
NEURWIN: NEURAL WHITTLE INDEX NETWORK FOR RESTLESS BANDITS VIA DEEP

RL

A Thesis

by

KHALED JAMAL KHADER NAKHLEH

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, I-Hong Hou
Co-Chair of Committee, Guofei Gu
Committee Members, Chao Tian

Scott Miller
Head of Department, Miroslav Begovic

December 2020

Major Subject: Electrical Engineering

Copyright 2020 Khaled Jamal Khader Nakhleh

ABSTRACT

Whittle index policy is a powerful tool to obtain asymptotically optimal solutions for the no-

toriously intractable problem of restless bandits. However, finding the Whittle indices remains a

difficult problem for many practical restless bandits with convoluted transition kernels. This thesis

proposes NeurWIN, a neural Whittle index network that seeks to learn the Whittle indices for any

restless bandits by leveraging mathematical properties of the Whittle indices. We show that a neu-

ral network that produces the Whittle index is also one that produces the optimal control for a set

of Markov decision problems. This property motivates using deep reinforcement learning for the

training of NeurWIN. We demonstrate the utility of NeurWIN by evaluating its performance for

three recently studied restless bandit problems. Our experiment results show that the performance

of NeurWIN is either better than, or as good as, state-of-the-art policies for all three problems.

ii

DEDICATION

Õ
�
æ

k�

��QË @ 	á
�

�
Ôg

��QË @ é�

��
<Ë @ Õ

�
æ��.�

In the name of Allah, the most gracious, the most merciful

This thesis is first and foremost dedicated to my parents, Anbarah Al-Abdallah, and Jamal

Nakhleh, for their unwavering encouragement and support. My parents always emphasize the

value of education for me and my siblings. They enabled me to focus on my studies, and

challenge myself to become better. This work would have been impossible without them.

My brother, Ammar, and sister, Lama, continue to set example for what a great sibling is. Your

support made this journey more meaningful.

I also express my gratitude to my advisor, professor I-Hong Hou for his mentorship and guidance.

His emphasis on exploring different possibilities answered questions we had while developing

this project. Our discussions helped me ask new research questions that I did not consider before.

Through this work, professor Hou pushed me to gain valuable skills that I plan on using in new

research projects.

Not least of all, I wish to thank my friends in no particular order: Santosh Ganji, Omar Maddouri,

Faisal Khan, Shabarish Prasad, Yixu Chen, Ketan Sethi, and Jatin Kamnani for their comradeship.

iii

ACKNOWLEDGMENTS

I would like to acknowledge the weekly discussions had with my advisor Prof. I-Hong Hou,

Prof. Srinivas Shakkottai, Prof. Ping-Chun Hsieh of National Chiao Tung University, and Santosh

Ganji, an electrical engineering PhD candidate at Texas A&M University.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Prof. I-Hong Hou, Prof. Chao

Tian, Prof. Scott Miller of the Electrical and Computer Engineering Department, and of Prof.

Guofei Gu of the Computer Science and Engineering department.

All implementations, results, figures, and other work for the thesis were completed by the

student, Khaled Nakhleh.

Funding Sources

Graduate study was supported by a Graduate Teaching Assistantship (GAT) from the Electrical

and Computer Engineering Department at Texas A&M University.

v

NOMENCLATURE

MAB Multi-Armed Bandit

RMAB Restless Multi-Armed Bandit

DRL Deep Reinforcement Learning

MDP Markov Decision Process

FCNN Fully-Connected Neural Network

Adam Adaptive Moment Estimation

NN Neural Network

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION. 1

2. RELATED WORK . 3

3. PROBLEM SETTING . 4

3.1 Restless Bandit Problems . 4
3.2 The Whittle Index . 4
3.3 Problem Statement . 6

4. NEURWIN ALGORITHM: NEURAL WHITTLE INDEX NETWORK . 7

4.1 Conditions for Whittle-Accurate . 7
4.2 Training Procedures for NeurWIN . 8

5. EXPERIMENTS . 11

5.1 Overview . 11
5.2 Recovering Bandits . 12
5.3 Wireless Scheduling . 13
5.4 Deadline Scheduling . 14

6. CONCLUSION. 16

REFERENCES . 17

vii

APPENDIX A. RECOVERING BANDITS’ TRAINING AND INFERENCE DETAILS 21

A.1 Formulated Restless Bandit for Recovering Bandits’ Case . 21
A.2 Training Setting . 22
A.3 Inference Setting . 23
A.4 REINFORCE Training and Inference Setting for Recovering Bandits 24

APPENDIX B. WIRELESS SCHEDULING TRAINING AND INFERENCE DETAILS 25

B.1 Restless Arm Definition for the Wireless Scheduling Case . 25
B.2 Training Setting . 26
B.3 Inference Setting . 26
B.4 REINFORCE Training and Inference Setting for Wireless Scheduling 27

APPENDIX C. DEADLINE SCHEDULING TRAINING AND INFERENCE DETAILS 29

C.1 Formulated Restless Bandit for Deadline Scheduling Case . 29
C.2 Training Setting . 30
C.3 Inference Setting . 31
C.4 REINFORCE Training and Inference Setting for Deadline Scheduling. 32

viii

LIST OF FIGURES

FIGURE Page

4.1 An illustrative motivation of NeurWIN. 7

5.1 Experiment results for recovering bandits over a single run. 13

5.2 Experiment results for wireless scheduling averaged over 10 independent runs. 14

5.3 Experiment results for deadline scheduling averaged over 10 independent runs. 15

A.1 The selected recovering functions for the recovering bandits’ case. For testing, we
set each quarter of the instantiated N arms to have one of the shown f(z) functions. 22

ix

LIST OF TABLES

TABLE Page

A.1 Θ values used in the recovering bandits’ case . 21

x

1. INTRODUCTION

Many sequential decision problems can be modeled as multi-armed bandit problems. A bandit

problem models each potential decision as an arm. In each round, we play M arms out of a total

of N arms by choosing the corresponding decisions. We then receive a reward from the played

arms. The goal is to maximize the long-term total discounted reward. Consider, for example, dis-

playing advertisements on an online platform with the goal to maximize the long-term discounted

click-through rates. This can be modeled as a bandit problem where each arm is a piece of adver-

tisement and we choose which advertisements to be displayed every time a particular user visits

the platform. It should be noted that the reward, i.e., click-through rate, of an arm is not station-

ary, but depends on our actions in the past. For example, a user that just clicked on a particular

advertisement may be much less likely to click on the same advertisement in the near future. Such

a problem is a classic case of the restless bandit problem, where the reward distribution of an arm

depends on its state, which changes over time based on our past actions.

The restless bandit problem is notoriously intractable [1]. Most recent efforts, such as recover-

ing bandits [2], rotting bandits [3], and Brownian bandits [4], only study some special instances of

the restless bandit problem. The fundamental challenge of the restless bandit problem lies in the

explosion of state space, as the state of the entire system is the Cartesian product of the states of

individual arms. A powerful tool to address the explosion of state space is the Whittle index policy

[5]. In a nutshell, the Whittle index policy calculates a Whittle index for each arm based on the

arm’s current state, where the index loosely corresponds to the amount of cost that we are willing

to pay to play the arm, and then plays the arm with the highest index. It has been shown that the

Whittle index policy is either optimal or asymptotically optimal in many settings.

In this thesis, we present Neural Whittle Index Network (NeurWIN), a principled machine

learning approach that finds the Whittle indices for virtually all restless bandit problems. We note

that the Whittle index is an artificial construct that cannot be directly measured. Finding the Whittle

index is typically intractable. As a result, the Whittle indices of many practical problems remain

1

unknown except for a few special cases.

We are able to circumvent the challenges of finding the Whittle indices by leveraging an im-

portant mathematical property of the Whittle index: Consider an alternative problem where there

is only one arm and we decide whether to play the arm in each time instance. In this problem, we

need to pay a constant cost of λ every time we play the arm. The goal is to maximize the long-term

discounted net reward, defined as the difference between the rewards we obtain from the arm and

the costs we pay to play it. Then, the optimal policy is to play the arm whenever the Whittle index

becomes larger than λ. Based on this property, a neural network that produces the Whittle index

can be viewed as one that finds the optimal policy for the alternative problem for any λ.

Using this observation, we propose a deep reinforcement learning method to train NeurWIN.

To demonstrate the power of NeurWIN, we employ NeurWIN for three recently studied restless

bandit problems, namely, recovering bandit [2], wireless scheduling [6], and stochastic deadline

scheduling [7]. There is no known Whittle index for the first problem, and there is only an ap-

proximation of the Whittle index under some relaxations for the second problem. Only the third

problem has a precise characterization of the Whittle index. For the first two problems, the index

policy using our NeurWIN achieves better performance than existing studies. For the third prob-

lem, the index policy using our NeurWIN has virtually the same performance as the Whittle index

policy.

The rest of the thesis is organized as follows: Chapter 2 reviews related literature. Chapter 3

provides formal definitions of the Whittle index and the problem statement. Chapter 4 introduces

the training algorithm for NeurWIN. Chapter 5 demonstrates the utility of NeurWIN by evaluating

its performance under three recently studied restless bandit problems. Finally, Chapter 6 concludes

this thesis.

2

2. RELATED WORK

Restless bandit problems were first introduced in [5]. They are known to be intractable, and are

in general PSPACE hard [1]. As a result, many studies focus on finding the Whittle index policy

for restless bandit problems, such as in [8, 9, 10, 11]. However, these studies are only able to find

the Whittle indices under various specific assumptions about the bandit problems.

There has been a lot of studies on applying RL methods for bandit problems. [12] proposed

a tool called Uniform-PAC for contextual bandits. [13] described a framework-agnostic approach

towards guaranteeing RL algorithms’ performance. [14] introduced contextual decision processes

(CDPs) that encompass contextual bandits for RL exploration with function approximation. [15]

compared deep neural networks with Bayesian linear regression against other posterior sampling

methods. However, none of these studies are applicable to restless bandits, where the state of an

arm can change over time.

Deep RL algorithms have been utilized in problems that resemble restless bandit problems,

including HVAC control [16], cyber-physical systems [17], and dynamic multi-channel access

[18]. In all these cases, a major limitation for deep RL is scalability. As the state spaces grows

exponentially with the number of arms, these studies can only be applied to small-scale systems,

and their evaluations are limited to cases when there are at most 5 zones, 6 sensors, and 8 channels,

respectively.

An emerging research direction is applying machine learning algorithms to learn Whittle in-

dices. [19] proposed employing the LSPE(0) algorithm [20] coupled with a polynomial function

approximator. The approach was applied in [21] for scheduling web crawlers. However, this work

can only be applied to restless bandits whose states can be represented by a single number, and it

only uses a polynomial function approximator, which may have low representational power [22].

[23] proposed a Q-learning based heuristic to find Whittle indices. However, as shown in its ex-

periment results, the heuristic may not produce Whittle indices even when the training converges.

3

3. PROBLEM SETTING

In this chapter, we provide a brief overview of restless bandit problems and the Whittle index.

We then formally define the problem statement.

3.1 Restless Bandit Problems

A restless bandit problem consists ofN restless arms. In each round t, a control policy observes

the state of each arm i, denoted by si[t], and selects M arms to activate. We call the selected arms

as active and the others as passive. We use ai[t] to denote the policy’s decision on each arm i,

where ai[t] = 1 if the arm is active and ai[t] = 0 if it is passive at round t. Each arm i generates a

stochastic reward ri[t] with distributionRi,act(si[t]) if it is active, and with distributionRi,pass(si[t])

if it is passive. The state of each arm i in the next round evolves by the transition kernel of either

Pi,act(si[t]) or Pi,pass(si[t]), depending on whether the arm is active. The goal of the control policy

is to maximize the total discounted reward, which can be expressed as
∑∞

t=1

∑N
i=1 β

tri[t] with β

being the discount factor.

A control policy is effectively a function that takes the vector (s1[t], s2[t], . . . , sN [t]) as the

input and produces the vector (a1[t], a2[t], . . . , aN [t]) as the output. It should be noted that the

space of input is exponential in N . If each arm can be in one of K possible states, then the number

of possible inputs is KN . This feature, which is usually referred to as the curse of dimensionality,

makes finding the optimal control policy intractable.

3.2 The Whittle Index

An index policy seeks to address the curse of dimensionality through decomposition. In each

round, it calculates an index, denoted by Wi(si[t]), for each arm i based on its current state. The

index policy then selects the M arms with the highest indices to activate. It should be noted that

the index of an arm i is independent from the states of any other arms.

Obviously, the performance of an index policy depends on the design of the index function

Wi(·). A popular index with solid theoretical foundation is the Whittle index, which is defined

4

below. Since we only consider one arm at a time, we drop the subscript i for the rest of the thesis.

Consider a system with only one arm, and a control policy that determines whether to activate

the arm in each round t. Suppose that the policy needs to pay an activation cost of λ every time it

chooses to activate the arm. The goal of the control policy is to maximize the total discounted net

reward,
∑∞

t=1 β
t(r[t] − λa[t]). The optimal control policy can be expressed by the set of states in

which it would activate this arm for a particular λ, and we denote this set by A(λ). Intuitively, the

higher the cost, the less likely the optimal control policy would activate the arm in a given state,

and hence the set A(λ) should decrease monotonically. When an arm satisfies this intuition, we

say that the arm is indexable.

Definition 1 (Indexability). An arm is said to be indexable if A(λ) decreases monotonically from

the set of all states to the empty set as λ increases from −∞ to ∞. A restless bandit problem is

said to be indexable if all arms are indexable.

Definition 2 (The Whittle Index). If an arm is indexable, then its Whittle index of each state s is

defined as W (s) := supλ{λ : s ∈ A(λ)}.

Even when an arm is indexable, finding its Whittle index can still be intractable, especially

when the transition kernel of the arm is convoluted. Our NeurWIN finds the Whittle index by

leveraging the following property of the Whittle index: Consider the single-armed bandit problem.

Suppose the initial state of an indexable arm is s at round one. Consider two possibilities: The

first is that the control policy activates the arm at round one, and then uses the optimal policy

starting from round two; and the second is that the control policy does not activate the arm at

round one, and then uses the optimal policy starting from round two. Let Qλ,act(s) and Qλ,pass(s)

be the expected discounted net reward for these two possibilities, respectively, and let Ds(λ) :=(
Qλ,act(s) − Qλ,pass(s)

)
be their difference. Clearly, the optimal policy should activate an arm

under state s and activation cost λ if Ds(λ) ≥ 0. We then have the following:

Theorem 1. [24, Thm 3.14] If an arm is indexable, then, for every state s, Ds(λ) ≥ 0 if and only

if λ ≤ W (s).

5

Our NeurWIN uses Thm. 1 to train neural networks that predict the Whittle index for any

indexable arms. From Def. 1, a sufficient condition for indexability is when Ds(λ) is a decreasing

function. Thus, we define the concept of strong indexability as follows:

Definition 3 (Strong Indexability). An arm is said to be strongly indexable if Ds(λ) is strictly

decreasing in λ for every state s.

3.3 Problem Statement

We now formally describe the objective of this thesis. We assume that we are given a simulator

of one single restless arm as a black box. The simulator provides two functionalities: First, it

allows us to set the initial state of the arm to any arbitrary state s. Second, in each round t, the

simulator takes a[t], the indicator function that the arm is activated, as the input and produces the

next state s[t+ 1] and the reward r[t] as the outputs.

Our goal is to train a neural network that approximates the Whittle index of this restless arm

using its simulator. A neural network takes the state s as the input and produces a real number fθ(s)

as the output, where θ is the vector containing all weights and biases of the neural network. Recall

that W (s) is the Whittle index of the arm. We aim to find appropriate θ that makes |fθ(s)−W (s)|

small for all s. Such a neural network is said to be Whittle-accurate.

Definition 4 (Whittle-accurate). A neural network with parameters θ is said to be γ-Whittle-

accurate if |fθ(s)−W (s)| ≤ γ, for all s.

6

4. NEURWIN ALGORITHM: NEURAL WHITTLE INDEX NETWORK

4.1 Conditions for Whittle-Accurate

Arm

An arm with activation cost
NeurWIN

Figure 4.1: An illustrative motivation of NeurWIN.

Before presenting NeurWIN, we first discuss the conditions for a neural network to be γ-

Whittle-accurate.

Suppose we are given a simulator of an arm and a neural network with parameters θ. We can

then construct an environment of the arm along with an activation cost λ as shown in Fig. 4.1. In

each round t, the environment takes the real number fθ(s[t]) as the input. The input is first fed into

a step function to produce a[t] = 1
(
fθ(s[t]) ≥ λ

)
, where 1(·) is the indicator function. Then, a(t)

is fed into the simulator of the arm to produce r[t] and s[t + 1]. Finally, the environment outputs

the net reward r[t]− λa[t] and the next state s[t+ 1]. We call this environment Env(λ). Thus, the

neural network can be viewed as a controller for Env(λ). The following corollary is a direct result

from Thm. 1.

Corollary 1. If fθ(s) = W (s),∀s, then the neural network with parameters θ is the optimal

controller for Env(λ), for any λ and initial state s[1]. Moreover, given λ and s[1], the optimal

discounted net reward is max{Qλ,act(s[1]), Qλ,pass(s[1])}.

7

Corollary 1 can be viewed as a necessary condition for a neural network to be 0-Whittle-

accurate. Below, we establish a sufficient condition for γ-Whittle-accuracy.

Theorem 2. If the arm is strongly indexable, then for any γ > 0 and an arbitrarily small positive

constant δ, there exists a positive ε such that the following statement holds: If, for any states s0

and s1, the discounted net reward of applying a neural network to Env(λ) with initial state s1 is

at least max{Qλ,act(s1), Qλ,pass(s1)}− ε, for any activation cost λ ∈ [fθ(s0)− δ, fθ(s0) + δ], then

the neural network is γ-Whittle-accurate.

Proof. For a given γ, let ε = mins{min{QW (s)+γ,pass(s)−QW (s)+γ,act(s), QW (s)−γ,act(s)−

QW (s)−γ,pass(s)}}/2. Since the arm is strongly indexable and W (s) is its Whittle index, we have

ε > 0.

We prove the theorem by contradiction. Suppose the neural network is not γ-Whittle-accurate,

then there exists a state s′ such that |fθ(s′)−W (s′)| > γ. We set s0 = s1 = s′. For the case fθ(s′) >

W (s′) + γ, we set λ = fθ(s
′) + δ. Since λ > W (s′) + γ, we have max{Qλ,act(s

′), Qλ,pass(s
′)} =

Qλ,pass(s
′) and Qλ,pass(s

′) − Qλ,act(s
′) ≥ 2ε. On the other hand, since fθ(s′) > λ, the neural

network would activate the arm in the first round and its discounted reward is at most

Qλ,act(s
′) < Qλ,pass(s

′)− 2ε < max{Qλ,act(s
′), Qλ,pass(s

′)} − ε.

For the case fθ(s′) < W (s′)−γ, a similar argument shows that the discounted reward for the neural

network when λ = fθ(s
′)− δ is smaller than max{Qλ,act(s

′), Qλ,pass(s
′)} − ε. This completes the

proof.

4.2 Training Procedures for NeurWIN

Thm. 2 states that a neural network that yields near-optimal net reward for any environments

Env(λ) is also Whittle-accurate. This observation motivates the usage of deep reinforcement

learning to find Whittle-accurate neural networks. To make the output of the environments differ-

entiable with respect to the input fθ(s[t]), we replace the step function in Fig. 4.1 with a sigmoid

8

function σm(fθ(s[t]) − λ) :=
(
1 + exp(−m(fθ(s[t]) − λ))

)−1, where m is a sensitivity parame-

ter. The environment then chooses a[t] = 1 with probability σm(fθ(s[t]) − λ), and a[t] = 0 with

probability 1− σm(fθ(s[t])− λ). We call this differentiable environment Env∗(λ).

Our training procedure consists of multiple mini-batches, where each mini-batch is composed

of a fixed number of episodes. At the beginning of each mini-batch, we randomly select two states

s0 and s1. Motivated by the condition in Thm. 2, we consider the environment Env∗(fθ(s0))

with initial state s1 and aim to improve the empirical discounted net reward of applying the neural

network to such an environment.

Our approach is based on the REINFORCE algorithm [25]. In each episode e, we set λ =

fθ(s0) and initial state to be s1. We then apply the neural network with parameters θ to Env∗(λ)

and observe the sequences of actions
(
a[1], a[2], . . .

)
and states

(
s[1], s[2], . . .

)
. We can use these

sequences to calculate their gradients with respect to θ through backward propagation, which we

denote by he. We also observe the discounted net reward and denote it by Ge. After all episodes

in the mini-batch finish, we calculate the average of all Ge as a bootstrapped baseline and denote

it by Ḡb. Finally, we do a weighted gradient ascent with the weight for episode e being its offset

net reward, Ge − Ḡb. When the step size is chosen appropriately, the neural network will be more

likely to follow the sequences of actions of episodes with larger Ge after the weighted gradient

ascent, and thus will have a better empirical discounted net reward. The complete algorithm is

described in Alg. 1.

Obviously, the choice of s0 and s1 can have significant impact on the convergence speed of

Alg. 1. In our implementation, we choose s0 uniformly at random in each mini-batch. The choice

of s1 depends on the bandit problems. Some bandit problems naturally visit certain states far less

frequently than other states. For such problems, we choose s1 to be those less-frequently-visited

states with higher probabilities, so as to ensure that Alg. 1 is able to learn the optimal control for

these states. For other problems, we simply choose s1 = s0.

9

Algorithm 1: NeurWIN Training
Input: Parameters θ, discount factor β ∈ (0, 1), learning rate L, sigmoid parameter m
Output: Trained neural network parameters θ+

for each mini-batch b do
Randomly choose s0 and s1, and set λ← fθ(s0) ;
for each episode e in the mini-batch do

Set the arm to state s1, and set he ← 0 ;
for each round t in the episode do

Choose a[t] = 1 w.p. σm(fθ(s[t])− λ), and a[t] = 0 w.p. 1− σm(fθ(s[t])− λ);
if a[t] = 1 then

he ← he +∇θ ln(σm(fθ(s[t])− λ)) ;
else

he ← he +∇θ ln(1− σm(fθ(s[t])− λ)) ;
end

end
Ge ← empirical discounted net reward in episode e;

end
Lb ← learning rate in mini-batch b;
Ḡb ← the average of Ge for all episodes in the mini-batch;
Update parameters through gradient ascent θ ← θ + Lb

∑
e(Ge − Ḡb)he ;

end

10

5. EXPERIMENTS

5.1 Overview

In this section, we demonstrate NeurWIN’s utility by evaluating it under three recently studied

applications of restless bandit problems. In each application, we consider that there are N arms

and a controller can play M of them in each round. We evaluate three different pairs of (N,M):

(4, 1), (100, 10), and (100, 25), and average the results of 10 independent runs. Some applications

consider that different arms can have different behaviors. For such scenarios, we consider that

there are multiple types of arms and train a separate NeurWIN for each type. During testing, the

controller calculates the index of each arm based on the arm’s state, and schedules the M arms

with the highest indices.

The performance of NeurWIN is compared against the proposed policies in the respective

recent studies. In addition, we also implement and evaluate the REINFORCE algorithm [25] for

the case N = 4 and M = 1.

The REINFORCE algorithm aims to find the optimal control by viewing a restless bandit prob-

lem as a Markov decision problem. Under this view, the number of states is exponential in N and

the number of possible actions is
(
N
M

)
. This is why we are only able to evaluate REINFORCE for

the case N = 4 and M = 1.

We use the same neural network architecture for NeurWIN in all three applications. The neural

network is a fully connected one that consists of one input layer, one output layer, and two hidden

layers. There are 16 and 32 neurons in the two hidden layers. The output layer has one neuron,

and the input layer size is the same as the dimension of the state of one single arm. As for the

REINFORCE algorithm, we choose the neural network architecture so that the total number of

parameters is slightly more than N times as the number of parameters in NeurWIN to make a fair

comparison. ReLU activation function is used for the two hidden layers. An initial learning rate

L = 0.001 is set for all cases, with the Adam optimizer [26] employed for the gradient ascent step.

11

The discount factor is β = 0.999 and each mini-batch consists of five episodes.

For all cases, we implement the NeurWIN algorithm using PyTorch [27], and train the agent

on a single arm modelled after OpenAI’s Gym API [28]. We provide a brief overview of each

application and the experiment setting in the following sections. We refer readers to the appendices

for detailed discussions on experiment settings.

5.2 Recovering Bandits

The recovering bandits [2] aim to model the time-varying behaviors of consumers. In particular,

it considers that a consumer who has just bought a certain product, say, a television, would be much

less interested in advertisements of the same product in the near future. However, the consumer’s

interest in these advertisements may recover over time. Thus, the recovering bandit models the

reward of playing an arm, i.e., displaying an advertisement, by a function f(min{z, zmax}), where

z is the time since the arm was last played and zmax is a constant specified by the arm. There is no

known Whittle index or optimal control policy for this problem.

The recent study [2] on recovering bandit focuses on learning the function f(·) for each arm.

Once it obtains an estimate of f(·), it uses a heuristic called d-lookahead to determine which arms

to play. The complexity of the heuristic isO(
(
N
M

)d
) when d > 1. Thus, we are only able to evaluate

1-lookahead.

In our experiment, we consider that there are four types of arms and there are N
4

arms for each

type. Different types of arms have different functions f(·). The state of each arm is its value of

min{z, zmax} and we set zmax = 20 for all arms.

Experiment results are shown in Fig. 5.1. It can be observed that NeurWIN is able to outper-

form 1-lookahead in all settings with just a few thousands of training episodes. In contrast, for the

case N = 4 and M = 1, REINFORCE only sees slight performance improvement over 50,000

training episodes and remains far worse than NeurWIN. This may be due to the explosion of state

space. Even though N is only 4, the total number of possible states is 204 = 160, 000, making it

difficult for REINFORCE to learn the optimal control in just 50, 000 episodes. In contrast, since

NeurWIN learns the Whittle index of each arm separately, its size of state space is only 20.

12

0 10000 20000 30000 40000 50000
Number of Training Episodes37

50
40

00
42

50
45

00
47

50
50

00
52

50
55

00
57

50

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

REINFORCE
1-Lookahead
NeurWIN

(a) N = 4. M = 1.

0 10000 20000 30000 40000 50000
Number of Training Episodes

70
00

0
70

50
0

71
00

0
71

50
0

72
00

0
72

50
0

73
00

0

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

1-Lookahead
NeurWIN

(b) N = 100. M = 10.

0 10000 20000 30000 40000 50000
Number of Training Episodes14

20
00

14
25

00
14

30
00

14
35

00
14

40
00

14
45

00
14

50
00

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

1-Lookahead
NeurWIN

(c) N = 100. M = 25.

Figure 5.1: Experiment results for recovering bandits over a single run.

5.3 Wireless Scheduling

A recent paper [6] studies the problem of wireless scheduling over fading channels. In this

problem, each arm corresponds to a wireless client. Each wireless client has some data to be

transmitted and it suffers from a holding cost of 1 unit per round until it has finished transmitting

all its data. The channel quality of a wireless client, which determines the amount of data can

be transmitted if the wireless client is scheduled, changes over time. The goal is to minimize the

sum of holding costs of all wireless clients. Equivalently, we view the reward of the system as the

negative of the total holding cost.

Finding the Whittle index through theoretical analysis is difficult. Even for the simplified case

when the channel quality is i.i.d. over time and can only be in one of two possible states, the

recent paper [6] can only derive the Whittle index under some approximations. It then proposes a

size-aware index policy using its approximated index.

In the experiment, we adopt the settings of channel qualities of the recent paper. The channel

of a wireless client can be in either a good state or a bad state. The amount of data that can be

transmitted in a round is 33.6kb in a good state, and 8.4kb in a bad state. Initially, the amount of

load is uniformly between 0 and 1Mb. The state of each arm is its channel state and the amount of

remaining load. The size of state space is 1012 for each arm. We consider that there are two types

of arms, and different types of arms have different probabilities of being in the good state. We train

a NeurWIN for each type. During testing, there are N
2

arms of each type.

13

Experiment results are shown in Fig. 5.2. It can be observed that NeurWIN is able to outper-

form the size-aware index policy with about 100, 000 training episodes. This result is significant

when one considers the fact that the size-aware index is itself an approximation to the Whittle

index. The experiment results thus suggest that NeurWIN is able to find a more accurate approx-

imation to the Whittle index than the best known theoretical result. It can also be observed that

REINFORCE performs poorly and only improves a little in the first 100, 000 episodes.

0 20000 40000 60000 80000 100000
Number of Training Episodes

25
00

20
00

15
00

10
00

50
0

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

REINFORCE
Size-aware Index
NeurWIN

(a) N = 4. M = 1.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Training Episodes 1e6

20
00

0
18

00
0

16
00

0
14

00
0

12
00

0
10

00
0

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

Size-aware Index
NeurWIN

(b) N = 100. M = 10.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Training Episodes 1e6

90
00

80
00

70
00

60
00

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

Size-aware Index
NeurWIN

(c) N = 100. M = 25.

Figure 5.2: Experiment results for wireless scheduling averaged over 10 independent runs.

5.4 Deadline Scheduling

A recent study [7] proposes a deadline scheduling problem for the scheduling of electrical

vehicle charging stations. In this problem, a charging station has N charging spots and enough

power to charge M vehicles in each round. When a charging spot is available, a new vehicle may

join the system and occupy the spot. Upon occupying the spot, the vehicle announces the time

that it will leave the station and the amount of electricity that it needs to be charged. The charging

station obtains a reward for each unit of electricity that it provides to a vehicle. However, if the

station cannot fully charge the vehicle by the time it leaves, then the station needs to pay a penalty.

The goal of the station is to maximize its net reward, defined as the difference between the amount

of reward and the amount of penalty. Under an i.i.d. arrival assumption, the recent study has

derived the precise characterization of the Whittle index, which we refer to as the deadline Whittle

index.

14

We use exactly the same setting as in the recent study [7] for our experiment. In this problem,

the state of an arm is denoted by a pair of integers (D,B), whereB is the amount of electricity that

the vehicle still needs and D is the time until the vehicle leaves the station. When a charging spot

is available, its state is (0, 0). B is upper-bounded by 9 and D is upper-bounded by 12. Hence, the

size of state space is 109 for each arm.

The experiment results are shown in Fig. 5.3. It can be observed that the performance of

NeurWIN converges to that of the deadline Whittle index in less than 500 training episodes.

0 200 400 600 800 1000
Number of Training Episodes

30
00

28
00

26
00

24
00

22
00

20
00

18
00

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

REINFORCE
Deadline Whittle Index
NeurWIN

(a) N = 4. M = 1.

0 200 400 600 800 1000
Number of Training Episodes

10
50

00
10

00
00

95
00

0
90

00
0

85
00

0
80

00
0

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

Deadline Whittle Index
NeurWIN

(b) N = 100. M = 10.

0 200 400 600 800 1000
Number of Training Episodes

75
00

070
00

065
00

060
00

055
00

050
00

045
00

040
00

0

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

Deadline Whittle Index
NeurWIN

(c) N = 100. M = 25.

Figure 5.3: Experiment results for deadline scheduling averaged over 10 independent runs.

15

6. CONCLUSION

This thesis introduced NeurWIN: a deep RL method for estimating the Whittle index for rest-

less bandit problems. The performance of NeurWIN is evaluated by three different restless bandit

problems. In each of them, NeurWIN significantly outperforms state-of-the-art control policies in

terms of the total discounted reward.

16

REFERENCES

[1] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal queuing network con-

trol,” Mathematics of Operations Research, vol. 24, no. 2, pp. 293–305, 1999.

[2] C. Pike-Burke and S. Grunewalder, “Recovering bandits,” in Advances in Neural Information

Processing Systems, pp. 14122–14131, 2019.

[3] J. Seznec, P. Menard, A. Lazaric, and M. Valko, “A single algorithm for both restless and

rested rotting bandits,” in International Conference on Artificial Intelligence and Statistics,

pp. 3784–3794, 2020.

[4] A. Slivkins and E. Upfal, “Adapting to a changing environment: the brownian restless ban-

dits.,” in COLT, pp. 343–354, 2008.

[5] P. Whittle, “Restless bandits: Activity allocation in a changing world,” Journal of applied

probability, pp. 287–298, 1988.

[6] S. Aalto, P. Lassila, and P. Osti, “Whittle index approach to size-aware scheduling with time-

varying channels,” in Proceedings of the 2015 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems, pp. 57–69, 2015.

[7] Z. Yu, Y. Xu, and L. Tong, “Deadline scheduling as restless bandits,” IEEE Transactions on

Automatic Control, vol. 63, no. 8, pp. 2343–2358, 2018.

[8] J. Le Ny, M. Dahleh, and E. Feron, “Multi-uav dynamic routing with partial observations

using restless bandit allocation indices,” in 2008 American Control Conference, pp. 4220–

4225, 2008.

[9] R. Meshram, D. Manjunath, and A. Gopalan, “On the whittle index for restless multiarmed

hidden markov bandits,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 3046–

3053, 2018.

17

[10] V. Tripathi and E. Modiano, “A whittle index approach to minimizing functions of age of

information,” in 2019 57th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), pp. 1160–1167, 2019.

[11] C. R. Dance and T. Silander, “When are kalman-filter restless bandits indexable?,” in Ad-

vances in Neural Information Processing Systems 28 (C. Cortes, N. D. Lawrence, D. D. Lee,

M. Sugiyama, and R. Garnett, eds.), pp. 1711–1719, Curran Associates, Inc., 2015.

[12] C. Dann, T. Lattimore, and E. Brunskill, “Unifying pac and regret: Uniform pac bounds

for episodic reinforcement learning,” in Proceedings of the 31st International Conference

on Neural Information Processing Systems, NIPS’17, (Red Hook, NY, USA), p. 5717–5727,

Curran Associates Inc., 2017.

[13] A. Zanette and E. Brunskill, “Problem dependent reinforcement learning bounds which can

identify bandit structure in MDPs,” vol. 80 of Proceedings of Machine Learning Research,

(Stockholmsmässan, Stockholm Sweden), pp. 5747–5755, PMLR, 10–15 Jul 2018.

[14] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire, “Contextual deci-

sion processes with low Bellman rank are PAC-learnable,” vol. 70 of Proceedings of Machine

Learning Research, (International Convention Centre, Sydney, Australia), pp. 1704–1713,

PMLR, 06–11 Aug 2017.

[15] C. Riquelme, G. Tucker, and J. Snoek, “Deep bayesian bandits showdown: An empirical

comparison of bayesian deep networks for thompson sampling,” in International Conference

on Learning Representations (ICLR), 2018.

[16] T. Wei, Yanzhi Wang, and Q. Zhu, “Deep reinforcement learning for building hvac control,”

in 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2017.

[17] A. S. Leong, A. Ramaswamy, D. E. Quevedo, H. Karl, and L. Shi, “Deep reinforcement

learning for wireless sensor scheduling in cyber–physical systems,” Automatica, vol. 113,

p. 108759, 2020.

18

[18] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforcement learning for

dynamic multichannel access in wireless networks,” IEEE Transactions on Cognitive Com-

munications and Networking, vol. 4, no. 2, pp. 257–265, 2018.

[19] V. S. Borkar and K. Chadha, “A reinforcement learning algorithm for restless bandits,” in

2018 Indian Control Conference (ICC), pp. 89–94, 2018.

[20] H. Yu and D. P. Bertsekas, “Convergence results for some temporal difference methods based

on least squares,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1515–1531,

2009.

[21] K. Avrachenkov and V. S. Borkar, “A learning algorithm for the whittle index policy for

scheduling web crawlers,” in 2019 57th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pp. 1001–1006, 2019.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press,

second ed., 2018.

[23] J. Fu, Y. Nazarathy, S. Moka, and P. G. Taylor, “Towards q-learning the whittle index for

restless bandits,” in 2019 Australian New Zealand Control Conference (ANZCC), pp. 249–

254, 2019.

[24] Q. Zhao, “Multi-armed bandits: Theory and applications to online learning in networks,”

Synthesis Lectures on Communication Networks, vol. 12, no. 1, pp. 1–165, 2019.

[25] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning,” Mach. Learn., vol. 8, p. 229–256, May 1992.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International

Conference on Learning Representations (ICLR), 2015.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,

19

high-performance deep learning library,” in Advances in Neural Information Processing Sys-

tems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett,

eds.), pp. 8026–8037, Curran Associates, Inc., 2019.

[28] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,

“Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

20

APPENDIX A

RECOVERING BANDITS’ TRAINING AND INFERENCE DETAILS

A.1 Formulated Restless Bandit for Recovering Bandits’ Case

We list here the terms that describes one restless arm in the recovering bandits’ case:

State s[t]: The state is a single value s[t] = z[t] called the waiting time. The waiting time

z[t] indicates the time since the arm was last played. The arm state space is determined by the

maximum allowed waiting time zmax, giving a state space S := [1, zmax].

Action a[t]: As with all other considered cases, the agent can either activate the arm a[t] = 1,

or not select it a[t] = 0. The action space is then A := {0, 1}.

Reward r[t]: The reward is provided by the recovering function f(z[t]), where z[t] is the time

since the arm was last played at time t. If the arm is activated, the function value at z[t] is the

earned reward. A reward of zero if given if the arm is left passive a[t] = 0. Figure A.1 shows the

four recovering functions used in this work. The recovering functions are generated from,

f(z[t]) = θ0(1− e−θ1·z[t]) (A.1)

Where the Θ = [θ0, θ1] values specify the recovering function. The Θ values for each class are

given in table A.1.

Table A.1: Θ values used in the recovering bandits’ case

Class θ0 Value θ1 Value

A 10 0.2
B 8.5 0.4
C 7 0.6
D 5.5 0.8

21

Next state s[t+ 1]: The state evolves based on the selected action. If a[t] = 1, the state is reset

to s[t + 1] = 1, meaning that bandit’s reward decayed to the initial waiting time z[t + 1] = 1. If

the arm is left passive a[t] = 0, the next state becomes s[t+ 1] = min{z[t] + 1, zmax}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z {1, zmax}

2

3

4

5

6

7

8

9

10

f(z
)

Recovering function A
Recovering function B
Recovering function C
Recovering function D

Figure A.1: The selected recovering functions for the recovering bandits’ case. For testing, we set
each quarter of the instantiated N arms to have one of the shown f(z) functions.

A.2 Training Setting

The general training procedure for the NeurWIN algorithm is outlined in its pseudo code in

section 4. Here we discuss the parameter selection and details specific to the recovering bandits’

case. We train the neural network using NeurWIN for 50, 000 episode, and save the trained pa-

rameters at an episode interval of 100 episodes. The purpose of saving the parameters is to infer

their control policies, and compare it with the 1-lookahead policy. In total, for 50, 000 training

episodes, we end up with 500 models for inference. The selected neural network has 609 trainable

parameters given as {1, 16, 32, 1} layer neurons.

22

For training parameters, we select the sigmoid value m = 5, the episode’s time horizon T =

100 timesteps, the mini-batch size to 5 episodes, and the discount factor β = 0.999. As with all

other cases, each mini-batch of episodes has the same initial state s[t = 1] which is provided by

the arm. To ensure the agent experiences as many states in [1, zmax] as possible, we set an initial

state sampling distribution given as Pr{s[t = 1] = z} = 2z

21+22+...+2zmax . Hence, the probability

of selecting the initial state to be s[t = 1] = zmax is 0.5. This initialization distribution allows the

agent to experience the recovery function’s awards at higher z values.

At the agent side, we set the activation cost λ at the beginning of each mini-batch. λ is chosen

to be the estimate index value fθ(s
′
) of a randomly selected state in s′ ∈ [1, zmax]. The training

continues as described in NeurWIN’s pseudo code: the agent receives the state, and selects an

action a[t]. If the agent activates the arm a[t] = 1, it receives a reward equal to the recovery

function’s value at z, and subtracts λ from it. Otherwise, the reward r[t] is kept the same for

a[t] = 0. We note that no noise was added to the reward value, and the agent discounts the

clean reward value βtr[t] = βtf(z[t]). The process continues for all timesteps in the episode

up to T = 100, and for remaining mini-batch episodes. A gradient ascent step is taken on the

bootstrapped mini-batch return as described in section 4.

A.3 Inference Setting

The inference setup measures NeurWIN’s control policy for several
(
N
M

)
settings. We test, for

a single run, the control policies of NeurWIN and 1-lookahead over a time horizon T = 3000

timesteps. We set N arms such that a quarter have one recovering function class from table A.1.

For example, when N = 100, 25 arms would have recovering function A that generates their

rewards.

At each timestep, the 1-lookahead policy ranks the recovering functions reward values, and

selects the M arms with the highest reward values for activation. The incurred discounted reward

at time t is the discounted sum of all activated arms’ rewards. The total discounted reward is then

the discounted rewards over time horizon T = 3000. For inferring NeurWIN’s control policy, we

record the total discounted reward for each of the 500 models. An example testing procedure is

23

as follows: we instantiate N arms each having a neural network trained to 10, 000 episodes. At

each timestep t, the neural networks provide the estimated index fi,θ(si[t]) for i = 1, 2, . . . , N .

The control policy activates the M arms with the highest index values. The incurred discounted

reward at time t is the discounted sum of all activated arm’s rewards βtR[t] = βt
∑M

j=1 fj(z[t]).

The same process continues for all timesteps in the horizon T = 3000. We then load the model

parameters trained on 10, 100 episodes, and repeat the aforementioned testing process using the

same seed values.

A.4 REINFORCE Training and Inference Setting for Recovering Bandits

The REINFORCE algorithm was applied only the
(
N
M

)
case where N = 4, and M = 1. For

training, REINFORCE had four arms each with one of the recovery functions detailed in table A.1.

The training parameters are: initial learning rate L = 0.001, mini-batch size is 5 episodes, and a

training episode time horizon T = 100 timesteps. Training was done up to 50, 000 episodes, where

the trained parameters were saved at an interval of 100 episodes. The selected neural network had

2504 trainable parameters. This neural network size is larger than 609 × 4 = 2436 parameters of

four NeurWIN neural networks.

For testing, the same procedure is followed as in A.3. The trained REINFORCE models were

loaded, and each tested on the same arms as NeurWIN and deadline Whittle index policies. The

testing was made for all 500 trained model (each being trained up to a different episode count).

The final control policy result was plotted along with NeurWIN and the 1-lookahead policies for(
4
1

)
arms.

24

APPENDIX B

WIRELESS SCHEDULING TRAINING AND INFERENCE DETAILS

B.1 Restless Arm Definition for the Wireless Scheduling Case

As with the recovering bandits’ case, we first list the state s[t], action a[t], reward r[t], and next

state s[t+ 1] that forms one restless arm:

State s[t]: The state is a vector (y[t], v[t]), where y[t] is the arm’s remaining load in bits, and

v[t] is the wireless channel’s state indicator. v[t] = 1 means a good channel state and a higher

transmission rate r2, while v[t] = 0 is a bad channel state with a lower transmission rate r1.

Action a[t]: The agent either activates the arm a[t] = 1, or keeps it passive a[t] = 0. The

reward and next state depend on the chosen action.

Reward r[t]: The arm’s reward is the negative of holding cost ψ, which is a cost incurred at

each timestep for not completing the job. If the selected action a[t] = 1, then the reward at time t

is r[t] = −ψ − λ. Otherwise, reward is just r[t] = −ψ.

Next state s[t+ 1]: The next state evolves differently as given below,

s[t+ 1] =



(y[t]− r2, 1) if q(v[t]) = 1, a[t] = 1

(y[t]− r1, 0) if q(v[t]) = 0, a[t] = 1

(y[t], q(v[t])) otherwise

(B.1)

Where q(v[t]) is the probability of a good channel state.

25

B.2 Training Setting

We again emphasize that NeurWIN training happens only on one restless arm. The general

training procedure was described in NeurWIN’s pseudo code. This discussion pertains only to the

wireless scheduling case.

The neural network has 625 trainable parameters given as {2, 16, 32, 1} neuron layers. The

training happens for 1, 000, 000 episodes, and we save the model parameters at each 1000 episodes.

Hence, the training results in 1000 models trained up to different episode limit.

For the wireless scheduling case, we set the sigmoid value m = 0.01, mini-batch size to

5 episodes, and the discount factor to β = 0.999. Episode time horizon is dependent on the

remaining job size y[t]. The episode terminates either if y[t] = 0 or t = 3000. The holding cost

is set to c = 1, which is incurred for each timestep the job is not completed. We also set the good

transmission rate r2 = 33.6 kb, and the bad channel transmission rate r1 = 8.4 kb. During training,

the good channel probability is q(v[t]) = 0.5.

The episode defines one job size sampled uniformly from the range y[t = 1] ∼ (0, 1Mb].

All episodes in one mini-batch have the same initial state, as well as the same sequence of good

channel states [v[t = 1], v[t = 2], . . . , v[t = T]].

At the agent side, NeurWIN receives the initial state s[t = 1], and sets the activation cost

λ = fθ(s[t = 1]) for all timesteps of all mini-batch episodes. As mentioned before, we save the

trained model at an interval of 1000 episodes. For 1, 000, 000 episodes, this results in 1000 models

trained up to their respective episode limit.

B.3 Inference Setting

For testing, the aim is to measure the trained models’ control performance against the size-

aware index. We instantiate N arms and activate M arms at each timestep t until all users’ jobs

terminate. We average the total discounted reward for all control policies over 10 independent

inference runs. Half of the arms have a good channel probability q(v[t]) = 0.75. The other half

has a good channel probability q(v[t]) = 0.1.

26

We compare NeurWIN’s control policy at different training episodes’ limits with the size-aware

index policy. The size-aware index is defined as follows: at each timestep, the policy prioritizes

arms in the good channel state, and calculates their secondary index. The secondary index v̂i of

arm i state (yi[t], vi[t]) is defined as,

v̂i(yi[t], vi[t]) =
ciri,2
yi[t]

(B.2)

The size-aware policy then activates the highest M indexed arms. In case the number of good

channel arms is below M , the policy also calculate the primary index of all remaining arms. The

primary index vi of arm i state (yi[t], vi[t]) is defined as,

vi(yi[t], vi[t]) =
ci

qi[t](ri,2/ri,1)− 1
(B.3)

Rewards received from all arms are summed, and discounted using β = 0.999. The inference

phase proceeds until all jobs have been completed.

For NeurWIN’s control policy, we record the total discounted reward for the 1000 saved mod-

els. For example, we set N arms each coupled with a model trained on 100, 000 episodes. The

models output their arms’ indices, and the top M indexed arms are activated. In case the re-

maining arms are less than M , we activate all remaining arms at timestep t. timestep reward

βtR[t] = βt
∑N

i=1 r[t] is the sum of all arms’ rewards. Once testing for the current model is fin-

ished, we load the next model 101, 000 for each arm, and repeat the process. We note that the arms’

initial loads are the same across runs, and that the sequence of good channel states is random.

B.4 REINFORCE Training and Inference Setting for Wireless Scheduling

The REINFORCE algorithm was applied only the
(
4
1

)
case. The four arms have the same

training setting as described in section B.2. The training parameters are: initial learning rate L =

0.001, mini-batch size is 5 episodes, and good channel probability for all four arms q(v[t]) = 0.5.

The episode time horizon has a hard limit of T̄ = 3000 timesteps. However, an episode can

27

terminate if all arms’ loads were fully processed (i.e.
∑4

i=1 yi[t] = 0). Training was done up to

1, 000, 000 episodes, where the trained parameters were saved at an interval of 1000 episodes. The

selected neural network had 2532 trainable parameters so to have slightly more parameters than

four NeurWIN neural networks.

For testing, the same procedure is followed as in B.3. The trained REINFORCE models were

loaded, and each tested on the same arms as NeurWIN and size-aware index. The final control

policy result was plotted along with NeurWIN and Whittle index policy for the
(
4
1

)
testing setup.

28

APPENDIX C

DEADLINE SCHEDULING TRAINING AND INFERENCE DETAILS

C.1 Formulated Restless Bandit for Deadline Scheduling Case

The state s[t], action a[t], reward r[t], and next state s[t+ 1] of one arm are listed below:

State s[t]: The state is a vector (D,B). B denotes the job size (i.e. amount of electricity

needed for an electric vehicle), and D is the job’s time until the hard drop deadline d is reached

(i.e. time until an electric vehicle leaves).

Action a[t]: The agent can either activate the arm a[t] = 1, or leave it passive a[t] = 0. The

next state changes based on two different transition kernels depending on the selected action. The

reward is also dependent on the action at time t.

Reward r[t]: The agent, at time t, receives a reward r[t] from the arm,

r[t] =



(1− c)a[t] if B[t] > 0, D[t] > 1

(1− c)a[t]− F (B[t]− a[t]) if B[t] > 0, D[t] = 1

0 otherwise

(C.1)

Where c is a constant processing cost incurred when activating the arm, F (B[t] − a[t]) is the

penalty function for failing to complete the job before D = 1. The penalty function was chosen to

be F (B[t]− a[t]) = 0.2(B[t]− a[t])2.

Next state s[t+ 1]: The next state D[t+ 1] decreases by one, while the job size B depends on

29

the selected action as,

s[t+ 1] =


(D[t]− 1, B[t]− a[t]) if D[t] > 1

(D,B) with prob. Q(D,B) if D[t] ≤ 1

(C.2)

Where Q(D,B) is the arrival probability of a new job (i.e. a new electric vehicle arriving at a

charging station) if the position is empty. For training and inference, we set Q(D,B) = 0.7.

C.2 Training Setting

NeurWIN training is made for 1000 episodes on the deadline scheduling case. We save the

trained model parameters at an interval of 5 episodes for inferring the control policy after train-

ing. Hence, the training produces 200 different set of parameters that output the estimated index

given their respective training limit. The neural network had 625 trainable parameters given as

{2, 16, 32, 1}, where the input layer matches the state size.

For the deadline scheduling training, we set the sigmoid value m = 1, episode’s time horizon

T = 3000 timesteps, mini-batch size to 5 episodes, and the discount factor β = 0.999. The

processing cost c = 0.5, with the job arrival rate Q(D,B) = 0.7. Training procedure follows

section 4.2 from the main text. The arm randomly picks an initial state s[t = 1] = (D,B), with

a maximum D̄ = 12, and maximum B̄ = 9. The arm fixes the initial states across episodes in

the same mini-batch for proper return comparison. The sequence of job arrivals in an episode’s

horizon is also fixed across a mini-batch. For example, one episode in mini-batch 1 would have the

sequence [(11, 5), (6, 2), (8, 4), . . . , (3, 5)], then all other episodes in the same mini-batch would

pass the same sequence. This way, the actions taken by the agent would be the critical factor in

comparing a mini-batch return, and ultimately in tuning the estimated index value fθ(·).

At the agent side, NeurWIN receives the initial state s[t = 1], sets the activation cost λ =

fθ(s[t = 1]). This activation cost λ selection method hence depends on the current network pa-

rameters θ, which are modified after every gradient ascent step. Training follows as described in

30

NeurWIN’s pseudo code.

C.3 Inference Setting

In order to infer the resultant control policy, we are required to test the performance on models

saved at different episodes’ intervals. In other words, the trained models’ parameters are tested at

the 5 episodes’ interval, and their discounted rewards are plotted for comparison.

From the trained models described in C.2, we instantiate N arms, and activate M arms at each

timestep. The inference step compares the resultant control policy with the deadline Whittle index

v(D,B) defined as,

v(D,B) =



0 if B = 0

1− c if 1 ≤ B ≤ D − 1

βD[t]−1F (B[t]−D[t] + 1)

−βD[t]−1F (B[t]−D[t]) + 1− c if D ≤ B

(C.3)

Where β = 0.999 is the discount factor. Note that a closed-form Whittle index was obtained

when the processing cost c is constant.

The testing is done for a time horizon of T = 3000 timesteps. The queue, modelled as N

restless arms, has M positions activated at each timestep. Each arm has a unique sequence of

job arrivals from other arms that differentiates its index value. For the deadline Whittle index, we

calculate the indices according to C.3, and activate the highest M indices-associated arms. The

accumulated reward from all arm (activated and passive) is then discounted with β.

For NeurWIN control policy, we instantiate N arms, and test the trained models up to a given

episode. For example, we load a NeurWIN model trained for 100 episodes on one arm, and set

N arms each with its own trained agent on 100 episodes. Once the testing is complete, we load

31

the next model trained at 105 episodes, and repeat the process for 105 episodes. The final result is

NeurWIN’s control policy’s performance on N arms given the models’ training.

We perform the testing run 10 different times up to 1000 episodes, where each run the arms

are seeded differently. We stress that both the deadline Whittle index and NeurWIN policies were

applied on identical seeded arms across the 10 runs. Meaning the sequence of arrivals and rewards

experienced was fixed for each arm in each run. Results were provided in the main text for this

setting.

C.4 REINFORCE Training and Inference Setting for Deadline Scheduling

The REINFORCE algorithm was applied on the
(
4
1

)
testing case. For training, REINFORCE

was trained on the same training setting as described in C.2 with the same parameters when appro-

priate. The four restless arms were seeded differently to give unique job sequences. Training was

made until 1000 episodes, where the trained parameters were saved at an interval of 5 episodes.

The selected neural network had 2532 trainable parameters. The REINFORCE parameters’ count

are purposefully slightly larger than 625×4 = 2500 parameters of four NeurWIN neural networks.

For testing, the same procedure is followed as explained in C.3. The trained REINFORCE

models were loaded, and each tested on the same arms as NeurWIN and deadline Whittle index

policies. The testing was made for all 200 trained model (each being trained up to a different

episode count). The final control policy result was plotted along with NeurWIN and Whittle index

policy for
(
4
1

)
arms.

We refer the reader to the code for further implementation details.

32

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Related work
	Problem Setting
	Restless Bandit Problems
	The Whittle Index
	Problem Statement

	NeurWIN Algorithm: Neural Whittle Index Network
	Conditions for Whittle-Accurate
	Training Procedures for NeurWIN

	Experiments
	Overview
	Recovering Bandits
	Wireless Scheduling
	Deadline Scheduling

	conclusion
	REFERENCES
	APPENDIX Recovering Bandits' Training and Inference Details
	Formulated Restless Bandit for Recovering Bandits' Case
	Training Setting
	Inference Setting
	REINFORCE Training and Inference Setting for Recovering Bandits

	APPENDIX Wireless Scheduling Training and Inference Details
	Restless Arm Definition for the Wireless Scheduling Case
	Training Setting
	Inference Setting
	REINFORCE Training and Inference Setting for Wireless Scheduling

	APPENDIX Deadline Scheduling Training and Inference Details
	Formulated Restless Bandit for Deadline Scheduling Case
	Training Setting
	Inference Setting
	REINFORCE Training and Inference Setting for Deadline Scheduling

