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ABSTRACT 

 

This thesis presents a new Halbach-array-based two-phase motor. The motor is 

based on a 2-pole, 10-segment Halbach cylinder that generates a uniform magnetic field 

inside. This uniform field simplifies the torque calculation and gives the basis of position 

detection based on Hall-effect sensors. This thesis gives a general analytical method to 

find the magnetic field intensity inside the Halbach cylinder. The analytical field solution 

is verified by a finite-element analysis (FEA) and experimental results from Hall-effect 

sensors. The two-phase armature can generate constant torque in the uniform magnetic 

field. With a transconductance amplifier, the maximum torque and speed generated by the 

motor with the current input of 4 A are 0.057 N∙m and 276 rpm, respectively. With the 

controller developed in the thesis, this motor offers a self-position sensing method by two-

phase Hall-effect sensors connecting to an Arduino microcontroller with a 0.5° resolution. 

The motor has the capacity to track the commanded motion and speed with error less than 

0.6°.  
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NOMENCLATURE 

 

A magnetic vector potential (T∙m) 

ABS acrylonitrile butadiene styrene 

ADC analog-to-digital converter 

AWG American wire gauge 

B magnetic flux density (T) 

B𝑟𝑒𝑚 remanence (T) 

C capacitance (F) 

DAC digital-to-analog converter 

FEA finite-element analysis 

HABTPM Halbach-array-based two-phase motor 

i current (A) 

J current density (A/m2) 

Jm moment of inertia of the motor (kg∙ m2) 

L inductance (H) 

M magnetization (A/m) 

PI proportional–integral 

PM permanent magnet 

R resistance (Ω) 

r radius (m) 

T temperature (°C) 
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t time (s) 

V voltage (V) 

Vcc power supply voltage(V) 

𝜁 damping ratio 

𝜃 angle in the cylindrical coordinate of Halbach cylinder (rad) 

𝜇 permeability (H/m) 

𝜇0 permeability of free space: 4𝜋 × 10−7 H/m 

𝜏 torque (N∙m) 

𝜙 magnetic flux (Wb) 

𝜓 angular of the motor (rad) 

𝜓̇ angular velocity of the motor (rad/s) 

𝜓̈ angular acceleration of the motor (rad/s2) 

𝜔𝑛 natural frequency (rad/s) 
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1. INTRODUCTION  

 

A Halbach magnet array is a special placement of permanent magnets that 

generates a strong magnetic field on one side of the array but weak on the other side [1]. 

The single-sided field gives an advantage of concentrating the magnetic energy. A 

Halbach array also generates a sinusoidal wave of magnetic flux density in space, which 

gives an advantage to track the position with Hall-effect sensors. This effect is widely 

applied in the planar position control [2]–[4]. The cylindrical Halbach magnet array, which 

is also described as Halbach cylinder, can be used in motor design [5]–[6].  

 

1.1. Halbach Array 

Normally, magnets of a planar Halbach array are placed at 90° rotation. As shown 

in Figure 1.1, if magnets are placed in clockwise rotation from the left to the right, the 

magnetic field on the bottom side of the array is stronger, and the fundamental magnetic 

field on the top side is zero. The magnetic flux density of the Halbach array placement is 

larger that of conventional placements as shown in Figure 1.1.  

The magnetic flux density changes sinusoidally along the axis parallel to the array 

on the strong side of the Halbach array with constant distance [7]–[8]. Although this effect 

is based on the assumption of an infinite length of magnet array, it can be applied to planar 

magnetic levitation and moving control. For example, Trumper et al. have presented the 

design paradigm and theory based on this effect [7]. If the Halbach array is put in a hollow, 

cylindrical structure instead of a planar, it can concentrate the magnetic field inside the 



 

 

 

cylinder and, with two-pole case, will generate a uniform magnetic flux density as well as 

shown in Section 2.1.2.  

 

(a) 

 

(b) 

Figure 1.1 (a) Linear Halbach magnet array with the 90° magnetization rotation and 

(b) conventional magnet array. 

 

1.2. Halbach Cylinder 

There are two types of the Halbach cylinder–The one with an internal field and the 

other with an external field to work with an internal rotor or external armature. Since this 
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research focuses on a design of a permanent-magnet (PM) motor with an internal armature, 

a Halbach cylinder with an internal field is illustrated in detail.  

In the ideal Halbach cylinder with an internal field, a sinusoidally varying 

magnetization is required. If the magnets have the placement of one period around the 

cylinder, namely a 2-pole structure, an ideal uniform magnetic field distribution is present 

at the center of the cylinder. Insinga et al. gave the Halbach equation as [9] 

                                                        𝐵 = 𝐵𝑟𝑒𝑚 ln (
𝑅𝑜

𝑅𝑖
) (1.1) 

where B is the magnetic flux density in the air gap, 𝐵𝑟𝑒𝑚 is the residual magnetic flux 

density of the magnet, 𝑅𝑜 and 𝑅𝑖  are the outer and inner radii of the cylinder. In reality, 

however, this ideal Halbach cylinder is infeasible to fabricate. One way to approximate 

the Halbach cylinder is to fill the cylinder with segmented magnets. Figure 1.2 shows the 

finite-element analysis (FEA) image of the flux lines.  

 

Figure 1.2 The FEA image of the 2-pole, 6-segment Halbach cylinder. 



 

 

 

In the air gap, this structure gives a practical means to create a sinusoidal flux-

density distribution for the application in high-precision positioning. The analysis of 

predicting the field distribution of a segmented Halbach cylinder was given by Shi et al. 

[10]. However, in the case discussed in the paper, there is no air gap between magnets. In 

real design, it is impossible to place an armature or magnets without an air gap inside a 

cylindrical geometry. Chen et al. provided a limited-angle torque motor with a single-

phase rotor based on a segmented Halbach cylinder and managed to establish the angular 

position control system [6], but it has limitations of non-constant torque production in a 

full period and low motor speed, and their four-segment structure could not generate a 

fine, uniform magnetic flux density.  

 

1.3. Contributions of this Research 

This research constructed a system as shown in the Figure 1.3, the overall system 

of this HABTPM consists of Arduino for data collecting and controller, DAC and ADC 

to output and input data, voltage shifter, current amplifier to generate various current to 

the motor, and HABTM. The proposed research is to develop a new Halbach-array-based 

two-phase motor (HABTPM), which includes (1) designing and developing a Halbach 

cylinder that can generate uniform magnet field density inside, (2) establishing an 

analytical framework for the general Halbach-array-based two-phase motor that can 

produce constant torque, (3) proposing a high-precision position sensing method based on 

Hall-effect sensors, and (4) designing and implementing a controller to achieve precision 

position control.  



 

 

 

 

 

Figure 1.3 The overall system of the HABTPM 
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2. ELECTROMAGNETIC ANALYSIS 

 

As shown in Figure 2.1, magnets are placed in the outer cylinder that generates 

strong internal magnetic field and the stator with coils that carry current is placed in the 

inner cylinder. This model is for general PM motor that has inner stator with armatures 

[11]. 

 

Figure 2.1 The model of HABTPM. 

In this chapter, the theoretical analysis of a general Halbach cylinder based on the 

magnetoquasistatic (MQS) approximation is presented. After the general expression of the 

magnetic flux density is derived, a segmented design is considered. The HABTPM 
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employs a 2-pole, 10-segment Halbach cylinder. Because of the air gap between the 

magnets, this magnet cylinder generates a different set of the Fourier harmonics in the 

magnetic flux density. The magnetic flux density inside the cylinder in the Fourier series 

is then compared with the finite-element analysis (FEA) result.  

 

2.1. Magnetic Field Analysis of Halbach Cylinder 

2.1.1. Poisson’s Equation for Vector Potential 

Under the MQS approximation [17], the effect of the time-varying electric field is 

neglected. The Halbach magnet cylinder has no current source, so the free volume and 

surface current densities Jf and Kf are not present. Then, the governing equations are 

                                                            ∇ ∙ 𝑩 = 0 (2.1) 

                                                       ∇ ×H = Jf = 0 (2.2) 

                                                      𝑩 = 𝜇0(𝑯 + 𝑴) (2.3) 

                                                         ∇ × E = −
𝜕𝑩

𝜕𝑡
 (2.4) 

                                                            ∇ ∙ 𝑱𝑓 = 0 (2.5) 

We assume the magnetically linear medium 

                                                         𝑩 = 𝜇𝑯 = 𝜇0𝑯 (2.6) 

The boundary condition is  

                 𝒏 × (𝑩𝑎 − 𝑩𝑏) = 𝜇0𝑲𝑓 + 𝜇0𝒏 × (𝑴𝑎 − 𝑴𝑏) = 𝜇0𝒏 × (𝑴𝑎 − 𝑴𝑏) (2.7) 

where 𝜇0 is the permeability of free space, 4𝜋 × 10−7 H/m. The magnetic vector potential 

A is defined as  



 

 

 

                                                           𝑩 ≡ ∇ × 𝑨 (2.8) 

Taking the curl for (2.8), we get 

                                       ∇ × 𝑩 = ∇ × (∇ × 𝑨) = ∇(∇ ∙ 𝑨) − ∇2𝑨 (2.9) 

by a vector identity. Setting the Coulomb gauge, ∇ ∙ A = 0, and substituting (2.2) and (2.3) 

into (2.8) yields the following Poisson’s equation.  

                                                      ∇2𝑨 = −𝜇0∇ × 𝑴 (2.10) 

 

2.1.2. General Solution to the General Poisson’s Equation 

The Halbach cylinder model is shown in Figure 2.2, with the inner radius of R𝑖 

and the outer radius Ro. On the outer surface, there are boundary a and b. On the inner 

surface, there are boundary c and d. The magnetization M is that of the Halbach cylinder. 

The system is established in the cylindrical coordinates.  

In the cylindrical coordinates, the magnetization density M of any periodic magnet 

placement in the cylinder can be expressed as a Fourier series.   

                          𝑴 = 𝑀𝑟𝒊𝑟 + 𝑀𝜃𝒊𝜃 = ∑
𝑛=1

∞

  𝑀𝑟𝑛 cos(𝑛𝜃) 𝒊𝑟 + 𝑀𝜃𝑛sin(𝑛𝜃)𝒊𝜃 (2.11) 

where 𝑀𝑟𝑛 and 𝑀𝜃𝑛 are nth Fourier harmonics of its r- and 𝜃-components, respectively. 

The cylinder generates the strong internal field when 𝑀𝑟𝑛 = 𝑀𝜃𝑛 and the strong external 

field when 𝑀𝑟𝑛 = −𝑀𝜃𝑛  [11]. Substituting (2.11) into (2.10) in the volume of the 

magnets, the vector Poisson equation for the nth harmonics becomes 

                                        ∇2𝑨𝑛 = −
𝜇0

𝑟
(𝑀𝑟𝑛 + 𝑛𝑀𝜃𝑛)sin(𝑛𝜃)𝒊𝑧 (2.12) 



 

 

 

 
 

Figure 2.2 General Halbach cylinder model with boundary condition. 

 

The magnetization is in the r- 𝜃  plane, so the vector potential has only z-

component. From (2.12), with the separation of variables, 𝑨𝑛 can be written as 

                                                    𝑨𝑛 = 𝐴𝑧𝑛(𝑟) sin(𝑛𝜃) 𝒊𝑧 (2.13) 

Equation (2.12) becomes a Cauchy-Euler equation in the cylindrical coordinate 

system as 

                                   
𝜕2𝐴𝑧𝑛

𝜕𝑟2
+

1

𝑟
∙
𝜕𝐴𝑧𝑛

𝜕𝑟
−

𝑛2

𝑟2
𝐴𝑧𝑛 = −

𝜇0

𝑟
(𝑀𝑟𝑛 + 𝑛𝑀𝜃𝑛) (2.14) 

The homogeneous solution is given in (2.15).   

                                                𝐴𝑧𝑛ℎ(𝑟) = 𝐶𝑛1𝑟
𝑛 + 𝐶𝑛2𝑟

−𝑛 (2.15) 

The particular solution is shown in (2.16)–(2.17). 

                                            𝐴𝑧1𝑝(𝑟) = −
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
𝑟ln(𝑟), 𝑛 = 1 (2.16) 
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                                                 𝐴𝑧𝑛𝑝(𝑟) =
𝑟𝜇0(𝑀𝑟𝑛+𝑛𝑀𝜃𝑛)

𝑛2−1
,  𝑛 ≠ 1 (2.17) 

𝐶𝑛1 and 𝐶𝑛2 are the constants to be determined by the boundary conditions. The solution 

to (2.14) is 

                                 𝐴𝑧1(𝑟) = 𝐶11𝑟 + 𝐶12𝑟
−1 −

𝜇0(𝑀𝑟1+𝑀𝜃1)

2
𝑟ln(𝑟), 𝑛 = 1 (2.18) 

                                    𝐴𝑧𝑛(𝑟) = 𝐶𝑛1𝑟
𝑛 + 𝐶𝑛2𝑟

−𝑛 +
𝑟𝜇0(𝑀𝑟𝑛+𝑛𝑀𝜃𝑛)

𝑛2−1
,  𝑛 ≠ 1 (2.19) 

We apply the boundary condition into A shown in (2.20) and (2.21), then get 

                                        𝑨𝑛(𝑅𝑖) = 𝐴𝑧𝑛(𝑅𝑖)sin(𝑛𝜃)𝒊𝒛 = 𝐴𝑧𝑛
𝑐 sin(𝑛𝜃)𝒊𝒛 (2.20) 

                                       𝑨𝑛(𝑅𝑜) = 𝐴𝑧𝑛(𝑅𝑜)sin(𝑛𝜃)𝒊𝒛 = 𝐴𝑧𝑛
𝑏 sin(𝑛𝜃)𝒊𝒛 (2.21) 

where 𝐴𝑧𝑛
𝑐  and 𝐴𝑧𝑛

𝑏  are the z-component of the nth harmonic of magnetic vector potential 

𝑨𝑛  evaluated at 𝑟 = 𝑅𝑖 and 𝑅𝑜, respectively.  

The transfer relations between the magnetic flux density and the magnetic vector 

potential can be derived by solving (2.18)–(2.21) [17]. Following Sections 2.1.3 and 2.1.4 

illustrate the field solution based on the transfer relations in the fundamental and nth 

spatial harmonics, respectively.  

 

2.1.3. Field Solution for the Fundamental Fourier Harmonics  

We treat the case of  𝑛 = 1 first. If it is a Halbach cylinder with internal field, 

𝑀𝑟1 = 𝑀𝜃1. The constants C11 and C12 are found by applying (2.20) and (2.21) into (2.18). 

Then we have the solution of Az1(𝑟).  

               C11 =
1

𝑅𝑜
2−𝑅𝑖

2 {𝐴𝑧1
𝑏 𝑅𝑜 − 𝐴𝑧1

𝑐 𝑅𝑖 +
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
[𝑅𝑜

2 ln(𝑅𝑜) − 𝑅𝑖
2 ln(𝑅𝑖)]} (2.22) 
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C12 = 𝐴𝑧1
𝑐 𝑅𝑖 +

𝜇0(𝑀𝑟1+𝑀𝜃1)𝑅𝑖
2 ln(𝑅𝑖)

2
−

𝑅𝑖
2

𝑅𝑜
2−𝑅𝑖

2 {𝐴𝑧1
𝑏 𝑅𝑜 − 𝐴𝑧1

𝑐 𝑅𝑖 +
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
[𝑅𝑜

2 ln(𝑅𝑜) −

𝑅𝑖
2 ln(𝑅𝑖)]} (2.23) 

Evaluate (2.8) in the cylindrical coordinate system, we have  

          𝑩 = ∇ × 𝑨 =
1

𝑟
|

𝒊𝑟 𝑟𝒊𝜃 𝒊𝑧
𝜕

𝜕𝑟

𝜕

𝜕𝜃
0

0 0 𝐴𝑧1 sin(𝜃)

| =
1

𝑟
𝐴𝑧1 cos(𝜃) 𝒊𝑟 −

𝜕𝐴𝑧1

𝜕𝑟
sin(𝜃) 𝒊𝜃 (2.24) 

Take 𝑩1 = 𝐵𝑟1cos(𝜃)𝒊𝑟 + 𝐵𝜃1sin(𝜃)𝒊𝜃 , so 𝐵𝜃1 = −
𝜕𝐴𝑧1

𝜕𝑟
. At r = Ri and Ro, the 

transfer relations between 𝐵𝜃1 and 𝐴𝑧1 at the boundaries b and c become 

          [
𝐵𝜃1

𝑏

𝐵𝜃1
𝑐 ] = [

𝑅𝑖
2+𝑅𝑜

2

𝑅𝑜(𝑅𝑖
2−𝑅𝑜

2)

2𝑅𝑖

𝑅𝑜
2−𝑅𝑜

2

2𝑅𝑜

𝑅𝑖
2−𝑅𝑜

2

𝑅𝑖
2+𝑅𝑜

2

𝑅𝑖(𝑅𝑜
2−𝑅𝑖

2)

] [
𝐴𝑧1

𝑏

𝐴𝑧1
𝑐 ] + [

1 +
2𝑅𝑖

2[ln(𝑅𝑖)−ln(𝑅𝑜)]

𝑅𝑜
2−𝑅𝑖

2

1 +
2𝑅𝑜

2[ln(𝑅𝑖)−ln(𝑅𝑜)]

𝑅𝑜
2−𝑅𝑖

2

]
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
 (2.25) 

Inside the volume of the magnets in (2.25), the right-hand side contains the 

homogeneous and the source terms. The homogeneous term is a general form of transfer 

relations between magnetic flux density and the magnetic vector potential in free space 

[17]. The free space for 𝑟 > 𝑅𝑜 and 𝑟 < 𝑅𝑖 contains no source term, so (2.14) is rewritten 

into (2.26) in this space.  

                                                 
𝜕2𝐴𝑧1 

𝜕𝑟2 +
1

𝑟
∙
𝜕𝐴𝑧1

𝜕𝑟
−

1

𝑟2 𝐴𝑧1 = 0 (2.26) 

which is a homogeneous Cauchy-Euler equation. In the free space with the arbitrary radius 

 and , where 𝛼 > 𝛽, the transfer relations between the magnetic flux density and the 

magnetic vector potential is given as (2.27) [17].  

                                            [
𝐵𝜃1

𝛼

𝐵𝜃1
𝛽 ] = [

𝛼2+𝛽2

𝛼(𝛽2−𝛼2)

2𝛽

𝛼2−𝛽2

2𝛼

𝛽2−𝛼2

𝛼2+𝛽2

𝛽(𝛼2−𝛽2)

] [
𝐴𝑧1

𝛼

𝐴𝑧1
𝛽 ] (2.27) 



 

 

 

For the free space for 𝑟 > 𝑅𝑜, 𝛼 → ∞ and 𝛽 = 𝑅𝑜. Hence,  

                                                             𝐵𝜃1
𝑎 =

1

𝑅𝑜
𝐴𝑧1

𝑎    (2.28) 

Take the same procedure for the free space for 𝑟 < 𝑅𝑖  with 𝛼 = 𝑅𝑖  and 𝛽 → 0. 

Hence, 

                                                           𝐵𝜃1
𝑑 = −

1

𝑅𝑖
𝐴𝑧1

𝑑  (2.29) 

Next step is to find the jump in the magnetic flux density at the boundary. Applying 

(2.7) on outer surface and inner surface, we get the boundary conditions (2.30)–(2.31).  

                                          −𝐵𝜃1
𝑎 + 𝐵𝜃1

𝑏 = 𝜇0𝑀𝜃1 =
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
 (2.30) 

                                      −𝐵𝜃1
𝑐 + 𝐵𝜃1

𝑑 = −𝜇0𝑀𝜃1 = −
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
 (2.31) 

The vector potential is continuous at any boundaries, so  

                                                             𝐴𝑧1
𝑎 = 𝐴𝑧1

𝑏  (2.32) 

                                                             𝐴𝑧1
𝑐 = 𝐴𝑧1

𝑑  (2.33) 

Now there are 4 equations (2.25), (2.28), and (2.29) of transfer relations, 4 

boundary conditions (2.30)–(2.33). Putting those 8 equations in matrix from with 8 

variables 

                   

[
 
 
 
 
 
 
 
 
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
1

𝑅𝑜
0 0 0 −1 0 0 0

0 −𝐹1 −𝐺1 0 0 1 0 0
0 −𝐺2 −𝐹2 0 0 0 1 0

0 0 0
1

𝑅𝑖
0 0 0 1

0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝐴𝑧1

𝑎

𝐴𝑧1
𝑏

𝐴𝑧1
𝑐

𝐴𝑧1
𝑑

𝐵𝜃1
𝑎

𝐵𝜃1
𝑏

𝐵𝜃1
𝑐

𝐵𝜃1
𝑑 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0
0
0
𝑇1

𝑇2

0
1

−1]
 
 
 
 
 
 
 

𝜇0(𝑀𝑟1+𝑀𝜃1)

2
 (2.34) 

where 



 

 

 

                                                             𝐹1 =
𝑅𝑖

2+𝑅𝑜
2

𝑅𝑜(𝑅𝑖
2−𝑅𝑜

2)
 (2.35) 

                                                             𝐹2 =
𝑅𝑖

2+𝑅𝑜
2

𝑅𝑖(𝑅𝑜
2−𝑅𝑖

2)
 (2.36) 

                                                             𝐺1 =
2𝑅𝑖

𝑅𝑜
2−𝑅𝑜

2 (2.37) 

                                                             𝐺2 =
2𝑅𝑜

𝑅𝑖
2−𝑅𝑜

2 (2.38) 

                                                    𝑇1 = 1 +
2𝑅𝑖

2[ln(𝑅𝑖)−ln(𝑅𝑜)]

𝑅𝑜
2−𝑅𝑖

2  (2.39) 

                                                    𝑇2 = 1 +
2𝑅𝑜

2[ln(𝑅𝑖)−ln(𝑅𝑜)]

𝑅𝑜
2−𝑅𝑖

2  (2.40) 

Solving for (2.34),  

                                               

[
 
 
 
 
 
 
 
 
𝐴𝑧1

𝑎

𝐴𝑧1
𝑏

𝐴𝑧1
𝑐

𝐴𝑧1
𝑑

𝐵𝜃1
𝑎

𝐵𝜃1
𝑏

𝐵𝜃1
𝑐

𝐵𝜃1
𝑑 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

0
0

𝜇0(𝑀𝑟1+𝑀𝜃1)

2
𝑅𝑖ln (

𝑅𝑜

𝑅𝑖
)

𝜇0(𝑀𝑟1+𝑀𝜃1)

2
𝑅𝑖ln (

𝑅𝑜

𝑅𝑖
)

0
𝜇0𝑀1

2
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
[1 − ln (

𝑅𝑜

𝑅𝑖
)]

−
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
ln (

𝑅𝑜

𝑅𝑖
) ]

 
 
 
 
 
 
 
 
 
 
 

 (2.41) 

From (2.41), we have  

                                                     𝐵𝜃1
𝑑 = −

𝜇0(𝑀𝑟1+𝑀𝜃1)

2
ln (

𝑅𝑜

𝑅𝑖
) (2.42) 

Because 𝑀𝑟1 + 𝑀𝜃1 = 2𝑀𝜃1 = 2𝑀𝑟1 = 2 ∙
𝐵𝑟𝑒𝑚

𝜇0
 in an ideal 2-pole Halbach 

cylinder with internal field, 𝐵𝜃
𝑑 becomes  

                                                        𝐵𝜃1
𝑑 = −𝐵𝑟𝑒𝑚 ln (

𝑅𝑜

𝑅𝑖
) (2.43) 



 

 

 

At any arbitrary position (𝑟0, 𝜃0), where 0 < 𝑟0 < 𝑅𝑖  and 0 ≤ 𝜃 ≤ 2𝜋. It is the 

same condition as (2.29), so we have  

                                                          𝐵𝜃
𝑟0 = −

1

𝑟0
𝐴𝑧

𝑟0 (2.44) 

Take 𝛼 = 𝑅𝑖 and 𝛽 = 𝑟0 in (2.27). The transfer relations are 

                                            [
𝐵𝜃1

𝑑

𝐵𝜃1
𝑟0 ] = [

𝑅𝑖
2+𝑟0

2

𝑅𝑖(𝑟0
2−𝑅𝑖

2)

2𝑟0

𝑅𝑖
2−𝑟0

2

2𝑅𝑖

𝑟0
2−𝑅𝑖

2

𝑅𝑖
2+𝑟0

2

𝑟0(𝑅𝑖
2−𝑟0

2)

] [
𝐴𝑧1

𝑑

𝐴𝑧1
𝑟0 ] (2.45) 

Combining (2.41), (2,44), and (2.45),  

                                                𝐵𝜃1
𝑟0 = 𝐵𝜃1

𝑑 = −
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
ln (

𝑅𝑜

𝑅𝑖
) (2.46) 

                                                𝐴𝑧1
𝑟0 =

𝑟0

𝑅𝑖
𝐴𝑧1

𝑑 = 𝑟0
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
ln (

𝑅𝑜

𝑅𝑖
) (2.47) 

From (2.24), 𝐵𝑟
𝑟0 is 

                                                 𝐵𝑟1
𝑟0 =

1

𝑟0
𝐴𝑧1

𝑟0 =
𝜇0(𝑀𝑟1+𝑀𝜃1)

2
ln (

𝑅𝑜

𝑅𝑖
) (2.48) 

Comparing (2.46) and (2.48), we conclude that 𝐵𝜃1
𝑟0 = −𝐵𝑟1

𝑟0 . Because 𝑩1 =

𝐵𝑟1cos(𝜃)𝒊𝑟 + 𝐵𝜃1sin(𝜃)𝒊𝜃, the magnetic flux density at an arbitrary position (𝑟0, 𝜃0) 

inside the cylinder is  

                     𝑩1
𝑟0 = 𝜇0𝑀𝑟1 ln (

𝑅𝑜

𝑅𝑖
) [cos(𝜃0)𝒊𝑟 − sin(𝜃0)𝒊𝜃] = 𝜇0𝑀𝑟1 ln (

𝑅𝑜

𝑅𝑖
) 𝒊𝑥 (2.49) 

This equation indicates that the fundamental component of magnetic flux density 

generated by an ideal 2-pole Halbach cylinder with internal field is uniform anywhere 

inside the cylinder. Because 𝑀𝑟1 =
𝐵𝑟𝑒𝑚

𝜇0
 in an ideal 2-pole Halbach cylinder with internal 



 

 

 

field, 𝑩1
𝑟0 = 𝐵𝑟𝑒𝑚 ln (

𝑅𝑜

𝑅𝑖
) 𝒊𝑥. The result is consistent with the equation given by Insinga et 

al. [9].  

 

2.1.4. Field Solution for the Nth Fourier Harmonics 

Substituting (2.20)–(2.21) into (2.19), the constants Cn1 and Cn2 are 

               𝐶𝑛1 =
1

𝑅𝑜
𝑛−𝑅𝑖

2𝑛𝑅𝑜
−𝑛 [𝐴𝑧𝑛

𝑏 − 𝐴𝑧𝑛
𝑐 𝑅𝑖

𝑛𝑅𝑜
−𝑛 −

𝜇0(𝑀𝑟𝑛+𝑛𝑀𝜃𝑛)

𝑛2−1
(𝑅𝑜 − 𝑅𝑖

𝑛+1𝑅𝑜
−𝑛)] (2.50) 

𝐶𝑛2 = −
𝑅𝑖

2𝑛 

𝑅𝑜
𝑛−𝑅𝑖

2𝑛𝑅𝑜
−𝑛 [𝐴𝑧𝑛

𝑏 − 𝐴𝑧𝑛
𝑐 𝑅𝑖

𝑛𝑅𝑜
−𝑛 −

𝜇0(𝑀𝑟𝑛+𝑛𝑀𝜃𝑛)

𝑛2−1
(𝑅𝑜 − 𝑅𝑖

𝑛+1𝑅𝑜
−𝑛) + 𝐴𝑧𝑛

𝑐 𝑅𝑖
𝑛 −

𝜇0(𝑀𝑟𝑛+𝑛𝑀𝜃𝑛)𝑅𝑖
𝑛+1

𝑛2−1
 (2.51) 

From 𝑩 = ∇ × 𝑨 as in (2.24), (2.25) is rewritten as  

[
𝐵𝜃𝑛

𝑏

𝐵𝜃𝑛
𝑐 ] = [

𝑛(𝑅𝑖
2𝑛+𝑅𝑜

2𝑛)

𝑅𝑜(𝑅𝑖
2𝑛−𝑅𝑜

2𝑛)

2𝑛𝑅𝑖
𝑛𝑅𝑜

𝑛

𝑅𝑜(𝑅𝑜
2𝑛−𝑅𝑜

2𝑛)

2𝑛𝑅𝑜
𝑛𝑅𝑖

𝑛

𝑅𝑖(𝑅𝑖
2𝑛−𝑅𝑜

2𝑛)

𝑛(𝑅𝑖
2𝑛+𝑅𝑜

2𝑛)

𝑅𝑖(𝑅𝑜
2𝑛−𝑅𝑖

2𝑛)

] [
𝐴𝑧𝑛

𝑏

𝐴𝑧𝑛
𝑐 ] + [

−
1

𝑛2−1
+

𝑛(𝑅𝑜
2𝑛+𝑅𝑖

2𝑛−2𝑅𝑜
𝑛−1𝑅𝑖

𝑛+1)

(𝑛2−1)(𝑅𝑜
2𝑛−𝑅𝑖

2𝑛)

−
1

𝑛2−1
+

𝑛(𝑅𝑜
2𝑛+𝑅𝑖

2𝑛−2𝑅𝑖
𝑛−1𝑅𝑜

𝑛+1)

(𝑛2−1)(𝑅𝑜
2𝑛−𝑅𝑖

2𝑛)

] 𝜇0(𝑀𝑟𝑛 +

𝑛𝑀𝜃𝑛) (2.52) 

The homogeneous solution for the nth harmonics is rewritten as (2.53) [17].  

                                          [
𝐵𝜃𝑛

𝛼

𝐵𝜃𝑛
𝛽 ] = [

𝑛(𝛼2𝑛+𝛽2𝑛)

𝛼(𝛽2𝑛−𝛼2𝑛)

2𝑛𝛼𝑛𝛽𝑛

𝛼(𝛼2𝑛−𝛽2𝑛)

2𝑛𝛼𝑛𝛽𝑛

𝛽(𝛽2𝑛−𝛼2𝑛)

𝑛(𝛼2𝑛+𝛽2𝑛)

𝛽(𝛼2𝑛−𝛽2𝑛)

] [
𝐴𝑧𝑛

𝛼

𝐴𝑧𝑛
𝛽 ] (2.53) 

For the free space for 𝑟 > 𝑅𝑜 and 𝑟 < 𝑅𝑖,  

                                                             𝐵𝜃𝑛
𝑎 =

𝑛

𝑅𝑜
𝐴𝑧𝑛

𝑎    (2.54) 

                                                           𝐵𝜃𝑛
𝑑 = −

𝑛

𝑅𝑖
𝐴𝑧𝑛

𝑑    (2.55) 

The boundary conditions for the magnetic flux density are  



 

 

 

                                                        −𝐵𝜃𝑛
𝑎 + 𝐵𝜃𝑛

𝑏 = 𝜇0𝑀𝜃𝑛   (2.56) 

                                                      −𝐵𝜃𝑛
𝑐 + 𝐵𝜃𝑛

𝑑 = −𝜇0𝑀𝜃𝑛  (2.57) 

The vector potential is continuous. (2.35) is rewritten as  

  

[
 
 
 
 
 
 
 
 
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
𝑛

𝑅𝑜
0 0 0 −1 0 0 0

0 −𝐹𝑛1 −𝐺𝑛1 0 0 1 0 0
0 −𝐺𝑛2 −𝐹𝑛2 0 0 0 1 0

0 0 0
𝑛

𝑅𝑖
0 0 0 1

0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝐴𝑧𝑛

𝑎

𝐴𝑧𝑛
𝑏

𝐴𝑧𝑛
𝑐

𝐴𝑧𝑛
𝑑

𝐵𝜃𝑛
𝑎

𝐵𝜃𝑛
𝑏

𝐵𝜃𝑛
𝑐

𝐵𝜃𝑛
𝑑 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0
0
0

𝑇𝑛1𝜇0(𝑀𝑟𝑛 + 𝑛𝑀𝜃𝑛)

𝑇𝑛2𝜇0(𝑀𝑟𝑛 + 𝑛𝑀𝜃𝑛)
0

𝑀𝜃𝑛

−𝑀𝜃𝑛 ]
 
 
 
 
 
 
 

𝜇0 (2.58) 

where 

                                                           𝐹𝑛1 =
𝑛(𝑅𝑖

2𝑛+𝑅𝑜
2𝑛)

𝑅𝑜(𝑅𝑖
2𝑛−𝑅𝑜

2𝑛)
 (2.59) 

                                                           𝐹𝑛2 =
𝑛(𝑅𝑖

2𝑛+𝑅𝑜
2𝑛)

𝑅𝑖(𝑅𝑜
2𝑛−𝑅𝑖

2𝑛)
 (2.60) 

                                                           𝐺𝑛1 =
2𝑛𝑅𝑖

𝑛𝑅𝑜
𝑛

𝑅𝑜(𝑅𝑜
2𝑛−𝑅𝑜

2𝑛)
 (2.61) 

                                                           𝐺𝑛2 =
2𝑛𝑅𝑜

𝑛𝑅𝑖
𝑛

𝑅𝑖(𝑅𝑖
2𝑛−𝑅𝑜

2𝑛)
 (2.62) 

                                              𝑇𝑛1 = −
1

𝑛2−1
+

𝑛(𝑅𝑜
2𝑛+𝑅𝑖

2𝑛−2𝑅𝑜
𝑛−1𝑅𝑖

𝑛+1)

(𝑛2−1)(𝑅𝑜
2𝑛−𝑅𝑖

2𝑛)
 (2.63) 

                                              𝑇𝑛2 = −
1

𝑛2−1
+

𝑛(𝑅𝑜
2𝑛+𝑅𝑖

2𝑛−2𝑅𝑖
𝑛−1𝑅𝑜

𝑛+1)

(𝑛2−1)(𝑅𝑜
2𝑛−𝑅𝑖

2𝑛)
 (2.64) 

𝑀𝑛 = 𝑀𝑟𝑛 + 𝑛𝑀𝜃𝑛 . When 𝑀𝑟𝑛 = 𝑀𝜃𝑛, the cylinder generates a strong internal 

field and the solution to (2.58) is  



 

 

 

                                              

[
 
 
 
 
 
 
 
 
𝐴𝑧𝑛

𝑎

𝐴𝑧𝑛
𝑏

𝐴𝑧𝑛
𝑐

𝐴𝑧𝑛
𝑑

𝐵𝜃𝑛
𝑎

𝐵𝜃𝑛
𝑏

𝐵𝜃𝑛
𝑐

𝐵𝜃𝑛
𝑑 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

0
0

−
𝜇0𝑀𝜃𝑛(𝑅𝑜𝑅𝑖

𝑛  − 𝑅𝑜
𝑛𝑅𝑖)

𝑅𝑜
𝑛(𝑛 − 1)

−
𝜇0𝑀𝜃𝑛(𝑅𝑜𝑅𝑖

𝑛  − 𝑅𝑜
𝑛𝑅𝑖)

𝑅𝑜
𝑛(𝑛 − 1)

0
𝜇0𝑀𝜃𝑛

−
𝑛𝜇0𝑀𝜃𝑛(𝑅𝑖𝑅𝑜

𝑛 − 𝑅𝑖
𝑛𝑅𝑜)

𝑅𝑜
𝑛𝑅𝑖(𝑛 − 1)

𝑛𝜇0𝑀𝜃𝑛(𝑅𝑜𝑅𝑖
𝑛 − 𝑅𝑜

𝑛𝑅𝑖)

𝑅𝑜
𝑛𝑅𝑖(𝑛 − 1) ]

 
 
 
 
 
 
 
 
 
 
 

 (2.65) 

When 𝑀𝑟𝑛 = −𝑀𝜃𝑛
, the cylinder generates a strong external field and the solution 

of (2.58) is  

                                              

[
 
 
 
 
 
 
 
 
𝐴𝑧𝑛

𝑎

𝐴𝑧𝑛
𝑏

𝐴𝑧𝑛
𝑐

𝐴𝑧𝑛
𝑑

𝐵𝜃𝑛
𝑎

𝐵𝜃𝑛
𝑏

𝐵𝜃𝑛
𝑐

𝐵𝜃𝑛
𝑑 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 −

𝜇0𝑀𝜃𝑛(𝑅𝑜
𝑛+1  − 𝑅𝑖

𝑛+1)

𝑅𝑜
𝑛(𝑛+ 1)

−
𝜇0𝑀𝜃𝑛(𝑅𝑜

𝑛+1  − 𝑅𝑖
𝑛+1)

𝑅𝑜
𝑛(𝑛+ 1)

0
0

−
𝑛𝜇0𝑀𝜃𝑛(𝑅𝑜

𝑛+1  − 𝑅𝑖
𝑛+1)

𝑅𝑜
𝑛+1(𝑛+ 1)

𝑛𝜇0𝑀𝜃𝑛(𝑅𝑜
𝑛+1  − 𝑅𝑖

𝑛+1)

𝑅𝑜
𝑛+1(𝑛+ 1)

𝜇0𝑀𝜃𝑛

0 ]
 
 
 
 
 
 
 
 
 
 
 

 (2.66) 

At an arbitrary position (𝑟0, 𝜃0), where 0 < 𝑟0 < 𝑅𝑖 and 0 ≤ 𝜃0 ≤ 2𝜋, applying 

the homogeneous transfer relations in (2.53) with 𝛼 = 𝑅𝑖 and 𝛽 = 𝑟0.  

                                     [
𝐵𝜃𝑛

𝑑

𝐵𝜃𝑛
𝑟0 ] = [

𝑛(𝑅𝑖
2𝑛+𝑟0

2𝑛)

𝑅𝑖(𝑟0
2𝑛−𝑅𝑖

2𝑛)

2𝑛𝑅𝑖
𝑛𝑟0

𝑛

𝑅𝑖(𝑅𝑖
2𝑛−𝑟0

2𝑛)

2𝑛𝑟0
𝑛𝑅𝑖

𝑛

𝑟0(𝑟0
2𝑛−𝑅𝑖

2𝑛)

𝑛(𝑅𝑖
2𝑛+𝑟0

2𝑛)

𝑟0(𝑅𝑖
2𝑛−𝑟0

2𝑛)

] [
𝐴𝑧𝑛

𝑑

𝐴𝑧𝑛
𝑟0 ] (2.67) 

From (2.55) and (2.67), we conclude 

                                                           𝐵𝜃𝑛
𝑟0 = −(

𝑟0

𝑅𝑖
)
𝑛−1

𝐵𝜃𝑛
𝑑    (2.68) 
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The system is focusing on the internal field, so apply (2.67) and (2.68) to (2.65). 

The solutions for the internal magnetic flux density and the magnetic vector potential are 

                                              𝐵𝜃𝑛
𝑟0 = (

𝑟0

𝑅𝑖
)
𝑛−1

∙
𝑛𝜇0𝑀𝜃𝑛(𝑅𝑜𝑅𝑖

𝑛 − 𝑅𝑜
𝑛𝑅𝑖)

𝑅𝑜
𝑛𝑅𝑖(𝑛 − 1)

   (2.69) 

                                               𝐴𝑧𝑛
𝑟0 = −

𝑟0
𝑛

𝑅𝑖
𝑛−1 ∙

𝜇0𝑀𝜃𝑛(𝑅𝑜𝑅𝑖
𝑛 − 𝑅𝑜

𝑛𝑅𝑖)

𝑅𝑜
𝑛𝑅𝑖(𝑛 − 1)

   (2.70) 

      𝑩 = ∇ × 𝑨 =
1

𝑟
|

𝒊𝑟 𝑟𝒊𝜃 𝒊𝑧
𝜕

𝜕𝑟

𝜕

𝜕𝜃
0

0 0 𝐴𝑧𝑛 sin(𝑛𝜃)

| =
𝑛

𝑟
𝐴𝑧𝑛 cos(𝑛𝜃) 𝒊𝑟 −

𝜕𝐴𝑧𝑛

𝜕𝑟
sin(𝑛𝜃) 𝒊𝜃 (2.71) 

Taking the same partial differential as in (2.71), which is similar to (2.49).  

                                      𝐵𝑟𝑛
𝑟0 =

𝑛

𝑟0
𝐴𝑧𝑛

𝑟0 = −(
𝑟0

𝑅𝑖
)
𝑛−1

∙
𝑛𝜇0𝑀𝜃𝑛(𝑅𝑜𝑅𝑖

𝑛 − 𝑅𝑜
𝑛𝑅𝑖)

𝑅𝑜
𝑛𝑅𝑖(𝑛 − 1)

 (2.72) 

Because 𝑩𝑛 = 𝐵𝑟𝑛cos(𝑛𝜃)𝒊𝑟 + 𝐵𝜃𝑛sin(𝑛𝜃)𝒊𝜃 , the magnetic flux density at an 

arbitrary position (𝑟0, 𝜃0) inside the cylinder is  

                     𝑩𝑛
𝑟0 = (

𝑟0

𝑅𝑖
)
𝑛−1

∙
𝑛𝜇0𝑀𝜃𝑛( 𝑅𝑜

𝑛𝑅𝑖−𝑅𝑜𝑅𝑖
𝑛)

𝑅𝑜
𝑛𝑅𝑖(𝑛 − 1)

[cos(𝑛𝜃0)𝒊𝑟 − sin(𝑛𝜃0)𝒊𝜃] (2.73) 

For an ideal Halbach cylinder with internal field, the fundamental field solution 

for a 2-pole mode is given in (2.49), and the solution for the nth harmonics for a 2n-pole 

mode is given above in (2.73).  

 

2.2. Magnetic Field Analysis of HABTPM 

In pracice, the Halbach cylinder is realized by segmented magnets. Zhu et al. 

indicated that the higher the number of segments is, the better the field distribution is [11]. 

Based on the discussion in the next chapter, the proposed design is a 2-pole, 10-segment 

Halbach cylinder as shown in Figure 2.3. Because the permeabilities of the 3D-printed 
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ABS material and the NdFeB magnets are very close to that of the free space, we can 

assume 𝜇0 everywhere. The outer and inner radii are 𝑅𝑜 = 38.175 mm and 𝑅𝑖 = 31.825 

mm.  The average angular width of each magnet is Δ = 0.2 rad, so the average angular 

width of the gap between the magnet pieces is 𝑔 =
𝜋

10
− Δ = 0.114 rad.  

 

 Figure 2.3 Design of a 2-pole, 10-segment Halbach cylinder.  

The Fourier series of the magnetization density M is to be found, so we can apply 

the result in Section 2.1.3. The nth Fourier harmonics of the r- and 𝜃-components of M in 

(2.11) can be calculated as 
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                                             𝑀𝑟𝑛 =
1

𝜋
∫ 𝑀𝑟(𝜃) cos(𝑛𝜃) 𝑑𝜃

𝜋

−𝜋
 (2.74) 

                                              𝑀𝜃𝑛 =
1

𝜋
∫ 𝑀𝜃(𝜃) sin(𝑛𝜃) 𝑑𝜃

𝜋

−𝜋
 (2.75) 

Each magnet has the remanence of 𝜇0𝑀0. The distributions of M are shown in 

Figure 2.4 with the gap of 0 magnetization. With MATLAB, the Fourier coefficients are 

calculated in Figure 2.5. 

As discussed previously, the strong internal magnetic field is generated when 𝑀𝑟𝑛 

has the same value as 𝑀𝜃𝑛. According to Figure 2.5, when 𝑛 = 20 ∙ 𝑚 + 1, where m is a 

non-negative integer, the values of 𝑀𝑟𝑛 and 𝑀𝜃𝑛 are non-zero and the sign of them are the 

same. When 𝑚 > 3, the magnitude is extremely small compared to the 1st, 21st, and 41st, 

so they are neglected.  

From Figure 2.5, 𝑀𝑟1 = 0.6356𝑀0 , 𝑀𝑟21 = 0.2616𝑀0 , and 𝑀𝑟41 =

−0.12706𝑀0. with the NdFeB PM with 𝐵𝑟𝑒𝑚 = 1.4 T, 𝑀0 =
𝐵𝑟𝑒𝑚

𝜇0
= 1.114 × 106 A/m. 

With given data, (2.49) and (2.73) become 

                                  𝑩1
𝑟0 =161.89 mT∙ [cos(𝜃0)𝒊𝑟 − sin(𝜃0)𝒊𝜃] (2.76) 

                   𝑩21
𝑟0 =374.44 mT∙ (

𝑟0

31.825mm
)
20

[cos(21𝜃0)𝒊𝑟 − sin(21𝜃0)𝒊𝜃] (2.77) 

                   𝑩41
𝑟0 =182.21 mT∙ (

𝑟0

31.825mm
)
40

[cos(41𝜃0)𝒊𝑟 − sin(41𝜃0)𝒊𝜃] (2.78) 

Because the armatures are placed in the area of 𝑟 < 14.5 mm,  𝑩21
𝑟0  and 𝑩41

𝑟0 , 

which are 5.56 × 10−8 T and 4.02 × 10−15 T at 𝑟 = 14.5 mm, are insignificant in the 

area according to (2.77) and (2.78). The 𝑩1
𝑟0 is dominant, so the magnetic flux density in 

𝑟 < 14.5 mm can be considered uniform at 161.89 mT in the 𝒊𝑥 direction.  
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(a) 

  
(b) 

Figure 2.4 The distributions of the (a) r and (b) θ-components of M with respect to θ. 
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(a) 

 

(b) 

Figure 2.5 Fourier coefficient of the (a) r and (b) θ- components of M. 
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2.3. Magnetic Field Simulation of HABTPM 

Figure 2.6 (a) shows one of the magnet pieces that would occupy the cylindrical 

Halbach magnet array. However producing the magnets with these circular curvatures 

would be costly, and magnetizing them in an oblique angle is very challenging. In a 

practical design, they are replaced with the magnets with a square cross-section with the 

magnetization vector pointing face to face as shown in Figure 2.6 (b). An FEA was 

conducted to verify with the theoretical development presented in the previous section and 

ensure the error is acceptable. The simulation software is Finite Element Method 

Magnetics (FEMM), which is a free software package [18]. The FEA result is shown in 

Figure 2.7.  

 

(a) 

 

(b) 
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(c) 

Figure 2.6 (a) An ideal magnets in a Halbach cylinder, (b) replacement of the magnet 

with a square cross-section, and (c) actual placement in the HABTPM.  

The magnitude of the magnetic flux density inside the Halbach cylinder of 𝑟 < 13 

mm is 157 mT, which is very close to the theoretical result of 162 mT, and has the x-

component only. Hence, the motor torque 𝝉 = ∫ 𝒓 × (𝑱 × 𝑩)
𝑉

𝑑𝑉, where 𝑱 is the current 

density of the stator current occupying the volume V that can be easily calculated.  
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Figure 2.7 A magnetic flux density and flux line result by FEM.  
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3. MECHANICAL DESIGN AND ELECTRONIC CIRCUIT DESIGN 

 

This chapter begins with the conceptual design of the HABTPM. In the first 

section, the evolution of the conceptual design is explained in detail. The design is based 

on 3D-printed ABS plastic material. The limitation of this material and the detail design 

of the motor is illustrated in Section 3.2. The sensors for the system and the circuit design 

for Arduino microcontroller is processed in Section 3.3.  

 

3.1. Conceptual Design 

The conceptual design starts with the magnet placement in Figure 1.2. The original 

design has a 30° rotation of a 2-pole Halbach cylinder, but inner space was too narrow to 

place Hall-effect and temperature sensors together. The Hall-effect sensors are utilized to 

detect the magnetic flux density while the temperature sensors are used to sense winding 

temperature. The temperature detection is essential because the 3D-printed material has 

the difficulty to maintain rigidity beyond 100°C due to the heat generated by the current 

carrying coils on the stator. The diameter of the external Halbach cylinder must be 

enlarged from 𝑑 =  72 mm to 𝑑 =  82 mm. Figure 3.1 shows the development of the 

prototyping ideas. The magnets have dimension of 6.35×6.35×38.1 mm, so a 30° rotation 

with 12 magnets has significant gaps between each magnet. In this case, the average gap 

between each magnet is very large compare to the average width of the magnets, so extra 

magnets are added to the cylinder. The maximum number of magnets placed in this 

cylinder is 20, so the final design becomes an 18° rotation with 20 magnets 2-pole Halbach 
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cylinder as shown in Figure 3.1(c). In the next section, the design this prototype as the 

final design is illustrated in detail.  

 
(a)  

 
(b) 
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(c) 

Figure 3.1 The improvement of the 2-pole segment prototype Halbach cylinder 

design. (a) The prototype with 30° rotation 2-pole segment Halbach cylinder, (b) The 

enlarged prototype with 30° rotation 2-pole segment Halbach cylinder, (c) The 

enlarged prototype with 18° rotation 2-pole segment Halbach cylinder.  

 

3.2. Mechanical Design 

The final design is a 2-pole, 10-segment Halbach cylinder. The magnetic flux 

density of this structure is calculated in Chapter 2. Figure 3.2 shows the section view of 

the HABTPM. There are 20 magnets placed in the outside cylinder. Temperature sensors 

and Hall-effect sensors are placed at the side and the top of the coils in both phases. The 

ball bearings are 30-mm-bore-diameter, 55-mm-outside-diameter, and 13-mm-width steel 
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ball bearings. The cap on the left in Figure is to hold the magnets and the stator inside the 

motor.  

 

Figure 3.2 Section view of the motor.  

The engineering drawing of the bearing is in Figure 3.3. All units are in mm. The 

technical detail of the ball bearing is given in Table 3.1. The bearings are utilized to hold 

the stator inside and let the outer cylinder with magnets rotate smoothly.  

Table 3.1 Technical details of the ball bearings [12]. 

Item Radial Ball Bearing Temperature range −28.89°C to 121.11°C 

Bore Dia. 30 mm Cage Material Pressed Steel 

Outside Dia. 55 mm Shield Material Rust-Resistant Metal 

Width 13 mm Load Capacity 13,216 N 
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Figure 3.3 Engineering drawings of the ball bearing [12].  

In Chapter 2, the inner and outer radii of the magnets array were given. In the rotor 

design, the inner and outer diameters are slightly larger than the one of the magnets array. 

The design parameters are shown in the engineering drawing in Figure 3.4. All units are 

in mm. Due to strong force between each magnets, the outer diameter of the cylinder is 82 

mm, which is greater than 𝐷0 = 2𝑅0 = 76.35 mm, while the inner diameter of the cylinder 

is 55 mm, which is less than 𝐷𝑖 = 2𝑅𝑖 = 63.65 mm in Section 2.2. The diameter of the 

part that holds the bearing without magnets is reduced to 67.77 mm.  
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Figure 3.4 Engineering drawings of the rotor that contains the Halbach magnet 

cylinder.  

The magnet cylinder on the rotor is aligned with the center of the coil, so, in torque 

calculation, the effective length is equal to the magnet length. Figure 3.5 shows that the 

coils are aligned with the magnets. The length of the magnets 𝐿0 is 38.1 mm. The ball 
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bearings are made of steel, so they must be placed away from the magnets shown in Figure 

3.5.  

 

Figure 3.5 Section view of the motor in the y-z plane.  

The first step to assemble the motor is inserting all the magnets into the designated 

position discussed in Section 2.3. Then insert round dowels to fix them at the center. After 

four coils were fixed on the stator, the bearings were placed on the two sides of the stator 

and then all interior parts were inserted into the hollow of the rotor. The last step is fixing 

cap with screws. Because the material of rotor and stator are 3D-printed ABS material 

with the resolution of 0.1 mm, the gap between the rotor and the ball bearings that causes 

alignment issues was inevitable. This might cause relatively large friction.  

Figure 3.6 (a) shows the appearance of the armature/stator with coils. Each phase 

consists of two internally connected coils. Figure 3.6 (b) shows the dimension of the coil. 
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The coil is made of American wire gauge (AWG) #22 wires, which can carry 7 A current 

at 75°C [19], with 7 layers. Each layer has 15 turns. The average distance between each 

layer is around 0.7 mm which is larger than the diameter of the wires because there are 

some glues and tapes to fix each layer. In this case, the coils only have a fill factor of 

52.66%.  

 

(a) 

 

(b) 
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(c) 

Figure 3.6 (a) The design of the armature, (b) the engineering drawing of the coil, 

and (c) section view of the coil. 

As shown in the Figure 3.7, the Hall-effect sensors are place at the center of the 

coil in each phase. The temperature sensors are placed directly on the surface of the coils. 

The distance between the top and the bottom surfaces is 29 mm. In Section 2.2, we have 

already discussed that the magnetic flux density inside the Halbach cylinder of 𝑟 < 14.5 

mm is uniform, so the Hall-effect sensors placed on the face of the coils should detect a 

sinusoidal magnetic flux density with a period of 2𝜋 with respect to angle as the rotor, a 

Halbach cylinder, rotates.  
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Figure 3.7 The coils on the armature and the placement of the sensors.  

 

3.3. Electronic Circuit Design and Hardware Implementation  

3.3.1. Sensors 

The magnitude of the magnetic flux density in the coils are uniform at 157 mT 

according to the result in Section 2.3, so the Hall-effect sensor selected for this range is 



 

 

 

DRV5055A4. According to the datasheet of the sensor, it can detect the range of ±169 

mT at a 5-V output voltage with sensing bandwidth of 20 kHz [13]. The power 𝑉𝑐𝑐 for 

Arduino Mega 2560 is 5 V, and the analog-to-digital converter (ADC) voltage swing is 

also 5 V, so the 𝑉𝑐𝑐 for the sensor is set up as 5 V. The relation between the voltage output 

𝑉𝑂𝑈𝑇 and the magnetic flux density B given by the datasheet is [13].  

                     𝑉𝑂𝑈𝑇 = 𝑉𝑄 + 𝐵 ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(25°C) ∙ [1 + 𝑆𝑇𝐶(𝑇𝐴 −  25°C)] (3.1) 

𝑉𝑄 is half 𝑉𝑐𝑐, which is 2.5 V. 𝑇𝐴 is the ambient temperature, which is collected by 

the temperature sensor of each coil phase. According to the data sheet, sensitivity at 25°C 

is 12.5 mV/mT, and 𝑆𝑇𝐶 is 0.0012/°C [13]. Solving for 𝐵,  

                                        𝐵 =
𝑉𝑂𝑈𝑇−2.5𝑉

[1+0.0012/°C∙(𝑇𝐴− 25°C)]12.5mV/mT
 (3.2) 

The temperature sensor is TMP36, which has sensing range of −40°C to 125°C 

and provides a 750 mV output at 25°C with the scaling factor of 10mV/°C [14]. Then, the 

relation between the temperature T and the output voltage 𝑉𝑇 is  

                                                 𝑇 = 𝑉𝑇 ∙ 0.1°C/mV − 50°C  (3.3) 

The temperature is not only for calculating the magnetic flux density, but also for 

safety. If the temperature exceeds 100°C due to the heat generated by the current-carrying 

coils, the structure with 3D-print ABS material and the ball bearing may be damaged. If 

the temperature reaches 80°C, the system will be shut down to protect the motor.  

The 10-bit ADC on Arduino Mega 2560 has a 5-V input voltage swing. The 

resolution is then 4.89 mV. From (3.2), we have the resolution of 0.39 mT at 25°C and 

0.36 mT at 80°C.  
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3.3.2. Voltage Shifter Circuit and Amplifier Circuit 

Arduino is not able to generate analog output by itself, so a digital-to-analog 

converter (DAC), MCP4725, is introduced to the system. The I²C interface of the device 

is easy to communicate with the host device, which is Arduino Mega 2560. With 12-bit 

resolution, it can generate analog voltage between 0 to 5V with the resolution of 1.22 mV 

[15].  

 

(a) 

 

(b) 
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Figure 3.8 (a) The diagram of voltage shifter circuit and (b) the hardware of the 

circuit. 

The DAC MCP4725 only generate positive voltage. The motor requires both 

positive and negative current inputs. A voltage shifter circuit is designed in Figure 3.8. As 

shown in the figure, 𝑅1 = 𝑅2 = 𝑅4 = 𝑅5 = 1 kΩ, 𝑅3 = 𝑅6 = 6 kΩ. The circuit has two 

identical channels for each phase of the motor.  

The relation between input the 𝑉𝑖𝑛 and the output 𝑉𝑜𝑢𝑡 is then  

                                                   𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 − 2.5 V  (3.4) 

The input range is 0–5 V from DAC MCP4725, so the output range is –2.5 to 2.5 

V. These two voltage shifter channels are connected to power amplifier circuits. For power 

amplifier circuits, two PA12A power operational amplifier from Apex Microtechnology 

with the advantage of good power rating and thermal stability are used.  

The design of power amplifier circuit is shown in Figure 3.10. The original circuit 

was designed by Kim and Nguyen [4]. I modify the circuit to fulfill the requirement. Only 

one channel is shown in figure, and the other channel is a duplication of this one. The 

inductance of each phase 𝐿𝑎 = 152 μH. The resistance of the coils of each phase 𝑅𝑎 =

1.5 Ω. All capacitors have the same capacitance of 10 nF. Resistors 𝑅1 = 𝑅2 = 𝑅3 =

𝑅4 = 𝑅5 = 𝑅6 = 𝑅7 = 𝑅8 = 𝑅9 =  10 k. There are two parallel resistors 𝑅10 = 1 Ω 

with maximum power of 10 W in the part of current output. 𝐶3 and 𝑅6 are set as the 

function of proportional-integral (PI) controller to eliminate the steady-state error of the 

current output. The transfer function of the circuit between voltage input 𝑉𝑖𝑛(𝑠) =

𝑉2(𝑠) − 𝑉1(𝑠) and the current output 𝐼𝑎(𝑠) in the diagram is  
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𝐼𝑎(𝑠)

𝑉𝑖𝑛(𝑠)
= 

𝑅3∙𝑅7∙(𝑅9+𝑅8)(𝑅6𝐶3𝑠+1)

𝑅1𝑅5[
𝑅10
2

(𝑅9+𝑅8)(𝑅6𝐶3𝑠+1)+𝑅9𝑅7𝐶3(𝐿𝑎𝑠+𝑅𝑎+
𝑅10
2

)𝑠](𝑅3𝐶2𝑠+1)
 (3.5) 

 

 

(a) 

 

(b) 
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Figure 3.9 (a) The diagram of the power-amplifier circuit and (b) the hardware of 

the circuit with two channel. 

𝑉1  is connected to the ground while 𝑉2  is connected to 𝑉𝑜𝑢𝑡  in (3.4). The step 

response and the Bode plot of the amplifier circuit are shown in Figures 3.11 and 3.12.  

 

Figure 3.10 Step response of the power amplifier circuit.  
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Figure 3.11 Bode plot of the power amplifier circuit. 

The settling time is less than 2.5 ms, which means the system has good response. 

The range of input voltage is –2.5 to 2.5 V with resolution of 1.22 mV. According to 

Figure 3.11, the range of output current is –5 to 5 A with the resolution of 2.44 mA. 

Although the amplifier circuit has theoretically maximum output at 5 A, it can never reach 

it because, according to the datasheet, the current output limit at ±15 V is set as 4.2 A 

[16]. For safety concern, the current range is set within –4 to 4 A by the program. In 

conclusion, the system has the ability to generate accurate current within the range of –4 

to 4 A with a resolution of 2.44 mA.  

The motor is running below 10 Hz. According to the bode plot in Figure 3.12, the 

phase lag is less than 1.2°, so the delay in the dynamics performance of the power amplifier 

is negligible. Because the power amplifier circuit generates the current output with a PI 
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controller eliminating the error, the back emf generated by the motor can also be neglected 

in the torque calculation in the next chapter.  
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4. DYNAMICS AND CONTROL 

 

4.1. Motor Dynamic Analysis 

Figure 4.1 shows the section view in the x-y plane of the HABTPM. The inner 

cylinder has two phases of the armature with four coils. The top and bottom coils are 

designated as phase A. The angle between the magnetic axis of phase A and the magnetic 

axis of the Halbach cylinder is 𝜓. The left and right coils are designated as phase B. The 

rotor contains twenty permanent magnets in the Halbach cylinder which generates the 

uniform flux density within the cylinder as shown in Figure 2.7.  

 

Figure 4.1 Section view in the x-y plane of the HABTPM 
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The positive reference currents carried by the coils are shown in Figure 4.1. The 

self-inductances of phases A and B are 𝐿0 measured as 152 H in the HABTPM. Since the 

two phases are perpendicular, there is zero mutual inductance. In (4.1), 𝜙𝑚  is the 

maximum net magnetic flux penetrating the coil area, n is number of turns, B is uniform 

magnetic flux density inside the Halbach cylinder, and 𝑎𝑗 is the area of the jth turn. The 

coils in phase B are identical to those in phase A except for a 90° phase difference.  

                                                       𝜙𝑚 = 𝐵 ∙ ∑𝑎𝑗 (4.1) 

Then, the electrical terminal relation is derived in  

                                          [
𝜆𝐴

𝜆𝐵
] = [

𝐿0 0
0 𝐿0

] [
𝑖𝐴
𝑖𝐵

] + [
cos𝜓
sin𝜓

]𝜙𝑚 (4.2) 

where  𝑖𝐴 and 𝑖𝐵 are the phase A and phase B currents. The co-energy 𝑊′ stored in the 

HABTPM can be written as equation (4.3). The torque 𝜏𝑚  generated by the motor is 

derived by (4.4)–(4.5). 

                                               

                                  𝑊′ =
1

2
𝐿0𝑖𝐴

2 +
1

2
𝐿0𝑖𝐵

2 + 𝜙𝑚(𝑖𝐴cos𝜓 + 𝑖𝐵sin𝜓) (4.3) 

                                                           𝜏𝑚 =
𝜕𝑊′

𝜕𝜓
|𝑖𝐴,   𝑖𝐵 (4.4) 

                                              𝜏𝑚 = 𝜙𝑚(−𝑖𝐴sin𝜓 + 𝑖𝐵cos𝜓) (4.5) 

The torque in (4.5) is proportional to the current input 𝐼(𝑡) with the following 

commutation  

                                                           𝑖𝐴 = −𝐼(𝑡)sin𝜓 (4.6) 

                                                            𝑖𝐵 = 𝐼(𝑡)cos𝜓 (4.7) 
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Assume the system has the damping torque 𝜏𝑐 with the damping coefficient c and 

the Coulomb friction torque 𝜏𝑓 with the coefficient 𝐾𝑓, then the mechanical equation of 

motion can be derived as (4.8) and (4.9). 𝐽𝑚 is the moment of inertia of the HABTPM’s 

rotor.  

                                                        𝐽𝑚𝜓̈ + 𝜏𝑐 + 𝜏𝑓 = 𝜏𝑚 (4.8) 

                                               𝐽𝑚𝜓̈ + 𝑐𝜓̇ + 𝐾𝑓sgn(𝜓̇) = 𝜙𝑚𝐼(𝑡) (4.9) 

 

4.2. Parameter Calibration 

4.2.1. Parameters for Torque and Friction 

When 𝜓 = 0, 𝑖𝐴 = 0 and 𝑖𝐵 = 𝐼 , the torque 𝝉𝑚  on the rotor is opposite to the 

torque 𝝉𝑠 on the stator. According to the equation in Section 2.3 and Figure 4.2,  

                                    𝝉𝑚 = −𝝉𝑠 = −4 ∙ ∫ 𝑥𝒊𝑥 × (𝐽𝒊𝑧 × 𝐵𝒊𝑥)𝑉
𝑑𝑉 (4.10) 

where 𝐽 =
𝑘∙𝐼

𝑤ℎ
, where k is the total turns of each coil. There is a factor of 4 because this 

volume integration is over one half of the effective volume of a coil and there are two 

coils per phase. Evaluating the integral,  

            𝝉𝑚 = 4∫ 𝐽𝐵𝑙0ℎ𝑥
𝑤+𝑑𝑐/2

𝑥=𝑑𝑐/2
𝑑𝑥 (−𝒊𝑧) = 𝐽𝐵𝑙0ℎ [(𝑤 +

𝑑𝑐

2
)
2

− (
𝑑𝑐

2
)
2

] (−𝒊𝑧) (4.11) 

where 𝒊𝑧 is the opposite direction of the 𝝍. 

                                                     𝜏𝑚 = 2𝑘𝐼𝐵𝑙0(𝑤 + 𝑑𝑐) (4.12) 

So 𝜙𝑚 = 2𝑘𝐵𝑙0(𝑤 + 𝑑𝑐). The parameter 𝜙𝑚 can be found to be 1.43 × 10−2 Wb 

with 𝐵 = 157 mT, 𝑙0= 38 mm, 𝑤 = 5 mm, 𝑑𝑐 = 6.45 mm, and 𝑘 = 15 ∙ 7 = 105. The 
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section view of the coil is shown in Figure 4.2. The maximum theoretical pull-out torque 

that the HABTPM can generate is 𝜏 = 𝜙𝑚𝐼 = 0.057 N∙m at the current input of 4 A.  

 

Figure 4.2 Section view in the x-y plane of the stator when 𝝍 = 𝟎.   

With a constant maximum current input, in steady state at a certain speed, (4.9) 

becomes 

                                                          𝐼 =
𝑐

𝜙𝑚
𝜓̇ +

𝐾𝑓

𝜙𝑚
 (4.13) 

The angular velocity of the motor 𝜓̇ is measured with various coil current to find 

out damping torque 𝜏𝑐 with damping coefficient c and Coulomb friction torque 𝜏𝑓 with 

coefficient 𝐾𝑓 . The test result is shown in Figure 4.3. From Figure 4.3 and 𝜙𝑚 =

1.43 × 10−2 Wb , we have 𝑐 = 1.23 × 10−3 N∙m∙s, and Coulomb friction torque 𝐾𝑓 =
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2.05 × 10−2 N∙m. The R2 value of this linear fit is 0.9965, which means that the relation 

is highly linear.  

 

Figure 4.3 Motor speed with different current input.  

 

4.2.2. Position Calibration and Sensing  

With the two Hall-effect sensors placed on the faces of the phase A and phase B 

coils with a 90° phase difference, the rotor position can be determined. A protractor was 

installed above the motor as shown in Figure 4.4 to verify the angular position with the 

reading from the Hall-effect sensor. The Halbach cylinder was rotated with 5° each time 

manually. The test result of the magnetic flux density of each angular position is shown in 
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Figure 4.5. The test result shows that the designed Halbach cylinder gives a sinusoidal 

magnetic flux density with period of 2𝜋 and have a maximum magnetic flux density of 

162.8 mT, which is consistent with the theoretical result calculated in Section 2.2 and the 

FEA result in Section 2.3.  

 

Figure 4.4 The motor with protractor.  
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Figure 4.5 Magnetic flux density verification with 5° incremental rotation of the 

HABTPM.  

Although the measurements match well with the sinusoidal function to denote the 

angular position, they are fitted to four linear functions 

                                                            𝜓 = 𝑎𝑓𝐵𝑓 + 𝑏𝑓 (4.14) 

ss shown in Figure 4.6. In (4.4), 𝜓 is the angular position of the motor,  𝐵𝑓 is the magnetic 

flux density chosen from phase A or phase B depending on the values, and 𝑎𝑓 and 𝑏𝑓 are 

fitting constants.  

 

Figure 4.6 The transfer relation between magnetic flux density and the degree 

From the calibration, the parameters in (4.14) are given in Table 4.1. Because the 

rotor and the stator are ABS 3D-printing materials with the resolution of 0.1 mm, 
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misalignment might occur during fabrication and assembly, the values of 𝑎𝑓 and 𝑏𝑓 might 

be slightly different with the values given in Table 4.1 in real case.  

Table 4.1 Parameters of the linear fit in (4.14) under various conditions.  

Condition Parameters 

𝐵𝐴 > 110 mT, 0 mT < 𝐵𝐵 < 110 mT 𝐵𝑓 = 𝐵𝐵, 𝑎𝑓 = 0.41°/mT, 𝑏𝑓 = 0° 

−110 mT < 𝐵𝐴 < 110 mT, 𝐵𝐵 > 110 mT 𝐵𝑓 = 𝐵𝐴, 𝑎𝑓 = −0.41°/mT, 𝑏𝑓 = 90° 

𝐵𝐴 < −110 mT, −110 mT < 𝐵𝐵 < 110 mT 𝐵𝑓 = 𝐵𝐵, 𝑎𝑓 = −0.41°/mT, 𝑏𝑓 = 180° 

−110 mT < 𝐵𝐴 < 110 mT, 𝐵𝐵 < −110 mT 𝐵𝑓 = 𝐵𝐴, 𝑎𝑓 = 0.41°/mT, 𝑏𝑓 = 270° 

𝐵𝐴 > 110 mT, −110 mT < 𝐵𝐵 < 0 mT 𝐵𝑓 = 𝐵𝐵, 𝑎𝑓 = 0.41°/mT, 𝑏𝑓 = 360° 

The resolution of the Hall-effect sensor with the 10-bit ADC is 0.39mT at 25°C, 

so the resolution of the degree is 0.41°/mT ∙ 0.39 mT = 0.16°. This fitting function gives 

a linear approach of a sinusoidal behavior, which may have some error in the closed-loop 

system with the controller proposed in the next section.   

The motor runs below 30 rad/s as tested before. The sampling rate for the sensors 

by the Arduino Mega 2560 board in the main loop is closed at 770 Hz, and the controller 

with time interrupt is at 100 Hz. In other words, the angular displacement of the motor is 

less than 17° in each sampling period. When the motor rotates through the position of 0°, 

the position will drop from 360° to 0° or increase from 0° to 360° according to Table 4.1. 

The program then calculates the difference between position of two period and compares 

it with threshold value of ±90° to conclude that the motor rotates counterclockwise or 

clockwise at the position of 0°. For example, when 𝜓𝑘−1 = 5° and 𝜓𝑘 = 354°, the 



 

 

 

difference value becomes  𝜓𝑘 − 𝜓𝑘−1 = 349° which is greater than 90°. The program 

concludes that the motor just crossed the 0° counterclockwise. Then the value of the 

angular change is 349°−360°= 11°. Then, we can sense the position at a large scale of 

range of both positive and negative angles.  

 

4.3. Controller Design 

With the dynamic model and all parameter values developed, a PI controller is 

designed in this section. In Figure 4.7 shows the closed-loop block diagram with C(s) =

𝐾𝑃 +
𝐾𝐼

𝑠
 and G(s) =

𝜙𝑚

𝐽𝑚𝑠2+𝑐𝑠
 according to (4.9). Note in the transfer function of the plant 

model in the figure, the Coulomb friction is not included in this linear model.  

 

Figure 4.7 Closed-loop diagram of the system.  

The closed-loop transfer function of the system in continuous form and the system 

error 𝛹𝑒(s) are then become (4.15) and (4.16).  

                                         
𝛹(𝑠)

𝛹𝑟(𝑠)
=

𝐺(𝑠)𝐶(𝑠)

1+𝐺(𝑠)𝐶(𝑠)
=

𝜙𝑚𝐾𝑃𝑠+𝜙𝑚𝐾𝐼

𝐽𝑚𝑠3+𝑐𝑠2+𝜙𝑚𝐾𝑃𝑠+𝜙𝑚𝐾𝐼
 (4.15) 
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                               𝛹𝑒(𝑠) =
1

1+𝐺(𝑠)𝐶(𝑠)
𝛹𝑟(𝑠) =

𝐽𝑚𝑠3+𝑐𝑠2

𝐽𝑚𝑠3+𝑐𝑠2+𝜙𝑚𝐾𝑝𝑠+𝜙𝑚𝐾𝐼
𝛹𝑟(𝑠) (4.16) 

Since this is a Type II system [20]. The steady-state error due to a unit step input 

is  

                                            lim
𝑡→+∞

𝑒(𝑡) ∗ 1(𝑡) = lim
𝑠→0

𝑠𝛹𝑒(𝑠)
1

𝑠
 = 0 (4.17) 

and the steady state error with ramp input is  

                                             lim
𝑡→+∞

𝑒(𝑡) ∗ 𝑡 = lim
𝑠→0

𝑠𝛹𝑒(𝑠)
1

𝑠2  = 0 (4.18) 

The transfer function is a third-order system which can be approximated with a 

second-order dominant. The characteristic polynomial of a second-order dominant system 

is (𝑠 + 𝛼)(𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2) , where 𝜁  is the closed-loop damping ratio and 𝜔𝑛  is the 

undamped closed-loop natural frequency. Compared to the denominator in (4.15), the 

relations between the poles and the control parameters can be derived as  

                                                       𝛼 + 2𝜁𝜔𝑛 =
𝑐

𝐽𝑚
 (4.19) 

                                                    𝜔𝑛
2 + 2𝜁𝜔𝑛𝛼 =

𝜙𝑚𝐾𝑃

𝐽𝑚
 (4.20) 

                                                           𝛼𝜔𝑛
2 =

𝜙𝑚𝐾𝐼

𝐽𝑚
 (4.21) 

Because the motor has a relatively large Coulomb friction that is not considered as 

part of the transfer function, the closed-loop system required short rising time of 𝑡𝑟 = 0.12 

s and only a small added damping 𝜁 = 0.06. The nature frequency 𝜔𝑛 ≅
1.8

𝑡𝑟
= 15 rad/s. 

According to section 4.21, 𝑐 = 1.23 × 10−3  N∙m∙s and 𝜙𝑚 = 1.43 × 10−2  Wb. With 

SolidWorks, 𝐽𝑚 = 5.5 × 10−4  kg ∙ m2 . Then the proportional gain 𝐾𝑃 =
𝐽𝑚

𝜙
(𝜔𝑛

2 +
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2𝜁𝜔𝑛𝛼) ≅ 10  A and the integral gain 𝐾𝐼 =
𝛼𝜔𝑛

2𝐽𝑚

𝜙𝑚
≅ 0.1  A/s. The digital controller 

converted with the zero-order hold equivalence is [20] 

                                               𝐶(𝑧) =
𝐼(𝑧)

𝛹𝑒(𝑧)
= 𝐾𝑝 +

𝑇𝑠𝐾𝐼𝑧
−1

1−𝑧−1
 (4.22) 

with the sampling period 𝑇𝑠  0.01 s. In the real-time control program, the difference 

equation for the current input at the kth iteration is  

                                      𝑖[𝑘] = 10𝑒[𝑘] − 10𝑒[𝑘 − 1] + 𝑖[𝑘 − 1] (4.23) 

where 𝑒[𝑘] = 𝜓𝑟 − 𝜓[𝑘].  

Although the motor can reach 276 rpm with the current input 4.0 A, the power will 

be cut off in a long time period of test because the inner stator reaches the critical 

temperature of 80°C. The maximum absolute value of current output is set up as 3 A in 

simulation of the closed-loop system and actual test. In simulation, we must add the 

Coulomb friction to the system. From (4.14), we have 𝐽𝑚𝜓̈ + 𝑐𝜓̇ = 𝜙𝑚𝐼(𝑡) −

𝐾𝑓sgn(𝜃̇) = 𝜙𝑚[𝐼(𝑡) −
𝐾𝑓

𝜙𝑚
sgn(𝜃̇)]. To treat the Coulomb friction as a current error in 

simulation, let 𝐼𝑓 =
𝐾𝑓

𝜙
= 1.42 A. A closed-loop control block diagram in Simulink is 

shown in Figure 4.8.  
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Figure 4.8 The block diagram of closed-loop system in Simulink.  

 

4.4. Experimental Results 

From (4.17)–(4.18), the system should track step and ramp position inputs without 

a steady-state error. The system was tested with step inputs at various positions, various 

step inputs of motor speed inputs (i.e. position commands with ramp inputs), and 

sinusoidal position inputs.  

 

Figure 4.9 Hardware block diagram of HABTPM with the control system. 



 

 

 

The experimental results compared with the simulation as in Figure 4.8 are 

presented to demonstrate the performance of the HABTPM with the control system as 

shown in Figure 4.9. 

In Figure 4.10, the dashed lines show the simulation results by Simulink. In Figure 

4.10 (a), the motion of the motor has a significant rising time with some overshoot as 

predicted in the controller design. There are some transient ridges from the nonlinear 

behavior caused by fitting function, which has linear approaching to the sinusoidal 

magnetic flux density change. The final position error is ±0.6°. Figure 4.10 (b) shows that 

the motor tracks the ramp input well in steady state with the speed of 83 rpm. When 𝑡 <

1.5  s, there is a hunting transient shown in the figure, which is consistent with the 

simulation result. Figures 4.10 (c) and (d) show that the system can track the sinusoidal 

reference very well. The HABTPM tracked the motion well within 1.9 s and 3.7 s, 

respectively. The larger the amplitude is, the longer it takes to reach the steady state. With 

these results, the HABTPM is proved feasible for precision rotary position-control 

applications.  

The theoretical system resolution is 0.16° given in Section 4.2.2. The controller, 

however, could not achieve the same resolution due to noise. The repetitive step responses 

are shown in Figure 4.11. In Figure 4.11 (c), the resolution of the sensing angle with 0.4° 

is not good enough to be discovered due to high frequency noise. In conclusion, the 

resolution of the HABTPM with position sensing method and designed controller is 

proved to be as good as 0.5° resolution shown in Figure 4.11 (b).  
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(a) 

 

(b) 
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(c) 
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(d) 

Figure 4.10 (a) Various step input response (±100°, 180°, 300°), (b) ramp response 

(speed at 500°/s), (c) sinusoidal reference response with the magnitude of 360° and 

the period of 5 s, (d) sinusoidal reference response with the magnitude of 500° and 

the period of 5 s. 
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(a) 

 

(b) 
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(c) 

Figure 4.11 Test results for (a) 0.8°, (b) 0.5°, and (c) 0.4° resolutions test. 
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5. CONCLUSIONS 

 

5.1. Conclusions 

In this thesis, a novel cylindrical Halbach-array-based two-phase motor was 

proposed and analyzed. A general analysis method, namely the transfer relations of 

Halbach cylinder was performed to obtain the field solution. The Halbach cylinder in this 

design can generate a uniform magnetic flux density inside the area of armature. This 

property simplifies the torque calculation and gives the basis of position with Hall-effect 

sensors. This theoretical development was verified by an FEA and then the experimental 

results. 

This HABTPM can generate a constant torque with coil currents calculated by 

volume integration. The theoretical maximum torque generated by the motor at the current 

input of 4 A is 0.057 N∙m. Although the torque that the motor can generate is quite small, 

the key advantage is that the light-weighted motor with 3D-printed ABS material has no 

soft iron material, cogging torque, or saliency. Another advantage of the motor is that the 

dynamics behavior and the controller of the motor are easy to analyze and design. The 

position of the motor is detected by Hall-effect sensors. With a PI controller designed and 

implemented in the thesis, the motor has the ability to track the designed motion well with 

0.5° resolution.  

This thesis provides a design paradigm for new motor design for industrial 

application. This motor design and position control method can be applied in multiple 
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engineering fields like wheels of electrical drones, high precision robotic arms, rotation of 

a radar base, and so on.  

 

5.2. Future Work 

There are a lot of improvements can be made in future work. The first thing is the 

design optimization of the motor volume. With better material other than 3D-printed ABS, 

the armature inside the cylinder can be enlarged to increase the torque generated by the 

motor. Another way to increase the torque is to improve the fill factor of the coils. Because 

of the manual work on the coils, it was only 52.66% in the cross sections of the coils. If 

the coils were replaced by industrial coils with filling rate of 70%, the rated torque would 

be increased. Due to the low resolution of 3D-printed material, the alignment of the stator 

with the ball bearings was not perfect, which caused high Coulomb friction that degraded 

the performance of the motor. The last improvement would be the replacement of 

microcontroller with better computing hardware. A faster computer providing a higher 

sampling rate and an anti-electromagnetic interference data-acquisition card with a higher 

resolution ADC and DAC will improve the real-time position control performance with a 

higher resolution.  
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APPENDIX A 

THE C++ CODE FOR ARDUINO MEGA 2560 

 

/*  File Name: HABTPMSensor.h  

 *  Author: Yuan Wei 

 *  Date: November 21, 2019 

 *  Description: head files of HABTPMSensor.cpp 

 *  Last Changed: N/A 

 */ 

 

#ifndef HABTPMSENSOR_H 

#define HABTPMSENSOR_H 

 

#include <Arduino.h> 

 

class HABTPMSensor 

{ 

    public: 

        //default pin numbers for sensors 

        uint8_t tempPin = A0; 

        uint8_t hallEffectSensorPin = A1;  
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        float tempConverter = 500.0 / 1023; 

        float BConverter = 5000.0 / 1023; 

 

        //function 

        void initializeSensor(uint8_t tempP, uint8_t hallEffectSensorP); 

        float getTempt(); 

        float getB(uint8_t sendRequest); 

}; 

 

#endif 

 

 

/*  File Name: HABTPMSensor.cpp  

 *  Author: Yuan Wei 

 *  Date: November 21, 2019 

 *  Description: get data from temperature sensor and Hall-effect sensor 

 *  Last Changed: N/A 

 */ 

 

#include "HABTPMSensor.h" 

 

void HABTPMSensor :: initializeSensor(uint8_t tempP, uint8_t hallEffectSensorP) 
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{ 

    tempPin = tempP; 

    hallEffectSensorPin = hallEffectSensorP; 

    pinMode(tempPin, INPUT); 

    pinMode(hallEffectSensorPin, INPUT); 

} 

 

float HABTPMSensor :: getTempt() 

{ 

    uint16_t tempV = analogRead(tempPin); 

    float temp = float(tempV)*500/1023-50;    //For TMP36 sensor, output Voltage at 

25°C (mV) is 750mV, and output Voltage Scaling (mV/°C) is 10mV/°C.  

    return temp; 

} 

 

float HABTPMSensor :: getB(uint8_t sendRequest) 

{ 

    float B = 0; 

    float Sensitivity = 12.5; 

    uint16_t data = 0; 

 

    uint16_t tempV = analogRead(tempPin); 
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    float temp = float(tempV) * tempConverter - 50; 

 

    if (temp > 80) 

    { 

        B = 233;        //temperature is too high     

    } 

    else 

    { 

        data = analogRead(hallEffectSensorPin); 

        Sensitivity = Sensitivity*(1 + 0.0012*(temp - 25)); 

        B = (data * BConverter - 2500) / Sensitivity;      //mT 

    } 

 

    if (sendRequest == 1) 

    { 

        uint16_t B16 = 0; 

        uint8_t BH = 0; 

        uint8_t BL = 0; 

        B16 = int(B*100); 

        BH = B16>>8; 

        BL = B16&(0xFF); 

        Serial.write(BH); 
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        Serial.write(BL); 

    } 

     

    return B; 

} 

 

 

/*  File Name: serialSingleWrite.h 

 *  Author: Yuan Wei 

 *  Date: July 13, 2020 

 *  Description: head file of serialSingleWrite 

 *  Last Changed: N/A 

 */ 

 

#ifndef SERIALSINGLEWRITE_H 

#define SERIALSINGLEWRITE_H 

 

#include "arduino.h" 

 

void serialSingleWrite(double d); 

 

#endif 



 

71 

 

 

 

/*  File Name: serialSingleWrite.cpp   

 *  Author: Yuan Wei 

 *  Date: July 13, 2020 

 *  Description: write single(Matlab)/double(Arduino) value to serial 

 *  Last Changed: N/A 

 */ 

 

#include "serialSingleWrite.h" 

 

void serialSingleWrite(double d)  

{ 

  byte * b = (byte *) &d; 

  //Serial.print("d:"); 

  Serial.write(b,4); 

  /* DEBUG * 

  Serial.println(); 

  Serial.print(b[0], HEX); 

  Serial.print(b[1], HEX); 

  Serial.print(b[2], HEX); 

  Serial.println(b[3], HEX);*/ 
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} 

 

 

/*  File Name: main.h  

 *  Author: Yuan Wei 

 *  Date: November 21, 2019 

 *  Description: head file of main function 

 *  Last Changed: July 17, 2020 by Yuan Wei 

 */ 

 

#ifndef MAIN_H 

#define MAIN_H 

 

#include "arduino.h" 

#include "TimerThree.h" 

#include "HABTPMSensor.h" 

#include "Adafruit_MCP4725.h" 

#include "serialSingleWrite.h" 

 

#define Pi 3.14159 

#define EI_pin 2 

#define timePeriod 10000    //microseconds 
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HABTPMSensor sensorSet1; 

HABTPMSensor sensorSet2; 

Adafruit_MCP4725 dac1; 

Adafruit_MCP4725 dac2; 

 

float getDegree(float B_A, float B_B); 

int DACOut(float realVoltage); 

float getTheta(float Degree0, float Degree1); 

void isrT(); 

void isrE(); 

 

#endif 

 

 

/*  File Name: main.cpp   

 *  Author: Yuan Wei 

 *  Date: November 21, 2019 

 *  Description: main function of Halbach Array Based Two Phase Motor(HATPM) 

 *  Last Changed: August 31, 2020 by Yuan Wei 

 */ 
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#include "main.h" 

 

unsigned int PhaseAVOut = 2048; 

unsigned int PhaseBVOut = 2048; 

float Degree0 = 0; 

float Degree1 = 0; 

float Degree = 0;  

double mPosition = 0; 

float I = 0; 

float Theta_d = 0; 

float e0 = 0; 

float e1 = 0; 

float e2 = 0; 

float I0 = 0; 

float I1 = 0; 

byte ST = 0; 

long n = 0; 

float resolution = 0.5; 

 

float radianToDegree = 180 / Pi; 

float degreeToRadian = Pi / 180; 

float voltageConverter = 4095.0 / 1000; 



 

75 

 

float speedConverter = 60000000.0 / (360 * timePeriod);             //rpm 

 

void setup()  

{ 

    Serial.begin(115200); 

    sensorSet1.initializeSensor(A0, A1);    //tempA A0; HSA A1 

    sensorSet2.initializeSensor(A2, A3);    //tempB A2; HSB A3 

    dac1.begin(0x62);                       //0x62 is the default address of dacMCP4725 with A0 

being digital low 

    dac2.begin(0x63);                       //0x63 is the default address of dacMCP4725 with A0 

being digital high 

    Timer3.initialize(timePeriod);          // time before overflow in us 

    Timer3.attachInterrupt(isrT);           // isrT triggered at overflow 

    attachInterrupt(digitalPinToInterrupt(EI_pin), isrE, RISING); 

} 

 

void loop()  

{ 

    unsigned long Time = 0; 

    float B_A = 0; 

    float B_B = 0; 

    float temp_A = 0; 
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    float temp_B = 0; 

 

    /*temp_A = sensorSet1.getTempt(); 

    temp_B = sensorSet2.getTempt();*/ 

         

    //sampling period is 0.4ms 

    //Time = micros(); 

    B_A = sensorSet1.getB(0); 

    B_B = sensorSet2.getB(0); 

    Degree = getDegree(B_A, B_B); 

 

    //output 

    //I = receiveCurrent(receivePin); 

    //I = 300; 

    if (Degree > 600)                               //temperature is too high 

    { 

        dac1.setVoltage(2048, false); 

        dac2.setVoltage(2048, false); 

    } 

    else 

    { 

        PhaseAVOut = DACOut(-I * sin(Degree * degreeToRadian)); 
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        PhaseBVOut = DACOut(I * cos(Degree * degreeToRadian)); 

        dac1.setVoltage(PhaseAVOut, false); 

        dac2.setVoltage(PhaseBVOut, false); 

    } 

    //Time = micros() - Time; 

 

    /*Serial.print("T_A:"); 

    Serial.println(temp_A); 

    Serial.print("B_A:"); 

    Serial.println(B_A); 

    Serial.print("T_B:"); 

    Serial.println(temp_B); 

    Serial.print("B_B:"); 

    Serial.println(B_B); 

    Serial.print("Degree:"); 

    Serial.println(Degree); 

    Serial.print("Time:"); 

    Serial.println(Time); 

    Serial.println("------"); 

    delay(1000);*/ 

     

} 
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float getDegree(float B_A, float B_B) 

{ 

  float D = 0; 

   

  if(B_A == 233 || B_B == 233) 

  { 

    D = 666;        //Temperature is too high. 

  } 

  else if(B_A >= 90) 

  { 

    D = B_B * 0.5 - 3; 

    if(D < 0) 

    { 

      D = D + 360; 

    } 

  } 

  else if(B_A <= -90) 

  { 

    D = -B_B * 0.5 + 175.1; 

  } 

  else if(B_B >= 90) 
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  { 

    D = -B_A * 0.5 + 85.6; 

  } 

  else if(B_B <= -90) 

  { 

    D = B_A * 0.5 + 267.4; 

  } 

 

  return D; 

} 

 

int DACOut(float realVoltage) 

{ 

    int DACVoltage = int((500 - realVoltage) * voltageConverter); 

    return DACVoltage; 

} 

 

float getTheta(float Degree0, float Degree1) 

{ 

    float mTheta = 0; 

    float D = Degree0 - Degree1; 

    if (D > 0) 
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    { 

        if (D < 90) 

        { 

            mTheta = D; 

        } 

        else 

        { 

            mTheta = D - 360; 

        } 

    } 

    else 

    { 

        if (D > -90) 

        { 

            mTheta = D; 

        } 

        else 

        { 

            mTheta = D + 360; 

        } 

    } 

    if (abs(D) > 90) 
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    { 

      mTheta = 0; 

    } 

 

    if (abs(mTheta) > 25) 

    { 

      mTheta = 0; 

    } 

     

    return mTheta; 

} 

 

void isrT() 

{ 

    //unsigned long Time = 0; 

    float mSpeed = 0;  

    float If = 0; 

    Degree0 = Degree; 

    float D = getTheta(Degree0, Degree1); 

 

    if(ST == 1) 

    { 
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      n++; 

 

      //Theta_d = 5 * n;                                //ramp response 

      //Theta_d = 90 * sin(0.4 * Pi * 0.01 * n);        //sine response 

 

      if ( n == 200 || n == 400 || n == 600 || n == 800 || n == 1000) 

      { 

          Theta_d = Theta_d + resolution; 

      } 

    } 

     

    mPosition = mPosition + D; 

    serialSingleWrite(mPosition); 

    e0 = (Theta_d - mPosition) * degreeToRadian; 

    I0 = 10 * e0 - 9.999 * e1 + I1;             //PI 

    //I0 = 85 * e0 - 78.31 * e1 + 0.6065 * I1; 

    if (D < 0) 

    { 

        If = -If; 

    } 

 

    if (abs(e0) < 0.17 && abs(e1) < 0.17) 
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    { 

        If = 0; 

    } 

 

    I = I0 * 100 + If; 

 

    /*Saturation Current*/ 

    if (I > 300) 

    { 

        I = 300; 

    } 

    else if (I < -300) 

    { 

        I = -300; 

    } 

 

    Degree1 = Degree0; 

    I1 = I0; 

    e2 = e1; 

    e1 = e0; 

    //Time = Time - micros(); 

} 
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void isrE() 

{ 

    if (digitalRead(EI_pin) == 1) 

    { 

        ST = 1; 

        //Theta_d = 1;        //step response 

    } 

} 
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APPENDIX B 

MATLAB CODE 

 

controllerSim.m 

clc;  

clear; 

 

J = 5.5e-4; 

c = 2*6.166e-4; 

lambda = 2*7.1592e-3; 

s = tf('s'); 

Kp = 10; 

Ki = 0.1; 

Kd = 0; 

Ts = 0.01; 

z = 0.001; 

p = 10; 

K = 0.1; 

Td = 1.025e-2; 

 

Cs = Kp+Ki/s+Kd*s; 

C2s = (s+z)/(s+p); 
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Gs = lambda/(J*s^2+c*s); 

figure(1); 

% opts = bodeoptions(); 

% opts.FreqUnits = 'Hz'; 

margin(Gs); 

hold on; 

margin(K*Cs*Gs); 

grid; 

hold off; 

figure(2); 

rlocus(Cs*Gs); 

grid; 

ylim([-10, 10]); 

C2s = K*C2s; 

TFs = minreal(Cs*Gs/(1+Cs*Gs)); 

figure(3); 

step(TFs); 

xlim([0 5]); 

grid; 

Cz = c2d(Cs, Ts, 'zoh') 

 

AmpTFSim.m 
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clc; 

clear; 

 

R1=10e3; 

R2=R1; 

R3=R1; 

R4=R1; 

R5=R1; 

R6=27.4e3; 

R7=10e3; 

R8=R1; 

R9=R1; 

R10=0.5; 

C1=10e-9; 

C2=C1; 

C3=C1; 

Ra=1.5; 

La=152e-6; 

 

s = tf('s'); 

Gs=(R9+R8)*R7*R3*(R6*C3*s+1)/(R1*R5*(R10*(R9+R8)*(R6*C3*s+1)+R9*R7*C3

*(La*s+Ra+R10)*s)*(R3*C2*s+1)); 
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figure(1); 

opts = bodeoptions(); 

opts.FreqUnits = 'Hz'; 

bode(Gs,opts); 

grid; 

 

figure(2); 

step(Gs); 

grid; 

 

fieldAnalysis.m 

clc; 

clear; 

 

i=1; 

d=0.2; 

g=2*pi/20-d; 

for n=0:70 

    Stheta=0; 

    S=exp(1i*n*(pi-d/2))-exp(1i*n*(d/2-pi)); 

    for m=1:19 
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        S=S+cos((m-10)*pi/10)*(exp(1i*n*(-pi+d/2+m*(d+g)))-exp(1i*n*(-pi-

d/2+m*(d+g)))); 

        Stheta=Stheta+sin((m-10)*pi/10)*(exp(1i*n*(-pi+d/2+m*(d+g)))-exp(1i*n*(-pi-

d/2+m*(d+g)))); 

%         Stheta=Stheta+sin(m*pi/10)*(exp(1i*n*(d/2+2*m*d))-exp(1i*n*(-

d/2+2*m*d))); 

    end 

    Mr(i,1)=real(-1i*S/(2*pi*n)); 

    Mri(i,1)=imag(-1i*S/(2*pi*n)); 

    Mtheta(i,1)=real(-1i*Stheta/(2*pi*n)); 

    Mthetai(i,1)=imag(-1i*Stheta/(2*pi*n)); 

 Mx(i,1)=(sin(n*pi/4)+sin(3*n*pi/4)-sin(5*n*pi/4)-sin(7*n*pi/4))/(2*n*pi); 

    hn(i,1)=n; 

    i=i+1; 

end 

 

figure(1); 

subplot(2,2,1); 

stem(hn,Mr,'k'); 

xlabel('harmonic number'); 

ylabel('r-real-magnitude'); 

ylim([-0.5, 0.5]); 
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grid; 

 

subplot(2,2,2); 

stem(hn,Mthetai,'k'); 

xlabel('harmonic number'); 

ylabel('theta-imaginary-magnitude'); 

ylim([-0.5, 0.5]); 

grid; 

 

subplot(2,2,3); 

stem(hn,Mri,'k'); 

xlabel('harmonic number'); 

ylabel('r-imaginary-magnitude'); 

ylim([-0.5, 0.5]); 

grid; 

 

subplot(2,2,4); 

stem(hn,Mtheta,'k'); 

xlabel('harmonic number'); 

ylabel('theta-real-magnitude'); 

ylim([-0.5, 0.5]); 

grid; 
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figure(2); 

stem(hn,Mx,'k'); 

xlabel('harmonic number'); 

ylabel('magnitude'); 

grid; 

 

Ri=0.031825; 

R0=0.038175; 

M0=1114084.6*0.3178*2; 

Mnt=1114084.6*2*(-0.06353); 

Mn=42*Mnt; 

n=41; 

mu0=pi*4e-7; 

 

f1=(Ri^2+R0^2)/(R0*(Ri^2-R0^2)); 

f2=(Ri^2+R0^2)/(Ri*(R0^2-Ri^2)); 

g1=2*Ri/(R0^2-Ri^2); 

g2=2*R0/(Ri^2-R0^2); 

t1=1+2*Ri^2*(log(Ri)-log(R0))/(R0^2-Ri^2); 

t2=1+2*R0^2*(log(Ri)-log(R0))/(R0^2-Ri^2); 
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A=[1, -1, 0, 0, 0, 0, 0, 0; 

    0, 0, 1, -1, 0, 0, 0, 0; 

    1/R0, 0, 0, 0, -1, 0, 0, 0; 

    0, -f1, -g1, 0, 0, 1, 0, 0; 

    0, -g2, -f2, 0, 0, 0, 1, 0; 

    0, 0, 0, 1/Ri, 0, 0, 0, 1; 

    0, 0, 0, 0, -1, 1, 0, 0; 

    0, 0, 0, 0, 0, 0, -1, 1;]; 

b=[0; 0; 0; t1; t2; 0; 1; -1]*mu0*M0; 

x=A\b 

 

fn1=n*(Ri^(2*n)+R0^(2*n))/(R0*(Ri^(2*n)-R0^(2*n))); 

fn2=n*(Ri^(2*n)+R0^(2*n))/(Ri*(R0^(2*n)-Ri^(2*n))); 

gn1=2*n*Ri^n*R0^(n-1)/(R0^(2*n)-Ri^(2*n)); 

gn2=2*n*Ri^(n-1)*R0^n/(Ri^(2*n)-R0^(2*n)); 

tn1=(R0*Ri^(2*n) - R0*R0^(2*n) + R0*R0^(2*n)*n + R0*Ri^(2*n)*n - 

2*R0^n*Ri*Ri^n*n)/(R0*(n^2 - 1)*(R0^(2*n) - Ri^(2*n))); 

tn2=-(R0^(2*n)*Ri - Ri*Ri^(2*n) + R0^(2*n)*Ri*n + Ri*Ri^(2*n)*n - 

2*R0*R0^n*Ri^n*n)/(Ri*(n^2 - 1)*(R0^(2*n) - Ri^(2*n))); 

 

 

A=[1, -1, 0, 0, 0, 0, 0, 0; 
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    0, 0, 1, -1, 0, 0, 0, 0; 

    n/R0, 0, 0, 0, -1, 0, 0, 0; 

    0, -fn1, -gn1, 0, 0, 1, 0, 0; 

    0, -gn2, -fn2, 0, 0, 0, 1, 0; 

    0, 0, 0, n/Ri, 0, 0, 0, 1; 

    0, 0, 0, 0, -1, 1, 0, 0; 

    0, 0, 0, 0, 0, 0, -1, 1;]; 

b=[0; 0; 0; tn1*Mn; tn2*Mn; 0; Mnt; -Mnt]*mu0; 

x=A\b*1000 

 

r = 0.01225; 

Br=x(8)*(r/Ri)^(n-1) 

 

% figure(2); 

% t=0:0.001:2*pi; 

% y=2*0.3178*sin(t)+18*0.1585*sin(19*t)+22*0.1308*sin(21*t)-

38*0.05613*sin(39*t)-42*0.06353*sin(41*t); 

% plot(t,y); 

 

caluculator.m 

clc; 

clear; 
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syms Ri R0 n mu0 M0; 

 

% r = R0; 

% f1 = simplify(-n*r^(n-1)/(R0^n-Ri^(2*n)*R0^(-n))-Ri^(2*n)*n*r^(-n-1)/(R0^n-

Ri^(2*n)*R0^(-n))); 

% g1 = simplify(n*r^(n-1)*Ri^n*R0^(-n)/(R0^n-Ri^(2*n)*R0^(-n))+Ri^(2*n)*n*r^(-n-

1)*Ri^n*R0^(-n)/(R0^n-Ri^(2*n)*R0^(-n))+Ri^n*n*r^(-n-1)); 

% t1 = simplify(n*r^(n-1)*(R0-Ri^(n+1)*R0^(-n))/((R0^n-Ri^(2*n)*R0^(-n))*(n^2-

1))+Ri^(2*n)*n*r^(-n-1)*(R0-Ri^(n+1)*R0^(-n))/((R0^n-Ri^(2*n)*R0^(-n))*(n^2-1))-

(Ri^(n+1)*n*r^(-n-1))/(n^2-1)-1/(n^2-1)); 

%  

% r = Ri; 

% g2 = simplify(-n*r^(n-1)/(R0^n-Ri^(2*n)*R0^(-n))-Ri^(2*n)*n*r^(-n-1)/(R0^n-

Ri^(2*n)*R0^(-n))); 

% f2 = simplify(n*r^(n-1)*Ri^n*R0^(-n)/(R0^n-Ri^(2*n)*R0^(-n))+Ri^(2*n)*n*r^(-n-

1)*Ri^n*R0^(-n)/(R0^n-Ri^(2*n)*R0^(-n))+Ri^n*n*r^(-n-1)); 

% t2 = simplify(n*r^(n-1)*(R0-Ri^(n+1)*R0^(-n))/((R0^n-Ri^(2*n)*R0^(-n))*(n^2-

1))+Ri^(2*n)*n*r^(-n-1)*(R0-Ri^(n+1)*R0^(-n))/((R0^n-Ri^(2*n)*R0^(-n))*(n^2-1))-

(Ri^(n+1)*n*r^(-n-1))/(n^2-1)-1/(n^2-1)); 

 

% f1=(Ri^2+R0^2)/(R0*(Ri^2-R0^2)); 
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% f2=(Ri^2+R0^2)/(Ri*(R0^2-Ri^2)); 

% g1=2*Ri/(R0^2-Ri^2); 

% g2=2*R0/(Ri^2-R0^2); 

% t1=1+2*Ri^2*(log(Ri)-log(R0))/(R0^2-Ri^2); 

% t2=1+2*R0^2*(log(Ri)-log(R0))/(R0^2-Ri^2); 

%  

% A=[1, -1, 0, 0, 0, 0, 0, 0; 

%     0, 0, 1, -1, 0, 0, 0, 0; 

%     1/R0, 0, 0, 0, -1, 0, 0, 0; 

%     0, -f1, -g1, 0, 0, 1, 0, 0; 

%     0, -g2, -f2, 0, 0, 0, 1, 0; 

%     0, 0, 0, 1/Ri, 0, 0, 0, 1; 

%     0, 0, 0, 0, -1, 1, 0, 0; 

%     0, 0, 0, 0, 0, 0, -1, 1;]; 

% b=[0; 0; 0; t1; t2; 0; 1; -1]*mu0*M0; 

% x=A\b 

 

fn1=n*(Ri^(2*n)+R0^(2*n))/(R0*(Ri^(2*n)-R0^(2*n))); 

fn2=n*(Ri^(2*n)+R0^(2*n))/(Ri*(R0^(2*n)-Ri^(2*n))); 

gn1=2*n*Ri^n*R0^(n-1)/(R0^(2*n)-Ri^(2*n)); 

gn2=2*n*Ri^(n-1)*R0^n/(Ri^(2*n)-R0^(2*n)); 
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tn1=(R0*Ri^(2*n) - R0*R0^(2*n) + R0*R0^(2*n)*n + R0*Ri^(2*n)*n - 

2*R0^n*Ri*Ri^n*n)/(R0*(n^2 - 1)*(R0^(2*n) - Ri^(2*n))); 

tn2=-(R0^(2*n)*Ri - Ri*Ri^(2*n) + R0^(2*n)*Ri*n + Ri*Ri^(2*n)*n - 

2*R0*R0^n*Ri^n*n)/(Ri*(n^2 - 1)*(R0^(2*n) - Ri^(2*n))); 

 

Mnt = M0; 

%Mn = (n+1)*M0; 

Mn = (1-n)*M0; 

 

A=[1, -1, 0, 0, 0, 0, 0, 0; 

    0, 0, 1, -1, 0, 0, 0, 0; 

    n/R0, 0, 0, 0, -1, 0, 0, 0; 

    0, -fn1, -gn1, 0, 0, 1, 0, 0; 

    0, -gn2, -fn2, 0, 0, 0, 1, 0; 

    0, 0, 0, n/Ri, 0, 0, 0, 1; 

    0, 0, 0, 0, -1, 1, 0, 0; 

    0, 0, 0, 0, 0, 0, -1, 1;]; 

b=[0; 0; 0; tn1*Mn; tn2*Mn; 0; Mnt; -Mnt]*mu0; 

x=A\b 

 

FCR.m 

clc; 
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clear; 

 

i=1; 

d=0.2; 

g=2*pi/20-d; 

for n=0:100 

    Stheta=0; 

    S=-(sin(n*(d/2-pi))-sin(-n*pi)+sin(n*pi)-sin(n*(pi-d/2))); 

    for m=1:19 

        S=S+cos((m-10)*pi/10)*(sin(n*(-pi+d/2+m*(d+g)))-sin(n*(-pi-d/2+m*(d+g)))); 

        Stheta=Stheta+sin((m-10)*pi/10)*(cos(n*(-pi+d/2+m*(d+g)))-cos(n*(-pi-

d/2+m*(d+g)))); 

    end 

    Mr(i,1)=S/(pi*n); 

    Mthetai(i,1)=-Stheta/(pi*n); 

    hn(i,1)=n; 

    i=i+1; 

end 

 

figure(1); 

stem(hn,Mr,'k'); 

xlabel('harmonic number'); 
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ylabel('r-magnitude'); 

ylim([-0.4, 0.7]); 

grid; 

 

figure(2); 

stem(hn,Mthetai,'k'); 

xlabel('harmonic number'); 

ylabel('theta-magnitude'); 

ylim([-0.4, 0.7]); 

grid; 

 

magnetizationPlot.m 

clc; 

clear; 

 

d = 0.2; 

g = pi/10 - d; 

 

figure(1); 

hold on; 

plot([-pi,-pi+d/2],[-1,-1],'k'); 

plot([pi-d/2,pi],[-1,-1],'k'); 
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plot([pi-d/2-g,pi-d/2],[0,0],'k'); 

for n = 1:1:20 

    plot([-pi-d/2+(g+d)*n,-pi+d/2+(g+d)*n],[cos((n-10)*pi/10),cos((n-10)*pi/10)],'k'); 

    plot([-pi+d/2+(g+d)*(n-1),-pi+d/2+g+(g+d)*(n-1)],[0,0],'k'); 

    plot([-pi+d/2+(g+d)*(n-1),-pi+d/2+(g+d)*(n-1)],[cos((n-11)*pi/10),0],'k'); 

    plot([-pi-d/2+(g+d)*n,-pi-d/2+(g+d)*n],[0,cos((n-10)*pi/10)],'k'); 

end 

grid on; 

hold off; 

xticks([-pi,-pi/2,0,pi/2,pi]);    

xticklabels({'-\pi','-\pi/2','0','\pi/2','\pi'}); 

yticks([-1,-1/2,0,1/2,1]);    

yticklabels({'-M_{0}','-M_{0}/2','0','M_{0}/2','M_{0}'}); 

xlim([-pi, pi]); 

ylim([-1.1,1.1]); 

xlabel('\theta (rad)'); 

ylabel('M_{r}'); 

 

figure(2); 

hold on; 

plot([-pi,-pi+d/2],[0,0],'k'); 

plot([pi-d/2,pi],[0,0],'k'); 
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for n = 1:1:20 

    plot([-pi-d/2+(g+d)*n,-pi+d/2+(g+d)*n],[sin((n-10)*pi/10),sin((n-10)*pi/10)],'k'); 

    plot([-pi+d/2+(g+d)*(n-1),-pi+d/2+g+(g+d)*(n-1)],[0,0],'k'); 

    plot([-pi+d/2+(g+d)*(n-1),-pi+d/2+(g+d)*(n-1)],[sin((n-11)*pi/10),0],'k'); 

    plot([-pi-d/2+(g+d)*n,-pi-d/2+(g+d)*n],[0,sin((n-10)*pi/10)],'k'); 

end 

grid on; 

hold off; 

xticks([-pi,-pi/2,0,pi/2,pi]);    

xticklabels({'-\pi','-\pi/2','0','\pi/2','\pi'}); 

yticks([-1,-1/2,0,1/2,1]);    

yticklabels({'-M_{0}','-M_{0}/2','0','M_{0}/2','M_{0}'}); 

xlim([-pi, pi]); 

ylim([-1.1,1.1]); 

xlabel('\theta (rad)'); 

ylabel('M_{\theta}'); 

 

dataCollector.slx 

 


