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ABSTRACT

Drug resistance is a fundamental barrier to developing robust antimicrobial and anticancer

therapies. Its first sign was observed in the 1940s, soon after discovering penicillin, the first modern

antibiotic. This dissertation focuses on 1) principle-driven approach for overcoming mutational

resistance in single protein target through combinatorial optimization; 2) principle- and data-driven

approach for alternative pathway activation in molecular networks through deep generative models.

The energy landscape theorem for protein folding is the main principle utilized for overcoming

mutational resistance in a single protein target. iCFN, an exact multistate protein design, has been

developed through combinatorial optimization. iCFN has been employed for real-life applications

such as engineering a HER2-specific antibody-drug conjugate and unraveling the biological mech-

anism underlying cancerous mutations in Estrogen receptors. Building upon iCFN, an optimal drug

design approach has been developed to not only predict the resistant mutations but also overcome

them by designing resistant drugs.

Drug combination therapy has been one of the strategies to overcome drug resistance since at

least the 1940s. Drug combinations are effective at delaying the beginning or suppressing the ex-

pansion of the resistance. However, the chemical space has been estimated to be 1060. Therefore, it

is experimentally infeasible to experiment with all the compound combinations for every disease.

So, a data- and principle-driven algorithm has been developed to generate drug combinations for

molecular networks’ desired disease. Firstly, we have developed DeepAffinity, an interpretable

and accurate deep learning model for compound-protein affinity prediction. Later, it has been

extended to DeepRelations, an explainable deep learning model for affinity and contact predic-

tion. Secondly, we have designed hierarchical variation graph autoencoders (HGVAE) to jointly

embed domain knowledge such as gene-gene, disease-disease, gene-disease networks. Finally,

conditioning on disease representation and utilizing accurate compound-protein affinity predictor

(DeepAffinity) a deep generative model has been developed through reinforcement learning and

generative adversarial network to overcome resistance in molecular networks.
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1. INTRODUCTION

Drug resistance is a major obstacle in fighting against many diseases such as HIV [2], TB [3],

cancers [4, 5] and so on. Drug discovery and design is a costly (∼billions of USD) [6] and lengthy

(∼12 years) [7] process with low success rates (3.4% phase-1 oncology compounds make it to

approval and market) [8].Therefore, it is worrisome if the newly developed drug loses its potency

due to resistance shortly after its introduction to the market. Antibiotic resistance is the tangible

example of this crisis, when a year after FDA approval of Ceftaroline (fifth generation drug), the

resistance occurs and [9]. This dissertation focuses on overcoming drug resistance due to a single

protein target mutation and alternative (same) pathway (re-)activation in molecular networks.

ERα, which plays a vital role in the prevention and treatment of the majority of breast cancers,

is a concrete example of mutational resistance [10]. Suppression of estrogen production and Direct

inhibition of ERs through selective ER modulators (SERMs) or selective ER degraders (SERDs)

are the two main classes of therapeutics ERα-based breast cancer. However, after long-term ex-

posure to these drugs, mutational resistance (Y537S, D538G) may occur [11, 12], and these drugs

will lose their efficacy. The primary and challenging questions are 1) whether we can anticipate

the mutational resistance; 2) understand the biological mechanism behind them; 3) Overcome the

resistance by considering the mutational resistance while designing drugs.

On the other hand, BRAF V600-mutant melanoma is a concrete example of the same pathway

reactivation for drug resistance [13, 14]. Targeting both MEK and BRAF in patients with BRAF

V600-mutant melanoma (through Dabrafenib + Trametinib) shows less resistance with respect to

targeting MAPK or BRAF alone [13, 14]. Melanoma and many other diseases show that their re-

sistances are multifactorial [15, 16], multiple drugs targeting multiple components simultaneously

could confer less resistance than individual drugs targeting components separately.

This dissertation introduces a principle-driven [17] approach to overcome mutational resis-

tance in single protein target. Also, it introduces a data- and principle-driven [18] approach to

overcome drug resistance for alternative (same) pathway (re-)activation in molecular networks.
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These approaches complement each other in various settings:

• Scope. The principle-driven approach design drugs for a single protein target. However, the

data- and principle-driven approach design drug combinations for molecular networks.

• Objective function. The principle-driven approach’s objective function is rooted in explicit

energy models between drugs-protein. However, the data- and principle-driven approach ’s

objective function is implicitly learned from data.

• Aim. The principle-driven approach is developed to anticipate and overcome resistant mu-

tations. However, the data- and principle-driven approach overcome the alternative (same)

pathway (re-) activation.

• Formulation. The principle-driven approach has been developed in combinatorial optimiza-

tion framework. But, the data- and principle-driven approach has been developed through

machine learning perspective. Particularly, it is grounded in reinforcement learning (RL),

generative adversarial networks (GANs), Bayesian modeling, and attention mechanism.

The dissertation is structured as follows. Firstly in chapter 2, principle-driven approaches have

been developed through combinatorial optimization to overcome the mutational resistance in a

single protein target. Secondly, in chapters 2 and 3, data- and principle-driven approaches have

been developed for drug combinations generation through reinforcement learning to overcome

alternative pathway activation in molecular networks. More specifically:

• Principle-driven approach for overcoming mutational resistance in single protein tar-

get. iCFN (interconnected cost function networks) [17], a novel and the efficient exact algo-

rithm has been developed for generic multistate computational protein design (with substate

ensembles for both positive and negative states). iCFN has been utilized for scientific dis-

covery in various real-life applications such as 1) Mutagenesis analysis of Pan-cancer DNA

Damage Repair Deficiency; 2) Engineering a HER2-specific antibody-drug conjugate to in-

crease lysosomal delivery and therapeutic efficacy; 3) Anticipating Cancer Mutations and
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unraveling mechanism for Estrogen Receptors. Furthermore, taking one step further, an

optimal single and cocktail drug design approach has been developed to not only predict

the resistant mutations but also overcome them by designing drugs. Three novel optimal

drug design formulations have been introduced for different mutational resistance scenarios.

Three drug design applications are 1) specificity over proteins: designing drugs to bind to

“targeted” proteins rather than “off-targets” 2) Specificity over states of a protein: designing

a drug to bind to “desired” state rather than “undesired” state of a protein 3) specificity over

drugs: designing a drug to compete with another compound ( such as a natural compound in

our body ) for binding to a “targeted” protein. Novel lower bounds with theoretical proofs

and computational complexity analysis have been developed for each drug design problem.

Furthermore, formulations and lower bounds have been extended to optimal drug cocktail

design.

• data- and principle-driven approach for drug combinations generation. For the first

time, interpretable (DeepAffinity [19]) and explainable (DeepRelation [20]) deep learning

models have been developed for fast and accurate compound-protein affinity and contact

predictions. Various applications of the proposed models have been illustrated, such as 1)

Binding site prediction; 2) discovering the underling mechanism behind protein specificity;

3) Structure-activity relationship (SAR) and lead optimization; 4) Assisting ligand-protein

docking. Particularly, DeepAffinity has been used as a fast and accurate compound protein

affinity oracle inside drug combinations generation. A data- and principle-driven deep gen-

erative model has been developed for faster, broader, and deeper exploration of drug combi-

nation space by following the principle underlying FDA approved drug combinations [18].

More specifically, Hierarchical Variational Graph Auto-Encoders (HVGAE) has been devel-

oped for jointly embedding disease-disease network and gene-gene networks. Secondly, a

reinforcement-learning graph-set generator model has been developed for drug combination

design by utilizing both gene/disease embedding and network principles.
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2. PRINCIPLE-DRIVEN APPROACH FOR OVERCOMING MUTATIONAL RESISTANCE

IN SINGLE PROTEIN TARGET∗

2.1 Overview

A principle-driven approach for overcoming mutational resistance has been developed in this

chapter. This is the first approach proposed in this dissertation for overcoming resistance. More

specifically, in this approach, 1) we aim to design drugs for single protein target; 2) we have

objective functions rooted in explicit energy terms; 3) we are in the pursuit of developing exact

and efficient algorithms through combinatorial optimization. This chapter is structured as follows.

In section 2.2, iCFN an efficient and exact algorithm for multi-state protein design is introduced.

Its efficiency and accuracy are assessed through benchmark and known proteins. In section 2.3,

iCFN has been utilized for scientific discovery in real-life applications. iCFN has been used for

Mutagenesis analysis, “acid-switched” ADC design, and anticipating cancer mutations in ERα. In

section 2.4, iCFN has been extended for optimal drug design to not only anticipate the resistance

mutation but also to consider it while designing drugs. An optimal single drug and drug cocktail

designs have been formulated as a minimax problem. Efficient and guaranteed lower bounds have

been developed for exact DFBB approaches.

2.2 iCFN: an efficient exact algorithm for multistate protein design

2.2.1 Introduction

Designing proteins of desired structures, properties, or functions would enable unraveling and

modulating biological systems and allow for a wide array of applications. Although this important

problem remains challenging, progress has been made with computational protein design (CPD),

sometimes together with experimental approaches such as directed evolution. CPD introduces an

∗Reprinted with permission from “Engineering a HER2-specific antibody–drug conjugate to increase lysosomal
delivery and therapeutic efficacy” by J. C. Kang, W. Sun, P. Khare, M. Karimi, X. Wang, Y. Shen, R. J. Ober, E. S.
Ward, 2019. Nature biotechnology 37, no. 5, 523-526, Copyright 2019 Nature Research.

∗Reprinted with permission from “iCFN: an efficient exact algorithm for multistate protein design” by M. Karimi,
Y. Shen 2018. Bioinformatics 34, no. 17, i811-i820, Copyright 2018 Oxford University Press.
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automated and accelerated way to tackle the problem. More importantly, it can rationally gen-

erate a tangible number of designs (and their underlying mechanistic hypotheses) which can be

experimentally tested to refine our knowledge.

CPD is often formulated as an optimization problem where a utility or objective function sum-

marizing a single or multiple design objectives is optimized over protein sequence space. As pro-

tein functions are largely determined by structures and dynamics, evaluating an objective function

for any given sequence often involves energy minimization over structures (or conformations).

There are two cases of structure-based CPD problems. The first is single-state design that only

considers one desired (or “positive”) state (e.g. stability of a given, fixed backbone conformation).

However, there are two limitations with single-state design: (1) without the explicit consideration

of an undesired (or “negative”) state, a designed binder may not be foldable or no specificity can

be achieved; (2) without the consideration of multiple positive or negative substates such as con-

formations, folds, oligomers and on/off-target binding, no multiple sub-objectives, positive or neg-

ative, can be accomplished and over-simplified assumptions often have to be made (for instance, a

fixed backbone despite that flexible protein structures exist in an ensemble of conformational sub-

states [21, 22]). Rather, the second case of CPD – multistate design – removes both limitations by

considering both positive and negative states and allowing multiple substates for either state [23].

Some “multistate” design studies only remove one limitation thus we emphasize the difference

between “state” and “substate” here to remove possible confusions.

Even single-state CPD is extremely challenging. With protein backbones fixed and side chains

discretized as rotamers [24], the resulting combinatorial optimization problem is NP-hard [25] thus

has no polynomial-time algorithm. Over the past two decades, three types of algorithms have been

developed for single-state design: heuristic, approximation, and exact algorithms, among which

only exact algorithms can guarantee the global optimum.

Heuristic algorithms include genetic algorithms [26] and Markov chain Monte Carlo (MCMC)

that can generate good-quality feasible solutions efficiently. In particular, MCMC is used in the

very popular Rosetta software [27] and has led to many successful applications [28, 29, 30, 31,
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32, 33]. Approximation algorithms include relaxed integer programming [34] and loopy belief

propagation [35, 36] that solve approximate forms of the problem.

Despite progress in heuristic or approximation algorithms for single-state design, there is a crit-

ical need for exact algorithms due to two major reasons. First, the guarantee of the global optimum

from exact algorithms assures that biophysical models and mechanistic hypotheses underlying the

formulation can be isolated from search algorithms and improved based on design success or fail-

ure; and the guarantee of a gap-free list of the top sub-optimum directly addresses uncertainty in

those biophysical models (such as free energy calculation). Second, the performance gap between

exact and heuristic algorithms widens as the size of single-state design grows [37] and this gap will

be even wider for multistate design whose size grows further with the number of substates.

The first and the most known framework of exact algorithms is dead-end elimination (DEE)

followed by A∗ [38, 39, 40, 41, 42]. DEE is widely used to prune the search space; and A∗ [43] is

a tree search algorithm for enumerating a gap-free ordered list in the pruned space. Original DEE

criteria [44, 45] have evolved to more powerful albeit more costly ones [46, 47, 48].

Furthermore, the DEE framework has been extended by the Donald group to first consider flex-

ible side-chain rotamers in minDEE [49] and iMinDEE [50], then locally flexible backbones within

voxel boxes [51], and recently locally flexible backbones and side-chain rotamers in DEEPer [52].

Other promising extensions include deriving tighter bounds in BroMAP [53] and dynamic A∗ [54]

as well as exploiting the sparseness of protein residue contact maps in AND/OR branch-and-bound

search [55].

Recently, a new framework of exact algorithms called cost function network (CFN) has been in-

troduced to re-formulate single-state design as a weighted constraint satisfaction problem (WCSP) [56,

57] modelled through a cost function network (CFN) and to solve it using depth first branch-and-

bound (DFBB) [58, 59]. CFN is shown to be significantly faster than other exact methods or solve

problems of sizes unprecedented to DEE/A* [37, 60]. Various local consistencies have been de-

veloped for lower bounding in DFBB [61, 62, 63, 64, 65, 66], among which existential directed

arc consistency (EDAC) is used the most for its balance between tightness and cost in practice.
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However, for multistate protein design with substate ensembles, no exact algorithm exists ex-

cept an extension of DEE/A∗ – COMETS (Constrained Optimization of Multi-state Energies by

Tree Search) [67]. Progress has been focused on heuristic or approximation algorithms [23, 68, 69,

70, 71, 72, 73]. For multistate design, DEE has been extended to type-dependent DEE where only

rotamers of the same amino-acid type can prune each other [74]. For multistate design where the

objective function is a linear combination of substate energies, COMETS incrementally searches

for the lowest-scoring sequence with A∗ by exploiting new lower bounds and generates the top few

sequences.

Here we present iCFN (interconnected cost function networks), a novel and efficient exact al-

gorithm for generic multistate CPD (with substate ensembles for both positive and negative states).

Our optimization formulation is general enough for various design tasks. And our algorithm guar-

antees a gap-free list of the best sequences and conformations with unprecedented efficiency for

practical, large-scale multistate CPD problems. Specifically, we have adopted the formulation of

WCSP and the model of CFN for each substate; and represented the coupled WCSPs as intercon-

nected CFNs over a tree of sequences, substates, and rotamers (values).

Then we have derived novel lower bounds with theoretical proofs and complexity analysis; and

we have designed DFBB-based tree search that allows positive and negative designs to inform each

other and substates within and across states to prune each other. Finally, we have applied iCFN to

designing a T-cell receptor (TCR) to specifically recognize an antigen peptide and avoid another

while allowing all molecules’ backbones to be globally flexible. For the resulting multistate CPD

problems of unprecedented sizes to exact methods, iCFN drastically improves the efficiency and

accuracy compared to state-of-the-art methods and provides new insights into the importance of

backbone flexibility in CPD and molecular mechanisms of binding specificity.
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2.2.2 Materials and Methods

2.2.3 Formulation

We will first introduce and formulate various cases of computational protein design of increas-

ing computational complexity and biophysical relevance. Bold-faced notations in lower cases

indicate vectors.

2.2.3.1 Single-state design with a single substate

A simple CPD is to find the best sequence s that optimally accommodates a desired (positive)

substate as measured in an objective function f(x) of protein structure x. Proteins are often as-

sumed to have fixed backbones and discrete side-chain rotamers r at selected, mutable or flexible

residues. So the only non-fixed part of the structure x consists of these side-chain rotamers r.

The objective function, often some form of energy functions, is usually assumed to be a sum of

constant, singleton, and pairwise terms:

f(r) = c+
∑
i

E(ir) +
∑
i<j

E(ir, js), (2.1)

where ir and js denote rotamers r and s at residue i and j, respectively. An example of f(·) is the

energy E(·) of protein structure x to stabilize a desired, fixed backbone structure potentially for a

desired function.

The resulting optimization problem can be formulated as

s∗ = argmin
s∈S

min
r∈R(s)

f(r), (2.2)

where the set S, capturing the sequence design space, is the Cartesian product of the sets of amino-

acid types allowed over all residues; and R(·), capturing the rotamer library, is the Cartesian

product of the rotamer sets over all mutable or flexible residues of a sequence.
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2.2.3.2 Single-state design with substate ensembles

This slightly more complex case also considers just positive design (or state) but considers an

ensemble of positive substates rather than one. Such treatment leads to more accurate biophysical

models and more design capabilities. For instance, it allows for treating a protein backbone flexible

when these substates correspond to backbone conformers; and it allows for designing binding

profiles when these substates correspond to various ligand-bound states. We give the formulation

as

s∗ = argmin
s∈S

min
p∈P

min
r∈Rp(s)

fp(r), (2.3)

where P is the set of positive substates and fp(·) is the objective function for the pth positive

substate. Minimizing over P substate objective functions fp(·) maintains an “OR” relationship

among them for the overall (positive) objective. For instance, in the case of fp(·) being energies

Ep(·), it ensures choosing the ground substate with its sequence and conformation being optimized

simultaneously. One can also maximize over P .

2.2.3.3 Multistate design with a single substate per state

Compared to the two previous cases with positive state only, this case considers both positive

and negative states each represented by a single substate. In other words, it is to find the best se-

quence that specifically accommodates a desired positive substate rather than an undesired negative

substate. The objective function here can be the gap between the two substate objective functions

f+(·) and f -(·). The formulation is given as

s∗ = argmin
s∈S

(
min

r∈R+(s)
f+(r)− min

r∈R-(s)
f -(r)

)
, (2.4)

where superscripts “+” and “-” indicate positive and negative quantities, respectively. For instance,

this formulation allows for binding affinity design when positive and negative substate objective

functions are energies of a protein in one bound and one unbound state, respectively. It also allows

for binding specificity design when these substate objective functions are binding energies to one
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target and one off-target, respectively.

2.2.3.4 Multistate design with substate ensembles

The most generic formulation, for which our exact algorithm will solve, considers both pos-

itive and negative states explicitly and considers an ensemble of substates for either state. The

formulation can be written as

s∗ = argmin
s∈S

(
min
p∈P

min
r∈R+

p(s)
f+
p (r)−min

q∈Q
min

r∈R-
q(s)

f -
q(r)

)
, (2.5)

where P and Q denote the positive and the negative substate ensemble with p and q being the

positive and negative substate index, respectively. Moreover, constraints on substate objective

functions can be introduced and addressed (e.g. those linear ones in our T-cell receptor design).

This generic formulation includes all aforementioned formulations as special cases. It helps

improve the accuracy of biophysical models and strengthen the capability to design for multiple

desired substates over multiple undesired ones. For instance, one can design a tight binder that

can fold using protein-complex and binder alone as positive and negative states in conformational

ensembles, respectively, as our XRCC1 design does in Sec. 2.2.7. One can also design a protein

that specifically binds to a target “ensemble” rather than an off-target one with fp(·) and fq(·)

being energies for the pth target and qth off-target, respectively, as our T-cell receptor design does

in Sec. 2.2.8. The min operator over all positive substates can be replaced by max for multi-

specificity and solved similarly.

2.2.4 iCFN for multistate design with substate ensembles

With the generic formulation given, we proceed to introduce our exact algorithms based on

cost function networks (CFN). CFN is the state-of-the-art approach to single-state protein design

with a single substate [58, 59]. We extend CFN for multistate design with substate ensembles. We

first design a tree structure of sequences, substates, and rotamers and a tree-search algorithm using

CFN as a corner stone, which leads to a reduced version of the ultimate iCFN. Here CFN is used to

solve each substate energy minimization problem for any given sequence, a problem also known as
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side chain packing (SCP). We further improve the reduced version to interconnected CFNs (iCFN)

by deriving novel bounding schemes across CFNs.
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Figure 2.1: Schematic illustration of the study: algorithm design and application.

A high-level schematic illustration of iCFN is shown in Fig. 2.1. For either positive or negative

state, iCFN first reads data (singleton and pairwise energy values) and prunes the search space

using type-dependent DEE within and across substates sequentially. Individual substate designs

are reformulated as weighted constraint satisfaction problems (WCSP) and modeled with intercon-

nected cost function networks over a tree representation of the search space. Using a depth-first

branch-and-bound (DFBB) approach, iCFN then searches over sequence space with newly pro-

posed and proven lower bounds to prune partially or fully defined sequences and searches over

substate-rotamer space for un-pruned, fully-defined sequences (i.e. side chain packing). After the

global optimum is found, it will redo DEE pruning and DFBB search with updated bounds and re-
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laxed energy thresholds for an ensemble of the best sequences in an ensemble of the best positive

and negative conformations. Next we will explain these steps in more details.

2.2.4.1 Sequential reading and pruning of rotamers

iCFN first sequentially reads data and incrementally prunes rotamers for either state. When

reading each substate, it prunes rotamers within the substate using type-dependent DEE – Gold-

stein and single split DEE for all substates as well as single pair and single double DEE just for

positive substates. It then prunes rotamers for substates read so far using our extended, across-

substate type-dependent DEE. This approach drastically reduces peak memory usage to store sub-

state rotamers. We provide its pseudocode in Algorithm 1.

Algorithm 1 Pseudocode for sequential reading and pruning.
for i = 1: N do

Read_substate(i)
Type_Dep_DEE(i,δ)
if Is_it_first_substate() then

Create_main_substate()
else

Substate_Dep_DEE(i,δ)
if Is_new_substate_pruned() == 0 then

Concat_to_main_substate()
end if

end if
end for

We extend within-substate type-dependent DEE [74] to across-substate type-dependent DEE

as follows:

Theorem 1. Rotamer ia of position i in substate 1, provably pruned by rotamer ib of the same

position in substate 2, is not part of the optimal solution if both substates are of the same state,
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both rotamers are of the same amino-acid type, and the following criterion holds:

L1(ia) = c1 + E1(ia) +
∑
j,j 6=i

min
s1

(
E1(js1) + E1(ia, js1)

)
+

∑
j>k,k 6=i,j 6=i

min
s1,u1

E1(js1 , ku1)

> U2(ib) = c2 + E2(ib) +
∑
j,j 6=i

max
s2

(
E2(js2) + E2(ib, js2)

)
+

∑
j>k,k 6=i,j 6=i

max
s2,u2

E2(js2 , ku2)

(2.6)

Proof. Following Eq. 2.1, the energy of substate 1 (used as a subscript) with rotamer ia at residue

i and its upper bound can be written as:

c1 +
∑
m

E1(mr) +
∑
m<j

E1(mr, js)

= c1 + E1(ia) +
∑
m 6=i

E1(mr) +
∑
j 6=i

E1(ia, js)+

∑
m<j,m6=i,j 6=i

E1(mr, js)

> c1 + E1(ia) +
∑
j,j 6=i

min
s

(
E1(js) + E1(ia, js)

)
+

∑
j>m,m,j 6=i

min
s,r

E1(js,mr) , L1(ia)

(2.7)
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By doing the same for rotamer ib in substate 2:

c2 +
∑
m

E2(mr) +
∑
m<j

E2(mr, js)

= c2 + E2(ib) +
∑
m 6=i

E2(mr) +
∑
j 6=i

E2(ib, js)+

∑
m<j,m6=i,j 6=i

E2(mr, js)

< c2 + E2(ib) +
∑
j,j 6=i

max
s

(
E2(js) + E2(ib, js)

)
+

∑
j>m,m6=i,j 6=i

max
s,r

E2(js,mr) , U2(ib)

(2.8)

Therefore, if L1(ia) > U2(ib), then ia is pruned by ib and cannot be part of the global optimum.

A natural extension for the top δ kcal/mol ensemble is that rotamer ia of substate 1 is pruned

by rotamer ib of substate 2 if L1(ia) > U2(ib) + δ.

An extension for the top δ kcal/mol ensemble is that rotamer ib of substate 2 prunes rotamer

ia of substate 1 if L1(ia) > U2(ib) + δ. In some applications especially for the optimal ensemble,

these across-substate DEEs can increase computational cost more than they add pruning power and

thus can be disregarded in iCFN as we later do for TCR design.

2.2.4.2 Global sequence-level search

The second stage of iCFN performs DFBB search over the sequence space, which is rep-

resented in a hierarchical tree structure together with states, substates, and conformations. The

overall search strategy is illustrated in Fig. 2.2. Beginning with a completely undefined sequence

indicated by all ”X”, it splits the current sequence space (parent node) into two subspaces (child

nodes), based on the first amino acid being valine (V) or not. It then evaluates the lower bound on

the right child corresponding to a partially defined sequence and determines whether to prune its

entire subtree or to split it again. The so-called binary branching repeats until reaching a sequence-

level leaf node (i.e., a fully-defined sequence) whose lower bound is evaluated for pruning. If the
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Combination of values (rotamers)
(Side chain packing)

Figure 2.2: Schematic illustration of global sequence search.

sequence is not pruned, state, substate, and rotamer-level search follows with similar DFBB (next

subsections). Then iCFN calculates the sequence’s specificity score and updates the upper bound

for optimal specificity if the score is lower than the best specificity so far.

Two types of lower bounds with proofs and complexity analysis are developed for iCFN to

prune sub-trees of sequences (including their associated substates and rotamers) when the search

reaches a sequence-level leaf node (i.e., a fully-defined sequence) or otherwise. They are not

included in reduced iCFN to assess their sole contribution to numerical efficiency.

The first lower bound is generically applicable to all sequences, fully defined or not.

Theorem 2. For any sequence space S, a lower bound of the objective function for multistate
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protein design with substate ensembles (Formulation in Eq. 2.5) is given by (× denotes Cartesian

product):

min
(k,l)∈P×Q

(
∆ckl +

∑
i

min
a∈S(i)

min
(r,r′)

(
∆Ekl(ir,r′)+

∑
j>i

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))
, where

(2.9)

∆ckl = c+
k − c-

l,

∆Ekl(ir,r′) = E+
k (ir)− E-

l(ir′),

∆Ekl(ir,r′ , js,s′) = E+
k (ir, js)− E-

l(ir′ , js′),

(2.10)

i.e., differences in constant, singleton, and pairwise energies between a positive substate k and a

negative substate l.

Proof. For an arbitrary sequence a in the space S, its rotamer vector r is in the space ofRk(a) for

substate k. The highest specificity is thus:

min
a∈S

(
min
k∈P

min
r∈Rk(a)

E+
k (r)−min

l∈Q
min

r′∈Rl(a)
E−l (r′)

)
> min

a∈S
min

(k,l)∈P×Q
min

(r,r′)∈Rk(a)×Rl(a)

(
E+
k (r)− E−l (r′)

)
> min

a∈S
min

(k,l)∈P×Q

(
∆ckl + min

(r,r′)

(∑
i

∆Ekl(ir,r′)

+
∑
j>i

∆Ekl(ir,r′ , js,s′)
))

> min
a∈S

min
(k,l)∈P×Q

(
∆ckl +

∑
i

min
(r,r′)

(
∆Ekl(ir,r′) (2.11)

+
∑
j>i

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))
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= min
(k,l)∈P×Q

(
∆ckl + min

a

∑
i

min
(r,r′)

(
∆Ekl(ir,r′)

+
∑
j>i

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))

> min
(k,l)∈P×Q

(
∆ckl +

∑
i

min
a∈S(i)

min
(r,r′)

(
∆Ekl(ir,r′)

+
∑
j>i

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))

The complexity of evaluating the lower bound for undefined sequences is given as follows:

Theorem 3. The lower bound in Theorem 2 can be computed in O
(
(nRa)2r

)
, where n is the

number of positions, R the average number of rotamers per position, a the average number of

substates per state, and r the average number of rotamers per amino acid.

Proof. we prove the complexity by starting with the most inner minimization:

min
(s,s′)

∆Ekl(ir,r′ , js,s′)

= min
(s,s′)

(
E+
k (ir, js)− E−l (ir′ , js′)

)
= min

s
E+
k (ir, js) + min

s′

(
− E−l (ir′ , js′)

)
= min

s
E+
k (ir, js)−max

s′
E−l (ir′ , js′)

(2.12)

So, we can calculate it in O(r). Since the number of amino acids is known, then

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′) (2.13)

will be again O(r), so by summing over positions it will be O(nr). For calculating:

min
a∈S(i)

min
(rk,rl)

(
∆Ekl(ir,r′) +

∑
j>i

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
)

(2.14)
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similar to previous version, we can compute it in O(nR2r) and summing over all positions it will

be O(n2R2r). Finally, since we are calculating (2.14) for all a2 pairs of substates across the two

states, complexity will be O(a2n2R2r).

In practice, we only use the first lower bound for partially defined sequences and have derived

a tighter one for fully defined sequences:

Theorem 4. For any defined sequence s, a lower bound can be given by

min
k∈P

L+
k (s)−min

l∈Q
U -
l (s) (2.15)

in which L+
k (s) is the lower bound on all rotamers for sequence s and kth substate in positive design

and U -
l (s) is the upper bound on all rotamers for sequence s and lth substate in negative design.

Proof. When sequence is fully defined, a lower bound can be derived by:

min
k∈P

min
rk∈Rk(s)

E+
k (rk)−min

l∈Q
min

rl∈Rl(s)
E−l (rl)

> min
k∈P

L+
k(s)−min

l∈Q
U -
l (s),

(2.16)

in which L+
k(s) can be any lower bound from single-state protein design (we use existential directed

arc consistency a.k.a. EDAC) and U -
l (s) can be any upper bound from single state protein design

(we use limited discrepancy search a.k.a. LDS).

2.2.4.3 State and substate-level search

Once a fully defined sequence s is reached and cannot be pruned, it splits into child nodes of

positive and negative states and follows positive substates then negative ones. iCFN repeats DFBB

in the rotamer space for side chain packing (SCP) in each substate. We use the following bounding

criteria to prune substates.

• Within the same state: Substate k prunes l if they are in the same state (positive/negative)

and U ·k(s) < L·l(s)− δ where the superscript · stands for either + or -. We again use EDAC
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and LDS for L·l(s) and U ·k(s), respectively.

• Across the two states: For a negative substate q, all the subsequent negative substates will be

skipped if no rotamers both pass the within-state pruning and satisfy min{f+(s)} − f -
q(·) >

Sbest + ε, where min{f+(s)} denotes the optimal value among all positive substate functions

for the sequence s and Sbest is the lowest specificity score of the best sequence so far. If q = 1

(the first negative substate), the sequence s is also pruned.

There might be more substate constraints in practice. For instance, our TCR design formulation

has a stability condition for positive substates: L+
p(s) > min{f+(WT)} + τ . Therefore, a positive

substate p is pruned if its stability lower bound is worse than wild type by more than τ . Other

user-defined constraints on substates can further speed up the search.

2.2.4.4 Value-level (rotamer) search (side-chain packing)

Once reaching a substate that is not pruned, iCFN again uses binary branching to iteratively

split during search the conformational space into a chosen rotamer and all the rest. For pruning

conformational subtrees, the search again uses EDAC as lower bounds and LDS as upper bounds

in each side chain packing. After a leaf node of the tree (a fully defined conformation for a fully

defined sequence) is visited and cannot be pruned, it either becomes the best solution so far or

enters the δ-ensemble for the corresponding sequence in the substate. The ensemble size for each

sequence in each substate can be limited to K where the K choices can be the first or the best

(implemented with a max-heap data structure).

2.2.4.5 Backtracking

When a sequence- or rotamer-level node is pruned with its subtree, our tree search backtracks

to its parent node, re-orders variables (positions) and values (amino acids or rotamers) in the tree

(see ordering in the next subsection), and repeats the DFBB process.
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2.2.4.6 Ordering

The ordering of positions, amino acid types, and rotamers in the search tree also has an impact

on the pruning efficiency. We use several ordering heuristics, originally developed for constraint

satisfactory problems (CSP) and later extended for weighted CSPs, to boost the speed of iCFN

without compromising its guarantee of the global minimum or the gap-free top list.

For variable (position) ordering, the state of the art is the increasing order by the number of

amino acids or rotamers over the median of pre-calculated energy terms for global sequence search

or side chain packing, respectively. The principle is to visit nodes of higher energies earlier to prune

their child nodes more likely and visit nodes of fewer combinations to prune more bigger subtrees.

We improve the efficiency for iCFN by using the median of singleton terms only. The rationale

is that singleton terms (e.g. interactions between side chains and backbones) often dominate over

pairwise terms in side chain packing problems [75, 76]. Note that this treatment does not affect the

accuracy of iCFN. In practice it may lead to slightly increased number of nodes expanded or leaves

visited but still saves running time with much less time spent on each node for bound estimation.

For amino acid ordering per position, the wild type is by default the first and the rest is ordered

by increasing singleton energy values. And rotamer ordering for each amino acid type is again by

the increasing order of singleton energy values. These two orderings are following the principle of

increasing the chance to find a good feasible solution early.

2.2.5 Test on T-cell receptor design

We will now introduce the design problem to test our algorithms, with formulation specifics

and implementation details.

2.2.5.1 Background

T-cell receptors (TCRs) recognize peptide antigens presented by major histocompatibility com-

plex (MHC) and play a critical role in the immune response. Therefore, TCRs have been ac-

tively pursued for cancer immunotherapy. For instance, the first TCRs developed for melanoma

are DMF4 and DMF5 which recognize two structurally distinct peptide epitopes of MART-1
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(melanoma antigen recognized by T cells 1) bound to MHC class I protein HLA-A*0201 (HLA-

A2). Regulation of redesigned TCR with high affinity and specificity toward target peptide-MHC

(pMHC) has been a major task to develop effective TCR-based immunotherapies. Whereas im-

proving binding affinity has represented major efforts so far because of TCRs’ relatively weak

binding to pMHC, such improvements often come at a cost of binding specificity to target pep-

tides and thus bring the risk of off-target effects (for instance, strong affinity to MHC regardless of

peptide antigens). In addition, evidence shows that TCR affinity above a certain threshold would

cause T cell responsiveness to attenuate. In total, there is a pressing need for the rational design of

TCRs of carefully tailored affinity and specificity profiles.

We used the example of TCR DMF5 [77] to design optimal binding specificity while constrain-

ing the target-complex folding stability. The target, AAG peptide, is MART-1 nonameric epitope

(AAGIGILTV) and the off-target, ELA peptide, is MART-1 decameric epitope (ELAGIGILTV).

We modeled global backbone flexibility of bound DMF5, peptides, and MHC with a conforma-

tional ensemble sampled by molecular dynamics simulations.

2.2.5.2 Biophysical model

Each conformation of TCR-pMHC in the ensemble was treated as a substate. A hierarchy of

energy models is used. (1) During the tree search, folding energy (stability) of TCR-pMHC was

used as the substate function. Energy terms included Coulomb electrostatics, van der Waals and

internal energies as calculated in a CHARMM22 force field as well as nonpolar contributions of

continuum electrostatics based on solvent-accessible surface area (SASA). (2) After iCFN gener-

ates the top sequence-conformation ensemble, binding energy difference between the target and

the off-target (specificity) was used as the overall objective. Folding energies were re-evaluated

with a higher-resolution energy model where implicit-solvent Poisson-Boltzmann electrostatics re-

places Coulombic electrostatics [78, 42]. Binding energy for the lowest-energy conformation was

reported for each sequence in either state.
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2.2.5.3 Substate ensembles

Both peptides were previously crystallized in complex with MHC HLA-A2 or TCR DMF5 and

available with PDB accession codes 3QDJ or 3QDG. Both structures were first minimized using a

molecular modeling software CHARMM in a CHARMM22 force field with missing residues and

atoms added. They were then solvated using VMD with explicit water molecules of 10 Å padding

thickness from the molecular boundary and ionized to reach neutral charge and a concentration

of 0.145M. Either system was minimized for 5000 steps and a 10-ns molecular dynamics (MD)

simulation was performed using a computer program NAMD2. Starting from the beginning of

MD simulations, snapshots were retained every nano-second. In total, there are 11 positive and 11

negative substates.

2.2.5.4 Computational mutagenesis

We chose four positions as in an earlier study [77]: residues 26 and 28 on the α chain of

DMF5 and residues 98 and 100 on the β chain. Each mutable position is allowed for 26 amino-

acid types (some amino acids with multiple protonation states are each counted more than once).

Since folding energy was first used, specificity cutoff ε and positive-substate stability cutoff τ were

set loose at 1000 Kcal/mol while ensemble cut-off δ per sequence at 2 Kcal/mol. iCFN searched

for the best K=1000 conformations for each sequence. To reduce conformational representatives

for higher-resolution energy evaluation while maintaining diversity, top conformations of each

sequence in each substate were geometrically grouped [39] and only the representatives were

evaluated for higher-resolution folding and binding energies.

2.2.6 Results and Discussion

2.2.7 Numerical comparison to COMETS

We first compare iCFN to the only alternative exact method for multistate protein design,

COMETS [67], released in OSPREY V2.2 [40]. COMETS uses the weighted sum of substate

energies as its objective function, which differs from our formulation in Eq. 2.5. So we resort to

compare the methods using the same objective function (without constraints), energy calculations
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and rotamers (without continuous ones) as in OSPREY, which leads to multistate design with a

single substate per state as in Eq. 2.4. Specifically, the task is to minimize the binding energy of

a protein complex (XRCC1 N-term domain and DNA polymerase beta; PDB code: 3K75) as the

difference between the bound (or positive) and the unbound (or negative) state [67].

Out of five positions in XRCC1 (residues 391, 409, 411, 422, and 424), we incrementally

choose the first Nmut to be mutable; and for each choice of mutable residues, we set all the Nflex

residues within d = 3Å or 6Å to be flexible, and increasingly demand the top affinity sequence

ensemble (ε=0.5, 1.0, and 1.5 Kcal/mol while δ stays 2 Kcal/mol).

ε = 0.5 Kcal/mol 1 kcal/mol 1.5 Kcal/mol

Nmut d(Å) Nflex Pre-DEE Size Post-DEE Size COMETS Reduced iCFN iCFN COMETS Reduced iCFN iCFN COMETS Reduced iCFN iCFN

1 3 9 2.88× 1017 2.04× 108 4.03 0.02 0.02 4.27 0.03 0.3 4.37 0.03 0.03
1 6 16 5.24× 1030 2.75× 1019 6.84 0.16 0.12 6.97 0.17 0.12 7.72 0.19 0.13
2 3 10 1× 1022 1.73× 1012 6.85 0.28 0.15 8.36 0.28 0.16 9.29 0.28 0.16
2 6 19 5.88× 1037 1.58× 1025 19.46 2.63 1.41 29.07 2.67 1.44 29.27 2.79 1.47
3 3 11 7.94× 1027 8.31× 1018 M 12.64 6.15 M 12.67 6.51 M 12.65 6.54
3 6 20 1.81× 1043 1.44× 1030 M 62.17 32.9 M 62.22 33.26 M 62.31 33.47
4 3 14 6.54× 1036 8.31× 1026 M 493.26 268.28 M 493.31 268.3 M 493.95 268.41
4 6 26 7.94× 1056 4.36× 1038 M 2060 1458 M 2156 1493 M 2161 1498
5 3 15 3.54× 1042 2.34× 1030 M 9810 5570 M 9943 6005 M 10 046 6040
5 6 26 1.65× 1061 1.58× 1042 M 49 373 37 198 M 49 978 37 223 M 50 405 39 553

Table 2.1: Search space statistics and running time (in seconds) comparison between COMETS,
reduced iCFN, and iCFN over a series of incrementally larger multi-state XRCC1 design problems
with a single substate for either positive or negative state. (“M” indicates an out-of-memory error
under a 20-Gb limit.)

From Table 2.1 we conclude that our algorithms outperform COMETS in both memory us-

age and CPU time, which enables large designs in practice. Whereas COMETS couldn’t handle

designs of more than 2 mutable positions under a 20-Gb memory limit, reduced iCFN and iCFN

can design for all 5 positions operating below 80-Mb memory. For the single and double designs

where all algorithms produced results, reduced iCFN and iCFN are faster than COMETS by 1∼2

orders of magnitude.

Theoretical reasons underlie the better performance of our algorithms. On the memory de-

mand, the space complexity of our DFBB is O(K) where K is the number of mutable and flexible

positions whereas that of A∗ used in COMETS is O(eK). On the computational speed, cost func-
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tion network-based DFBB enjoys stronger lower and upper bounds. Specifically, (1) DFBB uses

lower bounds such as EDAC which proved more powerful than PFC-DAC used in DEE/A∗ [79].

In particular, even when it could not prune the whole subtree for a given position, EDAC can still

reduce the subtree size by pruning rotamers of the remaining positions. (2) For larger problems,

DFBB often reaches good-quality solutions much faster than A∗, which provides tighter upper

bounds earlier.

2.2.8 TCR Design: Efficiency

We now apply iCFN to T cell receptor design described in Methods. As shown later, these

multistate designs with substate ensembles and dense rotamer libraries are even larger than those

with single substates seen in XRCC1 designs. Therefore, we could not apply COMETS under our

cluster’s memory and CPU-time limits (50Gb and 7 core days). Instead, we compare exhaustive

search, reduced iCFN (separate CFNs for individual substates), and iCFN to evaluate the benefit

of treating CFNs jointly for powerful substate pruning during search.

2.2.8.1 Reduction in the sequence and conformer spaces

We compare the effective size of the search space after DEE pruning among exhaustive search,

reduced iCFN, and iCFN, using the following metrics: 1) the number of fully-defined sequences

searched, which is the same for exhaustive search and reduced iCFN but much lower for iCFN; and

2) the number of conformers searched, which, for reduced iCFN and iCFN, include not only leaves

(fully defined conformations) visited but also nodes (partially defined conformations) expanded at

the rotamer level of side chain packing for those sequences searched. These results are summarized

in Table 2.2 for the global optimum-specificity sequence and Table 2.3 for the top ε-Kcal/mol

ensemble (ε = 3) of sequences.

As seen in both tables, the TCR design problems feature sizes unprecedented to exact protein-

design methods even after type-dependent DEE: up to 1056 (1082), 10104 (10132), and 10134 (10162)

for global optimum (ensemble) single, double, and triple designs, respectively.

Reduced iCFN drastically shrinks the conformational space for search. For the global optimum,
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Reduced iCFN iCFN

Position(s) Pre-DEE Size Post-DEE Size Nodes Expanded Leaves Visited Sequences Time (s) Nodes Expanded Leaves Visited Sequences Time (s)

26 1061 1027 2.45× 103 1.41× 102 26 1.46 8.55× 102 36 3 0.56
28 1066 1049 3.75× 104 1.26× 103 26 24.5 4.12× 103 114 4 6.29
98 1058 1042 2.51× 104 8.16× 102 25 9.98 2.11× 103 88 8 3.38
100 1084 1056 4.92× 104 1.75× 103 26 19.85 3.78× 103 101 3 4.44
26,28 1087 1062 1.46× 106 3.75× 104 676 1335.95 5.99× 104 791 40 228
26,98 10119 1068 1.74× 106 3.88× 104 650 809.18 9.85× 103 231 14 182.10
26,100 10142 1082 4.08× 106 1.02× 105 676 1510.03 1.01× 104 234 5 303.64
28,98 10126 1092 5.20× 106 9.34× 104 650 3707.04 3.04× 105 4568 106 745.84
28,100 10141 10104 9.78× 106 1.80× 105 676 5603.60 2.00× 104 349 8 796.96
98,100 10112 1088 6.03× 106 9.34× 104 650 4384.48 3.39× 104 633 19 526.97
26,28,98 10146 10106 1.68× 108 2.66× 106 16 900 133 672 7.09× 105 8171 180 16 879
26,28,100 10161 10122 2.94× 108 5.11× 106 17 576 205 865 4.41× 104 652 14 22 941
26,98,100 10169 10117 3.28× 108 4.32× 106 16 900 202 001 1.88× 105 2425 55 23 430
28,98,100 10168 10134 5.86× 108 7.35× 106 16 900 496 051 7.45× 105 8284 103 46 685

Table 2.2: Comparing search space statistics and running time between reduced iCFN and iCFN
for global optimum in multi-state TCR design with substate ensembles.

Reduced iCFN iCFN

Position Pre-DEE Size Post-DEE Size Nodes Expanded Leaves Visited Sequences Time (s) Nodes Expanded Leaves Visited Sequences Time (s)

26 1061 1054 6.35× 104 6.20× 104 26 66.69 6.14× 103 6.00× 103 10 21.86
28 1066 1061 5.92× 104 5.70× 104 26 114.22 4.09× 103 4.00× 103 2 23.55
98 1058 1055 5.15× 104 5.00× 104 25 103.29 4.16× 104 4.00× 104 20 43.35
100 1084 1077 7.43× 104 7.11× 104 26 154.51 5.19× 103 5.00× 103 2 23.74
26,28 1087 1082 1.70× 106 1.62× 106 676 7454.93 9.44× 103 9.00× 103 4 1063.89
26,98 10119 10111 1.82× 106 1.73× 106 650 15 449.04 2.51× 105 2.38× 105 108 3872.32
26,100 10142 10132 1.89× 106 1.75× 106 676 19 780.68 2.62× 104 2.40× 104 10 2226.52
28,98 10126 10119 1.45× 106 1.37× 106 650 23 378.51 3.13× 104 3.00× 104 13 2810.31
28,100 10141 10132 1.77× 106 1.60× 106 676 24 631.34 4.22× 103 4.00× 103 2 2359.10
98,100 10112 10106 1.60× 106 1.51× 106 650 17 303.91 3.98× 104 3.80× 104 19 2056.47
26,28,98 10146 10141 — — 16 900 — 5.86× 104 5.50× 104 27 105 343
26,28,100 10161 10154 — — 17 576 — 1.48× 104 1.40× 104 6 99 012
26,98,100 10169 10161 — — 16 900 — 6.76× 104 6.00× 104 27 185 886
28,98,100 10168 10162 — — 16 900 — 3.73× 104 3.40× 104 12 158 995

Table 2.3: Comparing search space statistics and running time between reduced iCFN and iCFN
for the top sequence ensemble in multi-state TCR design with a substate ensemble per state. (“—”
indicates an out-of-time error under a 7-day limit.) Note that the ensemble versions are run after
corresponding global optima are derived to reach a tight sequence-level specificity bound and their
statistics do not include those in the global optimum stage reported in Table 2.2.

it only evaluates up to the order of 102, 105, and 106 fully-defined conformations and up to the order

of 104, 106, and 108 partially-defined conformations en route for single, double, and triple designs,

respectively. This space-reduction power does not weaken significantly with the increase of the

space size as type-dependent DEE does. For the top ensemble, it still only evaluates to the order

of 104 and 106 fully-defined conformations or partially-defined conformations en route for single

and double designs, respectively.

iCFN shows even more space-reduction power compared to reduced iCFN because, unlike the

latter, it reduces the sequence space (and associating substrees) besides the conformational space.
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In fact, iCFN visits on average 6.7 (7.4), 58.8 (110.8), and 455.1 (1397.2) times less sequences

for the best single (ensemble of) sequence(s) in single, double, and tripe designs, respectively.

Therefore, iCFN for global optimum impressively only evaluates to the order of 102, 103, and 103

fully-defined conformations and 103, 105, and 105 partially-defined conformations en route, which

translates to 9.2, 214.7, and 2358.6 times more space reduction on average compared to reduced

iCFN, for single, double, and triple designs, respectively. For the top ensemble, iCFN has similar

space-reduction improvement compared to reduced iCFN and visits only up to 105 conformations,

fully or partially defined, to solve triple designs that could not be handled by reduced iCFN within

7 CPU days.

2.2.8.2 Acceleration in running time

Since search space reduction can come at a cost of relatively expensive bound calculations, we

proceed to compare running time in Table 2.2 for the global-optimum sequence and Table 2.3 for

the top sequence ensemble. The design jobs (especially for the top ensemble) are daunting for an

exhaustive search or even COMETS. So we only compare between reduced iCFN and iCFN to

examine the algorithmic benefits of interconnections among substate CFNs. The pre-search step

of sequential reading and pruning of rotamers is the same between both and excluded in running

time reported.

iCFN drastically accelerates conformational search even compared to reduced iCFN and the

acceleration is observed to improve with the increase of the problem complexity. Specifically,

iCFN runs 3.4, 5.9, and 9.0 times faster than reduced iCFN does for global optimum in an average

single, double, and tripe design, respectively. For the top ensemble, iCFN runs 4.2 and 7.8 times

faster than reduced iCFN does in an average single and double design, respectively; and it solves

tripe designs within 1∼2 CPU days whereas reduced iCFN could not within 1 CPU week. The

results show that the benefit of pruning power clearly outweighs the burden of bound calculations.
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2.2.8.3 Performance improvement vs. problem complexity

In Fig. 2.3 we summarize how much the power of sequence bounding among CFNs grows with

the increase of the problem complexity. iCFN manifests its power in reducing sequence space and

running time even more with the increase of problem complexity when more positions are mutated

or more top solutions are desired.
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Figure 2.3: Compared to reduced iCFN, the speedup of iCFN in the number of sequences explored
for (A) the global optimum and (B) the best ensemble as well as that in running time for (C) the
global optimum and (D) the best ensemble.

Beyond substate pruning enabled by interconnected CFNs, three more improvements we made

also contribute to the numerical efficiency. The first affects both reduced iCFN and iCFN: (1)

variables (positions) are ordered based on the number of rotamers divided by the median of sin-

gleton energies only, which affects the nodes and leaves (and ultimately sequences) visited during

tree search. The rest two are both for calculating lower bounds of undefined sequences thus only
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affect iCFN: (2) a lookup table storing intermediate min/max values for each substate reduces cal-

culations in the order of the number of substates, and (3) an upper bounding when minimizing

differences over substate pairs can be accomplished with any feasible solution.

To dissect the contributions of these three additional contributions, we start with none and

incrementally introduce them into versions 0 (none), 0.1, and 0.2, where the latter two only apply

to iCFN. The latest version is regarded version 1. By comparing them, we find that the change of

position ordering may lead to slightly increased number of nodes expanded or leaves visited but

saves run time due to much less time spent on each node for bound estimation. In addition, the

lookup tables are created only once and used multiple times in search, which especially speed up

large designs (twice for double designs).

Reduced iCFN iCFN

Position(s) v0 v1 v0 v0.1 v0.2 v1

26 4.06 1.46 4 0.6 0.62 0.56
28 291 24.5 289 5.88 7.32 6.29
98 32 9.98 26 3.26 4.46 3.38
100 33 19.85 30 4.18 4 4.44
26,28 16 152 1335.95 12 774 676.61 248.26 228
26,98 3540 809.18 2627 283.63 172.89 182.10
26,100 3799 1510.03 3008 686.67 330.68 303.64
28,98 27 252 3707.04 21 809 1522.54 717.25 745.84
28,100 20 521 5603.60 16 605 1785.23 738.04 796.96
98,100 19 808 4384.48 13 726 1257 534.42 526.97

Table 2.4: Comparing run time (in seconds) between different versions of reduced iCFN and iCFN
for the best global optimum conformation in multi-state design problems with ensemble of sub-
states per state for TCR.
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Reduced iCFN iCFN

Position(s) v0 v1 v0 v0.1 v0.2 v1

26 6654 66.69 3700 22.94 31.48 21.86

28 4283 114.22 2222 22.32 29.3 23.55

98 10 612 103.29 6318 40.81 55.72 43.35

100 2109 154.51 1102 21.20 20.05 23.74

26,28 384 997 7454.93 205 656 16 120 1705.68 1063.89

26,98 — 15 449.04 — 27 596 4666.22 3872.32

26,100 502 803 19 780.68 265 185 12 162 2689.77 2226.52

28,98 — 23 378.51 487 360 20 629 3561.14 2810.31

28,100 347 872 24 631.34 177 949 11 452 2956.08 2359.10

98,100 — 17 303.91 323 104 11 781 2700.47 2056.47

Table 2.5: Comparing run time (in seconds) between different versions of reduced iCFN and iCFN
for the best ensemble conformations in multi-state design problems with ensemble of substates per
state for TCR. (“—” indicates an out-of-time error under the 7-day limit.)

2.2.9 TCR Design: Accuracy

2.2.9.1 Comparison to experimental results and Rosetta

When comparing results to experimental results reported earlier [77], we found that iCFN cor-

rectly predicted most known AAG-specific TCRs. Specifically, 7 AAG-specific mutants involving

4 residues were previously reported, including α chain D26W, G28L, G28I, G28Y, and G28N as

well as β chain F100Y and F100W (βL98W is excluded for its specificity being below experimen-

tal error bar). iCFN correctly predicted 6 of the 7 (missing G28N) and produced a false positive

D26Y. In contrast, when Pierce et. al. used Rosetta V2.3 [27] for specificity design, they only

found 3 (all at residue 28 and missing G28N as well).

To assess iCFN’s conformational search and energy models, we also compare computed and

measured relative binding affinities (∆∆G) as well as binding specificities (∆∆∆G) for the 6 cor-

rect designs (G28N not included) and D26Y. For ∆∆G, iCFN achieved a Pearson correlation coef-
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Method TP FP FN
Rosetta G28I, G28L, G28Y, F100W D26Y D26W, F100Y
Rosetta Min G28I, G28L, G28Y N/A D26W, F100W, F100Y
iCFN D26W, G28I, G28L, G28Y, D26Y N/A

F100W, F100Y

Table 2.6: AAG-specificity predictions by Rosetta, Rosetta Min, and iCFN.

ficient of 0.52, which is between that of Rosetta with interface backbone minimization (0.39) and

Rosetta without (0.62) [77]. iCFN’s ∆∆G values over-estimated weak binding affinities for ELA,

possibly due to its lenient DEE-pruning and constraints for negative substates. Using ∆∆∆G < 0

calculated to predict specificity, we find in Table 2.6 that Rosetta led to 1 false positive (FP) and 2

false negatives (FN) and Rosetta Min did 3 FNs [77] whereas iCFN found the most true positives

(TP) with only 1 FP and no FN.

2.2.9.2 The impact of substate ensemble and backbone flexibility

We also perform a multistate design with a single substate for either state (i.e., a fixed backbone

conformation). Whereas a flexible-backbone treatment correctly predicted 6 of 7 AAG-specific

mutants, a fixed-backbone treatment only did for 3 (G28L, F100W and F100Y). In fact, for the

flexible-backbone treatment, various backbone conformations were adopted in iCFN for various

successful designs in the AAG- or ELA-bound complex (Table 2.7). These results echo the bio-

physical concept of protein conformational substates and highlight the importance of backbone

flexibility to multistate protein design for more diverse solutions and higher success rates.
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Mutation AAG (∆∆G) ELA (∆∆G)

αD26W 4 8

αG28L 10 1

αG28I 10 3

αG28Y 10 8

αF100Y 7 1

αF100W 10 2

Table 2.7: TCR designs considering an ensemble of positive or negative substates (flexible back-
bone conformations here). Reported are indices of various backbone conformations that were
adopted in iCFN for various successful designs bound to the AAG peptide (MART-1 nonameric
epitope) and the ELA peptide (MART-1 decameric epitope).

2.2.9.3 Characterization of the design space

Beyond individual predictions, iCFN effectively produced energetic landscapes in the design

space by generating the top sequences and conformation ensembles. Although conformational

flexibility is limited, it predicted that position 98 on the α chain, having much less sequence solu-

tions and worse binding affinities, is much less “designable” for AAG-specificity compared to the

other three positions, which agrees with previous experimental observations [77]. Other potentially

promising designs for AAG-specificity can be found in Table S3.

2.2.9.4 Molecular mechanisms for AAG-binding specificity

Our results correctly predicted that introducing bulkier hydrophobic residues properly to posi-

tion 26/28/100 could improve binding specificity. Moreover, consistent with experimental results,

they predicted various patterns for AAG-specificity including 1) strengthening AAG-binding but

weakening ELA-binding (G28I); 2) strengthening both binding but more to AAG (D26W); and

3) weakening both binding but less to AAG (G28Y and F100W/Y). They also correctly predicted

G28L to have weakened binding to ELA but incorrectly predicted its improved binding to AAG.

Taking G28I as an example, we examine the mutant’s energetic and structural consequences in
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details. Our results show that G28I achieves binding specificity by exploiting the peptide sequence

difference, namely the N-terminus being alanine in AAG but glutamate in ELA. Specifically, a

bulkier I28 would strengthen interactions with AAG, mainly van der Waals packing with the N-

terminal alanine in AAG; but it would weaken interactions with ELA due to both van der Waals

clashes with MHC/peptide and worse continuum electrostatics (Fig. 2.4). This explanation agrees

with the design rationale from the previous study [77]. And it further suggests the importance of

continuum electrostatics for G28I’s peptide binding specificity, which has not been raised else-

where. We note that the negatively charged N-terminal glutamate in ELA was solvent-accessible

with TCR wild type but partially blocked from the solvent with the bulky substitution G28I, which

leads to increased desolvation penalty.

A B

Figure 2.4: Differential effects of G28I to (A) AAG-binding and (B) ELA-binding revealed in
iCFN structural models. TCR DMF5 α and β chains are shown in blue and gray cartoons, MHC
Class I protein HLA-A2 in wheat cartoon, AAG/ELA peptide in cyan cartoon with N-terminal
alanine/glutamate in sticks, and substitution I28 in purple sticks, respectively.

2.2.10 Conclusions

We have developed, for the first time, an exact algorithm that is efficient for generic multistate

protein design of unprecedented sizes to previous exact methods. The combinatorial optimization

problem is formulated as coupled weighted constraint satisfaction problems (WCSPs) where each
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WCSP corresponds to a substate design and is modeled by a cost function network (CFN). The

algorithm exploits novel bounds that can be quickly evaluated in the framework of CFN as well as

joint consideration of substate CFNs that can quickly prune subtrees at the sequence, substate, and

conformer levels with guarantee.

Applications to XRCC1 binding affinity design and TCR specificity design prove that iCFN

can be at least 1 to 2 orders of magnitude faster than COMETS with much less memory demand

and can solve problems of sizes intangible to COMETS. Also, iCFN shows competitive accuracy

compared to Rosetta in replicating experimental results. More importantly, our results suggest

that the consideration of backbone global flexibility leads to more diverse solutions and higher

sensitivity in protein design. And they provide new mechanistic insights into specificity in protein

interactions. Future directions include parallelizing the algorithm and its codes on the architecture

of GPU, incorporating more types of constraints seen in applications while allowing for more

general objective functions and continuous rotamers, and deriving tighter yet economic bounds

under the framework of CFN.
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2.3 Scientific discovery through iCFN

2.3.1 Introduction

In the previous section, iCFN is shown to be accurate and efficient (unprecedentedly fast) on

the benchmark (XRCC) and known (TCR design) applications. However, in this section, iCFN

has been utilized for scientific discovery in real-life applications. iCFN has been utilized for three

critically important and challenging applications varying from single-state single substate problem

to multi-state ensemble of substates problems (iCFN has been used for other tasks such as pre-

dicting cancerous mutation in Frataxin and BRCA1 [80, 81]). More specifically, for a single-state

single substate problem, we used iCFN for mutagenesis analysis. Three fundamental pathways and

their corresponding genes in DNA damage repair (DDR) processes were studied and analyzed for

understanding the effect of mutations across the cancer genome atlas. For the multi-state ensem-

ble of substates formulation, two applications were studied: 1) an “acid-switch” HER2-specific

antibody-drug conjugate (ADC) has been engineered to increase the lysosomal delivery and ther-

apeutic efficacy. Further, the potential underlying biological mechanism behind the “acid-switch”

ADC was discovered for SG mutations; 2) Cancerous mutations for Estrogen receptors (ERs) in

breast cancer have been identified. Also, potential hypotheses for a couple of critical mutations

such as Y537S, D538G, and E380Q were discovered to explain their specificity toward the agonist

state rather than the antagonist state.

2.3.2 Mutagenesis analysis of Pan-cancer DNA Damage Repair Deficiency across The Can-

cer Genome Atlas

2.3.2.1 Introduction

DNA damage repair (DDR) genes are crucial for maintaining human genomic stability [82].

Loss of DDR function is an essential factor for the prediction of cancer risk and progression [83].

Through genetic and biochemical criteria, DDR genes can be grouped into functional pathways

in which they work together to repair specific types of DNA damage [84]. For example, Base

excision repair (BER) pathway repair DNA base damage; Homology-dependent recombination
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(HR), and non-homologous end joining (NHEJ) pathways repair DNA strand breaks [84]. In this

application, we analyzed the effect of mutations on protein with structural information available in

BER, NHEJ, and HR pathways. We utilized the single-state single substate formulation in iCFN

for the mutagenesis analysis.

2.3.2.2 Method

With backbone conformation fixed and side-chain conformation discretized as backbone de-

pendent rotamers, each structure-based computational mutagenesis experiment for a given protein-

protein complex was performed by solving a combinatorial optimization problem to find the lowest-

energy conformations of the complex structure [42] Through iCFN [17]. The mutation site is al-

lowed to adopt wild-type or mutant amino acid type, and residues within 6 Å of a mutation site are

allowed to be flexible. iCFN first finds an ensemble of conformations (only differing in side-chain

rotamers in this case) in a low-resolution force field: not only the global minimum but also all

or 100 conformations within 2 Kcal/mol from the global minimum; then, it re-evaluates energy

values of the ensemble of conformations in a high-resolution force field.

The energy to be minimized is the folding energy of a protein complex (“folc” in short), which

can be decomposed into contributions from two thermodynamic processes: individual proteins fold

into separate unbound structures (“fold”) and then bind to form a protein-protein complex (“bind”):

∆Gfolc = ∆Gfold + ∆Gbind. The low-resolution force field used to generate conformer ensembles

is an all-atom molecular mechanics (MM), including internal energy (bond, angle, dihedral, etc.),

Coulomb electrostatics, and van der Waals terms, as implemented in the CHARMM27 force field

[85]. The high-resolution force field is all-atom MM/PBSA, including CHARMM27 molecular

mechanics terms of internal energy and van der Waals, Poisson-Boltzmann (PB) electrostatics, and

nonpolar solvation terms (solvent-accessible surface area, or SA-dependent). More details on the

energy calculations can be found in [42, 17]. The energy difference between a mutant and a wild

type is annotated as ∆∆G· where · can be folc, fold, or bind.
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2.3.2.3 Results

Protein-protein interactions (PPIs) are known to be important to DNA damage and repair

(DDR). For instance, a supercomplex BASC (BRCA1-associated genome surveillance complex)

plays both a sensory and effector role in DDR, and it involves a group of tumor suppressors and

DDR proteins such as BRCA1, MSH2, MSH6, MLH1, ATM, BLM, PMS2, and the MRE11-

RAD50-NBN protein (MRN) complex [86]. Protein-protein interaction networks for core genes of

three pathways are shown in Fig. 2.5. Moreover, many missense mutations are found in protein re-

gions responsible for PPI (see examples of BRCA1, BRCA2, and RAD50 in Fig. 2.6). Mutational

effects and molecular mechanisms of missense SNVs on PPIs are thus examined by structure-

based computational mutagenesis experiments. These experiments are for 446 missense mutations

of 16 genes (including 15 core genes for DDR) where complex structures formed through PPI are

available, and wild-type residue types agree with those in the structures. Considering that a protein

can interact with various partners, including homo-oligomerization with itself, there are 547 such

mutagenesis experiments in total (Fig. 2.7 for statistics of breakups on genes), including 155 (over

one third) mutations at protein-protein interfaces (defined by a 6 Å cutoff between heavy atoms)

or elsewhere.
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(a) BER pathway

(b) NHEJ pathway

(c) HDR pathway

Figure 2.5: Protein-protein interaction networks for core genes of three pathways: HDR, NHEJ
and BER (source: STRING-db with 90% confidence level). Edges are colored according to the
type of interaction evidence: cyan and purple for known interactions from curated data and ex-
perimental validation, respectively; green, red, and blue for predicted interactions based on gene
neighborhood, gene fusion, and gene co-occurrence, respectively; limon for textmining; black for
co-expression; and light blue for homology.

37



0
1

2
3

4

BRCA1 frequency

Mutations

fr
e
q
u
e
n
c
y

1 223 506 778 1084 1419 1752

Ring−Type
BRCT1

BRCT2
interact PALB2

0
1

2
3

4
5

6
7

BRCA2 frequency

Mutations

fr
e
q
u
e
n
c
y

14 465 954 1511 2107 2704 3304

PALB2
NPM1
POLH
stimulation of POLH

FANCD2
SEM1
motif
repeat

0
1

2
3

4
5

6

RAD50 frequency

Mutations

fr
e
q
u
e
n
c
y

2 149 340 531 721 914 1124

Zinc−hook
Coiled coil

DA−box
zinc & coil

Figure 2.6: The location (protein annotation based on uniprot) and occurrence of SNVs for A.
BRCA1, B. BRCA2, and C. RAD50.

Structural analysis indicates that these missense mutations are enriched at protein surfaces

as well as at PPI interfaces. Energetic analysis indicates that the majority of these mutations,

non-interfacial or interfacial, destabilize protein-protein complexes (Figures 2.8 and 2.9). For in-

terfacial mutations, energy decomposition into contributions from individual protein folding and

protein-protein binding indicates that (1) corresponding protein-protein complex destabilizations

are dominated by individual proteins being destabilized (Fig 2.8(a)); and (2) most of the cor-

responding PPIs are also weakened or even disrupted upon mutation (Fig. 2.9), and those few

strengthened PPIs rarely overpowered protein destabilization to rescue the stability of the protein-

protein complex. Interestingly, although rare, some interfacial mutations are found to have neutral

or even positive effects on protein stability but still end up destabilizing the resulting protein-
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Figure 2.7: The number of missense SVNs examined for 15 core genes and PCNA. PCNA is
classified BER according to the interaction partner FEN1.

protein complexes due to much-disrupted binding between proteins. Similar observations were

also made experimentally for PALB L939W and T1030I mutants in a previous study [87].
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folding stability (∆∆Gfold).
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Figure 2.9: Violin plots of energy difference upon interfacial mutation for individual protein fold-
ing stability (∆∆Gfold) and protein-protein binding (∆∆Gbind).

A couple of examples of mutations in RING-RING domain interactions between BRCA1 and

BARD1 illustrate how a loss of intra- or inter-molecular interactions destabilize a protein or weak-

ens protein-protein interaction. RING domains of BRCA1 and BARD1 form a heterodimer as part

of the aforementioned BASC. The heterodimer enables ligase activity, whereas neither monomer is

structurally stable or supports ligase activity alone [88]. In the first example (Fig. 2.10(a)), R112Q

of BARD1 is far from the interface with BRCA. The wild-type residue is a positively charged, long
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arginine that forms favorable electrostatic and van der Waals interactions with a negatively charged

glutamic acid (E45) within the same molecule BARD1; and such interactions stabilize helix-helix

packing within BARD1. The mutation of arginine into a polar and shortened glutamine weak-

ens the intra-molecular helix-helix packing and thus destabilizes BARD1. In the second example

(Fig. 2.10(b)), R7H of BRCA1 is right at the interface with BARD1. The wild-type residue is

again arginine forming favorable electrostatic and van der Waals interactions with two negatively

charged residues: a glutamic acid (E10) of the same molecule BRCA1 and an aspartic acid (D117)

of the binding partner BARD1. Its mutation into a polar and smaller histidine weakens both intra-

and inter-molecular interactions, thus destabilizing the BRCA1-BARD1 complex by both desta-

bilizing BRCA1 and disrupting BRCA1-BARD1 interaction. We hypothesize that a mutation of

either negatively charged residues interacting with R7 would cause similar effects in cancers. In-

deed, E10K, the substitution of a negatively charged glutamic acid with a positively charged lysine,

was found in patients with ovarian and breast cancers [89]. The reciprocal approach could poten-

tially generalize to obtain functional annotation and mechanistic understanding of more missense

mutations in cancers.

(a) R112Q mutation in BARD1 (b) R7H mutation in BRCA1

Figure 2.10: Structural visualization of missense mutations in BRCA1 (gray cartoon) and BARD1
(cyan cartoon) RING-RING domain interaction. a) R112 of BARD1 (cyan sticks) mutates into
glutamine (wheat sticks) and destabilizes BARD1 by weakening intramolecular helix-helix inter-
action especially with E45; (b) R7 of BRCA1 (gray sticks) mutates into histidine (wheat sticks),
weakens interactions with both E10 of BRCA1 and D117 of BARD1, and leads to both destabilized
BRCA1 and disrupted BRCA1-BARD1 interaction.
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2.3.3 Engineering a HER2-specific antibody-drug conjugate to increase lysosomal delivery

and therapeutic efficacy

2.3.3.1 Introduction

Conventional cancer treatment, such as chemotherapy and radiotherapy are not always safe and

efficacious. Therefore alternative treatments are urgently needed [90]. Antibody-drug conjugates

(ADCs) can bring forth a new generation of cancer treatment with the high specificity of antibodies

and the potent cytotoxicity of drugs [91, 92]. However, for ADC-based therapeutic to be effective,

it needs a high dose of ADCs. Even though a high dose of ADCs will increase the payload delivery,

but it will also increase the unacceptable toxicities and side effects towards normal cells [93, 94]. A

possible way to overcome this limitation is to have more efficient payload delivery to the targeted

cells. “Acid-switched” ADCs with tight binding at neutral pH (pH=7.4) outside of the cell and

weak binding in acidic pH (pH=5.8) inside of the cell has been developed [95] for the treatment

of HER2-overexpressing tumors in breast cancer. Specifically, An acid-switched ADC with S55H

and G57E (‘SG’) mutations have been found through phage display to have very loose binding

at acidic pH inside of the cell and almost the same binding outside of the cell as wild type. We

utilized our iCFN [17] model to analyze and discover the mechanism behind the acid-switched

property of SG mutations. In this application, we have formulated the problem as a multi-state

multi substate optimization problem.

2.3.3.2 Method

The X-ray crystallographic structure of the HER2–pertuzumab complex [96] (Protein Data

Bank accession code: 1S78) was minimized using the molecular-modeling software CHARMM

v.36 [85] in a CHARMM22 force field, and all missing residues and atoms were added [11].

PROPKA v.3.1[97] was used for empirical pKa prediction and protonation state determination

for the minimized structure at pH 7.4 and 5.8, respectively. The resulting structure at either pH

value was minimized for 5,000 steps with explicit solvent molecules and then subjected to a 10

ns molecular dynamics simulation using the computer program NAMD2 v.2.10 [11]. Molecular
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dynamics protocols followed similar details as described previously [11]. Snapshots were retained

at 0 ns (the beginning) and every 1 ns from 6 to 10 ns to represent a conformational ensemble of

the HER2–pertuzumab complex at either pH.

Structures of HER2 in complex with the SG mutant were modeled using iCFN for multi-state

protein design with substate ensembles customized for pH dependence. First, the positive and

negative substates were defined as conformational ensembles of the complex at pH 7.4 and 5.8,

respectively. Substate energies were folding stabilities of the complex that include Coulomb elec-

trostatics, van der Waals, calculated internal energies, and a nonpolar contribution to the hydration

free energy based on solvent-accessible surface area (SASA) [11]. A positive-substate stability

cutoff was set at 10 kcal mol−1, and positive-versus-negative substate specificity was essentially

not mandated with a cutoff of 1,000 kcal mol−1. Second, pertuzumab VH residues 55 and 57 were

allowed to change to any amino acid, including histidines in δ−, ε−, and doubly protonated states.

Residues within 5 Å of the mutated amino acids were allowed to be flexible. In addition, His245 of

HER2 was allowed to be in any of the three possible protonation states, and Asp50 of pertuzumab

VH was allowed to be deprotonated or singly protonated at either oxygen atom on the side chain.

Top conformations of each sequence-protonation combination in each substate (backbone confor-

mation here) generated from iCFN for either pH were geometrically grouped into representatives

and then screened by PROPKA for protonation states. Later, complex-folding stabilities (G) and

binding affinities (∆G) of the top sequence-conformation ensembles retained for either pH were

reevaluated and reordered with a higher-resolution energy model where continuum electrostatics

replaced Coulombic electrostatics [17]. Lastly, the representative conformation/protonation at ei-

ther pH was chosen based on the best binding affinity (lowest ∆G) amongst those whose folding

energies were within 1 kcal mol−1 of the most stable complex.

Each calculated binding energy relative to the wild type, ∆∆G, was further decomposed

into contributions of van der Waals, continuum electrostatics, SASA-dependent nonpolar solva-

tion interactions, and internal energy. Van der Waals and electrostatics were found to be the

most important contributors to the pH-dependent binding. The calculated van der Waals con-
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tribution was largely due to the modeled clashes between the bulkier pertuzumab His55 and a

HER2 loop at pH 5.8 whereas the flexible HER2 loop could largely ameliorate the clashes. There-

fore, long-range electrostatic binding affinity, being less sensitive to conformational details, was

further analyzed as an origin of the pH-dependent binding. Specifically, continuum electrostat-

ics for binding were first decomposed into the lost desolvation penalties’ contributions, and the

gained solvent-screened intermolecular interactions. Desolvations were then decomposed into

contributions of all residues, and screened intermolecular electrostatic interactions were decom-

posed into those of all residue pairs. To sum up, screened intermolecular electrostatic interac-

tions and avoided double-counting for each residue, half of the pairwise interactions for each

residue with all other residues were considered. Those residues with insignificant contributions

(desolvation plus the half of the summed pairwise interactions) to electrostatic binding specificity

∆∆∆G(∆∆∆G = ∆∆GpH 7.4 − ∆∆GpH 5.8) were not considered further. Since desolvation

penalties dominated over screened electrostatic interactions in contributions to electrostatic bind-

ing specificity ∆∆∆G, the top ten remaining residues with the highest desolvation contributions

were reported for ∆∆GpH 7.4, ∆∆GpH 5.8 and ∆∆∆G, respectively.

2.3.3.3 Results

iCFN correctly predicts the sign of binding affinity and specificity at pH 7.4 and 5.8 in com-

parison to the experimental values. More specifically, it correctly predicted for SG mutations that

1) binding affinity at pH 7.4 (∆∆GpH 7.4) would be slightly worse in comparison to the wild type

(see Fig. 2.11 A left bar plots); 2) binding affinity at pH 5.8 (∆∆GpH 5.8) would be significantly

weakened at pH 5.8 (see Fig. 2.11 A middle bar plots); 3) binding specificity would be negative

(∆∆∆G < 0) which means the binding is more favorable at pH 7.4 (outside of the cell) rather

than pH 5.8 (inside of the cell). Also, based on energy type decomposition, we find out that van

der Waals and electrostatics are the most important for the specificity. Since van der Waals inter-

actions are short-range and more sensitive to small fluctuations in structural modeling, we focused

on electrostatics with longer-range interactions. Further decomposition of electrostatic energies

to desolvation penalty and pairwise interactions (see Fig. 2.11 B) indicates that the desolvation

44



penalty is the main contributor to the specificity.

With the further positional decomposition of electrostatic energies, we discover that His55 in

CDRH2, Glu57 in CDRH2, and Tyr252 of HER2 are playing a pivotal role in understanding the

mechanism behind the increased specificity (see Fig. 2.11 B). These analyses resulted in a model

in which protonation of His55 in CDRH2, that replaces Ser55 in wild-type pertuzumab, at Nε of

the imidazole ring predominates over that of Nδ1 at near-neutral pH, whereas the protonated Nδ1

tautomer is favored at acidic pH (5.8). Protonation of Nδ1 leads to electrostatic interaction with

Glu57 in CDRH2 of SG in combination with interactions with Tyr252 of HER2. In contrast to

the solvent exposure of Glu57 and Tyr252 in the SG–HER2 complex at pH 7.4, the change in the

protonation state of histidine at pH 5.8 results in the reorientation of Glu57 and Tyr252, leading

to an unfavorable desolvation penalty that is a primary contributor to the loss of affinity of SG at

acidic pH.

Figure 2.11: The X-ray crystallographic structure of the pertuzumab:HER2 extracellular domain
complex (Protein Data Bank: 1S78) is shown, with the pertuzumab VH domain, VL domain, and
HER2 domain II shown in cyan, light cyan, and orange, respectively. Residues targeted for muta-
genesis by histidine replacement (a) or for the production of phage display libraries (b) are shown
in green. (c) Residues Tyr55 (CDRL2) and Ser103 (CDRH3) mutated to histidine to generate
the YS mutant are shown in green. (d) Residues Ser55 (CDRH2) and Gly57 (CDRH2) that were
mutated to His and Glu, respectively, to generate the SG mutant are displayed in green.
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2.3.4 Anticipating Cancer Mutations and unraveling biological mechanism for Estrogen

Receptors

2.3.4.1 Introduction

ERα is a member of the nuclear receptor family and plays a key role in the prevention and treat-

ment of the majority of breast cancers [10]. Two main classes of therapeutics are 1) suppression

of estrogen production through aromatase inhibitors; 2) Direct inhibition of ERs through selective

ER modulators (SERMs) or selective ER degraders (SERDs) [98]. Although these therapeutics are

effective in many cases, resistance often occurs after long-term exposure to these drugs [11, 12].

Anticipating resistant mutations and understanding the mechanism underlying are the key steps

to developing drugs with lower resistance profiles. In this application, we utilized the multi-state

multi substate formulation in iCFN [17] to predict and anticipate the resistant mutations. In addi-

tion, we developed energy decomposition approaches to understand and discover the underlying

biological mechanism behind them.

2.3.4.2 Method

The X-ray crystallographic structures of dimer ERα were taken from Protein Data Bank [99]

based on the list provided in the Uniprot [100] for Estrogen receptor with Uniprot ID: P03372.

Twenty structures with the least missing residues have been chosen for active and inactive states

of ERα (10 for each state) that are shown in Table 2.8. The selected 3D structures were minimized

using the molecular-modeling software CHARMM v.36 [85] in a CHARMM22 force field, and all

missing residues and atoms were added [11].

3D Structures of dimer ERα were modeled through iCFN for multi-state protein design with

substates ensemble for complex-folding specificity. Positive and negative substates were defined as

conformational ensembles ERα in agonist (active) and antagonist (inactive) states (see Table 2.8),

respectively. Substate energies were folding stabilities of the dimer ERα complex that include

Coulomb electrostatics, van der Waals, calculated internal energies, and a nonpolar contribution to

the hydration free energy based on solvent-accessible surface area (SASA) [11]. A positive sub-
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Active substrate (+) Inactive substrate (-)

PDB Mut. Agonist Ligand ID PDB Mut. Antagonist Ligand ID
1GWQ WT ZTW 3ERT WT OHT
3HLV Y537S J2Z 2OUZ WT C3D
2QAB Y537S EI1 1YIM WT CM4

2QGW Y537S EES 1XP9 WT AIJ
2QGT Y537S EED 1XP1 WT AIH
4IWC Y537S 1GV 1SJ0 WT I0G
3L03 Y537S 4OH 1YIN WT E4D
2FAI Y537S 459 3DT3 WT 369

2B1V Y537S 458 3OS8 L372R/L536S KN0
2Q6J Y537S A48 1YIM WT CM4

Table 2.8: List of active and inactive Conformational ensemble for ERα.

state stability cutoff and positive-versus-negative substate specificity cutoff were set at 10 and 100

kcal mol−1, respectively. At first, known residues (E380, L469, V534, L536, Y537, and D538 in

both chains of ERα) with known cancerous substitution mutations [11] has been considered as mu-

tant and were allowed to be mutated to any amino acids. At the next step, all the residues in helix

12 and its neighboring loop (528-547), excluding the previous ones, have been considered as mu-

tant and were allowed to be mutated to any amino acids. Residues within 5 Å of the mutated amino

acids were allowed to be flexible. Top conformations of each sequence in each substate (backbone

conformation here) generated from iCFN for either state (active and inactive) were geometrically

grouped into representatives. Later, complex-folding stabilities (G) and binding affinities (∆G) of

the top sequence-conformation ensembles retained for either state were reevaluated and reordered

with a higher-resolution energy model where continuum electrostatics replaced Coulombic elec-

trostatics [17]. Lastly, the representative conformation at either state was chosen based on the best

complex-folding stabilities (lowest G).

Each calculated complex-folding stability energy relative to the wild type, ∆∆G, was further

decomposed into contributions of van der Waals, continuum electrostatics, SASA-dependent non-

polar solvation interactions, and internal energy. Each of these energy terms further analyzed to

discover the origin of resistant mutations (specificity toward agonist state rather than antagonist).

47



Specifically, 1) continuum electrostatics for complex-folding stability was first decomposed into

the lost desolvation penalties’ contributions and the gained solvent-screened intermolecular inter-

actions. Desolvations were then decomposed into contributions of all residues, and screened inter-

molecular electrostatic interactions were decomposed into those of all residue pairs. To sum up,

screened intermolecular electrostatic interactions and avoided double-counting for each residue,

half of the pairwise interactions for each residue with all other residues were considered. 2) inter-

nal energy for complex-folding stability were decomposed into contributions of all residues; 3) van

der Waals energy for complex-folding stability were decomposed into contributions residue pairs.

To sum up, screened van der Waals interactions and avoided double-counting for each residue, half

of the pairwise interactions for each residue with all other residues were considered; 4) SASA-

dependent nonpolar solvation interactions for complex-folding stability were decomposed into

contributions of all residues.

Several hypotheses have been proposed to discover the biological mechanism underlying sev-

eral known cancerous mutations through the energy decomposition. Secondary mutations have

been introduced to shift the complex-folding stability energies toward antagonist (inactive) state

rather than agonist (active) state to validate the proposed hypotheses. iCFN with multi-state pro-

tein design and substates ensemble formulation has been used for modeling ERα with secondary

mutations. Positive and negative substates were defined as conformational ensembles of ERα in

antagonist (inactive) and agonist (active) states, respectively. The same protocol (energy terms,

cutoff values, etc.) was utilized for modeling the secondary mutations. We specifically considered

mutation E380Q with less knowledge about its biological mechanism for secondary mutation in-

troduction for proof of concept. Based on the pairwise energy decomposition of E380Q mutation

on continuum electrostatics, three candidate residues (C381, E542, M543) were identified. The

secondary mutation has been introduced on these candidate residues, and they were allowed to be

mutated to any amino acids.

For prospective design, a machine learning model is trained to predict whether a mutation is

cancerous or not. Since the complex structure of ERα and 17β-estradiol (E2) (known as estrogen
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response elements (EREs)) plays a critical role in the growth of breast cancer[101], ERE-luciferase

experiments have been conducted to measure activation of estrogen genes. ERE-luciferase exper-

iment reports their measure through the Relative light unit ratio (RLU). The high value of RLU

is representative of high activation (or high gene expression). We consider y = − log(RLU(mt)
RLU(wt)

)

as a ground through label. Approximated entropy and enthalpy have been considered as features

for the machine learning model since they are sufficient to calculate Gibbs free energy. Approxi-

mated enthalpy has been calculated through complex-folding stability energy relative to wild type

(∆∆G). Entropy (S) of a substate has been approximated through the logarithm of the number of

conformation within 1 kcal mol−1 of the conformation with the lowest energy. Finally, the relative

entropy of a mutation to wild type is approximated as:

∆∆S(mt) =
1

P

P∑
i=1

(Si(mt)− Si(wt))−
1

Q

Q∑
j=1

(Sq(mt)− Sq(wt)) (2.17)

where P and Q are the numbers of positive and negative states. There are only 11 mutations

with known experimental RLU available. Therefore, we employed linear regression with two

features (approximated entropy and enthalpy) to avoid over-fitting. Finally, We trained the linear

regression model with all the samples. Since helix 12 plays a crucial role in the estrogen receptor’s

functionality, we further analyzed all the residues in the helix (res. 528-547) to anticipate novel,

unseen, and potential cancerous mutations. Based on the linear regression with two entropy and

enthalpy features, which have been explained in the previous section, we predict the ŷ(·) for all

of the mutations for all the residues in helix 12 and its neighboring loop. ŷ(E380Q)) ≈ −0.5

and complex-folding stability energy ∆∆G = 0 have been as considered as a cutoff to filter

mutations with no indication of being cancerous. Therefore, mutations with either ∆∆G > 0 or

ŷ(E380Q)) > −0.5 were filtered. Furthermore, to better analyze the remaining mutations, we

categorize them in three perspectives:

• Predicted ŷ(·). In this criteria, remaining mutations have been grouped as 1) strong activat-

ing: if their predicted ŷ(·) < -1.5 and labeled as 1 2) medium activating: if their predicted
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ŷ(·) ∈ [−1.5,−0.5] and labeled as 0.

• Mechanism. Let’s assume complex-folding stabilities for positive and negative states are

represented as ∆G+ and ∆G−. Then in these criteria, the remaining mutations have been

grouped as 1) ∆G− > ∆G+ > 0: when both antagonist and agonist conformations are

becoming unstable but antagonist more. This mechanism is labeled as mechanism 1; 2)

∆G− > 0 > ∆G+: when the antagonist is unstable, and the agonist is more stable in

comparison to wt. This mechanism is labeled as mechanism 2; 3) 0 > ∆G− > ∆G+: when

both agonist and antagonist conformations are more stable compared to wild type but agonist

more. This mechanism is labeled as mechanism 3.

• Main contributing energy term. In this criterion, remaining mutations have been grouped

based on which type of energy term is the most contributing one. Then, They are labeled

as a) Van der Waals: labeled as 1; b) Continuum electrostatics: this labeled as 2; c) internal

energy: labeled as 3; d) solvent accessible surface area (SASA): labeled as 4.

Three categorical features for each mutation have been created based on the categories as men-

tioned earlier. Then, the k-modes clustering algorithm [102] (withK = 16) has been performed for

clustering the remaining mutations. k-modes clustering algorithm is an extension of the k-means

clustering algorithm [103] for categorical data. The number of mismatches of the features between

two mutations has been considered the distance in k-modes clustering.

2.3.4.3 Results

Predicting potential cancerous mutations for known residues.

At first, iCFN has been tested on 6 known cancerous residues E380, L469, V534, L536, Y537,

and D538 in Estrogen receptors. iCFN correctly predicted 9 out of 11 known cancerous muta-

tions for these residues, shown in Figure 2.12. In Figure 2.12, if a mutation is above the y = x

line (when ∆G− > ∆G−) then it will be predicted as cancerous mutation. Y537S is the most

activating mutation without 17β-estradiol (E2) based on the ERE-luciferase experiment, shown in

Figure 2.13 (B). It is also predicted as the most activating mutation among all the Y537 single nu-
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cleotide polymorphism (SNP) mutations. Moreover, other high activating mutations Y537D/N/C

are following Y537 both in our prediction and in the ERE-luciferase experiment. Similarly, E380Q,

L469V, D538G, and V534E are among the activating mutation which has correctly been predicted.

However, for residue L536 mutations L536Q, L536R has been misclassified inactivating mutation

where the L536H has been correctly classified. The correctly predicted mutations are grouped to

mechanism 1 (E380Q, D538G), mechanism 2 (Y537S/N/D/C), and mechanism 3 (L469V, V534E,

L536H). Y537S/N/D/C are among the most activating mutations based on the ERE-luciferase ex-

periment, all classified as the strongest activating mechanism (mechanism 2).
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Figure 2.12: Prediction of cancerous mutation for 6 known cancerous residues in ERα through
iCFN. The known cancerous mutations are shown in red. SNP mutations are shown as star.

High correlation between in silico prediction and in vitro experiments.
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iCFN has shown to have high accuracy in identifying activating mutations (9/11). However,

mutations are in a continuous spectrum of activation rather than only being activated or not. Fig-

ure 2.13 (B) shows the strength of activation for each of the mutants based on the ERE-luciferase

experiment in the presence or absence of the E2 hormone [1]. Figure 2.13 (A) shows the high

correlation (66%) between the experimental and predicted RLU based on the trained linear regres-

sion with two features (approximated entropy and enthalpy). Therefore, it shows that not only our

model can correctly predict a mutation being activating mutation or not but also can predict the

strength of its activation. Based on Figure 2.13 (A), we can observe that there are two groups of

activating mutations 1) low RLU: L536R/Q, E380Q and V534E which their RLU are above than

-1 2) high RLU: Y537C/S/N/D, L536H and D538G which their RLU are below -1. And all the

predicted high RLU mutations are the activating mutations with very high strength (experimental

RLU is below -1). Y537S and V534E are the most far away from the predicted best linear model

based on the predicted RLU. V534E, even though being an activating mutation, has not shown

any activation elevation in their ERE-luciferase experiment compared to wild type based on Fig-

ure 2.13 (B). V534E is an exception in the previous studies [11]. Y537S has the most strength of

activating mutation, which is very different from other activating mutations. It is intuitive for being

most far away from the best-fitted line, which represents all the mutations.

Size reduction is one of the main reasons for activating mutation at Y537.

To determine the nature of the energy term deriving the activation for the mutations in Y537,

energy decompositions have been performed, shown in Figure 2.14. Energy decomposition has

been performed for the agonist state (middle bar plots), antagonist state (right barplot), and their

specificity (left barplot). Total energy (black bar plot) is decomposed to Van der Waals (red),

Electrostatics (green), SASA (purple), and geometry (cyan). For agonist and antagonist bar plots,

each of the bars are relative with respect to wt. Therefore, if the bar is positive, it means its energy

is higher than wt. Specificity bar plots are the difference between agonist and antagonist states.

Van der Waals energy is the common deriving energy force for all of the Y537 mutations Based

on the specificity part of Figure 2.14. Van der Waals energies for all mutations in agonist state are
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Figure 2.13: A) Predicted RLU (based on linear regression) versus experimental RLU for known
activating mutations. B) ERE-luciferase experiment to identify the activation strength of each
mutation in presence or absence of E2 hormone [1].

very small. However, their antagonist state values are very high (very unfavorable in comparison

to wild type). The main question is why their values are high in the antagonist state and why

not in the agonist state. We hypothesize that 1) helix 12 conformational change from agonist to

antagonist; 2) the drastic change in the size of mutation compared to wild type are the main factors.

More specifically, all four mutations (S/C/N/D) are becoming smaller compared to the wild type

(Y) in size. Therefore, Van der Waals packing is affected in the antagonist state (in an unfavorable

way). Due to the spatial change of Helix 12 in agonist in comparison to the antagonist (shown

in Figure 2.15), in the agonist state, Y537 is in the surface and not buried. Therefore the size

reduction does not affect it. But in the antagonist state, the Y537 is buried and faces other residues

such as E380 and H377. Therefore, the size reduction from wild type to the mutants is affecting

its Van der Waals packing.
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Figure 2.14: Energy decomposition for known activating mutations in Y537 of ERα.

Hydrogen bond in agonist is the driving force for Y537S.

Electrostatics is the second most important energy term for making Y537S cancerous, shown

in Figure 2.14. Based on Figure 2.14, Electrostatics is favorable for both agonist and antagonist

compared to the wild type. However, it is much more favorable for the agonist. Furthermore, we

investigate which type of energy and which residues are the main contributor to the Electrostatics.

We find out that by mutating from Y to S, a strong hydrogen bond has been created between S537

and D351 in agonist shown in Figure 2.16 (A). Moreover, in the antagonist state neither in wild

type nor in the mutant, there is no hydrogen bond between S537 and D351. The main reason for the

existence of hydrogen in the agonist state is the structural change of helix 12 in Estrogen receptors.

Helix 12 is in the vicinity of D351 in agonist and is far away from D351 in the antagonist, shown
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A Y537S (agonist)

Y537C (antagonist)C Y537N (antagonist)D

Y537S (antagonist)B

Figure 2.15: Effect of size reduction and spatial change of helix 12 in Van der Waals packing for
Y537 mutations.

in Figure 2.16 (B). The hydrogen bond being favorable to the agonist conformation rather than

antagonist conformation in Estrogen receptors’ Y537S mutation has been validated previously

in [11].

Internal energy is the driving force for D538G.

Similarly, to understand the mechanism behind D538G mutation, energy decomposition has

been conducted and shown in Figure 2.17 (A). Figure 2.17 (A) shows that internal energy is the

main energy term for deriving the D538G mutation. To further understand which residues con-
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BA

Figure 2.16: Conformation of Y537S mutation in agonist (A) and antagonist (B) states.

tribute most to the internal, we performed residue level energy decomposition and found out G538,

Y537, and E380 are contributing the most. The contribution of each residue is colored from blue

(no contribution) to red (very high contribution) and shown in figure 7 (b). Interestingly, the three

most frequent mutating residues (538, 537, and 380) are chosen to contribute the most to D538G

being a cancerous mutation.
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Figure 2.17: (A) Energy decomposition of D538G mutation for ERα. (B) Residue level energy
decomposition for internal energy in D538G mutation.

Prospective design: Anticipating unseen cancer mutations in novel positions.

Finally, since helix 12 and its neighboring loop are very important for the activity of ERα [11,

12]. Therefore, we scanned all the potential cancerous mutations for all residues in helix 12 and its

neighboring loop. k-modes clustering based on three categorical features and K = 16 (predicted

RLU range, mechanism, and the most important contributing energy type) has been conducted to

group the potential cancerous mutations in different bins, which are shown in Table 2.9. There are

7, 4, and 3 mutations known to be activating mutations, seen in patients with breast cancer [104,

105] and known to be inactivating mutations among the predicted ones, respectively. Some of the

model-prioritized mutants are expected to be tested experimentally through collaborations.
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Group RLU Mechanism Main Mutations

1 0 3 1
L536A,L540M,K531R,V533H,V534M,C530Q,V533A,
L536E,C530T,V533E,L536M,V533D,E380N,V533S,Y537R,H547M

2 1 2 2 V533K,L541S,E380A,E380C,V533T

3 0 1 1
L541V,N532V,L544R,L536S,N532I,S432C,L536V,
L536G,L536T,Y537G,M543H

4 0 1 3 D538G,M543N,D538S,E542K,L541D,D538C,E542V,L541N
5 1 3 3 K529A,K529H,V533N,L536F

6 0 3 3
M543R,N532H,S463A,Y537W,E380R,C530G,E380D,
V534E,V533Q,L541Y,L469A,H547Y

7 0 2 1
L541Q,L536C,V534D,Y537H,L536D,C530S,L541M,
Y537Q,L541E,L540Q,L540H,E380Q,N532G

8 1 1 1 S432T,E380I,S432M,L541I,L540K

9 1 2 1
M543G,V534G,V534S,L540F,L541A,Y537A,Y537S,
L541C,Y537D,V534N,Y537E,Y537N,Y537C,Y537M,L536N

10 0 3 2 E380S,V533M,D538Q,L469D,L469H,L469E,D545R
11 0 2 2 L469C,L536Y,L469S,N532A,L541T,L541G

12 0 1 2
Y537L,C530I,L540R,Y537T,L540D,D538N,L539I,
D545V,N532C,E380G

13 0 2 3 D538A,D538H,L540E,M543D,C530A
14 1 2 3 L469G,L469Q
15 1 3 1 V534A,V534C,K529W,V534T,L536H,V533C
16 1 3 2 K529F,K529Y,V533R,C530D

Table 2.9: Predicted cancerous mutations in helix 12 and its neighboring loop of ERα categorizes
in 16 groups. Red color mutations show the known to be activating mutations. Pink color mutations
show the mutation seen in breast cancer patients. Blue color mutations show the known to be
inactivating mutations.
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2.4 Exact multistate drug design to overcome resistance

2.4.1 Introduction

Drug resistance is a major obstacle in fighting against many disease such as HIV [2], TB [3],

cancers [4, 5] and so on. Drug discovery and design is a costly (∼billions of USD) [6] and lengthy

(∼12 years) [7] process with low success rates (3.4% phase-1 oncology compounds make it to

approval and market) [8]. It is horrifying if the drug we spent billions of USD and more than a

decade of our time lose its potency due to evolution and mutation of the target. It is even more

problematic for infective and contagious diseases such as Influenza or maybe newly developed

COVID 19.

Chronic myelogenous leukemia (CML) disease and our efforts to overcome and cure it can

explain the drug resistance phenomena and its huge problem in a more tangible way. Imatinib

has been the first-line treatment for CML [106] since 2001. However, patients with advanced

CML might relapse due to drug resistance mutations in the kinase domain of the BCR-ABL target

protein [107]. Therefore, the “second generation” of drugs needed to overcome the imatinib re-

sistance CML disease. Fortunately, nilotinib and dasatinib have been discovered and approved as

the “second generation” of drugs to overcome advanced CML diseases, especially imatinib resis-

tance ones [108]. However, despite these second-generation drugs’ success, they encounter new

and additional resistance mutations that reduce their efficacy over time [108]. Therefore, “third-

generation” or “fourth generation” of drugs are needed to overcome the resistance due to previous

until they will encounter new mutations and be useless. Therefore, the main question is how to be

one step ahead of disease and anticipate and overcome target mutations that evade the drug inter-

action while designing drugs? It is also crucial not only to consider the known resistant mutations

but also unknown and potential ones like the case in second and third generations of drugs in CML.

Drug discovery with resistant mutations in consideration can be categorized to four groups 1)

Heuristic approaches with considering only known mutations; 2) Heuristic approaches with consid-

ering all potential mutations; 3) Exact and with optimality guarantee approaches while considering
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only known mutations; 4) Exact and with optimality guarantee approaches while considering all

potential mutations. The state-of-art methods for each category will be explained in detail in the

following paragraphs.

There have been several molecular dynamics (MD) approaches to design a drug for overcom-

ing known resistant mutations in Estrogen receptors (ERs), Androgen receptors (ARs) and HIVs

[109, 110, 12]. These approaches are categorized in heuristic approaches since they only consider

the effectiveness of several known drugs for a couple of known mutations and their wild-type in

molecular dynamics trajectories. Therefore, there is no guarantee of discovering the optimal drug

for the desired disease. Two heuristic game theory approaches have been developed for considering

all potential resistant mutations while designing drugs. The first one is a Stackelberg game theory

algorithm for vaccine design [111]. The process of designing a drug from humans and resistant

through mutation from the disease has been modeled as a Stackelberg game. An optimal vaccine

is defined as the vaccine with the maximum number of mutations needed for being resistant. Their

approach is considered as a heuristic method since 1) they used approximation approaches such as

Rosetta [112] for binding affinity calculations instead of exact approaches such DFBB or A∗ [17];

2) They randomly search the space of potential mutations instead of searching the whole space

or pruning some region of the space with a guarantee. The second method formulates the design

of the drug cocktail as an approximate correlated equilibrium [113]. In the correlated equilibrium

framework, a drug cocktail is considered successful if, in expectation it can bind to all mutations.

However, the existence of even one worst-case scenario mutation is sufficient for drug-resistant

happens, and in expectation binding does not have practical usage. Also, they predicted binding

affinity through a very simple sparse linear model.

There is only one exact algorithm for drug design while considering resistant mutations [114].

This approach only considers the known mutations and formulates the problem as a set covering

problem. They utilize integer programming and DFBB and A to solve the combinatorial optimiza-

tion problem. However, Their approach only considers known mutation, and there is no exact with

optimality guarantee approach for designing drugs while considering all the potential mutations.
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We follow the same principle (energy landscape theory) as iCFN for protein design and formu-

late the problem as a cost function network. We developed a novel branch and bound algorithm

to find the best K drug combination in the drug cocktail, minimizing the weakest binding affinity

between the drug cocktail and the mutational space. We provide three different perspectives in

overcoming drug resistance in the following section for both single and cocktail designs.

2.4.2 Optimal single drug design

2.4.2.1 Formulation

We will first introduce the mathematical formulation of a drug-protein binding energy function.

Then we will introduce a single state optimal drug design. Later we will extend the problem to

various cases of optimal single drug design and formulate the formally.

Drug-protein binding energy function: Drugs usually consist of a scaffold (the core structure

of drug) and functional groups that are attached to it. To model the flexibility of the drug, for

a given fixed combination of scaffold and functional groups we discretize the continuous space

of scaffold and functional groups. Suppose there are M positions in the scaffold that functional

groups can be added and there are N residues in the protein. Then, the binding energy function is

usually assumed to be a sum of constant, singleton, and pairwise terms:

g(r, l) = c+
M∑
m=1

E(ml) +
∑

m≤M,i≤N

E(ml, ir) +
∑

m<n≤M

E(ml, np), (2.18)

where ml and np denote functional group l and p at position i and j, respectively.

Single State optimal drug design

Single state drug design is applicable for the case in which we want to design a drug that tightly

binds to “target” protein while considering the resistant mutations. The problem is formulated as

follow:

Sf∗,d∗ = arg min
Sf∈Scaffolds

d∈D

max
s∈S

min
q∈Sf

min
l∈Fq(d)

min
r∈R(s)

gq(r, l), (2.19)
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where the set D, capturing the functional group design space, is the Cartesian product of the

sets of functional group types allowed overall positions; the “Scaffolds” represent the library of

available scaffolds, q denote the “q” discretization of the given scaffold, and Fq(·), capturing the

discretization library of the functional group for a given scaffold, is the Cartesian product of the

discretization sets overall functional group positions of the drug.

The above formula considers a “min-max” game between the drugs (humans as their creator)

and the proteins (cancer, bacteria, etc.). We are considering proteins that are playing optimally with

respect to our moves. Therefore, we find the best move (drug), which has the lowest worst-case

scenario between all of the protein’s move (resistant mutations). We extend the formula to consider

more general problems and applications such as specificity with multi-state optimal drug design.

We categorize the multi-state drug design problems to three cases 1) specificity over proteins:

designing drugs to bind to “targeted” proteins rather than “off-targets” 2) Specificity over states

of a protein: designing a drug to bind to “desired” state rather than “undesired” state of a protein

3) specificity over drugs: designing a drug to compete with another compound ( such as a natural

compound in our body ) for binding to a “targeted” protein. The three multi-state drug design

perspectives are shown in Fig. 2.18.
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Figure 2.18: Various multi-state drug design perspectives.

Multi-State optimal drug design with proteins specificity

In this category, we are designing an optimal drug to overcome mutational resistance while

considering multi-state on multiple proteins. For example, one wants to design an optimal drug to

tightly bind to “targeted” proteins rather than “off-targeted” proteins. The “targeted” proteins can
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overcome the binding with resistance mutations. The problem is formulated as follow:

Sf∗,d∗ =arg min
Sf∈Scaffolds

d∈D

max
s∈S

min
q+∈Sf

min
l∈Fq+ (d)

min
r∈R+(s)

g+
q+(r, l)

s.t. min
o∈O

min
q-∈Sf

min
l∈Fq- (d)

min
r∈R-(WTo)

g-
q-(r, l) ≥ min

q+∈Sf
min

l∈Fq+ (d)
min

r∈R+(WTt)
g+
q+(r, l) + δ,

(2.20)

Where positive and negative states are “target” and “off-target” proteins, respectively. WTt is the

wild type amino acid sequence of “targeted” protein and WTo is oth wild type amino acid sequence

of “off-targeted” protein. Moreover, δ is a hyper-parameter with which we restrict the drug to bind

to the “off-targeted” proteins in comparison to the “targeted” protein.

Multi-State optimal drug design with protein states’ specificity

In this category, we are designing an optimal drug to overcome mutational resistance while

considering multi-state on the protein side. For example, one wants to design an optimal drug to

tightly bind to the “desired” state of protein rather “undesired” state of the protein. Or, one wants

the drug to bind to the active conformation of the protein rather than inactive conformation of the

protein or vice versa. The problem is formulated as follow:

Sf∗,d∗ = arg min
Sf∈Scaffolds

d∈D

max
s∈S

(
min
q+∈Sf

min
l∈Fq+ (d)

min
r∈R+(s)

g+
q+(r, l)

−min
q-∈Sf

min
l∈Fq- (d)

min
r∈R-(s)

g-
q-(r, l)

)
,

(2.21)

Where positive and negative states are “desired” state of protein and “undesired” state of the pro-

tein, respectively.

Multi-State optimal drug design with competing drug

In this category, we are designing an optimal drug to overcome mutational resistance while

considering multi-state on the drug side. For example, one wants to design an optimal drug to in

competition with another reference drug or natural substrate, bind tighter to the “target” protein.
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The problem is formulated as follow:

Sf∗,d∗ = arg min
Sf+∈Scaffolds+

d+∈D+

max
s∈S

(
min
q+∈Sf+

min
l∈Fq+ (d+)

min
r∈R+(s)

g+
q+(r, l)

− min
q-∈Sf-

min
l∈Fq- (d-)

min
r∈R-(s)

g-
q-(r, l)

)
,

(2.22)

Where positive and negative states are binding of our designed drug with the target protein and

binding of reference drug or substrate (denoted by its scaffold Sf- and its functional group combi-

nation d-) with the target protein, respectively.

To efficiently and optimally solve the Multi states optimal drug design, We have developed

novel lower bounds with theoretical proofs and complexity analysis, presented in the following

subsections.

2.4.2.2 Multi-State optimal drug design with proteins specificity

Theorem 5. Lower bounding: For any drug space D and scaffold library, a lower bound of the

objective function for multistate drug design with protein specificity (Formulation in Eq. 2.20) is

given by (× denotes Cartesian product):

min
Sf∈Scaffolds

min
q+∈Sf

(
cq+ +

∑
m

min
d∈D(m)

min
l

(
Eq+(ml)

+
∑
n>m

min
d′∈D(n)

min
p
Eq+(ml, np)

+
∑
i

min
r
Eq+(ml, ir)

)
(2.23)
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Proof.

min
Sf∈Scaffolds

d∈D

max
s∈S

min
q+∈Sf

min
l∈Fq+ (d)

min
r∈R+(s)

g+
q+(r, l)

> min
Sf∈Scaffolds

d∈D

min
q-∈Sf

min
l∈Fq- (d)

min
r∈R-(s)

g-
q-(r, l) ∀s ∈ S

> min
Sf∈Scaffolds

d∈D

min
q+∈Sf

(
cq+ + min

l
min
r

(∑
m

Eq+(ml)

+
∑
n>m

Eq+(ml, np) +
∑
m,i

Eq+(ml, ir)
))

> min
Sf∈Scaffolds

d∈D

min
q+∈Sf

(
cq+ +

∑
m

min
l

(
Eq+(ml)

+
∑
n>m

min
p
Eq+(ml, np) +

∑
i

min
r
Eq+(ml, ir)

))

= min
Sf∈Scaffolds

min
q+∈Sf

(
cq+ + min

d∈D

∑
m

min
l

(
Eq+(ml)

+
∑
n>m

min
p
Eq+(ml, np) +

∑
i

min
r
Eq+(ml, ir)

))

> min
Sf∈Scaffolds

min
q+∈Sf

(
cq+ +

∑
m

min
d∈D(m)

min
l

(
Eq+(ml)

+
∑
n>m

min
d′∈D(n)

min
p
Eq+(ml, np) +

∑
i

min
r
Eq+(ml, ir)

))

(2.24)

Computational complexity: We also provide the time complexity of the lower bound as follows.

By using a lookup table of size O(KM(M +N)) that contains minimal/maximal energy between

all position pairs, I accelerate this lower bound calculation by O(min(l, r)).

Theorem 6. The lower bound for multi-State optimal drug design with protein specificity can be

computed in O(SMK(L)2(Nr + Ml)), where N is the number of positions in protein, M is the

number of functional group positions in drug, S the number of scaffolds, K the average number

of substates per scaffold, L the average number of rotamers per functional group position, l the
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average number of rotamers per functional group and r the average number of rotamers per amino

acid.

Proof. The following can be calculated in O(L2(Nr +Ml)):

min
d∈D(m)

min
l

(
Eq+(ml) +

∑
n>m

min
d′∈D(n)

min
p
Eq+(ml, np)

+
∑
i

min
r
Eq+(ml, ir)

) (2.25)

summing over all positions it will be O(ML2(Nr+Ml)). Finally, since we are calculating (2.25)

for allK substates (discretization of a scaffold) and S scaffolds, complexity will beO(SMK(L)2(Nr+

Ml)).

2.4.2.3 Multi-State optimal drug design with protein states’ specificity

Theorem 7. Lower bounding: For any drug space D and scaffold library, a lower bound of the

objective function for multistate drug design with protein specificity (Formulation in Eq. 2.21) is

given by (× denotes Cartesian product):

min
Sf∈Scaffolds

min
q-,q+∈Sf

(
∆cq-,q+ +

∑
m

min
d∈D(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

+
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

, where

(2.26)

∆cq-,q+ = cq- − cq+ ,

∆Eq-,q+(ml,l′) = Eq-(ml)− Eq+(ml′),

∆Eq-,q+(ml,l′ , np,p′) = Eq-(ml, np)− Eq+(ml′ , np′),

∆Eq-,q+(ml,l′ , ir,r′) = Eq-(ml, ir)− Eq+(ml′ , ir′),

i.e., differences in constant, singleton, and pairwise energies between a negative substate k and a

positive substate l.
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Proof.

min
Sf∈Scaffolds

d∈D

max
s∈S

(
min
q+∈Sf

min
l∈Fq+ (d)

min
r∈R+(s)

g+
q+(r, l)

−min
q-∈Sf

min
l∈Fq- (d)

min
r∈R-(s)

g-
q-(r, l)

)
= min

Sf∈Scaffolds
d∈D

min
s∈S

(
min
q-∈Sf

min
l∈Fq- (d)

min
r∈R-(s)

g-
q-(r, l)

− min
q+∈Sf

min
l∈Fq+ (d)

min
r∈R+(s)

g-
q-(r, l)

)
> min

Sf∈Scaffolds
d∈D

min
s∈S

min
q-,q+∈Sf

min
(l,l′)∈Fq- (d)×Fq+ (d)

min
(r,r′)∈R-(s)×R+(s)

(
g-
q-(r, l)− g+

q+(r′, l′)
)

= min
Sf∈Scaffolds

d∈D

min
s∈S

min
q-,q+∈Sf

(
∆cq-,q+ + min

(l,l′)
min
(r,r′)

(∑
m

∆Eq-,q+(ml,l′)

+
∑
n>m

∆Eq-,q+(ml,l′ , np,p′) +
∑
m,i

∆Eq-,q+(ml,l′ , ir,r′)
))

> min
Sf∈Scaffolds

d∈D

min
s∈S

min
q-,q+∈Sf

(
∆cq-,q+ +

∑
m

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) +
∑
i

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

= min
Sf∈Scaffolds

min
q-,q+∈Sf

(
∆cq-,q+ + min

d∈D
min
s∈S

∑
m

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) +
∑
i

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

> min
Sf∈Scaffolds

min
q-,q+∈Sf

(
∆cq-,q+ +

∑
m

min
d∈D(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) +
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

(2.27)

Computational complexity: We provide the time complexity of the lower bound as follows. By

using a lookup table of size O(KM(M + N)) that contains minimal/maximal energy between

all position pairs for each positive/negative substate, I accelerate this lower bound calculation by
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O(min(l, r)).

Theorem 8. The lower bound for multi-State optimal drug design with protein specificity can be

computed in O(SM(KL)2(Nr + Ml)), where N is the number of positions in protein, M is the

number of functional group positions in drug, S the number of scaffolds, K the average number

of substates per scaffold, L the average number of rotamers per functional group position, l the

average number of rotamers per functional group and r the average number of rotamers per amino

acid.

Proof. we prove the complexity by starting with the most inner minimization:

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

= min
(p,p′)

(
Eq-(ml, np)− Eq+(ml′ , np′)

)
= min

p
Eq-(ml, np) + min

p′

(
− Eq+(ml′ , np′)

)
= min

p
Eq-(ml, np)−max

p′
Eq+(ml′ , np′)

(2.28)

So, we can calculate it in O(l). Since the number of functional groups is known, then

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) (2.29)

will be again O(l), so by summing over positions it will be O(Ml). For calculating:

min
d∈D(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′) +

∑
n>m

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

+
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
) (2.30)

similar to previous version, we can compute it in O(L2(Nr + Ml)) and summing over all posi-

tions it will be O(ML2(Nr + Ml)). Finally, since we are calculating (2.30) for all K2 pairs of

substates (discretization of a scaffold) across the two states and S scaffolds, complexity will be

O(SM(KL)2(Nr +Ml)).
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2.4.2.4 Multi-State optimal drug design with competing drug

Theorem 9. Lower bounding: For any drug space D and scaffold library, a lower bound of

the objective function for multistate drug design with drug specificity (Formulation in Eq. 2.22) is

given by (× denotes Cartesian product):

min
Sf+∈Scaffolds+

min
q-,q+∈Sf-×Sf+

(
∆cq-,q+ +

∑
m

min
d∈D(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

+
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

, where

(2.31)

∆cq-,q+ = cq- − cq+ ,

∆Eq-,q+(ml,l′) = Eq-(ml)− Eq+(ml′),

∆Eq-,q+(ml,l′ , np,p′) = Eq-(ml, np)− Eq+(ml′ , np′),

∆Eq-,q+(ml,l′ , ir,r′) = Eq-(ml, ir)− Eq+(ml′ , ir′),

i.e., differences in constant, singleton, and pairwise energies between a negative substate k and a

positive substate l.
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Proof.

min
Sf+∈Scaffolds+

d+∈D+

max
s∈S

(
min
q+∈Sf+

min
l∈Fq+ (d+)

min
r∈R+(s)

g+
q+(r, l)

− min
q-∈Sf-

min
l∈Fq- (d-)

min
r∈R-(s)

g-
q-(r, l)

)
= min

Sf+∈Scaffolds+

d+∈D+

min
s∈S

(
min
q-∈Sf-

min
l∈Fq- (d-)

min
r∈R-(s)

g-
q-(r, l)

− min
q+∈Sf+

min
l∈Fq+ (d+)

min
r∈R+(s)

g+
q+(r, l)

)
> min

Sf+∈Scaffolds+

d+∈D+

min
s∈S

min
(q-,q+)∈Sf-×Sf+

min
(l,l′)∈Fq- (d-)×Fq+ (d+)

min
(r,r′)∈R-(s)×R+(s)

(
g-
q-(r, l)− g+

q+(r′, l′)
)

= min
Sf+∈Scaffolds+

d+∈D+

min
s∈S

min
q-,q+∈Sf-×Sf+

(
∆cq-,q+ + min

(l,l′)
min
(r,r′)

(∑
m

∆Eq-,q+(ml,l′)

+
∑
n>m

∆Eq-,q+(ml,l′ , np,p′) +
∑
m,i

∆Eq-,q+(ml,l′ , ir,r′)
))

> min
Sf+∈Scaffolds+

d+∈D+

min
s∈S

min
q-,q+∈Sf-×Sf+

(
∆cq-,q+ +

∑
m

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) +
∑
i

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

= min
Sf+∈Scaffolds+

min
q-,q+∈Sf-×Sf+

(
∆cq-,q+ + min

d+∈D+
min
s∈S

∑
m

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) +
∑
i

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

> min
Sf+∈Scaffolds+

min
q-,q+∈Sf-×Sf+

(
∆cq-,q+ +

∑
m

min
d∈D(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) +
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

(2.32)

Computational complexity: We calculate the time complexity of the lower bound as follows.

By using a lookup table of size O(KM(M +N)) that contains minimal/maximal energy between

all position pairs for each positive/negative substate, I accelerate this lower bound calculation by
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O(min(l, r)).

Theorem 10. The lower bound for multi-State optimal drug design with competing drug can be

computed in O(SM(KL)2(Nr + Ml)), where N is the number of positions in protein, M is the

number of functional group positions in drug, S the number of scaffolds, K the average number

of substates per scaffold, L the average number of rotamers per functional group position, l the

average number of rotamers per functional group and r the average number of rotamers per amino

acid.

Proof. we prove the complexity by starting with the most inner minimization:

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

= min
(p,p′)

(
Eq-(ml, np)− Eq+(ml′ , np′)

)
= min

p
Eq-(ml, np) + min

p′

(
− Eq+(ml′ , np′)

)
= min

p
Eq-(ml, np)−max

p′
Eq+(ml′ , np′)

(2.33)

So, we can calculate it in O(l). Since the number of functional groups is known, then

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′) (2.34)

will be again O(l), so by summing over positions it will be O(Ml). For calculating:

min
d∈D(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′) +

∑
n>m

min
d′∈D(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

+
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
) (2.35)

similar to previous version, we can compute it in O(L2(Nr + Ml)) and summing over all posi-

tions it will be O(ML2(Nr + Ml)). Finally, since we are calculating (2.35) for all K2 pairs of

substates (discretization of a scaffold) across the two states and S scaffolds, complexity will be

O(SM(KL)2(Nr +Ml)).
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2.4.3 Optimal Drug cocktail design:

One of the biggest concerns with the current formulations is that we are looking for a single

drug to overcome all the mutations. In other words, we are looking for a “Superdrug” that have

great specificity for worst-case resistant mutations. Therefore, a single drug might not exist to

have this property. One remedy for this challenge is to utilize multiple drugs or “ drug cocktail”

to overcome all the resistant mutations. By utilizing a drug cocktail, we are making the challenge

easier on the perspective of the drug. Since every drug needs to cover a subspace of the whole

resistant mutation space and overall, their union should add up to the whole space. We will consider

the “winner takes all” perspective in drug cocktail: for a given sequence (or resistant mutation),

the drug with the highest binding at each state will win the binding among all the drugs. Therefore,

we are looking for a drug cocktail in which for each resistant mutation, the best drug binding to

the positive state should be better than the best drug in the negative state. For a given sequence,

the best drug among the chosen drug cocktail can differ from a positive state to a negative state.

Moreover, the best drug among the chosen drug cocktail can be different from one sequence to

another. The previous optimal single drug design will be extended to an optimal drug cocktail in

the following subsections.

2.4.3.1 Multi-State optimal drug cocktail with proteins specificity

In this category, we are designing an optimal drug cocktail to overcome mutational resistance

while considering multi-state on multiple proteins. For example, one wants to design an optimal

drug to tightly bind to “targeted” proteins rather than “off-targeted” proteins. The “targeted” pro-

teins can overcome the binding with resistance mutations. The problem is formulated as follow:

Sf∗,d∗ =arg min
Sf∈Scaffolds
d1,··· ,dk∈D

max
s∈S

min
q+∈Sf

min
(l1,··· ,lk)∈(Fq+ (d1),··· ,Fq+ (dk))

min
r∈R+(s)

g+
q+(r, lk)

s.t. min
o∈O

min
q-∈Sf

min
(l1,··· ,lk)∈(Fq- (d1),··· ,Fq- (dk))

min
r∈R-(WTo)

g-
q-(r, lk)

> min
q+∈Sf

min
(l1,··· ,lk)∈(Fq+ (d1),··· ,Fq+ (dk))

min
r∈R+(WTt)

g+
q+(r, lk) + δ,

(2.36)
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Where all of the individual drugs in the drug cocktail should have a very low binding with “off-

target” proteins in comparison to the WT.

Theorem 11. Lower bound for multi-State optimal drug cocktail design with proteins specificity.

For any drug Dk of kth drug and scaffold library, a lower bound of the objective function for

multistate drug cocktail design with protein specificity (Formulation in Eq. 2.36) is given by (×

denotes Cartesian product):

min
Sf∈Scaffolds

min
q+∈Sf

min
k∈K

(
cq+ +

∑
m

min
d∈Dk(m)

min
l

(
Eq+(ml)

+
∑
n>m

min
d′∈Dk(n)

min
p
Eq+(ml, np)

+
∑
i

min
r
Eq+(ml, ir)

)
(2.37)

2.4.3.2 Multi-State optimal drug cocktail design with protein state’ specificity

Similar to the optimal single drug design with protein specificity, we want to design optimal

drug cocktails to overcome mutational resistance while considering multi-state on the protein side.

The problem is formulated as follow:

Sf∗,d∗ = arg min
Sf∈Scaffolds
d1,··· ,dk∈D

max
s∈S

(
min
q+∈Sf

min
(l1,··· ,lk)∈(Fq+ (d1),··· ,Fq+ (dk))

min
r∈R+(s)

g+
q+(r, lk)

−min
q-∈Sf

min
(l1,··· ,lk)∈(Fq- (d1),··· ,Fq- (dk))

min
r∈R-(s)

g-
q-(r, lk))

)
,

(2.38)

Where positive and negative states are “desired” and “undesired” states of a protein, respectively.

Theorem 12. Lower bound for multi-State optimal drug cocktail design with protein states’

specificity. For any drug space Dk of kth drug and scaffold library, a lower bound of the ob-

jective function for multistate drug cocktail design with protein state’s specificity (Formulation in
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Eq. 2.38) is given by (× denotes Cartesian product):

min
Sf∈Scaffolds

min
q-,q+∈Sf

min
k∈K

(
∆cq-,q+ +

∑
m

min
d∈Dk(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
d′∈Dk(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

+
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

, where

(2.39)

∆cq-,q+ = cq- − cq+ ,

∆Eq-,q+(ml,l′) = Eq-(ml)− Eq+(ml′),

∆Eq-,q+(ml,l′ , np,p′) = Eq-(ml, np)− Eq+(ml′ , np′),

∆Eq-,q+(ml,l′ , ir,r′) = Eq-(ml, ir)− Eq+(ml′ , ir′),

i.e., differences in constant, singleton, and pairwise energies between a negative substate k and a

positive substate l.

2.4.3.3 Multi-State optimal drug cocktail design with competing drug

Similar to the optimal single drug design with protein specificity, we want to design optimal

drug cocktails to overcome mutational resistance while considering multi-state on the drug side.

The problem is formulated as follow:

Sf∗,d∗ = arg min
Sf∈Scaffolds
d1,··· ,dk∈D

max
s∈S

(
min
q+∈Sf

min
(l1,··· ,lk)∈(Fq+ (d1),··· ,Fq+ (dk))

min
r∈R+(s)

g+
q+(r, lk)

− min
q-∈Sf-

min
l∈Fq- (d-)

min
r∈R-(s)

g-
q-(r, l))

)
,

(2.40)

Where positive and negative states are binding of our designed drug cocktail with the tar- get

protein and binding of reference drug or substrate with the target protein, respectively.

Theorem 13. Lower bound for multi-State optimal drug cocktail design with competing drug.

For any drug space Dk of kth drug and scaffold library, a lower bound of the objective function

for multistate drug cocktail design with competing drug (Formulation in Eq. 2.40) is given by (×
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denotes Cartesian product):

min
Sf+∈Scaffolds+

min
q-,q+∈Sf-×Sf+

min
k∈K

(
∆cq-,q+ +

∑
m

min
d∈Dk(m)

min
(l,l′)

(
∆Eq-,q+(ml,l′)

+
∑
n>m

min
d′∈Dk(n)

min
(p,p′)

∆Eq-,q+(ml,l′ , np,p′)

+
∑
i

min
s∈S(i)

min
(r,r′)

∆Eq-,q+(ml,l′ , ir,r′)
))

, where

(2.41)

∆cq-,q+ = cq- − cq+ ,

∆Eq-,q+(ml,l′) = Eq-(ml)− Eq+(ml′),

∆Eq-,q+(ml,l′ , np,p′) = Eq-(ml, np)− Eq+(ml′ , np′),

∆Eq-,q+(ml,l′ , ir,r′) = Eq-(ml, ir)− Eq+(ml′ , ir′),

i.e., differences in constant, singleton, and pairwise energies between a negative substate k and a

positive substate l.

2.4.4 Conclusions

For the first time, we have developed an exact algorithm that is efficient for generic multi-state

drug design. We have formulated three generic multi-state single drug and drug cocktails prob-

lems through the minimax framework. The proposed algorithm exploits novel bounds that can be

quickly evaluated in the CFN framework as well as joint consideration of substate CFNs that can

quickly prune subtrees at the sequence, substate, and conformer levels with a guarantee. Future di-

rections include parallelizing the algorithm and its codes on the architecture of GPU, incorporating

more types of constraints seen in applications while allowing for more general objective functions

and continuous rotamers, and deriving tighter yet economic bounds under the framework of CFN.
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3. PROTEIN-COMPOUND AFFINITY AND CONTACT PREDICTION∗

3.1 Overview

There is a huge need for fast and accurate compound-protein affinity predictor when devel-

oping data- and principle-driven approach for overcoming drug resistance in molecular networks.

Therefore, in this chapter, we focused on developing fast and accurate protein-compound affinity.

These models are critically needed as an oracle for drug combinations generative models. Two

models have been developed for very accurate affinity prediction while being interpretable (Deep-

Affinity) and explainable (DeepRelation). The structure of this chapter is as follows. In section 3.2,

DeepAffinity the first interpretable deep learning model, is introduced for interpretable, accurate

affinity prediction, and large-scale drug screening. DeepAffinity has shown to be beneficial for

binding pocket prediction, explaining protein and drug specificity in a few case studies. In sec-

tion 3.3, a large dataset of affinity and contact prediction has been curated for large-scale learning

and assessment of contact prediction. DeepRelations, as an extension of DeepAffinity, has been

developed for explainable affinity with significantly high contact prediction. DeepRelation shows

that better interpretability can lead to better generalizability and affinity prediction. In addition,

DeepRelation has shown to be beneficial in binding site prediction, SAR, lead optimization, and

docking.

3.2 DeepAffinity: Interpretable Deep Learning of Compound–Protein Affinity

3.2.1 Introduction

Drugs are often developed to target proteins that participate in many cellular processes. Among

almost 900 FDA-approved drugs as of year 2016, over 80% are small-molecule compounds that act

∗Reprinted with permission from “Explainable deep relational networks for predicting compound-protein affinities
and contacts” by M. Karimi, D. Wu, Z. Wang, Y. Shen 2020. under revision for Journal of chemical information and
modeling, Copyright 2020 American Chemical Society.

∗Reprinted with permission from “DeepAffinity: interpretable deep learning of compound–protein affinity through
unified recurrent and convolutional neural networks.” by M. Karimi, D. Wu, Z. Wang, Y. Shen 2019. Bioinformatics
35, no. 18, 3329-3338, Copyright 2019 Oxford University Press.
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on proteins for drug effects [115]. Clearly, it is of critical importance to characterize compound-

protein interaction for drug discovery and development, whether screening compound libraries for

given protein targets to achieve desired effects or testing given compounds against possible off-

target proteins to avoid undesired effects. However, experimental characterization of every possi-

ble compound-protein pair can be daunting, if not impossible, considering the enormous chemical

and proteomic spaces. Computational prediction of compound-protein interaction (CPI) has there-

fore made much progress recently, especially for repurposing and repositioning known drugs for

previously unknown but desired new targets [116, 117] and for anticipating compound side-effects

or even toxicity due to interactions with off-targets or other drugs [118, 119].

Structure-based methods can predict compound-protein affinity, i.e., how active or tight-binding

a compound is to a protein; and their results are highly interpretable. This is enabled by evaluat-

ing energy models [120] on 3D structures of protein-compound complexes. As these structures

are often unavailable, they often need to be first predicted by “docking” individual structures of

proteins and compounds together, which tends to be a bottleneck for computational speed and

accuracy [121]. Machine learning has been used to improve scoring accuracy based on energy

features [122].

More recently, deep learning has been introduced to predict compound activity or binding-

affinity from 3D structures directly. Wallach et al. developed AtomNet, a deep convolutional neural

network (CNN), for modeling bioactivity and chemical interactions [123]. Gomes et al. [124]

developed atomic convolutional neural network (ACNN) for binding affinity by generating new

pooling and convolutional layers specific to atoms. Jimenez et al. [125] also used 3D CNN with

molecular representation of 3D voxels assigned to various physicochemical property channels.

Besides these 3D CNN methods, Cang and Wei represented 3D structures in novel 1D topology

invariants in multiple channels for CNN [126]. These deep learning methods often improve scoring

thanks to modeling long-range and multi-body atomic interactions. Nevertheless, they still rely on

actual 3D structures of CPI and remain largely untested on lower-quality structures predicted from

docking, which prevents large-scale applications.

78



Sequence-based methods overcome the limited availability of structural data and the costly

need of molecular docking. Rather, they exploit rich omics-scale data of protein sequences, com-

pound sequences (e.g. 1D binary substructure fingerprints [127]) and beyond (e.g. biological net-

works). However, they have been restricted to classifying CPIs [128] mainly into two types (bind-

ing or not) and occasionally more (e.g., binding, activating, or inhibiting [129]). More importantly,

their interpretablity is rather limited due to high-level features. Earlier sequence-based machine

learning methods are based on shallow models for supervised learning, such as support vector ma-

chines, logistic regression, random forest, and shallow neural networks [130, 131, 132, 133, 134].

These shallow models are not lack of interpretability per se, but the sequence-based high-

level features do not provide enough interpretability for mechanistic insights on why a compound–

protein pair interacts or not.

Deep learning has been introduced to improve CPI identification from sequence data and shown

to outperform shallow models. Wang and Zeng developed a method to predict three types of

CPI based on restricted Boltzmann machines, a two-layer probabilistic graphical model and a

type of building block for deep neural networks [129]. Tian et al. boosted the performance of

traditional shallow-learning methods by a deep learning-based algorithm for CPI [135]. Wan et

al. exploited feature embedding algorithm such as latent semantic algorithm [136] and word2vec

[137] to automatically learn low-dimensional feature vectors of compounds and proteins from the

corresponding large-scale unlabeled data [138]. Later, they trained deep learning to predict the

likelihood of their interaction by exploiting the learned low-dimensional feature space. However,

these deep-learning methods inherit from sequence-based methods two limitations: simplified task

of predicting whether rather than how active CPIs occur as well as low interpretability due to the

lack of fine-resolution structures. In addition, interpretability for deep learning models remains a

challenge albeit with fast progress especially in a model-agnostic setting [139, 140] .

As has been reviewed, structure-based methods predict quantitative levels of CPI in a realistic

setting and are highly interpretable with structural details. But their applicability is restricted by

the availability of structure data, and the molecular docking step makes the bottleneck of their
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efficiency. Meanwhile, sequence-based methods often only predict binary outcomes of CPI in a

simplified setting and are less interpretable in lack of mechanism-revealing features or representa-

tions; but they are broadly applicable with access to large-scale omics data and generally fast with

no need of molecular docking.

Our goal is to, realistically, predict quantitative levels of CPIs (compound-protein affinity mea-

sured in IC50, Ki, or Kd) from sequence data alone and to balance the trade-offs of previous

structure- or sequence-based methods for broad applicability, high throughput and more inter-

pretability. From the perspective of machine learning, this is a much more challenging regression

problem compared to the classification problem seen in previous sequence-based methods.

To tackle the problem, we have designed interpretable yet compact data representations and

introduced a novel and interpretable deep learning framework that takes advantage of both unla-

beled and labeled data. Specifically, we first have represented compound sequences in the Simpli-

fied Molecular-Input Line-Entry System (SMILES) format [141] and protein sequences in novel

alphabets of structural and physicochemical properties. These representations are much lower-

dimensional and more informative compared to previously-adopted small-molecule substructure

fingerprints or protein Pfam domains [135]. We then leverage the wealth of abundant unlabeled

data to distill representations capturing long-term, nonlinear dependencies among residues/atoms

in proteins/compounds, by pre-training bidirectional recurrent neural networks (RNNs) as part of

the seq2seq auto-encoder that finds much success in modeling sequence data in natural language

processing [142]. And we develop a novel deep learning model unifying RNNs and convolutional

neural networks (CNNs), to be trained from end to end [143] using labeled data for task-specific

representations and predictions. Furthermore, we introduce several attention mechanisms to in-

terpret predictions by isolating main contributors of molecular fragments or their pairs, which is

further exploited for predicting binding sites and origins of binding specificity. Lastly, we ex-

plore alternative representations using protein sequences or compound graphs (structural formu-

lae), develop graph CNN (GCNN) in our unified RNN/GCNN-CNN model, and discuss remaining

challenges.
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The overall pipeline of our unified RNN-CNN method for semi-supervised learning (data rep-

resentation, unsupervised learning, and joint supervised learning) is illustrated in Fig. 3.1 with

details given next.
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Figure 3.1: Our unified RNN-CNN pipeline to predict and interpret compound-protein affinity.

3.2.2 Materials and Methods

3.2.2.1 Data

We used molecular data from three public datasets: labeled compound-protein binding data

from BindingDB [144], compound data in the SMILES format from STITCH [145] and protein

amino-acid sequences from UniRef [146].
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Starting with 489,280 IC50-labeled samples, we completely excluded four classes of proteins

from the training set: nuclear estrogen receptors (ER; 3,374 samples), ion channels (14,599 sam-

ples), receptor tyrosine kinases (34,318 samples), and G-protein-coupled receptors (GPCR; 60,238

samples), to test the generalizability of our framework. And we randomly split the rest into

the training set (263,583 samples including 10% held out for validation) and the default test set

(113,168 samples) without the aforementioned four classes of protein targets.

The label is in the logarithm form: pIC50. We similarly curated datasets forKi andKd measure-

ments. For unlabeled compound (protein) data, we used 499,429 (120,000) samples for training

and 484,481 (50,525) for validation.

3.2.2.2 Input data representation

Only 1D sequence data are assumed available. 3D structures of proteins, compounds, or their

complexes are not used.

3.2.2.2.1 Compound data representation

Baseline representation. A popular compound representation is based on 1D binary substruc-

ture fingerprints from PubChem [127]. Mainly, basic substructures of compounds are used as

fingerprints by creating binary vectors of 881 dimensions. SMILES representation. We used

SMILES [141] that are short ASCII strings to represent compound chemical structures based on

bonds and rings between atoms. 64 symbols are used for SMILES strings in our data. 4 more

special symbols are introduced for the beginning or the end of a sequence, padding (to align se-

quences in the same batch), or not-used ones. Therefore, we defined a compound “alphabet” of 68

“letters”. Compared to the baseline representation which uses k-hot encoding, canonical SMILES

strings fully and uniquely determine chemical structures and are yet much more compact.

3.2.2.2.2 Protein data representation

Baseline representation. Previously the most common protein representation for CPI clas-

sification was a 1D binary vector whose dimensions correspond to thousands of (5,523 in [135])

Pfam domains [147] (structural units) and 1’s are assigned based on k-hot encoding [132, 134]. We
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considered all types of Pfam entries (family, domain, motif, repeat, disorder, and coiled coil) for

better coverage of structural descriptions, which leads to 16,712 entries (Pfam 31.0) as features.

Protein sequences are queried in batches against Pfam using the web server HMMER (hmm-

scan) [148] with the default gathering threshold.

Structural property sequence (SPS) representation. Although 3D structure data of proteins

are often a luxury and their prediction without templates remains a challenge, protein structural

properties could be well predicted from sequences [149, 150, 151]. We used SSPro [150] to predict

secondary structure for each residue and grouped neighboring residues into secondary structure

elements (SSEs). The details and the pseudo-code for SSE are in Algorithm 2.

Algorithm 2 “Smoothing” Secondary Structure Element Sequence
Input: Secondary Structures over a Protein Sequence
Output: Smoothed Secondary Structure Element Sequence
Initialize: MeaningfulMinLength as 3 for Coil and 5 for Sheet and Helix
Initialize: MaxGroupLength as 7
for Each line in Secondary Structure do

Initialize FinalSeq as Empty
for Each letter in line do

if Current = Next then
Store Current in S
Mark the length of continue same sequence as L

else if L > MeaningfulMinLength then
Smooth all letters in S to last letter
Store S to FinalSeq and clear S
Continue

else if Length of S < MaxGroupLength then
Store to S
Continue

else
Smooth all letters to the most number letter in S
Store S to FinalSeq and Clear S
Continue

end if
end for
return FinalSeq
Clear FinalSeq

end for
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We defined 4 separate alphabets of 3, 2, 4 and 3 letters, respectively to characterize SSE cate-

gory, solvent accessibility, physicochemical characteristics, and length (Table 3.1) and combined

letters from the 4 alphabets in the order above to create 72 “words” (4-tuples) to describe SSEs.

Secondary Structure Solvent Exposure Property Length

Alpha Beta Coil
Not
Ex-
posed

Exposed
Non-
polar

Polar Acidic Basic Short Medium Long

A B C N E G T D K S M L

Table 3.1: 4-tuple of letters in protein structural property sequence (SPS) for creating words.

Pseudo-code for the protein representation is shown as Algorithm 3. Considering the 4 more

special symbols similarly introduced for compound SMILES strings, we flattened the 4-tuples and

thus defined a protein SPS “alphabet” of 76 “letters”.

The SPS representation overcomes drawbacks of Pfam-based baseline representation: it pro-

vides higher resolution of sequence and structural details for more challenging regression tasks,

more distinguishability among proteins in the same family, and more interpretability on which

protein segments (SSEs here) are responsible for predicted affinity. All these are achieved with

a much smaller alphabet of size 76 , which leads to around 100-times more compact represen-

tation of a protein sequence than the baseline. In addition, the SPS sequences are much shorter

than amino-acid sequences and prevents convergence issues when training RNN and LSTM for

sequences longer than 1,000 [152].

3.2.2.3 RNN for unsupervised pre-training

We encode compound SMILES or protein SPS into representations, first by unsupervised

deep learning from abundant unlabeled data. We used a recurrent neural network (RNN) model,

seq2seq [153], that has seen much success in natural language processing and was recently applied

to embedding compound SMILES strings into fingerprints [154].
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Algorithm 3 Secondary Structure Element (SSE) Sequence to Structure Property Sequence (SPS)
Input: Smoothed Secondary Structure and Exposedness Protein Sequence
Output: Structural Property Sequence (SPS).
Initialize: Exposedness threshold eThres
Initialize: Polarity threshold pThres based on the average of each types
for Each ss in Secondary Structure Element Sequences do

Initialize FinalSeq as Empty
Read next Exposedness Protein Sequence to acc
Read next Protein Sequence to protein
for Each continuous same letter in ss do

Store corresponding letter to G
if the number of ‘e’ in ss > eThres then

Store ‘E’ to G
else

Store ‘N’ to G
end if
if percentage of one type polarity in protein > pThres then

Store corresponding letter to G
end if
if Length of group ≤ 7 then

Store ‘S’ letter to G
else if Length of group ≤ 15 then

Store ‘M’ letter to G
else if Length of group > 15 then

Store ‘L’ letter to G
end if
Store G to FinalSeq
Clear G

end for
return FinalSeq
Clear FinalSeq

end for

A Seq2seq model is an auto-encoder that consists of two recurrent units known as the encoder

and the decoder, respectively (see the corresponding box in Fig. 3.1).

The encoder maps an input sequence (SMILES/SPS in our case) to a fixed-dimension vector

known as the thought vector. Then the decoder maps the thought vector to the target sequence

(again, SMILES/SPS here). We choose gated recurrent unit (GRU) [155] as our default seq2seq

model and treat the thought vectors as the representations learned from the SMILES/SPS inputs.

Our alphabets include 68 and 76 letters (including 4 special symbols such as padding in either
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alphabet) for compound SMILES and protein SPS strings, respectively. Based on the statistics of

95% CPIs in BindingDB, we set the maximum lengths of SMILES and SPS strings to be 100 and

152, respectively.

Accordingly, we used 2 layers of GRU with both the latent dimension and the embedding layer

(discrete letter to continuous vector) dimension being 128 for compounds and 256 for proteins. We

used an initial learning rate of 0.5 with a decay rate of 0.99, a dropout rate of 0.2, and a batch size

of 64. We also clipped gradients by their global norms. All neural network models for supervised

learning were implemented based on TensorFlow [156] and TFLearn [157].

We further test four more seq2seq variants under the combination of the following options:

• Bucketing [158] as an optimization trick to put sequences of similar lengths in the same

bucket and padded accordingly during training. We used bucketing groups of {(30,30),

(60,60), (90,90), (120,120), (152,152)} for SPS and {(20,20), (40,40), (60,60), (80,80),

(100,100)} for SMILES.

• Bidirectional GRU that shares parameters to capture both forward and backward dependen-

cies [159].

• Attention mechanism [160] that allows encoders to “focus” in each encoding step on se-

lected previous time points that are deemed important to predict target sequences.

Both bidirectional RNN and attention mechanism can help address computational challenges from

long input sequences.

To address the challenge from long input sequences, the attention mechanism provides a way

to “focus” for encoders. It only allows each encoding step to be affected by selected previous

time points deemed important, thus saving its memory burden. Suppose that the maximum length

of both the encoder and the decoder is L, the output of RNN (the input to the attention model)

is (s1, · · · , st, · · · , sL), the hidden state of the decoder (h1, · · · , hj, · · · , hL), and the output of

attention model is Cj at each time step j of the decoder. The attention model is parametrized by
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two matrices, Ua and Wa, and a vector va (‘a’ stands for attention) and formulated as:

ej,t = va tanh(Uahj−1 +Wast) ∀j = 1, · · · , L and ∀t = 1, · · · , L

αj,t =
exp(ej,t)∑L
k=1 exp(ej,k)

∀j = 1 · · ·L and t = 1 · · ·L

Cj =
L∑
t=1

αj,tst ∀j = 1 · · ·L

(3.1)

All seq2seq models were implemented based on the seq2seq code released by Google [161].

Through unsupervised pre-training, the learned representations capture nonlinear joint depen-

dencies among protein residues or compound atoms that are far from each other in sequence. Such

“long-term” dependencies are very important to CPIs since corresponding residues or atoms can

be close in 3D structures and jointly contribute to intermolecular interactions.

3.2.2.4 Unified RNN-CNN for supervised learning

With compound and protein representations learned from the above unsupervised learning, we

solve the regression problem of compound-protein affinity prediction using supervised learning.

For either proteins or compounds, we append a CNN after the RNN (encoders and attention models

only) that we just trained. The CNN model consists of a one-dimensional (1D) convolution layer

followed by a max-pooling layer. The outputs of the two CNNs (one for proteins and the other for

compounds) are concatenated and fed into two more fully connected layers.

The entire RNN-CNN pipeline is trained from end to end [143], with the pre-trained RNNs

serving as warm initializations, for improved performance over two-step training. The pre-trained

RNN initializations prove to be very important for the non-convex training process [162]. In com-

parison to such a “unified” model, we also include the “separate” RNN-CNN baseline for compar-

ison, in which we fixed the learned RNN part and train CNN on top of its outputs.

3.2.2.5 Attention mechanisms in unified RNN-CNN

We have also introduced three attention mechanisms to unified RNN-CNN models. The goal is

to both improve predictive performances and enable model interpretability at the level of “letters”
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(SSEs in proteins and atoms in compounds) and their pairs.

1. Separate attention. This default attention mechanism is applied to the compound and the

protein separately so the attention learned on each side is non-specific to a compound-protein

pair. However, it has the least parameters among the three mechanisms.

2. Marginalized attention. To introduce pair-specific attentions, we first use a pairwise “in-

teraction” matrix for a pair and then marginalize it based on maximization over rows or

columns for separate compound or protein attention models, which is motivated by [163].

3. Joint attention. We have developed this novel attention model to fully explain the pairwise

interactions between components (compound atoms and protein SSEs). Specifically, we use

the same pairwise interaction matrix but learn to represent the pairwise space and consider

attentions on pairwise interactions rather than “interfaces” on each side. Among the three

attention mechanisms, joint attention provides the best interpretability albeit with the most

parameters.

These attention models (for proteins, compounds, or their pairs) are jointly trained with the

RNN/CNN parts. Their learned parameters include attention weights on all “letters” for a given

string (or those on all letter-pairs for a given string-pair). Compared to that in unsupervised learn-

ing, each attention model here outputs a single vector as the input to its corresponding subsequent

1D-CNN. These attention mechanisms are formally formulated in the next subsections.

3.2.2.5.1 Separate attention We have also introduced protein and compound attention models in

supervised learning to both improve predictive performances and enable model interpretability at

the level of “letters” (SSEs in proteins and atoms in compounds). In the supervised model we just

have the encoder and its attention αt on each letter t for a given string x (protein or compound).

And the output of the attention model, A, will be the input to the subsequent 1D-CNN model.

Suppose that the length of protein encoder is T and (s1, · · · , st, · · · , sT ) are the output of protein

encoder and similarly the length of compound encoder is D and (m1, · · · ,md, · · · ,mD) are the
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output of compound encoder. We parametrize the attention model of unified model with matrix Ua

and the vector va. Then, The attention model for the protein encoder is formulated as:

ePt = vPa tanh(W P
a st) ∀t = 1, · · · , T

αPt =
exp(ePt )∑T
k=1 exp(e

P
k )

∀t = 1 · · ·T

AP =
T∑
t=1

αPt st

(3.2)

Similarly for the compound encoder:

eCd = vCa tanh(WC
a md) ∀d = 1, · · · , D

αCd =
exp(eCd )∑D
k=1 exp(e

C
k )

∀d = 1 · · ·D

AC =
D∑
d=1

αCdmd

(3.3)

The attention weights (scores) α·t suggest the importance of the tth “letter” (secondary structure

element in proteins and atom or connectivity in compounds) and thus predict the binding sites rel-

evant to the predicted binding affinity.

3.2.2.5.2 Marginalized attention Considering that the separate attention model does not address

compound-protein pair specificity, we have exploited a co-attention mechanism similar to [163]

which has been widely used in visual question answering. We name this attention mechanism

“marginalized attention” because we marginalize over rows or columns of a pair-specific interac-

tion matrix for compound or protein attention in this pair. Specifically, a pairwise “interaction”

matrix N of size T ×D is defined with each element as:

Ntd = tanh(sTt Wamd) ∀t = 1, · · · , T, ∀d = 1, · · · , D, (3.4)
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where the parameter matrix Wa is now of size T ×D.

By considering max column marginalization, we have the marginalized attention model for the

protein:

ePt = max
d=1:D

(Ntd) ∀t = 1, · · · , T

αPt =
exp(ePt )∑T
k=1 exp(e

P
k )

∀t = 1 · · ·T

AP =
T∑
t=1

αPt st

(3.5)

Similarly, by max row marginalization, we have the marginalized attention model for compounds:

eCd = max
t=1:T

(Ntd) ∀d = 1, · · · , D

αCd =
exp(eCd )∑D
k=1 exp(e

C
k )

∀d = 1 · · ·D

AC =
D∑
d=1

αCdmd

(3.6)

3.2.2.5.3 Joint attention We have further developed a novel “joint attention” mechanism that

removes the need of marginalization and thus pays attention directly on interacting “letter” pairs

rather than individual interfaces. Specifically, for the same pairwise interaction matrix N of size

T × D as defined in Eq. (3.6), we would learn the space for the joint model by another layer of

neural network:

Btd = tanh(Vbst +Wbmd + b) ∀d = 1 · · ·D, ∀t = 1, · · · , T (3.7)

Then we can derive the attention score αtd for each (t, d) pair and the final output A as:

αtd =
exp(Ntd)∑T

k=1

∑D
k′=1 exp(Nkk′)

∀d = 1 · · ·D, ∀t = 1, · · · , T

A =
T∑
t=1

D∑
d=1

αtdBtd

(3.8)
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Throughout the study, we disregarded attention scores on special symbols and re-normalized

the rest. For compound SMILES, we further disregarded SMILES symbols that are not English

letters when interpreting compound attentions on atoms, which awaits to be improved.

All neural network models for supervised learning were implemented based on TensorFlow

[156] and TFLearn [157].

3.2.3 Results

3.2.3.1 Compound and protein representations

We compared the auto-encoding performances of our vanilla seq2seq model and 4 variants:

bucketing, bi-directional GRU (“fw+bw”), attention mechanism, and attention mechanism with

fw+bw, respectively, in Tables 3.2 and 3.3. We used the common assessment metric in lan-

guage models, perplexity, which is related to the entropy H of modeled probability distribution

P (Perp(P ) = 2H(P ) > 1). First, the vanilla seq2seq model had lower test-set perplexity for

compound SMILES than protein SPS (7.07 versus 41.03), which echoes the fact that, compared to

protein SPS strings, compound SMILES strings are defined in an alphabet of less letters (68 versus

76) and are of shorter lengths (100 versus 152), thus their RNN models are easier to learn. Second,

bucketing, the most ad-hoc option among all, did not improve the results much. Third, whereas bi-

directional GRUs lowered perplexity by about 2∼3.5 folds and the default attention mechanism did

much more for compounds or proteins, they together achieved the best performances (perplexity

being 1.0002 for compound SMILES and 1.001 for protein SPS).

seq2seq +bucketing +fw/bw +attention +attention+fw/bw

Number of iterations 400K 400K 400K 400K 400K

Training error (perplexity) 7.07 7.09 2.02 1.25 1.001

Testing error (perplexity) 6.5 6.91 1.84 1.13 1.0002

Time (h) 40.2 49.52 62.93 84.75 82.52

Table 3.2: Performance comparison among 5 variants of seq2seq for compound representation
based on perplexity under the limit of 4-day running time and 400K iterations.
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seq2seq +bucketing +fw/bw +attention +attention+fw/bw

Number of iterations 400K 400K 400K 153K 153K

Training error (perplexity) 40.85 40.52 16.77 1.007 1.003

Testing error (perplexity) 41.03 43.19 19.62 1.001 1.001

Time (h) 80.7 83.75 79.89 96 96

Table 3.3: Performance comparison among 5 variants of seq2seq for protein representations based
on perplexity under the limit of 4-day running time and 400K iterations.

Therefore, the last seq2seq variant, bidirectional GRUs with attention mechanism, is regarded

the most appropriate one for learning compound/protein representations and adopted thereinafter.

3.2.3.2 Compound-protein affinity prediction

3.2.3.2.1 Comparing novel representations to baseline ones To assess how useful the learned/encoded

protein and compound representations are for predicting compound-protein affinity, we compared

the novel and baseline representations in affinity regression using the labeled datasets. The rep-

resentations were compared under the same shallow machine learning models – ridge regression,

lasso regression and random forest (RF). As shown in Table 3.4 our novel representations learned

from SMILES/SPS strings by seq2seq outperform baseline representations of k-hot encoding of

molecular/Pfam features. For the best performing RF models, using 46% less training time and

24% less memory, the novel representations achieved the same performance over the default test

set as the baseline ones and lowered root mean squared errors (RMSE) for two of the four gener-

alization sets whose target protein classes (nuclear estrogen receptors / ER and ion channels) are

not included in the training set. Similar improvements were observed on pKi, pKd, and pEC50

predictions in Tables 3.5, 3.6, and 3.7 respectively.

These results show that learning protein or compound representations even from unlabeled

datasets alone could improve their context-relevance for various labels. We note that, unlike Pfam-

based protein representations that exploit curated information only available to some proteins and

their homologs, our SPS representations do not assume such information and can apply to unchar-
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acterized proteins lacking annotated homologs.

Baseline representations Novel representations
Ridge Lasso RF Ridge Lasso RF

Training 1.16 (0.60) 1.16 (0.60) 0.76 (0.86) 1.23 (0.54) 1.22 (0.55) 0.63 (0.91)
Testing 1.16 (0.60) 1.16 (0.60) 0.91 (0.78) 1.23 (0.54) 1.22 (0.55) 0.91 (0.78)
ER 1.43 (0.30) 1.43 (0.30) 1.44 (0.37) 1.46 (0.18) 1.48 (0.18) 1.41 (0.26)
Ion Channel 1.32 (0.22) 1.34 (0.20) 1.30 (0.22) 1.26 (0.23) 1.32 (0.17) 1.24 (0.30)
GPCR 1.28 (0.22) 1.30 (0.22) 1.32 (0.28) 1.34 (0.20) 1.37 (0.17) 1.40 (0.25)
Tyrosine Kinase 1.16 (0.38) 1.16 (0.38) 1.18 (0.42) 1.50 (0.11) 1.51 (0.10) 1.58 (0.11)
Time (core hours) 3.5 7.4 1239.8 0.47 2.78 668.7
Memory (GB) 7.6 7.6 8.3 7.3 7.3 6.3

Table 3.4: Comparing the novel representations to the baseline based on RMSE (and Pearson
correlation coefficient r) of pIC50 shallow regression.

Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.23 (0.60) 1.21 (0.62) 0.83 (0.84) 1.26 (0.58) 1.26 (0.58) 0.67 (0.91)
Testing 1.24 (0.60) 1.22 (0.61) 0.97 (0.78) 1.27 (0.58) 1.27 (0.58) 0.97 (0.78)
ER 1.37 (0.10) 1.38 (0.10) 1.35 (0.24) 1.50 (0.17) 1.34 (0.14) 1.48 (0.14)
Ion Channel 1.44 (0.14) 1.44 (0.14) 1.38 (0.24) 1.52 (0.10) 1.66 (0.10) 1.46 (0.21)
GPCR 1.27 (0.20) 1.28 (0.17) 1.23 (0.30) 1.44 (0.10) 1.44 (0.10) 1.20 (0.19)
Tyrosine Kinase 1.41 (0.41) 1.44 (0.38) 1.43 (0.52) 1.73 (0.20) 1.77 (0.16) 1.75 (0.10)
Time (core hours) 2 2.22 333.2 0.22 1.42 236.21
Memory (GB) 3.2 3.3 3.6 3.2 3.1 2.8

Table 3.5: Comparing the baseline and the novel representations based on RMSE (and Pearson
correlation coefficient r) of pKi shallow regression.

3.2.3.2.2 Comparing shallow and deep models Using the novel representations we next com-

pared the performances of affinity regression between the best shallow model (RF) and various

deep models. For both separate and unified RNN-CNN models, we tested results from a single
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Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.04 (0.72) 1.10 (0.70) 0.97 (0.78) 1.17 (0.64) 1.21 (0.61) 0.76 (0.88)
Testing 1.33 (0.67) 1.19 (0.65) 1.11 (0.70) 1.24 (0.60) 1.28 (0.55) 1.10 (0.70)
Ion Channel 1.53 (0.46) 1.62 (0.37) 1.74 (0.30) 1.81 (0.18) 1.77 (0.16) 1.79 (0.09)
GPCR 1.75 (0.07) 1.74 (0.07) 1.58 (0.09) 1.55 (0.10) 1.53 (0.13) 1.57 (0.07)
Tyrosine Kinase 1.35 (0.45) 1.36 (0.45) 1.32 (0.50) 1.56 (0.18) 1.59 (0.13) 1.46 (0.31)
Time (core hours) 0.1 0.16 4.78 0.01 0.06 10.34
Memory (Gb) 0.4 0.4 0.4 0.4 0.4 0.4

Table 3.6: Comparing the baseline and the novel representations based on RMSE (and Pearson
correlation coefficient r) of pKd shallow regression.

Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.02 (0.72) 0.98 (0.74) 0.74 (0.86) 0.92 (0.78) 0.97 (0.74) 0.64 (0.90)
Testing 1.04 (0.70) 1.02 (0.72) 0.90 (0.79) 0.93 (0.77) 0.98 (0.74) 0.80 (0.84)
ER 1.55 (0.20) 1.60 (0.17) 1.71 (0.17) 1.72 (0.14) 1.55 (0.17) 1.51 (0.13)
Ion Channel 1.25 (0.44) 1.26 (0.43) 1.21 (0.48) 1.30 (0.40) 1.39 (0.30) 1.20 (0.33)
GPCR 1.34 (0.20) 1.38 (0.14) 1.39 (0.14) 1.31 (0.24) 1.34 (0.22) 1.31 (0.24)
Tyrosine Kinase 1.25 (0.09) 1.30 (0.08) 1.21 (0.09) 1.33 (0.25) 1.63 (0.26) 1.07 (0.10)
Time (core hours) 0.34 0.42 38.46 0.05 0.26 31.67
Memory (GB) 1 1 1.1 0.9 0.9 0.8

Table 3.7: Comparing the baseline and the novel representations based on RMSE (and Pearson
correlation coefficient r) of pEC50 shallow regression.

model with (hyper)parameters optimized over the training/validation set, averaging a “parameter

ensemble” of 10 models derived in the last 10 epochs, and averaging a “parameter+NN” ensemble

of models with varying number of neurons in the fully connected layers ((300,100), (400,200) and

(600,300)) trained in the last 10 epochs. The attention mechanism used here is the default, separate

attention.

From Table 3.8 we noticed that unified RNN-CNN models outperform both random forest and

separate RNN-CNN models (the similar performances between RF and separate RNN-CNN indi-

cated a potential to further improve RNN-CNN models with deeper models). By using a relatively
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small amount of labeled data that are usually expensive and limited, protein and compound repre-

sentations learned from abundant unlabeled data can be tuned to be more task-specific. We also no-

ticed that averaging an ensemble of unified RNN-CNN models further improves the performances

especially for some generalization sets of ion channels and GPCRs. As anticipated, averaging

ensembles of models reduces the variance originating from network architecture and parameter

optimization thus reduces expected generalization errors. Similar observations were made for pKi

predictions as well (Table 3.9) even when their hyper-parameters were not particularly optimized

and simply borrowed from pIC50 models. Impressively, unified RNN-CNN models without very

deep architecture could predict IC50 values with relative errors below 100.7=5 fold (or 1.0 kcal/mol)

for the test set and even around 101.3 = 20 fold (or 1.8 kcal/mol) on average for protein classes

not seen in the training set. Interestingly, GPCRs and ion channels had similar RMSE but more

different Pearson’s r, which is further described by the distributions of predicted versus measured

pIC50 values for various sets (Fig. 3.2).

Separate RNN-CNN Models Unified RNN-CNN Models
RF single parameter parameter+NN single parameter parameter+NN

ensemble ensemble ensemble ensemble
Training 0.63 (0.91) 0.68 (0.88) 0.67 (0.90) 0.68 (0.89) 0.47 (0.94) 0.45 (0.95) 0.44 (0.95)
Testing 0.91 (0.78) 0.94 (0.76) 0.92 (0.77) 0.90 (0.79) 0.78 (0.84) 0.77 (0.84) 0.73 (0.86)
Generalization – ER 1.41 (0.26) 1.45 (0.24) 1.44 (0.26) 1.43 (0.28) 1.53 (0.16) 1.52 (0.19) 1.46 (0.30)
Generalization – Ion Channel 1.24 (0.30) 1.36 (0.18) 1.33 (0.18) 1.29 (0.25) 1.34 (0.17) 1.33 (0.18) 1.30 (0.18)
Generalization – GPCR 1.40 (0.25) 1.44 (0.19) 1.41 (0.20) 1.37 (0.23) 1.40 (0.24) 1.40 (0.24) 1.36 (0.30)
Generalization – Tyrosine Kinase 1.58 (0.11) 1.66 (0.09) 1.62 (0.10) 1.54 (0.12) 1.24 (0.39) 1.25 (0.38) 1.23 (0.42)

Table 3.8: Under novel representations learned from seq2seq, comparing random forest and vari-
ants of separate RNN-CNN and unified RNN-CNN models based on RMSE (and Pearson’s r) for
pIC50 prediction.

3.2.3.2.3 Comparing attention mechanisms in prediction To assess the predictive powers of the

three attention mechanisms, we compared their pIC50 predictions in Table 3.10 using the same

dataset and the same unified RNN-CNN models as before. All attention mechanisms had similar

performances on the training and test sets. However, as we anticipated, separate attention with the

least parameters edged joint attention in generalization (especially for receptor tyrosine kinases).
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Figure 3.2: Comparing predictions vs real labels for test and generalization tests for the unified
RNN-CNN model (separate attention).

Unified RNN-CNN Models (separate attention) Unified RNN-CNN Models (joint attention)
RF single parameter parameter+NN single parameter parameter+NN

ensemble ensemble ensemble ensemble
Training 0.67 (0.91) 0.44 (0.95) 0.42 (0.95) 0.41 (0.96) 0.48 (0.94) 0.44 (0.95) 0.40 (0.96)
Testing 0.97 (0.78) 0.84 (0.84) 0.83 (0.84) 0.79 (0.86) 0.91 (0.81) 0.88 (0.82) 0.80 (0.85)
ER 1.48 (0.14) 1.76 (0.17) 1.74 (0.17) 1.62 (0.07) 1.76 (0.09) 1.78 (0.07) 1.63 (0.10)
Ion Channel 1.46 (0.21) 1.50 (0.21) 1.49 (0.20) 1.41 (0.29) 1.79 (0.23) 1.78 (0.24) 1.51 (0.32)
GPCR 1.20 (0.19) 1.35 (0.28) 1.33 (0.29) 1.26 (0.36) 1.50 (0.21) 1.48 (0.23) 1.35 (0.28)
Tyrosine Kinase 1.75 (0.10) 1.83 (0.27) 1.81 (0.27) 1.85 (0.25) 2.10 (0.16) 2.08 (0.15) 1.95 (0.17)

Table 3.9: Under novel representations learned from seq2seq, comparing random forest and vari-
ants of separate RNN-CNN and unified RNN-CNN models based on RMSE (and Pearson correla-
tion coefficient r) for pKi prediction.

Meanwhile, joint attention had similar predictive performances and much better interpretability,

thus will be further examined in case studies of selective drugs.
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Separate attention Marginalized attention Joint attention
single parameter parameter+NN single parameter parameter+NN single parameter parameter+NN

ensemble ensemble ensemble ensemble ensemble ensemble
Training 0.47 (0.94) 0.45 (0.95) 0.44 (0.95) 0.50 (0.94) 0.47 (0.95) 0.42 (0.96) 0.48 (0.94) 0.44 (0.94) 0.40 (0.95)
Testing 0.78 (0.84) 0.77 (0.84) 0.73 (0.86) 0.81 (0.83) 0.79 (0.84) 0.73 (0.86) 0.84 (0.82) 0.80 (0.83) 0.73 (0.86)
Generalization – ER 1.53 (0.16) 1.52 (0.19) 1.46 (0.30) 1.69 (0.20) 1.67 (0.20) 1.53 (0.30) 1.78 (0.03) 1.68 (0.04) 1.37 (0.23)
Generalization – Ion Channel 1.34 (0.17) 1.33 (0.18) 1.30 (0.18) 1.63 (0.01) 1.64 (0.06) 1.41 (0.13) 1.54 (0.25) 1.53 (0.26) 1.42 (0.26)
Generalization – GPCR 1.40 (0.24) 1.40 (0.24) 1.36 (0.30) 1.59 (0.17) 1.57 (0.18) 1.42 (0.24) 1.53 (0.19) 1.53 (0.19) 1.38 (0.25)
Generalization – Tyrosine Kinase 1.24 (0.39) 1.25 (0.38) 1.23 (0.42) 1.69 (0.22) 1.62 (0.25) 1.50 (0.32) 2.22 (0.18) 2.17 (0.21) 2.04 (0.17)

Table 3.10: Under novel representations learned from seq2seq, comparing different attention
mechanisms of unified RNN-CNN models based on RMSE (and Pearson correlation coefficient
r for pIC50 prediction.

3.2.3.2.4 Deep transfer learning for new classes of protein targets Using the generalization sets,

we proceed to explain and address our models’ relatively worse performances for new classes of

protein targets without any training data. We chose to analyze separate attention models with the

best generalization results and first noticed that proteins in various sets have different distributions

in the SPS alphabet (4-tuples). In particular, the test set, ion channels/GPCRs/tyrosine kinases, and

estrogen receptors are increasingly different from the training set (measured by Jensen-Shannon

distances in SPS letter or SPS length distribution), which correlated with increasingly deteriorating

performance relative to the training set (measured by the relative difference in RMSE) with a

Pearson’s r of 0.68 (SPS letter distribution) or 0.96 (SPS length distribution) (Fig. 3.3).

To improve the performances for new classes of proteins, we compare two strategies: re-

training shallow models (random forest) from scratch based on new training data alone and “trans-

ferring” original deep models (unified parameter+NN ensemble with the default separate attention)

to fit new data. The reason is that new classes of targets often have few labeled data that might be

adequate for re-training class-specific shallow models from scratch but not for deep models with

much more parameters.

As shown in Fig. 3.4, deep transfer learning models increasingly improved the predictive per-

formance compared to the original deep learning models, when increasing amount of labeled data

are made available for new protein classes. The improvement was significant even with 1% training

coverage for each new protein class. Notably, deep transfer learning models outperformed random

forest models that were re-trained specifically for each new protein class.
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Figure 3.3: Relative errors to the training set (y axis) versus Jensen-Shannon distances from the
training-set protein SPS letter distribution (x axis: left) or SPS length distribution (x axis: right)
for various sets of protein targets.

Nuclear Estrogen Receptor Ion Channel GPCR Receptor Tyrosine Kinase

Figure 3.4: Comparing strategies to generalize predictions for four sets of new protein classes:
original random forest (RF), original param.+NN ensemble of unified RNN-CNN models (DL
for deep learning with the default attention), and re-trained RF or transfer DL using incremental
amounts of labeled data in each set.

3.2.3.3 Predicting target selectivity of drugs

We went on to test how well our unified RNN-CNN models could predict certain drugs’ target

selectivity, using 3 sets of drug-target interactions of increasing prediction difficulty. Our novel

representations and models successfully predicted target selectivity for 6 of 7 drugs whereas base-

line representations and shallow models (random forest) failed for most drugs.
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3.2.3.3.1 Factor Xa versus Thrombin Thrombin and factor X (Xa) are important proteins in the

blood coagulation cascade. Antithrombotics, inhibitors for such proteins, have been developed to

treat cardiovascular diseases. Due to thrombin’s other significant roles in cellular functions and

neurological processes, it is desirable to develop inhibitors specifically for factor Xa. Compound

DX-9065a is such a selective inhibitor (pKi value being 7.39 for Xa and<2.70 for thrombin) [164].

We used the learned pKi models in this study. Both proteins were included in the Ki training

set with 2,294 and 2,331 samples, respectively, but their interactions with DX-9065a were not. Ta-

ble 3.11 suggested that random forest correctly predicted the target selectivity (albeit with less than

0.5-unit margin) using baseline representations but failed using novel representations. In contrast,

our models with separate and joint attention mechanisms both correctly predicted the compound’s

favoring Xa. Moreover, our models predicted selectivity levels being 2.4 (separate attention) and

3.9 (joint attention) in pKi difference (∆pKi), where the joint attention model produced predic-

tions very close to the known selectivity margin (∆pKi >4.7).

Baseline rep. + RF Novel rep. + RF Novel rep. + DL (sep. attn.) Novel rep. + DL (joint attn.)

Thrombin 6.36 6.71 5.68 4.77

Factor Xa 6.87 6.54 8.08 8.64

Table 3.11: Predicted pKi values and target specificity for compound DX-9065a interacting with
human factor Xa and thrombin.

3.2.3.3.2 Cyclooxygenase (COX) protein family COX protein family represents an important

class of drug targets for inflammatory diseases. These enzymes responsible for prostaglandin

biosynthesis include COX-1 and COX-2 in human, both of which can be inhibited by nonsteroidal

anti-inflammatory drugs (NSAIDs). We chose three common NSAIDs known for human COX-1/2

selectivity: celecoxib/CEL (pIC50 for COX-1: 4.09; COX-2: 5.17), ibuprofen/IBU (COX-1: 4.92,

COX-2: 4.10) and rofecoxib/ROF (COX-1: <4; COX-2: 4.6) [165]. This is a very challenging

case for selectivity prediction because selectivity levels of all NSAIDs are close to or within 1 unit
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of pIC50. We used the learned pIC50 ensemble models in this study. COX-1 and COX-2 both exist

in our IC50 training set with 959 and 2,006 binding examples, respectively, including 2 of the 6

compound-protein pairs (CEL and IBU with COX-1 individually).

Baseline rep. + RF Novel rep. + RF Novel rep. + DL (sep. attn.) Novel rep. + DL (joint attn.)

CEL IBU ROF CEL IBU ROF CEL IBU ROF CEL IBU ROF

COX-1 6.06 5.32 5.71 6.41 6.12 6.13 5.11 6.06 5.67 5.18 5.94 6.00

COX-2 6.06 5.32 5.71 6.57 6.19 6.21 7.60 5.96 6.51 7.46 5.62 6.03

Table 3.12: pIC50 predictions and target specificity for three NSAIDs interacting with human COX-
1 and COX-2.

From Table 3.12, we noticed that, using the baseline representations, random forest incorrectly

predicted COX-1 and COX-2 to be equally favorable targets for each drug. This is because the two

proteins are from the same family and their representations in Pfam domains are indistinguishable.

Using the novel representations, random forest correctly predicted target selectivity for two of the

three drugs (CEL and ROF), whereas our unified RNN-CNN models (both attention mechanisms)

did so for all three. Even though the selectivity levels of the NSAIDs are very challenging to

predict, our models were able to predict all selectivities correctly with the caveat that few predicted

differences might not be statistically significant.

3.2.3.3.3 Protein-tyrosine phosphatase (PTP) family Protein-tyrosine kinases and protein-tyrosine

phosphatases (PTPs) are controlling reversible tyrosine phosphorylation reactions which are criti-

cal for regulating metabolic and mitogenic signal transduction processes. Selective PTP inhibitors

are sought for the treatment of various diseases including cancer, autoimmunity, and diabetes.

Compound 1 [2-(oxalyl-amino)-benzoic acid or OBA] and its derivatives, compounds 2 and 3

(PubChem CID: 44359299 and 90765696), are highly selective toward PTP1B rather than other

proteins in the family such as PTPRA, PTPRE, PTPRC and SHP1 [166]. Specifically, the pKi val-
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ues of OBA, compound 2, and compound 3 against PTP1B are 4.63, 4.25, and 6.69, respectively;

and their pKi differences to the closest PTP family protein are 0.75, 0.7, and 2.47, respectively

[166].

We used the learned pKi ensemble models in this study. PTP1B, PTPRA, PTPRC, PTPRE and

SHP1 were included in the Ki training set with 343, 33, 16, 6 and 5 samples respectively. These

examples just included OBA binding to all but SHP1 and compound 2 binding to PTPRC.

Baseline rep. + RF Novel rep. + RF Novel rep. + DL (sep. attn.) Novel rep. + DL (joint attn.)
Protein Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3

PTP1B 4.15 3.87 5.17 6.70 6.55 6.71 3.76 3.84 3.92 2.84 4.10 4.04
PTPRA 4.15 3.87 5.17 6.29 6.59 6.27 2.73 2.90 3.44 2.39 2.62 2.12
PTPRC 4.15 3.87 5.17 6.86 6.73 6.87 3.37 3.25 3.19 3.36 3.49 2.97
PTPRE 4.15 3.87 5.17 6.79 6.68 6.81 3.83 3.75 3.85 2.75 2.93 2.61
SHP1 4.15 3.87 5.17 6.71 6.74 6.73 3.37 3.38 3.89 3.42 3.52 3.22

Table 3.13: Predicted pKi values and target specificity for three PTP1B-selective compounds in-
teracting with five proteins in the human PTP family.

Results in Table 3.13 showed that random forest using baseline representations cannot tell

binding affinity differences within the PTP family as the proteins’ Pfam descriptions are almost in-

distinguishable. Using novel representations, random forest incorrectly predicted target selectivity

for all 3 compounds, whereas unified RNN-CNN models with both attention mechanisms correctly

did so for all but one (compound 1 – OBA). We also noticed that, although the separate atten-

tion model predicted likely insignificant selectivity levels for compounds 2 (∆pKi = 0.09) and

3 (∆pKi = 0.03), the joint attention model much improved the prediction of selectivity margins

(∆pKi = 0.58 and 0.82 for compounds 2 and 3, respectively) and their statistical significances.

3.2.3.4 Explaining target selectivity of drugs

After successfully predicting target selectivity for some drugs, we proceed to explain using

attention scores how our deep learning models did so and what they reveal about those compound-

protein interactions.
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3.2.3.4.1 How do the compound-protein pairs interact? Given that SPS and SMILES strings are

interpretable and attention models between RNN encoders and 1D convolution layers can report

their focus, we pinpoint SSEs in proteins and atoms in compounds with high attention scores,

which are potentially responsible for CPIs. We chose 3 compound-protein pairs that have 3D

crystal complex structures from the Protein Data Bank; and extracted residues in direct contacts

with ligands (their SSEs are regarded ground truth for binding site) for each protein from ligplot

diagrams provided through PDBsum [167].

After correcting and marginalizing joint attention scores, we picked the top 10% (4) SSEs in

resulting βi as predicted binding sites. More specifically, we first corrected joint attention scores

αij on pairs of protein SSE i and compound atom j in the single unified RNN-CNN model to

be βij = αij −
(∑I

k=1 αkj

)
/I (∀i = 1, . . . , I, j = 1, . . . , J) to offset the contribution of

any compound atom j with promiscuous attentions over all protein SSEs. We then calculated the

attention score βi for protein SSE i by max-marginalization (βi = maxj βij). No negative βi was

found in this case thus no further treatment was adopted..

Table 3.14 shows that, compared to randomly ranking the SSEs, our approach can enrich bind-

ing site prediction by 1.7∼5.8 fold for the three CPIs. Consistent with the case of target selectivity

prediction, joint attention performed better than separate attention did. One-sided paired t-tests

suggested that binding sites enjoyed higher attention scores than non-binding sites in a statistically

significant way. When the strict definition of binding sites is relaxed to residues within 5Å of any

heavy atom of the ligand, results were further improved with all top 10% SSEs of factor Xa being

at the binding site (Table 3.15).

Number of SSEs Top 10% (4) SSEs predicted as binding site by sep. attn. Top 10% (4) SSEs predicted as binding site by joint attn.

Target–Drug PDB ID total binding site # of TP Enrichment Highest rank P value # of TP Enrichment Highest rank P value
Human COX2–rofecoxib 5KIR 40 6 2 2.22 1 1.18e-9 1 1.68 4 0.0107

Human PTP1B–OBA 1C85 34 5 0 0 20 1 1 1.7 1 1.12e-10
Human factor Xa–DX9065 1FAX 31 4 0 0 7 0.898 3 5.81 2 2.2e-16

Table 3.14: Interpreting deep learning models: predicting binding sites based on joint attentions.
The binding site here is defined as SSEs making direct contacts with compounds (according to the
LIGPLOT service from PDBsum).
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Number of SSEs Top 10% (4) SSEs predicted as binding site by joint attn.

Target–Drug PDB ID total binding site # of TP Enrichment Highest rank P value
Human COX2–rofecoxib 5KIR 40 9 1 1.11 4 1.3e-1

Human PTP1B–OBA 1C85 34 6 2 3.77 1 <2.2e-16
Human factor Xa–DX9065 1FAX 31 6 4 5.16 1 <2.2e-16

Table 3.15: Interpreting deep learning models: predicting binding sites based on joint attentions.
The binding site here is defined as SSEs falling within 5Å from compound heavy atoms.

We delved into the predictions for factor Xa–DX-9065a interaction in Fig. 3.5A. Warmer colors

(higher attentions) are clearly focused near the ligand. The red loops connected through a β strand

(resi. 171–196) were correctly predicted to be at the binding site with a high rank 2, thus a true

positive (TP). The SSE ranked first, a false positive, is its immediate neighbor in sequence (resi.

162-170; red helix at the bottom) and is near the ligand. In fact, as mentioned before, when the

binding site definition is relaxed, all top 10% SSEs were at the binding site. Therefore, in the

current unified RNN-CNN model with attention mechanism, wrong attention could be paid to

sequence neighbors of ground truth; and additional information (for instance, 2D contact maps or

3D structures of proteins, if available) could be used as additional inputs to reduce false negatives.

We also examined attention scores βj on compound atoms (j). Many high attention scores

were observed (Fig. 3.6), which is somewhat intuitive as small-molecule compounds usually fit in

protein pockets or grooves almost entirely. The top-ranked atom happened to be a nitrogen atom

forming a hydrogen bond with an aspartate (Asp189) of factor Xa, although more cases need to be

studied more thoroughly for a conclusion.

3.2.3.4.2 How are targets selectively interacted? To predictively explain the selectivity origin of

compounds, we designed an approach to compare attention scores between pairs of CPIs and tested

it using factor Xa-selective DX-9065a with known selectivity origin. Specifically, position 192 is

a charge-neutral polar glutamine (Gln192) in Xa but a negatively-charged glutamate (Glu192) in

thrombin [168]. DX-9065a exploited this difference with a carboxylate group forming unfavorable

electrostatic repulsion with Glu192 in thrombin but favorable hydrogen bond with Gln192 in Xa.
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A B

Figure 3.5: Interpreting deep learning models for predicting factor Xa (A) binding site and (B)
selectivity origin based on joint attention. (A) 3D structure of factor Xa (colored cartoon rep-
resentation) in complex with DX-9065a (black sticks) (PDB ID:1FAX) where protein SSEs are
color-coded by attention scores (βi), warmer colors indicating higher attentions. (B) Segments of
factor Xa are scored by one less the average of the βi rank ratios for the two compound-protein
interactions where the ground truth of the selectivity origin is in red.

To compare DX-9065a interacting with the two proteins, we performed amino-acid sequence

alignment between the proteins and split two sequences of mis-matched SSEs (count: 31 and 38)

into those of perfectly matched segments (count: 50 and 50). In the end, segment 42, where SSE

26 of Xa and SSE 31 of thrombin align, is the ground truth containing position 192 for target

selectivity.

For DX-9065a interacting with either factor Xa or thrombin, we ranked the SSEs based on the

attention scores βi and assigned each segment the same rank as its parent SSE. Due to the different

SSE counts in the two proteins, we normalized each rank for segment i by the corresponding SSE

count for a rank ratio ri. For each segment we then substracted from 1 the average of rank ratios

between factor Xa and thrombin interactions so that highly attended segments in both proteins can
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Figure 3.6: (Left figure) The chemical structure and atom names for compound DX-9065a, a
selective ligand for factor Xa. (Right figure) Max-marginalized attention scores βj’s for compound
DX-9065a interacting with factor Xa.

be scored higher. Fig. 3.5B shows that the ground-truth segment in red was ranked the 2nd among

50 segments albeit with narrow margins over the next 3 segments.

3.2.4 Discussion

We lastly explore alternative representations of proteins and compounds and discuss remaining

challenges.

3.2.4.1 Protein representations using amino acid sequences

As shown earlier, our SPS representations integrate both sequence and structure information

of proteins and are much more compact compared to the original amino acid sequences. That

being said, there is a value to consider a protein sequence representation with the resolution of

residues rather than SSEs: potentially higher-resolution precision and interpretability. We started

with unsupervised learning to encode the protein sequence representation with seq2seq.
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SPS rep. +attention+fw/bw seq. rep. +attention+fw/bw

Training error (Perplexity) 1.003 11.46

Testing error (Perplexity) 1.001 12.69

Time (h) 96 192

Table 3.16: Comparing the auto-encoding performance between amino acid and SPS sequences
using the best seq2seq model (bidirectional GRU with attention).

Compared to SPS representations, protein sequences are 10-times longer and demanded 10-

times more GRUs in seq2seq, which suggests much more expensive training. Under the limited

computational budget, we trained the protein sequence seq2seq models using twice the time limit

on the SPS ones. The perplexity for the test set turned out to be over 12, which is much worse than

1.001 in the SPS case and deemed inadequate for subsequent (semi-)supervised learning. Learning

very long sequences is still challenging and calls for advanced architectures of sequence models.

3.2.4.2 Compound representation using chemical graphs

We have chosen SMILES representations for compounds partly due to recent advancements of

sequence models especially in the field of natural language processing. Meanwhile, the descriptive

power of SMILES strings can have limitations. For instance, some syntactically invalid SMILES

strings can still correspond to valid chemical structures. Therefore, we also explore chemical

formulae (2D graphs) for compound representation.

We replaced RNN layers for compound sequences with graph CNN (GCNN) in our unified

model (separate attention) and kept the rest of the architecture. This new architecture is named

unified RNN/GCNN-CNN. The GCNN part is adopting a very recently-developed method [169]

for compound-protein interactions. Atom types have been used for node features and no edge

features have been utilized.
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SMILES rep. Graph rep.

single parameter parameter+NN single parameter parameter+NN

ensemble ensemble ensemble ensemble

Training 0.47 (0.94) 0.45 (0.95) 0.44 (0.95) 0.55 (0.92) 0.54 (0.92) 0.55 (0.92)

Testing 0.78 (0.84) 0.77 (0.84) 0.73 (0.86) 1.50 (0.35) 1.50 (0.35) 1.34 (0.45)

Generalization – ER 1.53 (0.16) 1.52 (0.19) 1.46 (0.30) 1.68 (0.05) 1.67 (0.03) 1.67 (0.07)

Generalization – Ion Channel 1.34 (0.17) 1.33 (0.18) 1.30 (0.18) 1.43 (0.10) 1.41 (0.13) 1.35 (0.12)

Generalization – GPCR 1.40 (0.24) 1.40 (0.24) 1.36 (0.30) 1.63 (0.04) 1.61 (0.04) 1.49 (0.07)

Generalization – Tyrosine Kinase 1.24 (0.39) 1.25 (0.38) 1.23 (0.42) 1.74 (0.01) 1.71 (0.03) 1.70 (0.03)

Table 3.17: Comparing unified RNN-CNN and unified RNN/GCNN-CNN based on RMSE (and
Pearson’s r) for pIC50 prediction.

Results in Table 3.17 indicate that the unified RNN/GCNN-CNN model using compound

graphs did not outperform the unified RNN-CNN model using compound SMILES in RMSE and

did a lot worse in Pearson’s r. These results did not show the superiority of SMILES versus graphs

for compound representations per se. Rather, they show that graph models need new architectures

and further developments to address the challenge. We have further advanced GCN models for

CPI problems in the next sections (see 3.3) by utilizing more informative features from both atoms

and their edge types.

3.2.5 Conclusion

We have developed accurate and interpretable deep learning models for predicting compound-

protein affinity using only compound identities and protein sequences. By taking advantage of

massive unlabeled compound and protein data besides labeled data in semi-supervised learning,

we have jointly trained unified RNN-CNN models from end to end for learning context- and task-

specific protein/compound representations and predicting compound-protein affinity. These mod-

els outperform baseline machine-learning models. Impressively, they achieve the relative error

of IC50 within 5-fold for a comprehensive test set and even that within 20-fold for generalization

sets of protein classes unknown to training. Deeper models would further improve the results.
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Moreover, for the generalization sets, we have devised transfer-learning strategies to significantly

improve model performance using as few as about 30 labeled samples.

Compared to conventional compound or protein representations using molecular descriptors

or Pfam domains, the encoded representations learned from novel structurally-annotated SPS se-

quences and SMILES strings improve both predictive power and training efficiency for various

machine learning models. Given the novel representations with better interpretability, we have

included attention mechanism in the unified RNN-CNN models to quantify how much each part of

proteins, compounds, or their pairs are focused while the models are making the specific prediction

for each compound-protein pair.

When applied to case studies on drugs of known target-selectivity, our models have successfully

predicted target selectivity in all cases whereas conventional compound/protein representations

and machine learning models have failed some. Furthermore, our analyses on attention weights

have shown promising results for predicting protein binding sites as well as the origins of binding

selectivity, thus calling for further method development for better interpretability.

For protein representation, we have chosen SSE as the resolution for interpretability due to the

known sequence-size limitation of RNN models [152]. One can easily increase the resolution to

residue-level by simply feeding to our models amino-acid sequences instead of SPS sequences,

but needs to be aware of the much increased computational burden and much worse convergence

when training RNNs. For compound representation, we have started with 1D SMILES strings and

have also explored 2D graph representations using graph CNN (GCNN). Although the resulting

unified RNN/GCNN-CNN model did not improve against unified RNN-CNN, graphs are more de-

scriptive for compounds and more developments in graph models are needed to address remaining

challenges.
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3.3 Explainable Prediction of Compound-Protein Interactions

3.3.1 Introduction

As explained in section 3.2, drug discovery calls for efficient characterization of compound

efficacy and toxicity, and computational prediction of compound-protein interactions (CPI) ad-

dresses the need. Also, classical physics-driven methods model atomic-level energetics using co-

crystallized or docked 3D structures of compound-protein pairs [170, 120], such as molecular

mechanical and quantum mechanical force fields, potentials of mean force, and empirical and sta-

tistical scoring. Moreover, their affinity predictions are intrinsically interpretable toward revealing

mechanistic principles, with the consideration of atomic contacts, dynamics, and energetics as well

as solvent effects. Recently, thanks to increasingly abundant molecular data and advanced com-

puting power, data-driven machine learning (especially deep learning) methods are also developed

using the input structures of compound-protein complexes [123, 124, 171] or proteins alone (see a

related task of classifying binding [172, 173]), albeit with less focus on interpretability. However,

these structure-based methods, physics- or data-driven, are limited by the availability of structure

data. Indeed, 3D structures are often not available for compound-protein pairs or even proteins

alone and their prediction through docking is still a computationally demanding and challenging

task.

To overcome the data limitation of structure-based affinity-prediction methods and broaden

the applicability to more chemical-proteomic pairs without structures, our focus of the study is

structure-free prediction of compound-protein affinities. Recent developments only use identities

of compounds (SMILES [174, 19] or graphs[19, 175]) and proteins (amino acid sequences [174,

175] or shorter, predicted structural property sequences[19]) as inputs. Compared to these recent

work, our goals are two folds: improved generalizability to “new” molecules unseen in training

data as well as improved interpretability to a level that data supports (not yet the level of mechani-

cal principles that can be revealed by physics-driven structure-based methods). In particular, inter-

pretability remains a major gap between the capability of current structure-free machine-learning
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models and the demand for rational drug discovery. The central question about interpretability is

whether and how methods (including machine learning models) could explain why they make cer-

tain predictions (affinity level for any compound-protein pair in our context). This important topic

is rarely addressed in structure-free machine learning models. DeepAffinity [19] has embedded

joint attentions over compound-protein component pairs and uses such joint attentions to assess

origins of affinities (binding sites) or specificities. Additionally, attention mechanisms have been

used for predictions of CPI [169], chemical stability [176] and protein secondary structures [177].

Assessment of interpretability for all these studies was either lacking or limited to a few case stud-

ies. We note a recent work proposing post-hoc attribution-based test to determine whether a model

learns binding mechanisms [178].

We raise reasonable concerns on how much attention mechanisms can reproduce native con-

tacts in compound-protein interactions. Attention mechanisms were originally developed to boost

the performance of seq2seq models for neural machine translations [160]. And they have gained

popularity for interpreting deep learning models in visual question answering [163], natural lan-

guage processing [179], and healthcare [180]. However, they were also found to work differently

from human attentions in visual question answering [181].

Representing the first effort dedicated to the interpretability of structure-free compound-protein

affinity predictors (in particular, deep-learning models), our study is focused on how to define,

assess, and enhance interpretability for these methods as follows.

How to define interpretability for affinity prediction. Interpretable machine learning is increas-

ingly becoming a necessity [182] for fields beyond drug discovery. Unlike interpretability in a

generic case [182], what interpretability actually means and how it should be evaluated is much

less ambiguous for compound-protein affinity prediction. So that explanations conform with sci-

entific knowledge, human understanding, and drug-discovery needs, we define interpretability of

affinity prediction as to the ability to explain predicted affinity through underlying atomic inter-

actions (or contacts). Specifically, atomic contacts of various types are known to constitute the

physical basis of intermolecular interactions [183], modeled in force fields to estimate interaction
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energies [120], needed to explain mechanisms of actions for drugs [184, 185], and relied upon

to guide structure-activity research in drug discovery [186, 187]. Therefore we use the ability to

replicate such corresponding contacts while predicting affinities as a vehicle for interpretability.

The current definition of interpretability (residue-atom pairs in contact) is primitive compared to

mechanistic principles in structure-based classical methods. But it is expected to serve as a vehi-

cle to help fill the mechanistic void in structure-free affinity predictors (especially deep-learning

models). We emphasize that simultaneous prediction of affinity and contacts does not necessarily

make the affinity predictors intrinsically interpretable unless predicted contacts form the basis for

predicted affinities.

How to assess interpretability for affinity prediction. Once interpretability of affinity predic-

tors is defined first through atomic contacts, it can be readily assessed against ground truth known

in compound-protein structures, which overcomes the barrier for interpretable machine learning

without ground truth [188]. In our study, we have curated a dataset of compound-protein pairs, all

of which are labeled withKd values and some of which with contact details; and we have split them

into training, test, compound-unique, protein-unique, and both-unique (or double-unique) sets. We

measure the accuracy of contact prediction over various sets using area under the precision-recall

curve (AUPRC) which is suitable for binary classification (contacts/non-contacts) with highly

imbalanced classes (far fewer contacts than non-contacts). We have performed large-scale as-

sessments of attention mechanisms in various molecular data representations (protein amino-acid

sequences and structure-property annotated sequences[19] as well as compound SMILES and

graphs) and corresponding neural network architectures (convolutional and recurrent neural net-

works [CNN and RNN] as well as graph convolutional and isomorphism networks [GCN and

GIN]). And we have found that current attention mechanisms inadequate for interpretable affinity

prediction, as their AUPRCs were merely slightly more than chance (0.004).

How to enhance interpretability for affinity prediction. We have made three main contributions

to enhance interpretability for structure-free deep-learning models.

The first contribution is to incorporate physical constraints into data representations, model
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architectures, and model training. (1) To respect the sequence nature of protein inputs and to over-

come the computational bottlenecks of RNNs, inspired by protein folding principles, we represent

protein sequences as hierarchical k-mers and model them with hierarchical attention networks

(HANs). (2) To respect the structural contexts of proteins, we predict from protein sequences sol-

vent exposure over residues and contact maps over residue pairs; and we introduce novel structure-

aware regularizations for structured sparsity of model attentions.

The second contribution is to supervise attentions with native intermolecular contacts available

to training data and to accordingly teach models how to pay attention to pairs of compound atoms

and protein residues while making affinity predictions. We have formulated a hierarchical multi-

objective optimization problem where contact predictions form the basis for affinity prediction. We

utilize contact data available to training compound-protein pairs and design hierarchical training

strategies accordingly.

The last contribution is to design intrinsic explainability into the architecture of a deep “re-

lational” network. Inspired by physics, we explicitly model and learn various types of atomic

interactions (or “relations”) through deep neural networks with joint attentions embedded. This

was motivated by relational neural networks first introduced to learn to reason in computer vision

[189, 190] and subsequent interaction networks to learn the relations and interactions of complex

objects and their dynamics [191, 192]. Moreover, we combine such deep relational modules in a

hierarchy to progressively focus attention from putative protein surfaces, binding-site k-mers and

residues, to putative residue-atom binding pairs.

The rest of the paper is organized as follows. The aforementioned contributions in defining,

measuring, and enhancing interpretable affinity prediction will be detailed in Methods. In Results,

we first show over established affinity-benchmark datasets that the original DeepAffinity[19] and

its variants (with various molecular representations and neural networks) have comparable or bet-

ter accuracy in affinity prediction, compared to current non-interpretable structure-free methods.

We then describe a dataset newly curated for both affinity and contact prediction. The dataset is

designed to be diverse and challenging with the generalizability test in mind. Using this dataset, we

112



incrementally introduce the three contributions to DeepAffinity and compare the resulting Deep-

Affinity+ (using the first two contributions) and DeepRelations (using all three contributions) to

a competing interpretable method. Both methods produce remarkably improved interpretability

(now defined as accuracy of contacts predicted by joint attentions) while maintaining accurate

and generalizable affinity prediction. Importantly, compared to the competing method and their

reduced version without supervising attentions, they show that sufficiently better interpretability

(much more accurate contact predictions) can help improve accuracy in affinity prediction. Lastly,

we use various focused studies to show the spatial patterns of top-10 predicted contacts, the ben-

efit of these predictions to contact-assisted protein-ligand docking, and the additional utilities of

aggregating attentions and decomposing predicted affinities for binding site prediction and QSAR.

3.3.2 Methods

Toward genome-wide prediction of compound-protein interactions (CPI), we assume that pro-

teins are only available in 1D amino-acid sequences, whereas compounds are available in 1D

SMILES or 2D chemical graphs. We start the subsection with the curation of a dataset of compound-

protein pairs with known pKd/pKi values, which is also of known intermolecular contacts. We will

introduce the state-of-the-art and our newly-adopted neural networks to predict from such molec-

ular data. These neural networks will be first adopted in our previous framework of DeepAffinity

[19] (supervised learning with joint attention) so that the interpretability of attention mechanisms

can be systematically assessed in CPI prediction. We will then describe our physics-inspired, in-

trinsically explainable architecture of deep relational networks where aforementioned neural net-

works are used as basis models. With carefully designed regularization terms, we will explain

multi-stage deep relational networks that increasingly focus attention on putative binding-site k-

mers, binding-site residues, and residue-atom interactions, for the prediction and interpretation of

compound-protein affinity. We will also explain how the resulting model can be trained strategi-

cally.
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3.3.2.1 Benchmark Set with Compound-Protein Affinities and Contacts

We have previously curated affinity-labeled compound-protein pairs [19] based on BindingDB

[144]. In this study, we used those pKi/pKd-labeled data with amino-acid sequence length no more

than 1,000 and curated a subset with known complex-protein co-crystal structures. We further

merge the data with the refined set of PDBbind (v. 2019) [193], leading to 4,446 pairs between

3,672 compounds and 1,287 proteins.

The compound data are in the format of canonical SMILES as provided in PubChem [194] and

the protein data are in the format of FASTA sequences (UniProt canonical). Compound SMILES

were also converted to graphs with RDKit [195]. Ionization states of compounds defined in Pub-

Chem were validated using the software OpenBabel and the compounds were further sanitized

and standardized using “chem.SanitizeMol( )” in the software RDKit. Atomic-level intermolec-

ular contacts (or “relations”) were derived from compound-protein co-crystal structures in PDB

[99], as ground truth for the interpretablity of affinity prediction. Specifically, we cross-referenced

aforementioned compound-protein pairs in PDBsum[196] and used its LigPlot service to collect

high-resolution atomic contacts or relations. These direct, first-shell contacts are given in the form

of contact types (hydrogen bond or hydrophobic contact), atomic pairs, and atomic distances.

The dataset was randomly split into four folds where fold 1 did not overlap with fold 2 in com-

pounds, did not do so with fold 3 in proteins, and did not do so with fold 4 in either compounds

or proteins. Folds 2, 3, and 4 are referred to as new-compound, new-protein, and both-new sets

for generalizability tests; and they contain 521, 795 and 205 pairs, respectively. Fold 1 was ran-

domly split into training (2,334) and test (591) sets. The split of the whole dataset is illustrated in

Figure 3.7 below. And the similarity profiles between training molecules and those in the test and

generalization sets are analyzed in Results later.

Although monomer structures of proteins are often unavailable, their structural features can be

predicted from protein sequences alone with reasonable accuracy. We have predicted the secondary

structure and solvent accessibility of each residue using the latest SCRATCH [149, 150] and con-

tact maps for residue pairs using RaptorX-contact [197]. These data provide additional structural
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Figure 3.7: The complete data set consists of training, test, compound-unique, protein-unique, and
double unique sets with compound-protein counts provided.

information to regularize our machine learning models. If protein structures are available, actual

rather than predicted such data can be used instead.

3.3.2.2 Data Representation and Corresponding Basis Neural Networks

Baseline: CNN and RNN for 1D protein and compound sequences.

When molecular data are given in 1D sequences, these inputs are often processed by convolu-

tional neural networks (CNN) [174, 198] and by recurrent neural networks (RNN) that are more

suitable for sequence data with long-term interactions [19].

Challenges remain in RNN for compound strings or protein sequences. For compounds in

SMILES strings, the descriptive power of such strings can be limited. In this study, we overcome

the challenge by representing compounds in chemical formulae (2D graphs) and using two types

of graph neural networks (GNN). For proteins in amino-acid sequences, the often-large lengths

demand deep RNNs that are hard to be trained effectively (gradient vanishing or exploding and

non-parallel training) [199]. We previously overcame the second challenge by predicting structure

properties from amino-acid sequences and representing proteins as a much shorter structure prop-

erty sequences where each 4-letter tuple corresponds to a secondary structure [19]. This treatment
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however limits the resolution of interpretability to be at the level of protein secondary structures

(multiple neighboring residues) rather than individual residues. In this study, we overcome the

second challenge while achieving residue-level interpretability by using biologically-motivated hi-

erarchical RNN (HRNN).

Notation summary. Scalars, vectors, and matrices are denoted in normal lower-case, bold-faced

lower-case, and upper-case characters, respectively. Subscripts i, t, and j are for the ith protein

residue, tth protein k-mer and j th compound atom, respectively. And subscript it represent the ith

residue in the tth k-mer (where i can be regarded as a global residue index). Therefore, the j th atom

of compound X described in dg features is denoted xj and its learned representation (embedded

through GNN) is denoted zj . The ith residue of protein Y with dp features is denoted by yi and

its learned representation (embedded through HRNN) is denoted hit where t is the index of the

k-mer containing residue i. These residue representations hit within the k-mer are then aggregated

to obtain the k-mer representation ht and all k-mer representations are concatenated to reach the

protein representation. Superscript r, (l), and [s] indicate the rth relation about molecular features,

the lth layer of graph neural networks, and the sth stage of DeepRelations, respectively.

Proposed: GCN and GIN for 2D compound graphs.

Compared to 1D SMILES strings, chemical formulae (2D graphs) of compounds have more

descriptive power and are increasingly used as inputs to predictive models [169, 175, 19, 176, 200].

In this study, compounds are represented as 2D graphs in which vertices are atoms and edges are

covalent bonds between atoms. Suppose that n is the maximum number of atoms in our compound

set (compounds with smaller number of atoms are padded to reach size n). Let’s consider a graph

G = (V ,X , E ,A), where V = {vj}nj=1 is the set of n vertices (each with dg features), X ∈

Rn×dg that of vertex features (X = [x1, · · · ,xj, · · · ,xn]), E that of edges, and A ∈ {0, 1}n×n

is unweighted symmetric adjacency matrix. Let Â = A + I and D̂ be the degree matrix (the

diagonals of Â).

We used Graph Convolutional Network (GCN) [201] and Graph Isomorphism Network (GIN)

[202] which are the state of the art for graph embedding and inference. GCN consists of multiple
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layers and at layer l the model can be written as:

H(l) = ReLU(D̂−
1
2 ÂD̂−

1
2H(l−1)Θ(l)), (3.9)

whereH(l) ∈ Rn×d(l)
g is the output, Θ(l) ∈ Rd

(l−1)
g ×d(l)

g the trainable parameters, and d(l)
g the number

of features, all at layer l. Initial conditions (when l = 0) areH(0) = X and d(0)
g = dg.

GIN is the most powerful graph neural network in theory: its discriminative or representational

power is equal to that of the Weisfeiler-Lehman graph isomorphism test [203]. Similar to GCN,

GIN consists of multiple layers and at layer l the model can be written as a multi-layer perceptron

(MLP):

H(l) = MLP(l)(Ā(l) H(l−1)), (3.10)

where Ā(l) = A + ε(l)I, ε(l) can be either a trainable parameter or a fixed hyper-parameter. Each

GIN layer has several nonlinear layers compared to GCN layer with just a ReLU per layer, which

might improve predictions but suffer in interpretability.

The final representation for a compound is Z = [z1, · · · , zj. · · · , zn] = H(L) if GCN or GIN

has L layers. In this study, vertex features are as in [176], with few additional features detailed

later in physics-inspired relational modules.

Proposed: HRNN for 1D protein sequences.

We aim to keep the use of RNN that respects the sequence nature of protein data and mitigate

the difficulty of training RNN for long sequences. To that end, inspired by the hierarchy of protein

structures, we model protein sequences using hierarchical attention networks (HANs). Specif-

ically, during protein folding, sequence segments may fold separately into secondary structures

and the secondary structures can then collectively pack into a tertiary structure needed for protein

functions. We exploit such hierarchical nature by representing a protein sequence of length easily

in thousands as tens or hundreds of k-mers (consecutive sequence segments) of length k (hyper-

parameter in this study). Accordingly we process the hierarchical data with hierarchical attention

networks (HANs) [204] which have been proposed for natural language processing. We also refer
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to it as hierarchical RNN (HRNN). Although the inter-k-mer attentions might overcome potential

issues brought by k-mer definition as they do in natural language processing [204], it would be

interesting to examine the potential benefit of using other domain-relevant definition of k-mers,

such as (predicted or actual) secondary structure elements.

Given Y = [y1, · · · ,yi, · · · ,ym], a protein sequence described with dp features for each

residue i (Y ∈ Rn×dp), we partition it into T consecutive, non-overlapping k-mers. We use two

types of RNNs in hierarchy for modeling within and across k-mers. We first use an embedding

layer to represent the ith residue in the tth k-mer as a vector eit. And we use a shared RNN for

all k-mers for the latent representation of the residue: hit = RNN(eit) (t = 1, . . . , T ). We then

summarize each k-mer as kt with an intra-k-mer attention mechanism:

uit = v1tanh(Θ1hit + b1) ∀ i, t

u′it =
exp(uit)∑
i′ exp(ui′t)

∀ i, t

kt =
∑
i

u′ithit ∀ t

(3.11)

With another RNN for kt we reach the representation of the tth k-mer: ht = RNN(kt) (t =

1, . . . , T ).

The final representation for a protein sequence is the collection of ht.

Joint attention over protein-compound atomic pairs for interpretability. Once the learned

representation of protein sequences (H = [h1, . . . ,ht, . . . ,hT ] where t is the index of protein k-

mer) and that of compound sequences or graphs (Z = [z1, . . . , zj, . . . , zn] where j is the index of

compound atom) are defined, they are processed with a joint k-mer–atom attention mechanism to

interpret any downstream prediction:

Ntj = tanh(htΘ2zj) ∀ t, j

W ′tj =
exp(Ntj)∑
t′,j′ exp(Nt′j′)

∀ t, j
(3.12)
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With W ′tj , the joint attention between the tth k-mer and the j th atom, we can combine it with the

intra-k-mer attention over each residue i in the tth k-mer and reachWij , the joint attention between

the ith protein residue and the j th compound atom:

Wij = u′itW ′tj ∀ i, j (3.13)

This joint attention mechanism is an extension of our previous work [19] where a protein sequence

was represented as a single, “flat” RNN rather than multiple, hierarchical RNNs.

Given learned representations hi for protein residue i (the k-mer index is ignored for sim-

plicity) and zj for compound atom j as well as the joint attention Wij over the pair, we further

jointly embed the pair and aggregate over all pairs to reach f — the joint embedding of protein Y ,

compound X , and their residue-atom “interactions” captured byW:

fij = tanh(Θ3hi + Θ4zj + b2)

f =
∑
i,j

fijWij

(3.14)

where Θ3, Θ4 and b2 are learnable parameters. The joint embedding f is fed to a CNN and two

multi-layer perceptrons (MLP) to make affinity prediction as before [19]. In other words, W for

contact prediction directly forms the basis of f for affinity prediction.

In comparison, Gao et al.’s method [169] also uses joint attention for contact prediction. But

the joint attention matrix is marginalized for either the compound or the protein; and the separately

processed compound or protein representatons were used for affinity prediction. More specifically,

Wij = tanh(hiΘzj)

ui = max
j
Wij, αi =

exp(ui)∑
i′ exp(ui′)

∀ i

uj = max
i
Wij, αj =

exp(uj)∑
j′ exp(uj′)

∀ i

op =
∑
i

αihi, od =
∑
j

αjzj.

(3.15)
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The separate final representations for the compound (od) and the protein (op) were fed to down-

stream layers for affinity prediction, with much of information lost on the joint attention (the basis

of contact prediction).

3.3.2.3 DeepRelations

Overall architecture. We have developed an end-to-end “by-design” interpretable architecture

named DeepRelations for joint prediction and interpretation of compound-protein affinity. The

overall architecture is shown in Figure 3.8.
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Figure 3.8: Schematic illustration of DeepRelations, an intrinsically explainable neural network
architecture for predicting compound-protein interactions. Three linked relational modules (Rel-
CPI in the small yellow boxes) correspond to three stages of attention focusing. Each module
embeds relational features with joint attentions over pairs of protein residues and compound atoms
(details on the right). In comparison, DeepAffinity+ has a single module with all relational features
lumped together. Both methods are structure-free and protein structures are just for illustration.
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There are three relational modules (Rel-CPI) corresponding to three stages. Their attentions

are trained to progressively focus on putative binding k-mers, residues, and pairs; and earlier-stage

attentions guide those in the next stage through regularization. In each Rel-CPI module, there are

K = 10 types of atomic “relational” features for proteins or compounds (9 relation (sub)types are

described next and the last is the union of all 9 types of features). All types of relational features are

individually fed to aforementioned neural network pairs (for instance, HRNN for protein sequences

and GCN for compound graphs, or HRNN-GCN in short), concatenated, and jointly embedded for

proteins and compounds with attentions over residue-compound pairs. The embedding output

(based on joint attentions for contact prediction) of the last module is fed to CNN and MLP layers

for affinity prediction. All three modules are trained end-to-end as a single model. In contrast,

DeepAffinity+ only has one module without multi-stage focusing; and its module only uses the

last type of relational features (the union of the first 9 types).

Physics-inspired relational modules

The relational modules are inspired by physics. Specifically, atomic “relations” or interactions

constitute the physical bases and explanations of compound-protein interaction affinities and are

often explicitly modelled in force fields. We have considered the following six types of relations

with attentions paid on and additional input data defined for.

• Electrostatic interactions: The ion feature of a protein residue is its net charge as in the force

field CHARMM36 and that of a compound atom is its formal charge. The dipole feature of

a protein residue is 1 for polar residues (S, T, C, Y, N, Q and H [205]) or 0 for others; and

that of a compound atom is its Gasteiger partial charge. The electrostatics thus include all

four combinations (subtypes) of residue-atom relations: ion-ion, ion-dipole, dipole-ion, and

dipole-dipole.

• Hydrogen bond: Non-covalent interaction (A· · ·H–D) between an electronegative atom as a

hydrogen “acceptor” (“A”) and a hydrogen atom that is covalently bonded to an electroneg-

ative atom called a hydrogen “donor” (“D”). Therefore, if a protein residue or compound
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atom could provide a hydrogen acceptor/donor, its hydrogen-bond feature is -1/+1; other-

wise the feature value is 0. A protein residue is allowed to be both hydrogen-bond donor and

acceptor. Specifically, for protein residues, amino acids of hydrogen-bond acceptors are N,

D, Q, E, H, S, T, and Y; and those of hydrogen-bond donors are Y, W, T, S, K, H, Q, N, and

R [206]. For compound atoms, hydrogen-bond acceptor or donor is defined as in the base

features factory file (atom types “SingleAtomAcceptor” and “SingleAtomDonor” in the file

“BaseFeatures.fdef”) of the software RDKit v. 2018.03.4.

• Halogen bond: A halogen bond (A· · ·X–D) is very similar to hydrogen bond except that a

halogen “X” (rather than hydrogen) atom (often found in drug compounds) is involved in

such interactions. As standard amino acids do not contain halogen atoms, a protein residue

can only be a halogen bond acceptor (“A” in A· · ·X–D) and assigned a nonzero halogen-

bond feature of -1, only if it is amino acid S, T, Y, D, E, H, C, M, F, W [207], N or Q. On

the compound side, only a halogen atom is assigned a nonzero feature value. Specifically,

halogen-bond features of iodine, bromine, chlorine and fluorine atoms are assigned at +4,

+3, +2 and +1, respectively, for decreasing halogen-bonding strengths [207].

• Hydrophobic interactions: The interactions between hydrophobic protein residues and com-

pound atoms contribute significantly to the binding energy between them. This feature

is only nonzero and set at 1 for hydrophobic residues of proteins or non-polar atoms of

compounds (atoms whose absolute values of partial atomic charges are less than 0.2 units

[208, 209]).

• Aromatic interactions: Aromatic rings in histidines, tryptophans, phenylalanines, and ty-

rosines participate in “stacking” interactions with aromatic moieties of a compound (π-π

stacking). Therefore, if a protein residue has an aromatic ring, its aromatic feature is set at 1

and otherwise at 0. Similarly, if a compound atom is part of an aromatic ring, the feature is

set at 1 and otherwise at 0.

• VdW interactions: Van der Waals are weaker interactions compared to others. But the large
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amount of these interactions contribute significantly to the overall binding energy between

a protein and a compound. We consider the amino-acid type and the atom element as their

features and use an embedding layer to derive their continuous representations.

For each (sub)type of atomic relations, corresponding protein and compound features are fed

into basis neural network models such as HRNN for protein sequences and GNN for compound

graphs. The embeddings over all types are concatenated for protein residues or compound atoms

and then jointly embedded with joint attentions over residue-atom pairs.

Physical constraints as attention regularization The joint attention matricesW in each Rel-CPI

module, for individual relations or overall, are regularized with the following two types of physical

constraints. We note that, aiming at the general case where protein structures may not be available,

we use sequence-predicted rather than actual structure properties (solvent exposure and residue

contacts) when introducing these physical constraints.

3.3.2.3.1 Focusing regularization In the first regularization, a constraint input is given as a ma-

trix T ∈ [0, 1]m×n to penalize the attention matrix W if it is focused on undesired regions of

proteins. In addition, an L1 sparsity regularization is on the attention matrixW to promote inter-

pretability as a small portion of protein residues interact with compounds. Therefore, this “focus-

ing” penalty can be formalized as:

R1(W) = λrelation||(1− T )�W||2 + λL1||W||1, (3.16)

where the T term, a parameter, can be considered as soft thresholding and the matrix norms

are element-wise. The L1 regularization term in R1(·) is only included in the first module (stage

1) where R1(·) is the only regularization term. It is then moved to another term in the second and

the last modules where multiple regularization terms are used together.

The first regularization is used for all three Rel-CPI modules or stages with increasingly fo-

cusing T . Let T [s] be the constraint matrix andW [s] the learned attention matrix in the sth stage.

In the first stage, T [1]
ij , being binary, is one only for any residue i predicted to be solvent-exposed
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(relative solvent-accessible area predicted above 0.25 by SCRATCH[149, 150]) in order to fo-

cus on potential surfaces. In the second stage, T [2]
ij = maxj′W [1]

ij′ to focus on putative binding

residues hierarchically learned for k-mers and residues at module/stage 1. In the third and last

stage, T [3]
ij = maxj′W [2]

ij′ focuses on putative contacts between protein residues and compound

atoms based on the learned binding residues at module/stage 2.

3.3.2.3.2 Structure-aware sparsity regularization over protein contact maps We further develop

a structure aware sparsity constraints based on known or RaptorX-predicted contact maps of the

unbound protein. As sequentially distant residues might be close in 3D and form binding sites

for compounds, we define overlapping groups of residues where each group consists of a residue

and its spatially close neighboring residues. Just in the second stage, we introduce Group Lasso

for spatial groups and the Fused Sparse Group Lasso (FSGL) for sequential groups on the overall,

joint attention matrixW:

R2(W) = λgroup||W||group + λfused||W||fused + λL1−overall||W||1. (3.17)

The group Lasso penalty will encourage a structured group-level sparsity so that few clusters of

spatially close residues share similar attentions within individual clusters. The fused sparsity will

encourage local smoothness of the attention matrix so that sequentially close residues share similar

attentions with compound atoms. The L1 term again maintains the sparsity of the attention matrix

W . This regularization is only introduced in the second and third stages forW [2] andW [3], after the

first-stage attention matrixW [1] is supposedly focused on protein surfaces. The attention matrix in

the last stage,W [3], is used for predicting residue-atom contacts.

Supervised attentions

It has been shown in visual question answering that attention mechanisms in deep learning

can differ from human attentions[181]. As will be revealed in our results, they do not necessarily

focus on actual atomic contacts (relations) in compound-protein interactions either. We have thus

curated a relational subset of our compound-protein pairs with affinities, for which known ground-
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truth atomic contacts or relations are available. We summarize actual contacts of a pair in a matrix

Wnative of length m × n, which is a binary pairwise interaction matrix padded with 0 to reach

the maximum number of protein residues or compound atoms and then normalized by the total

number of nonzero entries. We have accordingly introduced an additional third regularization term

to supervise attention matrixW in the second and third stages:

R3(W) = λbind||W −Wnative||F . (3.18)

In the case of DeepAffinity+ with a single module, all three regularization terms are included

as in the last module of DeepRelations.

Training strategy for hierarchical multi-objectives Accuracy and interpretability are the two

objectives we pursue at the same time. In our case, the two objectives are hierarchical: compound-

protein affinity originates from atomic-level interactions (or “relations”) and better interpretation

in the latter potentially contributes to better prediction of the former.

Challenges remain in solving the hierarchical multi-objective optimization problem. Optimiz-

ing for both objectives simultaneously (for instance, through weighted sum of them) does not re-

spect that the two objectives do no perfectly align with each other and are of different sensitivities

to model parameters. Therefore, we consider the problem as multi-label machine learning. And

we design hierarchical training strategies to solve the corresponding hierarchical multi-objective

optimization problem, which is detailed next.

Take DeepAffinity+ as an example. We first “pre-trained” it to minimize mean squared error

(MSE) of pKi/pKd regression alone, with physical constraints turned on; in other words, attentions

were regularized (through R1(·) and R2(·)) but not supervised in this stage. We tuned combina-

tions of all hyperparameters except λbind in the discrete set of {10−4, 10−3, 10−2}, with 200 epochs

at the learning rate of 0.001. Over the validation set, we recorded the lowest RMSE for affinity pre-

diction and chose the hyperparameter combination with the highest AUPRC for contact prediction

subjective to that the corresponding affinity RMSE (root mean square error) does not deteriorate

from the lowest by more than 10%.
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With the optimal values of all hyperparameters but λbind fixed, we then loaded the correspond-

ing optimized model in the first stage and “fine-tuned” the model to minimize MSE additionally

regularized by supervised attentions (through R1(·), R2(·), and R3(·)). We used the same learning

rate (0.001) and training epochs (200) in fine-tuning; and we tuned λbind in the set of {100, . . . , 105}

following the same strategy as in pre-training.

The tuned hyperparameters for all DeepAffinity+ variants are summarized as following. For

HRNN-GCN_cstr (modeling protein sequences with HRNN and compound graphs with GCN,

regularized by physical constraints in R2(·)),

we chose λgroup = 10−4, λfused = 10−3, and λL1−overall = 10−2; and for its supervised version

HRNN-GCN_cstr_sup, the additional λbind = 104. For HRNN-GIN_cstr (modeling protein se-

quences with HRNN and compound graph with GIN, regularized by physical constraints in R2(·)),

we chose λgroup = 10−4,λfused = 10−3, and λL1−overall = 10−4; and for its supervised version

HRNN-GIN_cstr_sup, the additional λbind = 103. R1(·) was for attentions on individual rela-

tions in DeepRelations and not applicable for DeepAffinity+ variants, although a surface-focusing

regularization on overall attentions could be introduced.

We did similarly for hyper-parameter tuning for DeepRelations while constraining (and su-

pervising) attentions. The whole DeepRelations model, including the three Rel-CPI modules,

is trained end-to-end [143]. To save computational resources, we used the same hyperparame-

ters in R2(·) ( λL1−overall, λfused, and λgroup) as those optimally tuned in HRNN-GCN_cstr_sup.

We then tuned the rest of the hyper-parameters (λL1, λrelation, andλbind) following the aforemen-

tioned process of pre-training and fine-tuning. In the end, we chose λrelation = 10−4, λL1 = 10−5,

λgroup = 10−4, λfused = 10−3, λL1−overall = 10−2 and λbind = 103 for DeepRelations. λbind is usu-

ally larger because it is multiplied to the attention-supervision term that can be orders of magnitude

smaller than other terms.

3.3.3 Results

We first assess the accuracy of compound-protein affinity predictions made by state-of-the-art

non-interpretable methods and our interpretable DeepAffinity framework [19] (with new variants),
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using three established benchmark sets. After establishing that DeepAffinity achieves the state of

the art in the accuracy of affinity prediction, we then describe a newly-curated dataset with both

affinities and contacts of compound-protein interactions and assess the interpretability of various

DeepAffinity versions and a competing interpretable method adapted to affinity prediction. We

find that current attention-based interpretable models are not adequate for interpreting affinity (i.e.,

predicting contacts). Thus we proceed to regularize and supervise attentions in DeepAffinity to

make DeepAffinity+ models. And we additionally use a novel, physics-inspired and intrinsically-

interpretable deep relational architecture to make DeepRelations models.

Over the curated dataset, we compare our methods with a competing, structure-free inter-

pretable method in accuracy, generalizability, and interpretability. Using a series of case stud-

ies, we also analyze the accuracy levels and spatial patterns of their top-predicted contacts, which

are shown to benefit protein-ligand docking. We end the subsection by introducing analytics to

aggregate joint attentions and decompose predicted affinity; and by demonstrating their potential

utilities toward binding site prediction for proteins and SAR for compounds (scoring and lead

optimization).

3.3.3.1 DeepAffinity with interpretable attentions achieves the state-of-the-art accuracy in compound-

protein affinity prediction.

As the starting point of interpretability assessment and improvement, our previous interpretable

DeepAffinity framework [19] is first compared to current methods based on prediction accuracy

for established benchmark sets.

For affinity benchmark datasets, we adopt three established ones of increasing difficulty, the

Davis[210], the Kinase Inhibitor BioActivity (KIBA)[211] and the refined set of PDBbind (v.

2019) [193]. We filtered and partitioned the first two datasets consistently with earlier studies

[212, 211, 174, 213]. The Davis dataset [212] contains all 30,056 Kd-labeled pairs between 68

kinase inhibitors (including FDA-approved drugs) and 442 kinases, randomly split into 25,046

for training and 5,010 for testing (the widely-used “S1” setting [212]). The filtered KIBA dataset

[211, 212] contains 118,254 pairs between 2,111 kinase inhibitors and 229 kinases, including
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98,545 for training and 19,709 for testing (S1 split again). Other split settings were not pursued

because published performances in such settings are not always available and comparable. The

KIBA scores combine ki, kd, and IC50 sources for consistency and are further processed [212, 174].

As to the refined PDBbind dataset (v. 2019), we filtered and processed it to reach 3,505 pairs with

ki or kd labeled between 1,149 proteins and 2,870 compounds. Compared to Davis and KIBA, the

PDBbind dataset contains more diverse protein classes: 2,157 interactions with enzymes including

72 with kinases, 62 with nuclear receptors, 33 with G protein-coupled receptors (GPCRs), and 106

with ion channels. The portion of labeled compound-protein pairs is much lower than that of Davis

and KIBA. We randomly split the PDBbind dataset into 2,921 pairs for training and 584 for testing.

For our framework of DeepAffinity[19], we adopt various data representations and correspond-

ing state-of-the-art neural network architectures as detailed in Methods. To model proteins, we

have adopted RNN using protein SPS [19] as input data as well as CNN and newly developed

HRNN using protein amino-acid sequences. To model compounds, we have adopted RNN using

SMILES as input data as well as GCN and GIN using compound graphs with node features and

edge adjacency [176]. In the end, we have tested five DeepAffinity variants (including four new)

for protein-compound pairs, including RNN-RNN[19], RNN-GCN, CNN-GCN, HRNN-GCN, and

HRNN-GIN. Names before and after hyphens indicate models to embed proteins and compounds,

respectively; and embeddings of a pair of protein and compound are passed through joint attentions

in Eq 3.14 before being fed to a convolutional neural network (CNN) and multi-layer perceptrons

(MLP)[19]. For instance, the first one, RNN-RNN indicates that protein SPS sequences are mod-

eled by RNN and compound SMILES or graphs are modeled by RNN. This is essentially our

previous method [19] except that no unsupervised pretraining or ensemble averaging is used here.

We have tuned hyper-parameters for DeepAffinity variants including learning rate ({10−3,10−4}),

batch size ({64, 128} (16 for CNN-GCN due to the limit of GPU memory) and dropout rate ({0.1,

0.2}) using random 10% of training data as validation sets. When HRNN was used to model

protein sequences, we have also tuned k-mer lengths and group sizes in pairs ({(40,30), (48,25),

(30,40), (25,48), (15,80), (80,15)} for Davis and {(40,25), (50,20), (25,40), (20,50)} for KIBA and
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PDBbind) using the validation sets.

For comparison, we use published current methods that are not structure-based, including

DeepDTA[174], KronRLS[214], and WideDTA[215], all of which are non-interpretable. Their

results for the Davis and KIBA sets were self reported in individual studies and summarized in a

comparison study[213]. And their results for the PDBbind set are derived by re-training released

source codes with published hyper-parameter grids and individual training sets (except wideDTA

whose codes are not available). In addition, we compare to structure-free methods that are inter-

pretable. Except DeepAffinity, the only other interpretable method published so far (Gao et al.)

was for predicting binary compound-protein interaction [169]. As its codes are not publicly avail-

able, we have implemented the method, revised its model’s last layer (sigmoid) and retrained the

model for affinity prediction using each training set. To ensure fair comparison, all deep-learning

models including our DeepAffinity variants here are trained for 100 epochs or until convergence

(the validation loss does not improve within 15 epochs), as competing methods previously did

[213].

We compare aforementioned competing methods and DeepAffinity variants in accuracy using

two assessment metrics: RMSE (root mean squared error; see Table 3.18) and CI (concordance

index; see Table 3.19). Whereas RMSE evaluates the proximity between predictions are to cor-

responding native values, CI [216], often used for virtual screening, measures the probability of

correctly ordering non-equal pairs. We summarize the results in Tables 3.18 and 3.19.

RMSE DeepDTA KronRLS WideDTA
Gao DeepAffinity

et al.b RNN-RNN[19] RNN-GCN CNN-GCN HRNN-GCN HRNN-GIN
Davis 0.5109a 0.6080a 0.5119a 0.7864 0.5032 0.5095 0.8106 0.5019 0.6604
KIBA 0.4405a 0.6200a 0.4230a 0.7368 0.4335 0.5367 0.8244 0.4480 0.6669

PDBbind 2.0631 1.8005 - 1.8071 1.4524 1.4277 1.5580 1.4743 1.4858

a Self-reported and published results as summarized in Thafar et al. [213].
b Originally a binary classifier, it was implemented and revised by us for affinity prediction.

Table 3.18: Comparing current methods (non-interpretable except Gao et al.) and interpretable
DeepAffinity variants in prediction accuracy (measured by RMSE, the lower the better) for the
Davis, KIBA and PDBbind benchmark sets. The best performance in each dataset is bold-faced.
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CI DeepDTA KronRLS WideDTA
Gao DeepAffinity

et al.b RNN-RNN[19] RNN-GCN CNN-GCN HRNN-GCN HRNN-GIN
Davis 0.8780a 0.8830a 0.8860a 0.7824 0.9000 0.8808 0.7373 0.8814 0.8224
KIBA 0.8630a 0.7820a 0.8750a 0.7335 0.8423 0.7968 0.5761 0.8420 0.6893

PDBbind 0.7125 0.7197 - 0.7610 0.8042 0.7543 0.7119 0.7544 0.7398

a Self-reported and published results as summarized in Thafar et al. [213].
b Originally a binary classifier, it was implemented and revised by us for affinity prediction.

Table 3.19: Comparing current methods (non-interpretable except Gao et al.) and interpretable
DeepAffinity variants in prediction accuracy (measured by concordance index or CI, the larger the
better) for the Davis, KIBA and PDBbind benchmark sets. The best performance in each dataset
is bold-faced.

From both tables we conclude that the original DeepAffinity method [19] (RNN-RNN; RNN

for protein SPS and RNN for compound SMILES) and its variants compared favorably to the state

of the art. Specifically, the DeepAffinity variants achieved the best performances in RMSE and

CI for both the Davis dataset and the most diverse and sparse dataset of PDBbind. And it closely

followed the best performances (WideDTA) for the KIBA dataset.

In particular, the newly introduced HRNN models for protein sequences (higher-resolution than

SPS) and graph models GCN & GIN for compound graphs achieved the best or close-to-the-best

performances, which enables interpreting affinity prediction at the level of protein residues and

compound atoms without sacrificing the accuracy. Considering that other methods are not inter-

pretable and the only exception Gao et al. did not perform as well, the performancs of interpretable

DeepAffinity variants are particularly impressive.

3.3.3.2 Our new dataset for both affinity and contact prediction is diverse and challenging.

To support systematic assessment and development of explainable affinity prediction, we have

constructed a dataset of 4,446 compound-protein pairs (between 1,287 proteins and 3,672 com-

pounds) with both affinity values (pKi or pKd) and atomic contacts (available in co-crystal struc-

tures).

The dataset contains diverse proteins and compounds. Among the 4,446 pairs, there are 2,913

interactions with enzymes including 114 with kinases, 105 with nuclear receptors, 89 with GPCRs,

and 111 with ion channels. The enzymes are across all seven enzyme commission classes. The
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3,672 compounds cover wide ranges of physicochemical properties (logP, molecular weight, and

affinity values) as seen in Figure 3.9.

The dataset is split into training including validation (2,334), test (591), new-protein (795),

new-compound (521), and both-new sets (205), as illustrated in Figure 3.7. Compared to the test

set, the three generalization sets not only contain new proteins or/and compounds but also mainly

consist of very dissimilar proteins or/and compounds compared to the training set, which suggest

their challenges for machine learning. For instance, the new-protein set only contains proteins not

present in the training set; and 454 (57.1%) pairs in the set involve new proteins whose sequence

identities to the closest training proteins are below 30%. Similarly, 414 (79.5%) new-compound

pairs involve new compounds whose Tanimoto scores to the closest training compounds are below

0.5. The both-new set only contains pairs of new proteins and new compounds with similarly low

resemblance to the training set. 98 (47.8%) pairs involve new proteins with sequence identity below

30% and new compounds with Tanimoto scores below 0.5. So the both-new set is expected to be

the most challenging set among the four for the generalizability of machine learning models. Pair

breakdowns are visualized in part of Figure 3.13 (counts). In addition, Jensen-Shannon distances

between compound properties of training and those of the other sets are given in the Table 3.20,

similarly revealing the most challenging both-new set.

Training set compare to Test New Protein New Compound Both New
LogP 0.1707 0.1781 0.2350 0.3077

Exact_MW 0.1350 0.2304 0.2146 0.2906
Label (Affinity) 0.1721 0.2118 0.1581 0.3065

Table 3.20: Jensen-Shannon distances between the training and the other sets in various property
distributions.

3.3.3.3 Attentions alone are inadequate for interpreting compound-protein affinity prediction.

Now that we have established the accuracy of attention-embedded DeepAffinity and con-

structed a suitable dataset, our first task for interpretability is to systematically assess the adequacy
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A B C

Figure 3.9: The distributions of compound properties across various subsets: A. logP; B. exact
molecule weight; and C. pKi/pKd labels.

of attention mechanisms for interpreting model-predicted compound-protein affinities. To that end,

using our newly curated benchmark set for both affinity and contact prediction, we have tested six

DeepAffinity variants for protein-compound pairs (including RNN-RNN, RNN-GCN, CNN-GCN,

HRNN-RNN, HRNN-GCN, and HRNN-GIN) as well as the only other interpretable method (Gao

et al.) that is also attention-based and adapted by us from a classifier to a regressor. All models are

re-trained using the new training set with details in Methods.

The first two DeepAffinity (RNN-RNN and RNN-GCN) models’ attentions on proteins are at

the secondary structure levels. Their joint attentions were thus converted to residue-atom matrices,

using equal weights across all residues within a secondary structure, in the post-analysis of inter-

pretability. The rest have joint attentions at the level of pairs of protein residues and compound

atoms.

The accuracy of affinity prediction, measured by RMSE in pKi/pKd, is summarized for the

DeepAffinity variants in the top panel of Figure 3.10. Overall, all variants have shown affinity

error around 1.5, 1.6, 1.4, and 1.7 for the default test, new-protein, new-compound, and both-

new sets, respectively. In particular, the HRNN-GCN version achieved an RMSE of 1.47, 1.46,

1.34, and 1.49 for the four sets, respectively, showing a robust accuracy profile. In contrast, the

competing method (Gao et al.) has worse RMSE values between 1.72 and 1.87.

The interpretability of affinity prediction is assessed against ground truth of contacts, as in

the bottom panel of Figure 3.10. Specifically, we use joint attention scores to classify all pos-
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Figure 3.10: Comparing accuracy and interpretability among various versions of DeepAffinity
with unsupervised joint attention mechanisms as well as another interpretable method (Gao et
al.). Separated by hyphens in legends are neural network models for proteins and compounds
respectively. A horizontal dashed line indicates the performances of a random predictor

.

sible residue-atom pairs into contacts or non-contacts. As contacts only represent a tiny portion

0.0040±0.0029 in our dataset) of all possible pairs, we use the the area under the precision-recall

curve (AUPRC) as the major metric and the area under the receiver operating characteristic curve

(AUROC) as a reference, to assess such binary classification. Here AUPRC/AUROC is averaged

over all pairs involved in the corresponding set. Interestingly, compared to chance (AUPRC=0.004

and AUROC=0.5), all attention-based models including DeepAffinity variants and Gao et al. only

had slightly better AUPRC (around 0.006 albeit a 50% improvement) except CNN-GCN for the

new-protein set. The best DeepAffinity variant, HRNN-GCN, did improve against Gao et al..

From the results above, we conclude that attention mechanisms alone are inadequate for the in-

terpretability of compound-protein affinity predictors, regardless of the choice of commonly used,

generic neural network architectures.
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3.3.3.4 Regularizing attentions with physical constraints modestly improves interpretability.

Our next task is to enhance the interpretability of compound-protein affinity prediction beyond

the level achieved by attention mechanisms alone. The first idea is to incorporate domain-specific

physical constraints into model training. The rationale is that, by bringing in the (predicted) struc-

tural contexts of proteins and protein-compound interactions, attentions can be guided in their

sparsity patterns accordingly for better interpretability.

We start with the two best-performing DeepAffinity variants so far (HRNN-GCN and HRNN-

GIN) where protein amino-acid sequences are modeled by hierarchical RNN and compound graphs

by various GNNs (including GCN and GIN). And we introduce structure-aware sparsity regular-

izationR2(·) to the two models to make “DeepAffinity+” variants. The resulting HRNN-GCN_cstr

and HRNN-GIN_cstr models with physical constraints are assessed in Figure 3.11. Compared to

the the non-regularized counterparts in Figure 3.10, both models achieved similar accuracy levels

across various test sets for affinity prediction. As to their interpretability, HRNN-GCN_cstr had

similar AUPRC as before regularization (0.006) and HRNN-GIN_cstr slightly improved AUPRC

to around 0.008, although both were still close to the baseline (0.004).

These results suggest that incorporating physical constraints to structurally regularize the spar-

sity of attentions is useful for improving interpretability but may not be enough.

3.3.3.5 Supervising attentions significantly improves interpretability.

As regularizing attentions with physical constraints was not enough to enhance interpretability,

our next idea is to additionally supervise attentions with ground-truth contact data available to

some but not all training examples. Again we introduce “DeepAffinity+” models starting with

HRNN-GCN and HRNN-GIN, by both regularizing and supervising attentions (using R2(·) and

R3(·)).

The performances of resulting HRNN-GCN_cstr_sup and HRNN-GIN_cstr_sup models are

shown in Figure 3.11. Importantly, HRNN-GCN_cstr_sup (light blue) significantly improved in-

terpretability of affinity prediction without the sacrifice of accuracy. The average AUPRC im-
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Figure 3.11: Comparing accuracy and interpretability among various versions of DeepAffinity+
(DeepAffinity with regularized and supervised attentions) and DeepRelations. “cstr” in legends
indicates physical constraints imposed on attentions through regularization term R2(·), whereas
“sup” indicates supervised attentions through regularization term R3(·). Horizontal dashed lines
suggest the performances of a random contact predictor.

proved to 0.197, 0.048, 0.200, and 0.041 for the default test, new-protein, new-compound, and

both-new sets, representing a 30.4, 9.2, 31.2, and 6.3-fold increase, respectively, compared to the

version with just regularization but not supervision of attentions (HRNN-GCN_cstr). The perfor-

mances also represented a 32.9, 9.9, 35.1, and 8.6-fold increase, respectively, compared to Gao et

al.. Interestingly, supervising attentions in HRNN-GIN did not see as significant improvement in

interpretability.

3.3.3.6 Building explainability into DeepRelations architecture further improves interpretability.

Toward better interpretability, besides regularizing and supervising attentions, we have further

developed an explainable, deep relational neural network named DeepRelations. Here atomic “re-

lations” constituting physical bases and explanations of compound-protein affinities are explicitly

modeled in the architecture with multi-stage gradual “zoom-in” to focus attentions. In other words,

the model architecture itself is intrinsically explainable by design.

The performances of the resulting DeepRelations (with both regularized and supervised atten-
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tions) are shown in Figure 3.11 (yellow-green “DeepRelations_cstr_sup”). With equally compet-

itive accuracy in affinity prediction as all previous models, DeepRelations achieved further im-

provements in interpretability. The AUPRC values were similar to the best DeepAffinity+ model

(HRNN-GCN_cstr_sup): 0.187, 0.052, 0.191, and 0.047 for the default test, new-protein, new-

compound, and both-new sets, respectively. The AUROC values improved to 0.76, 0.67, 0.76, and

0.66 for the four sets, representing an increase of 0.03, 0.07, 0.03, and 0.07 compared to those of

the best DeepAffinity+, respectively.

To disentangle various components of DeepRelations and understand their relative contribu-

tions to DeepRelations’ improved interpretability, we removed components from DeepRelations

for ablation study. Besides regularized and supervised attentions, we believe that the main contri-

butions in the architecture itself are (1) the multi-stage “zoom-in” mechanisms that progressively

focus attentions from surface, binding k-mers, binding residues to binding residue-atom pairs; and

(2) the explicit modeling of atomic relations that can explain the structure feature-affinity mappings

consistently with physics principles.

We thus made three DeepRelations- variants: DeepRelations without multi-stage focusing,

without explicit atomic relations, or without both. And we compare them with DeepRelations in

the Figure 3.12. Consistent with our conjecture, we found that, the explicit modeling of atomic

relations was the main contributor as its removal led to worse affinity and contact predictions in

new-protein and both-new sets. The multi-stage focusing also contributes as its removal led to

worse affinity prediction for both new-compound and both-new sets.

3.3.3.7 Better interpretability helps better accuracy and generalizability of affinity prediction

To examine whether the more interpretable affinity predictors are also more accurate in affinity

prediction, we compare our two final models HRNN-GCN_cstr_sup (DeepAffinity+ hereinafter)

and DeepRelations_cstr_sup (DeepRelations hereinafter) to the competing interpretable affinity

predictor Gao et al. Re-examining earlier results (Figure 3.11) shows that DeepAffinity+ and

DeepRelations with much better interpretability (AUPRC increase between 8.6 and 59-fold) than

Gao et al. are also more accurate in affinity prediction (RMSE drop between 0.15 and 0.42) over
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Figure 3.12: Comparing interpretability between DeepRelations and DeepRelations- (DeepRela-
tions without multi-stage focusing, explicitly-modeled relations, or both).

all sets considered. Even when we compare DeepAffiity+ and DeepRelations to their attention-

unsupervised counterparts (HRNN-GCN_cstr and DeepRelations_cstr), we find that better inter-

pretability (contact prediction) leading to better accuracy (affinity prediction) in 6 of 8 cases where

the only exceptions occurred when AUPRC values were low.

Here we further compare DeepAffinity+ and DeepRelations to Gao et al. in affinity and con-

tact prediction over multiple difficulty ranges (measured by protein sequence identity or compound

Tanimoto scores) of the new-compound, new-protein, and both-new sets. The results are reported

in Figure 3.13. We find that the same conclusion (better interpretability leads to better accuracy)

also applies where model generalizability is needed the most: pairs involving very dissimilar pro-

teins (sequence identity below 30%) or/and compounds (Tanimoto scores below 0.5) compared to

training molecules. Importantly, in those cases demanding generalizability the most, DeepAffin-

ity+ and DeepRelations have much better accuracy (affinity-prediction RMSE decrease between

0.14 and 0.40) as well as significantly improved interpretability (contact-prediction AUPRC in-

crease between 5.9 and 33.3-fold) compared to Gao et al..

DeepAffinity+ and DeepRelations also showed competitive generalizability in both affinity and
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contact prediction. From the most similar proteins (sequence identity above 60%) to the least (se-

quence identity below 30%), affinity-prediction RMSE values of DeepAffinity+ (DeepRelations)

only increased 0.13 (0.08) for the new-compound set and increased 0.00 (0.16) for the most chal-

lenging both-new set. From the most similar compounds (Tanimoto scores above 0.8) to the least

(Tanimoto scores below 0.5), affinity-prediction RMSE values of DeepAffinity+ (DeepRelations)

only increased 0.14 (0.08) for the new-compound set and increased 0.43 (0.48) for the most chal-

lenging both-new set. Similar conclusions can be made about their generalizability in contact

prediction.
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Figure 3.13: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the generalizability
of affinity prediction (RMSE) and contact prediction (AUPRC and AUROC) to molecules unlike
training data.
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3.3.3.8 Case studies

Now that we have established and explained how DeepAffinity+ and DeepRelations signifi-

cantly improve the interpretability of compound-protein affinity prediction, we went on to delve

into their affinity and contact predictions in comparison to Gao et al. using a series of cases studies

of increasing difficulty. Summary performances of the five cases are reported in Table 3.21. Deep-

Affinity+ and DeepRelations had better affinity and contact prediction in all cases compared to the

competing method whose top-10 predicted contacts failed to produce any native contacts. In order

to understand model behaviors, our analysis next would focus on the patterns of top-10 contacts

predicted by DeepAffinity+ and DeepRelations compared to Gao et al..

DeepAffinity+ DeepRelations Gao et al.

Protein Ligand
Affinity Contact Contact Top-10 Contact Affinity Contact Contact Top-10 Contact Affinity Contact Contact Top-10 Contact

Error AUROC AUPRC Precision Error AUROC AUPRC Precision Error AUROC AUPRC Precision
Two compounds bind to the same pocket of a new, non-homologous protein (different affinity-prediction quality)

CA2
AL1 1.89 0.658 0.284 0.5 2.70 0.828 0.075 0.6 3.28 0.500 0.006 0.0
IT2 2.92 0.601 0.034 0.3 3.03 0.780 0.309 0.5 3.09 0.630 0.009 0.0

Two new compounds bind to distinct pockets of a protein

PYGM
CPB 0.10 0.552 0.006 0.1 0.39 0.513 0.005 0.0 0.61 0.522 0.001 0.0
T68 0.68 0.944 0.675 1.0 0.66 0.908 0.610 1.0 1.80 0.635 0.006 0.0

A new compound very dissimilar to training compounds binds to a new protein non-homologous to training proteins
LCK LHL 2.12 0.500 0.053 0.4 1.30 0.702 0.053 0.4 2.89 0.540 0.005 0.0

Table 3.21: Performance summary of three interpretable methods for five case studies.

Two compounds bind to the same pocket of a new protein non-homologous to training exam-

ples

Our first case study involves a protein from the new-protein set, human carbonic anhydrase

II (CA2, UniProt ID: P00918), that has no close homolog in the training set. Specifically, the

closest training protein would be human carbonic anhydrase IV (CA4, UniProt ID: P22748) with

a sequence identity below the 30% threshold (29%). We choose two compounds (HET IDs: AL1

and IT2) that bind to the same pocket of CA2 with distinct sizes (AL1 is larger by 14 heavy atoms)

and affinity-prediction quality (see Table 3.21).

We compare in Figure 3.14 the top-10 contacts between protein residues and compound atoms

that are predicted by three methods. Top-predicted contacts by Gao et al. were scattered across
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protein residues that are far from the binding site, failing to match any native contact. In contrast,

those top-10 contacts predicted by DeepAffinity+ and DeepRelations were more focused in or near

the binding site, containing 3 to 6 native contacts that are direct, first-shell contacts. Between our

two models, DeepRelations showed better contact prediction in these two cases: its top-10 pre-

dictions were more focused in the binding site and contained 60% and 50% native contacts for

compounds AL1 and IT2, respectively. The more focused contact prediction of our methods could

be attributed to structure-aware regularization using protein residue-residue contact maps. Deep-

Relations had better focus than DeepAffinity+, possibly due to the multi-stage focusing strategy.

Even the incorrect predictions of DeepRelations can correspond to residue-atom pairs that are

close (but above the 4 Å-cutoff used in the first-shell contact definition). For instance, in the case

of compound AL1, the 4 incorrect predictions all corresponded to correct binding-residues that

were paired to wrong compound atoms. In the case of compound IT2, the 5 incorrect predictions

included 2 that paired correct binding-site residues to wrong atoms and 3 that included (the very

next) sequence neighbors of correct binding-site residues.

These two cases also provided examples to interpret the values of AURPC and top-10 contact

precision. A seemingly “low” AUPRC value of 0.075 can lead to 5 of 10 top predictions being

correct. The reason is that native contacts represent a rare minority (0.004) among all possible

residue-atom pairs and an AUPRC value of 0.075 actually represents over 18-fold increase com-

pared to the baseline AUPRC by chance. Meanwhile, a top-10 contact precision of 0.4 predicted by

our structure-free methods is close to the average level (0.44) achieved by a popular structure-based

protein-ligand docking program, AutoDock Vina [217], under default settings. [218]

Two new compounds bind to distinct pockets of a protein

Our next case study involves two compound-protein pairs from the new-compound set, where

two compounds (HET ID: CPB and T68) not present in the training set bind to two distinct pockets

of the rabbit glycogen phosphorylase (PYGM, UniProt ID: P00489). The protein is present in the

training set with 38 ligands (all but one are occupying the same pocket as T68). In addition, the

compound CPB does not resemble its closest training example interacting with the same protein
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DeepAffinity+ DeepRelations Gao et al.

AL1

IT2

Figure 3.14: Structural visualization of top-10 intermolecular contacts predicted by DeepAffinity+
(left), DeepRelations (middle) and Gao et al. (right) for two test cases. Here two compounds (AL1:
top panels and IT2: bottom panels; stick representations) bind to the same pocket of the human
carbonic anhydrase II that is new and non-homologous to training data (wheat cartoons where
binding residues are highlighted in red). Shown in dashed lines are top-10 predicted contacts
(interactions between protein residues and compound atoms). The dashed lines in red and pale
cyan highlight correct and incorrect predictions, respectively, according to native, direct contacts
retrieved by LigPlot.

(HET ID: 62N) when 62N rather occupies the same pocket as T68. Therefore, contact prediction

for the CPB case would be much more challenging. Indeed, our results supported the conjecture

(Tabe 3.21). In their top-10 contact predictions our both models achieved 100% native contacts for

T68 but just 10% (DeepAffinity+) or even 0% (DeepRelations) for CPB. They had good estimation

of binding affinity for both cases.

A closer look into their contact predictions reveal more insights. As seen in Figure 3.15, con-

sistent with our earlier observations, Gao et al.’s contact predictions are dispersed across the whole

protein whereas ours are focused. In the case of T68, our predictions are focused in the correct

binding site (and even the correct binding residues). However, in the case of CPB, our predictions

are actually still focused in the same site as they did for T68, only being wrong this time. Inter-
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estingly many falsely-predicted contacts for CPB were not only in the other binding site (circled

area) but also with the T68 binding residues. This model behavior is understandable when almost

all training examples, including a very similar compound, are indicating a different site. It also re-

veals a situation that would challenge more generalizability and demand more explainability from

machine learning methods. Intriguingly, DeepAffinity+ still managed to make one correct contact

prediction (pointed at by a red arrow).

DeepAffinity+ DeepRelations Gao et al.B C

E

A

CPB

D

T68

F

Figure 3.15: Structural visualization of top-10 intermolecular contacts predicted by DeepAffin-
ity+ (left), DeepRelations (middle) and Gao et al. (right) for another two test cases. Here two
compounds that are new to training data (CPB: top panels and T68: bottom panels; stick repre-
sentations) bind to distinct pockets of the human glycogen phosphorylase(wheat cartoons where
binding residues are highlighted in red). Shown in dashed lines are top-10 predicted contacts (in-
teractions between protein residues and compound atoms), including correct (red) and incorrect
(pale cyan) ones according to LigPlot’s definition of native, direct contacts. The red arrow in the
top-left CPB panel points the only correct prediction by DeepAffinity+ and the black circle there
indicates the binding site for T68. Interestingly, many incorrect predictions by DeepAffinity+ and
DeepRelations for CPB were with binding residues to T68.

A pair of new protein and new compound very dissimilar to training examples
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Our last case study is even more challenging in that both the protein (the human tyrosine-

protein kinase Lck, LCK in short, UniProt ID: P06239) and the compound (HET ID: LHL) are

new and they don’t even resemble training examples. Specifically, the most similar training pro-

tein would be the human tyrosine-protein kinase BTK, BTK in short, UniProt ID: Q06239) with

sequence identity at 28%. And the most similar training compound would be K60 (HET ID)

with Tanimoto score at 0.12. Indeed our results (Table 3.21) showed that contact AUPRC is just

around 0.053. Given the explanation to interpret AUPRC and top-10 contact precision in the first

case study, one would notice that the AUPRC value is 14-fold of the baseline (0.004) and 40% of

our top-10 contact predictions were true positives (a level close to average protein-ligand docking

performances).

As seen in Figure 3.16, again, our contact predictions are more focused in or near the binding

site compared to the competing methods, which can be attributed to our structure-aware attention

regularization (and supervision). A closer look into the false positives reveal more into our meth-

ods. Take DeepAffinity+ as an example. Among the 6 false-positive contact predictions, 4 were

pairing correct binding residues with wrong compound atoms, 1 was paired to a protein residue

that is a close sequence neighbor (2 residues away) of a correct binding residue, and 1 was paired to

a protein residue that is not present in the co-crystal structure but predicted to be spatially close to a

correct binding residue. In other words, the origins of false positives in contact prediction include

(but are not limited to) pairing with other (nearby) compound atoms and pairing with sequential

or predicted spatial neighbors of protein binding-residues. When the criterion of native contacts is

relaxed from direct, first-shell contacts within 4Å to more contacts within longer distance cutoffs,

the precision level would further increase, which is detailed next.

Global patterns of top-10 predicted contacts

We extended the analysis of the patterns of predicted contacts to all test cases. Considering that

the native contacts are defined strictly as direct, first-shell contacts within 4Å, we assess 4∼10-Å

distance-distributions of residue-atom pairs predicted by DeepAffinity+ (HRNN-GCN_cstr_sup)

and DeepRelations in comparison with Gao et al.. As seen in the global analysis in Figure 3.17,
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DeepAffinity+ DeepRelations Gao et al.BA C

LHL

Figure 3.16: Structural visualization of top-10 intermolecular contacts predicted by DeepAffin-
ity+ (left), DeepRelations (middle) and Gao et al. (right) for a difficult test case. Here both the
compound (LHL, in sticks) and the protein (tyrosine-protein kinase Lck, in wheat cartoons with
binding residues highlighted in red) are new and very dissimilar to training data. The red and pale
cyan dashed lines represent correct and incorrect top-10 predicted contacts. DeepAffinity+ and
DeepRelations still managed to achieve the precision of 40% in their top-10 contact predictions.

DeepAffinity+ and DeepRelations significantly outperform the competing method in all distance

ranges over all test sets. Specifically, among their top-10 contact predictions, around 40% for the

default test and new-compound sets were first-shell contacts within 4Å and the ratios increased to

about 70% when considering contacts within 10Å. For the more challenging cases of new-protein

and both-new sets, the ratios were around 20% and 50%, respectively. These results significantly

outperformed the competing method whose such ratios were merely 4∼6% over all sets. Between

our two models, DeepRelations behaved similarly as DeepAffinity+ and had more top-10 predic-

tions falling in the long range of 8∼10Å.

Predicted contacts assist and improve protein-ligand docking

From the case studies and the global analysis above, we have concluded that top-10 contact

predictions by our methods are enriched with native contacts within 4 Å (20∼40%) as well as

dominated by longer-range “contacts” within 10 Å (50∼70%). We therefore test how much the

top-10 contact predictions, including false positives, could make a positive impact in the drug

discovery process. Picking a typical task – protein-ligand docking and a popular tool – AutoDock

Vina [219], we assess how our contact predictions could assist the task by reducing the search

space.
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Figure 3.17: Distributions of top-10 contacts, predicted by DeepAffinity+, DeepRelations, and
Gao’s method, in various distance ranges.

Specifically, we chose the five case studies (except the case where DeepRelations made no

correct contact prediction) and performed unbound protein-ligand docking (all protein structures

are unbound except PYGM whose structure is co-crystalized with its cognate phosphate AMP).

Each pair (rigid protein and flexible ligand) is docked twice: one with the default procedure to

define a search “box” covering the entire protein, and the other using a restricted box that barely

covers all residues in the top-10 DeepRelations contact predictions (including false positives) and

then has 20 Å-padding. All the other docking parameters in AutoDock Vina are default, including

a total of 9 protein-ligand complex models ordered and reported at the end. Docking performances

were evaluated by ligand RMSD of the top few models using the software DOCKRMSD [220].

Protein
Ligand

Complex Top-10 Contact RMSD (Å) – Vina RMSD (Å) – Contact-Assisted Vina
(UniProt, PDB) PDB Precision Top 1 Top 3 Top 5 Best Top 1 Top 3 Top 5 Best

LCK (P06239, 3LCK) LHL 3KMM 40% 3.02 3.02 2.77 2.77 4.65 2.98 2.45 2.45
CA2 (P00918, 2CBA) AL1 1BNN 50% 18.55 16.62 16.62 16.62 4.78 4.78 4.73 4.73
CA2 (P00918, 2CBA) IT2 3P5A 50% 15.98 15.98 4.01 4.01 3.65 3.65 3.65 1.59

PYGM (P00489, 8GPB) T68 3ZCU 100% 36.40 18.75 18.75 18.75 9.08 2.23 2.23 1.88

Table 3.22: Ligand docking performances for case studies. The default Autodock Vina is compared
with that assisted by DeepRelations top-10 contact predictions.
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Results in Table 3.22 show that AutoDock Vina assisted by DeepRelations top-10 contact pre-

dictions had much improved docking performance compared to otherwise. When the top-10 con-

tact precision was 40%, 50%, 50%, and 100%, respectively, the best ligand RMSD (among all 9

complex models) reduced from 2.77 Å, 4.01 Å, 16.62 Å, and 18.75 Ådown to 2.45 Å, 1.59 Å, 4.73

Å, and 1.88 Å, respectively. The quality of the top-1 models also drastically improved in 3 of 4

cases. Although the way to incorporate predicted contacts into protein-ligand docking remains to

be optimized, these results have proved that the precision and spatial pattern of our structure-free

contact prediction is at a level useful to assist and improve structure-based protein-ligand docking

for pose prediction.

3.3.3.9 More utilities from explainable affinity prediction

In the last part of the results, we explore additional utilities of our methods toward facilitating

drug discovery: binding-site prediction for proteins and structure-activity relationship (SAR) for

compounds. Our methods do not demand protein structures or protein-ligand docking to make

these predictions. Rather, they simply aggregate predicted attentions (or predicted weights of

residue-atom contacts) or/and decompose predicted affinities. Although not directly designed or

optimized for these tasks, our explainable models have shown promising potentials in the tasks

toward rational drug discovery.

Binding site prediction The first extended utility we aim at is structure-free and ligand-specific

binding-site prediction for proteins. To this end, we feed an arbitrary pair of protein and compound

to the trained DeepAffinity+ and DeepRelations models and predict the weights of residue-atom

pairs (Wij where i and j are the indices of a protein residue and a compound atom, respectively).

We then calculate the max-marginal attention (maxjWij) for each residue i as a weight for rank-

ing. The performances of the residue weights toward ligand-specific binding site prediction are

summarized in Figure 3.18. Here binding-site residues of a protein are strictly defined as those

making direct, first-shell contacts with a paired compound. Without the help of protein struc-

tures, predicted residue-contact maps, or protein-ligand docking, our methods on average achieved

AUPRC (AUROC) of around 0.43 (0.77) for the default test and new-compound sets as well as
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AUPRC (AUROC) of around 0.18 (0.69) for the more challenging new-protein and both-new sets.

In contrast, the competing method had AUPRC and AUROC close to the random performances of

0.004 and 0.50, respectively.

Between DeepAfinity+ and DeepRelations, we noticed that the latter had better performance

in predicting binding sites for new proteins. Specifically, the AUPRC (AUROC) increased from

0.17 (0.65) to 0.21 (0.73) for the new-protein set and did from 0.16 (0.65) to 0.20 (0.72) for the

both-new set.
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Figure 3.18: Comparing three interpretable methods (DeepAffinity+, DeepRelations, and Gao et
al.) in binding-site prediction.

Structure activity relationship (SAR)

The second extended utility we aim at is SAR for compounds. To test the utility we choose two

subchallenges (SC3 and SC4) from Grand Challenge 3 of D3R [221], Janus kinase 2 (JAK2) and

Angiopoietin-1 receptor (TIE2), that were excluded in our training set (thus new proteins). The

most similar proteins to JAK2 and TIE2 in our training set are calcium/calmodulin-dependent pro-

tein kinase kinase 2 (CAMKK2, sequence identity 48%) and cyclin-dependent kinase 2 (CDK2,

sequence identity 39%), respectively. The two datasets include 17 and 18 congeneric compounds,
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respectively, with Kd values measured. They were meant to “detect large changes in affinity

due to small changes in chemical structure” (https://drugdesigndata.org/about/

grand-challenge-3). In other words, the datasets focus on the sensitivity of methods tar-

geting SAR. Chemical graphs, actual pKd, and DeepRelations-predicted pKd of the JAK2 and

TIE2 compounds are in Figure 3.19 and 3.20, respectively.
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Figure 3.19: Compounds in JAK2’s SAR with actual and DeepRelations-predicted affinities.
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Figure 3.20: Compounds in TIE2’s SAR with actual and DeepRelations-predicted affinities.
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Here we compare our DeepAffinity+ and DeepRelations not only to structure-free Gao et al.

but also to 18 structure-based methods from the community that participated in the subchallenges.

The assessment metrics for affinity ranking are Kendall’s τ and Spearman’s ρ as in D3R. A sum-

mary of the performances is in Table 3.23. In the case of JAK2, the 17 structure-based methods had

τ ranging from 0.71 to−0.56 and ρ ranging from 0.86 to−0.70, including 8 methods with negative

τ and ρ. As to the structure-free affinity predictors, Gao et al. had τ = −0.42 and ρ = −0.54

whereas our DeepAffinity+ had slightly better τ = −0.36 and ρ = −0.47, both outperforming just

1 structure-based method. However, our DeepRelations achieved τ = 0.15 and ρ = 0.21, outper-

forming 12 (two-thirds) of structure-based methods. In the case of TIE2, the 18 structure-based

methods had τ ranging from 0.57 to−0.57 and ρ ranging from 0.76 to−0.69, including 8 methods

with negative τ and ρ. Interestingly, the best structure-based method for JAK2 only placed 12th

among 18 with slightly negative τ and ρ for TIE2. In contrast, all the structure-free affinity pre-

dictors performed well for TIE2: Gao et al., DeepAffinity+, and DeepRelations had τ (ρ) reaching

0.60 (0.74), 0.65 (0.79), and 0.61 (0.72), respectively; and they all outperformed the best structure-

based method. We note that all 18 structure-based methods used crystal structures of proteins and

often-expensive ligand docking whereas structure-free methods did not. Our methods only cost a

fraction of a second when making quality predictions for tens to hundreds of compound-protein

pairs, thus a useful complement to structure/docking-based methods toward virtual screening.

JAK2 (Subchallenge 3) TIE2 (Subchallenge 4)
Rankinga Method(s) τ ρ Ranking Method(s) τ ρ

1–5 5 structure-based methods in D3R 0.16 ∼ 0.71 0.25 ∼ 0.86 1 Structure-free DeepAffinity+ (ours) 0.65 0.79
6 Structure-free DeepRelations (ours) 0.15 0.21 2 Structure-free DeepRelations (ours) 0.61 0.72
6 1 structure-based method in D3R 0.13 0.32 2 Structure-free Gao et al. 0.60 0.74

8–18 11 structure-based methods in D3R −0.31 ∼ 0.05 −0.50 ∼ 0.05 2 2 structure-based methods in D3R 0.57 0.74 ∼ 0.76
19 Structure-free DeepAffinity+ -0.36 -0.47 6–21 16 structure-based methods in D3R −0.57 ∼ 0.50 −0.69 ∼ 0.67
20 Structure-free Gao et al. -0.42 -0.54
21 1 structure-based method in D3R -0.56 -0.70

a The 18 structure-based methods participated in the D3R subchallenges and were assessed officially. The
3 structure-free methods were assessed post hoc.

Table 3.23: Summary of scoring performances among three structure-free methods (including our
DeepAffinity+ and DeepRelations and eighteen structure-based methods.
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Beyond affinity scoring we further examine DeepRelations in extracting SAR knowledge to-

ward drug discovery. A central question in lead optimization is where and how to modify a lead

compound to improve its property (affinity here). As a stepping stone, we construct predictors from

our DeepRelations in order to anticipate the affinity changes when a functional-group substituent is

introduced to a lead. Specifically, we regard our predicted pKd (pK̂d) as estimated binding energy

for a compound-protein pair and our predicted joint-attention Wij as the fraction of contribution

between protein residue i and compound atom j. Borrowing the idea of energy decomposition, we

calculate the binding-energy contribution of a functional group R as the product of the predicted

binding-energy and the sum-marginals of joint attention: pK̂R
d = pK̂d · (

∑
j∈R
∑

iWij). In this

way the difference of thisR-group contribution, ∆pK̂R
d , can be a predictor of affinity change when

introducing a substituent R-group to a compound.

To test our predictor for lead optimization, we use the JAK2 dataset involving 17 compounds

that share a common scaffold and have distinct combinations of two functional groups (3 choices

for R1 and 10 for R2, see Figure 3.21A and Figure 3.19). We construct 121 pairs of compounds

between a weaker binder (origin) and a stronger binder (end). 7, 36, and 78 of the structural

changes from the origin to the end compound involve R1, R2, and both-R substitutions, respec-

tively. And we compare three methods in predicting these 121 affinity changes with assessment

metrics including Pearson’s r (main assessment), Spearman’s ρ and Kendall’s τ (Figure 3.21B–D).

A straightforward predictor using DeepRelations’ ∆pKd without decomposition had r = 0.218;

whereas the decomposed affinity-change predictor ∆pKR
d improved r to 0.361. If one has access

to the protein in complex with a previously discovered compound and can have an accurate esti-

mate of the binding residues, the summation of protein residue i in pK̂R
d can be just over binding

residues rather than all residues. In that case, the new ∆pKR
d can slightly improve r further to

0.363. Our decomposed affinity-change predictor ∆pKR
d similarly improved ρ and τ . When we

split the analysis into 3 series involving R1, R2, and both-R separately, we observed that ∆pKR
d

improved r from 0.267 to 0.753, −0.081 to 0.137, and 0.244 to 0.377, respectively (Figure 3.22).

Using the binding-residue information could slightly improve the correlation further. Interest-

152



ingly, when both R-groups are substituted (78 cases), ∆pKR1
d had a better Pearson’s correlation

(0.405) with the actual affinity changes than ∆pKR2
d (-0.121) and even ∆pKR1+R2

d (0.375) did

(Figure 3.23), potentially suggesting that R1 group could be explored first for affinity optimiza-

tion. Once a functional group R is chosen, affinity changes upon any proposed substitution can be

predicted using our group-decomposed ∆pKR
d .
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Figure 3.21: Actual (x-axis) versus DeepRelations-predicted (y-axis) affinity changes when intro-
ducing functional-group substitutions (R1, R2 or both in A) to lead compounds for JAK2. The
three predictors are: B. predicted affinity change ∆pK̂d; C. group-decomposed affinity change
∆pK̂R

d using all protein residues and the substituent group R alone; and D. group-decomposed
affinity change ∆pK̂R

d using estimated protein binding residues and the substituent group R alone.
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Figure 3.22: Comparison of true affinity changes versus various DeepRelations-based predictions,
when JAK2 compounds are changed by substituting functional groups. The first row is for R1 sub-
stitution only, second for R2 substitution only and third for both substitutions. The first column is
for prediction based on predicted affinity only, the second is based on decomposition (substituent
group for the compound and all residues for the protein), and the third column is based on decom-
position (substituent group for the compound and binding-site residues for the protein).
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Figure 3.23: For both R1+R2 substitutions, we compare the contribution of R1 (left), R2 (middle)
and R1+R2 (right).

3.3.4 Conclusions

Toward accurate and interpretable machine learning for structure-free prediction of compound-

protein interactions, we have curated compound-protein interaction dataset annotated with both

affinities and intermolecular atom-contacts, assessed the adequacy of current attention-based deep

learning models for both accuracy and interpretability, and developed novel machine-learning mod-

els (in particular, DeepAffinity+ and DeepRelations) to remarkably enhance interpretability with-

out sacrificing accuracy. We have also shown that our methods’ accuracy for affinity prediction

is comparable or better than competing (non-interpretable) methods using established benchmark

datasets. This is the first study with dedicated model development and systematic model assess-

ment for interpretability in affinity prediction.

Our study has found that commonly-used attention mechanisms alone, although better than

chance in most cases, are not satisfying in interpretability. The most attended protein-ligand con-

tacts in affinity prediction do not reveal native contacts underlying affinities at a useful level. The

conclusion maintains regardless of the representation of molecules (sequences/strings or graphs)

the architecture of neural networks. We have tackled the challenge with three innovative, method-

ological advances. First, we introduce structure-aware constraints to regularize attentions (or guide

their sparsity patterns), using sequence-predicted structural contexts such as protein surfaces and

protein residue-residue contact maps. Second, we exploit available native contacts to supervise
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novel joint attentions, i.e., to teach neural network how to weigh residue-atom pairs when making

affinity predictions. Lastly, we build intrinsically explainable model architecture where various

atomic relations, reflecting physics laws, are explicitly modeled and aggregated for affinity pre-

diction. Joint attentions are embedded over residue-atom pairs for individual and overall relations.

And a multi-stage hierarchy, trained end-to-end, progressively focuses attentions on protein sur-

faces, binding k-mers and residues, and residue-atom contact pairs. The first two advances are

introduced in both DeepAffinity+ and DeepRelations; and the last is additionally introduced in

DeepRelations. Their best versions involve hierarchical recurrent neural networks (HRNN) to em-

bed protein sequences and graph convolutional networks (GCN) to embed compound graphs.

Empirical results demonstrate the superiority of DeepAffinity+ and DeepRelations in inter-

pretable and accurate prediction of compound-protein interactions. Their affinity prediction shows

generalizability to compounds or/and proteins that are new or even dissimilar to training data.

Compared to a competing interpretable method, they boosted the AUPRC for contact prediction

(a measure of interpretability) by around 33, 10, 35, and 9-fold for the default test, new-protein,

new-compound, and both-new sets, respectively. Importantly,improved model interpretability has

shown to contribute to improved model accuracy and generalizability.

Case studies suggest that DeepAffinity+ and DeepRelations predict not only more correct but

also more well-patterned contacts that are focused in or near binding sites, which is thanks to the

structure-aware regularization and supervision of joint attentions. A global analysis indicates that

around 40% (20%) of our top-10 predicted contacts are native contacts that are direct and first-

shell for the test and the new-compound set (the new-protein and both-new set). Many “incorrect”

predictions due to the strict definition of native contacts were within reasonable ranges — in fact,

around 70% (50%) of the top-10 predicted contacts correspond to residue-atom pairs within 10

Å when the set does not (does) involve a new protein. With the precision level and the focused

pattern, our top-10 contact predictions (including false positives) have demonstrated their value in

assisting and improving protein-ligand docking, while the protocol to incorporate the predictions

into docking remains to be optimized.

156



By aggregating joint attentions and decomposing predicted affinities, we also demonstrate ad-

ditional utilities of our explainable affinity and contact predictor, toward drug-discovery tasks such

as binding site prediction, SAR (scoring) and SAR (lead optimization). Although not directly

designed nor optimized for these tasks, our methods and analyses have shown great potentials in

these tasks toward facilitating drug discovery.

An additional benefit of our structure-free methods is their broad applicability toward the vast

chemical and proteomic spaces. They do not rely on 3D structures of compound-protein complexes

or even proteins alone when such structures are often unavailable. The only inputs needed are pro-

tein sequences and compound graphs. Meanwhile, they adopt the latest technology to predict

structural contexts from protein sequences (such as surfaces, secondary structures, and residue-

residue contact maps). And they introduce structure-aware regularization to incorporate the pre-

dicted structural contexts into affinity and contact predictions. When structure data are available,

DeepRelations can readily integrate such data by using actual rather than predicted structural con-

texts. We tested the use of actual versus predicted protein residue-residue contact maps and did not

observe significant performance differences in our cases.

Our study demonstrates that, it is much more effective to directly teach explainability to ma-

chine learning models (such as our structure-aware regularization and supervision of joint atten-

tions) and build explainability into model architectures (such as our explicit modeling of atomic

relations in DeepRelations) than to demand explainability from general-purpose models

(such as seeking contact-interpretation from unsupervised, generic attention mechanisms). In

other words, designing intrinsically interpretable machine learning models incorporated with do-

main knowledge, although more difficult, can be much more desired than pursuing interpretability

in a post hoc manner.
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4. DEEP GENERATIVE MODELS FOR DESIGNING DRUG COMBINATIONS FOR

OVERCOMING RESISTANCE IN MOLECULAR NETWORKS∗

4.1 Overview

In chapter 2, we developed a principle-driven approach for overcoming mutational resistance in

a single protein target. The proposed model is guaranteed to provide an optimal solution. However,

it cannot scale to large-scale molecular networks such as the human genome due to its exactness

criteria. Therefore, in this chapter, we shifted toward data- and principle-driven approach, which

is scalable to large scale molecular networks. A data- and principle-driven drug combinations

generative model has been developed for overcoming drug resistance through alternative pathway

activation in molecular networks. This is the first generative model for designing drug combi-

nations for molecular networks. Firstly, in chapter 3 we developed fast and accurate oracles for

compound-protein affinity prediction. These models have been utilized for large-scale drug screen-

ing in molecular networks. Secondly, hierarchical variation graph auto-encoders (HGVAE) have

been developed to jointly embed domain knowledge such as gene-gene, disease-disease, gene-

disease networks, and learn disease representations. Thirdly, drug combinations generative model

condition on a disease representation has been formulated as a graph set generation problem and

solved through reinforcement learning (RL) and generative adversarial networks (GANs). Our

model utilized complementary exposure criteria (learned from FDA-approved drug combinations)

for efficient exploration of drug combination space.

4.2 Introduction

Drug resistance is a fundamental barrier to developing robust antimicrobial and anticancer ther-

apies [222, 223]. Its first sign was observed in the 1940s, soon after discovering penicillin [224],

the first modern antibiotic. Since then, drug resistance has surfaced and progressed in infectious

∗Reprinted with permission from “Network-principled deep generative models for designing drug combinations as
graph sets.” by M. Karimi, A. Hasanzadeh, Y. Shen 2020. Bioinformatics 36, Supplement_1, i445-i454, Copyright
2020 Oxford University Press.
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diseases such as HIV [225], tuberculosis (TB) [226] and hepatitis [227] as well as cancers [228].

Mechanistically, it can emerge through drug efflux [229], activation of alternative pathways [230]

and protein mutations [11, 110] while decreasing the efficacy of drugs.

Combination therapy is a resistance-overcoming strategy that has found success in combating

HIV [2], TB [3], cancers [4, 5] and so on. Considering that most diseases and their resistances are

multifactorial [15, 16], multiple drugs targeting multiple components simultaneously could confer

less resistance than individual drugs targeting components separately. Examples include targeting

both MEK and BRAF in patients with BRAF V600-mutant melanoma rather than targeting MEK

or BRAF alone [13, 14]. The effect of drug combination is usually categorized as synergistic,

additive, or antagonistic depending on whether it is greater than, equal to, or less than the sum of

individual drug effects [231]. Synergistic combinations are effective at delaying the beginning of

the resistance. However, antagonistic combinations are effective at suppressing the expansion of

resistance [232, 233], representing offensive and defensive strategies to overcome drug resistance.

In particular, offensive strategies cause huge early causalities, but defensive ones anticipate and

develop protection against future threats. [232].

Discovering a drug combination to overcome resistance is, however, extremely challenging,

even more so than discovering a drug which is already a costly (∼billions of USD) [6] and lengthy

(∼12 years) [7] process with low success rates (3.4% phase-1 oncology compounds make it to

approval and market) [8]. An apparent challenge, a combinatorial one, is in the scale of chemical

space, which is estimated to be 1060 for single compounds [234] and can “explode” to 1060K for

K-compound combinations. Even if space is restricted to around 103 FDA-approved human drugs,

there are 105–106 pairwise combinations. Another challenge, a conceptual one, is in the complexity

of systems biology. On top of on-target efficacy and off-target side effects or even toxicity that need

to be considered for individual drugs, network-based design principles are much needed for drug

combinations that effectively target multiple proteins in a disease module and have low toxicity or

even resistance profiles [235, 236].

Current computational models in drug discovery, especially those for predicting pharmacoki-
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netic and pharmacodynamic properties of individual drugs/compounds, can be categorized into

discriminative and generative models. Discriminative models predict the distribution of a prop-

erty for a given molecule, whereas generative models would learn the joint distribution on the

property and molecules. For instance, discriminative models have been developed for predicting

single compounds’ toxicities, based on support vector machines [237], random forest [238], and

deep learning [239]. Whereas discriminative models are useful for evaluating given compounds or

even searching compound libraries, generative models can effectively design compounds of desired

properties in chemical space. Recent advance in inverse molecular design has seen deep genera-

tive models such as SMILES representation-based reinforcement learning [240] or recurrent neural

networks (RNNs) as well as graph representation-based generative adversarial network (GANs),

reinforcement learning [241], and generative tensorial reinforcement learning (GENTRL) [242].

Unlike single drug design, current computational efforts for drug combinations are exclusively

focused on discriminative models and lack generative models. The main focus of drug combina-

tion is to use discriminate models to identify synergistic or antagonistic drugs for a given specific

disease. Examples include the Chou-Talalay method [243], integer linear programming [244], and

deep learning [245, 246]. However, it is daunting, if not infeasible, to enumerate all cases in the

enormous chemical combinatorial space and evaluate their combination effects using a discrimi-

native model. Not to mention that such methods often lack explainability.

Directly addressing the aforementioned combinatorial and conceptual challenges and filling

the void of generative models for drug combinations, in this study, we develop network-based

representation learning for diseases and deep generative models for accelerated and principled

drug combination design (the general case of K drugs). Recently, by analyzing the network-based

relationships between disease proteins and drug targets in the human protein-protein interactome,

[247] proposed an elegant principle for FDA-approved drug combinations that targets of two drugs

both hit the disease module but cover different neighborhoods. Our methods allow for examining

and following the proposed network-based principle [247] to efficiently generate disease-specific

drug combinations in a vast chemical combinatorial space. They will also help meet a critical need
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for computational tools in a battle against quickly evolving bacterial, viral, and tumor populations

with accumulating resistance.

To tackle the problem, we have developed a network principle-based deep generative model

for faster, broader, and more in-depth exploration of drug combination space by following the

principle underlying FDA approved drug combinations. First, we have developed Hierarchical

Variational Graph Auto-Encoders (HVGAE) for jointly embedding disease-disease network and

gene-gene networks.

Through end-to-end training, we embed genes in a way that they can represent the human

interactome. Then, we utilize their embeddings with novel attentional pooling to create features

for each disease so that we can embed diseases more accurately. Second, we have also devel-

oped a reinforcement-learning based graph-set generator for drug combination design by utilizing

both gene/disease embedding and network principles. Besides those for chemical validity and

properties, our rewards also include 1) a novel adversarial reward, generalized sliced Wasserstein

distance, that fosters generated molecules to be diverse yet similar in distribution to known com-

pounds (ZINC database and FDA-approved drugs) and 2) a network principle-based reward for

drug combinations that are feasible for online calculations.

The overall schematics are shown in Fig. 4.1 and details in Sec. 4.4.

4.3 Data

4.3.1 Human interactome and its features

We used the human interactome data (a gene-gene network) from [248] that feature 13,460

proteins interconnected by 141,296 interactions.

We introduced edge features for the human interactome based on the biological nature of edges

(interactions). The interactome was compiled by combining experimental support from various

sources/databases including 1) regulatory interactions from TRANSFAC [249]; 2) binary inter-

actions from high-throughput (including [250]) and literature-curated datasets (including IntAct

[251] and MINT [252]) as well as literature-curated interactions from low-throughput experiments
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Figure 4.1: Overall schematics of the proposed approach for generating disease-specific drug com-
binations.

(IntAct, MINT, BioGRID [253], and HPRD [254]); 3) metabolic enzyme-coupled interactions

from [255]; 4) protein complexes from CORUM [256]; 5) kinase-substrate pairs from Phospho-

sitePlus [257]; and 6) signaling interactions. In summary, an edge could correspond to one or mul-

tiple physical interaction types. So we used a 6-hot encoding for edge features, based on whether

an edge corresponds to regulatory, binary, metabolic, complex, kinase and signaling interactions.

We also introduced features for nodes (genes) in the human interactome based on 1) KEGG

pathways [258] (336 features) queried through Biopython [259]; 2) Gene Ontology (GO) terms

[260] including biological process (30,769 features), molecular function (12,183 features), and

cellular component (4,451 features), mapped using the NCBI Gene2Go dataset; 3) disease-gene

associations from the database OMIM (Mendelian Inheritance in Man) [261] and the results from

Genome-Wide Association Studies (GWAS) [262, 263] (299 features). The last 299 features cor-

respond to 299 diseases represented by the Medical Subject Headings (MeSH) vocabulary [264].
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After removing those genes without KEGG pathway information, the human interactome used

in this study has 13,119 genes and 352,464 physical interactions.

4.3.2 Disease-disease network

We used a disease-disease network from [248] with 299 nodes (diseases), created based on

human interactome data (as detailed earlier), gene expression data [265], disease-gene associa-

tions [262, 263, 261], Gene Ontology [260], symptom similarity [266] and comorbidity [267]. The

original disease-disease network is a complete graph with real-valued edges. The edge value be-

tween the two diseases shows how much they are topologically separated from each other. A posi-

tive/negative edge weight indicates that two disease modules are topologically separated/overlapped.

Therefore, we used zero-weight as the threshold and pruned positive-valued edges, which results

in a disease-disease network of 299 nodes and 5,986 edges (without weights).

4.3.3 Disease-gene associations

We used disease-gene associations from the database OMIM [261]. These associations bridge

the aforementioned gene-gene and disease-disease networks into a hierarchical graph of genes and

diseases, based on which gene and disease representations will be learned.

4.3.4 Disease classification

For the purpose of assessment, we used the Comparative Toxicogenomics Database (CTD)

[268] to classify diseases into 8 classes based on their Disease Ontology (DO) terms [269] where

diseases are represented in the MeSH vocabulary [264]. In the CTD database, only 201 of the 299

diseases have a corresponding DO term. Therefore, for the 98 diseases with missing DO terms,

we considered the majority of their parents’ DO terms, if applicable, as their DO terms. With this

approach, we assigned DO terms to 66 such diseases and classified 267 of the 299 diseases. The

32 diseases with DO terms still missing are usually at the top layers of the MeSH tree.
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4.3.5 FDA-approved drugs and drug combinations

To assess our deep generative model for drug combination design (to be detailed in Sec. 4.4.2),

we consider a comprehensive list of US FDA-approved combination drugs (1940–2018.9) [270].

The dataset contains 419 drug combinations consisting of 328 unique drugs, including 341 (81%),

67 (16%), and 11 (3%) of double, triple, and quadruple drug combinations.

We also utilized the curated drug-disease association from the CTD database [268].

4.4 Methods

We have developed a network-based drug combination generator that can be utilized in over-

coming drug resistance. Representing drugs through their molecular graphs, we recast the prob-

lem of drug combination generation into network-principled, graph-set generation by incorporat-

ing prior knowledge such as human interactome (gene-gene), disease-gene, disease-disease, gene

pathway, and gene-GO relationships. Furthermore, we formulate the graph-set generation problem

as learning a Reinforcement Learning (RL) agent that iteratively adds substructures and edges to

each molecular graph in chemistry- and system-aware environment.

To that end, the RL model is trained to maximize a desired propertyQ (for example, therapeutic

efficacy for drug combinations) while following the valency (chemical validity) rules and being

similar in distribution to the prior set of graphs.

As shown in Fig. 4.1, the proposed approach consists of 1) embedding prior knowledge (differ-

ent network relationships) through Hierarchical Variational Graph Auto-Encoders (HVGAE); and

2) generating drug combinations as graph sets through a reinforcement learning algorithm, which

will be detailed next.

Notations: As both gene-gene and disease-disease networks can be represented as graphs, nota-

tions are differentiated by superscripts ‘g’ and ’d’ to indicate gene-gene and disease-disease net-

works, respectively. Drugs (compounds) are also represented as graphs and notations with ‘k’ in

the superscript indicates the k-th drug (graph) in the drug combination (graph set).
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4.4.1 Hierarchical Variational Graph Auto-Encoders (HVGAE) for representation learning

Suppose that a gene-gene network is represented as a graphG(g) = (A(g), {F (g,m)}Mm=1), where

A(g) = [A(g,1), · · · , A(g,ne)] ∈ {0, 1}ng×ng×ne is the adjacency tensor of the gene-gene network

with ng nodes and ne edge types (k-hot encoding of 6 types of aforementioned physical interactions

such as regulatory, binary, metabolic, complex, kinase and signaling interactions).

We also define Ã(g) ∈ {0, 1}ng×ng to be elemenwise OR of {A(g,1), · · · , A(g,ne)}. Furthermore,

F (g,m) denotes the mth set of node features for gene-gene network where M (5 in the study) repre-

sents different types of node features such as pathways, 3 GO terms and gene-disease relationship.

We also suppose the disease-disease network is represented as graph G(d) = (A(d), F (d)), where

A(d) ∈ {0, 1}nd×nd is the adjacency matrix of the disease-disease network with nd nodes; and F (d)

represents the set of node features for the disease-disease network.

We have developed a hierarchical embedding with 2 levels. In the first level, we embed the

gene-gene network to get the features related to each disease, and then we incorporate the disease

features within the disease-disease network to embed their relationship. We infer the embedding

for each gene and disease jointly through end-to-end training. The proposed HVGAE performs

probabilistic auto-encoding to capture the uncertainty of representations, which is in the same

spirit as the variational graph auto-encoder models introduced in [271, 272, 273].

4.4.1.1 First level: Gene-Gene embedding

The inference model for variational embedding of the gene-gene network is formulated as

follows. We first use M graph neural networks (GNNs) to transform individual nodes’ features in

M types and then concatenate the M sets of results F̂ (g,m) (m = 1, . . . ,M ) into F̂ (g):

F̂ (g,m) = AGG
(
{GNNj(A

(g,j), F (g,m))}, j = 1, · · · , ne
)

F̂ (g,m) ∈ Rng×Lg , m = 1, · · · ,M

F̂ (g) = CONCAT({F̂ (g,m)}Mm=1) ∈ Rng×MLg , (4.1)
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where AGG is an aggregation function combining output features of GNNj’s for each node. We

used a two-layer fully connected neural network with ReLU activation functions followed by a sin-

gle linear layer in our implementation. We then approximate the posterior distribution of stochastic

latent variables Z(g) (containing z(g)
i ∈ RLg for i = 1, · · · , ng where Lg (32 in this study) is the

latent space dimensionality for the ith gene), with a multivariate Gaussian distribution q(·) given

the gene-gene network’s aggregated node features F̂ (g) and adjacency tensor A(g):

q(Z(g)|F̂ (g), A(g)) =

ng∏
i=1

q(z
(g)
i |F̂ (g), A(g)),where

q(z
(g)
i |F̂ (g), A(g)) = N (µ

(g)
i , diag(σ

2,(g)
i )),

µ(g) = AGG
(
{GNNµ,g,j(A

(g,j), F̂ (g))}, j = 1, · · · , ne
)
,

log(σ(g)) = AGG
(
{GNNσ,g,j(A

(g,j), F̂ (g))}, j = 1, · · · , ne
)
,

µ(g) ∈ Rng×Lg , log(σ(g)) ∈ Rng×Lg . (4.2)

where Z(g) ∈ Rng×Lg ; µ(g) is the matrix of mean vectors µ(g)
i ; and σ(g) the matrix of standard

deviation vectors σ(g)
i (i = 1, . . . , ng).

The generative model for the gene-gene network is formulated as:

p(Ã(g)|Z(g)) =
n∏
i=1

n∏
j=1

p(Ã
(g)
ij |z

(g)
i , z

(g)
j ),where

p(Ã
(g)
ij |z

(g)
i , z

(g)
j ) = σ(z

(g)
i z

(g)T
j ), (4.3)

and σ(·) is the logistic sigmoid function. The loss for gene-gene variational embedding is

represented as a variational lower bound (ELBO):

L(g) =Eq(Z(g)|F̂ (g),A(g))[log p(Ã(g)|Z(g))]

−KL
(
q(Z(g)|F̂ (g), A(g))||p(Z(g))

)
,

(4.4)

where KL
(
q(·)||p(·)

)
is the Kullback-Leibler divergence between q(·) and p(·). We take the Gaus-
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sian prior for p(Z(g)) and make use of the reparameterization trick [271] for training.

4.4.1.2 Second level: disease-disease embedding

The inference model for variational embedding of the disease-disease network is similar to that

of the gene-gene network except that the disease-disease network’s aggregated node features, F̂ (d),

are derived through parameterized attentional pooling of Ẑ(g)
r , latent variables of genes associated

with the rth disease (a subset of Z(g)):

er = v tanh(Ẑ(g)
r W + b), r = 1, · · · , nd

αr = softmax(er), r = 1, · · · , nd

F̂ (d)
r =

∑
i

αr,iẐ
(g)
r,i , r = 1, · · · , nd

F̂ (d) = CONCAT({F̂ (d)
r }

nd
r=1) ∈ Rnd×Ld , (4.5)

where αm capture the importance of genes related to the rth disease for calculating its latent rep-

resentations and Ld is the latent space dimensionality of a disease.

Once F̂ (d), the disease-disease network’s aggregated node features for all diseases, are de-

rived; we again define q(Z(d)|F̂ (d), A(d)) for the posterior distribution of stochastic latent variables

Z(d) similarly to what we did in Eq. (4.2) except that AGG functions are removed since disease-

disease network has one binary adjacency matrix; give the generative decoder p(A(d)|Z(d)) for

embedding the disease-disease network similarly to what we did in Eq. (4.3); and calculate the

variational lowerbound (ELBO) loss L(d) for the disease-disease network similarly to what we did

in Eq. (4.4). More specifically, given the adjacency matrix A(d), and the node attributes for diseas-

disease network, which is derived by attentional pooling and denoted by F̂ (d), the encoder for this

level of HVGAE is defined as:

167



q(Z(d) | F̂ (d), A(d)) =

nd∏
i=1

q(z
(d)
i | F̂ (d), A(d)), where q(z

(d)
i | F̂ (d), A(d)) = N (µ

(d)
i , diag(σ

2,(d)
i )),

µ(d) = GNNµ,d(A
(d), F̂ (d)) ∈ Rnd×Ld ,

log(σ(d)) = GNNσ,d(A
(d), F̂ (d)) ∈ Rnd×Ld . (4.6)

In the equation above, GNNµ,d and GNNσ,d are multi-layer graph neural networks; nd is the

number of nodes; Ld is the dimension of latent variables; and µ(d) and σ(d) are matrices of mean

vectors and standard deviation vectors, respectively.

The generative model is given by inner product decoder between latent variable. More specifi-

cally,

p(A(d) |Z(d)) =
n∏
i=1

n∏
j=1

p(A
(d)
ij | z

(d)
i , z

(d)
j ), where p(A

(d)
ij | z

(d)
i , z

(d)
j ) = σ(z

(d)
i z

(d)T
j ), (4.7)

with σ(·) as the logistic sigmoid function. Finally, the evidence lower bound (ELBO) for this level

of HVGAE is defined as follows:

L(d) = Eq(Z(d) | F̂ (d),A(d))[log p(A(d) |Z(d))]−KL
(
q(Z(d) | F̂ (d), A(d)) || p(Z(d))

)
, (4.8)

Both levels of our proposed HVGAE, i.e. gene-gene and disease-disease variational graph

representation learning, are jointly trained in an end-to-end fashion using the following overall

loss:

LHVGAE = L(d) + L(g). (4.9)

4.4.2 Reinforcement learning-based graph-set generator for drug combinations

In this section, we introduce the reinforcement learning-based drug combination generator. We

will detail 1) the state space of graph sets (K compounds) and the action space of graph-set growth;

2) multi-objective rewards including chemical validity and our generalized sliced Wasserstein re-
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ward for individual drugs as well as our newly designed network principle-based reward for drug

combinations; 3) policy network that learns to take actions in the rewarding environment.

4.4.2.1 State and action space

We represent a graph set (drug combination) with K graphs as G = {G(k)}Kk=1. Each graph

G(k) = (A(k), E(k), F (k)) whereA(k) ∈ {0, 1}nk×nk is the adjacency matrix, F (k) ∈ Rnk×φ the node

feature matrix, E(k) ∈ {0, 1}ε×nk×nk the edge-conditioned adjacency tensor, and nk the number of

vertices for the kth graph, respectively; and φ is the number of features per nodes and ε the number

of edge types.

The state space G is the set of all K graphs with different numbers and types of nodes or edges.

Specifically, the state of the environment st at iteration t is defined as the intermediate graph set

Gt = {G(k)
t }Kk=1 generated so far which is fully observable by the RL agent.

The action space is the set of edges that can be added to the graph set. An action at at iteration t

is analogous to link prediction in each graph in the set. More specifically, a link can either connect

a new subgraph (a single node/atom or a subgraph/drug-substructure) to a node in G(k)
t or connect

existing nodes within graph G(k)
t . The actions can be interpreted as connecting the current graph

with a member of scaffold subgraphs set C. Mathematically, for G(k)
t , graph k at step t, the action

a
(k)
t is the quadruple of a(k)

t = CONCAT(a
(k)
first,t, a

(k)
second,t, a

(k)
edge,t, a

(k)
stop,t).

4.4.2.2 Multi-objective reward

We have defined a multi-objective reward Rt to satisfy certain requirements in drug combina-

tion therapy. First, a chemical validity reward maintains that individual compounds are chemically

valid. Second, a novel adversarial reward, generalized sliced Wasserstein GAN (GS-WGAN), en-

forces generated compounds that are synthesizable and “drug-like” by following the distribution of

synthesizable compounds in the ZINC database [274] or FDA-approved drugs. Third, a network

principle-based award would encourage individual drugs to target the desired disease module but

not to overlap in their target sets. Toxicity due to drug-drug interactions can also be included as a

reward. It is intentionally left out in this study so that toxicity can be evaluated for drug combina-

169



tions designed to follow the network principle.

When training the RL agent, we use different reward combinations in different stages. We first

only use the weighted combination of chemical validity and GS-WGAN awards learning over drug

combinations for all diseases; then we remove the penalized logP (Pen-logP) portion of chemical

validity and add adversarial loss again while learning over drug combinations for all diseases;

finally use the combination of the three rewards as in the second stage but focusing on a target

disease and possibly on restricted actions/scaffolds (in a spirit similar to transfer learning). The

three types of rewards are detailed as follows.

Chemical validity reward for individual drugs. A small positive reward is assigned if the ac-

tion does not violate valency rules. Otherwise, a small negative reward is assigned. This is an

intermediate reward added at each step. Another reward is on penalized logP (lipophilicity where

P is the octanol-water partition coefficient) or Pen-logP values. The design and the parameters of

this reward are adopted from [241] without optimization.

Adversarial reward using generalized sliced Wasserstein distance (GSWD). To ensure that

the generated molecules resemble a given set of molecules (such as those in ZINC or FDA-

approved), we deploy Generative Adversarial Networks (GAN). GANs are very successful at mod-

eling high-dimensional distributions from given samples. However, they are known to suffer from

training unsuitability and cannot generate diverse samples (a phenomenon known as mode col-

lapse).

Wasserstein GANs (WGAN) have shown to improve stability and mode collapse by replacing

the Jenson-Shannon divergence in original GAN formulation with the Wasserstein Distance (WD)

[275, 276, 277]. More specifically, the objective function in WGAN with gradient penalty [278] is

defined as follows:

min
θ

max
φ

VW(πθ, Dφ) + λR(Dφ), (4.10)

with VW (πθ, Dφ) = Ex∼pr [logDφ(x)]− Ey∼πθ [logDφ(y)],
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where pr is the data distribution, λ is a hyper-parameter,R is the Lipschitz continuity regularization

term, Dφ is the critic with parameters φ, and πθ is the policy (generator) with parameters θ.

Despite the theoretical advantages of WGANs, solving equation (4.10) is computationally ex-

pensive and intractable for high dimensional data. To overcome this problem, we propose and

formulate a novel Generalized Sliced WGAN (GS-WGAN) which deploys Generalized Sliced

Wasserstein Distance (GSWD) [279]. GSWD, first, factorizes high-dimensional probabilities into

multiple marginal 1D distributions with generalized Radon transform. Then, by taking advantage

of the closed-form solution of Wasserstein distance in 1D, the distance between two distributions is

approximated by the sum of Wasserstein distances of marginal 1D distributions. More specifically,

letR represent generalized Radon transform operator. The generalized Radon transform (GRT) of

a probability distribution P(·) which is defined as follows:

RP (t, ψ) =

∫
Rd

P(x) δ(t− f(x, ψ)) dx, (4.11)

where δ(·) is the one-dimensional Dirac delta function, t ∈ R is a scalar, ψ is a unit vector in the

unit hyper-sphere in a d-dimensional space (Sd−1), and f is a projection function whose parameters

will be learned in training. Injectivity of the GRT [280] is the requirement for the GSWD to be a

valid distance.

We use linear project f(x, ψ) here and can easily extend to two nonlinear cases that maintain the

GRT-injectivity (circular nonlinear projections or homogeneous polynomials with an odd degree).

GSWD between two d-dimensional distributions PX and PY is therefore defined as:

GSWD(PX , PY ) =

∫
Sd−1

WD(RPX(·, ψ), RPY (·, ψ)) dψ . (4.12)

The integral in the above equation can be approximated with a Riemann sum. Knowing the defini-
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tion of GSWD, we define the objective function of GS-WGAN as follows:

min
θ

max
φ

VGSW (πθ, Dφ) + λR(Dφ), (4.13)

s.t. VGSW(πθ, Dφ) =

∫
ψ∈Sd−1

Ex∼pr [logDφ(x)]− (4.14)

Ey∼πθ [logDφ(y)] dψ ,

where the parameters and notations are the same as defined in Eq. (4.10).

We note that x and y in Eq. (4.13) are random variables in Rd, which is not a reasonable as-

sumption for graphs. To that end, we use an embedding function g that maps each graph to a vector

in Rd. We use graph convolutional layers, followed by fully connected layers, to implement g. We

deploy the same type of neural network architecture for Dφ. We use Radvers = −VGSW(πθ, Dφ)

as the adversarial reward used together with other rewards, and optimize the total rewards with a

policy gradient method (Sec. 4.4.2.3).

Network principle-based reward for drug combinations. Proteins or genes associated with a

disease tend to form a localized neighborhood disease module rather than scattering randomly in

the interactome [247]. A network-based score has been introduced [248], to efficiently capture the

network proximity of a drug (X) and disease (Y ) based on the shortest-path length d(x, y) between

a drug target (x) and a disease protein (y):

Z =
d(X, Y )− d̄

σd

d(X, Y ) =
1

||Y ||
∑
y∈Y

min
x∈X

d(x, y),
(4.15)

where d(·, ·) is the shortest path distance; d̄ and σd are the mean and standard deviation of the ref-

erence distribution which is corresponding to the expected network topological distance between

two randomly selected groups of proteins matched to size and degree (connectivity) distribution

as the original disease proteins and drug targets in the human interactome. Z-score being negative

(Z < 0) implies network proximity of disease module and drug targets which is desirable. From
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the drug combination perspective, it has been shown that the complementary exposed drug-drug

relationship has the least side drug side affect and the most drug combination efficacy [247]. Com-

plementary exposed drug-drug (X1 and X2) relationship means that the drug targets (x1) and drug

targets (x2) are not in the same neighborhood and has the least overlapping. Therefore, [247] have

proposed a network-separation score which is formulated as follow:

sX1,X2 = d(X1, X2)− d(X1, X1) + d(X2, X2)

2
, (4.16)

where d(X1, X2) is the mean shortest path distance between drugs X1 and X2; d(X1, X1) and

d(X2, X2) are the mean shortest path distance within drug targets X1 and X2 respectively [247].

The separation score being positive (s > 0) implies to network are separated from each other which

is desirable. We have extended and combined these scores for general drug combination therapy

where we have a set of k drugs {X1, · · · , Xk} and disease Y :

Rnetwork = λ1

k∑
i=1

∑
j>i

s(Xi, Xj)− λ2

k∑
i=1

Z(Xi, Y ) (4.17)

However, the exact online calculation of the reward Rnetwork is infeasible while training across

all the diseases and the whole human interactome with more than 13K nodes and 352K edges.

Therefore, we have developed a relaxed version of the reward, which is feasible for online calcu-

lation and correlates with the actual reward. Specifically, we consider the normalized exclusive or

(XOR) of intersections of disease modules with drug targets:

R̂network =
Y ∩ (X1 ⊕ · · · ⊕Xk)

|Y |
=

(X1 ∩ Y )⊕ · · · ⊕ (Xk ∩ Y )

|Y |
. (4.18)

The relaxed network principle-based reward is penalizing a drug combination if the overlap be-

tween drug targets in the disease module is high. Therefore it will prevent adverse drug-drug

interactions. We scaled the network score by a constant (equals 10) such that the score would be

in the same range as Pen-logP and can use the same weight in the total reward as Pen-logP did in
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[241].

For a generated compound, we predict its protein targets by DeepAffinity [19], judging by

whether the predicted IC50 is below 1µM.

4.4.2.3 Policy Network

Having explained the graph generation environment (various rewards), we outline the archi-

tecture of our proposed policy network. Our method takes the intermediate graph set Gt and the

collection of scaffold subgraphs C as inputs and outputs the action at, which predicts a new link

for each of the graphs in Gt [241].

Since the input to our policy network is a set of K compounds or graphs {G(k)
t ∪ C}Kk=1, we

first deploy some layers of graph neural network to process each of the graphs. More specifically,

X(k) = GNN(k)(G
(k)
t ∪ C), for k = 1, . . . , K, (4.19)

where GNN(k) is a multilayer graph neural network. The link prediction based action at iteration t

is a concatenation of four components for each of the K graphs: selection of two nodes, prediction

of edge type, and prediction of termination. Each component is sampled according to a predicted

distribution [241]. Specifically, each component is sampled according to a predicted distribution

governed by the following equations [241]:

a
(k)
t = CONCAT(a

(k)
fr,t, a

(k)
sc,t, a

(k)
et,t, a

(k)
tr,t),

at = {a(k)
t }Kk=1,

Xt = {X(k)
t }Kk=1,
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where
f1(st) = SOFTMAX(FCfr(Xt, Y )),

a
(k)
fr,t ∼ f1(st) ∈ {0, 1}nk ;

f2(st) = SOFTMAX(FCsc(Xafr,t
, Xt, Y )),

a
(k)
sc,t ∼ f2(st) ∈ {0, 1}(nk+c);

f3(st) = SOFTMAX(FCet(Xafr,t
, Xasc,t , Y )),

a
(k)
et,t ∼ f3(st) ∈ {0, 1}b;

f4(st) = SOFTMAX(FCtr(Xt, Y )),

a
(k)
tr,t ∼ f4(st) ∈ {0, 1};

(4.20)

where FC’s are fully connected neural networks, subscripts ‘fr’ and ‘sc’ indicate the first and the

second drug, and c is the cardinality of C. Also, Y is the targeted disease we are generating drug

combination for.

We note that the first node is always chosen from Gt while the next node is chosen from {G(k)
t ∪

C}Kk=1. We also note that infeasible actions (i.e., actions that do not pass valency check) proposed

by the policy network are rejected, and the state remains unchanged. We adopt Proximal Policy

Optimization (PPO) [281], one of the state-of-the-art policy gradient methods, to train the model.

4.5 Results

To assess the performance of our proposed model, we have designed a series of experiments.

In section 4.5.1, we first compare HVGAE to state-of-art graph embedding methods in disease-

disease network representation learning and further include several variants of HVGAE for abla-

tion studies. We then assess the performance of the proposed reinforcement learning method in

two aspects. In a landscape assessment in Section 4.5.2, we examine designed pairwise compound-

combinations for 299 diseases in quantitative scores of following a network-based principle [247].

In Section 4.5.3, we focus on four case studies involving multiple diseases of various systems-

pharmacology strategies. Our method is capable of generating higher-order combinations of K

drugs. As FDA-approved drug combinations are often pairs, here we design compound pairs from
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the scaffolds of FDA-approved drug pairs. We further delve into designed compound pairs to

understand the benefit of following network principles in lowering toxicity from drug-drug inter-

actions. We also do so to understand their systems pharmacology strategies in comparison to the

FDA-approved drug combinations.

4.5.1 HVGAE representation compares favorably to baselines

4.5.1.1 Experiment setup

To assess the performance of our proposed embedding method HVGAE, we compare its per-

formance in (disease-disease) network reconstruction with Node2Vec [282], DeepWalk [283], and

VGAE [271], as well as some variants of our own model for ablation study. Node2Vec and Deep-

Walk are random walk based models that do not capture node attributes. Hence we only used

the disease-disease graph structure. For VGAE, we used the identity matrix as node attributes, as

suggested by the authors.

For our HVGAE described in Sec. 4.4.1, we also considered two variants for ablation study:

HVGAE-disjoint does not jointly embed gene-gene and disease-disease networks and does not use

attentional pooling for disease embedding; whereas HVGAE-noAtt just does not use attentional

pooling. Specifically, in HVGAE-disjoint, we first learned an embedding for the gene-gene net-

work, then used the sum of the mean of the node representations of genes affected by the disease as

its node attributes. In HVGAE-noAtt, we jointly learned the representations while using the sum

of the mean of the node representations of genes as node attributes for the disease-disease network.

In node2vec and DeepWalk, the walk length was set to 80, the number of walks starting at each

node was set to 10, and the nodes were embedded in a 16-dimensional space. The window size was

10 for node2vec while it is set to 10 in DeepWalk. All models were trained using Adam optimizer.

In VGAE, a 32-dimensional graph convolutional (GC) layer followed by two 16-dimensional lay-

ers was used for mean and variance inference. The learning rate was set to 0.01.

For HVGAE and its variants (for ablation study), we embed gene networks in 32-dimensional

space using a single GC layer with 32 filters for each of the 5 types of input followed by a 64-
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dimensional GC layer and two 32-dimensional GC layer to infer mean and variance of the repre-

sentation. We used a single 32-dimensional fully connected (FC) layer for the attention layer. For

disease-disease network embedding, we deployed a single 32-dimensional GC layer followed by

two 16-dimensional layers for mean and variance inference resulting in 16-dimensional embedding

for the disease-disease network.

Learning rates were set to 0.001. The models were trained for 1,000 epochs choosing the best

representation based on their reconstruction performance at each epoch.

4.5.1.2 Numerical analysis and ablation study for network embedding

Table 4.1 summarizes the reconstruction performance of the aforementioned methods. Com-

pared to all baselines, our HVGAE showed the best performance in all metrics considered. Node2Vec

and DeepWalk showed the worst performance as they only use the graph structure. The perfor-

mance of VGAE was very close to DeepWalk. This is due to the fact that no attributes have been

provided to VGAE despite having the capability of capturing attributes.

Table 4.1: Graph reconstruction performances (unit: %) in the disease-disease network using our
proposed HVGAE and baselines. F-1 scores are based on 50% threshold.

Method AUC-ROC AP F1-Macro F1-Micro

Node2Vec 79.01 72.82 35.73 51.10
DeepWalk 79.32 73.77 40.28 53.30
VGAE 88.12 85.71 60.19 64.98
HVGAE-disjoint 91.45 90.72 73.45 74.77
HVGAE-noAtt 92.83 92.34 73.81 75.14
HVGAE 96.11 95.89 79.77 80.45

Compared to VGAE, HVGAE-disjoint without joint embedding or attentional pooling still saw

a better performance, which suggests that the attributes generated by the gene-gene network con-

tain meaningful features about the disease-disease network. The slight performance gain from

HVGAE-disjoint to HVGAE-noAtt shows that joint learning of both networks hierarchically helps
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to render more informative features for the disease-disease network. Finally, HVGAE had another

performance boost compared to HVGAE-noAtt and outperformed all competing methods, which

shows the benefit of attentional pooling. Specifically, the attention layer of HVGAE allows the

model to produce features that are specifically informative for the disease-disease network repre-

sentation learning.

4.5.2 Our model generates drug combinations following network principles across diseases

4.5.2.1 Experiment setup

We have trained the proposed reinforcement model in 3 stages using different rewards, dis-

ease sets, and action spaces to increasingly focus on a target disease while exploiting all diseases

whose representations already jointly embed gene-gene, disease-disease, and gene-disease net-

works. In the first stage, we train the model only to generate drug-like small-molecules that follow

the chemistry valency reward, lipophilicity reward (logP where P is the octanol-water partition

coefficient) [241], and our novel adversarial reward for individual compounds. In this study, we

trained the model for 3 days (4,800 iterations) to learn to follow the valency conditions and promote

high logP for generated compounds.

In the second stage, we start from the trained model at the end of the first stage (“warm-start”

or “pre-training”). Moreover, we continue to train the model to generate good drug combinations

across all diseases. We do so by adding the network principle-based reward for compound combi-

nations and sequentially generating drug combinations for each disease one by one. Then, we cal-

culate the network-based score for the generated drug combinations at the last epoch across disease

ontologies and compare them with the FDA-approved melanoma drug combinations’ network-

based score. In this study, we trained the model for 1,500 iterations to generate drug combinations

across all 299 diseases. In each iteration, we generated 8 drug combinations for a given disease.

We adopted PPO [281] with a learning rate of 0.001 to train the proposed RL for both stages.

The last stage is disease-specific and will be detailed in Sec. 4.5.3.
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4.5.2.2 Numerical analysis

Across disease ontologies, we quantify the performance of the proposed RL (stage 2 model

first) using quantitative scores of compound-combinations following a network-based principle

[247]. We consider the generated combinations in the last epoch (the last 299 iterations) and

calculate the network score R̂network based on disease ontologies. We assess our model based on

two versions of disease classification, original disease ontology, and its extension, explained in

Sec. 4.3.4. Table 4.2 summarizes the network-based scores for our model. Specifically, suppose

that the set of targets for drug 1 and 2 are represented by A and B whereas the disease module

is the universal set Ω, we report the portion exclusively covered by drug 1 (ηA−B), exclusively

covered by drug 2 (ηB−A), overlapped by both (ηA∩B), and collectively by both (ηA∪B). As a

reference, we calculated the corresponding network scores for 3 FDA-approved drug combinations

for melanoma.

Based on the results shown in Table 4.2, we note that across all disease classes, the designed

compound combinations learned in an environment where the network principle[247] was re-

warded did achieve the desired performances. Specifically, their overlaps in disease modules were

low as ηA∩B fractions are around 0.1; whereas their joint coverage in disease modules was high as

ηA∪B fractions were in the range of 0.4–0.5 for all diseases.

Table 4.2: Network-based score for the generated drug combinations based on disease ontology
classifications.

Disease Ontology Disease Ontology extended
ηA−B ηB−A ηA∩B ηA∪B ηA−B ηB−A ηA∩B ηA∪B

infectious disease 0.25 0.10 0.06 0.41 0.20 0.07 0.05 0.33
disease of anatomical entity 0.27 0.12 0.10 0.49 0.26 0.11 0.09 0.48
disease of cellular proliferation 0.25 0.09 0.07 0.42 0.25 0.10 0.08 0.44
disease of mental health 0.22 0.11 0.10 0.43 0.22 0.11 0.10 0.43
disease of metabolism 0.22 0.13 0.10 0.46 0.23 0.14 0.11 0.48
genetic disease 0.23 0.15 0.11 0.4 0.23 0.15 0.11 0.49
syndrome 0.22 0.11 0.11 0.44 0.22 0.11 0.11 0.44
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Compared to a few FDA-approved drugs for melanoma in Table 3, we notice that the designed

compound combinations had similar exclusive coverage (ηA−B and ηB−A) as the drug combina-

tions. However, the overlapping and overall coverage (ηA∩B and ηA∪B) were both much higher in

FDA-approved drug combinations than the designed. Improvements could be made by training the

RL agent longer, as these scores had already been improving during the limited training process

under computational restrictions. More improvement can be made by adjusting the network-based

reward as well.

Table 4.3: Network-based scores for FDA-approved melanoma drug-combinations.

ηA−B ηB−A ηA∩B ηA∪B

Dabrafenib + Trametinib 0.05 0.21 0.55 0.81
Encorafenib + Binimetinib 0.21 0.05 0.53 0.86
Vemurafenib + Cobimetinib 0.05 0.27 0.36 0.68

4.5.3 Case studies for specific diseases

4.5.3.1 Experiment Setup

In the third and last stage of RL model training, we start from the stage 2 model and gener-

ate drug combinations for a fixed target disease and can choose scaffold libraries specific to the

disease. In parallel, we trained the model for 500 iterations (roughly 1 day) to generate 4,000

drug combinations specifically for each of 4 diseases featuring various drug-combination strate-

gies: melanoma, lung cancer, ovarian cancer, and breast cancer. In all cases, we started with the

Murcko scaffolds of specific FDA-approved drug combinations to be detailed next.

Melanoma: Different targets in the same pathway. Resistance to BRAF kinase inhibitors is

associated with reactivation of the mitogen-activated protein kinase (MAPK) pathway. There is,

thus, a phase 1 and 2 trial of combined treatment with Dabrafenib, a selective BRAF inhibitor,

and Trametinib, a selective MAPK kinase (MEK) inhibitor. As melanoma is not one of the 299
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diseases, we chose a broader neoplasm as an alternative. To compensate for the loss of focus on

target disease, we design compound pairs from Murcko scaffolds of Dabrafenib + Trametinib.

Lung and ovarian cancers: Targeting parallel pathways. MAPK and PI3K signaling pathways

are parallels important for treating many cancers, including lung and ovarian cancers [284, 285].

Clinical data suggest that dual blockade of these parallel pathways has synergistic effects. Bu-

parlisib (BKM120) and Trametinib (GSK1120212; Mekinist) are as a drug combination therapy

are used for the purpose. Specifically, Buparlisib is a potent and highly specific PI3K inhibitor,

whereas Trametinib is a highly selective, allosteric inhibitor of MEK1/MEK2 activation and kinase

activity [285].

Breast cancer: Reverse resistance. Endocrine therapies, including Fulvestrant, are the primary

treatment for hormone receptor-positive breast cancers (80% of breast cancers) [286]. However,

they could confer resistance to patients during or after the treatment. A phase 3 study is using

Fulvestrant and Palbociclib as a combination therapy to reverse the resistance. Fulvestrant and

Palbociclib are targeting different genes in different pathways. Specifically, Fulvestrant targets

the estrogen receptor (ER) α in the estrogen signaling pathway, and Palbociclib targets cyclin-

dependent kinases 4 and 6 (CDK4 and CDK6) in cell cycle pathway [286].

4.5.3.2 Baseline methods for drug pair combination

Since our proposed method is the first to generate drug combinations for specific diseases, we

consider the following baseline methods to compare with: 1) random selection of 1,000 pairs from

8,724 small-molecule drugs in Drugbank [287]; 2) 628 FDA-approved drug combinations curated

by [247] for hypertension and cancers (our case studies are on 4 types of cancers); 3) random

selection of 1,000 pairs of FDA-approved drugs for the given disease, based on the drug-disease

dataset “SCMFDD-L” [288].

4.5.3.3 Designed pairs follow network principles and improve toxicity

We first compare the compound combinations designed by our model and those from the base-

lines using the network score that reflects the network-based principle. Fig. 4.2(a)–(d) shows that
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our designed combinations in all 4 cases, with higher network scores in distribution, respected

the network principle more than the baselines (including the FDA-approved pairs not necessarily

specific for the target disease). The observation is statistically significant with P-values ranging

from 6E-74 to 7E-7 (one-sided Kolmogorov-Smirnov [KS] test; Tables 4.4 and 4.5). Such a result

is thanks to the network-principled reward we introduced.

Table 4.4: One-sided KS test statistics for comparison of network score distributions

P-values drugbank FDA drug comb. cancer spec.

Melanoma 1.55 e-37 6.05 e-74 1.46 e-15
Breast cancer 7.05 e-7 6.47 e-59 1.02 e-17
Lung cancer 1.48 e-27 2.22 e-43 6.48 e-24
Ovarian cancer 5.29 e-68 1.73 e-90 8.28 e-30

Table 4.5: Comparison of percentage of low and high network score

Low network score (< 0.2) High network score (> 0.5)
drugbank drug pair Cancer RL drugbank drug pair Cancer RL

Melanoma 28% 31.6% 23.8% 0.2% 4.6% 0.4% 7.8% 6.2%
Breast cancer 18% 22.6% 15% 2.2% 6% 2% 9.4% 11.6%
Lung cancer 20.6% 21.6% 17.6% 6.4% 15.4% 8% 19.4% 24.6%
Ovarian cancer 50.2% 54.2% 37.6% 11.2% 3.6% 0.4% 10.6% 7.2%

We also examine whether drug combinations designed to follow the network principle could

reduce toxicity from drug-drug interactions (DDIs). DDIs are crucial when using drug combi-

nations since they may trigger unexpected pharmacological effects, including adverse drug events

(ADEs). We used a deep-learning model DeepDDI [289] with a mean accuracy of 92.4% to predict

for each combination the probabilities of 86 types of DDIs (we manually split them into 16 positive

and 70 negatives). To summarize the DDIs, we considered both maximum and mean probabilities
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Figure 4.2: Comparison of network score and toxicity of RL-generated pairs of compounds (our
proposed method) with three baselines, i.e. random pairs of DrugBank compounds, FDA-approved
drug pairs, and random pairs of FDA-approved drugs for four case-study diseases.

of positive or negative ones. Furthermore, we compared those distributions between our designed

pairs and baselines in each disease.

Fig. 4.2(e)–(h), using the mean probability among negative DDIs, shows that our compound

pairs designed for all 4 diseases were predicted to have fewer chances of toxicity compared to the

baselines. One-sided KS tests attested to the statistical significance of the observation as P-values

ranged between 2E-166 and 2E-53.

Taken together, Fig. 4.2 suggested that following the network principle in designing drug com-

binations would help reduce toxicity due to DDIs.

4.5.3.4 Designed pairs reproduce approved polypharmacology strategies

We next examine the DeepAffinity-predicted target genes of our designed pairs and compare

them to the polypharmacology strategies outlined in Sec. 4.5.3.1 for each disease. Since improved

network scores have been shown to correlate with lower toxicity, we used the scores to filter the

4,000 combinations designed for each disease. Specifically, we retained combinations with net-

work scores above 0.5 and ηA∩B below 0.1. These designs are shared along with the codes.

For melanoma, out of 69 combination designs retained, 26% were predicted to jointly cover
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BRAF and MEK genes in a complementary way. In other words, one molecule only targets BRAF,

and the other only targets MEK, according to our DeepAffinity[19]-predicted IC50, echoing the

systems pharmacology strategy of the drug combination of Dabrafenib and Trametinib. There

were also other designs that demand further examination and potentially contain novel strategies.

All retained designs were predicted to target the MAPK pathway to which BRAF and MEK belong.

For lung and ovarian cancers, the same filtering criteria retained 204 (896) compound com-

binations designed for ovarian (lung) cancer. As disease modules can be limited, MEK1/2 does

not exist in the used modules for ovarian or lung cancer, and a gene-level analysis cannot be per-

formed as the melanoma case. Instead, we performed the pathway-level analysis and found that

50.9% (45.2%) of combination designs for ovarian (lung) cancer were predicted to jointly and

complementarily cover the MAPK and PI3K signaling pathways, which echoes the combination

of Buparlisib and Trametinib. Moreover, 99.5% (100%) of these retained designs were predicted

to jointly target both pathways for ovarian (lung) cancer.

For breast cancer, 77 designed compound-combinations passed the filters. As CDK4/6 does

not belong to the breast-cancer module due to the limitation of disease modules used, we again

only performed a pathway-level analysis. 9% of the combinations were predicted to jointly and

complementarily cover ER-signaling and cell-cycle pathways, as Fulvestrant and Palbociclib do.

Also, 74% of the retained combinations jointly cover these pathways. These two portions suggest

that many designed combinations were predicted to simultaneously target both pathways (with

possible overlapping genes). If we consider PI3K signaling rather than cell cycle pathway for

CDK4/6, 15.5% of retained drug combinations were predicted to jointly and complementarily

cover estrogen and PI3K signaling pathways, and all of them did jointly.

4.5.3.5 Ablation study for RL-based drug-combination generation

Besides HVGAE for network and disease embedding, two of our novel contributions in RL-

based drug set generations were network-principled reward and adversarial reward through GS-

WGAN. To assess the effects of these contributions to our model, we performed an ablation study

for stage 3 using the case of melanoma. We ablated the originally proposed model in two ways:
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removing the network-principled reward or replacing the GS-WGAN adversarial reward with the

previously-used GAN reward based on Jenson-Shannon (JS) divergence. Results in Fig. 4.3 sug-

gested that both rewards led to faster initial growth and higher saturation values in network-based

scores.
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Figure 4.3: Ablation study for RL: Best network scores achieved by three variants of the proposed
method over training iterations.

4.6 Conclusion

In response to the need for accelerated and principled drug-combination design, we have recast

the problem as graph set generation in a chemically and net-biologically valid environment and

developed the first deep generative model with the novel adversarial award and drug-combination

award in reinforcement learning for the purpose. We have also designed hierarchical variation

graph auto-encoders (HGVAE) to jointly embed domain knowledge such as gene-gene, disease-
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disease, gene-disease networks and learn disease representations to be conditioned on in the gen-

erative model for disease-specific drug combination. Our results indicate that HGVAE learns in-

tegrative gene and disease representations that are much more generalizable and informative than

state-of-the-art graph unsupervised-learning methods. The results also indicate that the reinforce-

ment learning model learns to generate drug combinations following a network-based principle

thanks to our adversarial and drug-combination rewards. Case studies involving four diseases

indicate that drug combinations designed to follow network principles tend to have low toxicity

from drug-drug interactions. These designs also encode systems pharmacology strategies echoing

FDA-approved drug combinations as well as other potentially promising strategies. As the first

generative model for disease-specific drug combination design, our study allows for assessing and

following network-based mechanistic hypotheses for efficiently searching the chemical combina-

torial space and effectively designing drug combinations.
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5. SUMMARY AND CONCLUSIONS

In this dissertation, several approaches have been developed for overcoming drug resistance due

to mutation in single protein target and alternative (same) pathway (re-)activation in the molecular

network.

In chapter 2, Various computational protein design problems have been formalized. iCFN, an

exact and efficient algorithm, has been developed for generic multi-state computational protein

design through combinatorial optimization. iCFN has been employed for Mutagenesis analysis,

Engineering “acid-switched” antibody-drug conjugate, anticipating resistant mutation, and discov-

ering the underlying biological mechanism. Then, building upon iCFN various multi-state optimal

drug design problems for overcoming drug resistance in single protein target have been introduced.

Novel lower bounds with theoretical proofs and computational complexity analysis have been de-

veloped for each drug design problem. Furthermore, formulations and lower bounds have been

extended to optimal drug cocktail design.

In chapter 3, at first, an interpretable semi-supervised deep learning model, named DeepAffin-

ity, has been developed for fast and accurate compound-protein affinity and contact predictions.

DeepAffinity has been utilized for binding pocket prediction, transfer learning paradigm for affin-

ity prediction of protein targets with a scarce amount of data, specificity prediction over drugs and

proteins. Then, DeepAffinity has been extended to DeepRelations for explainable prediction of

binding affinity through contact prediction between compounds and proteins. DeepRelations sig-

nificantly improved both binding affinity and contact predictions in comparison to the state-of-art

model. DeepRelations shows good generalizability over completely new drugs and protein. Its

accurate contact prediction has been beneficial for assisting ligand-protein docking. Furthermore,

DeepRelation has been utilized in real-life problems such as binding site prediction, structure-

activity relations (SAR), and lead optimization.

In chapter 4, a data- and principle-driven deep generative model has been developed for faster,

broader, and more in-depth exploration of drug combination space by following the principle
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underlying FDA approved drug combinations. Firstly, a Hierarchical Variational Graph Auto-

Encoders (HVGAE) has been developed for jointly and end-to-end embedding of disease-disease,

disease-gene, and gene-gene networks. The novel, attentional pooling mechanism has been devel-

oped for taking into account the contribution of each gene for a given disease. HVGAE has shown

to embed the disease-disease and gene-gene networks with a significant improvement compared

to deterministic and stochastic state-of-art approaches. Secondly, the drug combinations genera-

tion problem has been formulated as a graph set generator, and a reinforcement-learning approach

has been developed. More specifically, a novel network-based reward based on complementary

exposure and generalized sliced Wasserstein generative adversarial networks (GS-WGAN)-based

reward has been developed and utilized for more principle and stabler drug combinations genera-

tion. The proposed DeepAffinity model has been used as a fast and accurate oracle for compound-

protein prediction in calculating network-based reward.

Future directions for multi-state protein and drug design include 1) parallelizing the algorithm

and its codes on the architecture of GPU; 2) incorporating more types of constraints seen in ap-

plications while allowing for more general objective functions; 3) extending rigid rotamers to

continuous rotamers; 4) deriving tighter yet economic bounds under the framework of CFN; 5)

exploiting reinforcement learning approaches such as Monte Carlo tree search (MCTS) method

for solving protein folding problems efficiently and accurately with probabilistic guarantees; 6)

developing decentralized multi-agent solvers for large scale protein and drug design problems.

Future directions for compound-protein affinity prediction include 1) exploiting learning-to-

rank framework for more accurate SAR prediction; 2) extending sequential deep learning mod-

els (such as RNN and HAN) to graphical deep learning models (such as GCN and GIN) or

even sequential-graphical deep learning models (such as graphical transformers) for utilizing the

3D structure of proteins; 3) developing probabilistic deep learning models with built-in uncer-

tainty quantification ability for affinity prediction with probabilistic guarantees; 4) curating specific

datasets for high throughput assessment of current state-of-art models and developing novel meth-

ods for more accurate lead optimization; 5) incorporating supervising of specific energy terms such
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as electrostatics and hydrogen bonding for more explainable models; 6) utilizing and expanding

current state-of-art models for mutational effect prediction.

Future directions for network-based drug combinations include 1) extending the complemen-

tary exposure reward to higher-order interactions in k-drug combinations; 2) utilizing FDA-approved

drug combinations in the training process through the GAN framework; 3) extending drug combi-

nations generative model from host diseases only to viruses by attacking host-pathogen network;

4) developing drug combination generative model for disease network reversal.
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