy is 

determined by the ratio of TD / Ne, where Ne is the effective population size (Edwards and Beerli 

2000; Rosenberg and Feldman 2002). This is because lineages must first be within the same 

population, which occurs TD generations in the past, followed by coalescence, which on average 

requires 2Ne generations. Therefore, for a completely panmictic population: TMRCA = TD + 2Ne. 

The expected amount of pairwise sequence divergence is  

E(π12) = 2𝜇[𝑇! + 2𝑁"]                 (1) 

(Wakeley 2000). When the ratio of TD / Ne is large, the bias in coalescent time in the ancestral 

population is minimal compared to TD (Edwards and Beerli 2000; Arbogast et al. 2002). 

However, as TD / Ne becomes small, 2Ne plays a major role in the overall sequence divergence 

between species. Rosenberg and Feldman (2002) evaluated the relationship between TMRCA and 

TD in a simple two population split model using coalescent simulations. They found that TMRCA 

converged on TD when the ratio of TD / Ne ≈ 5. Importantly, the Ne in these models is that of the 

ancestral population; therefore, the extent of overestimation is the result of demographic 

conditions present in the ancestor. Demographic conditions that inflate Ne, such as ancestral 

population structure or a bottleneck following the split, is expected to have a major impact on 

divergence-time estimation (Gaggiotti and Excoffier 2000; Arbogast et al. 2002; Angelis and 

Dos Reis 2015).  

Wakeley (2000) demonstrated that in descendant species who share an ancestor whose 

population dynamics are characterized by an island model (Wright 1931) with free migration 
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between demes, overestimation of divergence-times are on the order of 2NeD[1 + 1/(2M)] where 

M = 2NemD/(D - 1), m is the migration rate and D is the number of demes. The expected amount 

of pairwise sequence divergence is therefore 

E(π12) = 2𝜇*𝑇! + 2𝑁"𝐷 ,1 +
#
$%
./.     (2) 

Population subdivision initially leads to shallow coalescent times where individuals 

within a shared deme rapidly find ancestors (the “scattering phase”; Wakeley 1998). However, 

since ancestral lineages must be in the same deme to coalesce, the rate in the “collecting phase” 

is characterized by the migration rate that shuffles ancestors around the range, reducing the 

probability that lineages coalesce (Wakeley 1998; 1999).  

In the context of real populations, the island model of migration rarely applies (Meirmans 

2012; Whitlock & McCauley 1999). Instead, population structure is the product of the spatial 

distribution and dispersal potential of the organism in question. Often this structure is in the form 

of isolation-by-distance (IBD). IBD is a widespread pattern in natural systems, characterized by 

a reduction in the probability of identity by descent (Wright 1943) or genetic correlation 

(Malécot 1968) with geographic distance. Patterns of IBD are most pronounced in stepping-stone 

models (Kimura 1953; Kimura and Weiss 1964) in which migration is restricted to neighboring 

demes. In this way, demes in close proximity share a greater proportion of migrants than they do 

with more distant demes. Distributions of coalescent times in stepping-stone models have been 

studied both in the context of one dimensional and two-dimensional models that are circular or 

toroidal (Maruyama 1970a; 1970b; Slatkin 1991), and in continuous models with joined ends 

(Maruyama 1971) or with discrete edges (Wilkins and Wakeley 2002). Slatkin (1991), using a 

circular stepping-stone model, showed that the probability for two genes sampled i steps apart 

have an average coalescent time: 
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TMRCA = 2NeD + (!	(	)))
$+

    (3) 

Therefore, the amount of expected pairwise sequence divergence is: 

E(π12) = 2𝜇*𝑇! + 2𝑁"𝐷 +
(!()))
$+

/    (4) 

The circular stepping-stone model should overestimate TD more dramatically as the 

number of demes becomes large and the distance between them increases. However, like the 

island model of free migration, circular ranges are likely rare in nature. Instead, natural 

populations are characterized by discrete range edges where end demes may only receive 

migrants from one direction (e.g., Peterson and Denno 1998; Broquet et al. 2006; Aguillon et al. 

2017). Hey (1991) showed analytically in the case of a linear stepping-stone model that the 

distribution of coalescent times of two alleles from demes at the extremes of the range should 

coalesce much deeper than any two alleles chosen randomly from the population.  

Vicariant speciation is considered one of the most common forms of allopatry (Coyne & 

Orr 2004), and results from the cessation of gene flow at some discrete barrier in a species range. 

This form of speciation has been invoked across many empirical systems (e.g., Riddle et al. 

2000; Bocxaeler et al. 2006; Hancock et al. 2019). Vicariant speciation in organisms with low 

dispersal abilities may maintain strong allelic differences at the range edges ancestrally 

consistent with a pattern of IBD. For example, Hancock et al. (2019) found that sister species of 

beach amphipods in the Gulf of Mexico with large ranges showed patterns of IBD within 

species. In addition, they identified a distinct barrier to gene flow (the Mississippi River) and 

posited that this resulted in vicariant speciation. Since both IBD and vicariant speciation are 

presumed common in nature, biases in divergence-estimation based on π12 could be widespread.  

Ultimately, the degree to which TMRCA impacts phylogenetic inference and divergence-

time estimation is dependent on its impact on π12. Given that lower migration rates lead to 
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greater TMRCA (Hey 1991), we expect that differentiation (π12) between end demes compared to 

center demes will become more pronounced at smaller m. If the difference between the TMRCA of 

central demes and end demes is dramatic enough, we expect that divergence dating of species 

that arose from ancestral end demes may significantly overestimate TD.  

 

 

In this study, I estimate mean TMRCA for two genes sampled in descendant species (either 

from the ends or the center of the ancestral range) in which the ancestral population is 

characterized by a stepping-stone model with discrete ends using a simulation approach. In 

particular, I am interested in what value of TD / ND I expect TMRCA to converge on TD. I use ND 

(the product of the census size and deme number) as our expected Ne under panmixia (Wakeley 

2009). Next, I examine the distribution of π12 across the genome under different simulated 

migration conditions to compare with expectations under a panmictic model. I then test the 

performance of the phylogenetic inference program SNAPP (Bryant et al. 2012) on simulated 

Figure 3.1. Population model for SLiM simulations. A) Three-taxon species tree: 1) coalescent simulations in 
msprime with N = 2000; 2) ancestral stepping-stone conditions begin (see B); 3) N = 1000, panmictic; 4) 
population split, leaving end or center species surviving as sp1 and sp2. B) Ancestral population dynamics. 
Circles designated “1” and “10” are end species; center species are “5” and “6”. Adapted from Hancock & 
Blackmon (2020). 
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single nucleotide polymorphism (SNP) data to evaluate how these trends may bias inference of 

species divergence times. SNAPP is a BEAST (Bouckaert et al. 2014) package that operates 

under an explicit coalescent framework, inferring gene trees from individual SNPs. The program 

is ideal for phylogeographic studies that utilize RADseq and other genotype-by-sequencing 

(GBS) technologies to generate thousands of SNPs across the genome (e.g. Manthey et al. 2015; 

Dowle et al. 2017; Manthey et al. 2017; Leslie and Morin 2018), and has been used explicitly in 

divergence-time dating previously (Strange et al. 2018; Spalink et al. 2019; Fang et al. 2020). 

Finally, I illustrate how ancestral IBD can inflate divergence-time estimates on an empirical 

phylogenomic dataset of lizards (Domingos et al. 2017).   

 

Methods 

 

In the following methods, I use the term “deme” to represent a subpopulation of 

randomly mating individuals within a broader collection of demes that I refer to as the 

“population”. To be a part of the population, a deme must be able to share migrants with other 

demes within the population. I use the term “species” to represent an isolated randomly mating 

unit that no longer shares migration with other populations or demes. This is not meant to reflect 

any species definition. Finally, I use the term “end species” and “center species” to refer to a set 

of sister species that either descend from demes on opposite ends of the ancestral range (end 

species) or descend from neighboring demes in the range center (center species). Our focus 

below is on evaluating the coalescent times, pairwise differences, and estimated divergence times 

between these sister species (i.e., the outgroup – “sp3” in Fig. 3.1A – is only meant to root the 

tree).   
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For all simulation models, I used the product of the census population size (N) and the 

deme number (D) to evaluate the relationship of TD / N (Rosenberg and Feldman 2002). Since 

sp1 and sp2 (Fig. 3.1) transition to panmixia following the split at time TD, ND should 

approximate Ne, though there will be a period of nonequilibrium immediately following 

divergence. Therefore, the contribution to π12 from TD is on the order of ND. The ancestral 

contribution of π12 will necessarily be some value greater than ND due to population structure 

(i.e., Ne > ND; Wakeley 2000). My interest here is explicitly on how much greater this 

contribution is relative to TD.   

 

Coalescent simulations 

 

To evaluate the relationship between TD / N and (TMRCA – TD) / TD when the ancestral 

population is characterized by a stepping-stone model of migration, I used fastsimcoal2 

(Excoffier et al. 2013) simulations over a wide range of TD / N values. Specifically, starting at 

time 0 and going backwards, each simulation consisted of initially two species with no migration 

between them until time TD in the past. At TD, these two species merge into an ancestral 

population with 10 demes (D) following a linear stepping-stone migration model. For 

simulations of end species, the ancestral deme of each species was on opposite ends of the range 

(i.e., demes 1 and 10 in Fig. 3.1A). For the center species, the ancestral demes were neighboring 

and in the range center. For each of these two models, I sampled k = 2 individuals to coalesce, 

and each simulation terminated upon coalescence.  

In the ancestral population, center demes received migrants from neighboring demes at 

rate 2m, whereas demes at the end of the range received migrants at rate m. This is due to the fact 
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that end demes have only a single neighbor, whereas all center demes have two neighbors (Fig. 

3.1A). The ancestral population was simulated for migration rates of 0.1, 0.01, and 0.001, and a 

range of TD / ND values from 0.01–10. In addition, I simulated an island model of migration for 

comparison with the stepping-stone model. In the island model, the ancestral population 

consisted of 10 demes with free migration between each at rate m. This resulted in a total of 84 

distinct simulation scenarios, and each were replicated 1,000 times. I did not explicitly model 

chromosomes; instead, replicates were treated as independent loci.  

To statistically compare between the three models (end species sampled in stepping-

stone, center species in stepping-stone, and the island model), I subset ratios of TD / ND to values 

of 10, 5, 2, 1, 0.5, and 0.1. Resulting TMRCA distributions for each population model were 

compared using a pairwise Wilcoxon test in the R platform (R Core Team 2019), as the resulting 

distributions were non-normal.  

 

Genome simulations 

 

To evaluate how ancestral IBD impacts pairwise sequence divergence (π12), genome-

wide coalescent times (TMRCA), and divergence-time estimation, I performed hybrid simulations 

that combined the coalescent simulator msprime (Kelleher et al. 2016) and the forward-time 

simulator SLiM v3.3 (Haller and Messer 2019). Since forward-time simulators begin with 

individuals that are completely unrelated, often a neutral burn-in period is required to allow 

coalescence or mutation-drift equilibrium to occur (Haller et al. 2019). This can be 

computationally costly and time consuming; however, using tree-sequence recording methods in 

SLiM (Haller et al. 2019) I can bypass the need to equilibrate during the forward-time 
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simulation. To generate a panmictic ancestral population with a coalescent history, I simulated 

2000 individuals (Ne = 4000) using msprime with genome sizes of 10 Mb and a recombination 

rate of 10-8 (~0.1 recombination events per individual per generation). The resulting coalescent 

trees were then imported into SLiM as the basis for the starting population.  

In SLiM, the initial population was split into two populations of N = 1000: 1) an outgroup 

that remained panmictic (“sp3” in Fig. 3.1A) and 2) the ancestral population of the sister species 

“sp1” and “sp2”, which was subdivided into 10 demes (N = 100 per deme) in a linear stepping-

stone model (Fig. 3.1A). These dynamics persisted for 50,000 generations after which the 

ancestral population was split into either end species or center species (see Fig. 3.1A). This was 

done by removing the intermediate demes and instantaneously adjusting N for the two species to 

1000 so that the census size remained constant. The resulting 3-species were then allowed to 

evolve for TD generations before the simulation was terminated. Five different TD values were 

simulated which correspond to TD / ND ratios of 50, 25, 10, 5, and 1 (TD values of 50,000, 

25,000, 10,000, 5,000, and 1,000 generations). These values of TD / ND were chosen based on 

the results from the coalescent simulations in fastsimcoal2 (see Results); for values >10, TMRCA 

is expected to converge on TD, whereas values <10 are expected to overestimate TD regardless of 

migration rates. 

The resulting tree-sequences from the SLiM simulation were imported into Python 3 

using pyslim, and I overlaid neutral mutations (𝜇 = 10-7 per base per generation) onto the trees 

using msprime. Pairwise divergence (π12) was then estimated across the genome in windows of 

100 kb for both end demes and center demes. These values were also converted into generations 

using π12 / 2𝜇, which gives a rough estimate of divergence time per window.  
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Equation 1 primes our expectation for the amount of sequence divergence expected given 

some value of TD and ancestral Ne. By rearranging equation 1, I can naively calculate the 

ancestral Ne from genome-wide π12 as: 

Ne = ,!"($-#.
/.

     (5) 

From this, I plot estimated ancestral Ne within 100 kb windows across the genome to compare 

with the known census population size (Nc = 1000), and to evaluate the relationship between Ne 

and Nc in the presence of IBD.  

Next, I plotted the distribution of coalescent times (TMRCA) across the genome to 

visualize differences between TMRCA of end and center species. Median TMRCA for each ratio and 

migration rate was compared via a Kruskal-Wallis test and a pairwise Wilcoxon rank test in R 

due to the data violating normality.  

Each simulation produced >200,000 SNPs. For divergence-time analysis, I randomly 

sampled 3000 SNPs—a number found by Strange et al. (2018) to optimally perform in SNAPP. 

Each run consisted of 10 individuals from species sp1 and sp2, and 1 individual from the 

outgroup population, sp3 (Fig. 3.1). Unlike other fully coalescent models, SNAPP does not 

sample from gene trees directly to estimate the species tree, but instead integrates over all 

possible gene trees using biallelic SNPs. The method has been found previously to perform well 

on both simulated and empirical data (Bryant et al. 2012; Strange et al. 2018). I designated a 

gamma-distributed prior on 𝜃 (=4Ne𝜇) with a mean equal to the expected π12 (equation 1). 

Forward (u) and backward (v) mutation rates were estimated within BEAUti (Bouckaert et al. 

2014) from the empirical SNP matrix using the tab Calc_mutation_rates, and these values were 

sampled during the MCMC. The rate parameter 𝝀, which is the birth-rate on the Yule tree prior, 
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was gamma-distributed with α = 2 and β = 200, where the mean is α / β (Leaché and Bouckaert 

2018).   

SNAPP is designed to handle incomplete lineage sorting (ILS), but to minimize its 

effects—since I am not interested in the program’s ability to estimate topology but rather branch-

lengths—I applied a fixed species tree. Branch-lengths in SNAPP do not scale to time, but 

instead are measured in number of substitutions. Given a fixed mutation rate, I converted the 

number of substitutions separating sp1 and sp2 to the number of generations as g = s / 𝜇, where s 

is branch-lengths in units of substitutions (Bouckaert and Bryant 2015). The MCMC chain length 

was 10–50 million sampling every 1000 with a burn-in of 10%, ensuring that ESS values of 

interest were all >200. Runs were performed on the high-performance computing cluster 

CIPRES (www.phylo.org; Miller et al. 2010).  

MCMC log files were then downloaded and analyzed in R. The performance of SNAPP 

was evaluated by comparing traces of end and center species across migration rates and TD / ND 

values. Results were evaluated by first randomly sampling 1000 rows for each migration rate, 

and then performing a Kruskal-Wallis test. Trees from the MCMC were summarized in 

TreeAnnotator v.2.6.0 (Bouckaert et al. 2014) and visualized in R using the package ggtree (Yu 

et al. 2017). Branch colors were scaled by estimated median 𝜃 per branch. 

To ensure the trends observed were the result of inflated π12 when TD / ND and migration 

rate is low and not an issue unique to SNAPP, I performed pairwise FST tests of end and center 

demes that were used in the divergence-time estimation (see Appendix B; Fig. S3.10). These tests 

were performed using tskit. All SLiM recipes, python and R code, and xml files can be found at 

https://github.com/hancockzb/ancestralIBD.  
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Empirical dataset 

 

To evaluate how ancestral patterns of IBD may impact divergence-time estimation in 

practice, I analyzed the phylogenomic dataset of lizards from Domingos et al. (2017). The 

dataset consists of 12 species (including the identified cryptic lineages) sampled broadly across 

the geographic range of Tropidurus itambere, which is native to the Cerrado, a tropical savanna 

in Brazil that stretches across the states of Goiás, Mato Grosso do Sul, Mato Grosso, Tocantins, 

Minas Gerais, and the Federal District. Domingos et al. (2017), using anchored hybrid 

enrichment, identified five cryptic species they designated A–E within T. itambere. Each of these 

species were sampled across multiple localities with some locations spatially nearer to their close 

relatives than others (see Fig. 1 in Domingos et al. 2017). 

 This geographically broad sample scheme is ideal to test the impact of IBD on 

divergence-time estimation. If ancestral IBD has influenced π12, we expect species localities 

more distant to one another to be more deeply diverged than when two species are sampled from 

locations nearby. Importantly, this pattern should only hold if the range was once continuous (as 

in my simulations above); otherwise, there should be no difference in π12 between species even if 

there are current patterns of IBD within species. Ongoing gene flow between the spatially close 

localities could also generate this pattern, but Domingos et al. (2017) found no evidence for this.  

 The alignments used in the coalescent species delimitation in Domingos et al. (2017) 

were downloaded from https://datadryad.org/stash/dataset/doi:10.5061/dryad.1hs2m. I randomly 

selected 10 loci conditional on them containing samples from all locations (total length = 15,303 

bp). I generated two separate alignment files based on the sampled locality’s distance from their 

nearest relative. Preliminary analyses including the entire dataset showed that species (DE) were 
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sister to A, and B was sister to C (which was also found from the entire concatenated dataset in 

Domingos et al. 2017). Therefore, the first dataset I designated as “far”, and it included only the 

location of E that was most distant from A (i.e., São João D’Aliança), and the location of C that 

was the most distant to B (i.e., Ribeirão Cascalheira). The second dataset was designated “near” 

which included localities of E geographically closest to A (Brasilia and Pirenópolis) and C to B 

(Barra do Garças). 

 Phylogenetic inference was performed using the fully coalescent software *BEAST 

(Heled & Drummond 2010). For each locus, I applied the HKY model (Hasegawa et al. 1985) 

and a strict molecular clock. I also performed runs with a relaxed lognormal clock for each locus 

to ensure age differences across the tree were not the result of restricting substitution rate 

variation. Domingos et al. (2017) only focus on topology and time is not considered; therefore, I 

estimate branch-lengths in units of substitutions per site. I use an arbitrary rate of mutation (10-8) 

to convert substitutions to generations. This analysis is not meant to be a rigorous evaluation of 

the true time of divergence, but merely a demonstration of the impacts of ancestral IBD on 

empirical data. Each analysis was run for 100 million generations with a burn-in of 10%. 

Estimated divergence times between the two models were compared using a two-way ANOVA 

in R. Differences in the densities of estimated gene trees from the posterior were visualized using 

DensiTree (Bouckaert 2010).  
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Results 

Coalescent simulation results 

 

The coalescent simulations produced trends superficially similar to those found by 

Rosenberg and Feldman (2002). At the lowest TD / ND, the proportion of deep coalescence was 

dramatically greater than at higher values with the curve producing a similar logarithmic 

relationship (Fig. S3.1). However, TD and TMRCA did not necessarily converge when TD / ND = 

5. Instead, the rate of convergence was dependent on both the deme sampled and the migration 

rate.  

When migration was high (m = 0.1) and TD / ND was less than 0.5, there was no 

significant difference between center or end species in the stepping-stone model or the island 

model. However, for values of TD / ND > 0.5, the TMRCA of end species became significantly 

different from both island (p < 0.02) and center species (p < 0.01; see Table S3.1). When 

migration was reduced below 0.1, this pattern became more extreme. End species were 

significantly different in all pairwise comparisons of models (p < 0.000001), and center species 

differed from the island model at TD / ND ratios of 0.5, 2, and 10 (p < 0.03) when m = 0.01. At 

the lowest migration rate simulated (m = 0.001), all pairwise model comparisons were 

significantly different when TD / ND > 0.5 (p < 0.001; see Table S3.1).  

 

Genome simulation results 

 

Results from the genome simulation approach corroborated those found with 

fastsimcoal2. Regardless of TD / ND, when m = 0.1 the difference between center and end 
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species was less severe relative to when m < 0.1 (Table S3.2). Across the simulated genomes, 

TMRCA became dramatically deeper between end than center species as migration fell below 0.01. 

For the genome-wide divergence estimates, the degree of overestimation depended on the ratio 

of TD / ND. While all scenarios where m = 0.001 overestimated the true TD, when TD / ND < 10 

end species were 5–60 times more diverged than expected (Fig. S3). This is a direct result of the 

deeper coalescent times between end species when m < 0.1, as these longer branches provide  

 

Figure 3.2. Box plots of the estimated TMRCA by SNAPP; ns = “not significant”, p < 0.05 (*), p < 
0.001 (**), p < 0.0001 (***), p < 0.00001 (****). Dashed lines represent when the estimated age 
converges on the true age (i.e., at 0). Note that the y-axis is different between the panels. Center 
species are on the left, end species on the right. Adapted from Hancock & Blackmon (2020). 
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more time for mutations to occur and accumulate (Fig. S3.2). 

Genome-wide coalescent times (TMRCA) are shown in Fig. S3.2. When m = 0.1, only TD / 

ND = 25 and 10 were significantly different between end and center species (p < 0.005). 

Regardless of TD / ND, the variance in TMRCA steadily increased with decreasing m. Indeed, the 

increase in mean TMRCA when m = 0.001 appears largely driven by an increase in the variance at 

this lower rate. Due to this, I find that ancestral Ne dramatically exceeds Nc when m = 0.001 (Fig. 

3.3). 

Despite the potential for divergence-time overestimation to be extreme, SNAPP was 

relatively resilient when TD / ND > 10 and when m > 0.001. When TD / ND = 50, SNAPP was 

overly conservative and underestimated the number of substitutions expected to occur (Fig. 3.2). 

When TD / ND = 25, the mean estimate of both center and end species when m > 0.001 either 

underestimated the true age or was within 5%. However, for end species where m = 0.001 the 

estimated divergence time exceeded the true age by ~80% (Table S3.3). A similar trend occurred 

when TD / ND = 10 and 5. Here, both center and end species overestimated the true age, but the 

end species did so more dramatically (138% the true age versus 81% for 10; 184% versus 67% 

for 5). The most dramatic overestimation occurred between end species when TD / ND = 1 at 

~700% the true age. Importantly, this was not merely the result of a low TD / ND ratio, as the 

other migration regimes performed well. In fact, most were closer to the true TD than the 

expected π12 accounting for 2N (Table S3.3).  

Estimated 𝜃 for each branch is shown in Fig. 4 for TD / ND = 10, and in Figs. S4–S7 for 

the remaining ratios. For all TD / ND values except 1, the median ancestral 𝜃 was higher for end 

species than center when m = 0.001, and the estimated 𝜃 for the descendant species (sp1 and sp2 

in Fig. 3.1) was considerably lower than for the ancestor or the outgroup, sp3 (Fig. 3.4; Figs. 



 69 

S3.4–S3.7). These patterns are consistent with a population bottleneck, despite N being 

maintained throughout the simulation. 

 

 

Empirical results 

 

The estimated divergence-time for the clades ((DE)A) and (BC) were significantly older 

when samples were from geographically distant localities as opposed to those nearby (p < 

0.00001; Fig. 3.4c). For the ((DE)A) clade, the “far” dataset inferred an age of divergence of 

270,000 generations, which was 40,000 generations (or ~14%) higher than the “near” estimate. 

The (BC) divergence was even more extreme, with the “far” being ~24% older than the “near” 

(Fig. 3.4c). Interestingly, despite the fact that all other samples were included in both analyses, 

the “far” dataset estimated older ages for most of the other nodes in the tree as well (Fig. 3.4). 

Figure 3.3. Density plot of scaled ancestral Ne (/1000) based on mean π12 across genomic windows of 
100kb. Dashed line is when Ne / Nc = 1. Adapted from Hancock & Blackmon (2020). 
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The total tree height of the “far” was 220,000 generations deeper in time than the “close” (or ~ 

9%). The relaxed clock estimates were more extreme, with all node heights being higher in the 

“far” versus “near” datasets (Fig. S3.11).  

 

Discussion 

 

Macroevolutionary patterns are ultimately governed by microevolutionary processes (Li 

et al. 2018), an observation Lynch (2007), extending Dobzhansky’s (1973) maxim, summed up 

as “nothing in evolution makes sense except in light of population genetics”. In this light, I have 

demonstrated that the population genetic environment of the ancestor shapes the genetic 

landscape of descendant species. This has been known to impact tree topology when ILS is 

common (Kubatko and Degnan 2007) and overestimate divergence times in the presence of 

population structure caused by an island model of migration (Edwards and Beerli 2000; Wakeley 

2000). Extensive prior work has shown that the stepping-stone model of migration reduces 

genetic correlation between demes (Kimura and Weiss 1964; Maruyama 1970a) and that demes 

farther apart should coalesce deeper in time than those geographically closer (Slatkin 1991; Hey 

1991). However, to my knowledge, the impact of ancestral IBD has not been evaluated in the 

context of divergence-time estimation previously.  

Rosenberg & Feldman (2002) found previously that when TD / N = 5, TMRCA and TD 

largely converged in a simple population split model. However, when in the presence of 

ancestral IBD I found that convergence was dependent on the migration rate (i.e., the strength of 

ancestral IBD) and whether surviving species neighbored each other or were at the range ends in 

the ancestral population. 
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When TD / ND > 10, the ancestral dynamics contribute little to the divergence-time 

estimate differences between center and end species. However, as this ratio decreases the 

contribution of 2Ne to overall sequence divergence becomes non-trivial. The probability that 

genetic variants share an ancestor just prior to the population split is higher between species that 

were geographically closer than those more distant in the ancestral population. This is mediated 

by the migration rate, which, when high enough, can largely erase the differences between center 

and end demes. When migration is high (10%, or m = 0.1), individuals move well between 

demes and the coalescent times largely converge (though deeper in time depending on the ratio 

of TD / ND). However, as m falls below 1% (m = 0.01), or less than one migrant per generation 

being shared between demes, dispersal cannot keep up with genetic differentiation. Despite all 

migration regimes producing similar patterns of IBD (Fig. S3.9), FST becomes dramatically 

higher as migration drops below 1%. This differentiation in the ancestor contributes to the 

overall sequence divergence (π12) between species, which drives an overestimation of the time of 

the population split (TD) when surviving lineages descend from demes on the opposite ends of 

the range.  

As expected, ancestral IBD skews π12 and TMRCA away from expected values in a 

panmictic population, and this caused an inflation in Ne relative to Nc. For TD / ND = 50 and m = 

0.1, the mean π12 for end species was 0.010459 and 0.010419 for center species. Using equation 

5, ancestral Ne was 1147.5 for end species and 1047.5 for central. However, when m = 0.001, π12 

for end species was 0.012948, an ancestral Ne = 7370. Center species, on the other hand, only 

increased to Ne = 1255. As with the coalescent times, at lower migration rates the variance in Ne 

becomes exceedingly large, driving up the mean. Importantly, mean genome-wide Ne always 

exceeds Nc in the presence of ancestral IBD at a level dictated by the migration rate.  
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 This feature of ancestral IBD has important consequences for conservation genetics. 

Many studies use Ne as a rough biological measure of population size (Turner et al. 2002; 

Rieman and Allendorf, 2011; Hare et al. 2011), and therefore a metric of the health of a 

population. However, a common phenomenon in range contractions is fragmentation and 

isolation (Ceballos et al. 2017), which may result in IBD. If many of the demes once contributing 

to the connectivity of the population have become extinct, and Ne is estimated based on the 

surviving demes, it will overestimate the actual number of individuals within the population (i.e., 

the census size, Nc). Thus, we might incorrectly conclude that a species has a larger population 

size than it actually does, which may lead to mismanagement.  

Figure 3.4. Estimated divergence-times for the Domingos et al. (2017) dataset. A) the “near” trees from the 
posterior distribution; B) the “far” trees; C) boxplot of the two nodes of focus, where ADE is for clade ((DE)A) 
and BC is (BC); D) map of sample sites from Domingos et al. (2017). Significance is as in Fig. 3.2. Numbers at 
nodes represent the median height in units of millions of generations ago (mga). Adapted from Hancock & 
Blackmon (2020). 
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Since Ne is inflated in the ancestral lineage, the descendant species appear to pass through 

a bottleneck despite N remaining constant (Figs. S3.4–S3.8). Estimated 𝜃 in SNAPP captured 

this dynamic with more extreme differences in 𝜃 (i.e., more dramatic bottlenecks) being inferred 

between end species and when m = 0.001. Population bottlenecks have been found to cause 

divergence-time overestimation due to random differential survival of ancestral alleles into the 

descendant species (Gaggiotti and Excoffier 2000). In the presence of IBD, this differential 

allelic persistence between species is mimicking a bottleneck—when demes were far apart this 

pattern is more extreme as they already maintain different allelic patterns ancestrally. However, 

because this pattern is recognizable (Figs. S3.4–S3.8) it can be used to signal when ancestral 

IBD may be impacting our divergence-time estimation. Unfortunately, without prior range-size 

knowledge it may be impossible to differentiate between ancestral IBD and a bottleneck since 

these produce virtually identical genetic patterns. However, it may not be necessary to do so for 

simple divergence estimates.  

Demes need not necessarily go extinct for ancestral IBD to still influence π12, as seen 

from the results of the empirical dataset; however, the persistence of demes into the present 

allows for a geographically aware sampling scheme. Since Domingos et al. (2017) sampled 

broadly across the range of T. itambere, they would be well-positioned to identify inflated π12 

resulting from ancestral structure. For example, as I have done here, by subsetting the dataset by 

geographic proximity one can explicitly test for ancestral IBD. For ancestrally structured 

populations, geography should dictate the degree of π12. Importantly, this also requires that 

species diverged via vicariance (Coyne & Orr 2004) – the splitting of a once larger range by a 

discrete barrier – and not some other means, such as population expansions following divergence 

from a more restricted habitat.  
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The broader impact of ancestral IBD on divergence-time estimation when in the context 

of large phylogenies is beyond the scope of this work, but it is conceivable that the longer than 

expected branches between sister species might bias rate estimation (Aris-Brosou and Excoffier 

1996; Magallón 2010). In the case of ancestral IBD, the inflated Ne is mimicking a pattern of 

substitution rate increase. Under neutrality, the rate of substitution is equal to the per generation 

mutation rate, 𝜇 (Kimura 1983); however, in the presence of population structure, substitutions 

may occur in the ancestral lineages between demes separated by large geographic distances. If 

the true age of the sister taxa is known but ancestral structure is not accounted for, the 

substitution rate will be upwardly biased. I found some evidence for this in the T. itambere 

dataset, in which I found higher estimates of π12 in the “far” versus the “close” dataset even for 

nodes more distantly related to the focal clades (Fig. 3.4).   

Ancestral structured populations leave their imprint on descendent species in the form of 

greater coalescent times, and therefore larger than expected pairwise divergences between 

species. Further, these patterns cause inflated Ne relative to census sizes. Since ancestral IBD 

mimics the signature of a population bottleneck, coalescent methods that co-estimate 𝜃 along 

with the topology and π12, such as SNAPP and *BEAST, may be the best suited to reveal this 

potential source of bias. However, fully coalescent models such as these are infamously 

computationally costly and not presently used for whole-genome sequence data or for 

phylogenies with large numbers of tips. Indeed, SNAPP becomes prohibitively slow when the 

number of tips is ~30 (Leaché and Bouckaert, 2018).  

In the context of larger phylogenies or organisms in which little is known about their 

ancestral range, it may be impossible to know if extant species descend from range centers or 

ends, or the level of IBD present in the ancestor. The genetic consequences of ancestral structure 
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therefore behave much like “ghost” populations (Slatkin 2005); despite being extinct, their 

influence haunts our ability to adequately assess the phylogenetic history of their descendants.  
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CHAPTER IV 

SUMMARY 

PHYLOGENETICS IN SPACE: HOW CONTINUOUS SPATIAL STRUCTURE 

IMPACTS TREE INFERENCE 

 

Introduction 

 

Humans have an innate tendency to discretize nature. Taxonomy epitomizes this instinct: 

it searches for distinct characters, markers, or behaviors that differentiate organisms. Binomial 

nomenclature, the dichotomous key, all characterizes our desire to categorize biology. These 

categorizations make superficial sense; a cursory examination of biological diversity appears to 

support distinct species boundaries (Coyne and Orr 2004). Dawkins and Wong (2016) referred to 

this human urge as the tyranny of the discontinuous mind – a mental state of incongruity at the 

continuous nature of biology. As alluded to above, an example of this is the “speciation 

continuum”, which has received increased attention in recent years (e.g., Etienne and Rosindell 

2012; Li et al. 2017). For example, Etienne et al. (2014) introduced the “protracted speciation 

model” that incorporates probabilities of lineage splitting, extinction, merging, and completion. 

Li et al. (2017) use the protracted speciation model to demonstrate how the microevolutionary 

processes of lineage extinction and splitting can drive macroevolutionary patterns of species 

diversity along latitudinal gradients.  

In population genetics, most models assume some level of discretization out of 

mathematical convenience. Discrete population models have no spatial component and are 

composed of randomly mating individuals. These discrete populations are the foundation of the 
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classical Wright-Fisher (Wright 1931; Fisher 1923) and Moran (Moran 1958) models. Even 

when models subdivide the population into a series of demes, such as in the stepping-stone 

model (Kimura and Weiss 1964), each deme still consists of randomly mating individuals. Once 

a migrant finds their way into a deme, regardless of their deme of origin, they have the same 

probability of finding a mate as any other deme constituent. 

Phylogenetic inference using the multispecies coalescent model likewise assumes 

individuals exist independent of space. There are only two dimensions to the model: the width, 

dictated by the effective size of the population (Ne), and the length, the temporal aspect (Fig. 

4.1b). Bifurcations in the tree implicitly assume that the descendant Ne is immediately in 

equilibrium and can be represented by a single value (N, 𝜏, or 𝜃). In reality, Ne progresses 

through a period of nonequilibrium the duration of which is dictated by the degree of structure 

present in the ancestral population (Poissant et al. 2005; Pearse et al. 2006). Furthermore, these 

divergence events are assumed to occur evenly – lineages are equally likely to end up in either of 

the two descendant species. 

 The space-independence or “missing z-axis” typical of the models described contribute to 

their poor performance when populations are actually continuous (Fig. 4.1; Bradburd and Ralph 

2019). Battey et al. (2020) found that many summary statistics (such as 𝜃π, Tajima’s D, and FIS) 

behaved significantly differently in continuous populations versus a random mating population 

of equal size. While some of the trends were captured in stepping-stone models, strange artifacts 

emerged; for example, observed heterozygosity and Tajima’s D were far higher at low 

neighborhood sizes in the stepping-stone models (neighborhood size = 4π𝝆𝜎2, where π is the 

mathematical constant, 𝝆 is the population density, and 𝜎 is the dispersal distance; Wright 1943). 

These may be a feature of both discretizing the habitat and the sample size approaching the local 
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Ne when deme size is small (Battey et al. 2020). Wright (1943) noted that for continuous 

populations to be indistinguishable from panmixia, neighborhood sizes must exceed 1000. This 

neighborhood size is likely rarely achieved in nature. For example, Jasper et al. (2019) estimated 

the neighborhood size of the mosquito Anopheles aegypti to be only 268. Clearly, space matters 

for the inference of population genetic data. But what about phylogenetics?  

Phylogenetic inference rarely incorporates spatial structure as an explanation for gene 

tree discordance or node height variance. Many phylogeographic studies incorporate population 

genetic analyses, including analyzing population structure, but this tends to be a separate analysis 

that doesn’t directly influence the phylogenetic interpretation (e.g., Waldrop et al. 2016; 

Domingos et al. 2017; Takada et al. 2018). Instead, most of the variance in tree topology is 

attributed to incomplete lineage sorting (ILS) or hybridization (Cui et al. 2013; Árnason and 

Halldórsdóttir 2019; MacGuigan and Neer 2019) and branch-length variation to the action of 

natural selection or substitution rate heterogeneity (which may be influenced by population 

structure, though this is rarely directly invoked; Bromham et al. 2018). This is not due to a lack 

of theoretical or empirical work that demonstrates the importance of spatial structure (e.g., 

Wakeley 2000; Slatkin and Pollack 2009; DeGiorgio and Rosenberg 2016). In phylogenetics, the 

issue may instead be a kind of tyranny of discontinuous timescales – that is, the mental state that 

posits the processes of microevolution act on such different timescales that their influence on 

macroevolution should be negligible.  

Most simulation studies on ILS or species tree inference begin by simulating a species 

tree under either a pure birth model or a birth-death model, followed by coalescent simulation of 

gene trees (e.g., Maddison and Knowles 2006; Leaché and Rannala 2011; Fujisawa et al. 2016). 

As mentioned above, this method assumes panmictic ancestral populations, and therefore all 
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genetic lineages have equal probability of being split into descendent species (i.e., lineages exist 

independent of space). This space-independence simplifies ranges by failing to capture how 

realistic landscape dynamics can shape lineage diversity (Bradburd and Ralph 2019). For 

example, Wilkins and Wakeley (2002) found that coalescent times in a continuous space 

population depended not only on the distance between samples, but also the distance the samples 

were from the range center. Lineages within the range center coalesced deeper in time than 

peripheral lineages separated by the same distance. This feature of ranges – higher diversity in 

the center relative to the periphery – is not merely a feature of population genetic models but has 

been discussed for decades in the rangeland and conservation biology literature (e.g., Hengeveld 

and Haeck 1982; Lomilino and Channell 1995; Donald and Greenwood 2001).  

 

 

 

Figure 4.1. Phylogenetics in space. A) Gene tree topologies; B) the x- and y-axis of MSC phylogenetic inference, 
with the z-axis missing; C) making sense of gene tree incongruence by considering the z-axis. 
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The specific mode of speciation may contribute to gene tree asymmetry and node height 

variance as well. Allopatric speciation involves a split following a range expansion into a 

previously uninhabited territory or some form of range fragmentation. Coyne and Orr (2004) 

define these two modes of allopatry, originally identified by Mayr (1954), as peripatric 

speciation and vicariant speciation, but note that their main difference is in the size of the 

resulting populations. Each of these modes impact gene trees differently. For example, peripatric 

speciation is biased towards lineages present in the periphery of the population. Since these 

lineages tend to be less diverse, this may intensify the founder effect as the population expands 

into a new territory, especially if dispersal is low (Coyne and Orr 2004; Malay and Paulay 2010; 

Castellanos-Morales et al. 2016). In a model of vicariant speciation, an initially large population 

characterized by patterns of isolation-by-distance (IBD) is cut-off from its neighbors. This may 

lead to species with ancestors historically on opposite ends of the range to be more deeply 

diverged than expected in a panmictic model (Hancock and Blackmon 2020).  

I contend that discounting the spatial component of populations (the z-axis; Fig. 4.1b) 

can lead to spurious conclusions about both the underlying relationships of species (topology) 

and their history of divergence (node heights). In this study, I review several key findings in the 

literature and use continuous population models to illustrate the importance of spatial structure in 

three aspects of phylogenetics: 1) gene tree asymmetry and inference of hybridization; 2) species 

tree inference and divergence estimation; and 3) species delimitation. Finally, I propose how 

these findings can aid in the identification of spatial structure in a dataset, which, I hope, will 

promote a more thorough investigation of phylogenetics in an explicitly spatial context.  
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Trees in Space: Model 

 

 To illustrate the impacts of spatial structure on phylogenetic inference, I constructed a 

series of continuous-space models for 3-, 4-, and 6-taxon species trees using the forward-time 

simulator SLiM v3.3 (Haller and Messer 2019). Habitats were modelled as a grid with 

dimensionality (x, y), and were subset by how speciation (or population divergence) occurred: 1) 

vicariant speciation or 2) peripatric speciation (Coyne and Orr 2004). Vicariant speciation begins 

with a population distributed across the entire range, and proceeds through serial fragmentation 

events (Fig. S4.1a). Peripatric speciation, alternatively, begins with a single population that 

expands into a new territory before being cut-off from its source population (Fig. S4.1b). Due to 

the nature of population divergence, population size per population fluctuates, either progressing 

through a series of expansions or contractions. All simulated species trees are asymmetric or 

comb-like: ((AB)C), (((AB)C)D), and (((((AB)C)D)E)F).  

Population size is an emergent property of the local population density, which is 

governed by the spatial interaction distance, 𝜎I. The strength of 𝜎I is drawn from a Gaussian 

distribution with a maximum of 1 / 2π𝜎0$, where π is the mathematical constant, and is 

experienced within a maximum distance of 3𝜎I. Mate choice is dictated by 𝜎M, the strength of 

which, like 𝜎I, is drawn from a Gaussian distribution with max 1 / 2π𝜎%$  within a max distance of 

3𝜎M. After mates are chosen, the number of offspring produced are drawn from a Poisson 

distribution with 𝜆 = 2, which on average replaces the parents. Dispersal occurs immediately 

after offspring generation. Dispersal distance (𝜎D) is drawn from a uniform random distribution 

with a minimum and maximum of –3𝜎D and 3𝜎D, respectively. Following dispersal, the parental 

generation dies. Simulated individuals in all models are diploid with 1000 Mb haploid genomes 
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with a recombination rate of 10-9. Tree-sequences produced from each simulation are uploaded 

into tskit via pyslim (Kelleher et al. 2018). I then use the recapitation method in pyslim to 

simulate a coalescent history across all genomic intervals in which there exists multiple roots 

(i.e., coalescence did not occur during the run; Haller et al. 2019). Using msprime (Kelleher et al. 

2016), I overlay neutral mutations onto the trees at a rate of 10-8. Further details on each analysis 

performed is presented in the section in which it appears, and all SLiM recipes can be found at 

https://github.com/hancockzb. Detailed discussion of the model can be found in the Appendix A.  

 

Slatkin’s Skew and Gene Tree Asymmetry 

 

 The multispecies coalescent (MSC) provides an intuitive way to investigate topological 

incongruence between gene trees. The standard MSC assumes that all gene tree incongruences 

are the result of ILS, and the pervasiveness of ILS can be predicted given we know something 

about the intervals between speciation events. This interval is measured in units of 2Ne (or 

“coalescent units”). For a 3-taxon tree with topology ((AB)C), the probability of a gene tree 

being congruent with the species tree is 1 – $
1
e-t, where t = TD / 2Ne, and TD is the time of 

divergence in generations. For a tree to be incompatible with the species tree – topologies 

((AC)B) and ((BC)A) – coalescence must occur in the ancestral lineage of all three species. 

Since the MSC assumes panmixia and is space-independent, once all lineages are in the same 

population, they are equally likely to coalesce. Therefore, topologies ((AC)B) and ((BC)A) each 

occur with probability #
1
e-t.  



 83 

The same logic can be applied to a 4-taxon tree. In the case of four tips, there are 15 

possible topologies, and the probability of any one topology is a function of t1 and t2 (Fig. 4.1c). 

For the species tree topology (((AB)C)D), we can predict its probability as 

𝑓(𝑡#, 𝑡$) = 1 − $
1
𝑒(2! − $

1
𝑒(2" + #

1
𝑒((2!32") + #

#4
𝑒((12!32"). 

When t1 = t2 = 1, we expect ~55% of the gene trees to match the species tree topology 

(Rosenberg 2002; Degnan and Rosenberg 2006). For gene trees that are discordant with the 

species tree, the presence of each topology is related to the length of intervals t1 and t2. Focusing 

only on asymmetric trees, those with topology (((AC)B)D) and ((CB)A)D) result from the lack 

of coalescence between lineage A and B during the interval t2, and therefore should occur with 

equal probability (Rosenberg 2002). The same is true for any tree in which D is an ingroup – 

they can only result from the lack of coalescence during interval t1, and therefore all have equal 

probability. The tree (((AB)D)C) occurs with slightly higher probability because it only relies on 

lineages (AB) and C not coalescing during the single interval t2, as opposed to all three lineages 

(A, B, and C) not coalescing during either interval t1 and t2.  

 These underlying gene tree stoichiometries are the basis for many common tests of 

hybridization, such as the ABBA-BABA test (Green et al. 2010; Durand et al. 2011) and forms 

the basis for network approaches to resolving gene tree conflict (Solís-Lemus and Ané 2016). 

The logic is straightforward; for example, in the case of a 3-taxon tree, when there is a 

significantly greater proportion of ((BC)A) topologies compared to ((AC)B) topologies, one 

might infer that gene flow has occurred at some point in the past between lineages B and C.  

 Slatkin and Pollack (2009) were the first to point out that gene tree asymmetry may not 

be the result of hybridization, but instead can emerge due to underlying population structure. 

They imagined a simple 3-taxon tree in which there was a barrier to gene flow in the ancestral 
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lineage of species A and species B+C. They found that the stronger the barrier to gene flow, the 

greater the gene tree asymmetry became. I refer to this asymmetry due to ancestral population 

structure as “Slatkin’s skew”.  

 To illustrate Slatkin’s skew, I simulated 3- and 4-taxon trees in continuous space. These 

populations were modelled as “clustered” or “unclustered”. Clustered models had low 𝜎D and 

𝜎M, but high 𝜎I – this resulted in clumping patterns of ancestry across the range. The unclustered 

model was the opposite – high 𝜎D and 𝜎M with low 𝜎I – and was meant to approximate a random 

mating population. For these simulations, we used both the vicariant and peripatric speciation 

modes to demonstrate the differential impact on gene tree asymmetry. Gene trees were parsed in 

tskit and imported into the R platform (R Core Team 2020) where I used the package evobiR 

(Blackmon and Adams 2015) to count the different topologies among the trees.  

 
Results from these simulations are shown in Fig. 4.2. For the case of the 3-taxon tree 

previously investigated by Slatkin and Pollack (2009), I show that the same gene tree asymmetry 

will arise in continuous-space given that the mode of speciation is vicariance (Fig. 4.2d). The 

asymmetry becomes more skewed by geography as t approaches 0. As expected, similar trends 

emerge with the 4-taxon tree: when D is an ingroup, the skew becomes more dramatic as t1 and t2 

in units of 2N fall below 0.75. Interestingly, for the (ABC) coalescence, topology (((BC)A)D) 

occurs with greater frequency at all values of t2 in the clustered models, though the difference 

becomes more extreme at lower t1 values (Fig. 4.2c). When the mode of speciation is peripatry, 

no skew occurs, and we find that the proportion of ((AB)C) trees are much higher at all t than 

expected under a neutral MSC model.  
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Slatkin’s skew has mostly been investigated in the context of human population genetics 

where there is interest in distinguishing ancestral structure from introgression with Neanderthals 

(e.g., Krings et al. 1997; Nordborg 1998; Wall 2000; Yang et al. 2012; Schumer et al. 2018). 

Eriksson and Manica (2012), for example, extended Slatkin and Pollack’s (2009) model to an 

ancestral stepping-stone and found that the polymorphisms shared between Eurasians and 

Neanderthals was compatible with a scenario in which no hybridization had occurred. Theunert 

and Slatkin (2017) replicated their results and proposed using the unconditional site frequency 

spectrum as a tool to distinguish ancestral population structure from hybridization. However, 

Figure 4.2. Demonstrating Slatkin’s skew. A) Inferred hybridization using SNaQ; dark blue is 
the CF for the bifurcating tree and light blue is the discordant proportion; B) change in 
pseudolikelihood at increasing number of hybrid nodes; C) 4-taxon gene tree distributions of 
discordant topologies; D) 3-taxon tree distributions of discordant topologies.  
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outside of human population genetics there are few examples in which the impact of ancestral 

structure is even mentioned as a potential cause of gene tree discordance (but see Degnan 2018; 

Huynh et al. 2019).  

 Phylogenetic networks have become a popular tool to visualize gene tree incongruence. 

Whether the network is implicit (SplitsTree; Huson 1998) or explicit (SNaQ; Solís-Lemus et al. 

2017), reticulations are interpreted as evidence for historic gene flow (Degnan 2018). 

Phylogenomic studies often leverage species tree inference programs to generate a guide-tree for 

network inference (Cui et al. 2013; Árnason and Halldórsdóttir 2019; MacGuigan and Neer 

2019). However, these approaches are not immune from Slatkin’s skew as they are based on the 

same standard MSC model as the D-statistic.  

 Using the true gene trees from the 6-taxon simulation as input, I inferred phylogenetic 

networks using SNaQ with the true species tree as the guide. I performed 10 runs per model, 

each with the maximum number of hybrid nodes ranging from 0–3. Following recommendations 

from Solís-Lemus et al. (2017), I chose the best number of hybrid nodes based on a slope 

heuristic (Fig. 4.2b). For the clustered model, incorporating even a single reticulation improved 

the pseudolikelihood from 3.392177 to 0.1021881 (Fig. 4.2b). The improvement for the 

unclustered model was far less dramatic: no hybrid nodes (loglik = 0.0788371) compared to 1 

hybrid node (loglik = 0.0332104). The unclustered runs never inferred more than 1 hybrid node, 

regardless of how high the max number was set.  

 When will Slatkin’s skew matter? In short, when spatial autocorrelation persists between 

speciation intervals. We can prime our expectations by considering a “separation of timescales” 

approach to the coalescent (Wakeley, 1999; Wilkins, 2004). The first timescale – the scattering 

phase – is characterized by spatial autocorrelation. Rates of coalescence in this phase are greater 
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than the expected 1 / Ne since lineages nearer one another share an ancestor more recently than 

expected given the size of the population. The spread of ancestry across a range is diffusive and 

occurs at a rate of 𝜎√𝑛, where n is the generation and 𝜎 is the dispersal distance (Bradburd and 

Ralph, 2019; Kelleher et al. 2016). Once a lineage has ancestors that have diffused across the 

entire landscape backward in time, the coalescent enters the collecting phase (Wakeley 1999). 

This phase can be thought of as behaving according to the standard coalescent model, in which 

the average time to a common ancestor for k = 2 is 2Ne and for k = i is 4Ne / [i(i – 1)]. Since the 

rate of diffusion is dictated by 𝜎, the timescale separating these two phases are proportional to 

the dispersal potential and the length of the range. If the length of the speciation interval is short 

relative to the timescale separating the scattering and collecting phases, then the spatial 

distribution of the ancestral population will dictate gene tree stoichiometry and Slatkin’s skew 

will be in play. However, for speciation intervals ≥ 2Ne (or ~1.0 coalescent unit), even when 

dispersal is very low, gene tree proportions are indistinguishable from expectations under the 

MSC.   

 

Wicked Forests: Species Tree Inference and Gene Tree Variance 

 

 At a fundamental level, phylogenetic inference seeks to infer the relationships between 

species (topology) and the distance between them (branch-lengths). The currency of 

phylogenetics are gene trees, which are themselves biased subsets of the true population 

genealogy (Kelleher et al. 2016). From the distribution of gene trees, the multispecies coalescent 

model can be used to infer the species tree – the “true” history of the population – by 

conditioning a proposed species tree on a set of gene trees (Maddison 1997; Degnan and 
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Rosenberg 2009; Chifman and Kubatko 2014). It’s important to note that while gene trees are 

real things – whether or not we can observe them directly – species trees are not. They are 

merely representations of the “true” history of a species in respect to how it has shaped the 

underlying gene tree distributions.  

 The genetic distance between any two species is on the order of TD + 2Ne generations, 

where TD is the time of divergence (the “true” history). This is because two lineages cannot 

coalesce until at least time TD, and once they are in the same population it on average takes 2Ne 

generations for them to coalesce (Wakeley 2000). Since we cannot observe gene trees directly 

and must rely on mutation to supply us with the information to infer them, it’s useful to note that, 

assuming panmixia, the pairwise sequence divergence between species 1 and 2 is π12 = 2𝜇(TD + 

2Ne), where 𝜇 is the per generation mutation rate (Wakeley 2000).  

Two important sources of bias from this expectation emerges when the z-axis is 

considered. First, population structure acts to inflate Ne relative to TD, which leads to a greater 

contribution to π12 from 2Ne (Slatkin 1991; Wakeley 2000; Hancock and Blackmon 2020). 

Second, spatial structure increases the variance in the TMRCA as geographically close lineages 

coalesce rapidly whereas more distant lineages take much longer (Wall 2000). This second 

component also impacts the topological concordance of a given gene tree and is biased towards 

discordant topologies. This is because there is a hard lower-bound to the node height – it cannot 

be lower than TD – whereas there is no such upper-bound. Therefore, spatial structure is expected 

to on average inflate branch-lengths and increase topological discordance among gene trees.  

In general, we are interested in extracting some estimate of time from node heights. 

Under neutrality, if we have a good estimate of the per generation mutation rate, 𝜇, then we can 

estimate time directly as π12 / 2𝜇. This is because the rates of substitution and mutation are 
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equivalent under neutrality, and, importantly, independent of Ne (Kimura 1987). This finding is 

generally robust, even in the presence of population structure, as long as the rate of coalescence 

is still 1 / 2Ne (Lehman 2014). However, when Ne varies across a landscape, as is often the case 

in spatially structured populations (Wilkins and Wakeley 2002; Bradburd and Ralph 2019), the 

rate fluctuates across the range causing the local Ne to impact substitution rates (Allen et al. 

2015). This has implications for many widely used molecular clocks (e.g., Knowlton and Weigt 

1998; Weir and Schluter 2008; Herman et al. 2018) because the calibration source is unlikely to 

adequately represent the spatial population dynamics of a different species.  

The rate of substitution can also be calibrated by an outside source, such as a fossil or a 

known biogeographic break. These calibrations are often in the form of node constraints 

(Bromham et al. 2018). However, the placement of the constraint can have an impact on the 

estimated age and rate of evolution (Sauquet et al 2012; Duchȇne et al 2014). Duchȇne et al 

(2014) recommended including as many fossil calibrations as possible, with the deeper ones 

being preferred. However, Brown and Smith (2018) showed that more doesn’t necessarily equal 

better, as the interactions between the tree prior and node priors can cause deviations from the 

user-specified ages.  

To illustrate the impact of spatial structure on tree variance and branch-length estimation, 

I randomly selected one genome from each species of the 6-taxon species tree vicariance 

simulations. These models have a uniform TD of 10,000 generations except for the most recent 

divergence between A and B, which occurred 5,000 generations in the past. After applying 

neutral mutations in msprime, I output all SNPs in FASTA format. To estimate the species tree, I 

used two inference programs, *BEAST2 (Ogilvie et al 2017) and SNAPP (Bryant et al 2012). 

For *BEAST2, I first created pseudo-genes by concatenating SNPs in intervals of 500 for the 
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first 5000 in the genome for a total of 10 pseudo-genes. These are “pseudo” in the sense that 

while their topology and branch-lengths tend to be correlated, they are not completely linked – 

what Springer and Gatesy (2016) call concatenalescence. While not ideal, this is standard 

practice for almost all phylogenomic datasets as the actual length of a “c-gene” may be as small 

as 10 bases (Springer and Gatesy 2016). The dataset for SNAPP consisted of 10,000 randomly 

selected SNPs from across the genome. Unlike *BEAST2, SNAPP does not estimate gene trees 

directly, instead iterates over all possible gene trees from biallelic SNPs to generate a species tree 

(Bryant et al 2012). In *BEAST2, I performed two separate runs per dataset: 1) with the root-age 

calibrated; and 2) with the clade ((AB)C) calibrated – or the “midpoint” calibration. I was 

particularly interested in differences that arose between the clustered (𝜎 = 0.25) and unclustered 

(𝜎 = 1.0) models relative to estimated clock rates, tree heights, and topologies. I visualized the 

estimated clock rates and calibration priors using Tracer v1.4.3 (Rambaut et al. 2018), and 

incongruence between estimated ages and topologies using the package DensiTree (Bouckaert 

2010). In addition, I performed non-metric multidimensional scaling (NMDS) in R on sets of 

1000 randomly selected trees from the posterior distribution. These trees were compared using 

weighted Robinson-Foulds (RF) distances, which account for both topology and branch length 

(Robinson and Foulds 1979). Finally, I compared the variance in estimated trees with the true 

gene tree variance by randomly sampling 1000 true gene trees, generating a weighted RF 

distance matrix, and plotting them using NMDS.  

 The results from these analyses demonstrate the stark differences that emerge when 

spatial structure is strong (Fig. 4.3). I found that spatial structure greatly increased the variance 

in both the true gene trees (Fig. 4.3d) and the trees sampled from the posterior distribution when 

calibrated at the root (Fig. 4.3c). However, for the *BEAST2 analyses, constraining the lineages 
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(ABC) to be monophyletic reduced the inferred species tree variation as shown in Fig. 4.3c; the 

clustered and unclustered distributions largely overlap each other in tree-space. In addition, the 

species tree inferred from the midpoint calibration was incorrect with topology 

((((AB)C)D)(EF)). While the rooted calibration model generated the correct topology, node 

support was much lower than the unclustered models, which all had posterior probabilities of 1.0 

(Fig. S4.4). The placement of the calibration impacted the estimated clock rate in both the 

clustered and unclustered models, but the rate differences between root and midpoint placements 

for the clustered model were far more extreme (Fig. 4.4). Irrespective of calibration placement, 

the 95% highest posterior density (HPD) of the node ages all included the true age for the 

unclustered models. For the root-calibrated clustered model, the true ages were obtained for all 

nodes, but the variance in the age estimate was much higher than in the unclustered model (Fig. 

4.4). However, when the calibration was placed at the (ABC) node, the clustered model failed to 

identify the true ages for several nodes, and actually underestimated the root age by 22–60%.  
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The SNAPP analysis, despite being designed to handle biallelic SNPs, performed much 

poorer. Both the clustered and unclustered analyses produced aberrant topologies with high 

posterior probability, indicating that any violation of the panmixia assumption will bias species 

tree inference in SNAPP. However, estimates of 𝜃 generally followed expectations, inferring 

higher values for the ancestral branches of the clustered versus the unclustered (Fig. S4.5). In 

addition, the estimated tree height was greater in the clustered compared to the unclustered 

model (Fig. S4.5).  

 Degnan and Rosenberg (2006) and Degnan and Rhodes (2015) coined the term “wicked 

forests” to refer to the curious case where a set of species trees are one another’s most likely 

Figure 4.3. Gene tree variance. A) reconstructed gene trees from the unclustered model (sigma1); B) trees from 
the clustered model (sigma25); C) variance in topologies and branch lengths based on weighted RF distances, 
where “abc” is midpoint calibration and “root” is root calibration; D) true gene tree variance based on weighted 
RF distances.  
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anomalous tree. In this section, I use the term more colloquially to refer to the expanded tree-

space (or “forest”) that grows as spatial structure increases. These forests are “wicked” because 

they reduce our confidence in substitution rate, divergence-time, and topology estimates in 

species tree inference. Importantly, as was shown previously by Duchȇne et al. (2014), the 

placement of the node calibration can rival the impact of spatial structure, and when placed at the 

midpoint of the tree actually masks the true gene tree variance. This masking also appears to 

reduce the ability of *BEAST2 to accurately infer the species tree. Since node calibration relies 

on constraining monophyly, the MCMC is limited in the space of trees it searches and therefore 

does not have a holistic sampling of the extent of ILS.  

 

 

 

 

 

Figure 4.4. Substitution rate estimates from *BEAST2 for 10 pseudo-
loci.  



 94 

Species Delimitation Delimits Structure 

 

 Identifying species boundaries is at the heart of systematics. The collection of techniques 

that fall under the category of “species delimitation” all aim, fundamentally, to distinguish 

between population structure and true species boundaries. These methods include four broad 

categories: 1) traditional morphological taxonomy; 2) distance-based methods; 3) tree-based 

methods; and 4) coalescent methods. It has been recommended to adopt a kind of holistic, 

consensus approach by considering results from each in deciding how robust the delimitation is 

(Carstens et al. 2013).The rise of the latter three methods coincides with increased sequencing 

effort for non-model organisms and the coincident “taxonomic impediment” (Lipscomb et al. 

2003; Scotland et al. 2003). Each of these methods rely on a phylogenetic species concept (de 

Queiroz 2007) since they do not explicitly examine reproductive barriers – instead, these are 

inferred from an absence of gene flow between groups of samples.  

 Sukumaran and Knowles (2017), by simulating speciation under the protracted speciation 

model (PSM), were the first to point out that coalescent methods conflate lineage splitting with 

speciation. These results were replicated with an empirical system by Chambers and Hillis 

(2020), who showed that coalescent methods over-split species in the case of geographically 

widespread taxa. Leaché et al. (2019) respond by noting that the use of the PSM by Sukumaran 

and Knowles (2017) assumes instantaneous speciation, and that due to this feature no method 

would be capable of distinguishing population splits from speciation.  

Both coalescent and tree-based methods were recently reviewed by Luo et al. (2018) 

under a series of speciation scenarios. They found that BPP (Rannala and Yang 2003) – a 

common coalescent software – generally performed better than the two tested tree-based 

methods, the General mixed Yule coalescent (GMYC; Pons et al. 2006) and Poisson tree 
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processes (PTP; Zhang et al. 2013). However, their models of speciation did not incorporate 

population structure, only gene flow following speciation. Talavera et al. (2013) investigated the 

performance of the GMYC on a large-scale butterfly dataset and found that it often 

overestimated the number of species relative to the recognized morphospecies. Papadopoulou et 

al. (2008) found that the GMYC was only impacted by population structure under an island 

model of migration when the product of the population size and migration rate, Nm, was < 10-5. 

However, Lohse (2009) showed that by decreasing the number of demes sampled the GMYC 

would over-split even at higher migration rates.  

 In the previous section, I showed that low dispersal increased the variance in the TMRCA 

between species. In the context of species delimitation, where you may not know whether you’ve 

sampled from different species or merely different sites across the range of a single species, the 

variance in TMRCA within a single range becomes important. This variance is poorly captured by 

discrete population models but is an emergent property of continuous landscapes with finite 

edges. Samples taken from the center of the range on average share an ancestor deeper in the past 

than those from the periphery (Wilkins 2002; Wilkins and Wakeley 2004). This is the result of 

an increased population density in the center relative to the range edges. How does this variance 

in TMRCA across sampling locations impact species delimitation? Species delimitation methods, 

especially tree-based methods, rely on recognizing a shift in the coalescent dynamics of samples 

that are within versus between species. Spatial structure can increase the probability of 

monophyly between sampling locations, which makes them resemble discrete population 

clusters. The height of the node separating these clusters will dictate whether species delimitation 

methods identify them as separate species or merely clusters of samples within a single species. 

When samples are from the periphery, the distance between the clusters will be greater because 
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each cluster, on average, shares a most recent common ancestor more recently than samples 

taken from the center of the range (Fig. S4.1–2). I contend that this feature of the coalescent in 

continuous populations demonstrates the importance of considering not merely the distance 

between two samples or the number of sampled sites, but whether those samples come from the 

core or the periphery of the range.   

While these shortcomings have been identified for coalescent and tree-based methods, I 

contend that all species delimitation methods – including morphology-based – can be fooled by 

spatial structure. Unlike Sukumaran and Knowles (2017) and Leaché et al. (2019), I focus here 

solely on the ability of tree-based and coalescent-based models to distinguish population splits 

(i.e., I make no assumption that speciation has occurred).  

To investigate the performance of species delimitation methods on sequence data that 

arises from continuously distributed populations, I first sampled across the range of my 

simulated 4-taxon species tree vicariance models for both the clustered and unclustered settings. 

For species A and B, I sampled 5 individuals each from three locations, including two edges and 

the center (Fig. 4.5). For species C and D, I randomly sampled 5 individuals across the range. I 

then randomly sampled 10,000 SNPs from the genome alignment and constructed an ultrametric 

tree using BEAST2 with a birth-death tree prior. I generated consensus trees using 

TreeAnnotator and imported these trees into the R platform. For the GMYC method, I used the 

package splits (Fujisawa and Barraclough 2013) to calculate the ML estimate for the transition 

between a Yule and coalescent model. For the PTP method, I used the web server 

(https://species.h-its.org/ptp/) and both a ML and Bayesian estimation of the number of splits in 

the tree. For the coalescent-method, I used BPP, which can jointly infer the species tree and 

perform species delimitation using a reversible-jump MCMC algorithm (Rannala and Yang 
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2013). For BPP runs, I generated 5 pseudo-loci (see section Wicked Forests: Species Tree 

Inference and Gene Tree Variance) of 500 SNPs. The MCMC was run for 100,000 generations 

with a 20,000 generation burn-in. To illustrate how morphological delimitation can be deceived 

in the presence of population structure the same as tree- and coalescent-based methods, I 

simulated 20 binary traits onto the phylogeny produced by BEAST2 with phytools (Revell 2012) 

in R under a Brownian-motion model. The Q-matrix was defined such that there was an equal 

transition probability between trait 0 and 1. I then counted traits that clustered by sampling 

location as opposed to by species.  

Delimitation studies aimed at identifying species, especially in the case of cryptic species 

complexes, generally rely on a consensus approach to interpret their delimitations. In Fig. 4.5, 

we see that all delimitation methods can be misled by spatial structure when sampling is biased 

towards low diverse areas of the range (such as the periphery). Furthermore, if we were to search 

for specific morphological traits to support our delimitations, we have a good chance of finding 

at least 1 trait (Fig. 4.5). The specific sampling scheme also has a clear impact, but not 

necessarily because some samples were random whereas others were clustered. Instead, what 

matters is where the samples are collected in respect to the local population density. When 

samples are drawn from the periphery, they will have shorter coalescent times and therefore 

longer branches to other samples from the same population. However, drawing samples from the 

center of the range, where the local Ne is the highest, largely ensures that deeper node heights 

will be included. These deeper heights reduce the clustering pattern and the probability of 

monophyly. For example, the B species samples from the center break the monophyly between 

the peripheral populations (Fig. 4.5). In the case where all three samples are monophyletic, as in 

species A, the deep node heights of the center samples are sufficient to allow the tree-based 
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methods to accurately identify the transition between Yule and coalescent models. Removing 

these central samples accentuates the clustering pattern, and consistently fools both tree-based 

and coalescent-based methods. The geographic locations were not monophyletic in the 

unclustered model and the node heights on the inferred tree were as deep as the random samples. 

Therefore, I did not perform the tree-based methods as no empirical study would use these 

methods in the absence of any geographic clustering.  

While the tree-based methods performed better when all samples were included, BPP 

consistently overestimated the number of species. The species number with the highest posterior 

probability in each run matched the number of geographic samples, regardless if the center 

samples were included or absent (Fig. 4.5). In the unclustered model, BPP identified 5 species 

(PP = 0.598) when the guide species tree included all 8 geographic locations. This was much 

closer to the true 4 species total than in the clustered model.   
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Unlike previous examinations of species delimitation methods in which independent 

lineages may be designated as “lineages” or as bona fide “species” (Sukumaran and Knowles 

2017; Leaché et al. 2019), I only assess the ability of these methods to identify actual population 

splits irrespective of if reproductive isolation had occurred. In addition, by using a continuous 

landscape I am better able to assess sampling schemes and how variation in local population 

Figure 4.5. Species delimitation in continuous populations. Top-left boxes represent the sampling scheme, 
and the tree showed includes all samples, with clades colored by the species they belong to. Bars on the right 
are the inferred number of species from each method. “All” designates all samples included; “NC” is no 
center; “1P” includes a single periphery sample with the center. For the Morphology section, numbers beside 
clades are the number of simulated binary traits on the complete tree that support that clade as distinct from 
the rest of its conspecifics.  
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density impacts delimitation methods. In contrast to Luo et al. (2018), I find that the tree-based 

methods outperform BPP when samples from the center of the range are included, and that of 

those the GMYC consistently converged on the true number of species (Fig. 4.5).  

 
 

Out of Space: Continuity for Discontinuous Data 

 

 In a review of Battey et al. (2020) for the Molecular Ecologist, Jeremy Yoder described 

continuous space as the “final frontier” for population genetics (Yoder 2020). In this chapter, I 

extend Yoder’s proclamation to phylogenetics as well. As continuously distributed populations 

impact virtually all commonly used summary statistics in population genetics (Battey et al. 

2020), I show above that it also affects broader macroevolutionary patterns. Each of these 

patterns have been discussed in the literature previously (e.g., Edwards and Beerli 2000; Slatkin 

and Pollack 2009; Sukumaran and Knowles 2017; Hancock and Blackmon 2020) but have not 

explicitly been tied to continuous populations or with a focus on the mode of speciation. Below, I 

review the preceding sections by answering three questions that empiricists should consider 

when conducting phylogenetic inference.  

 

When does space matter for phylogenetics? 

 

 Answer: When spatial autocorrelation of ancestry persists between speciation intervals. 

This is most likely to occur when there is heterogeneity in population density across the range, 

low dispersal or local retention, and speciation intervals are short relative to ancestral Ne.  
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As discussed in Slatkin’s Skew and Gene Tree Asymmetry above, spatial autocorrelation 

of ancestry decays with time at a rate dictated by the size of the range and the rate of dispersal. 

Given enough time, the ancestors of a sample of individuals will appear as a random sample 

across the range and the rate of coalescence will collapse to Kingman’s coalescent (Kingman 

1982; Wakeley 2009). To provide a simple illustration of this, imagine a Markov process with 

transition matrix 

𝑷2 = A
𝑎5 𝑎5→7 𝑎5→8
𝑏7→5 𝑏7 𝑏7→8
𝑐8→5 𝑐8→7 𝑐8

E
2

, 

 

where a, b, and c represent transition probabilities to either different states (above and below the 

diagonal) or remaining within the currently occupied state (along the diagonal). As a concrete 

example where t = 1: 

𝑷# = A
0.99 0.01 0.0
0.01 0.98 0.01
0.0 0.01 0.99

E
#

. 

 

In this example, there are three demes represented by each row in the transition matrix. The 

transition probabilities can be thought of as dispersal rates between demes. Clearly, when t is 

small the ancestors of any deme will be biased towards the deme that they were originally 

sampled from. For example, when t = 5: 

 

𝑷9 = A
0.99 0.01 0.0
0.01 0.98 0.01
0.0 0.01 0.99

E
9

= A
0.952 0.047 0.001
0.047 0.906 0.047
0.001 0.047 0.952

E. 
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While spatial autocorrelation is still strong at t = 5, we see that there is now a non-zero 

probability of a lineage originating in deme 1 having an ancestor in deme 3, and vice-versa. This 

toy example also shows that central demes spread out to the periphery much faster than 

peripheral populations reach one another, which indicates that if the sample originates from the 

center of the population the transition to the scattering phase may be faster than for samples from 

the periphery. How much faster? In my example, by t = 45 (or 45 generations before the present), 

samples from the center have a 50:50 chance that their ancestor was also in the center deme. 

Alternatively, the peripheral demes each have ~70% probability that their ancestors at generation 

45 are still found in the sampled deme.  

 The transition to the collecting phase occurs as the probability that a sampled individual 

has an ancestor in any deme is equal. In fact, Wakeley (1999) defined the end of the scattering 

phase as the t when all ancestral lineages are in separate demes (i.e., they are scattered evenly 

across space). Continuing with our example, this would occur when the transition probabilities 

are all ~33%, which does not occur until t ≈ 400. In a phylogenetic context we might imagine 

one of the peripheral demes has a complete barrier to gene flow with the others until TD. At this 

time, bias in tree topologies and branch lengths will occur if ancestors are still correlated with 

their sampled deme. In this case, if the true tree is ((Center, Periphery1), Periphery2), we would 

expect a skew in topologies towards ((Center, Periphery2), Periphery1) over ((Periphery1, 

Periphery2), Center), where the MSC would predict they should occur with equal probability. 

Furthermore, trees that do show the latter topology will be biased towards older node heights 

since it on average takes longer for the edges to find ancestors with one another.  
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Clearly, the rate of transition between the scattering and collecting phases is a function of 

the number of demes and the rate of migration between them. While this is much more complex 

in continuous space (there are more dimensions to transition through, for example), this simple 

example can serve to prime our expectation of when space will matter in macroevolutionary 

studies. Also, important to note is that the above example is independent of Ne, which is the 

parameter that actually determines the rate and average times to coalescence in real populations.  

 

 

Figure 4.6. How space impacts phylogenetic datasets. A) a schematic of the different causes of spatial signal; B) 
specific signals that can be found in phylogenetic data. From left to right: skews in the SFS at lower dispersal; pull 
of the mean tree away from the origin in NMDS space; skews in gene tree topologies that reflect a vicariant history. 
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What sort of organisms will be the most affected? 

 

 Answer: Those with large ranges relative to their dispersal potential with a history of 

vicariance. A famous example from the biogeography literature is the vicariance event that 

impacted coastal marine organisms separated by the Florida peninsula (Bert 1988; Bowen and 

Avise 1990; Avise 1992; Flannagan et al. 2016). While several hypotheses have been purported 

to explain the cause of vicariance in these marine taxa (see Portnoy and Gold 2012 and Hancock 

et al. 2019 for recent reviews), sister species are otherwise widespread with varying degrees of 

population structure. Species that show low structure within populations, such as oysters 

(Crassostrea virginica) with pelagic dispersal, may approximate our “unclustered” models 

above, which show little to no bias on phylogenetic inference. Alternatively, species such as 

brooding amphipods (Hancock et al. 2019), which have poor dispersal potential and strong 

population structure, are more akin to our “clustered” models and are expected to have high gene 

tree discordance, increased variance in node heights across the posterior sample, and likely 

upwardly biased estimates of species diversity (all of which were documented in Hancock et al. 

2019). Another example is the Gulf pipefish (Sygnathus scovelli), which displays population 

structure within species as well as discrete barriers between those isolated by the Mississippi 

River and the Florida peninsula (Flannagan et al. 2016).  

  

How can we detect if spatial structure is influencing our phylogenies? 

 

 Answer: Fortunately, our data contain a myriad of clues into a history of spatial structure. 

At the phylogeographic level, in which researchers are often examining species complexes or 
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closely related taxa with broad geographic sampling, signals of vicariance and continuous 

structure can be quite obvious. Hancock and Blackmon (2020) evaluated the impact of isolation-

by-distance on phylogenetic inference in a species complex of Brazilian endemic lizards. Despite 

the ability of species delimitation methods to identify discrete clusters (Domingos et al. 2017), 

when samples were drawn from the range edges the estimated ages were upwardly biased 

compared to neighboring localities (Hancock and Blackmon 2020). This pattern can only emerge 

if the range was once widespread with ancestral IBD.  

The impacts of space will also lead to high variance in reconstructed topologies and low 

posterior probabilities, especially at deeper nodes (Fig. 4.4). A model of ILS alone is sufficient 

to predict the topological incongruence in Fig. 4.4 – i.e., we expect some of the most common 

trees that are incongruent with the species tree to be ((((AB)C)D)(EF)) and ((((AB)(CD))E)F) – 

but it does not explain the high variance in reconstructed node heights. Furthermore, when the 

calibration is placed at the root, I find that the increased variance in both topologies and node 

heights in the posterior emerge as a result of the same variance in the underlying true gene trees. 

While there are many factors in practice that can increase variance, such as low information 

content, sequencing error, etc., the most fundamental is the true gene tree variance. Assuming 

that other sources of variance can be isolated and accounted for, recognizing this underlying 

gene tree structure could be an indirect way to peak at the demographic processes responsible for 

patterns in the data. A possible test of spatial structure would then be to examine the tree-space 

of reconstructed topologies and branch-lengths from the posterior. A peculiar pattern that 

emerges when examining the spread of trees in multidimensional space is that strong spatial 

structure pulls the mean tree away from the origin in both the true trees (Fig. 4.4d) and the 

reconstructed trees (Fig. 4.4c).  
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Another promising avenue may be to compare the impact of node calibration placement 

on gene tree variance and rate estimation. While both the unclustered and clustered models 

showed some impact of calibration placement, the clustered model resulted in extreme 

differences between rates estimated with different placements (Fig. 4.5). In addition, like the 

topologies and branch-lengths mentioned above, the variance in these estimates were much 

higher than in the unclustered models. Thus, a side-effect of strong spatial structure is reduced 

confidence in rate estimation, topological inference, and branch-length estimation, even when 

incorporating node calibrations that include the true age. I recommend researches not jointly 

infer substitution rates and topology; instead, first reconstruct the species tree and then infer rates 

on the fixed tree.  

Gene tree stoichiometries are important sources of information about the underlying 

demographic histories of populations but can be misleading if not considered within an explicitly 

spatial context. In the case of a 4-taxon tree, one could investigate the possible impact of space 

by first summing the proportion of trees that include D (or the outgroup) as the ingroup (as 

shown in Fig. 4.2c). Next, one could regress the physical distance between D and its sister 

species for a given tree against the total proportion of gene trees. Significant negative 

relationships between topological proportions and distance indicate that gene tree topologies may 

be driven by historic spatial relationships. This does not preclude hybridization, but it does 

demonstrate that a more robust criteria must be adopted to distinguish spatial structure from 

introgression.   

Theunert and Slatkin (2017) provided a method for distinguishing between ancestral 

population structure and admixture using the unfolded site frequency spectrum (SFS). They 

showed that structure causes a skew from the theoretical expectation of :
)
	towards intermediate 
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frequency alleles, whereas admixture did not alter the SFS. I recapitulate their results in Fig. 

4.6b and show that the unclustered model leads to much less skew in the SFS than the clustered. 

In a phylogenetic context, the SFS could be used in conjunction with methods that reconstruct 

ancestral areas, such as RASP (Yu et al. 2015), to distinguish ancient hybridization from 

continuous spatial structure. This could be done via model comparison in a Bayesian framework 

by conditioning a model of hybridization versus spatial structure on the shape of the SFS and the 

probability of hybridization given reconstructed ancestral areas.  

In many respects, ancestral ranges actually confound our ability to distinguish structure 

from hybridization as individuals need to be in geographic proximity to hybridize in the first 

place, but it is this very proximity that makes structure a likely explanation for geographically 

skewed topologies. Ideally, we would weight the posterior probability of a model of 

hybridization versus structure by incorporating the SFS as a prior. But what about when 

hybridization and structure characterize the history of our samples? In this case, we expect a 

skew in the SFS towards intermediate frequency alleles in conjunction with overlapping 

ancestral areas, exactly as predicted by continuous structure alone. However, we could leverage 

simulations over various histories of admixture proportions in conjunction with spatial structure 

to determine which combinations of models are identifiable. For example, for periods of strong 

admixture in the distant past we might expect to see skews in gene tree topologies that exceed 

that predicted by spatial structure alone. Indeed, if hybridization was prevalent enough and 

occurred > 2Ne generations in the past, the influence of spatial structure may be largely washed-

out and most, if not all, of the skew should be caused by hybridization (Fig. 4.2).  

 The subfield that may be most improved by considering spatial structure is species 

delimitation. There exist several methods in spatial population genetics whose underlying 
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structure could be co-opted to improve existing techniques. For example, Bradburd et al. (2018) 

introduced an R package, conStruct, which seeks to identify both discrete and continuous 

population boundaries by modelling an expected decay in allelic covariance with distance. Like 

STRUCTURE (Pritchard et al. 2000), conStruct accepts a user specified number of layers, K, but 

unlike STRUCTURE allelic covariance is allowed to decay with distance within a single layer. 

To incorporate geographic distance and the covariance within layer k of allele i and j, they use  

𝐺);
(<) = 𝛼=

(<) Pexp T−,𝛼!
(<)𝐷);.

>"
(%)

UV + 𝜙(<), 

where 𝛼(k) parameters dictate the decay of covariance and Dij is the geographic distance between 

sample i and j, and 𝜙(k) is the background covariance within the entire layer (Bradburd et al. 

2018). By setting 𝛼=
(<) = 0, we recover the nonspatial model (i.e., k is governed by a single 

shared frequency parameter, 𝜙(k)). Bradburd et al. (2018) use a cross-validation approach to 

compare the spatial and nonspatial models. In this way, one can imagine the K with the highest 

support representing the maximum number of species present in a sample while accounting for 

the expected decay of relatedness with distance. This model could be extended to incorporate 

time separating the K discrete layers as allelic covariance is expected to decay across both space 

and time. Thus, for more distantly related species this decay will be less influenced by space than 

by time, and higher numbers of K should be preferred.  

  

A Future in Space 

 

 The field of phylogenetics has taken the form of an hourglass. At one bulge is 

phylogeography, in which multiple geographic locations and individuals within a species are 
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sampled. Phylogeographers straddle the boundaries between population genetics and 

phylogenetics, plucking methods from both to query the recent past of relatively closely related 

individuals. At the opposite bulge is deep-time phylogenetics that is investigating the origins of 

families, orders, or even phyla, where the ancestors of sampled individuals lived on a landscape 

dramatically different from the one today. These phylogenies may have hundreds of tips, but 

each species is often represented by a single individual, and tips are not related to one another in 

space. Both ends of the hourglass have seen tremendous developments in the past decades thanks 

to improved sequencing technology and more computationally tractable methods for dealing 

with large numbers of tips. However, both tend to use phylogenies as only informative about 

time.  

 I contend that the next important steps in phylogenetics will not merely be in time, but in 

space. By incorporating the z-axis into our models, we can better identify the mode of speciation 

and characterize the demographic factors influencing our reconstructed trees. Furthermore, by 

adopting a spatial framework conceptually provides us with an intuition about gene tree variance 

and can caution our interpretations of widespread inferences of hybridization. In addition, 

considering space encourages us to visualize tree-space, which can lead to more rigorous 

scrutiny of consensus methods that often fail in the presence of population structure (DeGiorgio 

and Rosenberg 2016). Finally, I believe that spatial models of IBD can dramatically improve 

species delimitation methods by conditioning the inferred number of species on an expected 

decay of allelic covariance with distance.  
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APPENDIX A 
 
 

The following material was originally presented as Prelude, Interlude, and Benediction in the 
appropriate order between chapters. However, OGAPS formatting guidelines required that these 
be somehow interwoven with the data chapters and, as you will see, this would be a 
bastardization of the entire point of these anecdotes (and the science, for that matter). Therefore, 
I have relegated these sections to this appendix. At the end of the appendix, you will find the 
relevant material discussed from each of the data chapters. For the original format of the 
document prior to the OGAPS formatting guidelines, see 
https://github.com/hancockzb/dissertation.  
 

 
 

PRELUDE 
 

“The man who believes that the secrets of the world are forever hidden lives in mystery and fear. Superstition will 
drag him down. The rain will erode the deeds of his life. But that man who sets himself the task of singling out the 
thread of order from the tapestry will by the decision alone have taken charge of the world and it is only by such 

taking charge that he will effect a way to dictate the terms of his own fate.” 
–Cormac McCarthy, Blood Meridian 

 
“Of the many marine environments populated by macroscopic animal life, perhaps none is more difficult of access 

or more challenging to body form and function than the unstable, highly oxygenated, silt-free sands of wave-
exposed intertidal beaches.” 

–E.L. Bousfield, “Adaptive radiation in sand-burrowing amphipod crustaceans” 
 

 My initial inclination was to title this section A Call to Worship. The southern Baptist 

church I attended throughout my young life distributed a folded pamphlet as you entered the 

sanctuary. The pamphlet, printed on course yellow paper with pressed green writing as if 

someone had individually stamped each letter into place like a medieval monk, detailed the order 

of events for the service. First tended to be announcements – the business of when, where, and 

what the congregation had planned over the course of the foreseeable future. These usually bland 

announcements that meant next to nothing to a child was followed by the “call to worship”. This 

was initiated by gentle notes from the piano and the organ and was meant as a period of 

preparation to accept the message to be delivered. In a way, it’s an introduction. 
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 But where to begin the task of introducing the science that has colored the past 5 years of 

one’s life? “In the beginning” may have been an ideal way to start the Pentateuch, but the origin 

of life seems unnecessarily far removed from marine crustaceans or the field of phylogenetics. 

Traditionally, one might begin by reviewing the literature – so-and-so did this (citation, citation), 

which was expanded by so-and-so (citation). A string of white men and their accomplishments in 

the admittedly obscure field of amphipod systematics may be an expected introduction.  

 I’ve never cared much for tradition. It’s painful enough to follow the rigid formatting 

guidelines imposed by the esteemed Office of Graduate and Professional Studies (OGAPS). 

Regardless if the rest of the world is a dumpster fire, thou shalt not use bold font! I get it: people 

like uniformity. Especially paper-pushers and administrative bureaucrats. As my old history 

professor, Tom Wagy, would say, “Wagy’s First Law of Bureaucracy is: never argue with the 

person at the front desk”. They don’t have the power to help you and they’re not really sure who 

does. 

   The format I’ve adopted here should not deter you. In fact, I hope it saves you from 

slogging through endless jargon and details that you don’t really need to understand the point of 

each chapter. Furthermore, each chapter has been written in the form of the published or 

submitted manuscript, complete with a section titled “Introduction” all its own. There you can 

find all the historic literature you want. Instead, I use the three sections “Prelude”, “Interlude”, 

and “Benediction” as the me in all of this – the human behind the science. I adopt this approach 

because this dissertation means more to me than the sum of each chapters’ results. Because some 

of the most interesting parts of a seminar talk is when the speaker divulges a hint of what it was 

like in the field – some especially interesting locals or equipment malfunctions, etc. It’s a nice 

break, a time to allow you to both ruminate on the information you’ve received thus far while 
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connecting with the speaker on a human level. This dimension – our shared humanity – is too 

often neglected in academia.  

 This dissertation can be read in two ways: 1) as four chapters on phylogenetics and 

systematics with some personal anecdotes in between; or 2) as my story through graduate school 

interwoven with some real science. Those who favor the former option may choose to skip the 

rest of the Prelude, the Interlude, and the Benediction, and just focus on the data chapters. Those 

with interest in the latter, I hope you enjoy the stories that are to follow. 

 Listen now as the organ begins to play. 

 

*** 

 

 I was the oldest person in my cohort at 27. I was also the only one that was married with 

a stepdaughter, and the only one that did not go straight to college after finishing high school. I 

had virtually no college aspirations while in grade school, and in fact barely graduated. My 

fellow classmates likely remember me as a trouble-maker – those who remember me at all, given 

that two of the four years of high school I spent in a form of juvenile detention. Given this 

background, I was well set-up for a life in the service industry. I worked a series of odd jobs, 

mostly fast-food but also retail. I hated these. If anything can be blamed for my socialist politics, 

it was the decade I spent working for incompetent managers for minimum wage in conditions 

most Americans would be appalled at keeping a dog in.  

 Despite this, I did not take my education seriously until I got married at 24. By this time, 

I had largely converted to a law-abiding citizen who managed a Domino’s Pizza 50 hours a 

week. I married a woman I’d known since I was a child – she often joked about tossing me 
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around on the playground at our elementary school – and she came with a 2-year-old who 

quickly took to calling me Daddy. Her real father had died in a drunk driving accident when she 

was 6 months old.  

We lived in an efficiency apartment in Texarkana for most of this time. The place was 

infested with fleas and we’d suffer nightly raps at the door by homeless people who could be 

found sleeping in the hallways querying about money for a bus ticket or diapers for their non-

existent children. I’d get off work every night after midnight and cruise 7th Street, passing 

dilapidated buildings with boarded windows and the streetwalkers flagging you down at the 

intersections, towards MLK where only the flickering lights from the dozens of liquor stores 

illuminated the cracked, potholed street. Maybe it was on one of these drives that I decided to go 

back to school. 

 My evolution as an academic is meandering. I started as an English major because my 

life-long dream was to become a novelist; my mother fostered this (she is a high school English 

teacher) by feeding me classical literature and engaging in hours of conversation about the exact 

meaning of every word. I must have submitted over a hundred short stories and three novels to 

different publishing agencies and literary magazines from the time I was 16 until I was 25 or so. 

In all this time, I successfully published only two short stories. I kept every rejection slip in a 

drawer on my desk because I had read that is what all famous writers did.  

  Literature naturally led me into history, which I would eventually minor in. If there was 

a common thread between these it was that both provide insights into the human condition – why 

are we here? What is our purpose? Why is the world the way that it is? History seemed to offer a 

window into these questions, but I consistently found that this window was opaque. There were 

no answers here; no unifying principles that could explain our existence. The childhood version 
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of myself was comfortable with the southern Baptist explanations; but anyone who reads enough 

literature, studies enough history, will eventually find these unsatisfactory.  

 My academic path turned toward science after I read Richard Dawkins and Yan Wong’s 

2004 book, The Ancestor’s Tale. The Chaucerian narrative immediately appealed to my English 

major’s literary sense, and I was enamored at their ability to present, with reasoned argument and 

evidence, the entire history of life one ancestor at a time. I quickly burned through Dawkins’ 

entire catalogue, eventually making my way to the writings of Stephen Jay Gould. His 1989 

book Wonderful Life about the Burgess Shale and the evolutionary trajectory of body forms 

(what he called bauplans) I credit for sparking my passion for invertebrate zoology and 

evolution. His collections of essays, Ever Since Darwin (1977) and Bully for Brontosaurus 

(1991), provided me with a political perspective into the history of science and evolutionary 

biology, and challenged the simplistic, adaptationist view of evolution often espoused by 

Dawkins and his ilk. These readings coincided with an undergraduate course in invertebrate 

zoology, taught by my undergrad mentor David Allard (whom I would later name a species for: 

Haustorius allardi; Hancock & Wicksten 2018).  

 Perhaps important to mention is that from the time I enrolled at Texas A&M University-

Texarkana (TAMUT) I intended to get my PhD. This has not wavered; from the time I made this 

decision until now, I have never doubted that academia is where I want to be. Throughout my 

undergrad, I worked full-time managing a Domino’s Pizza at night and attending classes full-

time during the day. This undoubtedly put a strain on my marriage, but it would at least survive 

until my first year at graduate school.  

 I have Dr. Allard to thank for being in the lab of Dr. Mary Wicksten. We often chatted 

over lunch in the cafeteria about future goals, and I told him that I would probably apply to 
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Texas A&M since my wife wanted to stay within driving distance of her hometown. He knew I 

had a passion for crustaceans – I completed an undergraduate project with him as the advisor 

sampling and identifying microcrustaceans across the various cow ponds that the university had 

acquired – and so he preemptively reached out to Dr. Wicksten on my behalf. I did not apply to 

any other graduate program.  

 I had originally intended on continuing research on cladocerans. I had some half-baked 

ideas about neoteny and larval development in daphniids. Of course, I ended up with several 

boxes of thousands of haustoriid amphipods in vials of ethanol that had been collected by 

previous students, and my mission was to go forth and see if I could identify any new species 

unique to the Texas coast. A student from the late 90s had written a dissertation on this very 

topic – the systematics of haustoriid amphipods – but he never formally described any species 

and gave them names like “genus 1 species a”. I was able to use some of his keys to help out in 

identifying the Texas coast ‘pods, but I ultimately found that most of his descriptions were either 

lacking in detail, confused the between location variation with interspecific differences, or I was 

completely unable to find the “species” supposedly at a given location. My first year was 

dedicated to this kind of traditional taxonomy – count spines, setae, dissect legs and mount them 

on slides of glycerin. I poured through old books from the 60s and 70s, mostly by James Lauren 

Barnard and E.L. Bousfield, and yellow-paged editions of the Journal of Crustacean Biology. 

Eventually I convinced myself that I understood the bizarre morphology of these obscure 

crustaceans well enough to actually describe them. 

 I should give an anecdote at this point about the first time I saw a haustoriid under a 

microscope. Instead of excitement or awe, I was actually filled with panic. If it hadn’t been for 

its beady white eyes, I wouldn’t have been able to tell its head from its ass. I remember poking 
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and prodding it with forceps and probes, trying to find the different appendages that had been 

etched so neatly in McLaughlin’s Biology of the Recent Crustacea. I mistook legs for antennae, 

pleopods for uropods – it must’ve taken me three weeks to actually dissect a mouthpart that 

wasn’t completely obliterated beyond recognition. All the while, I was attending the first year 

EEB modules with my cohort that I knew at any moment would see me for the imposter I was. 

What was this man from rural East Texas doing at a Tier 1 research institution? My first year 

was the only time during my academic career that I thought I might not be smart enough to do a 

PhD. I never thought about quitting – way too much pride for that – but I definitely questioned if 

I belonged. It wasn’t until much later that I found out that everyone thinks this way. I needed to 

hear it from the other people in my cohort to actually believe it, regardless of the seminars for 

first year grad students that assured me I wasn’t alone. Bullshit. Everyone looks like they have it 

together. Turns out we’re all just pretending. Fake it ‘till you make it, you know. And I did. I 

faked it until I figured it out.  

 By the end of my first year it had become clear that my marriage wasn’t going to survive, 

and we split that May. It was the one thing that faking it just never seemed to work. I’m sure I 

did not make it easy on her. I was obsessive with my work; I’d stay at the lab until late at night, 

and when I was home, I was distant, often lost in schoolwork or some new grant I was writing. 

She had never wanted to make the move in the first place and had begged me to take a job in 

Texarkana – just be a high school biology teacher or something. She followed me to College 

Station, but she was a shadow of her former self. I’m not sure why she came at all. Maybe it was 

for the financial security or because her daughter had taken to calling me daddy. Whatever her 

reasoning, she seemed to drift through each day, an empty hull, indifferent and stranded in a 

place she never wanted to be. 
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 In the spring of my second year, I went on a sampling trip with a grad student from 

TAMU-Galveston and a team of Mexican scientists to the states of Veracruz, Tabasco, and 

Campeche. The entire cab ride from the airport in Mexico City to UNAM I was glued to the 

window. The city goes on forever, both outward and upward. Houses and buildings rise up the 

mountains that surround the city, painted bright pastels of pink and green and blue. Murals on 

buildings depicted Aztec warriors and gods, cornfields with a lone farmer, beautiful women in 

flowing dresses. Despite the heat, doors were propped open and large box speakers blared 

mariachi. At every intersection, children waited to leap onto the hood of the van and squirt slimy 

green liquid from water bottles onto the windshield. The driver would drop a handful of pesos 

into their small hands. Without speaking a word of Spanish, I could only listen to the cacophony 

of sounds around me, the thick smell of the street – motor exhaust intertwined with sizzling 

carne from the open grills along every corner – and the soft chattering from the radio that the 

cabby occasionally honked over.  

 

 

 
“No Pictures!”. Justin Hilliard and I sampling Capitella. Photo by Jose 

Salgado. 
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 Nuri was the head scientist from Mazatlán, and she had a rambunctious, passionate 

personality. She hugged me the first time we met as if we were old friends (we’d only exchanged 

emails a few times), and she excitedly introduced us to her colleagues at the university. Each of 

these welcomed us warmly, and I must admit to never having felt such a welcome in the states. 

We toured their labs, most of which looked more like workshops where students tinkered with 

various limnological devices, and we listened as Nuri translated for us what each of the graduate 

students were working on. After these pleasantries, we met Tama and Pepe – the two field hands 

that had agreed to drive the van and help us sample – in the parking lot.  

 One last thing about UNAM. Unlike the concrete monstrosities that are many American 

universities, UNAM somehow managed to be both sprawling but also a part of the jungle that 

grew up around it. The university feels as if it were built inside a nature park – everything is 

green, old growth forest that actually obscures the size of the university. While the facilities were 

old and the labs in dire need of upgrades, the campus itself was an escape from the bustling city 

that it was nestled within.  

 The sampling expedition was funded as a joint venture between TAMUG and UNAM 

with the purpose of collecting polychaete worms of the genus Capitella, indicators of pollution 

and environmental degradation. These worms live in sewage outflows and polluted bays, 

burrowing into the anoxic sediment where they thrive where nothing else lives. The grad student 

who led the TAMUG side was interested in collecting enough worms for genome and 

transcriptome sequencing, and on the plane ride to Mexico City we found that our two projects 

had a lot in common. By this time, I had decided that I would use some small-scale sequencing 

to help delineate cryptic haustoriid species and also to build a phylogeny of the haustoriid family 

tree to go along with my taxonomic work. He was doing a similar thing with the worms – 
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biogeography, alongside searching for loci with signatures of selection that may contribute to 

their persistence in filth. We had many great conversations and to some degree his persistence 

that I could afford next-generation sequencing if I just planned well led to Chapter II. 

 I don’t think it’s a violation of their trust to say that we worked hard and played hard. 

Some days, we did one harder than the other. We drove the entire length of the eastern coastline, 

from Tamiahua in Veracruz down to Ciudad del Carmen in Campeche. We ate breakfast at noon, 

lunch at four, and dinner at eight, and beer was a staple of each. We would stay up late into the 

evening after a long day of digging through mucky bays in search of polychaetes drinking and 

chatting about science, politics, the politics of science. Trump, a fascist, had been in office for a 

year at this point, and his harsh rhetoric about Mexico was still fresh on everyone’s minds.  

 

 

 

“Revelation 16:3 or March of the Cows”. Dock leading from a slaughterhouse in Laguna de Términos. Photo by 
Zach Hancock. 
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At a field station on Laguna de Alvarado in southern Veracruz, we met dozens of 

undergrads from UNAM who spent three months at the end of their senior year performing water 

quality measurements in a makeshift wet lab overlooking the bay. On our last night, the students 

put on a mock gameshow for us in which volunteers from the audience participated in a series of 

competitions, from eating ghost peppers to who had the most impressive grito. The show ended 

with a panel of scientists, including Nuri, Tama, and Pepe, sharing their experiences in academia 

and a bit about their work – this, as Nuri would later explain to us, was a kind of elevator pitch to 

the undergrads to go to grad school in their labs. Following the panel, we danced a variety of 

local routines, which I was terrible at, and then several of us sat around and talked politics. 

 At Ciudad del Carmen we pulled off onto a dirt road that ended at the beach. I would 

look for amphipods, and everyone else would enjoy the cool, crystal blue waters that characterize 

the Yucatan peninsula. A crowd had gathered on the shelly beach, pointing and murmuring, 

some snapping photos, all in awe of the large, algae-coated and barnacle-ridden yacht that had 

run aground some ten meters from the shore. We approached the crowd and asked if they knew 

why the boat was there. Nuri, grinning, explained to us that the boat had belonged to a politician 

in Veracruz that had been arrested on corruption charges. He could no longer make payments to 

the marina and so they cut the boat loose. A few weeks later the currents dumped it onto the 

barrier island. Several men had already managed to scale its towering hull and loot whatever 

might remain in the quarters of any value. Now it loomed as nothing more than an empty metal 

beast casting its shadow across the beach where I would dig for amphipods.  

 Nuri and Tama stayed to talk with the people. I think they talked politics, but I don’t 

know. Pepe and the other grad student collected shells, filling their pockets and their shirts. The 

currents flowed such that the recently deceased bivalves were deposited onto the white sands of 
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the barrier island; the shells all in pristine condition. I just sat on the sand, arms hugging my 

knees, and watched the waves pound the hull of the yacht – a hollow sound like ringing a bell 

underwater.  

 I didn’t find a single amphipod on Ciuadad del Carmen. 
 
 
 
 

INTERLUDE 

 

“It’s a dangerous business, Frodo, going out your door. You step onto the road, and if you don’t keep your feet, 
there’s no knowing where you might be swept off to.” 

–J.R.R. Tolkien, The Lord of the Rings 

“It is very easy to grow tired at collecting; the period at a low tide is about all men can endure.” 
–John Steinbeck, Log from the Sea of Cortez 

 
“Nothing in evolution makes sense except in light of population genetics.” 

–Michael Lynch, The Origins of Genome Architecture 
 

 The most important book I’ve read since coming to graduate school is Michael Lynch’s 

Origins of Genome Architecture. It represents perhaps the last stage in my evolution from 

traditional systematics and biogeography to an interest in theory and methods in evolutionary 

biology. This transition began with Mariana Mateos’ course in quantitative phylogenetics and 

continued with a population genetics course with Charles Criscione. All of which coincided with 

my moving in with Dan Powell, who at the time was a senior PhD candidate in Gil Rosenthal’s 

lab. Dan had a house on George Bush Dr. only a few blocks from campus. Like myself, graduate 

school had come later in life and had eaten away his marriage. 

 Prior to moving in with Dan, I had made few actual connections with my fellow grad 

students. My life was entirely domestic when not working, and so I missed much of the first-year 

conversations, bar outings, and get-togethers. Two of my cohort members were gone by the 
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second year – one decided to take a Master’s degree and the other transferred to the Galveston 

campus – and a third had a fellowship to work in Germany by our third year. In reflection, I 

deeply resent my lack of involvement my first year; my advice to all incoming graduate students 

has since been to get to know your cohort, participate, and enjoy their company. Confide in 

them. This period in your life is so transitory; they will be gone from it before you realize you 

never knew them.  

 

 

 

 

 My involvement with the EEB community was entirely due to Dan’s friendship. He 

invited me to the bar, to gatherings, and eventually I became part of the community such that I 

didn’t need his invitations. My development as a scientist was also a product of my living with 

Dan – often soft spoken, careful with his words and Socratic in his conversations, there was 

always some knowledge to be imparted. This was clear to all who attended the EEB journal 

“Somewhere Over the Rainbow”. White sandy beach of Grayton, Florida. Photo by Thomas Strawn. 
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clubs during his tenure at A&M; he could be relied upon to provide thoughtful commentary to 

any article, no matter how obscure. He also, like his PI, always thought big – how does this 

contribute to theory, to our understanding of the universe, to the evolution of sexual systems, etc. 

Unlike Gil, Dan tended to be more grounded in the practicality of said big ideas, and I think this 

sense of realism helped me be critical of my own pie-in-the-sky schemes.    

 Transitioning into theoretical work lays bare any shortcomings you may have regarding 

your knowledge of the literature. To develop an idea that tests fundamental model assumptions 

requires you to have some degree of mastery of the subject. Peer reviewers will quickly point out 

when you have failed at this. Despite my becoming interested in the subjects of Volume II by the 

second year of my PhD, these were not pursued until much later. Each new subject you attempt 

to break into restores the feeling of being an imposter – yeah, you understand amphipod 

taxonomy but who are you to question models in population genetics? Empirical work is easier 

in this respect; what you get is what you get. The data speak for themselves. When you’re testing 

or building models, it’s on you to do all the talking.  

 I blame Dan and Emma Lehmberg for this transition. In many ways, I was just peaking 

over the edge; their insistence that I could do it, their persistent faith in my abilities, I contend, 

was akin to a shove. I honestly don’t think I would have ever made that plunge without them. 

And once I started down it, I found I couldn’t go back. The literature was exciting, constantly 

updating and expanding, with new methods and tools coming out weekly. The field felt organic, 

whereas my experience with haustoriid amphipod taxonomy and systematics was mostly 

dredging up old forgotten books and obscure articles that likely hadn’t been read by anyone in 

half a century. I began to see the organisms I was working with as a means to an end – the 

biology and life-history of a critter determined how suitable it was to answer overarching 
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questions I had about evolution, as opposed to the biology of the critter being the goal of the 

investigation itself.  

In short, Volume II of this dissertation is the fault of Dan Powell, Emma Lehmberg, 

Michael Lynch, and some courses on genetics (and also Heath Blackmon, as mentioned in the 

Acknowledgements). To some readers, this transition may seem abrupt – Volume I and Volume 

II take dramatically different approaches to the study of evolution. But there is a common thread, 

and the investigations of Volume II are a result of my experience in the prior chapters.  

 My third year was a year of exams. I took my orals and writtens in the Fall and my 

proposal defense was the following Spring. These exams loom over every graduate student like a 

storm cloud, and no matter how much you prepare you never quite feel ready for them. One of 

my exam committee members described prelims as, “An academic hazing ritual”. I’m unsure if 

this was meant to comfort me. While I was prepared for most of my writtens, I’ll never forget the 

questions on community ecology from Mickey Eubanks. I had spent so much time preparing for 

quantitative phylogenetics and population genetics, I must have neglected some of the “big 

ideas” in community ecology. One of Mickey’s questions was akin to: Provide the history of the 

idea “diversity begets stability”. The phrase itself provided enough for me to try and elaborate, 

but the answer was mostly me attempting to string together disparate characters and subjects in 

the field that had little to no bearing on the actual history of the concept.  

 I will divulge this tidbit. In the week prior to my orals, the program coordinator at the 

time took me aside and told me that in a recent conversation with Mickey, he had gathered that 

Mickey was none-too-happy with my answers and that he was not going to go easy on any EEB 

students. Or something like that. Anyway, the program coordinator told me that I needed to be 

ready for Mickey and should really be studying my ass off. I was horrified. I must have read 
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every major paper in community ecology in the days leading up to my orals. I spent hours 

rehearsing exactly what I would say, how I would try to assure Mickey that I knew the topic. 

From conversations with other graduate students who had already passed their orals, one thing 

became clear: I needed to control the conversation. 

 My committee members, before we got started, chatted a bit about who would go first. I 

requested Mickey go first, saying, “I have a bit to clarify on my writtens”. He tilted his head a 

bit, folded his hands in front of him, and said, “Like what?”  

 I proceeded to regurgitate the entire history of community ecology. I took the opportunity 

to re-answer every question that he had asked in the writtens and then some. My orals took two 

hours and I passed unanimously. 

 The greatest perk of academia is the travel opportunities. I managed to go to Mexico for 

at least a week every year of my PhD; I saw the Pacific Ocean for the first time at San Francisco 

Bay at SICB in 2018; and I drove the entire Gulf and Atlantic coastlines for fieldwork. While my 

third year was a year of exams, it was also a year of extensive travel. Over Spring break, the 

Rosenthal lab, along with myself and Faith – who had moved in with Dan and I the previous year 

– drove down to the sleepy town of Calnali in the Sierra Madre Oriental mountains in Hidalgo 

where the lab has a field station. The days were spent driving to distant field sites and tossing 

minnow traps sprinkled with dog food into creeks and streams; I read a book of shorts from 

Hemingway that I had found on the shelf in the station, lounging on boulders or against trees 

while we waited for the swordtails to take the bait. I reread “The Snows of Kilimanjaro” for the 

first time since I was a teenager. At night, we’d recline on the roof of the field station 

overlooking the town. Concrete buildings lined either side of the gravel street, each decorated 

with vibrant murals courtesy of a traveling band of artists. The murals depicted scenes of coffee 
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trees and dung beetles; abstract nature pieces of tree-like humans in embrace; a bizarre human-

deer creature in a leather vest and sombrero with hideous fangs; delicate hands reaching up to 

catch a beetle beneath the watchful, wrinkled eyes of an old woman. Many of these scenes were 

in the foreground of Cerro de la Aguja, a narrow spire that rose like a stone finger towards the 

heavens looming on the outskirts of the town. Faith and I would stay up late into the evening, 

drinking Victoria from the small shop across the street and watching the mist gather around 

Cerro de la Aguja; above us, the constellations reminded us of our insignificance amongst the 

grand scheme of the universe.  

Sometimes I think I understand how the dying man in Kilimanjaro felt. So many details I 

have forgotten – all the laughs, the emotions, the moments that at the time had seemed so 

visceral. So many stories that I should have written and, never having been told, will simply 

cease to exist when I do.   

“Last Taco Stand Before Nuevo Laredo”. Photo by Zach Hancock. 
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Here’s one: 

 Dan, Faith, and I took a road-trip to Tamiahua in Veracruz at the end of the week. We 

had planned on visiting the same field site that I had collected amphipods at the year prior with 

Nuri. There’s a funny thing to note about distance in Mexico. Driving, Google will inform you 

that it’s ~120 miles from Calnali to Tamiahua; roughly a 4-hour drive.  

It took us nearly 12 hours.  

There had been heavy rains in the east, and we found ourselves down a narrow, flooded 

country road of thick muck. Flanked on either side by cow pastures or forest, we were hours 

from any town and none of us had cell signal. The truck struggled down the windy, muddy road, 

tires occasionally spinning-out and spraying the doors and bed with wet clay. We began to 

question if we should turn around when we came to a steep hill that dropped into a flooded curve 

below. Dan threw the truck into park and we climbed out, sinking up to our ankles in mud. The 

three of us stood at the precipice, leaned over, and stared down the slope of slick earth.  

“If we go down, we may never get back up,” I said.  

Faith proceeded to dig the mud from the tire’s tread with a stick while Dan stroked his 

chin, eyes going from the truck to the slope as if performing matrix algebra in his head. The 

sharp turn below made it impossible to see where the road went from here, and as far as we knew 

there was an even larger hill around the bend. We’d be sitting ducks in a valley of mud.  

“I’ll go see what’s around the curve,” I offered, gesturing down the hill. “Just wait for 

me. Don’t go down until I come back.” I yanked my shoes out of the mud, the suction making a 

sloppy glop as I freed myself. Carefully, I started down the hill, slipping a few times but 

managing, somehow, to not fall. I rounded the corner below and followed the road for another 
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mile before I came to the highway. My shoes were soaked, my pants splattered with mud up to 

my thighs.  

The mud road turned briefly into a paved overpass, but it continued into the forest on the 

other side. There was no way off this hell path.  

By the time I made it back to the truck to warn them to turn around, to not go down the 

hill because there was no way to get back to the highway, they were halfway down it. The back 

tires were drifting wildly as Dan struggled to maintain control, the muddy path giving way under 

the weight of the truck; gravity was doing all the work. Upon seeing me, he managed to turn the 

truck sideways enough so that it sunk to a stop. I climbed up the hill, shouting, “No! No! Go 

back! Stop!”  

It was too late. The truck was going down that hill, one way or the other. Dan later 

explained that he was worried something had happened to me – apparently, I’d been gone longer 

than I thought – and they were just going to bite the bullet and come find me. Faith claims that 

she stressed to him that I’d be back, to just wait, but Dan had insisted.  

I climbed into the back of the truck. It only seemed fair that we all ride down this beast 

together. “Hold on,” Dan said, turning the wheel, putting us back in the hands of gravity. Faith 

took out her phone and pressed “record”. We’ve watched that video several times since. The 

audio is mostly just expletives.   

Sometimes you just have to take the plunge. 
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BENEDICTION 

 

“So long and thanks for all the fish.” 
–Douglas Adams, The Hitchhiker’s Guide to the Galaxy 

 “I called the doctor on the telephone 
Said doctor, doctor, please 

I got this feelin’ 
Rockin’ and a’reelin’ 

Tell me, what can it be? 
Is it some new disease?” 

–The Sylvers, “Boogie Fever” 

“Well, Smith, I’ve just had me last shit.” 
–J.B.S. Haldane to J. Maynard Smith before surgery for rectal carcinoma 

(he survived and would go on to have more shits)  
 

 In the months before the first outbreak of the novel coronavirus in a wet market in 

Wuhan, Faith and I drove ~6,000 miles across the entire Gulf of Mexico and Atlantic coastlines 

collecting the amphipods that were the subject of Chapter II. We drove my mother’s Altima, 

backseat loaded with a giant portable freezer, collecting gear, ice chest of beer and food, a tent, 

and a tray with plastic bottles where live samples would be kept. We collected our first 

amphipods on the small island of Grand Isle in southern Louisiana – a foul3 little fishing 

community bound for the drink in a mere 20 years or so. The puddles of brackish water that lined 

the road were festering with mosquito larvae and the air was thick with swarms of the 

bloodsuckers. We drove on to New Orleans that night and stayed with Liz Marchio, my old 

roommate Dan’s ex-wife. We wandered through the French Quarter as the sun descended the 

hazy horizon, crowds gathering outside the bars that lined the narrow streets. The city smelled of 

piss and beer, homeless people in rags stumbled through the alleys like zombies, swindlers 

hovered on every corner waiting to pounce on unsuspecting tourists. We perused the shops, 

 
3 A committee-member disagreed with this characterization of Grand Isle, calling it “quaint”. I point this out only in 
fairness; I prefer my adjective.   
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spending some half an hour in an establishment that bore the name Marie Laveau’s House of 

Voodoo. The walls were decorated with odd artifacts, dolls skewered with pins, horrific masks 

with mangy goat hair, bizarre idols lining shelves and, in the back, an altar to the old dead witch 

herself, complete with pieces of bone, aged tarot cards, and smoke rings rising from the trays of 

burning incense. We ate at a little diner tucked in the basement of a motel, drank local beer and 

shared bowls of jambalaya and boudin. We slept on the floor of Liz’s small house listening to the 

sounds of the city, echoing voices and the low hum of car engines, dogs barking in the distance.  

 

 

 

 

 The Gulf adopts a dramatically different persona on the other side of the Mississippi. 

Along the Texas and Louisiana coastlines, where meandering rivers create extensive deltas of silt 

and mud, the ocean is turbid and hazy. The surf is gentle and deposits the dark soil of the 

“Strange Gods, Strange Altars”. Photo by Zach Hancock. 
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Mississippi across the barrier islands; a gloomy, filthy dress of organic matter and driftwood. In 

the eastern Gulf, the ocean becomes clear and blue, the sand rich with quartz and white as snow. 

The surf is strong and creates a sharp berm on the beach-face. Waves break against the shore and 

sampling is rough – almost impossible – at high tide.  

 As you come into Pass Christian, Mississippi off Interstate 90 after crossing the Bay of 

St. Louis, you find yourself in a kind of daze as if passing into the Twilight Zone. Behind you is 

the gloomy swamps and poverty of Louisiana – before you, lining the interstate overlooking the 

calm blue ocean, are rows of mansions three- and four-stories high, neatly manicured yards with 

expensive sports cars parked in the cobblestone driveways. We were struck by the abruptness of 

this transition. Yet as we drove, we came upon a crowd of people gathered on the side of the 

street. Glancing up, we could see the largest mansion on the block – a towering monstrosity 

complete with narrow spires crowned with weathervanes and an immense balcony that extended 

over an impressive garden below. Massive flames bellowed out of its top story windows, 

blackening the once white wood finish. The fire department had not yet arrived and so the flames 

swept freely to the neighboring houses. Black smoke rose in furious columns into the clear blue 

sky. People had their phones out, snapping photographs. They chatted back and forth, pointing at 

the burning palace. Unchecked, the hungry flames would spread along the entire coastline and 

lay waste to the idyllic little town.  

 In August, the Gulf can easily exceed 100º F and we spent most of the time drenched in 

sweat, stooped over metal sieve plates and digging through coarse, shelly sand. Haustoriid 

population densities are much lower in the eastern Gulf, and this meant that each site took longer 

to find the numbers we needed. The going was slow. But given our proximity to the ocean at all 

times, at night we could relax by taking dips in the cool waters. We cooked our meals on a single 
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electric burner, often in the dark, and we’d sit up at night and chat about science, politics, and the 

politics of science. But the going was slow. And hot. The lowest point was in Melbourne, 

Florida, where the storm that had been following us most of the trip finally caught us, dumping 

heavy sheets of rain upon our tent. The campsite quickly flooded, which led to my getting 

electrocuted by our little box fan. Faith still finds this humorous. Me, less so.  

 I was actually working on the edits from the typesetter of my manuscript (Chapter I) to 

Journal of Biogeography during the trip, and the morning after we camped at Melbourne, we 

indulged ourselves with a hearty breakfast at a local diner with free wifi. After almost a week of 

sleeping in tents in the August heat and warming up meals with a burner by cell phone light, the 

food was heavenly. I had chicken and biscuits smothered in creamy sausage gravy. Three or four 

cups of coffee. We stayed until I finished my edits.  

 Over the next few days we drove up through Jacksonville and stopped for a few nights in 

Hilton Head, South Carolina, where we crashed with a fellow grad student in his parent’s 

retirement home. We swam at the crowded beach and ate lunch at the Frosty Frog, known for 

their giant daiquiris. Hilton Head is a beach town that is ashamed of itself – where most embrace 

the ocean culture, including the tackily colored homes and scam souvenir shops – Hilton Head 

enforces a strict “color policy”. All the homes and businesses were earthy tones, dark greens and 

browns. It made the town appear drab, despite its clear affluence.  

 We continued north through North Carolina and into Virginia. The ocean became cooler 

and the nights more tolerable. The accents changed and by the time we entered New York City 

the sweltering heat of the Gulf was largely forgotten. By this time, we had taken to buying dry 

ice to keep our portable freezer running, as the power it sucked had blown the fuse in the Altima. 

On Staten Island, we bought a pound of dry ice from a small shop called Piazza’s, where a man 
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with no eyebrows and burn scars on his arms told us that dry ice was quite safe. We collected 

haustoriids on Long Beach – the locals crowded around us, asking questions about every step of 

the sampling process and assuring us that they’d seen the amphipods before, no doubt, crawling 

around in the sand. We then drove up through Brooklyn (Leaving Brooklyn? Fuggedaboutit!) 

and the length of Manhattan, crossed through the Bronx and then were finally out of the city, up 

the Sound on our way to Cape Cod.  

 The ocean in New England is icy cold, even in August, and we watched seals wading in 

the surf not 20 meters off the beach. A French-Canadian couple filmed them as we dug through 

the rocky sand for amphipods. We found the largest ‘pods I’d ever seen there, some half the 

length of your palm, and we found them by the dozens. We did not swim here, though, but not 

because of the cold. Signs along the beach warned of great white sharks and their favorite snacks 

– wading seals. I didn’t go more than ankle deep.  

 In Maine, we camped on a lake and braved the frigid water in the evening after driving 

most of the day. Maine bleeds seamlessly into Canada – towering evergreens that stretch as far 

as you can see, a harsh gray landscape interrupted by the occasional bog. Signs warned of 

“Moose Crossings” and Tim Horton’s began to appear at every intersection. Prince Edward 

Island was the last sampling location. The beaches here were crimson from the dark clay that 

washed down from the eroded hillsides. The water was warm and there were no amphipods. But 

there were fields of wildflowers – rolling hills splashed with shades of yellow, red, and pink. The 

beauty of the island erased our feelings of failure at our last site; instead, the island was itself the 

destination, the end of the pilgrimage. I would not trade its red sands and sea of wildflowers, its 

quaint architecture and unpaved granite roads, for all the amphipods in the world.  
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By March, the World Health Organization had designated what is taxonomically known 

as SARS-CoV-2 as a global pandemic. As of this writing, 22 million people around the world 

have been infected and almost 800,000 have died. The Spring and Summer semesters of my 4th 

year were times of intense stress punctuated by seemingly endless periods of boredom. The 

whole world has gone into lockdown. The future is a black box wrapped in anxiety; the only 

constant is quarantine, the only hope a vaccine that can restore some sense of normalcy to our 

lives. If anything, this pandemic has laid bare the tragedy of the United States. Thinking 

ourselves untouchable – a mansion on a hill – we instead are bearing the brunt of the deaths, the 

infections, all the while insisting that we have it under control. Forcing normalcy at the cost of 

human life. The incompetency of our state and federal governments is rivaled only by university 

administrators that place their bottom-line above the health and safety of the community.  

 For four years I attended public defenses and seminars. I permitted myself to imagine 

what my own defense would be like – how my friends and family would be there, how I’d layout 

for them the work that I’d done the past 5 years in some sweeping story. I thought of how I 

would thank all of my great friends with some emotional speech on a slide with all of their faces, 

Left: “Elysium”. Yellow fields of Prince Edward Island. Right: “A House on the Hill”. Photos by Faith Hardin. 
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and I’d see them in the audience, smiling and nodding their heads. I imagined walking across the 

stage at graduation, receiving my hood from Dr. Wicksten and the flurry of photographs that my 

family would take afterward, flashes blinding me, my mother’s tears of joy, the celebratory 

dinner to follow.   

 None of that will ever happen. I will never know what it’s like to give a normal public 

defense, to hug your friends and family after the closing slide, to physically stand in front of your 

committee and justify your methods. The taste of a post-defense beer with friends at the bar, all 

buying you shots, calling you Doctor. The experience of being hooded in front of your peers and 

family, all gathered to cheer-on your hard-fought accomplishment.  

 But I will always have the wildflowers of Prince Edward Island. The virus can take away 

my public graduation, but it cannot rob me of the nights on the roof of the field station in Calnali. 

It cannot claim the feeling of the warm sun on my back as we rowed through the Laguna de 

Términos over seagrass beds peppered with bright purple sponges. Nor the refreshingly cool 

ponds of Chahuaco Falls, the mist of the waterfall descending upon me in gentle clouds.  

 It cannot take this away from me.  

This is mine. 
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“EXIT HERE.” Photo by Zach Hancock. 
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CHAPTER I 
 
Maps throughout this article were created using ArcGIS® software by Esri. ArcGIS® and 
ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © 
Esri. All rights reserved. For more information about Esri® software, please visit www.esri.com. 
 
Data has been stored in the Dryad repository; doi:10.5061/dryad.pd0ks46. 
 
CHAPTER II 
 
Code from this chapter is available at https://github.com/hancockzb/GenomeSize. 
 
CHAPTER III 
 
Code from this chapter is available at https://github.com/hancockzb/ancestralIBD.  
 
CHAPTER IV 
 
Methods 
 
Model details and discussion 
 

The continuous-space model is an extension of Rogan et al. (in prep), which itself was a 
modification of Bradburd & Ralph (2019) and Battey et al. (2020). Unlike in these previous 
applications, the model is constrained to non-overlapping generations by enforcing a pseudo-age 
structure, which sets fitness to 0 at age 1. Beyond this, the model is unlike the classical WF 
model in that population size is not constant but is an emergent property of the population 
carrying-capacity, K. Furthermore, while the mean and variance of the number of offspring 
should converge to a Poisson process with 𝝀 = 1 as N → ∞ (Wakeley 2009), in my model the 
population is only sustained when 𝝀 = 2. Therefore, the mean and variance in offspring is 
slightly higher than under the WF model. 
 The landscape is defined by a matrix, M, of height h and length ls, where 
 

X 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀) = 𝑙𝑠, when	𝑠 = 1
𝑙𝑒𝑛𝑔𝑡ℎ(𝑀) = 𝑙𝑠 + 4𝑠, when	𝑠 = 1a. 

 
The inclusion of 4s provides a distance of 4 cells between each species, s, following the split 
while ensuring that the species-specific M = h ✕ l. This distance exceeds the maximum dispersal 
distance in the unclustered model. The number of species simulated were 3, 4, and 6, each with 
different applications (see the different subsections below). I used interpolation to allow the 
fitness values of cells to be a continuous gradient instead of discrete steps between cells. The 
cell-specific fitnesses, fc, were equal to 1.0 (i.e., there were no cell-specific fitness declines).  
 Fitness was also determined by the local population density with a maximum strength of 
1 / 2π𝜎I2 and max distance of 3𝜎I, which was drawn from a Gaussian distribution. To reduce 
clumping along the edges, I enforce fitness decline relative to distance from the edge as 
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𝑓" = min d1,e
?'
@#
fmin d1,e

A'
@#
fmin d1,e(%(?')

@#
fmin d1, e(%(A')

@#
f 𝐹, 

 
where F is the cumulative fitness accounting for both fc and 𝜎I, and xi and yi are the spatial 
positions of individual i in the x and y coordinates, respectively (Battey et al. 2020). This causes 
fitness declines towards the edges to be more extreme when 𝜎D < 1.0, which promotes 
heterogeneity in population density across the range.  
 Individuals are hermaphroditic but incapable of selfing. Mate-choice strength is drawn 
from a Gaussian distribution with a maximum of 1 / 2π𝜎M2 within a max distance of 3𝜎M. 
Immediately after offspring production, individuals disperse across the range by taking two 
draws from a random uniform distribution with a minimum of –3𝜎D and maximum of 3𝜎D. The 
two life-history models we refer to as “clustered” and “unclustered”, which characterize the 
behavior of the simulated individuals. The clustered model sets 𝜎D and 𝜎M each = 0.25, and 𝜎I = 
1.0; the unclustered model sets 𝜎D and 𝜎M = 1.0, and 𝜎I = 0.25.  
 For the vicariant model of speciation, the initial range of size M is populated with M*K 
individuals, where K is the local carrying-capacity, with initial positions drawn from a random 
uniform distribution. For the 3 and 4 species models, a period of 10,000 generations of burn-in 
proceeds the initial split. For the 6 species models, this period is extended to 50,000 generations. 
The range then proceeds through a series of fragmentations that carve the range into s equal final 
ranges of size 20✕20. For the peripatric speciation model, the fitness of the initial range is set to 
0.0 except for the far-left corner of size 20✕20. The population then proceeds through an 
expansion period of 100 generations where the habitable range size has extended to a length of ls 
+ 4s. After 100 generations, the range is split by setting the fitness values of 4 columns of the 
landscape matrix to 0.0. This occurs s times.  
 Simulated individuals are diploid with genome sizes of 1000 Mb and a recombination 
rate of 10-9. No mutations are simulated during the runs as these can be overlaid after to increase 
computational efficiency. Tree-sequence recording is enabled to track the true local ancestry of 
all individuals; however, throughout the run internal simplification occurs that discards nodes 
that do not contribute offspring to the final generation.   
 Several important theoretical points about the model should be noted. First, both the 
clustered and unclustered models have a period of spatial autocorrelation and therefore neither 
represent true random mating. The unclustered model is merely meant to approximate random 
mating. Along these lines, the neighborhood sizes of each model are < 1000 and therefore will 
not generate random mating expectations (Wright 1943). Furthermore, in the clustered model the 
neighborhood size may be low enough that it never converges to the n-coalescent (Kingman 
1982; Wilkins 2004; Wakeley 2009). Another way to state this is that there is no transition 
between the scattering and collecting phases – the population is locked in the scattering phase. 
However, the process of recapitation in msprime (see Trees in Space: Models and Datasets) 
ensures that the collecting phase occurs as it simulates coalescence among all multiple roots 
under the n-coalescent irrespective of geography, life-history, etc. I justify this forced transition 
by pointing out that any uncoalesced nodes present at the beginning of the simulation either 1) 
belong to the same species, usually the last k = 2 samples to coalesce or 2) are from different 
species, and therefore represent a case of deep coalescence. The former case will add high 
frequency SNPs on the last long branches leading to the most recent common ancestor. These 
high frequency SNPs lead to deviations from the expected unfolded site frequency spectrum, 
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E[𝜉i], which under neutrality should be :
)
; we see an inflated proportion of high frequency SNPs 

in the site frequency spectrum (Fig. 4.6). Importantly, this occurs in both the clustered and 
unclustered models. However, as seen in Fig. 4.6, the clustered model leads to greater deviations 
in E[𝜉i] at intermediate frequencies. The impact of (2) on topological inference will be 
conservative as it will reduce the TMRCA by forcing random mating. 
 
Identifiability of 4-taxon trees 
 In the section Slatkin’s Skew and Gene Tree Asymmetry, I provide the results of both 3- 
and 4-taxon simulations. There’s an important point that should be noted regarding t in each of 
these models. Since t is in units of 2Ne, to accurately reflect theoretical expectations of 
divergence times we need to know Ne. For the 3-taxon tree, t can be calculated directly. 
However, for the 4-taxon tree there are an infinite number of combinations of t1 and t2 that 
produce a given proportion of gene trees. Therefore, the actual t1 and t2 values – those that reflect 
the “true” Ne – cannot be identified. The lack of identifiability is twofold: 1) the infinite 
combinations issue already pointed out; and 2) that reducing TD also reduces the amount of time 
a population has to equilibrate following the split. Therefore, estimating Ne from π12 would be 
incorrect because the relationship π12 = 4Ne𝜇 only holds if the population is in equilibrium. This 
is further exacerbated in the clustered model as it takes much longer to return to equilibrium 
following a split than the clustered model does. Due to these issues, for the 4-taxon tree we 
examine gene tree proportions in units of 2N, where N is the census population size. This means 
that the coalescent units in Fig. 4.2c between “sigma1” and “sigma25” are not the same. 
However, since we focus only on the topologies that are expected to be equal at all values of TD, 
I do not think this disparity impacts the results presented. 
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APPENDIX B 
 

CHAPTER I 
 
Table S1.1. Sampling information, including morphological identification, OTU identified using 
tree-based species delimitation methods, number of individuals sequenced for COI, 16S, 28S, 
and 18S, and the sample site location. Localities match those presented in Fig. 1. The numbers 
following LT-Pass Christian refer to the two unique genetic lineages of Lepidactylus 
triarticulatus found at this locality. 

  

Identificatio
n 

# 
Individuals 
sequenced 

for COI 

16S 28S 18S Location 
(Fig. 1 

locality #) 

Voucher # 
 

Haustorius 
galvezi 

9 - 1 1 Galveston, 
Texas (7) 

- 

Haustorius 
galvezi 

10 - 1 - Jamaica 
Beach, Texas 
(6) 

USNM 
1492390 

(paratype) 
Haustorius 
galvezi 

1 - - - Matagorda, 
Texas (5) 

USNM 
1492388 

(paratype) 
Haustorius 
galvezi 

4 - - 1 South Padre, 
TX (4) 

- 

Haustorius 
galvezi 

10 3 2 - Tamiahua, 
MX-VE (3) 

- 
 

Haustorius 
galvezi 

7 6 - - Antón 
Lizardo, 
MX-VE (2) 

BRTC 24863 

Haustorius 
galvezi 

3 7 - - Tabasco-
Campeche 
border, MX 
(1) 

- 

Haustorius 
jayneae 

4 5 2 - Dauphin 
Island, AL 
(12) 

- 

Haustorius 
jayneae 

5 1 1 1 Grayton 
Beach, FL 
(14) 

- 

Haustorius 
jayneae 

5 4 - - St. Andrews 
State Park, 
FL (15) 

- 
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Identificatio
n 

# 
Individuals 
sequenced 

for COI 

16S 28S 18S Location 
(Fig. 1 
locality #) 

Voucher # 
 

Haustorius 
jayneae 

5 4 - - Carrabelle 
Beach, FL 
(16) 

BRTC 24858  

Haustorius 
allardi 

3 8 1 1 Holly Beach, 
LA (9) 

USNM 
1492392 

(paratype) 
Haustorius 
canadensis 

2 - 2 2 Cape May, 
NJ 

BRTC 24864 

Haustorius 
arenarius 

2 - 1 2 Belgian 
Institute 

RBINS  
INV.138073 

Lepidactylus 
triarticulatus 

5 1 2 1 Grand Isle, 
LA (10) 

BRTC 24861 

Lepidactylus 
triarticulatus 

5 4 1 1 Sea Rim 
State Park, 
TX (8) 

BRTC 24862 

Lepidactylus 
triarticulatus 

4 3 1 1 Pass 
Christian, 
MS (11) 

BRTC 24860 

Lepidactylus 
triarticulatus 

6 1 1 1 Pass 
Christian, 
MS (11) 

- 

Lepidactylus 
triarticulatus 

5 5 1 1 Pensacola 
Bay, FL (13) 

BRTC 24859 

Outgroup
s 

      

Gammarus 
balcanicus 

- - 1 - Accession #: 
JF966175 

- 

Neogammaru
s nudus 

- - 1 - Accession #: 
KF478630 

- 

Accubogamm
arus sp. 

- - - 1 Accession #: 
KF478647 

- 

Echinogamm
arus 
anisocheirus 

- - - 1 Accession #: 
KF478629 

- 

Gammarellus 
angulosus 

- 1 - - Accession #: 
AY926717 

- 

 

Table S1.1. Continued. 
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Identificatio
n 

# 
Individuals 
sequenced 

for COI 

16S 28S 18S Location 
(Fig. 1 
locality #) 

Voucher # 
 

Parhyale 
plumicornis 

- 1 - - Accession #: 
KU565878 

- 

Niphargus 
timavi 

1 - - - Accession #: 
KR858492 

- 

Niphargus 
krameri 

1 - - - Accession #: 
KR858481 

- 

 
 
Table S1.2. Locus, primer sets, PCR conditions, and references for molecular markers used in 
this study. 
 

Locus Primer Set PCR conditions References 

COI L6625 — 5’-
CCGGATCCTTYTGRT
YTYGGNCAYCC-3’ 
H7005 — 5’-
CCGGATCCACANCRT
ARTANGTRTCRTG-3’ 

5 mins at 94°C, 45 cycles 
of 94°C for 1 min, 1 min 
at 51°C, 1 min 30 sec at 
72°C, final annealing at 
72°C for 10 mins 

Hafner et al., 1994 

16S 16STf — 
5’GGTAWHYTRACYG
TGCTAAG-3’ 
16Sbr — 5’-
CCGGTTTGAACTCAG
ATCATGT-3’  

4 mins at 95°C, 40 cycles 
of 95°C for 1 min, 1 min 
at 45°C, 2 min 30 sec at 
72°C, final annealing at 
72°C for 7 mins 

Macdonald et al., 2005 

18S 18SGF — 5’-
GGATAACTGTGGTAA
TTCCAGAGCT-3’ 
18SGR — 
5’TAGTAGCGACGGGC
GGTGTGTA-3’ 

1 min at 95°C, 35 cycles 
of 20 sec at 95°C, 20 sec 
at 63°C, 45 sec at 72°C, 
final annealing at 72°C 
for 7 mins 

Hou et al., 2007 

28S 28F — 5’-
TTAGTAGGGGCGACC
GAACAGGGAT-3’ 
28R — 5’-
GTCTTTCGCCCCTATG
CCCAACGA-3’ 

1 min at 95°C, 35 cycles 
of 20 sec at 95°C, 20 sec 
at 63°C, 45 sec at 72°C, 
final annealing at 72°C 
for 7 mins 

Hou et al., 2007 

 
 
 
 
 

Table S1.1. Continued.  
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Table S1.3. DNA substitution models supported by PartitionFinder2 and jModeltest2. 
 

Gene Model Replaced as 

COI 1st position — GTR + G  

 2nd position — TRNEF + G GTR + G 

 3rd position — F81 + I  

18S TIM3 + G GTR + G 

28S GTR + G  

16S HKY + G  

 
 
Table S1.4. Pairwise Distance Matrix among OTUs. Below the diagonal are distances calculated 
using a K2P substitution model. Numbers in blue above the diagonal are standard errors from 
500 bootstrap replicates in MEGA7. OTUs were identified using tree-based species delimitation 
methods and definitions of the abbreviations are presented in Table S1; LT = Lepidactylus 
triarticulatus. 
 
 

 H. 
galvezi 
(MX) 

H. 
galvezi 
(TX) 

H. 
jayneae 

H. 
allardi 

LT 
Grand 
Isle 

LT Sea 
Rim 

LT 
Pass 
Christi
an[1] 

LT 
Pensac
ola Bay 

LT 
Pass 
Christi
an[2] 

H. 
canade
nsis 

H. 
galvezi 
(MX) 

 0.0087 0.0186 0.0245 0.0261 0.0283 0.0305 0.0274 0.0268 0.0275 

H. 
galvezi 
(TX) 

0.0385  0.0196 0.0243 0.0261 0.0273 0.0317 0.0270 0.0255 0.0271 

H. 
jayneae 

0.1152 0.1200  0.0274 0.0302 0.0311 0.0321 0.0301 0.0298 0.0283 

H. 
allardi 

0.1843 0.1823 0.2006  0.0285 0.0291 0.0325 0.0311 0.0304 0.0317 

LT 
Grand 
Isle 

0.1989 0.1897 0.2377 0.2369  0.0096 0.0264 0.0274 0.0266 0.0286 

LT Sea 
Rim 

0.2232 0.2040 0.2517 0.2406 0.0351  0.0244 0.0275 0.0256 0.0290 
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 H. 
galvezi 
(MX) 

H. 
galvezi 

(TX) 

H. 
jayneae 

H. 
allardi 

LT 
Grand 

Isle 

LT Sea 
Rim 

LT 
Pass 
Christi
an[1] 

LT 
Pensac
ola Bay 

LT 
Pass 

Christi
an[2] 

H. 
canade

nsis 

LT 
Pass 
Christi
an[1] 

0.2412 0.2478 0.2485 0.2563 0.1726 0.1547  0.0292 0.0269 0.0313 

LT 
Pensac
ola Bay 

0.2353 0.2256 0.2479 0.2535 0.1913 0.1861 0.2111  0.0085 0.0301 

LT 
Pass 
Christi
an[2] 

0.2250 0.2098 0.2355 0.2352 0.1806 0.1672 0.1858 0.0305  0.0297 

H. 
canade
nsis 

0.2057 0.2048 0.2146 0.2615 0.2044 0.2087 0.2378 0.2405 0.2307  

 
 
Table S1.5. Pairwise FST matrix among localities shown in Fig. 6. Significant values are shown 
in bold; * = P < 0.01, ** = P < 0.001, *** = P < 0.0001. 

 

Locality Anton 
Lizardo 

South 
Tabasco 

South 
Padre 

Tamiah
ua 

Galvest
on 

Jamaica 
Beach 

Dauphin 
Island 

Grayton 
Beach 

St 
Andrew
s 

Carrabel
le Beach 

Anton 
Lizardo 

-          

South 
Tabasco 

0.0215 -         

South 
Padre 

0.2409* 0.3645* -        

Tamiah
ua 

0.3567*
** 

0.3443*
** 

0.2530*
** 

-       

Galvest
on 

0.7080*
** 

0.7168*
* 

0.7103*
** 

0.6540*
** 

-      

Jamaica 
Beach 

0.6987*
** 

0.7038*
** 

0.6896*
** 

0.6425*
** 

0.0000 -     

Table S1.4. Continued. 
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Locality Anton 
Lizardo 

South 
Tabasco 

South 
Padre 

Tamiah
ua 

Galvest
on 

Jamaica 
Beach 

Dauphin 
Island 

Grayton 
Beach 

St 
Andrew
s 

Carrabel
le Beach 

Dauphin 
Island 

0.9227*
** 

0.9609* 0.9623* 0.8809*
** 

0.9138*
* 

0.9069*
** 

-    

Grayton 
Beach 

0.9251*
** 

0.9575* 0.9601*
** 

0.8852*
** 

0.9150*
** 

0.9095*
** 

0.6821*
* 

-   

St 
Andrew
s 

0.9189*
* 

0.9481*
** 

0.9506*
** 

0.8803*
** 

0.9109*
** 

0.9095*
** 

0.0000 0.4298* -  

Carrabel
le 
Beach 

0.9225*
** 

0.9544*
** 

0.9565*
** 

0.8828*
* 

0.9137*
** 

0.9079*
** 

0.3919 0.1129 0.0790 - 

 
 
 
Figure S1.1. Topology comparison for COI inferred from each method (RAxML, MrBayes, 
BEAST2). 
 
Figure S1.2. 28S gene tree produced in MrBayes. Node support: (posterior probability, bootstrap 
support from RAxML analyses).  
 
Figure S1.3. 16S gene tree produced in MrBayes. Node support: (posterior probability, bootstrap 
support from RAxML analyses). 
 
Figure S1.4. 18S gene tree produced in MrBayes. Node support: (posterior probability, bootstrap 
support from RAxML analyses). 
 
Figure S1.5. TCS haplotype network for COI produced in PopART. Tick-marks are inferred 
mutations.  

Table S1.5. Continued. 
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Figure S1.1. 
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Figure S1.2 
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Figure S1.3 
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Figure S1.4 
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Figure S1.5 
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CHAPTER II 
 
Tables 

 
Table S2.1. Pairwise genetic differentiation measures.  

Comparison HST KST KST* 

H. jayneae (Dauphin Island) x H. jayneae (Grayton Beach) 0.21032* 0.54839* 0.42426* 

H. jayneae (Dauphin Island) x H. jayneae (Carrabelle Beach) 0.12348 0.27273 0.20226 

H. jayneae (Grayton Beach) x H. jayneae (Carrabelle Beach) 0.04545 0.06604 0.2850 

H. canadensis (Cape Cod) x H. canadensis (Long Island) 0.20687** 0.15385 0.15438* 

H. canadensis (Cape Cod) x H. canadensis (Melbourne) 0.1340* 0.72846*** 0.44586*** 

H. canadensis (Cape Cod) x H. canadensis (Jacksonville) 0.59241** 0.83879** 0.70653** 

H. canadensis (Cape Cod) x H. canadensis (Tybee) 0.15020** 0.74960*** 0.44608** 

H. canadensis (Long Island) x H. canadensis (Jacksonville) 0.64770** 0.87097** 0.80899** 

H. canadensis (Long Island) x H. canadensis (Melbourne) 0.04698 0.76483** 0.46874** 

H. canadensis (Long Island) x H. canadensis (Tybee) 0.04698 0.74251** 0.41554** 

H. canadensis (Jacksonville) x H. canadensis (Melbourne 0.462628*** 0.4662*** 0.482366*** 

H. canadensis (Melbourne) x H. canadensis (Tybee) 0.01296 0.4400** 0.34241*** 
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Table S2.2. Proportion of major clusters.  

Species 

Genom
e size 
(Mb) 

Max 
reads 

Covera
ge (%) 

Total 
Repeat
s (%) 

LIN
E 

DIR
S 

LT
R 

Penelop
e 

Maveric
k 

Satellit
e 

Unknow
n 

Botto
m 

Nschmitzi 7500 
165550

0 0.0221 71.08 7.47 7.09 
18.8

6 0.1 0.6 2.78 8.78 9.83 
HcanadensisT

y 13080 
214538

7 0.0164 69.49 
18.7

5 0 3.74 0.4 0.28 4.63 20.81 17.81 

HjayneaeG 9330 
246450

5 0.0264 66.02 
17.6

6 0.22 3.31 0.51 0.77 6.81 15.56 20.47 

HjayneaeDI 9520 
142010

6 0.0149 70.97 
29.3

1 0.01 2.09 0.09 0.61 5.79 14.49 17.38 

Hallardi 2130 
112837

6 0.053 57 8.31 0.01 0.98 0.32 0.31 11.31 17.96 16.57 
Hcanadensis

CC 11390 
184513

2 0.0162 71.78 
21.1

5 1.52 4.44 0.21 0.06 6.39 19.3 15.58 
Hcanadensis

NC 12830 
246990

3 0.0193 69.77 
18.0

8 0.54 5.11 0.47 0.31 3.6 21.02 18.47 
HcanadensisL

o 11990 
258521

5 0.0216 69.46 
16.4

5 0.57 5.51 0.39 0.33 4.93 20.27 18.92 
LdysticusNCB

a 7520 
185781

8 0.0247 72.46 
18.2

2 3.14 
17.6

5 0.49 1.47 2.02 14.84 14.28 
HcanadensisJ

a 11690 
288917

2 0.0247 68.13 
19.3

1 0 3.94 0.36 0.86 6.69 14.92 21.72 
Hcanadensis

Me 11050 
235494

1 0.0213 69.28 
20.5

5 0.38 4.42 0.43 1.13 1.47 18.51 22.41 

HgalveziMX 7350 
250130

2 0.034 68.78 
19.5

8 3.93 6.33 1.6 0.95 5.6 15.53 14.84 

LtriGI 2380 644675 0.0271 47.67 6.88 0 0.94 0.1 0.13 15.28 10.98 12.89 

LtriS 2200 785415 0.0357 48.46 8.43 0.04 1.44 0.07 0.16 12.56 11.92 13.84 

LtriPC1 3000 316053 0.0105 54.17 4.01 0 4.1 0.04 0.57 20.8 10.85 13.58 

LtriPBAY 2900 268152 0.0092 55.87 2.86 0 1.06 0.01 0.25 28.51 10.82 11.77 
 

Figures 

 

Figure S2.1. Posterior distribution of the estimated age of the Acanthohaustorius clade 

calibration. 
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Figure S2.2. Ancestral reconstructions of log(body length) and log(genome size).  
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CHAPTER III 
 
Table S3.1. Pairwise Wilcoxon test results of TMRCA for comparisons of TD / ND of 10, 5, 2, 1, 
0.5, and 0.1 from fastsimcoal2 simulations. Significant (p < 0.05) results are bolded.  
 

Comparison Ratio Migration rate p-value 

Ends-Center 10 0.1 <2E-16 

Island-Center 10 0.1 0.26 

Island-Ends 10 0.1 <2E-16 

Ends-Center 10 0.01 <2E-16 

Island-Center 10 0.01 0.019 

Island-Ends 10 0.01 <2E-16 

Ends-Center 10 0.001 <2E-16 

Island-Center 10 0.001 0.00000012 

Island-Ends 10 0.001 <2E-16 

Ends-Center 5 0.1 <2E-16 

Island-Center 5 0.1 0.22 

Island-Ends 5 0.1 <2E-16 

Ends-Center 5 0.01 <2E-16 

Island-Center 5 0.01 0.18 

Island-Ends 5 0.01 <2E-16 
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Table S3.1. Continued. 
 

Comparison Ratio Migration rate p-value 

Ends-Center 5 0.001 <2E-16 

Island-Center 5 0.001 1.2E-08 

Island-Ends 5 0.001 <2E-16 

Ends-Center 2 0.1 2.1E-11 

Island-Center 2 0.1 0.46 

Island-Ends 2 0.1 1.2E-10 

Ends-Center 2 0.01 <2E-16 

Island-Center 2 0.01 0.029 

Island-Ends 2 0.01 <2E-16 

Ends-Center 2 0.001 <2E-16 

Island-Center 2 0.001 0.000041 

Island-Ends 2 0.001 <2E-16 

Ends-Center 1 0.1 0.0000038 

Island-Center 1 0.1 0.33893 

Island-Ends 1 0.1 0.00017 

Ends-Center 1 0.01 <2E-16 
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Table S3.1. Continued. 
 

Comparison Ratio Migration rate p-value 

Island-Center 1 0.01 0.53 

Island-Ends 1 0.01 <2E-16 

Ends-Center 1 0.001 <2E-16 

Island-Center 1 0.001 0.0000023 

Island-Ends 1 0.001 <2E-16 

Ends-Center 0.5 0.1 0.027 

Island-Center 0.5 0.1 0.759 

Island-Ends 0.5 0.1 0.013 

Ends-Center 0.5 0.01 <2E-16 

Island-Center 0.5 0.01 0.032 

Island-Ends 0.5 0.01 <2E-16 

Ends-Center 0.5 0.001 <2E-16 

Island-Center 0.5 0.001 0.25 

Island-Ends 0.5 0.001 <2E-16 

Ends-Center 0.1 0.1 1 

Island-Center 0.1 0.1 1 
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Table S3.1. Continued. 
 

Comparison Ratio Migration rate p-value 

Island-Ends 0.1 0.1 1 

Ends-Center 0.1 0.01 0.0000068 

Island-Center 0.1 0.01 0.91 

Island-Ends 0.1 0.01 0.0000068 

Ends-Center 0.1 0.001 <2E-16 

Island-Center 0.1 0.001 0.077 

Island-Ends 0.1 0.001 <2E-16 

 
Table S3.2. Kruskal-Wallis test comparing (TMRCA – TD) / TD estimated from SNAPP of center 
and end species for different rates of migration and ratios of TD / ND. Bolded p-values indicate p 
< 0.05.  
 

Ratio Migration_rate p-value 
50 0.1 0.8724 
50 0.01 0.497 
50 0.001 3.821e-09 
25 0.1 0.001449 
25 0.01 0.5983 
25 0.001 < 2.2e-16 
10 0.1 0.2231 
10 0.01 0.03289 
10 0.001 < 2.2e-16 
5 0.1 7.891e-05 
5 0.01 8.788e-06 
5 0.001 < 2.2e-16 
1 0.1 0.4134 
1 0.01 0.07628 
1 0.001 < 2.2e-16 
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Table S3.3. Table of estimated divergence-times in SNAPP.  

TD / ND Deme 
sampled 

Migration 
rate 

True 
Age (TD) 

Expected 
Estimate (eTD) 

Actual 
Estimate 
(TMRCA) 

TMRCA - eTD (TMRCA - eTD) / 
eTD 

50 End 0.1 50000 52000 32929 -19071 -0.36675 

50 End 0.01 50000 52000 36330 -15670 -0.301346154 

50 End 0.001 50000 52000 40028 -11972 -0.230230769 

50 Center 0.1 50000 52000 46270 -5730 -0.110192308 

50 Center 0.01 50000 52000 54301 2301 0.04425 

50 Center 0.001 50000 52000 49004 -2996 -0.057615385 

25 End 0.1 25000 27000 25893 -1107 -0.041 

25 End 0.01 25000 27000 26492 -508 -0.018814815 

25 End 0.001 25000 27000 48430 21430 0.793703704 

25 Center 0.1 25000 27000 22264 -4736 -0.175407407 

25 Center 0.01 25000 27000 25488 -1512 -0.056 

25 Center 0.001 25000 27000 26147 -853 -0.031592593 

10 End 0.1 10000 12000 12439 439 0.036583333 

10 End 0.01 10000 12000 14085 2085 0.17375 
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Table 3.3. Continued. 
 

TD / ND Deme 
sampled 

Migration 
rate 

True 
Age (TD) 

Expected 
Estimate (eTD) 

Actual 
Estimate 
(TMRCA) 

TMRCA - eTD (TMRCA - eTD) / 
eTD 

10 End 0.001 10000 12000 28629 16629 1.38575 

10 Center 0.1 10000 12000 13234 1234 0.102833333 

10 Center 0.01 10000 12000 13040 1040 0.086666667 

10 Center 0.001 10000 12000 21782 9782 0.815166667 

5 End 0.1 5000 7000 10618 3618 0.516857143 

5 End 0.01 5000 7000 12730 5730 0.818571429 

5 End 0.001 5000 7000 19936 12936 1.848 

5 Center 0.1 5000 7000 11144 4144 0.592 

5 Center 0.01 5000 7000 10595 3595 0.513571429 

5 Center 0.001 5000 7000 11697 4697 0.671 

1 End 0.1 1000 3000 1512.9 -1487.1 -0.4957 

1 End 0.01 1000 3000 2700 -300 -0.1 

1 End 0.001 1000 3000 23845 20845 6.948333333 

1 Center 0.1 1000 3000 1513.2 -1486.8 -0.4956 

1 Center 0.01 1000 3000 2649.1 -350.9 -0.116966667 

1 Center 0.001 1000 3000 1647.2 -1352.8 -0.450933333 
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Figure S3.1. Plots of log((TMRCA – TD) / TD) against TD / ND for each migration rate (0.1, 0.01, 

0.001). Each point is the mean of 1000 simulations; lines around points are 95% confidence 

interval. Y-axis has been log-transformed to aid in visualizing differences between model/deme 

sampled. 
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Figure S3.2. Boxplot of coalescent times (TMRCA) across the genome, where times have been 

converted into proportions of the population divergence time (TD); ns = “not significant”, p < 

0.05 (*), p < 0.001 (**), p < 0.0001 (***), p < 0.00001 (****). Note that the y-axis differs 

between panels.  
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Figure S3.3. Genome-wide divergence times based on π12. Divergence times are estimated as π12 

/ 2𝜇 and evaluated in 100 Kb windows. The y-axis is the scaled proportion of overestimation, 

where TMRCA is the estimated age and TD is the true age. The dashed line represents the value at 

which these two converge (i.e., 0). Center (blue), ends (orange). Note the y-axis differs between 

the panels. 
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Figure S3.4. Estimates of 𝜃 in SNAPP for TD / ND = 50. Branch labels are estimated 𝜃.  
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Figure S3.5. Estimates of 𝜃 in SNAPP for TD / ND = 25. Branch labels are estimated 𝜃.  
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Figure S3.6. Estimates of 𝜃 in SNAPP for TD / ND = 10. Branch labels are estimated 𝜃.  
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Figure S3.7. Estimates of 𝜃 in SNAPP for TD / ND = 5. Branch labels are estimated 𝜃.  
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Figure S3.8. Estimates of 𝜃 in SNAPP for TD / ND = 1. Branch labels are estimated 𝜃.  
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Figure S3.9. Isolation-by-distance plots for three migration rates in the ancestral population. 
Pairwise FST was calculated between each deme in the ancestral population prior to the split to 
verify that a pattern of IBD had occurred. Note that the y-axis differs between panels. 
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Figure S3.10. Pairwise FST for sampled end and center species. Comparisons are population 
numbers from Fig. 1; these are arranged linearly from 1–10.    
 



 195 

 
Figure S3.11. Estimated median heights in *BEAST with a relaxed lognormal clock on all loci. 
Estimated node ages are in units of millions of generations (mga). Note that the scale bars are 
different between the two trees. A) “far” dataset; B) “near” dataset.  
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CHAPTER IV 
 
Figure S4.1. Distribution of Ne / N across the range for both clustered (𝜎 = 0.25) and unclustered 
(𝜎 = 1.0) models for the peripatric speciation scenario. Dotted line represents location of 
population split. Right panel is before the expansion; central panel is the expansion phase; left is 
after the expansion. 
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Figure S4.2. Distribution of Ne / N across the range for both clustered (𝜎 = 0.25) and unclustered 
(𝜎 = 1.0) models for the vicariant speciation scenario. Dotted line represents location of 
population split. Right panel is prior to the split; middle is 10 generations after; left is 990 
generations after. 
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Figure S4.3. Density of Ne / N following the split for each model. RE_0.25 = peripatric, 𝜎 = 
0.25; RE_1.0 = peripatric, 𝜎 = 1.0; RF_0.25 = vicariant, 𝜎 = 0.25; RF_1.0 = vicariant, 𝜎 = 1.0. 
Dotted line represents when Ne = N. 
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Fig. S4.4. Consensus trees produced by *BEAST2 with node calibrations signified by red stars. 
Node labels are posterior probabilities; branch labels are estimated lengths in substitutions.   
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Fig. S4.5. Consensus trees from the SNAPP analysis. Node labels are estimated divergence times 
in numbers of substitutions per site; branch labels are estimated q  values.   
 
 

 


